1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned int quirks; 37 module_param(quirks, uint, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 213 #ifdef CONFIG_USB_PCI 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 /* 221 * TODO:Check with MSI Soc for sysdev 222 */ 223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 224 225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 226 if (ret < 0) { 227 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 228 "failed to allocate MSI entry"); 229 return ret; 230 } 231 232 ret = request_irq(pdev->irq, xhci_msi_irq, 233 0, "xhci_hcd", xhci_to_hcd(xhci)); 234 if (ret) { 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "disable MSI interrupt"); 237 pci_free_irq_vectors(pdev); 238 } 239 240 return ret; 241 } 242 243 /* 244 * Set up MSI-X 245 */ 246 static int xhci_setup_msix(struct xhci_hcd *xhci) 247 { 248 int i, ret = 0; 249 struct usb_hcd *hcd = xhci_to_hcd(xhci); 250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 251 252 /* 253 * calculate number of msi-x vectors supported. 254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 255 * with max number of interrupters based on the xhci HCSPARAMS1. 256 * - num_online_cpus: maximum msi-x vectors per CPUs core. 257 * Add additional 1 vector to ensure always available interrupt. 258 */ 259 xhci->msix_count = min(num_online_cpus() + 1, 260 HCS_MAX_INTRS(xhci->hcs_params1)); 261 262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 263 PCI_IRQ_MSIX); 264 if (ret < 0) { 265 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 266 "Failed to enable MSI-X"); 267 return ret; 268 } 269 270 for (i = 0; i < xhci->msix_count; i++) { 271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 272 "xhci_hcd", xhci_to_hcd(xhci)); 273 if (ret) 274 goto disable_msix; 275 } 276 277 hcd->msix_enabled = 1; 278 return ret; 279 280 disable_msix: 281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 282 while (--i >= 0) 283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 284 pci_free_irq_vectors(pdev); 285 return ret; 286 } 287 288 /* Free any IRQs and disable MSI-X */ 289 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 290 { 291 struct usb_hcd *hcd = xhci_to_hcd(xhci); 292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 293 294 if (xhci->quirks & XHCI_PLAT) 295 return; 296 297 /* return if using legacy interrupt */ 298 if (hcd->irq > 0) 299 return; 300 301 if (hcd->msix_enabled) { 302 int i; 303 304 for (i = 0; i < xhci->msix_count; i++) 305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 306 } else { 307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 308 } 309 310 pci_free_irq_vectors(pdev); 311 hcd->msix_enabled = 0; 312 } 313 314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 315 { 316 struct usb_hcd *hcd = xhci_to_hcd(xhci); 317 318 if (hcd->msix_enabled) { 319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 320 int i; 321 322 for (i = 0; i < xhci->msix_count; i++) 323 synchronize_irq(pci_irq_vector(pdev, i)); 324 } 325 } 326 327 static int xhci_try_enable_msi(struct usb_hcd *hcd) 328 { 329 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 330 struct pci_dev *pdev; 331 int ret; 332 333 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 334 if (xhci->quirks & XHCI_PLAT) 335 return 0; 336 337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 338 /* 339 * Some Fresco Logic host controllers advertise MSI, but fail to 340 * generate interrupts. Don't even try to enable MSI. 341 */ 342 if (xhci->quirks & XHCI_BROKEN_MSI) 343 goto legacy_irq; 344 345 /* unregister the legacy interrupt */ 346 if (hcd->irq) 347 free_irq(hcd->irq, hcd); 348 hcd->irq = 0; 349 350 ret = xhci_setup_msix(xhci); 351 if (ret) 352 /* fall back to msi*/ 353 ret = xhci_setup_msi(xhci); 354 355 if (!ret) { 356 hcd->msi_enabled = 1; 357 return 0; 358 } 359 360 if (!pdev->irq) { 361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 362 return -EINVAL; 363 } 364 365 legacy_irq: 366 if (!strlen(hcd->irq_descr)) 367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 368 hcd->driver->description, hcd->self.busnum); 369 370 /* fall back to legacy interrupt*/ 371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 372 hcd->irq_descr, hcd); 373 if (ret) { 374 xhci_err(xhci, "request interrupt %d failed\n", 375 pdev->irq); 376 return ret; 377 } 378 hcd->irq = pdev->irq; 379 return 0; 380 } 381 382 #else 383 384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 385 { 386 return 0; 387 } 388 389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 390 { 391 } 392 393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 } 396 397 #endif 398 399 static void compliance_mode_recovery(struct timer_list *t) 400 { 401 struct xhci_hcd *xhci; 402 struct usb_hcd *hcd; 403 u32 temp; 404 int i; 405 406 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 407 408 for (i = 0; i < xhci->num_usb3_ports; i++) { 409 temp = readl(xhci->usb3_ports[i]); 410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 411 /* 412 * Compliance Mode Detected. Letting USB Core 413 * handle the Warm Reset 414 */ 415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 416 "Compliance mode detected->port %d", 417 i + 1); 418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 419 "Attempting compliance mode recovery"); 420 hcd = xhci->shared_hcd; 421 422 if (hcd->state == HC_STATE_SUSPENDED) 423 usb_hcd_resume_root_hub(hcd); 424 425 usb_hcd_poll_rh_status(hcd); 426 } 427 } 428 429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 430 mod_timer(&xhci->comp_mode_recovery_timer, 431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 432 } 433 434 /* 435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 436 * that causes ports behind that hardware to enter compliance mode sometimes. 437 * The quirk creates a timer that polls every 2 seconds the link state of 438 * each host controller's port and recovers it by issuing a Warm reset 439 * if Compliance mode is detected, otherwise the port will become "dead" (no 440 * device connections or disconnections will be detected anymore). Becasue no 441 * status event is generated when entering compliance mode (per xhci spec), 442 * this quirk is needed on systems that have the failing hardware installed. 443 */ 444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 445 { 446 xhci->port_status_u0 = 0; 447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 448 0); 449 xhci->comp_mode_recovery_timer.expires = jiffies + 450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 451 452 add_timer(&xhci->comp_mode_recovery_timer); 453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 454 "Compliance mode recovery timer initialized"); 455 } 456 457 /* 458 * This function identifies the systems that have installed the SN65LVPE502CP 459 * USB3.0 re-driver and that need the Compliance Mode Quirk. 460 * Systems: 461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 462 */ 463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 464 { 465 const char *dmi_product_name, *dmi_sys_vendor; 466 467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 469 if (!dmi_product_name || !dmi_sys_vendor) 470 return false; 471 472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 473 return false; 474 475 if (strstr(dmi_product_name, "Z420") || 476 strstr(dmi_product_name, "Z620") || 477 strstr(dmi_product_name, "Z820") || 478 strstr(dmi_product_name, "Z1 Workstation")) 479 return true; 480 481 return false; 482 } 483 484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 485 { 486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 487 } 488 489 490 /* 491 * Initialize memory for HCD and xHC (one-time init). 492 * 493 * Program the PAGESIZE register, initialize the device context array, create 494 * device contexts (?), set up a command ring segment (or two?), create event 495 * ring (one for now). 496 */ 497 static int xhci_init(struct usb_hcd *hcd) 498 { 499 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 500 int retval = 0; 501 502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 503 spin_lock_init(&xhci->lock); 504 if (xhci->hci_version == 0x95 && link_quirk) { 505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 506 "QUIRK: Not clearing Link TRB chain bits."); 507 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 508 } else { 509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 510 "xHCI doesn't need link TRB QUIRK"); 511 } 512 retval = xhci_mem_init(xhci, GFP_KERNEL); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 514 515 /* Initializing Compliance Mode Recovery Data If Needed */ 516 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 517 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 518 compliance_mode_recovery_timer_init(xhci); 519 } 520 521 return retval; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 527 static int xhci_run_finished(struct xhci_hcd *xhci) 528 { 529 if (xhci_start(xhci)) { 530 xhci_halt(xhci); 531 return -ENODEV; 532 } 533 xhci->shared_hcd->state = HC_STATE_RUNNING; 534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 535 536 if (xhci->quirks & XHCI_NEC_HOST) 537 xhci_ring_cmd_db(xhci); 538 539 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 540 "Finished xhci_run for USB3 roothub"); 541 return 0; 542 } 543 544 /* 545 * Start the HC after it was halted. 546 * 547 * This function is called by the USB core when the HC driver is added. 548 * Its opposite is xhci_stop(). 549 * 550 * xhci_init() must be called once before this function can be called. 551 * Reset the HC, enable device slot contexts, program DCBAAP, and 552 * set command ring pointer and event ring pointer. 553 * 554 * Setup MSI-X vectors and enable interrupts. 555 */ 556 int xhci_run(struct usb_hcd *hcd) 557 { 558 u32 temp; 559 u64 temp_64; 560 int ret; 561 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 562 563 /* Start the xHCI host controller running only after the USB 2.0 roothub 564 * is setup. 565 */ 566 567 hcd->uses_new_polling = 1; 568 if (!usb_hcd_is_primary_hcd(hcd)) 569 return xhci_run_finished(xhci); 570 571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 572 573 ret = xhci_try_enable_msi(hcd); 574 if (ret) 575 return ret; 576 577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 578 temp_64 &= ~ERST_PTR_MASK; 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "// Set the interrupt modulation register"); 584 temp = readl(&xhci->ir_set->irq_control); 585 temp &= ~ER_IRQ_INTERVAL_MASK; 586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 587 writel(temp, &xhci->ir_set->irq_control); 588 589 /* Set the HCD state before we enable the irqs */ 590 temp = readl(&xhci->op_regs->command); 591 temp |= (CMD_EIE); 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 593 "// Enable interrupts, cmd = 0x%x.", temp); 594 writel(temp, &xhci->op_regs->command); 595 596 temp = readl(&xhci->ir_set->irq_pending); 597 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 601 602 if (xhci->quirks & XHCI_NEC_HOST) { 603 struct xhci_command *command; 604 605 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 606 if (!command) 607 return -ENOMEM; 608 609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 610 TRB_TYPE(TRB_NEC_GET_FW)); 611 if (ret) 612 xhci_free_command(xhci, command); 613 } 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 615 "Finished xhci_run for USB2 roothub"); 616 617 xhci_dbc_init(xhci); 618 619 xhci_debugfs_init(xhci); 620 621 return 0; 622 } 623 EXPORT_SYMBOL_GPL(xhci_run); 624 625 /* 626 * Stop xHCI driver. 627 * 628 * This function is called by the USB core when the HC driver is removed. 629 * Its opposite is xhci_run(). 630 * 631 * Disable device contexts, disable IRQs, and quiesce the HC. 632 * Reset the HC, finish any completed transactions, and cleanup memory. 633 */ 634 static void xhci_stop(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 638 639 mutex_lock(&xhci->mutex); 640 641 /* Only halt host and free memory after both hcds are removed */ 642 if (!usb_hcd_is_primary_hcd(hcd)) { 643 /* usb core will free this hcd shortly, unset pointer */ 644 xhci->shared_hcd = NULL; 645 mutex_unlock(&xhci->mutex); 646 return; 647 } 648 649 xhci_dbc_exit(xhci); 650 651 spin_lock_irq(&xhci->lock); 652 xhci->xhc_state |= XHCI_STATE_HALTED; 653 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 654 xhci_halt(xhci); 655 xhci_reset(xhci); 656 spin_unlock_irq(&xhci->lock); 657 658 xhci_cleanup_msix(xhci); 659 660 /* Deleting Compliance Mode Recovery Timer */ 661 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 662 (!(xhci_all_ports_seen_u0(xhci)))) { 663 del_timer_sync(&xhci->comp_mode_recovery_timer); 664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 665 "%s: compliance mode recovery timer deleted", 666 __func__); 667 } 668 669 if (xhci->quirks & XHCI_AMD_PLL_FIX) 670 usb_amd_dev_put(); 671 672 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 673 "// Disabling event ring interrupts"); 674 temp = readl(&xhci->op_regs->status); 675 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 676 temp = readl(&xhci->ir_set->irq_pending); 677 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 678 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 680 xhci_mem_cleanup(xhci); 681 xhci_debugfs_exit(xhci); 682 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 683 "xhci_stop completed - status = %x", 684 readl(&xhci->op_regs->status)); 685 mutex_unlock(&xhci->mutex); 686 } 687 688 /* 689 * Shutdown HC (not bus-specific) 690 * 691 * This is called when the machine is rebooting or halting. We assume that the 692 * machine will be powered off, and the HC's internal state will be reset. 693 * Don't bother to free memory. 694 * 695 * This will only ever be called with the main usb_hcd (the USB3 roothub). 696 */ 697 static void xhci_shutdown(struct usb_hcd *hcd) 698 { 699 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 700 701 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 702 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 703 704 spin_lock_irq(&xhci->lock); 705 xhci_halt(xhci); 706 /* Workaround for spurious wakeups at shutdown with HSW */ 707 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 708 xhci_reset(xhci); 709 spin_unlock_irq(&xhci->lock); 710 711 xhci_cleanup_msix(xhci); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "xhci_shutdown completed - status = %x", 715 readl(&xhci->op_regs->status)); 716 717 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 718 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 719 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 720 } 721 722 #ifdef CONFIG_PM 723 static void xhci_save_registers(struct xhci_hcd *xhci) 724 { 725 xhci->s3.command = readl(&xhci->op_regs->command); 726 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 727 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 728 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 729 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 730 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 731 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 732 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 733 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 734 } 735 736 static void xhci_restore_registers(struct xhci_hcd *xhci) 737 { 738 writel(xhci->s3.command, &xhci->op_regs->command); 739 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 740 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 741 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 742 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 743 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 744 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 745 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 746 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 747 } 748 749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 750 { 751 u64 val_64; 752 753 /* step 2: initialize command ring buffer */ 754 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 755 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 756 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 757 xhci->cmd_ring->dequeue) & 758 (u64) ~CMD_RING_RSVD_BITS) | 759 xhci->cmd_ring->cycle_state; 760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 761 "// Setting command ring address to 0x%llx", 762 (long unsigned long) val_64); 763 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 764 } 765 766 /* 767 * The whole command ring must be cleared to zero when we suspend the host. 768 * 769 * The host doesn't save the command ring pointer in the suspend well, so we 770 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 771 * aligned, because of the reserved bits in the command ring dequeue pointer 772 * register. Therefore, we can't just set the dequeue pointer back in the 773 * middle of the ring (TRBs are 16-byte aligned). 774 */ 775 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 776 { 777 struct xhci_ring *ring; 778 struct xhci_segment *seg; 779 780 ring = xhci->cmd_ring; 781 seg = ring->deq_seg; 782 do { 783 memset(seg->trbs, 0, 784 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 785 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 786 cpu_to_le32(~TRB_CYCLE); 787 seg = seg->next; 788 } while (seg != ring->deq_seg); 789 790 /* Reset the software enqueue and dequeue pointers */ 791 ring->deq_seg = ring->first_seg; 792 ring->dequeue = ring->first_seg->trbs; 793 ring->enq_seg = ring->deq_seg; 794 ring->enqueue = ring->dequeue; 795 796 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 797 /* 798 * Ring is now zeroed, so the HW should look for change of ownership 799 * when the cycle bit is set to 1. 800 */ 801 ring->cycle_state = 1; 802 803 /* 804 * Reset the hardware dequeue pointer. 805 * Yes, this will need to be re-written after resume, but we're paranoid 806 * and want to make sure the hardware doesn't access bogus memory 807 * because, say, the BIOS or an SMI started the host without changing 808 * the command ring pointers. 809 */ 810 xhci_set_cmd_ring_deq(xhci); 811 } 812 813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 814 { 815 int port_index; 816 __le32 __iomem **port_array; 817 unsigned long flags; 818 u32 t1, t2; 819 820 spin_lock_irqsave(&xhci->lock, flags); 821 822 /* disable usb3 ports Wake bits */ 823 port_index = xhci->num_usb3_ports; 824 port_array = xhci->usb3_ports; 825 while (port_index--) { 826 t1 = readl(port_array[port_index]); 827 t1 = xhci_port_state_to_neutral(t1); 828 t2 = t1 & ~PORT_WAKE_BITS; 829 if (t1 != t2) 830 writel(t2, port_array[port_index]); 831 } 832 833 /* disable usb2 ports Wake bits */ 834 port_index = xhci->num_usb2_ports; 835 port_array = xhci->usb2_ports; 836 while (port_index--) { 837 t1 = readl(port_array[port_index]); 838 t1 = xhci_port_state_to_neutral(t1); 839 t2 = t1 & ~PORT_WAKE_BITS; 840 if (t1 != t2) 841 writel(t2, port_array[port_index]); 842 } 843 844 spin_unlock_irqrestore(&xhci->lock, flags); 845 } 846 847 /* 848 * Stop HC (not bus-specific) 849 * 850 * This is called when the machine transition into S3/S4 mode. 851 * 852 */ 853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 854 { 855 int rc = 0; 856 unsigned int delay = XHCI_MAX_HALT_USEC; 857 struct usb_hcd *hcd = xhci_to_hcd(xhci); 858 u32 command; 859 860 if (!hcd->state) 861 return 0; 862 863 if (hcd->state != HC_STATE_SUSPENDED || 864 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 865 return -EINVAL; 866 867 xhci_dbc_suspend(xhci); 868 869 /* Clear root port wake on bits if wakeup not allowed. */ 870 if (!do_wakeup) 871 xhci_disable_port_wake_on_bits(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 876 del_timer_sync(&hcd->rh_timer); 877 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 878 del_timer_sync(&xhci->shared_hcd->rh_timer); 879 880 if (xhci->quirks & XHCI_SUSPEND_DELAY) 881 usleep_range(1000, 1500); 882 883 spin_lock_irq(&xhci->lock); 884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 886 /* step 1: stop endpoint */ 887 /* skipped assuming that port suspend has done */ 888 889 /* step 2: clear Run/Stop bit */ 890 command = readl(&xhci->op_regs->command); 891 command &= ~CMD_RUN; 892 writel(command, &xhci->op_regs->command); 893 894 /* Some chips from Fresco Logic need an extraordinary delay */ 895 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 896 897 if (xhci_handshake(&xhci->op_regs->status, 898 STS_HALT, STS_HALT, delay)) { 899 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 900 spin_unlock_irq(&xhci->lock); 901 return -ETIMEDOUT; 902 } 903 xhci_clear_command_ring(xhci); 904 905 /* step 3: save registers */ 906 xhci_save_registers(xhci); 907 908 /* step 4: set CSS flag */ 909 command = readl(&xhci->op_regs->command); 910 command |= CMD_CSS; 911 writel(command, &xhci->op_regs->command); 912 if (xhci_handshake(&xhci->op_regs->status, 913 STS_SAVE, 0, 10 * 1000)) { 914 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 915 spin_unlock_irq(&xhci->lock); 916 return -ETIMEDOUT; 917 } 918 spin_unlock_irq(&xhci->lock); 919 920 /* 921 * Deleting Compliance Mode Recovery Timer because the xHCI Host 922 * is about to be suspended. 923 */ 924 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 925 (!(xhci_all_ports_seen_u0(xhci)))) { 926 del_timer_sync(&xhci->comp_mode_recovery_timer); 927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 928 "%s: compliance mode recovery timer deleted", 929 __func__); 930 } 931 932 /* step 5: remove core well power */ 933 /* synchronize irq when using MSI-X */ 934 xhci_msix_sync_irqs(xhci); 935 936 return rc; 937 } 938 EXPORT_SYMBOL_GPL(xhci_suspend); 939 940 /* 941 * start xHC (not bus-specific) 942 * 943 * This is called when the machine transition from S3/S4 mode. 944 * 945 */ 946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 947 { 948 u32 command, temp = 0, status; 949 struct usb_hcd *hcd = xhci_to_hcd(xhci); 950 struct usb_hcd *secondary_hcd; 951 int retval = 0; 952 bool comp_timer_running = false; 953 954 if (!hcd->state) 955 return 0; 956 957 /* Wait a bit if either of the roothubs need to settle from the 958 * transition into bus suspend. 959 */ 960 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 961 time_before(jiffies, 962 xhci->bus_state[1].next_statechange)) 963 msleep(100); 964 965 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 967 968 spin_lock_irq(&xhci->lock); 969 if (xhci->quirks & XHCI_RESET_ON_RESUME) 970 hibernated = true; 971 972 if (!hibernated) { 973 /* step 1: restore register */ 974 xhci_restore_registers(xhci); 975 /* step 2: initialize command ring buffer */ 976 xhci_set_cmd_ring_deq(xhci); 977 /* step 3: restore state and start state*/ 978 /* step 3: set CRS flag */ 979 command = readl(&xhci->op_regs->command); 980 command |= CMD_CRS; 981 writel(command, &xhci->op_regs->command); 982 if (xhci_handshake(&xhci->op_regs->status, 983 STS_RESTORE, 0, 10 * 1000)) { 984 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 985 spin_unlock_irq(&xhci->lock); 986 return -ETIMEDOUT; 987 } 988 temp = readl(&xhci->op_regs->status); 989 } 990 991 /* If restore operation fails, re-initialize the HC during resume */ 992 if ((temp & STS_SRE) || hibernated) { 993 994 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 995 !(xhci_all_ports_seen_u0(xhci))) { 996 del_timer_sync(&xhci->comp_mode_recovery_timer); 997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 998 "Compliance Mode Recovery Timer deleted!"); 999 } 1000 1001 /* Let the USB core know _both_ roothubs lost power. */ 1002 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1003 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1004 1005 xhci_dbg(xhci, "Stop HCD\n"); 1006 xhci_halt(xhci); 1007 xhci_reset(xhci); 1008 spin_unlock_irq(&xhci->lock); 1009 xhci_cleanup_msix(xhci); 1010 1011 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1012 temp = readl(&xhci->op_regs->status); 1013 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1014 temp = readl(&xhci->ir_set->irq_pending); 1015 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1016 1017 xhci_dbg(xhci, "cleaning up memory\n"); 1018 xhci_mem_cleanup(xhci); 1019 xhci_debugfs_exit(xhci); 1020 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1021 readl(&xhci->op_regs->status)); 1022 1023 /* USB core calls the PCI reinit and start functions twice: 1024 * first with the primary HCD, and then with the secondary HCD. 1025 * If we don't do the same, the host will never be started. 1026 */ 1027 if (!usb_hcd_is_primary_hcd(hcd)) 1028 secondary_hcd = hcd; 1029 else 1030 secondary_hcd = xhci->shared_hcd; 1031 1032 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1033 retval = xhci_init(hcd->primary_hcd); 1034 if (retval) 1035 return retval; 1036 comp_timer_running = true; 1037 1038 xhci_dbg(xhci, "Start the primary HCD\n"); 1039 retval = xhci_run(hcd->primary_hcd); 1040 if (!retval) { 1041 xhci_dbg(xhci, "Start the secondary HCD\n"); 1042 retval = xhci_run(secondary_hcd); 1043 } 1044 hcd->state = HC_STATE_SUSPENDED; 1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1046 goto done; 1047 } 1048 1049 /* step 4: set Run/Stop bit */ 1050 command = readl(&xhci->op_regs->command); 1051 command |= CMD_RUN; 1052 writel(command, &xhci->op_regs->command); 1053 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1054 0, 250 * 1000); 1055 1056 /* step 5: walk topology and initialize portsc, 1057 * portpmsc and portli 1058 */ 1059 /* this is done in bus_resume */ 1060 1061 /* step 6: restart each of the previously 1062 * Running endpoints by ringing their doorbells 1063 */ 1064 1065 spin_unlock_irq(&xhci->lock); 1066 1067 xhci_dbc_resume(xhci); 1068 1069 done: 1070 if (retval == 0) { 1071 /* Resume root hubs only when have pending events. */ 1072 status = readl(&xhci->op_regs->status); 1073 if (status & STS_EINT) { 1074 usb_hcd_resume_root_hub(xhci->shared_hcd); 1075 usb_hcd_resume_root_hub(hcd); 1076 } 1077 } 1078 1079 /* 1080 * If system is subject to the Quirk, Compliance Mode Timer needs to 1081 * be re-initialized Always after a system resume. Ports are subject 1082 * to suffer the Compliance Mode issue again. It doesn't matter if 1083 * ports have entered previously to U0 before system's suspension. 1084 */ 1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1086 compliance_mode_recovery_timer_init(xhci); 1087 1088 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1089 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1090 1091 /* Re-enable port polling. */ 1092 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1093 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1094 usb_hcd_poll_rh_status(xhci->shared_hcd); 1095 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1096 usb_hcd_poll_rh_status(hcd); 1097 1098 return retval; 1099 } 1100 EXPORT_SYMBOL_GPL(xhci_resume); 1101 #endif /* CONFIG_PM */ 1102 1103 /*-------------------------------------------------------------------------*/ 1104 1105 /** 1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1107 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1108 * value to right shift 1 for the bitmask. 1109 * 1110 * Index = (epnum * 2) + direction - 1, 1111 * where direction = 0 for OUT, 1 for IN. 1112 * For control endpoints, the IN index is used (OUT index is unused), so 1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1114 */ 1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1116 { 1117 unsigned int index; 1118 if (usb_endpoint_xfer_control(desc)) 1119 index = (unsigned int) (usb_endpoint_num(desc)*2); 1120 else 1121 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1122 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1123 return index; 1124 } 1125 1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1127 * address from the XHCI endpoint index. 1128 */ 1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1130 { 1131 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1132 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1133 return direction | number; 1134 } 1135 1136 /* Find the flag for this endpoint (for use in the control context). Use the 1137 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1138 * bit 1, etc. 1139 */ 1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1141 { 1142 return 1 << (xhci_get_endpoint_index(desc) + 1); 1143 } 1144 1145 /* Find the flag for this endpoint (for use in the control context). Use the 1146 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1147 * bit 1, etc. 1148 */ 1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1150 { 1151 return 1 << (ep_index + 1); 1152 } 1153 1154 /* Compute the last valid endpoint context index. Basically, this is the 1155 * endpoint index plus one. For slot contexts with more than valid endpoint, 1156 * we find the most significant bit set in the added contexts flags. 1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1159 */ 1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1161 { 1162 return fls(added_ctxs) - 1; 1163 } 1164 1165 /* Returns 1 if the arguments are OK; 1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1167 */ 1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1169 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1170 const char *func) { 1171 struct xhci_hcd *xhci; 1172 struct xhci_virt_device *virt_dev; 1173 1174 if (!hcd || (check_ep && !ep) || !udev) { 1175 pr_debug("xHCI %s called with invalid args\n", func); 1176 return -EINVAL; 1177 } 1178 if (!udev->parent) { 1179 pr_debug("xHCI %s called for root hub\n", func); 1180 return 0; 1181 } 1182 1183 xhci = hcd_to_xhci(hcd); 1184 if (check_virt_dev) { 1185 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1186 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1187 func); 1188 return -EINVAL; 1189 } 1190 1191 virt_dev = xhci->devs[udev->slot_id]; 1192 if (virt_dev->udev != udev) { 1193 xhci_dbg(xhci, "xHCI %s called with udev and " 1194 "virt_dev does not match\n", func); 1195 return -EINVAL; 1196 } 1197 } 1198 1199 if (xhci->xhc_state & XHCI_STATE_HALTED) 1200 return -ENODEV; 1201 1202 return 1; 1203 } 1204 1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1206 struct usb_device *udev, struct xhci_command *command, 1207 bool ctx_change, bool must_succeed); 1208 1209 /* 1210 * Full speed devices may have a max packet size greater than 8 bytes, but the 1211 * USB core doesn't know that until it reads the first 8 bytes of the 1212 * descriptor. If the usb_device's max packet size changes after that point, 1213 * we need to issue an evaluate context command and wait on it. 1214 */ 1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1216 unsigned int ep_index, struct urb *urb) 1217 { 1218 struct xhci_container_ctx *out_ctx; 1219 struct xhci_input_control_ctx *ctrl_ctx; 1220 struct xhci_ep_ctx *ep_ctx; 1221 struct xhci_command *command; 1222 int max_packet_size; 1223 int hw_max_packet_size; 1224 int ret = 0; 1225 1226 out_ctx = xhci->devs[slot_id]->out_ctx; 1227 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1228 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1229 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1230 if (hw_max_packet_size != max_packet_size) { 1231 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1232 "Max Packet Size for ep 0 changed."); 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1234 "Max packet size in usb_device = %d", 1235 max_packet_size); 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Max packet size in xHCI HW = %d", 1238 hw_max_packet_size); 1239 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1240 "Issuing evaluate context command."); 1241 1242 /* Set up the input context flags for the command */ 1243 /* FIXME: This won't work if a non-default control endpoint 1244 * changes max packet sizes. 1245 */ 1246 1247 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1248 if (!command) 1249 return -ENOMEM; 1250 1251 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1253 if (!ctrl_ctx) { 1254 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1255 __func__); 1256 ret = -ENOMEM; 1257 goto command_cleanup; 1258 } 1259 /* Set up the modified control endpoint 0 */ 1260 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1261 xhci->devs[slot_id]->out_ctx, ep_index); 1262 1263 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1264 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1265 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1266 1267 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1268 ctrl_ctx->drop_flags = 0; 1269 1270 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1271 true, false); 1272 1273 /* Clean up the input context for later use by bandwidth 1274 * functions. 1275 */ 1276 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1277 command_cleanup: 1278 kfree(command->completion); 1279 kfree(command); 1280 } 1281 return ret; 1282 } 1283 1284 /* 1285 * non-error returns are a promise to giveback() the urb later 1286 * we drop ownership so next owner (or urb unlink) can get it 1287 */ 1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1289 { 1290 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1291 unsigned long flags; 1292 int ret = 0; 1293 unsigned int slot_id, ep_index; 1294 unsigned int *ep_state; 1295 struct urb_priv *urb_priv; 1296 int num_tds; 1297 1298 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1299 true, true, __func__) <= 0) 1300 return -EINVAL; 1301 1302 slot_id = urb->dev->slot_id; 1303 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1304 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1305 1306 if (!HCD_HW_ACCESSIBLE(hcd)) { 1307 if (!in_interrupt()) 1308 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1309 return -ESHUTDOWN; 1310 } 1311 1312 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1313 num_tds = urb->number_of_packets; 1314 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1315 urb->transfer_buffer_length > 0 && 1316 urb->transfer_flags & URB_ZERO_PACKET && 1317 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1318 num_tds = 2; 1319 else 1320 num_tds = 1; 1321 1322 urb_priv = kzalloc(sizeof(struct urb_priv) + 1323 num_tds * sizeof(struct xhci_td), mem_flags); 1324 if (!urb_priv) 1325 return -ENOMEM; 1326 1327 urb_priv->num_tds = num_tds; 1328 urb_priv->num_tds_done = 0; 1329 urb->hcpriv = urb_priv; 1330 1331 trace_xhci_urb_enqueue(urb); 1332 1333 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1334 /* Check to see if the max packet size for the default control 1335 * endpoint changed during FS device enumeration 1336 */ 1337 if (urb->dev->speed == USB_SPEED_FULL) { 1338 ret = xhci_check_maxpacket(xhci, slot_id, 1339 ep_index, urb); 1340 if (ret < 0) { 1341 xhci_urb_free_priv(urb_priv); 1342 urb->hcpriv = NULL; 1343 return ret; 1344 } 1345 } 1346 } 1347 1348 spin_lock_irqsave(&xhci->lock, flags); 1349 1350 if (xhci->xhc_state & XHCI_STATE_DYING) { 1351 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1352 urb->ep->desc.bEndpointAddress, urb); 1353 ret = -ESHUTDOWN; 1354 goto free_priv; 1355 } 1356 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1357 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1358 *ep_state); 1359 ret = -EINVAL; 1360 goto free_priv; 1361 } 1362 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1363 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1364 ret = -EINVAL; 1365 goto free_priv; 1366 } 1367 1368 switch (usb_endpoint_type(&urb->ep->desc)) { 1369 1370 case USB_ENDPOINT_XFER_CONTROL: 1371 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1372 slot_id, ep_index); 1373 break; 1374 case USB_ENDPOINT_XFER_BULK: 1375 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1376 slot_id, ep_index); 1377 break; 1378 case USB_ENDPOINT_XFER_INT: 1379 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1380 slot_id, ep_index); 1381 break; 1382 case USB_ENDPOINT_XFER_ISOC: 1383 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1384 slot_id, ep_index); 1385 } 1386 1387 if (ret) { 1388 free_priv: 1389 xhci_urb_free_priv(urb_priv); 1390 urb->hcpriv = NULL; 1391 } 1392 spin_unlock_irqrestore(&xhci->lock, flags); 1393 return ret; 1394 } 1395 1396 /* 1397 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1398 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1399 * should pick up where it left off in the TD, unless a Set Transfer Ring 1400 * Dequeue Pointer is issued. 1401 * 1402 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1403 * the ring. Since the ring is a contiguous structure, they can't be physically 1404 * removed. Instead, there are two options: 1405 * 1406 * 1) If the HC is in the middle of processing the URB to be canceled, we 1407 * simply move the ring's dequeue pointer past those TRBs using the Set 1408 * Transfer Ring Dequeue Pointer command. This will be the common case, 1409 * when drivers timeout on the last submitted URB and attempt to cancel. 1410 * 1411 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1412 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1413 * HC will need to invalidate the any TRBs it has cached after the stop 1414 * endpoint command, as noted in the xHCI 0.95 errata. 1415 * 1416 * 3) The TD may have completed by the time the Stop Endpoint Command 1417 * completes, so software needs to handle that case too. 1418 * 1419 * This function should protect against the TD enqueueing code ringing the 1420 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1421 * It also needs to account for multiple cancellations on happening at the same 1422 * time for the same endpoint. 1423 * 1424 * Note that this function can be called in any context, or so says 1425 * usb_hcd_unlink_urb() 1426 */ 1427 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1428 { 1429 unsigned long flags; 1430 int ret, i; 1431 u32 temp; 1432 struct xhci_hcd *xhci; 1433 struct urb_priv *urb_priv; 1434 struct xhci_td *td; 1435 unsigned int ep_index; 1436 struct xhci_ring *ep_ring; 1437 struct xhci_virt_ep *ep; 1438 struct xhci_command *command; 1439 struct xhci_virt_device *vdev; 1440 1441 xhci = hcd_to_xhci(hcd); 1442 spin_lock_irqsave(&xhci->lock, flags); 1443 1444 trace_xhci_urb_dequeue(urb); 1445 1446 /* Make sure the URB hasn't completed or been unlinked already */ 1447 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1448 if (ret) 1449 goto done; 1450 1451 /* give back URB now if we can't queue it for cancel */ 1452 vdev = xhci->devs[urb->dev->slot_id]; 1453 urb_priv = urb->hcpriv; 1454 if (!vdev || !urb_priv) 1455 goto err_giveback; 1456 1457 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1458 ep = &vdev->eps[ep_index]; 1459 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1460 if (!ep || !ep_ring) 1461 goto err_giveback; 1462 1463 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1464 temp = readl(&xhci->op_regs->status); 1465 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1466 xhci_hc_died(xhci); 1467 goto done; 1468 } 1469 1470 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1471 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1472 "HC halted, freeing TD manually."); 1473 for (i = urb_priv->num_tds_done; 1474 i < urb_priv->num_tds; 1475 i++) { 1476 td = &urb_priv->td[i]; 1477 if (!list_empty(&td->td_list)) 1478 list_del_init(&td->td_list); 1479 if (!list_empty(&td->cancelled_td_list)) 1480 list_del_init(&td->cancelled_td_list); 1481 } 1482 goto err_giveback; 1483 } 1484 1485 i = urb_priv->num_tds_done; 1486 if (i < urb_priv->num_tds) 1487 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1488 "Cancel URB %p, dev %s, ep 0x%x, " 1489 "starting at offset 0x%llx", 1490 urb, urb->dev->devpath, 1491 urb->ep->desc.bEndpointAddress, 1492 (unsigned long long) xhci_trb_virt_to_dma( 1493 urb_priv->td[i].start_seg, 1494 urb_priv->td[i].first_trb)); 1495 1496 for (; i < urb_priv->num_tds; i++) { 1497 td = &urb_priv->td[i]; 1498 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1499 } 1500 1501 /* Queue a stop endpoint command, but only if this is 1502 * the first cancellation to be handled. 1503 */ 1504 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1505 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1506 if (!command) { 1507 ret = -ENOMEM; 1508 goto done; 1509 } 1510 ep->ep_state |= EP_STOP_CMD_PENDING; 1511 ep->stop_cmd_timer.expires = jiffies + 1512 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1513 add_timer(&ep->stop_cmd_timer); 1514 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1515 ep_index, 0); 1516 xhci_ring_cmd_db(xhci); 1517 } 1518 done: 1519 spin_unlock_irqrestore(&xhci->lock, flags); 1520 return ret; 1521 1522 err_giveback: 1523 if (urb_priv) 1524 xhci_urb_free_priv(urb_priv); 1525 usb_hcd_unlink_urb_from_ep(hcd, urb); 1526 spin_unlock_irqrestore(&xhci->lock, flags); 1527 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1528 return ret; 1529 } 1530 1531 /* Drop an endpoint from a new bandwidth configuration for this device. 1532 * Only one call to this function is allowed per endpoint before 1533 * check_bandwidth() or reset_bandwidth() must be called. 1534 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1535 * add the endpoint to the schedule with possibly new parameters denoted by a 1536 * different endpoint descriptor in usb_host_endpoint. 1537 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1538 * not allowed. 1539 * 1540 * The USB core will not allow URBs to be queued to an endpoint that is being 1541 * disabled, so there's no need for mutual exclusion to protect 1542 * the xhci->devs[slot_id] structure. 1543 */ 1544 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1545 struct usb_host_endpoint *ep) 1546 { 1547 struct xhci_hcd *xhci; 1548 struct xhci_container_ctx *in_ctx, *out_ctx; 1549 struct xhci_input_control_ctx *ctrl_ctx; 1550 unsigned int ep_index; 1551 struct xhci_ep_ctx *ep_ctx; 1552 u32 drop_flag; 1553 u32 new_add_flags, new_drop_flags; 1554 int ret; 1555 1556 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1557 if (ret <= 0) 1558 return ret; 1559 xhci = hcd_to_xhci(hcd); 1560 if (xhci->xhc_state & XHCI_STATE_DYING) 1561 return -ENODEV; 1562 1563 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1564 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1565 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1566 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1567 __func__, drop_flag); 1568 return 0; 1569 } 1570 1571 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1572 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1573 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1574 if (!ctrl_ctx) { 1575 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1576 __func__); 1577 return 0; 1578 } 1579 1580 ep_index = xhci_get_endpoint_index(&ep->desc); 1581 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1582 /* If the HC already knows the endpoint is disabled, 1583 * or the HCD has noted it is disabled, ignore this request 1584 */ 1585 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1586 le32_to_cpu(ctrl_ctx->drop_flags) & 1587 xhci_get_endpoint_flag(&ep->desc)) { 1588 /* Do not warn when called after a usb_device_reset */ 1589 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1591 __func__, ep); 1592 return 0; 1593 } 1594 1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1597 1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1600 1601 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1602 1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1604 1605 if (xhci->quirks & XHCI_MTK_HOST) 1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1607 1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1609 (unsigned int) ep->desc.bEndpointAddress, 1610 udev->slot_id, 1611 (unsigned int) new_drop_flags, 1612 (unsigned int) new_add_flags); 1613 return 0; 1614 } 1615 1616 /* Add an endpoint to a new possible bandwidth configuration for this device. 1617 * Only one call to this function is allowed per endpoint before 1618 * check_bandwidth() or reset_bandwidth() must be called. 1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1620 * add the endpoint to the schedule with possibly new parameters denoted by a 1621 * different endpoint descriptor in usb_host_endpoint. 1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1623 * not allowed. 1624 * 1625 * The USB core will not allow URBs to be queued to an endpoint until the 1626 * configuration or alt setting is installed in the device, so there's no need 1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1628 */ 1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1630 struct usb_host_endpoint *ep) 1631 { 1632 struct xhci_hcd *xhci; 1633 struct xhci_container_ctx *in_ctx; 1634 unsigned int ep_index; 1635 struct xhci_input_control_ctx *ctrl_ctx; 1636 u32 added_ctxs; 1637 u32 new_add_flags, new_drop_flags; 1638 struct xhci_virt_device *virt_dev; 1639 int ret = 0; 1640 1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1642 if (ret <= 0) { 1643 /* So we won't queue a reset ep command for a root hub */ 1644 ep->hcpriv = NULL; 1645 return ret; 1646 } 1647 xhci = hcd_to_xhci(hcd); 1648 if (xhci->xhc_state & XHCI_STATE_DYING) 1649 return -ENODEV; 1650 1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1653 /* FIXME when we have to issue an evaluate endpoint command to 1654 * deal with ep0 max packet size changing once we get the 1655 * descriptors 1656 */ 1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1658 __func__, added_ctxs); 1659 return 0; 1660 } 1661 1662 virt_dev = xhci->devs[udev->slot_id]; 1663 in_ctx = virt_dev->in_ctx; 1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1665 if (!ctrl_ctx) { 1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1667 __func__); 1668 return 0; 1669 } 1670 1671 ep_index = xhci_get_endpoint_index(&ep->desc); 1672 /* If this endpoint is already in use, and the upper layers are trying 1673 * to add it again without dropping it, reject the addition. 1674 */ 1675 if (virt_dev->eps[ep_index].ring && 1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1677 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1678 "without dropping it.\n", 1679 (unsigned int) ep->desc.bEndpointAddress); 1680 return -EINVAL; 1681 } 1682 1683 /* If the HCD has already noted the endpoint is enabled, 1684 * ignore this request. 1685 */ 1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1688 __func__, ep); 1689 return 0; 1690 } 1691 1692 /* 1693 * Configuration and alternate setting changes must be done in 1694 * process context, not interrupt context (or so documenation 1695 * for usb_set_interface() and usb_set_configuration() claim). 1696 */ 1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1699 __func__, ep->desc.bEndpointAddress); 1700 return -ENOMEM; 1701 } 1702 1703 if (xhci->quirks & XHCI_MTK_HOST) { 1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1705 if (ret < 0) { 1706 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1707 virt_dev->eps[ep_index].new_ring = NULL; 1708 return ret; 1709 } 1710 } 1711 1712 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1713 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1714 1715 /* If xhci_endpoint_disable() was called for this endpoint, but the 1716 * xHC hasn't been notified yet through the check_bandwidth() call, 1717 * this re-adds a new state for the endpoint from the new endpoint 1718 * descriptors. We must drop and re-add this endpoint, so we leave the 1719 * drop flags alone. 1720 */ 1721 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1722 1723 /* Store the usb_device pointer for later use */ 1724 ep->hcpriv = udev; 1725 1726 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1727 1728 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1729 (unsigned int) ep->desc.bEndpointAddress, 1730 udev->slot_id, 1731 (unsigned int) new_drop_flags, 1732 (unsigned int) new_add_flags); 1733 return 0; 1734 } 1735 1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1737 { 1738 struct xhci_input_control_ctx *ctrl_ctx; 1739 struct xhci_ep_ctx *ep_ctx; 1740 struct xhci_slot_ctx *slot_ctx; 1741 int i; 1742 1743 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1744 if (!ctrl_ctx) { 1745 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1746 __func__); 1747 return; 1748 } 1749 1750 /* When a device's add flag and drop flag are zero, any subsequent 1751 * configure endpoint command will leave that endpoint's state 1752 * untouched. Make sure we don't leave any old state in the input 1753 * endpoint contexts. 1754 */ 1755 ctrl_ctx->drop_flags = 0; 1756 ctrl_ctx->add_flags = 0; 1757 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1758 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1759 /* Endpoint 0 is always valid */ 1760 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1761 for (i = 1; i < 31; i++) { 1762 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1763 ep_ctx->ep_info = 0; 1764 ep_ctx->ep_info2 = 0; 1765 ep_ctx->deq = 0; 1766 ep_ctx->tx_info = 0; 1767 } 1768 } 1769 1770 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1771 struct usb_device *udev, u32 *cmd_status) 1772 { 1773 int ret; 1774 1775 switch (*cmd_status) { 1776 case COMP_COMMAND_ABORTED: 1777 case COMP_COMMAND_RING_STOPPED: 1778 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1779 ret = -ETIME; 1780 break; 1781 case COMP_RESOURCE_ERROR: 1782 dev_warn(&udev->dev, 1783 "Not enough host controller resources for new device state.\n"); 1784 ret = -ENOMEM; 1785 /* FIXME: can we allocate more resources for the HC? */ 1786 break; 1787 case COMP_BANDWIDTH_ERROR: 1788 case COMP_SECONDARY_BANDWIDTH_ERROR: 1789 dev_warn(&udev->dev, 1790 "Not enough bandwidth for new device state.\n"); 1791 ret = -ENOSPC; 1792 /* FIXME: can we go back to the old state? */ 1793 break; 1794 case COMP_TRB_ERROR: 1795 /* the HCD set up something wrong */ 1796 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1797 "add flag = 1, " 1798 "and endpoint is not disabled.\n"); 1799 ret = -EINVAL; 1800 break; 1801 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1802 dev_warn(&udev->dev, 1803 "ERROR: Incompatible device for endpoint configure command.\n"); 1804 ret = -ENODEV; 1805 break; 1806 case COMP_SUCCESS: 1807 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1808 "Successful Endpoint Configure command"); 1809 ret = 0; 1810 break; 1811 default: 1812 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1813 *cmd_status); 1814 ret = -EINVAL; 1815 break; 1816 } 1817 return ret; 1818 } 1819 1820 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1821 struct usb_device *udev, u32 *cmd_status) 1822 { 1823 int ret; 1824 1825 switch (*cmd_status) { 1826 case COMP_COMMAND_ABORTED: 1827 case COMP_COMMAND_RING_STOPPED: 1828 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1829 ret = -ETIME; 1830 break; 1831 case COMP_PARAMETER_ERROR: 1832 dev_warn(&udev->dev, 1833 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1834 ret = -EINVAL; 1835 break; 1836 case COMP_SLOT_NOT_ENABLED_ERROR: 1837 dev_warn(&udev->dev, 1838 "WARN: slot not enabled for evaluate context command.\n"); 1839 ret = -EINVAL; 1840 break; 1841 case COMP_CONTEXT_STATE_ERROR: 1842 dev_warn(&udev->dev, 1843 "WARN: invalid context state for evaluate context command.\n"); 1844 ret = -EINVAL; 1845 break; 1846 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1847 dev_warn(&udev->dev, 1848 "ERROR: Incompatible device for evaluate context command.\n"); 1849 ret = -ENODEV; 1850 break; 1851 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1852 /* Max Exit Latency too large error */ 1853 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1854 ret = -EINVAL; 1855 break; 1856 case COMP_SUCCESS: 1857 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1858 "Successful evaluate context command"); 1859 ret = 0; 1860 break; 1861 default: 1862 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1863 *cmd_status); 1864 ret = -EINVAL; 1865 break; 1866 } 1867 return ret; 1868 } 1869 1870 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1871 struct xhci_input_control_ctx *ctrl_ctx) 1872 { 1873 u32 valid_add_flags; 1874 u32 valid_drop_flags; 1875 1876 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1877 * (bit 1). The default control endpoint is added during the Address 1878 * Device command and is never removed until the slot is disabled. 1879 */ 1880 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1881 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1882 1883 /* Use hweight32 to count the number of ones in the add flags, or 1884 * number of endpoints added. Don't count endpoints that are changed 1885 * (both added and dropped). 1886 */ 1887 return hweight32(valid_add_flags) - 1888 hweight32(valid_add_flags & valid_drop_flags); 1889 } 1890 1891 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1892 struct xhci_input_control_ctx *ctrl_ctx) 1893 { 1894 u32 valid_add_flags; 1895 u32 valid_drop_flags; 1896 1897 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1898 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1899 1900 return hweight32(valid_drop_flags) - 1901 hweight32(valid_add_flags & valid_drop_flags); 1902 } 1903 1904 /* 1905 * We need to reserve the new number of endpoints before the configure endpoint 1906 * command completes. We can't subtract the dropped endpoints from the number 1907 * of active endpoints until the command completes because we can oversubscribe 1908 * the host in this case: 1909 * 1910 * - the first configure endpoint command drops more endpoints than it adds 1911 * - a second configure endpoint command that adds more endpoints is queued 1912 * - the first configure endpoint command fails, so the config is unchanged 1913 * - the second command may succeed, even though there isn't enough resources 1914 * 1915 * Must be called with xhci->lock held. 1916 */ 1917 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1918 struct xhci_input_control_ctx *ctrl_ctx) 1919 { 1920 u32 added_eps; 1921 1922 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1923 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1924 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1925 "Not enough ep ctxs: " 1926 "%u active, need to add %u, limit is %u.", 1927 xhci->num_active_eps, added_eps, 1928 xhci->limit_active_eps); 1929 return -ENOMEM; 1930 } 1931 xhci->num_active_eps += added_eps; 1932 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1933 "Adding %u ep ctxs, %u now active.", added_eps, 1934 xhci->num_active_eps); 1935 return 0; 1936 } 1937 1938 /* 1939 * The configure endpoint was failed by the xHC for some other reason, so we 1940 * need to revert the resources that failed configuration would have used. 1941 * 1942 * Must be called with xhci->lock held. 1943 */ 1944 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1945 struct xhci_input_control_ctx *ctrl_ctx) 1946 { 1947 u32 num_failed_eps; 1948 1949 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1950 xhci->num_active_eps -= num_failed_eps; 1951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1952 "Removing %u failed ep ctxs, %u now active.", 1953 num_failed_eps, 1954 xhci->num_active_eps); 1955 } 1956 1957 /* 1958 * Now that the command has completed, clean up the active endpoint count by 1959 * subtracting out the endpoints that were dropped (but not changed). 1960 * 1961 * Must be called with xhci->lock held. 1962 */ 1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1964 struct xhci_input_control_ctx *ctrl_ctx) 1965 { 1966 u32 num_dropped_eps; 1967 1968 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1969 xhci->num_active_eps -= num_dropped_eps; 1970 if (num_dropped_eps) 1971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1972 "Removing %u dropped ep ctxs, %u now active.", 1973 num_dropped_eps, 1974 xhci->num_active_eps); 1975 } 1976 1977 static unsigned int xhci_get_block_size(struct usb_device *udev) 1978 { 1979 switch (udev->speed) { 1980 case USB_SPEED_LOW: 1981 case USB_SPEED_FULL: 1982 return FS_BLOCK; 1983 case USB_SPEED_HIGH: 1984 return HS_BLOCK; 1985 case USB_SPEED_SUPER: 1986 case USB_SPEED_SUPER_PLUS: 1987 return SS_BLOCK; 1988 case USB_SPEED_UNKNOWN: 1989 case USB_SPEED_WIRELESS: 1990 default: 1991 /* Should never happen */ 1992 return 1; 1993 } 1994 } 1995 1996 static unsigned int 1997 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1998 { 1999 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2000 return LS_OVERHEAD; 2001 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2002 return FS_OVERHEAD; 2003 return HS_OVERHEAD; 2004 } 2005 2006 /* If we are changing a LS/FS device under a HS hub, 2007 * make sure (if we are activating a new TT) that the HS bus has enough 2008 * bandwidth for this new TT. 2009 */ 2010 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2011 struct xhci_virt_device *virt_dev, 2012 int old_active_eps) 2013 { 2014 struct xhci_interval_bw_table *bw_table; 2015 struct xhci_tt_bw_info *tt_info; 2016 2017 /* Find the bandwidth table for the root port this TT is attached to. */ 2018 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2019 tt_info = virt_dev->tt_info; 2020 /* If this TT already had active endpoints, the bandwidth for this TT 2021 * has already been added. Removing all periodic endpoints (and thus 2022 * making the TT enactive) will only decrease the bandwidth used. 2023 */ 2024 if (old_active_eps) 2025 return 0; 2026 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2027 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2028 return -ENOMEM; 2029 return 0; 2030 } 2031 /* Not sure why we would have no new active endpoints... 2032 * 2033 * Maybe because of an Evaluate Context change for a hub update or a 2034 * control endpoint 0 max packet size change? 2035 * FIXME: skip the bandwidth calculation in that case. 2036 */ 2037 return 0; 2038 } 2039 2040 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2041 struct xhci_virt_device *virt_dev) 2042 { 2043 unsigned int bw_reserved; 2044 2045 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2046 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2047 return -ENOMEM; 2048 2049 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2050 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2051 return -ENOMEM; 2052 2053 return 0; 2054 } 2055 2056 /* 2057 * This algorithm is a very conservative estimate of the worst-case scheduling 2058 * scenario for any one interval. The hardware dynamically schedules the 2059 * packets, so we can't tell which microframe could be the limiting factor in 2060 * the bandwidth scheduling. This only takes into account periodic endpoints. 2061 * 2062 * Obviously, we can't solve an NP complete problem to find the minimum worst 2063 * case scenario. Instead, we come up with an estimate that is no less than 2064 * the worst case bandwidth used for any one microframe, but may be an 2065 * over-estimate. 2066 * 2067 * We walk the requirements for each endpoint by interval, starting with the 2068 * smallest interval, and place packets in the schedule where there is only one 2069 * possible way to schedule packets for that interval. In order to simplify 2070 * this algorithm, we record the largest max packet size for each interval, and 2071 * assume all packets will be that size. 2072 * 2073 * For interval 0, we obviously must schedule all packets for each interval. 2074 * The bandwidth for interval 0 is just the amount of data to be transmitted 2075 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2076 * the number of packets). 2077 * 2078 * For interval 1, we have two possible microframes to schedule those packets 2079 * in. For this algorithm, if we can schedule the same number of packets for 2080 * each possible scheduling opportunity (each microframe), we will do so. The 2081 * remaining number of packets will be saved to be transmitted in the gaps in 2082 * the next interval's scheduling sequence. 2083 * 2084 * As we move those remaining packets to be scheduled with interval 2 packets, 2085 * we have to double the number of remaining packets to transmit. This is 2086 * because the intervals are actually powers of 2, and we would be transmitting 2087 * the previous interval's packets twice in this interval. We also have to be 2088 * sure that when we look at the largest max packet size for this interval, we 2089 * also look at the largest max packet size for the remaining packets and take 2090 * the greater of the two. 2091 * 2092 * The algorithm continues to evenly distribute packets in each scheduling 2093 * opportunity, and push the remaining packets out, until we get to the last 2094 * interval. Then those packets and their associated overhead are just added 2095 * to the bandwidth used. 2096 */ 2097 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2098 struct xhci_virt_device *virt_dev, 2099 int old_active_eps) 2100 { 2101 unsigned int bw_reserved; 2102 unsigned int max_bandwidth; 2103 unsigned int bw_used; 2104 unsigned int block_size; 2105 struct xhci_interval_bw_table *bw_table; 2106 unsigned int packet_size = 0; 2107 unsigned int overhead = 0; 2108 unsigned int packets_transmitted = 0; 2109 unsigned int packets_remaining = 0; 2110 unsigned int i; 2111 2112 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2113 return xhci_check_ss_bw(xhci, virt_dev); 2114 2115 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2116 max_bandwidth = HS_BW_LIMIT; 2117 /* Convert percent of bus BW reserved to blocks reserved */ 2118 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2119 } else { 2120 max_bandwidth = FS_BW_LIMIT; 2121 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2122 } 2123 2124 bw_table = virt_dev->bw_table; 2125 /* We need to translate the max packet size and max ESIT payloads into 2126 * the units the hardware uses. 2127 */ 2128 block_size = xhci_get_block_size(virt_dev->udev); 2129 2130 /* If we are manipulating a LS/FS device under a HS hub, double check 2131 * that the HS bus has enough bandwidth if we are activing a new TT. 2132 */ 2133 if (virt_dev->tt_info) { 2134 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2135 "Recalculating BW for rootport %u", 2136 virt_dev->real_port); 2137 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2138 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2139 "newly activated TT.\n"); 2140 return -ENOMEM; 2141 } 2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2143 "Recalculating BW for TT slot %u port %u", 2144 virt_dev->tt_info->slot_id, 2145 virt_dev->tt_info->ttport); 2146 } else { 2147 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2148 "Recalculating BW for rootport %u", 2149 virt_dev->real_port); 2150 } 2151 2152 /* Add in how much bandwidth will be used for interval zero, or the 2153 * rounded max ESIT payload + number of packets * largest overhead. 2154 */ 2155 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2156 bw_table->interval_bw[0].num_packets * 2157 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2158 2159 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2160 unsigned int bw_added; 2161 unsigned int largest_mps; 2162 unsigned int interval_overhead; 2163 2164 /* 2165 * How many packets could we transmit in this interval? 2166 * If packets didn't fit in the previous interval, we will need 2167 * to transmit that many packets twice within this interval. 2168 */ 2169 packets_remaining = 2 * packets_remaining + 2170 bw_table->interval_bw[i].num_packets; 2171 2172 /* Find the largest max packet size of this or the previous 2173 * interval. 2174 */ 2175 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2176 largest_mps = 0; 2177 else { 2178 struct xhci_virt_ep *virt_ep; 2179 struct list_head *ep_entry; 2180 2181 ep_entry = bw_table->interval_bw[i].endpoints.next; 2182 virt_ep = list_entry(ep_entry, 2183 struct xhci_virt_ep, bw_endpoint_list); 2184 /* Convert to blocks, rounding up */ 2185 largest_mps = DIV_ROUND_UP( 2186 virt_ep->bw_info.max_packet_size, 2187 block_size); 2188 } 2189 if (largest_mps > packet_size) 2190 packet_size = largest_mps; 2191 2192 /* Use the larger overhead of this or the previous interval. */ 2193 interval_overhead = xhci_get_largest_overhead( 2194 &bw_table->interval_bw[i]); 2195 if (interval_overhead > overhead) 2196 overhead = interval_overhead; 2197 2198 /* How many packets can we evenly distribute across 2199 * (1 << (i + 1)) possible scheduling opportunities? 2200 */ 2201 packets_transmitted = packets_remaining >> (i + 1); 2202 2203 /* Add in the bandwidth used for those scheduled packets */ 2204 bw_added = packets_transmitted * (overhead + packet_size); 2205 2206 /* How many packets do we have remaining to transmit? */ 2207 packets_remaining = packets_remaining % (1 << (i + 1)); 2208 2209 /* What largest max packet size should those packets have? */ 2210 /* If we've transmitted all packets, don't carry over the 2211 * largest packet size. 2212 */ 2213 if (packets_remaining == 0) { 2214 packet_size = 0; 2215 overhead = 0; 2216 } else if (packets_transmitted > 0) { 2217 /* Otherwise if we do have remaining packets, and we've 2218 * scheduled some packets in this interval, take the 2219 * largest max packet size from endpoints with this 2220 * interval. 2221 */ 2222 packet_size = largest_mps; 2223 overhead = interval_overhead; 2224 } 2225 /* Otherwise carry over packet_size and overhead from the last 2226 * time we had a remainder. 2227 */ 2228 bw_used += bw_added; 2229 if (bw_used > max_bandwidth) { 2230 xhci_warn(xhci, "Not enough bandwidth. " 2231 "Proposed: %u, Max: %u\n", 2232 bw_used, max_bandwidth); 2233 return -ENOMEM; 2234 } 2235 } 2236 /* 2237 * Ok, we know we have some packets left over after even-handedly 2238 * scheduling interval 15. We don't know which microframes they will 2239 * fit into, so we over-schedule and say they will be scheduled every 2240 * microframe. 2241 */ 2242 if (packets_remaining > 0) 2243 bw_used += overhead + packet_size; 2244 2245 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2246 unsigned int port_index = virt_dev->real_port - 1; 2247 2248 /* OK, we're manipulating a HS device attached to a 2249 * root port bandwidth domain. Include the number of active TTs 2250 * in the bandwidth used. 2251 */ 2252 bw_used += TT_HS_OVERHEAD * 2253 xhci->rh_bw[port_index].num_active_tts; 2254 } 2255 2256 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2257 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2258 "Available: %u " "percent", 2259 bw_used, max_bandwidth, bw_reserved, 2260 (max_bandwidth - bw_used - bw_reserved) * 100 / 2261 max_bandwidth); 2262 2263 bw_used += bw_reserved; 2264 if (bw_used > max_bandwidth) { 2265 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2266 bw_used, max_bandwidth); 2267 return -ENOMEM; 2268 } 2269 2270 bw_table->bw_used = bw_used; 2271 return 0; 2272 } 2273 2274 static bool xhci_is_async_ep(unsigned int ep_type) 2275 { 2276 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2277 ep_type != ISOC_IN_EP && 2278 ep_type != INT_IN_EP); 2279 } 2280 2281 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2282 { 2283 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2284 } 2285 2286 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2287 { 2288 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2289 2290 if (ep_bw->ep_interval == 0) 2291 return SS_OVERHEAD_BURST + 2292 (ep_bw->mult * ep_bw->num_packets * 2293 (SS_OVERHEAD + mps)); 2294 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2295 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2296 1 << ep_bw->ep_interval); 2297 2298 } 2299 2300 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2301 struct xhci_bw_info *ep_bw, 2302 struct xhci_interval_bw_table *bw_table, 2303 struct usb_device *udev, 2304 struct xhci_virt_ep *virt_ep, 2305 struct xhci_tt_bw_info *tt_info) 2306 { 2307 struct xhci_interval_bw *interval_bw; 2308 int normalized_interval; 2309 2310 if (xhci_is_async_ep(ep_bw->type)) 2311 return; 2312 2313 if (udev->speed >= USB_SPEED_SUPER) { 2314 if (xhci_is_sync_in_ep(ep_bw->type)) 2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2316 xhci_get_ss_bw_consumed(ep_bw); 2317 else 2318 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2319 xhci_get_ss_bw_consumed(ep_bw); 2320 return; 2321 } 2322 2323 /* SuperSpeed endpoints never get added to intervals in the table, so 2324 * this check is only valid for HS/FS/LS devices. 2325 */ 2326 if (list_empty(&virt_ep->bw_endpoint_list)) 2327 return; 2328 /* For LS/FS devices, we need to translate the interval expressed in 2329 * microframes to frames. 2330 */ 2331 if (udev->speed == USB_SPEED_HIGH) 2332 normalized_interval = ep_bw->ep_interval; 2333 else 2334 normalized_interval = ep_bw->ep_interval - 3; 2335 2336 if (normalized_interval == 0) 2337 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2338 interval_bw = &bw_table->interval_bw[normalized_interval]; 2339 interval_bw->num_packets -= ep_bw->num_packets; 2340 switch (udev->speed) { 2341 case USB_SPEED_LOW: 2342 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2343 break; 2344 case USB_SPEED_FULL: 2345 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2346 break; 2347 case USB_SPEED_HIGH: 2348 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2349 break; 2350 case USB_SPEED_SUPER: 2351 case USB_SPEED_SUPER_PLUS: 2352 case USB_SPEED_UNKNOWN: 2353 case USB_SPEED_WIRELESS: 2354 /* Should never happen because only LS/FS/HS endpoints will get 2355 * added to the endpoint list. 2356 */ 2357 return; 2358 } 2359 if (tt_info) 2360 tt_info->active_eps -= 1; 2361 list_del_init(&virt_ep->bw_endpoint_list); 2362 } 2363 2364 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2365 struct xhci_bw_info *ep_bw, 2366 struct xhci_interval_bw_table *bw_table, 2367 struct usb_device *udev, 2368 struct xhci_virt_ep *virt_ep, 2369 struct xhci_tt_bw_info *tt_info) 2370 { 2371 struct xhci_interval_bw *interval_bw; 2372 struct xhci_virt_ep *smaller_ep; 2373 int normalized_interval; 2374 2375 if (xhci_is_async_ep(ep_bw->type)) 2376 return; 2377 2378 if (udev->speed == USB_SPEED_SUPER) { 2379 if (xhci_is_sync_in_ep(ep_bw->type)) 2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2381 xhci_get_ss_bw_consumed(ep_bw); 2382 else 2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2384 xhci_get_ss_bw_consumed(ep_bw); 2385 return; 2386 } 2387 2388 /* For LS/FS devices, we need to translate the interval expressed in 2389 * microframes to frames. 2390 */ 2391 if (udev->speed == USB_SPEED_HIGH) 2392 normalized_interval = ep_bw->ep_interval; 2393 else 2394 normalized_interval = ep_bw->ep_interval - 3; 2395 2396 if (normalized_interval == 0) 2397 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2398 interval_bw = &bw_table->interval_bw[normalized_interval]; 2399 interval_bw->num_packets += ep_bw->num_packets; 2400 switch (udev->speed) { 2401 case USB_SPEED_LOW: 2402 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2403 break; 2404 case USB_SPEED_FULL: 2405 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2406 break; 2407 case USB_SPEED_HIGH: 2408 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2409 break; 2410 case USB_SPEED_SUPER: 2411 case USB_SPEED_SUPER_PLUS: 2412 case USB_SPEED_UNKNOWN: 2413 case USB_SPEED_WIRELESS: 2414 /* Should never happen because only LS/FS/HS endpoints will get 2415 * added to the endpoint list. 2416 */ 2417 return; 2418 } 2419 2420 if (tt_info) 2421 tt_info->active_eps += 1; 2422 /* Insert the endpoint into the list, largest max packet size first. */ 2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2424 bw_endpoint_list) { 2425 if (ep_bw->max_packet_size >= 2426 smaller_ep->bw_info.max_packet_size) { 2427 /* Add the new ep before the smaller endpoint */ 2428 list_add_tail(&virt_ep->bw_endpoint_list, 2429 &smaller_ep->bw_endpoint_list); 2430 return; 2431 } 2432 } 2433 /* Add the new endpoint at the end of the list. */ 2434 list_add_tail(&virt_ep->bw_endpoint_list, 2435 &interval_bw->endpoints); 2436 } 2437 2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2439 struct xhci_virt_device *virt_dev, 2440 int old_active_eps) 2441 { 2442 struct xhci_root_port_bw_info *rh_bw_info; 2443 if (!virt_dev->tt_info) 2444 return; 2445 2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2447 if (old_active_eps == 0 && 2448 virt_dev->tt_info->active_eps != 0) { 2449 rh_bw_info->num_active_tts += 1; 2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2451 } else if (old_active_eps != 0 && 2452 virt_dev->tt_info->active_eps == 0) { 2453 rh_bw_info->num_active_tts -= 1; 2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2455 } 2456 } 2457 2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2459 struct xhci_virt_device *virt_dev, 2460 struct xhci_container_ctx *in_ctx) 2461 { 2462 struct xhci_bw_info ep_bw_info[31]; 2463 int i; 2464 struct xhci_input_control_ctx *ctrl_ctx; 2465 int old_active_eps = 0; 2466 2467 if (virt_dev->tt_info) 2468 old_active_eps = virt_dev->tt_info->active_eps; 2469 2470 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2471 if (!ctrl_ctx) { 2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2473 __func__); 2474 return -ENOMEM; 2475 } 2476 2477 for (i = 0; i < 31; i++) { 2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2479 continue; 2480 2481 /* Make a copy of the BW info in case we need to revert this */ 2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2483 sizeof(ep_bw_info[i])); 2484 /* Drop the endpoint from the interval table if the endpoint is 2485 * being dropped or changed. 2486 */ 2487 if (EP_IS_DROPPED(ctrl_ctx, i)) 2488 xhci_drop_ep_from_interval_table(xhci, 2489 &virt_dev->eps[i].bw_info, 2490 virt_dev->bw_table, 2491 virt_dev->udev, 2492 &virt_dev->eps[i], 2493 virt_dev->tt_info); 2494 } 2495 /* Overwrite the information stored in the endpoints' bw_info */ 2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2497 for (i = 0; i < 31; i++) { 2498 /* Add any changed or added endpoints to the interval table */ 2499 if (EP_IS_ADDED(ctrl_ctx, i)) 2500 xhci_add_ep_to_interval_table(xhci, 2501 &virt_dev->eps[i].bw_info, 2502 virt_dev->bw_table, 2503 virt_dev->udev, 2504 &virt_dev->eps[i], 2505 virt_dev->tt_info); 2506 } 2507 2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2509 /* Ok, this fits in the bandwidth we have. 2510 * Update the number of active TTs. 2511 */ 2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2513 return 0; 2514 } 2515 2516 /* We don't have enough bandwidth for this, revert the stored info. */ 2517 for (i = 0; i < 31; i++) { 2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2519 continue; 2520 2521 /* Drop the new copies of any added or changed endpoints from 2522 * the interval table. 2523 */ 2524 if (EP_IS_ADDED(ctrl_ctx, i)) { 2525 xhci_drop_ep_from_interval_table(xhci, 2526 &virt_dev->eps[i].bw_info, 2527 virt_dev->bw_table, 2528 virt_dev->udev, 2529 &virt_dev->eps[i], 2530 virt_dev->tt_info); 2531 } 2532 /* Revert the endpoint back to its old information */ 2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2534 sizeof(ep_bw_info[i])); 2535 /* Add any changed or dropped endpoints back into the table */ 2536 if (EP_IS_DROPPED(ctrl_ctx, i)) 2537 xhci_add_ep_to_interval_table(xhci, 2538 &virt_dev->eps[i].bw_info, 2539 virt_dev->bw_table, 2540 virt_dev->udev, 2541 &virt_dev->eps[i], 2542 virt_dev->tt_info); 2543 } 2544 return -ENOMEM; 2545 } 2546 2547 2548 /* Issue a configure endpoint command or evaluate context command 2549 * and wait for it to finish. 2550 */ 2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2552 struct usb_device *udev, 2553 struct xhci_command *command, 2554 bool ctx_change, bool must_succeed) 2555 { 2556 int ret; 2557 unsigned long flags; 2558 struct xhci_input_control_ctx *ctrl_ctx; 2559 struct xhci_virt_device *virt_dev; 2560 struct xhci_slot_ctx *slot_ctx; 2561 2562 if (!command) 2563 return -EINVAL; 2564 2565 spin_lock_irqsave(&xhci->lock, flags); 2566 2567 if (xhci->xhc_state & XHCI_STATE_DYING) { 2568 spin_unlock_irqrestore(&xhci->lock, flags); 2569 return -ESHUTDOWN; 2570 } 2571 2572 virt_dev = xhci->devs[udev->slot_id]; 2573 2574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2575 if (!ctrl_ctx) { 2576 spin_unlock_irqrestore(&xhci->lock, flags); 2577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2578 __func__); 2579 return -ENOMEM; 2580 } 2581 2582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2583 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2584 spin_unlock_irqrestore(&xhci->lock, flags); 2585 xhci_warn(xhci, "Not enough host resources, " 2586 "active endpoint contexts = %u\n", 2587 xhci->num_active_eps); 2588 return -ENOMEM; 2589 } 2590 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2591 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2592 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2593 xhci_free_host_resources(xhci, ctrl_ctx); 2594 spin_unlock_irqrestore(&xhci->lock, flags); 2595 xhci_warn(xhci, "Not enough bandwidth\n"); 2596 return -ENOMEM; 2597 } 2598 2599 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2600 trace_xhci_configure_endpoint(slot_ctx); 2601 2602 if (!ctx_change) 2603 ret = xhci_queue_configure_endpoint(xhci, command, 2604 command->in_ctx->dma, 2605 udev->slot_id, must_succeed); 2606 else 2607 ret = xhci_queue_evaluate_context(xhci, command, 2608 command->in_ctx->dma, 2609 udev->slot_id, must_succeed); 2610 if (ret < 0) { 2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2612 xhci_free_host_resources(xhci, ctrl_ctx); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2615 "FIXME allocate a new ring segment"); 2616 return -ENOMEM; 2617 } 2618 xhci_ring_cmd_db(xhci); 2619 spin_unlock_irqrestore(&xhci->lock, flags); 2620 2621 /* Wait for the configure endpoint command to complete */ 2622 wait_for_completion(command->completion); 2623 2624 if (!ctx_change) 2625 ret = xhci_configure_endpoint_result(xhci, udev, 2626 &command->status); 2627 else 2628 ret = xhci_evaluate_context_result(xhci, udev, 2629 &command->status); 2630 2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2632 spin_lock_irqsave(&xhci->lock, flags); 2633 /* If the command failed, remove the reserved resources. 2634 * Otherwise, clean up the estimate to include dropped eps. 2635 */ 2636 if (ret) 2637 xhci_free_host_resources(xhci, ctrl_ctx); 2638 else 2639 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2640 spin_unlock_irqrestore(&xhci->lock, flags); 2641 } 2642 return ret; 2643 } 2644 2645 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2646 struct xhci_virt_device *vdev, int i) 2647 { 2648 struct xhci_virt_ep *ep = &vdev->eps[i]; 2649 2650 if (ep->ep_state & EP_HAS_STREAMS) { 2651 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2652 xhci_get_endpoint_address(i)); 2653 xhci_free_stream_info(xhci, ep->stream_info); 2654 ep->stream_info = NULL; 2655 ep->ep_state &= ~EP_HAS_STREAMS; 2656 } 2657 } 2658 2659 /* Called after one or more calls to xhci_add_endpoint() or 2660 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2661 * to call xhci_reset_bandwidth(). 2662 * 2663 * Since we are in the middle of changing either configuration or 2664 * installing a new alt setting, the USB core won't allow URBs to be 2665 * enqueued for any endpoint on the old config or interface. Nothing 2666 * else should be touching the xhci->devs[slot_id] structure, so we 2667 * don't need to take the xhci->lock for manipulating that. 2668 */ 2669 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2670 { 2671 int i; 2672 int ret = 0; 2673 struct xhci_hcd *xhci; 2674 struct xhci_virt_device *virt_dev; 2675 struct xhci_input_control_ctx *ctrl_ctx; 2676 struct xhci_slot_ctx *slot_ctx; 2677 struct xhci_command *command; 2678 2679 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2680 if (ret <= 0) 2681 return ret; 2682 xhci = hcd_to_xhci(hcd); 2683 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2684 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2685 return -ENODEV; 2686 2687 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2688 virt_dev = xhci->devs[udev->slot_id]; 2689 2690 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2691 if (!command) 2692 return -ENOMEM; 2693 2694 command->in_ctx = virt_dev->in_ctx; 2695 2696 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2697 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2698 if (!ctrl_ctx) { 2699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2700 __func__); 2701 ret = -ENOMEM; 2702 goto command_cleanup; 2703 } 2704 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2705 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2706 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2707 2708 /* Don't issue the command if there's no endpoints to update. */ 2709 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2710 ctrl_ctx->drop_flags == 0) { 2711 ret = 0; 2712 goto command_cleanup; 2713 } 2714 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2715 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2716 for (i = 31; i >= 1; i--) { 2717 __le32 le32 = cpu_to_le32(BIT(i)); 2718 2719 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2720 || (ctrl_ctx->add_flags & le32) || i == 1) { 2721 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2722 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2723 break; 2724 } 2725 } 2726 2727 ret = xhci_configure_endpoint(xhci, udev, command, 2728 false, false); 2729 if (ret) 2730 /* Callee should call reset_bandwidth() */ 2731 goto command_cleanup; 2732 2733 /* Free any rings that were dropped, but not changed. */ 2734 for (i = 1; i < 31; i++) { 2735 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2736 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2737 xhci_free_endpoint_ring(xhci, virt_dev, i); 2738 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2739 } 2740 } 2741 xhci_zero_in_ctx(xhci, virt_dev); 2742 /* 2743 * Install any rings for completely new endpoints or changed endpoints, 2744 * and free any old rings from changed endpoints. 2745 */ 2746 for (i = 1; i < 31; i++) { 2747 if (!virt_dev->eps[i].new_ring) 2748 continue; 2749 /* Only free the old ring if it exists. 2750 * It may not if this is the first add of an endpoint. 2751 */ 2752 if (virt_dev->eps[i].ring) { 2753 xhci_free_endpoint_ring(xhci, virt_dev, i); 2754 } 2755 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2756 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2757 virt_dev->eps[i].new_ring = NULL; 2758 } 2759 command_cleanup: 2760 kfree(command->completion); 2761 kfree(command); 2762 2763 return ret; 2764 } 2765 2766 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2767 { 2768 struct xhci_hcd *xhci; 2769 struct xhci_virt_device *virt_dev; 2770 int i, ret; 2771 2772 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2773 if (ret <= 0) 2774 return; 2775 xhci = hcd_to_xhci(hcd); 2776 2777 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2778 virt_dev = xhci->devs[udev->slot_id]; 2779 /* Free any rings allocated for added endpoints */ 2780 for (i = 0; i < 31; i++) { 2781 if (virt_dev->eps[i].new_ring) { 2782 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2783 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2784 virt_dev->eps[i].new_ring = NULL; 2785 } 2786 } 2787 xhci_zero_in_ctx(xhci, virt_dev); 2788 } 2789 2790 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2791 struct xhci_container_ctx *in_ctx, 2792 struct xhci_container_ctx *out_ctx, 2793 struct xhci_input_control_ctx *ctrl_ctx, 2794 u32 add_flags, u32 drop_flags) 2795 { 2796 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2797 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2798 xhci_slot_copy(xhci, in_ctx, out_ctx); 2799 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2800 } 2801 2802 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2803 unsigned int slot_id, unsigned int ep_index, 2804 struct xhci_dequeue_state *deq_state) 2805 { 2806 struct xhci_input_control_ctx *ctrl_ctx; 2807 struct xhci_container_ctx *in_ctx; 2808 struct xhci_ep_ctx *ep_ctx; 2809 u32 added_ctxs; 2810 dma_addr_t addr; 2811 2812 in_ctx = xhci->devs[slot_id]->in_ctx; 2813 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2814 if (!ctrl_ctx) { 2815 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2816 __func__); 2817 return; 2818 } 2819 2820 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2821 xhci->devs[slot_id]->out_ctx, ep_index); 2822 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2823 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2824 deq_state->new_deq_ptr); 2825 if (addr == 0) { 2826 xhci_warn(xhci, "WARN Cannot submit config ep after " 2827 "reset ep command\n"); 2828 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2829 deq_state->new_deq_seg, 2830 deq_state->new_deq_ptr); 2831 return; 2832 } 2833 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2834 2835 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2836 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2837 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2838 added_ctxs, added_ctxs); 2839 } 2840 2841 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2842 unsigned int stream_id, struct xhci_td *td) 2843 { 2844 struct xhci_dequeue_state deq_state; 2845 struct usb_device *udev = td->urb->dev; 2846 2847 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2848 "Cleaning up stalled endpoint ring"); 2849 /* We need to move the HW's dequeue pointer past this TD, 2850 * or it will attempt to resend it on the next doorbell ring. 2851 */ 2852 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2853 ep_index, stream_id, td, &deq_state); 2854 2855 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2856 return; 2857 2858 /* HW with the reset endpoint quirk will use the saved dequeue state to 2859 * issue a configure endpoint command later. 2860 */ 2861 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2862 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2863 "Queueing new dequeue state"); 2864 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2865 ep_index, &deq_state); 2866 } else { 2867 /* Better hope no one uses the input context between now and the 2868 * reset endpoint completion! 2869 * XXX: No idea how this hardware will react when stream rings 2870 * are enabled. 2871 */ 2872 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2873 "Setting up input context for " 2874 "configure endpoint command"); 2875 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2876 ep_index, &deq_state); 2877 } 2878 } 2879 2880 /* 2881 * Called after usb core issues a clear halt control message. 2882 * The host side of the halt should already be cleared by a reset endpoint 2883 * command issued when the STALL event was received. 2884 * 2885 * The reset endpoint command may only be issued to endpoints in the halted 2886 * state. For software that wishes to reset the data toggle or sequence number 2887 * of an endpoint that isn't in the halted state this function will issue a 2888 * configure endpoint command with the Drop and Add bits set for the target 2889 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 2890 */ 2891 2892 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2893 struct usb_host_endpoint *host_ep) 2894 { 2895 struct xhci_hcd *xhci; 2896 struct usb_device *udev; 2897 struct xhci_virt_device *vdev; 2898 struct xhci_virt_ep *ep; 2899 struct xhci_input_control_ctx *ctrl_ctx; 2900 struct xhci_command *stop_cmd, *cfg_cmd; 2901 unsigned int ep_index; 2902 unsigned long flags; 2903 u32 ep_flag; 2904 2905 xhci = hcd_to_xhci(hcd); 2906 if (!host_ep->hcpriv) 2907 return; 2908 udev = (struct usb_device *) host_ep->hcpriv; 2909 vdev = xhci->devs[udev->slot_id]; 2910 ep_index = xhci_get_endpoint_index(&host_ep->desc); 2911 ep = &vdev->eps[ep_index]; 2912 2913 /* Bail out if toggle is already being cleared by a endpoint reset */ 2914 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 2915 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 2916 return; 2917 } 2918 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 2919 if (usb_endpoint_xfer_control(&host_ep->desc) || 2920 usb_endpoint_xfer_isoc(&host_ep->desc)) 2921 return; 2922 2923 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 2924 2925 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 2926 return; 2927 2928 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 2929 if (!stop_cmd) 2930 return; 2931 2932 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 2933 if (!cfg_cmd) 2934 goto cleanup; 2935 2936 spin_lock_irqsave(&xhci->lock, flags); 2937 2938 /* block queuing new trbs and ringing ep doorbell */ 2939 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 2940 2941 /* 2942 * Make sure endpoint ring is empty before resetting the toggle/seq. 2943 * Driver is required to synchronously cancel all transfer request. 2944 * Stop the endpoint to force xHC to update the output context 2945 */ 2946 2947 if (!list_empty(&ep->ring->td_list)) { 2948 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 2949 spin_unlock_irqrestore(&xhci->lock, flags); 2950 goto cleanup; 2951 } 2952 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 2953 xhci_ring_cmd_db(xhci); 2954 spin_unlock_irqrestore(&xhci->lock, flags); 2955 2956 wait_for_completion(stop_cmd->completion); 2957 2958 spin_lock_irqsave(&xhci->lock, flags); 2959 2960 /* config ep command clears toggle if add and drop ep flags are set */ 2961 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 2962 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 2963 ctrl_ctx, ep_flag, ep_flag); 2964 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 2965 2966 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 2967 udev->slot_id, false); 2968 xhci_ring_cmd_db(xhci); 2969 spin_unlock_irqrestore(&xhci->lock, flags); 2970 2971 wait_for_completion(cfg_cmd->completion); 2972 2973 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 2974 xhci_free_command(xhci, cfg_cmd); 2975 cleanup: 2976 xhci_free_command(xhci, stop_cmd); 2977 } 2978 2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2980 struct usb_device *udev, struct usb_host_endpoint *ep, 2981 unsigned int slot_id) 2982 { 2983 int ret; 2984 unsigned int ep_index; 2985 unsigned int ep_state; 2986 2987 if (!ep) 2988 return -EINVAL; 2989 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2990 if (ret <= 0) 2991 return -EINVAL; 2992 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2993 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2994 " descriptor for ep 0x%x does not support streams\n", 2995 ep->desc.bEndpointAddress); 2996 return -EINVAL; 2997 } 2998 2999 ep_index = xhci_get_endpoint_index(&ep->desc); 3000 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3001 if (ep_state & EP_HAS_STREAMS || 3002 ep_state & EP_GETTING_STREAMS) { 3003 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3004 "already has streams set up.\n", 3005 ep->desc.bEndpointAddress); 3006 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3007 "dynamic stream context array reallocation.\n"); 3008 return -EINVAL; 3009 } 3010 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3011 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3012 "endpoint 0x%x; URBs are pending.\n", 3013 ep->desc.bEndpointAddress); 3014 return -EINVAL; 3015 } 3016 return 0; 3017 } 3018 3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3020 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3021 { 3022 unsigned int max_streams; 3023 3024 /* The stream context array size must be a power of two */ 3025 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3026 /* 3027 * Find out how many primary stream array entries the host controller 3028 * supports. Later we may use secondary stream arrays (similar to 2nd 3029 * level page entries), but that's an optional feature for xHCI host 3030 * controllers. xHCs must support at least 4 stream IDs. 3031 */ 3032 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3033 if (*num_stream_ctxs > max_streams) { 3034 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3035 max_streams); 3036 *num_stream_ctxs = max_streams; 3037 *num_streams = max_streams; 3038 } 3039 } 3040 3041 /* Returns an error code if one of the endpoint already has streams. 3042 * This does not change any data structures, it only checks and gathers 3043 * information. 3044 */ 3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3046 struct usb_device *udev, 3047 struct usb_host_endpoint **eps, unsigned int num_eps, 3048 unsigned int *num_streams, u32 *changed_ep_bitmask) 3049 { 3050 unsigned int max_streams; 3051 unsigned int endpoint_flag; 3052 int i; 3053 int ret; 3054 3055 for (i = 0; i < num_eps; i++) { 3056 ret = xhci_check_streams_endpoint(xhci, udev, 3057 eps[i], udev->slot_id); 3058 if (ret < 0) 3059 return ret; 3060 3061 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3062 if (max_streams < (*num_streams - 1)) { 3063 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3064 eps[i]->desc.bEndpointAddress, 3065 max_streams); 3066 *num_streams = max_streams+1; 3067 } 3068 3069 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3070 if (*changed_ep_bitmask & endpoint_flag) 3071 return -EINVAL; 3072 *changed_ep_bitmask |= endpoint_flag; 3073 } 3074 return 0; 3075 } 3076 3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3078 struct usb_device *udev, 3079 struct usb_host_endpoint **eps, unsigned int num_eps) 3080 { 3081 u32 changed_ep_bitmask = 0; 3082 unsigned int slot_id; 3083 unsigned int ep_index; 3084 unsigned int ep_state; 3085 int i; 3086 3087 slot_id = udev->slot_id; 3088 if (!xhci->devs[slot_id]) 3089 return 0; 3090 3091 for (i = 0; i < num_eps; i++) { 3092 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3093 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3094 /* Are streams already being freed for the endpoint? */ 3095 if (ep_state & EP_GETTING_NO_STREAMS) { 3096 xhci_warn(xhci, "WARN Can't disable streams for " 3097 "endpoint 0x%x, " 3098 "streams are being disabled already\n", 3099 eps[i]->desc.bEndpointAddress); 3100 return 0; 3101 } 3102 /* Are there actually any streams to free? */ 3103 if (!(ep_state & EP_HAS_STREAMS) && 3104 !(ep_state & EP_GETTING_STREAMS)) { 3105 xhci_warn(xhci, "WARN Can't disable streams for " 3106 "endpoint 0x%x, " 3107 "streams are already disabled!\n", 3108 eps[i]->desc.bEndpointAddress); 3109 xhci_warn(xhci, "WARN xhci_free_streams() called " 3110 "with non-streams endpoint\n"); 3111 return 0; 3112 } 3113 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3114 } 3115 return changed_ep_bitmask; 3116 } 3117 3118 /* 3119 * The USB device drivers use this function (through the HCD interface in USB 3120 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3121 * coordinate mass storage command queueing across multiple endpoints (basically 3122 * a stream ID == a task ID). 3123 * 3124 * Setting up streams involves allocating the same size stream context array 3125 * for each endpoint and issuing a configure endpoint command for all endpoints. 3126 * 3127 * Don't allow the call to succeed if one endpoint only supports one stream 3128 * (which means it doesn't support streams at all). 3129 * 3130 * Drivers may get less stream IDs than they asked for, if the host controller 3131 * hardware or endpoints claim they can't support the number of requested 3132 * stream IDs. 3133 */ 3134 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3135 struct usb_host_endpoint **eps, unsigned int num_eps, 3136 unsigned int num_streams, gfp_t mem_flags) 3137 { 3138 int i, ret; 3139 struct xhci_hcd *xhci; 3140 struct xhci_virt_device *vdev; 3141 struct xhci_command *config_cmd; 3142 struct xhci_input_control_ctx *ctrl_ctx; 3143 unsigned int ep_index; 3144 unsigned int num_stream_ctxs; 3145 unsigned int max_packet; 3146 unsigned long flags; 3147 u32 changed_ep_bitmask = 0; 3148 3149 if (!eps) 3150 return -EINVAL; 3151 3152 /* Add one to the number of streams requested to account for 3153 * stream 0 that is reserved for xHCI usage. 3154 */ 3155 num_streams += 1; 3156 xhci = hcd_to_xhci(hcd); 3157 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3158 num_streams); 3159 3160 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3161 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3162 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3163 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3164 return -ENOSYS; 3165 } 3166 3167 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3168 if (!config_cmd) 3169 return -ENOMEM; 3170 3171 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3172 if (!ctrl_ctx) { 3173 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3174 __func__); 3175 xhci_free_command(xhci, config_cmd); 3176 return -ENOMEM; 3177 } 3178 3179 /* Check to make sure all endpoints are not already configured for 3180 * streams. While we're at it, find the maximum number of streams that 3181 * all the endpoints will support and check for duplicate endpoints. 3182 */ 3183 spin_lock_irqsave(&xhci->lock, flags); 3184 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3185 num_eps, &num_streams, &changed_ep_bitmask); 3186 if (ret < 0) { 3187 xhci_free_command(xhci, config_cmd); 3188 spin_unlock_irqrestore(&xhci->lock, flags); 3189 return ret; 3190 } 3191 if (num_streams <= 1) { 3192 xhci_warn(xhci, "WARN: endpoints can't handle " 3193 "more than one stream.\n"); 3194 xhci_free_command(xhci, config_cmd); 3195 spin_unlock_irqrestore(&xhci->lock, flags); 3196 return -EINVAL; 3197 } 3198 vdev = xhci->devs[udev->slot_id]; 3199 /* Mark each endpoint as being in transition, so 3200 * xhci_urb_enqueue() will reject all URBs. 3201 */ 3202 for (i = 0; i < num_eps; i++) { 3203 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3204 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3205 } 3206 spin_unlock_irqrestore(&xhci->lock, flags); 3207 3208 /* Setup internal data structures and allocate HW data structures for 3209 * streams (but don't install the HW structures in the input context 3210 * until we're sure all memory allocation succeeded). 3211 */ 3212 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3213 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3214 num_stream_ctxs, num_streams); 3215 3216 for (i = 0; i < num_eps; i++) { 3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3218 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3219 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3220 num_stream_ctxs, 3221 num_streams, 3222 max_packet, mem_flags); 3223 if (!vdev->eps[ep_index].stream_info) 3224 goto cleanup; 3225 /* Set maxPstreams in endpoint context and update deq ptr to 3226 * point to stream context array. FIXME 3227 */ 3228 } 3229 3230 /* Set up the input context for a configure endpoint command. */ 3231 for (i = 0; i < num_eps; i++) { 3232 struct xhci_ep_ctx *ep_ctx; 3233 3234 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3235 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3236 3237 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3238 vdev->out_ctx, ep_index); 3239 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3240 vdev->eps[ep_index].stream_info); 3241 } 3242 /* Tell the HW to drop its old copy of the endpoint context info 3243 * and add the updated copy from the input context. 3244 */ 3245 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3246 vdev->out_ctx, ctrl_ctx, 3247 changed_ep_bitmask, changed_ep_bitmask); 3248 3249 /* Issue and wait for the configure endpoint command */ 3250 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3251 false, false); 3252 3253 /* xHC rejected the configure endpoint command for some reason, so we 3254 * leave the old ring intact and free our internal streams data 3255 * structure. 3256 */ 3257 if (ret < 0) 3258 goto cleanup; 3259 3260 spin_lock_irqsave(&xhci->lock, flags); 3261 for (i = 0; i < num_eps; i++) { 3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3263 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3264 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3265 udev->slot_id, ep_index); 3266 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3267 } 3268 xhci_free_command(xhci, config_cmd); 3269 spin_unlock_irqrestore(&xhci->lock, flags); 3270 3271 /* Subtract 1 for stream 0, which drivers can't use */ 3272 return num_streams - 1; 3273 3274 cleanup: 3275 /* If it didn't work, free the streams! */ 3276 for (i = 0; i < num_eps; i++) { 3277 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3278 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3279 vdev->eps[ep_index].stream_info = NULL; 3280 /* FIXME Unset maxPstreams in endpoint context and 3281 * update deq ptr to point to normal string ring. 3282 */ 3283 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3284 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3285 xhci_endpoint_zero(xhci, vdev, eps[i]); 3286 } 3287 xhci_free_command(xhci, config_cmd); 3288 return -ENOMEM; 3289 } 3290 3291 /* Transition the endpoint from using streams to being a "normal" endpoint 3292 * without streams. 3293 * 3294 * Modify the endpoint context state, submit a configure endpoint command, 3295 * and free all endpoint rings for streams if that completes successfully. 3296 */ 3297 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3298 struct usb_host_endpoint **eps, unsigned int num_eps, 3299 gfp_t mem_flags) 3300 { 3301 int i, ret; 3302 struct xhci_hcd *xhci; 3303 struct xhci_virt_device *vdev; 3304 struct xhci_command *command; 3305 struct xhci_input_control_ctx *ctrl_ctx; 3306 unsigned int ep_index; 3307 unsigned long flags; 3308 u32 changed_ep_bitmask; 3309 3310 xhci = hcd_to_xhci(hcd); 3311 vdev = xhci->devs[udev->slot_id]; 3312 3313 /* Set up a configure endpoint command to remove the streams rings */ 3314 spin_lock_irqsave(&xhci->lock, flags); 3315 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3316 udev, eps, num_eps); 3317 if (changed_ep_bitmask == 0) { 3318 spin_unlock_irqrestore(&xhci->lock, flags); 3319 return -EINVAL; 3320 } 3321 3322 /* Use the xhci_command structure from the first endpoint. We may have 3323 * allocated too many, but the driver may call xhci_free_streams() for 3324 * each endpoint it grouped into one call to xhci_alloc_streams(). 3325 */ 3326 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3327 command = vdev->eps[ep_index].stream_info->free_streams_command; 3328 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3329 if (!ctrl_ctx) { 3330 spin_unlock_irqrestore(&xhci->lock, flags); 3331 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3332 __func__); 3333 return -EINVAL; 3334 } 3335 3336 for (i = 0; i < num_eps; i++) { 3337 struct xhci_ep_ctx *ep_ctx; 3338 3339 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3340 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3341 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3342 EP_GETTING_NO_STREAMS; 3343 3344 xhci_endpoint_copy(xhci, command->in_ctx, 3345 vdev->out_ctx, ep_index); 3346 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3347 &vdev->eps[ep_index]); 3348 } 3349 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3350 vdev->out_ctx, ctrl_ctx, 3351 changed_ep_bitmask, changed_ep_bitmask); 3352 spin_unlock_irqrestore(&xhci->lock, flags); 3353 3354 /* Issue and wait for the configure endpoint command, 3355 * which must succeed. 3356 */ 3357 ret = xhci_configure_endpoint(xhci, udev, command, 3358 false, true); 3359 3360 /* xHC rejected the configure endpoint command for some reason, so we 3361 * leave the streams rings intact. 3362 */ 3363 if (ret < 0) 3364 return ret; 3365 3366 spin_lock_irqsave(&xhci->lock, flags); 3367 for (i = 0; i < num_eps; i++) { 3368 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3369 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3370 vdev->eps[ep_index].stream_info = NULL; 3371 /* FIXME Unset maxPstreams in endpoint context and 3372 * update deq ptr to point to normal string ring. 3373 */ 3374 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3375 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3376 } 3377 spin_unlock_irqrestore(&xhci->lock, flags); 3378 3379 return 0; 3380 } 3381 3382 /* 3383 * Deletes endpoint resources for endpoints that were active before a Reset 3384 * Device command, or a Disable Slot command. The Reset Device command leaves 3385 * the control endpoint intact, whereas the Disable Slot command deletes it. 3386 * 3387 * Must be called with xhci->lock held. 3388 */ 3389 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3390 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3391 { 3392 int i; 3393 unsigned int num_dropped_eps = 0; 3394 unsigned int drop_flags = 0; 3395 3396 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3397 if (virt_dev->eps[i].ring) { 3398 drop_flags |= 1 << i; 3399 num_dropped_eps++; 3400 } 3401 } 3402 xhci->num_active_eps -= num_dropped_eps; 3403 if (num_dropped_eps) 3404 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3405 "Dropped %u ep ctxs, flags = 0x%x, " 3406 "%u now active.", 3407 num_dropped_eps, drop_flags, 3408 xhci->num_active_eps); 3409 } 3410 3411 /* 3412 * This submits a Reset Device Command, which will set the device state to 0, 3413 * set the device address to 0, and disable all the endpoints except the default 3414 * control endpoint. The USB core should come back and call 3415 * xhci_address_device(), and then re-set up the configuration. If this is 3416 * called because of a usb_reset_and_verify_device(), then the old alternate 3417 * settings will be re-installed through the normal bandwidth allocation 3418 * functions. 3419 * 3420 * Wait for the Reset Device command to finish. Remove all structures 3421 * associated with the endpoints that were disabled. Clear the input device 3422 * structure? Reset the control endpoint 0 max packet size? 3423 * 3424 * If the virt_dev to be reset does not exist or does not match the udev, 3425 * it means the device is lost, possibly due to the xHC restore error and 3426 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3427 * re-allocate the device. 3428 */ 3429 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3430 struct usb_device *udev) 3431 { 3432 int ret, i; 3433 unsigned long flags; 3434 struct xhci_hcd *xhci; 3435 unsigned int slot_id; 3436 struct xhci_virt_device *virt_dev; 3437 struct xhci_command *reset_device_cmd; 3438 struct xhci_slot_ctx *slot_ctx; 3439 int old_active_eps = 0; 3440 3441 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3442 if (ret <= 0) 3443 return ret; 3444 xhci = hcd_to_xhci(hcd); 3445 slot_id = udev->slot_id; 3446 virt_dev = xhci->devs[slot_id]; 3447 if (!virt_dev) { 3448 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3449 "not exist. Re-allocate the device\n", slot_id); 3450 ret = xhci_alloc_dev(hcd, udev); 3451 if (ret == 1) 3452 return 0; 3453 else 3454 return -EINVAL; 3455 } 3456 3457 if (virt_dev->tt_info) 3458 old_active_eps = virt_dev->tt_info->active_eps; 3459 3460 if (virt_dev->udev != udev) { 3461 /* If the virt_dev and the udev does not match, this virt_dev 3462 * may belong to another udev. 3463 * Re-allocate the device. 3464 */ 3465 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3466 "not match the udev. Re-allocate the device\n", 3467 slot_id); 3468 ret = xhci_alloc_dev(hcd, udev); 3469 if (ret == 1) 3470 return 0; 3471 else 3472 return -EINVAL; 3473 } 3474 3475 /* If device is not setup, there is no point in resetting it */ 3476 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3477 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3478 SLOT_STATE_DISABLED) 3479 return 0; 3480 3481 trace_xhci_discover_or_reset_device(slot_ctx); 3482 3483 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3484 /* Allocate the command structure that holds the struct completion. 3485 * Assume we're in process context, since the normal device reset 3486 * process has to wait for the device anyway. Storage devices are 3487 * reset as part of error handling, so use GFP_NOIO instead of 3488 * GFP_KERNEL. 3489 */ 3490 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3491 if (!reset_device_cmd) { 3492 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3493 return -ENOMEM; 3494 } 3495 3496 /* Attempt to submit the Reset Device command to the command ring */ 3497 spin_lock_irqsave(&xhci->lock, flags); 3498 3499 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3500 if (ret) { 3501 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3502 spin_unlock_irqrestore(&xhci->lock, flags); 3503 goto command_cleanup; 3504 } 3505 xhci_ring_cmd_db(xhci); 3506 spin_unlock_irqrestore(&xhci->lock, flags); 3507 3508 /* Wait for the Reset Device command to finish */ 3509 wait_for_completion(reset_device_cmd->completion); 3510 3511 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3512 * unless we tried to reset a slot ID that wasn't enabled, 3513 * or the device wasn't in the addressed or configured state. 3514 */ 3515 ret = reset_device_cmd->status; 3516 switch (ret) { 3517 case COMP_COMMAND_ABORTED: 3518 case COMP_COMMAND_RING_STOPPED: 3519 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3520 ret = -ETIME; 3521 goto command_cleanup; 3522 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3523 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3524 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3525 slot_id, 3526 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3527 xhci_dbg(xhci, "Not freeing device rings.\n"); 3528 /* Don't treat this as an error. May change my mind later. */ 3529 ret = 0; 3530 goto command_cleanup; 3531 case COMP_SUCCESS: 3532 xhci_dbg(xhci, "Successful reset device command.\n"); 3533 break; 3534 default: 3535 if (xhci_is_vendor_info_code(xhci, ret)) 3536 break; 3537 xhci_warn(xhci, "Unknown completion code %u for " 3538 "reset device command.\n", ret); 3539 ret = -EINVAL; 3540 goto command_cleanup; 3541 } 3542 3543 /* Free up host controller endpoint resources */ 3544 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3545 spin_lock_irqsave(&xhci->lock, flags); 3546 /* Don't delete the default control endpoint resources */ 3547 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3548 spin_unlock_irqrestore(&xhci->lock, flags); 3549 } 3550 3551 /* Everything but endpoint 0 is disabled, so free the rings. */ 3552 for (i = 1; i < 31; i++) { 3553 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3554 3555 if (ep->ep_state & EP_HAS_STREAMS) { 3556 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3557 xhci_get_endpoint_address(i)); 3558 xhci_free_stream_info(xhci, ep->stream_info); 3559 ep->stream_info = NULL; 3560 ep->ep_state &= ~EP_HAS_STREAMS; 3561 } 3562 3563 if (ep->ring) { 3564 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3565 xhci_free_endpoint_ring(xhci, virt_dev, i); 3566 } 3567 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3568 xhci_drop_ep_from_interval_table(xhci, 3569 &virt_dev->eps[i].bw_info, 3570 virt_dev->bw_table, 3571 udev, 3572 &virt_dev->eps[i], 3573 virt_dev->tt_info); 3574 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3575 } 3576 /* If necessary, update the number of active TTs on this root port */ 3577 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3578 ret = 0; 3579 3580 command_cleanup: 3581 xhci_free_command(xhci, reset_device_cmd); 3582 return ret; 3583 } 3584 3585 /* 3586 * At this point, the struct usb_device is about to go away, the device has 3587 * disconnected, and all traffic has been stopped and the endpoints have been 3588 * disabled. Free any HC data structures associated with that device. 3589 */ 3590 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3591 { 3592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3593 struct xhci_virt_device *virt_dev; 3594 struct xhci_slot_ctx *slot_ctx; 3595 int i, ret; 3596 3597 #ifndef CONFIG_USB_DEFAULT_PERSIST 3598 /* 3599 * We called pm_runtime_get_noresume when the device was attached. 3600 * Decrement the counter here to allow controller to runtime suspend 3601 * if no devices remain. 3602 */ 3603 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3604 pm_runtime_put_noidle(hcd->self.controller); 3605 #endif 3606 3607 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3608 /* If the host is halted due to driver unload, we still need to free the 3609 * device. 3610 */ 3611 if (ret <= 0 && ret != -ENODEV) 3612 return; 3613 3614 virt_dev = xhci->devs[udev->slot_id]; 3615 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3616 trace_xhci_free_dev(slot_ctx); 3617 3618 /* Stop any wayward timer functions (which may grab the lock) */ 3619 for (i = 0; i < 31; i++) { 3620 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3621 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3622 } 3623 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3624 ret = xhci_disable_slot(xhci, udev->slot_id); 3625 if (ret) 3626 xhci_free_virt_device(xhci, udev->slot_id); 3627 } 3628 3629 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3630 { 3631 struct xhci_command *command; 3632 unsigned long flags; 3633 u32 state; 3634 int ret = 0; 3635 3636 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3637 if (!command) 3638 return -ENOMEM; 3639 3640 spin_lock_irqsave(&xhci->lock, flags); 3641 /* Don't disable the slot if the host controller is dead. */ 3642 state = readl(&xhci->op_regs->status); 3643 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3644 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 kfree(command); 3647 return -ENODEV; 3648 } 3649 3650 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3651 slot_id); 3652 if (ret) { 3653 spin_unlock_irqrestore(&xhci->lock, flags); 3654 kfree(command); 3655 return ret; 3656 } 3657 xhci_ring_cmd_db(xhci); 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 return ret; 3660 } 3661 3662 /* 3663 * Checks if we have enough host controller resources for the default control 3664 * endpoint. 3665 * 3666 * Must be called with xhci->lock held. 3667 */ 3668 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3669 { 3670 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3672 "Not enough ep ctxs: " 3673 "%u active, need to add 1, limit is %u.", 3674 xhci->num_active_eps, xhci->limit_active_eps); 3675 return -ENOMEM; 3676 } 3677 xhci->num_active_eps += 1; 3678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3679 "Adding 1 ep ctx, %u now active.", 3680 xhci->num_active_eps); 3681 return 0; 3682 } 3683 3684 3685 /* 3686 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3687 * timed out, or allocating memory failed. Returns 1 on success. 3688 */ 3689 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3690 { 3691 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3692 struct xhci_virt_device *vdev; 3693 struct xhci_slot_ctx *slot_ctx; 3694 unsigned long flags; 3695 int ret, slot_id; 3696 struct xhci_command *command; 3697 3698 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3699 if (!command) 3700 return 0; 3701 3702 spin_lock_irqsave(&xhci->lock, flags); 3703 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3704 if (ret) { 3705 spin_unlock_irqrestore(&xhci->lock, flags); 3706 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3707 xhci_free_command(xhci, command); 3708 return 0; 3709 } 3710 xhci_ring_cmd_db(xhci); 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 3713 wait_for_completion(command->completion); 3714 slot_id = command->slot_id; 3715 3716 if (!slot_id || command->status != COMP_SUCCESS) { 3717 xhci_err(xhci, "Error while assigning device slot ID\n"); 3718 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3719 HCS_MAX_SLOTS( 3720 readl(&xhci->cap_regs->hcs_params1))); 3721 xhci_free_command(xhci, command); 3722 return 0; 3723 } 3724 3725 xhci_free_command(xhci, command); 3726 3727 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3728 spin_lock_irqsave(&xhci->lock, flags); 3729 ret = xhci_reserve_host_control_ep_resources(xhci); 3730 if (ret) { 3731 spin_unlock_irqrestore(&xhci->lock, flags); 3732 xhci_warn(xhci, "Not enough host resources, " 3733 "active endpoint contexts = %u\n", 3734 xhci->num_active_eps); 3735 goto disable_slot; 3736 } 3737 spin_unlock_irqrestore(&xhci->lock, flags); 3738 } 3739 /* Use GFP_NOIO, since this function can be called from 3740 * xhci_discover_or_reset_device(), which may be called as part of 3741 * mass storage driver error handling. 3742 */ 3743 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3744 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3745 goto disable_slot; 3746 } 3747 vdev = xhci->devs[slot_id]; 3748 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3749 trace_xhci_alloc_dev(slot_ctx); 3750 3751 udev->slot_id = slot_id; 3752 3753 xhci_debugfs_create_slot(xhci, slot_id); 3754 3755 #ifndef CONFIG_USB_DEFAULT_PERSIST 3756 /* 3757 * If resetting upon resume, we can't put the controller into runtime 3758 * suspend if there is a device attached. 3759 */ 3760 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3761 pm_runtime_get_noresume(hcd->self.controller); 3762 #endif 3763 3764 /* Is this a LS or FS device under a HS hub? */ 3765 /* Hub or peripherial? */ 3766 return 1; 3767 3768 disable_slot: 3769 ret = xhci_disable_slot(xhci, udev->slot_id); 3770 if (ret) 3771 xhci_free_virt_device(xhci, udev->slot_id); 3772 3773 return 0; 3774 } 3775 3776 /* 3777 * Issue an Address Device command and optionally send a corresponding 3778 * SetAddress request to the device. 3779 */ 3780 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3781 enum xhci_setup_dev setup) 3782 { 3783 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3784 unsigned long flags; 3785 struct xhci_virt_device *virt_dev; 3786 int ret = 0; 3787 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3788 struct xhci_slot_ctx *slot_ctx; 3789 struct xhci_input_control_ctx *ctrl_ctx; 3790 u64 temp_64; 3791 struct xhci_command *command = NULL; 3792 3793 mutex_lock(&xhci->mutex); 3794 3795 if (xhci->xhc_state) { /* dying, removing or halted */ 3796 ret = -ESHUTDOWN; 3797 goto out; 3798 } 3799 3800 if (!udev->slot_id) { 3801 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3802 "Bad Slot ID %d", udev->slot_id); 3803 ret = -EINVAL; 3804 goto out; 3805 } 3806 3807 virt_dev = xhci->devs[udev->slot_id]; 3808 3809 if (WARN_ON(!virt_dev)) { 3810 /* 3811 * In plug/unplug torture test with an NEC controller, 3812 * a zero-dereference was observed once due to virt_dev = 0. 3813 * Print useful debug rather than crash if it is observed again! 3814 */ 3815 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3816 udev->slot_id); 3817 ret = -EINVAL; 3818 goto out; 3819 } 3820 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3821 trace_xhci_setup_device_slot(slot_ctx); 3822 3823 if (setup == SETUP_CONTEXT_ONLY) { 3824 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3825 SLOT_STATE_DEFAULT) { 3826 xhci_dbg(xhci, "Slot already in default state\n"); 3827 goto out; 3828 } 3829 } 3830 3831 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3832 if (!command) { 3833 ret = -ENOMEM; 3834 goto out; 3835 } 3836 3837 command->in_ctx = virt_dev->in_ctx; 3838 3839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3840 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3841 if (!ctrl_ctx) { 3842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3843 __func__); 3844 ret = -EINVAL; 3845 goto out; 3846 } 3847 /* 3848 * If this is the first Set Address since device plug-in or 3849 * virt_device realloaction after a resume with an xHCI power loss, 3850 * then set up the slot context. 3851 */ 3852 if (!slot_ctx->dev_info) 3853 xhci_setup_addressable_virt_dev(xhci, udev); 3854 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3855 else 3856 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3857 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3858 ctrl_ctx->drop_flags = 0; 3859 3860 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3861 le32_to_cpu(slot_ctx->dev_info) >> 27); 3862 3863 spin_lock_irqsave(&xhci->lock, flags); 3864 trace_xhci_setup_device(virt_dev); 3865 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3866 udev->slot_id, setup); 3867 if (ret) { 3868 spin_unlock_irqrestore(&xhci->lock, flags); 3869 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3870 "FIXME: allocate a command ring segment"); 3871 goto out; 3872 } 3873 xhci_ring_cmd_db(xhci); 3874 spin_unlock_irqrestore(&xhci->lock, flags); 3875 3876 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3877 wait_for_completion(command->completion); 3878 3879 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3880 * the SetAddress() "recovery interval" required by USB and aborting the 3881 * command on a timeout. 3882 */ 3883 switch (command->status) { 3884 case COMP_COMMAND_ABORTED: 3885 case COMP_COMMAND_RING_STOPPED: 3886 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3887 ret = -ETIME; 3888 break; 3889 case COMP_CONTEXT_STATE_ERROR: 3890 case COMP_SLOT_NOT_ENABLED_ERROR: 3891 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3892 act, udev->slot_id); 3893 ret = -EINVAL; 3894 break; 3895 case COMP_USB_TRANSACTION_ERROR: 3896 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3897 3898 mutex_unlock(&xhci->mutex); 3899 ret = xhci_disable_slot(xhci, udev->slot_id); 3900 if (!ret) 3901 xhci_alloc_dev(hcd, udev); 3902 kfree(command->completion); 3903 kfree(command); 3904 return -EPROTO; 3905 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3906 dev_warn(&udev->dev, 3907 "ERROR: Incompatible device for setup %s command\n", act); 3908 ret = -ENODEV; 3909 break; 3910 case COMP_SUCCESS: 3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3912 "Successful setup %s command", act); 3913 break; 3914 default: 3915 xhci_err(xhci, 3916 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3917 act, command->status); 3918 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3919 ret = -EINVAL; 3920 break; 3921 } 3922 if (ret) 3923 goto out; 3924 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3925 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3926 "Op regs DCBAA ptr = %#016llx", temp_64); 3927 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3928 "Slot ID %d dcbaa entry @%p = %#016llx", 3929 udev->slot_id, 3930 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3931 (unsigned long long) 3932 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3933 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3934 "Output Context DMA address = %#08llx", 3935 (unsigned long long)virt_dev->out_ctx->dma); 3936 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3937 le32_to_cpu(slot_ctx->dev_info) >> 27); 3938 /* 3939 * USB core uses address 1 for the roothubs, so we add one to the 3940 * address given back to us by the HC. 3941 */ 3942 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3943 le32_to_cpu(slot_ctx->dev_info) >> 27); 3944 /* Zero the input context control for later use */ 3945 ctrl_ctx->add_flags = 0; 3946 ctrl_ctx->drop_flags = 0; 3947 3948 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3949 "Internal device address = %d", 3950 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3951 out: 3952 mutex_unlock(&xhci->mutex); 3953 if (command) { 3954 kfree(command->completion); 3955 kfree(command); 3956 } 3957 return ret; 3958 } 3959 3960 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3961 { 3962 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3963 } 3964 3965 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3966 { 3967 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3968 } 3969 3970 /* 3971 * Transfer the port index into real index in the HW port status 3972 * registers. Caculate offset between the port's PORTSC register 3973 * and port status base. Divide the number of per port register 3974 * to get the real index. The raw port number bases 1. 3975 */ 3976 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3977 { 3978 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3979 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3980 __le32 __iomem *addr; 3981 int raw_port; 3982 3983 if (hcd->speed < HCD_USB3) 3984 addr = xhci->usb2_ports[port1 - 1]; 3985 else 3986 addr = xhci->usb3_ports[port1 - 1]; 3987 3988 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3989 return raw_port; 3990 } 3991 3992 /* 3993 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3994 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3995 */ 3996 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3997 struct usb_device *udev, u16 max_exit_latency) 3998 { 3999 struct xhci_virt_device *virt_dev; 4000 struct xhci_command *command; 4001 struct xhci_input_control_ctx *ctrl_ctx; 4002 struct xhci_slot_ctx *slot_ctx; 4003 unsigned long flags; 4004 int ret; 4005 4006 spin_lock_irqsave(&xhci->lock, flags); 4007 4008 virt_dev = xhci->devs[udev->slot_id]; 4009 4010 /* 4011 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4012 * xHC was re-initialized. Exit latency will be set later after 4013 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4014 */ 4015 4016 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4017 spin_unlock_irqrestore(&xhci->lock, flags); 4018 return 0; 4019 } 4020 4021 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4022 command = xhci->lpm_command; 4023 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4024 if (!ctrl_ctx) { 4025 spin_unlock_irqrestore(&xhci->lock, flags); 4026 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4027 __func__); 4028 return -ENOMEM; 4029 } 4030 4031 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4032 spin_unlock_irqrestore(&xhci->lock, flags); 4033 4034 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4035 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4036 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4037 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4038 slot_ctx->dev_state = 0; 4039 4040 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4041 "Set up evaluate context for LPM MEL change."); 4042 4043 /* Issue and wait for the evaluate context command. */ 4044 ret = xhci_configure_endpoint(xhci, udev, command, 4045 true, true); 4046 4047 if (!ret) { 4048 spin_lock_irqsave(&xhci->lock, flags); 4049 virt_dev->current_mel = max_exit_latency; 4050 spin_unlock_irqrestore(&xhci->lock, flags); 4051 } 4052 return ret; 4053 } 4054 4055 #ifdef CONFIG_PM 4056 4057 /* BESL to HIRD Encoding array for USB2 LPM */ 4058 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4059 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4060 4061 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4062 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4063 struct usb_device *udev) 4064 { 4065 int u2del, besl, besl_host; 4066 int besl_device = 0; 4067 u32 field; 4068 4069 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4070 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4071 4072 if (field & USB_BESL_SUPPORT) { 4073 for (besl_host = 0; besl_host < 16; besl_host++) { 4074 if (xhci_besl_encoding[besl_host] >= u2del) 4075 break; 4076 } 4077 /* Use baseline BESL value as default */ 4078 if (field & USB_BESL_BASELINE_VALID) 4079 besl_device = USB_GET_BESL_BASELINE(field); 4080 else if (field & USB_BESL_DEEP_VALID) 4081 besl_device = USB_GET_BESL_DEEP(field); 4082 } else { 4083 if (u2del <= 50) 4084 besl_host = 0; 4085 else 4086 besl_host = (u2del - 51) / 75 + 1; 4087 } 4088 4089 besl = besl_host + besl_device; 4090 if (besl > 15) 4091 besl = 15; 4092 4093 return besl; 4094 } 4095 4096 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4097 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4098 { 4099 u32 field; 4100 int l1; 4101 int besld = 0; 4102 int hirdm = 0; 4103 4104 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4105 4106 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4107 l1 = udev->l1_params.timeout / 256; 4108 4109 /* device has preferred BESLD */ 4110 if (field & USB_BESL_DEEP_VALID) { 4111 besld = USB_GET_BESL_DEEP(field); 4112 hirdm = 1; 4113 } 4114 4115 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4116 } 4117 4118 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4119 struct usb_device *udev, int enable) 4120 { 4121 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4122 __le32 __iomem **port_array; 4123 __le32 __iomem *pm_addr, *hlpm_addr; 4124 u32 pm_val, hlpm_val, field; 4125 unsigned int port_num; 4126 unsigned long flags; 4127 int hird, exit_latency; 4128 int ret; 4129 4130 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4131 !udev->lpm_capable) 4132 return -EPERM; 4133 4134 if (!udev->parent || udev->parent->parent || 4135 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4136 return -EPERM; 4137 4138 if (udev->usb2_hw_lpm_capable != 1) 4139 return -EPERM; 4140 4141 spin_lock_irqsave(&xhci->lock, flags); 4142 4143 port_array = xhci->usb2_ports; 4144 port_num = udev->portnum - 1; 4145 pm_addr = port_array[port_num] + PORTPMSC; 4146 pm_val = readl(pm_addr); 4147 hlpm_addr = port_array[port_num] + PORTHLPMC; 4148 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4149 4150 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4151 enable ? "enable" : "disable", port_num + 1); 4152 4153 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4154 /* Host supports BESL timeout instead of HIRD */ 4155 if (udev->usb2_hw_lpm_besl_capable) { 4156 /* if device doesn't have a preferred BESL value use a 4157 * default one which works with mixed HIRD and BESL 4158 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4159 */ 4160 if ((field & USB_BESL_SUPPORT) && 4161 (field & USB_BESL_BASELINE_VALID)) 4162 hird = USB_GET_BESL_BASELINE(field); 4163 else 4164 hird = udev->l1_params.besl; 4165 4166 exit_latency = xhci_besl_encoding[hird]; 4167 spin_unlock_irqrestore(&xhci->lock, flags); 4168 4169 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4170 * input context for link powermanagement evaluate 4171 * context commands. It is protected by hcd->bandwidth 4172 * mutex and is shared by all devices. We need to set 4173 * the max ext latency in USB 2 BESL LPM as well, so 4174 * use the same mutex and xhci_change_max_exit_latency() 4175 */ 4176 mutex_lock(hcd->bandwidth_mutex); 4177 ret = xhci_change_max_exit_latency(xhci, udev, 4178 exit_latency); 4179 mutex_unlock(hcd->bandwidth_mutex); 4180 4181 if (ret < 0) 4182 return ret; 4183 spin_lock_irqsave(&xhci->lock, flags); 4184 4185 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4186 writel(hlpm_val, hlpm_addr); 4187 /* flush write */ 4188 readl(hlpm_addr); 4189 } else { 4190 hird = xhci_calculate_hird_besl(xhci, udev); 4191 } 4192 4193 pm_val &= ~PORT_HIRD_MASK; 4194 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4195 writel(pm_val, pm_addr); 4196 pm_val = readl(pm_addr); 4197 pm_val |= PORT_HLE; 4198 writel(pm_val, pm_addr); 4199 /* flush write */ 4200 readl(pm_addr); 4201 } else { 4202 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4203 writel(pm_val, pm_addr); 4204 /* flush write */ 4205 readl(pm_addr); 4206 if (udev->usb2_hw_lpm_besl_capable) { 4207 spin_unlock_irqrestore(&xhci->lock, flags); 4208 mutex_lock(hcd->bandwidth_mutex); 4209 xhci_change_max_exit_latency(xhci, udev, 0); 4210 mutex_unlock(hcd->bandwidth_mutex); 4211 return 0; 4212 } 4213 } 4214 4215 spin_unlock_irqrestore(&xhci->lock, flags); 4216 return 0; 4217 } 4218 4219 /* check if a usb2 port supports a given extened capability protocol 4220 * only USB2 ports extended protocol capability values are cached. 4221 * Return 1 if capability is supported 4222 */ 4223 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4224 unsigned capability) 4225 { 4226 u32 port_offset, port_count; 4227 int i; 4228 4229 for (i = 0; i < xhci->num_ext_caps; i++) { 4230 if (xhci->ext_caps[i] & capability) { 4231 /* port offsets starts at 1 */ 4232 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4233 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4234 if (port >= port_offset && 4235 port < port_offset + port_count) 4236 return 1; 4237 } 4238 } 4239 return 0; 4240 } 4241 4242 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4243 { 4244 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4245 int portnum = udev->portnum - 1; 4246 4247 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4248 !udev->lpm_capable) 4249 return 0; 4250 4251 /* we only support lpm for non-hub device connected to root hub yet */ 4252 if (!udev->parent || udev->parent->parent || 4253 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4254 return 0; 4255 4256 if (xhci->hw_lpm_support == 1 && 4257 xhci_check_usb2_port_capability( 4258 xhci, portnum, XHCI_HLC)) { 4259 udev->usb2_hw_lpm_capable = 1; 4260 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4261 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4262 if (xhci_check_usb2_port_capability(xhci, portnum, 4263 XHCI_BLC)) 4264 udev->usb2_hw_lpm_besl_capable = 1; 4265 } 4266 4267 return 0; 4268 } 4269 4270 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4271 4272 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4273 static unsigned long long xhci_service_interval_to_ns( 4274 struct usb_endpoint_descriptor *desc) 4275 { 4276 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4277 } 4278 4279 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4280 enum usb3_link_state state) 4281 { 4282 unsigned long long sel; 4283 unsigned long long pel; 4284 unsigned int max_sel_pel; 4285 char *state_name; 4286 4287 switch (state) { 4288 case USB3_LPM_U1: 4289 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4290 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4291 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4292 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4293 state_name = "U1"; 4294 break; 4295 case USB3_LPM_U2: 4296 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4297 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4298 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4299 state_name = "U2"; 4300 break; 4301 default: 4302 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4303 __func__); 4304 return USB3_LPM_DISABLED; 4305 } 4306 4307 if (sel <= max_sel_pel && pel <= max_sel_pel) 4308 return USB3_LPM_DEVICE_INITIATED; 4309 4310 if (sel > max_sel_pel) 4311 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4312 "due to long SEL %llu ms\n", 4313 state_name, sel); 4314 else 4315 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4316 "due to long PEL %llu ms\n", 4317 state_name, pel); 4318 return USB3_LPM_DISABLED; 4319 } 4320 4321 /* The U1 timeout should be the maximum of the following values: 4322 * - For control endpoints, U1 system exit latency (SEL) * 3 4323 * - For bulk endpoints, U1 SEL * 5 4324 * - For interrupt endpoints: 4325 * - Notification EPs, U1 SEL * 3 4326 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4327 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4328 */ 4329 static unsigned long long xhci_calculate_intel_u1_timeout( 4330 struct usb_device *udev, 4331 struct usb_endpoint_descriptor *desc) 4332 { 4333 unsigned long long timeout_ns; 4334 int ep_type; 4335 int intr_type; 4336 4337 ep_type = usb_endpoint_type(desc); 4338 switch (ep_type) { 4339 case USB_ENDPOINT_XFER_CONTROL: 4340 timeout_ns = udev->u1_params.sel * 3; 4341 break; 4342 case USB_ENDPOINT_XFER_BULK: 4343 timeout_ns = udev->u1_params.sel * 5; 4344 break; 4345 case USB_ENDPOINT_XFER_INT: 4346 intr_type = usb_endpoint_interrupt_type(desc); 4347 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4348 timeout_ns = udev->u1_params.sel * 3; 4349 break; 4350 } 4351 /* Otherwise the calculation is the same as isoc eps */ 4352 /* fall through */ 4353 case USB_ENDPOINT_XFER_ISOC: 4354 timeout_ns = xhci_service_interval_to_ns(desc); 4355 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4356 if (timeout_ns < udev->u1_params.sel * 2) 4357 timeout_ns = udev->u1_params.sel * 2; 4358 break; 4359 default: 4360 return 0; 4361 } 4362 4363 return timeout_ns; 4364 } 4365 4366 /* Returns the hub-encoded U1 timeout value. */ 4367 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4368 struct usb_device *udev, 4369 struct usb_endpoint_descriptor *desc) 4370 { 4371 unsigned long long timeout_ns; 4372 4373 if (xhci->quirks & XHCI_INTEL_HOST) 4374 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4375 else 4376 timeout_ns = udev->u1_params.sel; 4377 4378 /* The U1 timeout is encoded in 1us intervals. 4379 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4380 */ 4381 if (timeout_ns == USB3_LPM_DISABLED) 4382 timeout_ns = 1; 4383 else 4384 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4385 4386 /* If the necessary timeout value is bigger than what we can set in the 4387 * USB 3.0 hub, we have to disable hub-initiated U1. 4388 */ 4389 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4390 return timeout_ns; 4391 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4392 "due to long timeout %llu ms\n", timeout_ns); 4393 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4394 } 4395 4396 /* The U2 timeout should be the maximum of: 4397 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4398 * - largest bInterval of any active periodic endpoint (to avoid going 4399 * into lower power link states between intervals). 4400 * - the U2 Exit Latency of the device 4401 */ 4402 static unsigned long long xhci_calculate_intel_u2_timeout( 4403 struct usb_device *udev, 4404 struct usb_endpoint_descriptor *desc) 4405 { 4406 unsigned long long timeout_ns; 4407 unsigned long long u2_del_ns; 4408 4409 timeout_ns = 10 * 1000 * 1000; 4410 4411 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4412 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4413 timeout_ns = xhci_service_interval_to_ns(desc); 4414 4415 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4416 if (u2_del_ns > timeout_ns) 4417 timeout_ns = u2_del_ns; 4418 4419 return timeout_ns; 4420 } 4421 4422 /* Returns the hub-encoded U2 timeout value. */ 4423 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4424 struct usb_device *udev, 4425 struct usb_endpoint_descriptor *desc) 4426 { 4427 unsigned long long timeout_ns; 4428 4429 if (xhci->quirks & XHCI_INTEL_HOST) 4430 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4431 else 4432 timeout_ns = udev->u2_params.sel; 4433 4434 /* The U2 timeout is encoded in 256us intervals */ 4435 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4436 /* If the necessary timeout value is bigger than what we can set in the 4437 * USB 3.0 hub, we have to disable hub-initiated U2. 4438 */ 4439 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4440 return timeout_ns; 4441 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4442 "due to long timeout %llu ms\n", timeout_ns); 4443 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4444 } 4445 4446 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4447 struct usb_device *udev, 4448 struct usb_endpoint_descriptor *desc, 4449 enum usb3_link_state state, 4450 u16 *timeout) 4451 { 4452 if (state == USB3_LPM_U1) 4453 return xhci_calculate_u1_timeout(xhci, udev, desc); 4454 else if (state == USB3_LPM_U2) 4455 return xhci_calculate_u2_timeout(xhci, udev, desc); 4456 4457 return USB3_LPM_DISABLED; 4458 } 4459 4460 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4461 struct usb_device *udev, 4462 struct usb_endpoint_descriptor *desc, 4463 enum usb3_link_state state, 4464 u16 *timeout) 4465 { 4466 u16 alt_timeout; 4467 4468 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4469 desc, state, timeout); 4470 4471 /* If we found we can't enable hub-initiated LPM, or 4472 * the U1 or U2 exit latency was too high to allow 4473 * device-initiated LPM as well, just stop searching. 4474 */ 4475 if (alt_timeout == USB3_LPM_DISABLED || 4476 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4477 *timeout = alt_timeout; 4478 return -E2BIG; 4479 } 4480 if (alt_timeout > *timeout) 4481 *timeout = alt_timeout; 4482 return 0; 4483 } 4484 4485 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4486 struct usb_device *udev, 4487 struct usb_host_interface *alt, 4488 enum usb3_link_state state, 4489 u16 *timeout) 4490 { 4491 int j; 4492 4493 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4494 if (xhci_update_timeout_for_endpoint(xhci, udev, 4495 &alt->endpoint[j].desc, state, timeout)) 4496 return -E2BIG; 4497 continue; 4498 } 4499 return 0; 4500 } 4501 4502 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4503 enum usb3_link_state state) 4504 { 4505 struct usb_device *parent; 4506 unsigned int num_hubs; 4507 4508 if (state == USB3_LPM_U2) 4509 return 0; 4510 4511 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4512 for (parent = udev->parent, num_hubs = 0; parent->parent; 4513 parent = parent->parent) 4514 num_hubs++; 4515 4516 if (num_hubs < 2) 4517 return 0; 4518 4519 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4520 " below second-tier hub.\n"); 4521 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4522 "to decrease power consumption.\n"); 4523 return -E2BIG; 4524 } 4525 4526 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4527 struct usb_device *udev, 4528 enum usb3_link_state state) 4529 { 4530 if (xhci->quirks & XHCI_INTEL_HOST) 4531 return xhci_check_intel_tier_policy(udev, state); 4532 else 4533 return 0; 4534 } 4535 4536 /* Returns the U1 or U2 timeout that should be enabled. 4537 * If the tier check or timeout setting functions return with a non-zero exit 4538 * code, that means the timeout value has been finalized and we shouldn't look 4539 * at any more endpoints. 4540 */ 4541 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4542 struct usb_device *udev, enum usb3_link_state state) 4543 { 4544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4545 struct usb_host_config *config; 4546 char *state_name; 4547 int i; 4548 u16 timeout = USB3_LPM_DISABLED; 4549 4550 if (state == USB3_LPM_U1) 4551 state_name = "U1"; 4552 else if (state == USB3_LPM_U2) 4553 state_name = "U2"; 4554 else { 4555 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4556 state); 4557 return timeout; 4558 } 4559 4560 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4561 return timeout; 4562 4563 /* Gather some information about the currently installed configuration 4564 * and alternate interface settings. 4565 */ 4566 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4567 state, &timeout)) 4568 return timeout; 4569 4570 config = udev->actconfig; 4571 if (!config) 4572 return timeout; 4573 4574 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4575 struct usb_driver *driver; 4576 struct usb_interface *intf = config->interface[i]; 4577 4578 if (!intf) 4579 continue; 4580 4581 /* Check if any currently bound drivers want hub-initiated LPM 4582 * disabled. 4583 */ 4584 if (intf->dev.driver) { 4585 driver = to_usb_driver(intf->dev.driver); 4586 if (driver && driver->disable_hub_initiated_lpm) { 4587 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4588 "at request of driver %s\n", 4589 state_name, driver->name); 4590 return xhci_get_timeout_no_hub_lpm(udev, state); 4591 } 4592 } 4593 4594 /* Not sure how this could happen... */ 4595 if (!intf->cur_altsetting) 4596 continue; 4597 4598 if (xhci_update_timeout_for_interface(xhci, udev, 4599 intf->cur_altsetting, 4600 state, &timeout)) 4601 return timeout; 4602 } 4603 return timeout; 4604 } 4605 4606 static int calculate_max_exit_latency(struct usb_device *udev, 4607 enum usb3_link_state state_changed, 4608 u16 hub_encoded_timeout) 4609 { 4610 unsigned long long u1_mel_us = 0; 4611 unsigned long long u2_mel_us = 0; 4612 unsigned long long mel_us = 0; 4613 bool disabling_u1; 4614 bool disabling_u2; 4615 bool enabling_u1; 4616 bool enabling_u2; 4617 4618 disabling_u1 = (state_changed == USB3_LPM_U1 && 4619 hub_encoded_timeout == USB3_LPM_DISABLED); 4620 disabling_u2 = (state_changed == USB3_LPM_U2 && 4621 hub_encoded_timeout == USB3_LPM_DISABLED); 4622 4623 enabling_u1 = (state_changed == USB3_LPM_U1 && 4624 hub_encoded_timeout != USB3_LPM_DISABLED); 4625 enabling_u2 = (state_changed == USB3_LPM_U2 && 4626 hub_encoded_timeout != USB3_LPM_DISABLED); 4627 4628 /* If U1 was already enabled and we're not disabling it, 4629 * or we're going to enable U1, account for the U1 max exit latency. 4630 */ 4631 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4632 enabling_u1) 4633 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4634 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4635 enabling_u2) 4636 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4637 4638 if (u1_mel_us > u2_mel_us) 4639 mel_us = u1_mel_us; 4640 else 4641 mel_us = u2_mel_us; 4642 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4643 if (mel_us > MAX_EXIT) { 4644 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4645 "is too big.\n", mel_us); 4646 return -E2BIG; 4647 } 4648 return mel_us; 4649 } 4650 4651 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4652 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4653 struct usb_device *udev, enum usb3_link_state state) 4654 { 4655 struct xhci_hcd *xhci; 4656 u16 hub_encoded_timeout; 4657 int mel; 4658 int ret; 4659 4660 xhci = hcd_to_xhci(hcd); 4661 /* The LPM timeout values are pretty host-controller specific, so don't 4662 * enable hub-initiated timeouts unless the vendor has provided 4663 * information about their timeout algorithm. 4664 */ 4665 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4666 !xhci->devs[udev->slot_id]) 4667 return USB3_LPM_DISABLED; 4668 4669 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4670 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4671 if (mel < 0) { 4672 /* Max Exit Latency is too big, disable LPM. */ 4673 hub_encoded_timeout = USB3_LPM_DISABLED; 4674 mel = 0; 4675 } 4676 4677 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4678 if (ret) 4679 return ret; 4680 return hub_encoded_timeout; 4681 } 4682 4683 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4684 struct usb_device *udev, enum usb3_link_state state) 4685 { 4686 struct xhci_hcd *xhci; 4687 u16 mel; 4688 4689 xhci = hcd_to_xhci(hcd); 4690 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4691 !xhci->devs[udev->slot_id]) 4692 return 0; 4693 4694 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4695 return xhci_change_max_exit_latency(xhci, udev, mel); 4696 } 4697 #else /* CONFIG_PM */ 4698 4699 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4700 struct usb_device *udev, int enable) 4701 { 4702 return 0; 4703 } 4704 4705 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4706 { 4707 return 0; 4708 } 4709 4710 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4711 struct usb_device *udev, enum usb3_link_state state) 4712 { 4713 return USB3_LPM_DISABLED; 4714 } 4715 4716 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4717 struct usb_device *udev, enum usb3_link_state state) 4718 { 4719 return 0; 4720 } 4721 #endif /* CONFIG_PM */ 4722 4723 /*-------------------------------------------------------------------------*/ 4724 4725 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4726 * internal data structures for the device. 4727 */ 4728 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4729 struct usb_tt *tt, gfp_t mem_flags) 4730 { 4731 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4732 struct xhci_virt_device *vdev; 4733 struct xhci_command *config_cmd; 4734 struct xhci_input_control_ctx *ctrl_ctx; 4735 struct xhci_slot_ctx *slot_ctx; 4736 unsigned long flags; 4737 unsigned think_time; 4738 int ret; 4739 4740 /* Ignore root hubs */ 4741 if (!hdev->parent) 4742 return 0; 4743 4744 vdev = xhci->devs[hdev->slot_id]; 4745 if (!vdev) { 4746 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4747 return -EINVAL; 4748 } 4749 4750 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4751 if (!config_cmd) 4752 return -ENOMEM; 4753 4754 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4755 if (!ctrl_ctx) { 4756 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4757 __func__); 4758 xhci_free_command(xhci, config_cmd); 4759 return -ENOMEM; 4760 } 4761 4762 spin_lock_irqsave(&xhci->lock, flags); 4763 if (hdev->speed == USB_SPEED_HIGH && 4764 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4765 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4766 xhci_free_command(xhci, config_cmd); 4767 spin_unlock_irqrestore(&xhci->lock, flags); 4768 return -ENOMEM; 4769 } 4770 4771 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4772 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4773 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4774 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4775 /* 4776 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4777 * but it may be already set to 1 when setup an xHCI virtual 4778 * device, so clear it anyway. 4779 */ 4780 if (tt->multi) 4781 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4782 else if (hdev->speed == USB_SPEED_FULL) 4783 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4784 4785 if (xhci->hci_version > 0x95) { 4786 xhci_dbg(xhci, "xHCI version %x needs hub " 4787 "TT think time and number of ports\n", 4788 (unsigned int) xhci->hci_version); 4789 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4790 /* Set TT think time - convert from ns to FS bit times. 4791 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4792 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4793 * 4794 * xHCI 1.0: this field shall be 0 if the device is not a 4795 * High-spped hub. 4796 */ 4797 think_time = tt->think_time; 4798 if (think_time != 0) 4799 think_time = (think_time / 666) - 1; 4800 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4801 slot_ctx->tt_info |= 4802 cpu_to_le32(TT_THINK_TIME(think_time)); 4803 } else { 4804 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4805 "TT think time or number of ports\n", 4806 (unsigned int) xhci->hci_version); 4807 } 4808 slot_ctx->dev_state = 0; 4809 spin_unlock_irqrestore(&xhci->lock, flags); 4810 4811 xhci_dbg(xhci, "Set up %s for hub device.\n", 4812 (xhci->hci_version > 0x95) ? 4813 "configure endpoint" : "evaluate context"); 4814 4815 /* Issue and wait for the configure endpoint or 4816 * evaluate context command. 4817 */ 4818 if (xhci->hci_version > 0x95) 4819 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4820 false, false); 4821 else 4822 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4823 true, false); 4824 4825 xhci_free_command(xhci, config_cmd); 4826 return ret; 4827 } 4828 4829 static int xhci_get_frame(struct usb_hcd *hcd) 4830 { 4831 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4832 /* EHCI mods by the periodic size. Why? */ 4833 return readl(&xhci->run_regs->microframe_index) >> 3; 4834 } 4835 4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4837 { 4838 struct xhci_hcd *xhci; 4839 /* 4840 * TODO: Check with DWC3 clients for sysdev according to 4841 * quirks 4842 */ 4843 struct device *dev = hcd->self.sysdev; 4844 unsigned int minor_rev; 4845 int retval; 4846 4847 /* Accept arbitrarily long scatter-gather lists */ 4848 hcd->self.sg_tablesize = ~0; 4849 4850 /* support to build packet from discontinuous buffers */ 4851 hcd->self.no_sg_constraint = 1; 4852 4853 /* XHCI controllers don't stop the ep queue on short packets :| */ 4854 hcd->self.no_stop_on_short = 1; 4855 4856 xhci = hcd_to_xhci(hcd); 4857 4858 if (usb_hcd_is_primary_hcd(hcd)) { 4859 xhci->main_hcd = hcd; 4860 /* Mark the first roothub as being USB 2.0. 4861 * The xHCI driver will register the USB 3.0 roothub. 4862 */ 4863 hcd->speed = HCD_USB2; 4864 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4865 /* 4866 * USB 2.0 roothub under xHCI has an integrated TT, 4867 * (rate matching hub) as opposed to having an OHCI/UHCI 4868 * companion controller. 4869 */ 4870 hcd->has_tt = 1; 4871 } else { 4872 /* 4873 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 4874 * minor revision instead of sbrn 4875 */ 4876 minor_rev = xhci->usb3_rhub.min_rev; 4877 if (minor_rev) { 4878 hcd->speed = HCD_USB31; 4879 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4880 } 4881 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 4882 minor_rev, 4883 minor_rev ? "Enhanced" : ""); 4884 4885 /* xHCI private pointer was set in xhci_pci_probe for the second 4886 * registered roothub. 4887 */ 4888 return 0; 4889 } 4890 4891 mutex_init(&xhci->mutex); 4892 xhci->cap_regs = hcd->regs; 4893 xhci->op_regs = hcd->regs + 4894 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4895 xhci->run_regs = hcd->regs + 4896 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4897 /* Cache read-only capability registers */ 4898 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4899 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4900 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4901 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4902 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4903 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4904 if (xhci->hci_version > 0x100) 4905 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4906 4907 xhci->quirks |= quirks; 4908 4909 get_quirks(dev, xhci); 4910 4911 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4912 * success event after a short transfer. This quirk will ignore such 4913 * spurious event. 4914 */ 4915 if (xhci->hci_version > 0x96) 4916 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4917 4918 /* Make sure the HC is halted. */ 4919 retval = xhci_halt(xhci); 4920 if (retval) 4921 return retval; 4922 4923 xhci_dbg(xhci, "Resetting HCD\n"); 4924 /* Reset the internal HC memory state and registers. */ 4925 retval = xhci_reset(xhci); 4926 if (retval) 4927 return retval; 4928 xhci_dbg(xhci, "Reset complete\n"); 4929 4930 /* 4931 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4932 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4933 * address memory pointers actually. So, this driver clears the AC64 4934 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4935 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4936 */ 4937 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4938 xhci->hcc_params &= ~BIT(0); 4939 4940 /* Set dma_mask and coherent_dma_mask to 64-bits, 4941 * if xHC supports 64-bit addressing */ 4942 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4943 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4944 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4945 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4946 } else { 4947 /* 4948 * This is to avoid error in cases where a 32-bit USB 4949 * controller is used on a 64-bit capable system. 4950 */ 4951 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4952 if (retval) 4953 return retval; 4954 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4955 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4956 } 4957 4958 xhci_dbg(xhci, "Calling HCD init\n"); 4959 /* Initialize HCD and host controller data structures. */ 4960 retval = xhci_init(hcd); 4961 if (retval) 4962 return retval; 4963 xhci_dbg(xhci, "Called HCD init\n"); 4964 4965 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4966 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4967 4968 return 0; 4969 } 4970 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4971 4972 static const struct hc_driver xhci_hc_driver = { 4973 .description = "xhci-hcd", 4974 .product_desc = "xHCI Host Controller", 4975 .hcd_priv_size = sizeof(struct xhci_hcd), 4976 4977 /* 4978 * generic hardware linkage 4979 */ 4980 .irq = xhci_irq, 4981 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4982 4983 /* 4984 * basic lifecycle operations 4985 */ 4986 .reset = NULL, /* set in xhci_init_driver() */ 4987 .start = xhci_run, 4988 .stop = xhci_stop, 4989 .shutdown = xhci_shutdown, 4990 4991 /* 4992 * managing i/o requests and associated device resources 4993 */ 4994 .urb_enqueue = xhci_urb_enqueue, 4995 .urb_dequeue = xhci_urb_dequeue, 4996 .alloc_dev = xhci_alloc_dev, 4997 .free_dev = xhci_free_dev, 4998 .alloc_streams = xhci_alloc_streams, 4999 .free_streams = xhci_free_streams, 5000 .add_endpoint = xhci_add_endpoint, 5001 .drop_endpoint = xhci_drop_endpoint, 5002 .endpoint_reset = xhci_endpoint_reset, 5003 .check_bandwidth = xhci_check_bandwidth, 5004 .reset_bandwidth = xhci_reset_bandwidth, 5005 .address_device = xhci_address_device, 5006 .enable_device = xhci_enable_device, 5007 .update_hub_device = xhci_update_hub_device, 5008 .reset_device = xhci_discover_or_reset_device, 5009 5010 /* 5011 * scheduling support 5012 */ 5013 .get_frame_number = xhci_get_frame, 5014 5015 /* 5016 * root hub support 5017 */ 5018 .hub_control = xhci_hub_control, 5019 .hub_status_data = xhci_hub_status_data, 5020 .bus_suspend = xhci_bus_suspend, 5021 .bus_resume = xhci_bus_resume, 5022 5023 /* 5024 * call back when device connected and addressed 5025 */ 5026 .update_device = xhci_update_device, 5027 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5028 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5029 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5030 .find_raw_port_number = xhci_find_raw_port_number, 5031 }; 5032 5033 void xhci_init_driver(struct hc_driver *drv, 5034 const struct xhci_driver_overrides *over) 5035 { 5036 BUG_ON(!over); 5037 5038 /* Copy the generic table to drv then apply the overrides */ 5039 *drv = xhci_hc_driver; 5040 5041 if (over) { 5042 drv->hcd_priv_size += over->extra_priv_size; 5043 if (over->reset) 5044 drv->reset = over->reset; 5045 if (over->start) 5046 drv->start = over->start; 5047 } 5048 } 5049 EXPORT_SYMBOL_GPL(xhci_init_driver); 5050 5051 MODULE_DESCRIPTION(DRIVER_DESC); 5052 MODULE_AUTHOR(DRIVER_AUTHOR); 5053 MODULE_LICENSE("GPL"); 5054 5055 static int __init xhci_hcd_init(void) 5056 { 5057 /* 5058 * Check the compiler generated sizes of structures that must be laid 5059 * out in specific ways for hardware access. 5060 */ 5061 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5062 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5063 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5064 /* xhci_device_control has eight fields, and also 5065 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5066 */ 5067 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5068 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5069 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5070 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5071 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5072 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5073 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5074 5075 if (usb_disabled()) 5076 return -ENODEV; 5077 5078 xhci_debugfs_create_root(); 5079 5080 return 0; 5081 } 5082 5083 /* 5084 * If an init function is provided, an exit function must also be provided 5085 * to allow module unload. 5086 */ 5087 static void __exit xhci_hcd_fini(void) 5088 { 5089 xhci_debugfs_remove_root(); 5090 } 5091 5092 module_init(xhci_hcd_init); 5093 module_exit(xhci_hcd_fini); 5094