xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 	u32	result;
57 
58 	do {
59 		result = readl(ptr);
60 		if (result == ~(u32)0)		/* card removed */
61 			return -ENODEV;
62 		result &= mask;
63 		if (result == done)
64 			return 0;
65 		udelay(1);
66 		usec--;
67 	} while (usec > 0);
68 	return -ETIMEDOUT;
69 }
70 
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 	u32 halted;
77 	u32 cmd;
78 	u32 mask;
79 
80 	mask = ~(XHCI_IRQS);
81 	halted = readl(&xhci->op_regs->status) & STS_HALT;
82 	if (!halted)
83 		mask &= ~CMD_RUN;
84 
85 	cmd = readl(&xhci->op_regs->command);
86 	cmd &= mask;
87 	writel(cmd, &xhci->op_regs->command);
88 }
89 
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 	int ret;
101 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 	xhci_quiesce(xhci);
103 
104 	ret = xhci_handshake(&xhci->op_regs->status,
105 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 	if (ret) {
107 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 		return ret;
109 	}
110 	xhci->xhc_state |= XHCI_STATE_HALTED;
111 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = readl(&xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 			temp);
127 	writel(temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = xhci_handshake(&xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		/* clear state flags. Including dying, halted or removing */
141 		xhci->xhc_state = 0;
142 
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = readl(&xhci->op_regs->status);
160 
161 	if (state == ~(u32)0) {
162 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 		return -ENODEV;
164 	}
165 
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	/* Existing Intel xHCI controllers require a delay of 1 mS,
177 	 * after setting the CMD_RESET bit, and before accessing any
178 	 * HC registers. This allows the HC to complete the
179 	 * reset operation and be ready for HC register access.
180 	 * Without this delay, the subsequent HC register access,
181 	 * may result in a system hang very rarely.
182 	 */
183 	if (xhci->quirks & XHCI_INTEL_HOST)
184 		udelay(1000);
185 
186 	ret = xhci_handshake(&xhci->op_regs->command,
187 			CMD_RESET, 0, 10 * 1000 * 1000);
188 	if (ret)
189 		return ret;
190 
191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; i++) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	/*
221 	 * TODO:Check with MSI Soc for sysdev
222 	 */
223 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 
225 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 	if (ret < 0) {
227 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 				"failed to allocate MSI entry");
229 		return ret;
230 	}
231 
232 	ret = request_irq(pdev->irq, xhci_msi_irq,
233 				0, "xhci_hcd", xhci_to_hcd(xhci));
234 	if (ret) {
235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 				"disable MSI interrupt");
237 		pci_free_irq_vectors(pdev);
238 	}
239 
240 	return ret;
241 }
242 
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 	int i, ret = 0;
249 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251 
252 	/*
253 	 * calculate number of msi-x vectors supported.
254 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
256 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 	 *   Add additional 1 vector to ensure always available interrupt.
258 	 */
259 	xhci->msix_count = min(num_online_cpus() + 1,
260 				HCS_MAX_INTRS(xhci->hcs_params1));
261 
262 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 			PCI_IRQ_MSIX);
264 	if (ret < 0) {
265 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 				"Failed to enable MSI-X");
267 		return ret;
268 	}
269 
270 	for (i = 0; i < xhci->msix_count; i++) {
271 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 				"xhci_hcd", xhci_to_hcd(xhci));
273 		if (ret)
274 			goto disable_msix;
275 	}
276 
277 	hcd->msix_enabled = 1;
278 	return ret;
279 
280 disable_msix:
281 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 	while (--i >= 0)
283 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 	pci_free_irq_vectors(pdev);
285 	return ret;
286 }
287 
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293 
294 	if (xhci->quirks & XHCI_PLAT)
295 		return;
296 
297 	/* return if using legacy interrupt */
298 	if (hcd->irq > 0)
299 		return;
300 
301 	if (hcd->msix_enabled) {
302 		int i;
303 
304 		for (i = 0; i < xhci->msix_count; i++)
305 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 	} else {
307 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 	}
309 
310 	pci_free_irq_vectors(pdev);
311 	hcd->msix_enabled = 0;
312 }
313 
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
317 
318 	if (hcd->msix_enabled) {
319 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 		int i;
321 
322 		for (i = 0; i < xhci->msix_count; i++)
323 			synchronize_irq(pci_irq_vector(pdev, i));
324 	}
325 }
326 
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 	struct pci_dev  *pdev;
331 	int ret;
332 
333 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
334 	if (xhci->quirks & XHCI_PLAT)
335 		return 0;
336 
337 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 	/*
339 	 * Some Fresco Logic host controllers advertise MSI, but fail to
340 	 * generate interrupts.  Don't even try to enable MSI.
341 	 */
342 	if (xhci->quirks & XHCI_BROKEN_MSI)
343 		goto legacy_irq;
344 
345 	/* unregister the legacy interrupt */
346 	if (hcd->irq)
347 		free_irq(hcd->irq, hcd);
348 	hcd->irq = 0;
349 
350 	ret = xhci_setup_msix(xhci);
351 	if (ret)
352 		/* fall back to msi*/
353 		ret = xhci_setup_msi(xhci);
354 
355 	if (!ret) {
356 		hcd->msi_enabled = 1;
357 		return 0;
358 	}
359 
360 	if (!pdev->irq) {
361 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 		return -EINVAL;
363 	}
364 
365  legacy_irq:
366 	if (!strlen(hcd->irq_descr))
367 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 			 hcd->driver->description, hcd->self.busnum);
369 
370 	/* fall back to legacy interrupt*/
371 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 			hcd->irq_descr, hcd);
373 	if (ret) {
374 		xhci_err(xhci, "request interrupt %d failed\n",
375 				pdev->irq);
376 		return ret;
377 	}
378 	hcd->irq = pdev->irq;
379 	return 0;
380 }
381 
382 #else
383 
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 	return 0;
387 }
388 
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392 
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396 
397 #endif
398 
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 	struct xhci_hcd *xhci;
402 	struct usb_hcd *hcd;
403 	u32 temp;
404 	int i;
405 
406 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407 
408 	for (i = 0; i < xhci->num_usb3_ports; i++) {
409 		temp = readl(xhci->usb3_ports[i]);
410 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 			/*
412 			 * Compliance Mode Detected. Letting USB Core
413 			 * handle the Warm Reset
414 			 */
415 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 					"Compliance mode detected->port %d",
417 					i + 1);
418 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 					"Attempting compliance mode recovery");
420 			hcd = xhci->shared_hcd;
421 
422 			if (hcd->state == HC_STATE_SUSPENDED)
423 				usb_hcd_resume_root_hub(hcd);
424 
425 			usb_hcd_poll_rh_status(hcd);
426 		}
427 	}
428 
429 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 		mod_timer(&xhci->comp_mode_recovery_timer,
431 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433 
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 	xhci->port_status_u0 = 0;
447 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 		    0);
449 	xhci->comp_mode_recovery_timer.expires = jiffies +
450 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451 
452 	add_timer(&xhci->comp_mode_recovery_timer);
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 			"Compliance mode recovery timer initialized");
455 }
456 
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 	const char *dmi_product_name, *dmi_sys_vendor;
466 
467 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 	if (!dmi_product_name || !dmi_sys_vendor)
470 		return false;
471 
472 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 		return false;
474 
475 	if (strstr(dmi_product_name, "Z420") ||
476 			strstr(dmi_product_name, "Z620") ||
477 			strstr(dmi_product_name, "Z820") ||
478 			strstr(dmi_product_name, "Z1 Workstation"))
479 		return true;
480 
481 	return false;
482 }
483 
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488 
489 
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 	int retval = 0;
501 
502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 	spin_lock_init(&xhci->lock);
504 	if (xhci->hci_version == 0x95 && link_quirk) {
505 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 				"QUIRK: Not clearing Link TRB chain bits.");
507 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 	} else {
509 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 				"xHCI doesn't need link TRB QUIRK");
511 	}
512 	retval = xhci_mem_init(xhci, GFP_KERNEL);
513 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514 
515 	/* Initializing Compliance Mode Recovery Data If Needed */
516 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 		compliance_mode_recovery_timer_init(xhci);
519 	}
520 
521 	return retval;
522 }
523 
524 /*-------------------------------------------------------------------------*/
525 
526 
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 	if (xhci_start(xhci)) {
530 		xhci_halt(xhci);
531 		return -ENODEV;
532 	}
533 	xhci->shared_hcd->state = HC_STATE_RUNNING;
534 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535 
536 	if (xhci->quirks & XHCI_NEC_HOST)
537 		xhci_ring_cmd_db(xhci);
538 
539 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 			"Finished xhci_run for USB3 roothub");
541 	return 0;
542 }
543 
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 	u32 temp;
559 	u64 temp_64;
560 	int ret;
561 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562 
563 	/* Start the xHCI host controller running only after the USB 2.0 roothub
564 	 * is setup.
565 	 */
566 
567 	hcd->uses_new_polling = 1;
568 	if (!usb_hcd_is_primary_hcd(hcd))
569 		return xhci_run_finished(xhci);
570 
571 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572 
573 	ret = xhci_try_enable_msi(hcd);
574 	if (ret)
575 		return ret;
576 
577 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 	temp_64 &= ~ERST_PTR_MASK;
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"// Set the interrupt modulation register");
584 	temp = readl(&xhci->ir_set->irq_control);
585 	temp &= ~ER_IRQ_INTERVAL_MASK;
586 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 	writel(temp, &xhci->ir_set->irq_control);
588 
589 	/* Set the HCD state before we enable the irqs */
590 	temp = readl(&xhci->op_regs->command);
591 	temp |= (CMD_EIE);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 			"// Enable interrupts, cmd = 0x%x.", temp);
594 	writel(temp, &xhci->op_regs->command);
595 
596 	temp = readl(&xhci->ir_set->irq_pending);
597 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601 
602 	if (xhci->quirks & XHCI_NEC_HOST) {
603 		struct xhci_command *command;
604 
605 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606 		if (!command)
607 			return -ENOMEM;
608 
609 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 				TRB_TYPE(TRB_NEC_GET_FW));
611 		if (ret)
612 			xhci_free_command(xhci, command);
613 	}
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 			"Finished xhci_run for USB2 roothub");
616 
617 	xhci_dbc_init(xhci);
618 
619 	xhci_debugfs_init(xhci);
620 
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624 
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638 
639 	mutex_lock(&xhci->mutex);
640 
641 	/* Only halt host and free memory after both hcds are removed */
642 	if (!usb_hcd_is_primary_hcd(hcd)) {
643 		/* usb core will free this hcd shortly, unset pointer */
644 		xhci->shared_hcd = NULL;
645 		mutex_unlock(&xhci->mutex);
646 		return;
647 	}
648 
649 	xhci_dbc_exit(xhci);
650 
651 	spin_lock_irq(&xhci->lock);
652 	xhci->xhc_state |= XHCI_STATE_HALTED;
653 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654 	xhci_halt(xhci);
655 	xhci_reset(xhci);
656 	spin_unlock_irq(&xhci->lock);
657 
658 	xhci_cleanup_msix(xhci);
659 
660 	/* Deleting Compliance Mode Recovery Timer */
661 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 			(!(xhci_all_ports_seen_u0(xhci)))) {
663 		del_timer_sync(&xhci->comp_mode_recovery_timer);
664 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 				"%s: compliance mode recovery timer deleted",
666 				__func__);
667 	}
668 
669 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
670 		usb_amd_dev_put();
671 
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"// Disabling event ring interrupts");
674 	temp = readl(&xhci->op_regs->status);
675 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 	temp = readl(&xhci->ir_set->irq_pending);
677 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678 
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 	xhci_mem_cleanup(xhci);
681 	xhci_debugfs_exit(xhci);
682 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 			"xhci_stop completed - status = %x",
684 			readl(&xhci->op_regs->status));
685 	mutex_unlock(&xhci->mutex);
686 }
687 
688 /*
689  * Shutdown HC (not bus-specific)
690  *
691  * This is called when the machine is rebooting or halting.  We assume that the
692  * machine will be powered off, and the HC's internal state will be reset.
693  * Don't bother to free memory.
694  *
695  * This will only ever be called with the main usb_hcd (the USB3 roothub).
696  */
697 static void xhci_shutdown(struct usb_hcd *hcd)
698 {
699 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700 
701 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703 
704 	spin_lock_irq(&xhci->lock);
705 	xhci_halt(xhci);
706 	/* Workaround for spurious wakeups at shutdown with HSW */
707 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708 		xhci_reset(xhci);
709 	spin_unlock_irq(&xhci->lock);
710 
711 	xhci_cleanup_msix(xhci);
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"xhci_shutdown completed - status = %x",
715 			readl(&xhci->op_regs->status));
716 
717 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
718 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720 }
721 
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
724 {
725 	xhci->s3.command = readl(&xhci->op_regs->command);
726 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734 }
735 
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
737 {
738 	writel(xhci->s3.command, &xhci->op_regs->command);
739 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747 }
748 
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750 {
751 	u64	val_64;
752 
753 	/* step 2: initialize command ring buffer */
754 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 				      xhci->cmd_ring->dequeue) &
758 		 (u64) ~CMD_RING_RSVD_BITS) |
759 		xhci->cmd_ring->cycle_state;
760 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 			"// Setting command ring address to 0x%llx",
762 			(long unsigned long) val_64);
763 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765 
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777 	struct xhci_ring *ring;
778 	struct xhci_segment *seg;
779 
780 	ring = xhci->cmd_ring;
781 	seg = ring->deq_seg;
782 	do {
783 		memset(seg->trbs, 0,
784 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 			cpu_to_le32(~TRB_CYCLE);
787 		seg = seg->next;
788 	} while (seg != ring->deq_seg);
789 
790 	/* Reset the software enqueue and dequeue pointers */
791 	ring->deq_seg = ring->first_seg;
792 	ring->dequeue = ring->first_seg->trbs;
793 	ring->enq_seg = ring->deq_seg;
794 	ring->enqueue = ring->dequeue;
795 
796 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797 	/*
798 	 * Ring is now zeroed, so the HW should look for change of ownership
799 	 * when the cycle bit is set to 1.
800 	 */
801 	ring->cycle_state = 1;
802 
803 	/*
804 	 * Reset the hardware dequeue pointer.
805 	 * Yes, this will need to be re-written after resume, but we're paranoid
806 	 * and want to make sure the hardware doesn't access bogus memory
807 	 * because, say, the BIOS or an SMI started the host without changing
808 	 * the command ring pointers.
809 	 */
810 	xhci_set_cmd_ring_deq(xhci);
811 }
812 
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814 {
815 	int port_index;
816 	__le32 __iomem **port_array;
817 	unsigned long flags;
818 	u32 t1, t2;
819 
820 	spin_lock_irqsave(&xhci->lock, flags);
821 
822 	/* disable usb3 ports Wake bits */
823 	port_index = xhci->num_usb3_ports;
824 	port_array = xhci->usb3_ports;
825 	while (port_index--) {
826 		t1 = readl(port_array[port_index]);
827 		t1 = xhci_port_state_to_neutral(t1);
828 		t2 = t1 & ~PORT_WAKE_BITS;
829 		if (t1 != t2)
830 			writel(t2, port_array[port_index]);
831 	}
832 
833 	/* disable usb2 ports Wake bits */
834 	port_index = xhci->num_usb2_ports;
835 	port_array = xhci->usb2_ports;
836 	while (port_index--) {
837 		t1 = readl(port_array[port_index]);
838 		t1 = xhci_port_state_to_neutral(t1);
839 		t2 = t1 & ~PORT_WAKE_BITS;
840 		if (t1 != t2)
841 			writel(t2, port_array[port_index]);
842 	}
843 
844 	spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846 
847 /*
848  * Stop HC (not bus-specific)
849  *
850  * This is called when the machine transition into S3/S4 mode.
851  *
852  */
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854 {
855 	int			rc = 0;
856 	unsigned int		delay = XHCI_MAX_HALT_USEC;
857 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
858 	u32			command;
859 
860 	if (!hcd->state)
861 		return 0;
862 
863 	if (hcd->state != HC_STATE_SUSPENDED ||
864 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865 		return -EINVAL;
866 
867 	xhci_dbc_suspend(xhci);
868 
869 	/* Clear root port wake on bits if wakeup not allowed. */
870 	if (!do_wakeup)
871 		xhci_disable_port_wake_on_bits(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 	del_timer_sync(&hcd->rh_timer);
877 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 	del_timer_sync(&xhci->shared_hcd->rh_timer);
879 
880 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
881 		usleep_range(1000, 1500);
882 
883 	spin_lock_irq(&xhci->lock);
884 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886 	/* step 1: stop endpoint */
887 	/* skipped assuming that port suspend has done */
888 
889 	/* step 2: clear Run/Stop bit */
890 	command = readl(&xhci->op_regs->command);
891 	command &= ~CMD_RUN;
892 	writel(command, &xhci->op_regs->command);
893 
894 	/* Some chips from Fresco Logic need an extraordinary delay */
895 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
896 
897 	if (xhci_handshake(&xhci->op_regs->status,
898 		      STS_HALT, STS_HALT, delay)) {
899 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900 		spin_unlock_irq(&xhci->lock);
901 		return -ETIMEDOUT;
902 	}
903 	xhci_clear_command_ring(xhci);
904 
905 	/* step 3: save registers */
906 	xhci_save_registers(xhci);
907 
908 	/* step 4: set CSS flag */
909 	command = readl(&xhci->op_regs->command);
910 	command |= CMD_CSS;
911 	writel(command, &xhci->op_regs->command);
912 	if (xhci_handshake(&xhci->op_regs->status,
913 				STS_SAVE, 0, 10 * 1000)) {
914 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
915 		spin_unlock_irq(&xhci->lock);
916 		return -ETIMEDOUT;
917 	}
918 	spin_unlock_irq(&xhci->lock);
919 
920 	/*
921 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
922 	 * is about to be suspended.
923 	 */
924 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925 			(!(xhci_all_ports_seen_u0(xhci)))) {
926 		del_timer_sync(&xhci->comp_mode_recovery_timer);
927 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928 				"%s: compliance mode recovery timer deleted",
929 				__func__);
930 	}
931 
932 	/* step 5: remove core well power */
933 	/* synchronize irq when using MSI-X */
934 	xhci_msix_sync_irqs(xhci);
935 
936 	return rc;
937 }
938 EXPORT_SYMBOL_GPL(xhci_suspend);
939 
940 /*
941  * start xHC (not bus-specific)
942  *
943  * This is called when the machine transition from S3/S4 mode.
944  *
945  */
946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
947 {
948 	u32			command, temp = 0, status;
949 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
950 	struct usb_hcd		*secondary_hcd;
951 	int			retval = 0;
952 	bool			comp_timer_running = false;
953 
954 	if (!hcd->state)
955 		return 0;
956 
957 	/* Wait a bit if either of the roothubs need to settle from the
958 	 * transition into bus suspend.
959 	 */
960 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
961 			time_before(jiffies,
962 				xhci->bus_state[1].next_statechange))
963 		msleep(100);
964 
965 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
967 
968 	spin_lock_irq(&xhci->lock);
969 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
970 		hibernated = true;
971 
972 	if (!hibernated) {
973 		/* step 1: restore register */
974 		xhci_restore_registers(xhci);
975 		/* step 2: initialize command ring buffer */
976 		xhci_set_cmd_ring_deq(xhci);
977 		/* step 3: restore state and start state*/
978 		/* step 3: set CRS flag */
979 		command = readl(&xhci->op_regs->command);
980 		command |= CMD_CRS;
981 		writel(command, &xhci->op_regs->command);
982 		if (xhci_handshake(&xhci->op_regs->status,
983 			      STS_RESTORE, 0, 10 * 1000)) {
984 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985 			spin_unlock_irq(&xhci->lock);
986 			return -ETIMEDOUT;
987 		}
988 		temp = readl(&xhci->op_regs->status);
989 	}
990 
991 	/* If restore operation fails, re-initialize the HC during resume */
992 	if ((temp & STS_SRE) || hibernated) {
993 
994 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995 				!(xhci_all_ports_seen_u0(xhci))) {
996 			del_timer_sync(&xhci->comp_mode_recovery_timer);
997 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998 				"Compliance Mode Recovery Timer deleted!");
999 		}
1000 
1001 		/* Let the USB core know _both_ roothubs lost power. */
1002 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004 
1005 		xhci_dbg(xhci, "Stop HCD\n");
1006 		xhci_halt(xhci);
1007 		xhci_reset(xhci);
1008 		spin_unlock_irq(&xhci->lock);
1009 		xhci_cleanup_msix(xhci);
1010 
1011 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012 		temp = readl(&xhci->op_regs->status);
1013 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014 		temp = readl(&xhci->ir_set->irq_pending);
1015 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016 
1017 		xhci_dbg(xhci, "cleaning up memory\n");
1018 		xhci_mem_cleanup(xhci);
1019 		xhci_debugfs_exit(xhci);
1020 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021 			    readl(&xhci->op_regs->status));
1022 
1023 		/* USB core calls the PCI reinit and start functions twice:
1024 		 * first with the primary HCD, and then with the secondary HCD.
1025 		 * If we don't do the same, the host will never be started.
1026 		 */
1027 		if (!usb_hcd_is_primary_hcd(hcd))
1028 			secondary_hcd = hcd;
1029 		else
1030 			secondary_hcd = xhci->shared_hcd;
1031 
1032 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033 		retval = xhci_init(hcd->primary_hcd);
1034 		if (retval)
1035 			return retval;
1036 		comp_timer_running = true;
1037 
1038 		xhci_dbg(xhci, "Start the primary HCD\n");
1039 		retval = xhci_run(hcd->primary_hcd);
1040 		if (!retval) {
1041 			xhci_dbg(xhci, "Start the secondary HCD\n");
1042 			retval = xhci_run(secondary_hcd);
1043 		}
1044 		hcd->state = HC_STATE_SUSPENDED;
1045 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046 		goto done;
1047 	}
1048 
1049 	/* step 4: set Run/Stop bit */
1050 	command = readl(&xhci->op_regs->command);
1051 	command |= CMD_RUN;
1052 	writel(command, &xhci->op_regs->command);
1053 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054 		  0, 250 * 1000);
1055 
1056 	/* step 5: walk topology and initialize portsc,
1057 	 * portpmsc and portli
1058 	 */
1059 	/* this is done in bus_resume */
1060 
1061 	/* step 6: restart each of the previously
1062 	 * Running endpoints by ringing their doorbells
1063 	 */
1064 
1065 	spin_unlock_irq(&xhci->lock);
1066 
1067 	xhci_dbc_resume(xhci);
1068 
1069  done:
1070 	if (retval == 0) {
1071 		/* Resume root hubs only when have pending events. */
1072 		status = readl(&xhci->op_regs->status);
1073 		if (status & STS_EINT) {
1074 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 			usb_hcd_resume_root_hub(hcd);
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 	 * be re-initialized Always after a system resume. Ports are subject
1082 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 	 * ports have entered previously to U0 before system's suspension.
1084 	 */
1085 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 		compliance_mode_recovery_timer_init(xhci);
1087 
1088 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090 
1091 	/* Re-enable port polling. */
1092 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1095 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096 	usb_hcd_poll_rh_status(hcd);
1097 
1098 	return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(xhci_resume);
1101 #endif	/* CONFIG_PM */
1102 
1103 /*-------------------------------------------------------------------------*/
1104 
1105 /**
1106  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108  * value to right shift 1 for the bitmask.
1109  *
1110  * Index  = (epnum * 2) + direction - 1,
1111  * where direction = 0 for OUT, 1 for IN.
1112  * For control endpoints, the IN index is used (OUT index is unused), so
1113  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114  */
1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116 {
1117 	unsigned int index;
1118 	if (usb_endpoint_xfer_control(desc))
1119 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1120 	else
1121 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123 	return index;
1124 }
1125 
1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127  * address from the XHCI endpoint index.
1128  */
1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130 {
1131 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133 	return direction | number;
1134 }
1135 
1136 /* Find the flag for this endpoint (for use in the control context).  Use the
1137  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138  * bit 1, etc.
1139  */
1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141 {
1142 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1143 }
1144 
1145 /* Find the flag for this endpoint (for use in the control context).  Use the
1146  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147  * bit 1, etc.
1148  */
1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150 {
1151 	return 1 << (ep_index + 1);
1152 }
1153 
1154 /* Compute the last valid endpoint context index.  Basically, this is the
1155  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156  * we find the most significant bit set in the added contexts flags.
1157  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159  */
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161 {
1162 	return fls(added_ctxs) - 1;
1163 }
1164 
1165 /* Returns 1 if the arguments are OK;
1166  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167  */
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170 		const char *func) {
1171 	struct xhci_hcd	*xhci;
1172 	struct xhci_virt_device	*virt_dev;
1173 
1174 	if (!hcd || (check_ep && !ep) || !udev) {
1175 		pr_debug("xHCI %s called with invalid args\n", func);
1176 		return -EINVAL;
1177 	}
1178 	if (!udev->parent) {
1179 		pr_debug("xHCI %s called for root hub\n", func);
1180 		return 0;
1181 	}
1182 
1183 	xhci = hcd_to_xhci(hcd);
1184 	if (check_virt_dev) {
1185 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187 					func);
1188 			return -EINVAL;
1189 		}
1190 
1191 		virt_dev = xhci->devs[udev->slot_id];
1192 		if (virt_dev->udev != udev) {
1193 			xhci_dbg(xhci, "xHCI %s called with udev and "
1194 					  "virt_dev does not match\n", func);
1195 			return -EINVAL;
1196 		}
1197 	}
1198 
1199 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1200 		return -ENODEV;
1201 
1202 	return 1;
1203 }
1204 
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206 		struct usb_device *udev, struct xhci_command *command,
1207 		bool ctx_change, bool must_succeed);
1208 
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216 		unsigned int ep_index, struct urb *urb)
1217 {
1218 	struct xhci_container_ctx *out_ctx;
1219 	struct xhci_input_control_ctx *ctrl_ctx;
1220 	struct xhci_ep_ctx *ep_ctx;
1221 	struct xhci_command *command;
1222 	int max_packet_size;
1223 	int hw_max_packet_size;
1224 	int ret = 0;
1225 
1226 	out_ctx = xhci->devs[slot_id]->out_ctx;
1227 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230 	if (hw_max_packet_size != max_packet_size) {
1231 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232 				"Max Packet Size for ep 0 changed.");
1233 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234 				"Max packet size in usb_device = %d",
1235 				max_packet_size);
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Max packet size in xHCI HW = %d",
1238 				hw_max_packet_size);
1239 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240 				"Issuing evaluate context command.");
1241 
1242 		/* Set up the input context flags for the command */
1243 		/* FIXME: This won't work if a non-default control endpoint
1244 		 * changes max packet sizes.
1245 		 */
1246 
1247 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248 		if (!command)
1249 			return -ENOMEM;
1250 
1251 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253 		if (!ctrl_ctx) {
1254 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255 					__func__);
1256 			ret = -ENOMEM;
1257 			goto command_cleanup;
1258 		}
1259 		/* Set up the modified control endpoint 0 */
1260 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261 				xhci->devs[slot_id]->out_ctx, ep_index);
1262 
1263 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266 
1267 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268 		ctrl_ctx->drop_flags = 0;
1269 
1270 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271 				true, false);
1272 
1273 		/* Clean up the input context for later use by bandwidth
1274 		 * functions.
1275 		 */
1276 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277 command_cleanup:
1278 		kfree(command->completion);
1279 		kfree(command);
1280 	}
1281 	return ret;
1282 }
1283 
1284 /*
1285  * non-error returns are a promise to giveback() the urb later
1286  * we drop ownership so next owner (or urb unlink) can get it
1287  */
1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289 {
1290 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291 	unsigned long flags;
1292 	int ret = 0;
1293 	unsigned int slot_id, ep_index;
1294 	unsigned int *ep_state;
1295 	struct urb_priv	*urb_priv;
1296 	int num_tds;
1297 
1298 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299 					true, true, __func__) <= 0)
1300 		return -EINVAL;
1301 
1302 	slot_id = urb->dev->slot_id;
1303 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1305 
1306 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1307 		if (!in_interrupt())
1308 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1309 		return -ESHUTDOWN;
1310 	}
1311 
1312 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313 		num_tds = urb->number_of_packets;
1314 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315 	    urb->transfer_buffer_length > 0 &&
1316 	    urb->transfer_flags & URB_ZERO_PACKET &&
1317 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1318 		num_tds = 2;
1319 	else
1320 		num_tds = 1;
1321 
1322 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1323 			   num_tds * sizeof(struct xhci_td), mem_flags);
1324 	if (!urb_priv)
1325 		return -ENOMEM;
1326 
1327 	urb_priv->num_tds = num_tds;
1328 	urb_priv->num_tds_done = 0;
1329 	urb->hcpriv = urb_priv;
1330 
1331 	trace_xhci_urb_enqueue(urb);
1332 
1333 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334 		/* Check to see if the max packet size for the default control
1335 		 * endpoint changed during FS device enumeration
1336 		 */
1337 		if (urb->dev->speed == USB_SPEED_FULL) {
1338 			ret = xhci_check_maxpacket(xhci, slot_id,
1339 					ep_index, urb);
1340 			if (ret < 0) {
1341 				xhci_urb_free_priv(urb_priv);
1342 				urb->hcpriv = NULL;
1343 				return ret;
1344 			}
1345 		}
1346 	}
1347 
1348 	spin_lock_irqsave(&xhci->lock, flags);
1349 
1350 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1351 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352 			 urb->ep->desc.bEndpointAddress, urb);
1353 		ret = -ESHUTDOWN;
1354 		goto free_priv;
1355 	}
1356 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1358 			  *ep_state);
1359 		ret = -EINVAL;
1360 		goto free_priv;
1361 	}
1362 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1364 		ret = -EINVAL;
1365 		goto free_priv;
1366 	}
1367 
1368 	switch (usb_endpoint_type(&urb->ep->desc)) {
1369 
1370 	case USB_ENDPOINT_XFER_CONTROL:
1371 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372 					 slot_id, ep_index);
1373 		break;
1374 	case USB_ENDPOINT_XFER_BULK:
1375 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1376 					 slot_id, ep_index);
1377 		break;
1378 	case USB_ENDPOINT_XFER_INT:
1379 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380 				slot_id, ep_index);
1381 		break;
1382 	case USB_ENDPOINT_XFER_ISOC:
1383 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1384 				slot_id, ep_index);
1385 	}
1386 
1387 	if (ret) {
1388 free_priv:
1389 		xhci_urb_free_priv(urb_priv);
1390 		urb->hcpriv = NULL;
1391 	}
1392 	spin_unlock_irqrestore(&xhci->lock, flags);
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1398  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1399  * should pick up where it left off in the TD, unless a Set Transfer Ring
1400  * Dequeue Pointer is issued.
1401  *
1402  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403  * the ring.  Since the ring is a contiguous structure, they can't be physically
1404  * removed.  Instead, there are two options:
1405  *
1406  *  1) If the HC is in the middle of processing the URB to be canceled, we
1407  *     simply move the ring's dequeue pointer past those TRBs using the Set
1408  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1409  *     when drivers timeout on the last submitted URB and attempt to cancel.
1410  *
1411  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1413  *     HC will need to invalidate the any TRBs it has cached after the stop
1414  *     endpoint command, as noted in the xHCI 0.95 errata.
1415  *
1416  *  3) The TD may have completed by the time the Stop Endpoint Command
1417  *     completes, so software needs to handle that case too.
1418  *
1419  * This function should protect against the TD enqueueing code ringing the
1420  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421  * It also needs to account for multiple cancellations on happening at the same
1422  * time for the same endpoint.
1423  *
1424  * Note that this function can be called in any context, or so says
1425  * usb_hcd_unlink_urb()
1426  */
1427 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1428 {
1429 	unsigned long flags;
1430 	int ret, i;
1431 	u32 temp;
1432 	struct xhci_hcd *xhci;
1433 	struct urb_priv	*urb_priv;
1434 	struct xhci_td *td;
1435 	unsigned int ep_index;
1436 	struct xhci_ring *ep_ring;
1437 	struct xhci_virt_ep *ep;
1438 	struct xhci_command *command;
1439 	struct xhci_virt_device *vdev;
1440 
1441 	xhci = hcd_to_xhci(hcd);
1442 	spin_lock_irqsave(&xhci->lock, flags);
1443 
1444 	trace_xhci_urb_dequeue(urb);
1445 
1446 	/* Make sure the URB hasn't completed or been unlinked already */
1447 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448 	if (ret)
1449 		goto done;
1450 
1451 	/* give back URB now if we can't queue it for cancel */
1452 	vdev = xhci->devs[urb->dev->slot_id];
1453 	urb_priv = urb->hcpriv;
1454 	if (!vdev || !urb_priv)
1455 		goto err_giveback;
1456 
1457 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458 	ep = &vdev->eps[ep_index];
1459 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460 	if (!ep || !ep_ring)
1461 		goto err_giveback;
1462 
1463 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464 	temp = readl(&xhci->op_regs->status);
1465 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1466 		xhci_hc_died(xhci);
1467 		goto done;
1468 	}
1469 
1470 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472 				"HC halted, freeing TD manually.");
1473 		for (i = urb_priv->num_tds_done;
1474 		     i < urb_priv->num_tds;
1475 		     i++) {
1476 			td = &urb_priv->td[i];
1477 			if (!list_empty(&td->td_list))
1478 				list_del_init(&td->td_list);
1479 			if (!list_empty(&td->cancelled_td_list))
1480 				list_del_init(&td->cancelled_td_list);
1481 		}
1482 		goto err_giveback;
1483 	}
1484 
1485 	i = urb_priv->num_tds_done;
1486 	if (i < urb_priv->num_tds)
1487 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488 				"Cancel URB %p, dev %s, ep 0x%x, "
1489 				"starting at offset 0x%llx",
1490 				urb, urb->dev->devpath,
1491 				urb->ep->desc.bEndpointAddress,
1492 				(unsigned long long) xhci_trb_virt_to_dma(
1493 					urb_priv->td[i].start_seg,
1494 					urb_priv->td[i].first_trb));
1495 
1496 	for (; i < urb_priv->num_tds; i++) {
1497 		td = &urb_priv->td[i];
1498 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1499 	}
1500 
1501 	/* Queue a stop endpoint command, but only if this is
1502 	 * the first cancellation to be handled.
1503 	 */
1504 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1506 		if (!command) {
1507 			ret = -ENOMEM;
1508 			goto done;
1509 		}
1510 		ep->ep_state |= EP_STOP_CMD_PENDING;
1511 		ep->stop_cmd_timer.expires = jiffies +
1512 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513 		add_timer(&ep->stop_cmd_timer);
1514 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1515 					 ep_index, 0);
1516 		xhci_ring_cmd_db(xhci);
1517 	}
1518 done:
1519 	spin_unlock_irqrestore(&xhci->lock, flags);
1520 	return ret;
1521 
1522 err_giveback:
1523 	if (urb_priv)
1524 		xhci_urb_free_priv(urb_priv);
1525 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1526 	spin_unlock_irqrestore(&xhci->lock, flags);
1527 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1528 	return ret;
1529 }
1530 
1531 /* Drop an endpoint from a new bandwidth configuration for this device.
1532  * Only one call to this function is allowed per endpoint before
1533  * check_bandwidth() or reset_bandwidth() must be called.
1534  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535  * add the endpoint to the schedule with possibly new parameters denoted by a
1536  * different endpoint descriptor in usb_host_endpoint.
1537  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1538  * not allowed.
1539  *
1540  * The USB core will not allow URBs to be queued to an endpoint that is being
1541  * disabled, so there's no need for mutual exclusion to protect
1542  * the xhci->devs[slot_id] structure.
1543  */
1544 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545 		struct usb_host_endpoint *ep)
1546 {
1547 	struct xhci_hcd *xhci;
1548 	struct xhci_container_ctx *in_ctx, *out_ctx;
1549 	struct xhci_input_control_ctx *ctrl_ctx;
1550 	unsigned int ep_index;
1551 	struct xhci_ep_ctx *ep_ctx;
1552 	u32 drop_flag;
1553 	u32 new_add_flags, new_drop_flags;
1554 	int ret;
1555 
1556 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1557 	if (ret <= 0)
1558 		return ret;
1559 	xhci = hcd_to_xhci(hcd);
1560 	if (xhci->xhc_state & XHCI_STATE_DYING)
1561 		return -ENODEV;
1562 
1563 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567 				__func__, drop_flag);
1568 		return 0;
1569 	}
1570 
1571 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1574 	if (!ctrl_ctx) {
1575 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1576 				__func__);
1577 		return 0;
1578 	}
1579 
1580 	ep_index = xhci_get_endpoint_index(&ep->desc);
1581 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582 	/* If the HC already knows the endpoint is disabled,
1583 	 * or the HCD has noted it is disabled, ignore this request
1584 	 */
1585 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1586 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1587 	    xhci_get_endpoint_flag(&ep->desc)) {
1588 		/* Do not warn when called after a usb_device_reset */
1589 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591 				  __func__, ep);
1592 		return 0;
1593 	}
1594 
1595 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597 
1598 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600 
1601 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1602 
1603 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604 
1605 	if (xhci->quirks & XHCI_MTK_HOST)
1606 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607 
1608 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 			(unsigned int) ep->desc.bEndpointAddress,
1610 			udev->slot_id,
1611 			(unsigned int) new_drop_flags,
1612 			(unsigned int) new_add_flags);
1613 	return 0;
1614 }
1615 
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 		struct usb_host_endpoint *ep)
1631 {
1632 	struct xhci_hcd *xhci;
1633 	struct xhci_container_ctx *in_ctx;
1634 	unsigned int ep_index;
1635 	struct xhci_input_control_ctx *ctrl_ctx;
1636 	u32 added_ctxs;
1637 	u32 new_add_flags, new_drop_flags;
1638 	struct xhci_virt_device *virt_dev;
1639 	int ret = 0;
1640 
1641 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642 	if (ret <= 0) {
1643 		/* So we won't queue a reset ep command for a root hub */
1644 		ep->hcpriv = NULL;
1645 		return ret;
1646 	}
1647 	xhci = hcd_to_xhci(hcd);
1648 	if (xhci->xhc_state & XHCI_STATE_DYING)
1649 		return -ENODEV;
1650 
1651 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 		/* FIXME when we have to issue an evaluate endpoint command to
1654 		 * deal with ep0 max packet size changing once we get the
1655 		 * descriptors
1656 		 */
1657 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 				__func__, added_ctxs);
1659 		return 0;
1660 	}
1661 
1662 	virt_dev = xhci->devs[udev->slot_id];
1663 	in_ctx = virt_dev->in_ctx;
1664 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665 	if (!ctrl_ctx) {
1666 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667 				__func__);
1668 		return 0;
1669 	}
1670 
1671 	ep_index = xhci_get_endpoint_index(&ep->desc);
1672 	/* If this endpoint is already in use, and the upper layers are trying
1673 	 * to add it again without dropping it, reject the addition.
1674 	 */
1675 	if (virt_dev->eps[ep_index].ring &&
1676 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 				"without dropping it.\n",
1679 				(unsigned int) ep->desc.bEndpointAddress);
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* If the HCD has already noted the endpoint is enabled,
1684 	 * ignore this request.
1685 	 */
1686 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688 				__func__, ep);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * Configuration and alternate setting changes must be done in
1694 	 * process context, not interrupt context (or so documenation
1695 	 * for usb_set_interface() and usb_set_configuration() claim).
1696 	 */
1697 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 				__func__, ep->desc.bEndpointAddress);
1700 		return -ENOMEM;
1701 	}
1702 
1703 	if (xhci->quirks & XHCI_MTK_HOST) {
1704 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705 		if (ret < 0) {
1706 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707 			virt_dev->eps[ep_index].new_ring = NULL;
1708 			return ret;
1709 		}
1710 	}
1711 
1712 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714 
1715 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1716 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1717 	 * this re-adds a new state for the endpoint from the new endpoint
1718 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1719 	 * drop flags alone.
1720 	 */
1721 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722 
1723 	/* Store the usb_device pointer for later use */
1724 	ep->hcpriv = udev;
1725 
1726 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1727 
1728 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729 			(unsigned int) ep->desc.bEndpointAddress,
1730 			udev->slot_id,
1731 			(unsigned int) new_drop_flags,
1732 			(unsigned int) new_add_flags);
1733 	return 0;
1734 }
1735 
1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737 {
1738 	struct xhci_input_control_ctx *ctrl_ctx;
1739 	struct xhci_ep_ctx *ep_ctx;
1740 	struct xhci_slot_ctx *slot_ctx;
1741 	int i;
1742 
1743 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1744 	if (!ctrl_ctx) {
1745 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1746 				__func__);
1747 		return;
1748 	}
1749 
1750 	/* When a device's add flag and drop flag are zero, any subsequent
1751 	 * configure endpoint command will leave that endpoint's state
1752 	 * untouched.  Make sure we don't leave any old state in the input
1753 	 * endpoint contexts.
1754 	 */
1755 	ctrl_ctx->drop_flags = 0;
1756 	ctrl_ctx->add_flags = 0;
1757 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759 	/* Endpoint 0 is always valid */
1760 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761 	for (i = 1; i < 31; i++) {
1762 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763 		ep_ctx->ep_info = 0;
1764 		ep_ctx->ep_info2 = 0;
1765 		ep_ctx->deq = 0;
1766 		ep_ctx->tx_info = 0;
1767 	}
1768 }
1769 
1770 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771 		struct usb_device *udev, u32 *cmd_status)
1772 {
1773 	int ret;
1774 
1775 	switch (*cmd_status) {
1776 	case COMP_COMMAND_ABORTED:
1777 	case COMP_COMMAND_RING_STOPPED:
1778 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1779 		ret = -ETIME;
1780 		break;
1781 	case COMP_RESOURCE_ERROR:
1782 		dev_warn(&udev->dev,
1783 			 "Not enough host controller resources for new device state.\n");
1784 		ret = -ENOMEM;
1785 		/* FIXME: can we allocate more resources for the HC? */
1786 		break;
1787 	case COMP_BANDWIDTH_ERROR:
1788 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1789 		dev_warn(&udev->dev,
1790 			 "Not enough bandwidth for new device state.\n");
1791 		ret = -ENOSPC;
1792 		/* FIXME: can we go back to the old state? */
1793 		break;
1794 	case COMP_TRB_ERROR:
1795 		/* the HCD set up something wrong */
1796 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797 				"add flag = 1, "
1798 				"and endpoint is not disabled.\n");
1799 		ret = -EINVAL;
1800 		break;
1801 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802 		dev_warn(&udev->dev,
1803 			 "ERROR: Incompatible device for endpoint configure command.\n");
1804 		ret = -ENODEV;
1805 		break;
1806 	case COMP_SUCCESS:
1807 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808 				"Successful Endpoint Configure command");
1809 		ret = 0;
1810 		break;
1811 	default:
1812 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1813 				*cmd_status);
1814 		ret = -EINVAL;
1815 		break;
1816 	}
1817 	return ret;
1818 }
1819 
1820 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821 		struct usb_device *udev, u32 *cmd_status)
1822 {
1823 	int ret;
1824 
1825 	switch (*cmd_status) {
1826 	case COMP_COMMAND_ABORTED:
1827 	case COMP_COMMAND_RING_STOPPED:
1828 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1829 		ret = -ETIME;
1830 		break;
1831 	case COMP_PARAMETER_ERROR:
1832 		dev_warn(&udev->dev,
1833 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1834 		ret = -EINVAL;
1835 		break;
1836 	case COMP_SLOT_NOT_ENABLED_ERROR:
1837 		dev_warn(&udev->dev,
1838 			"WARN: slot not enabled for evaluate context command.\n");
1839 		ret = -EINVAL;
1840 		break;
1841 	case COMP_CONTEXT_STATE_ERROR:
1842 		dev_warn(&udev->dev,
1843 			"WARN: invalid context state for evaluate context command.\n");
1844 		ret = -EINVAL;
1845 		break;
1846 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847 		dev_warn(&udev->dev,
1848 			"ERROR: Incompatible device for evaluate context command.\n");
1849 		ret = -ENODEV;
1850 		break;
1851 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852 		/* Max Exit Latency too large error */
1853 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854 		ret = -EINVAL;
1855 		break;
1856 	case COMP_SUCCESS:
1857 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858 				"Successful evaluate context command");
1859 		ret = 0;
1860 		break;
1861 	default:
1862 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863 			*cmd_status);
1864 		ret = -EINVAL;
1865 		break;
1866 	}
1867 	return ret;
1868 }
1869 
1870 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871 		struct xhci_input_control_ctx *ctrl_ctx)
1872 {
1873 	u32 valid_add_flags;
1874 	u32 valid_drop_flags;
1875 
1876 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1877 	 * (bit 1).  The default control endpoint is added during the Address
1878 	 * Device command and is never removed until the slot is disabled.
1879 	 */
1880 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1882 
1883 	/* Use hweight32 to count the number of ones in the add flags, or
1884 	 * number of endpoints added.  Don't count endpoints that are changed
1885 	 * (both added and dropped).
1886 	 */
1887 	return hweight32(valid_add_flags) -
1888 		hweight32(valid_add_flags & valid_drop_flags);
1889 }
1890 
1891 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892 		struct xhci_input_control_ctx *ctrl_ctx)
1893 {
1894 	u32 valid_add_flags;
1895 	u32 valid_drop_flags;
1896 
1897 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1899 
1900 	return hweight32(valid_drop_flags) -
1901 		hweight32(valid_add_flags & valid_drop_flags);
1902 }
1903 
1904 /*
1905  * We need to reserve the new number of endpoints before the configure endpoint
1906  * command completes.  We can't subtract the dropped endpoints from the number
1907  * of active endpoints until the command completes because we can oversubscribe
1908  * the host in this case:
1909  *
1910  *  - the first configure endpoint command drops more endpoints than it adds
1911  *  - a second configure endpoint command that adds more endpoints is queued
1912  *  - the first configure endpoint command fails, so the config is unchanged
1913  *  - the second command may succeed, even though there isn't enough resources
1914  *
1915  * Must be called with xhci->lock held.
1916  */
1917 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918 		struct xhci_input_control_ctx *ctrl_ctx)
1919 {
1920 	u32 added_eps;
1921 
1922 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925 				"Not enough ep ctxs: "
1926 				"%u active, need to add %u, limit is %u.",
1927 				xhci->num_active_eps, added_eps,
1928 				xhci->limit_active_eps);
1929 		return -ENOMEM;
1930 	}
1931 	xhci->num_active_eps += added_eps;
1932 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933 			"Adding %u ep ctxs, %u now active.", added_eps,
1934 			xhci->num_active_eps);
1935 	return 0;
1936 }
1937 
1938 /*
1939  * The configure endpoint was failed by the xHC for some other reason, so we
1940  * need to revert the resources that failed configuration would have used.
1941  *
1942  * Must be called with xhci->lock held.
1943  */
1944 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945 		struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947 	u32 num_failed_eps;
1948 
1949 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950 	xhci->num_active_eps -= num_failed_eps;
1951 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952 			"Removing %u failed ep ctxs, %u now active.",
1953 			num_failed_eps,
1954 			xhci->num_active_eps);
1955 }
1956 
1957 /*
1958  * Now that the command has completed, clean up the active endpoint count by
1959  * subtracting out the endpoints that were dropped (but not changed).
1960  *
1961  * Must be called with xhci->lock held.
1962  */
1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964 		struct xhci_input_control_ctx *ctrl_ctx)
1965 {
1966 	u32 num_dropped_eps;
1967 
1968 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969 	xhci->num_active_eps -= num_dropped_eps;
1970 	if (num_dropped_eps)
1971 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972 				"Removing %u dropped ep ctxs, %u now active.",
1973 				num_dropped_eps,
1974 				xhci->num_active_eps);
1975 }
1976 
1977 static unsigned int xhci_get_block_size(struct usb_device *udev)
1978 {
1979 	switch (udev->speed) {
1980 	case USB_SPEED_LOW:
1981 	case USB_SPEED_FULL:
1982 		return FS_BLOCK;
1983 	case USB_SPEED_HIGH:
1984 		return HS_BLOCK;
1985 	case USB_SPEED_SUPER:
1986 	case USB_SPEED_SUPER_PLUS:
1987 		return SS_BLOCK;
1988 	case USB_SPEED_UNKNOWN:
1989 	case USB_SPEED_WIRELESS:
1990 	default:
1991 		/* Should never happen */
1992 		return 1;
1993 	}
1994 }
1995 
1996 static unsigned int
1997 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1998 {
1999 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2000 		return LS_OVERHEAD;
2001 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2002 		return FS_OVERHEAD;
2003 	return HS_OVERHEAD;
2004 }
2005 
2006 /* If we are changing a LS/FS device under a HS hub,
2007  * make sure (if we are activating a new TT) that the HS bus has enough
2008  * bandwidth for this new TT.
2009  */
2010 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011 		struct xhci_virt_device *virt_dev,
2012 		int old_active_eps)
2013 {
2014 	struct xhci_interval_bw_table *bw_table;
2015 	struct xhci_tt_bw_info *tt_info;
2016 
2017 	/* Find the bandwidth table for the root port this TT is attached to. */
2018 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019 	tt_info = virt_dev->tt_info;
2020 	/* If this TT already had active endpoints, the bandwidth for this TT
2021 	 * has already been added.  Removing all periodic endpoints (and thus
2022 	 * making the TT enactive) will only decrease the bandwidth used.
2023 	 */
2024 	if (old_active_eps)
2025 		return 0;
2026 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2028 			return -ENOMEM;
2029 		return 0;
2030 	}
2031 	/* Not sure why we would have no new active endpoints...
2032 	 *
2033 	 * Maybe because of an Evaluate Context change for a hub update or a
2034 	 * control endpoint 0 max packet size change?
2035 	 * FIXME: skip the bandwidth calculation in that case.
2036 	 */
2037 	return 0;
2038 }
2039 
2040 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041 		struct xhci_virt_device *virt_dev)
2042 {
2043 	unsigned int bw_reserved;
2044 
2045 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2047 		return -ENOMEM;
2048 
2049 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2051 		return -ENOMEM;
2052 
2053 	return 0;
2054 }
2055 
2056 /*
2057  * This algorithm is a very conservative estimate of the worst-case scheduling
2058  * scenario for any one interval.  The hardware dynamically schedules the
2059  * packets, so we can't tell which microframe could be the limiting factor in
2060  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2061  *
2062  * Obviously, we can't solve an NP complete problem to find the minimum worst
2063  * case scenario.  Instead, we come up with an estimate that is no less than
2064  * the worst case bandwidth used for any one microframe, but may be an
2065  * over-estimate.
2066  *
2067  * We walk the requirements for each endpoint by interval, starting with the
2068  * smallest interval, and place packets in the schedule where there is only one
2069  * possible way to schedule packets for that interval.  In order to simplify
2070  * this algorithm, we record the largest max packet size for each interval, and
2071  * assume all packets will be that size.
2072  *
2073  * For interval 0, we obviously must schedule all packets for each interval.
2074  * The bandwidth for interval 0 is just the amount of data to be transmitted
2075  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076  * the number of packets).
2077  *
2078  * For interval 1, we have two possible microframes to schedule those packets
2079  * in.  For this algorithm, if we can schedule the same number of packets for
2080  * each possible scheduling opportunity (each microframe), we will do so.  The
2081  * remaining number of packets will be saved to be transmitted in the gaps in
2082  * the next interval's scheduling sequence.
2083  *
2084  * As we move those remaining packets to be scheduled with interval 2 packets,
2085  * we have to double the number of remaining packets to transmit.  This is
2086  * because the intervals are actually powers of 2, and we would be transmitting
2087  * the previous interval's packets twice in this interval.  We also have to be
2088  * sure that when we look at the largest max packet size for this interval, we
2089  * also look at the largest max packet size for the remaining packets and take
2090  * the greater of the two.
2091  *
2092  * The algorithm continues to evenly distribute packets in each scheduling
2093  * opportunity, and push the remaining packets out, until we get to the last
2094  * interval.  Then those packets and their associated overhead are just added
2095  * to the bandwidth used.
2096  */
2097 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098 		struct xhci_virt_device *virt_dev,
2099 		int old_active_eps)
2100 {
2101 	unsigned int bw_reserved;
2102 	unsigned int max_bandwidth;
2103 	unsigned int bw_used;
2104 	unsigned int block_size;
2105 	struct xhci_interval_bw_table *bw_table;
2106 	unsigned int packet_size = 0;
2107 	unsigned int overhead = 0;
2108 	unsigned int packets_transmitted = 0;
2109 	unsigned int packets_remaining = 0;
2110 	unsigned int i;
2111 
2112 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113 		return xhci_check_ss_bw(xhci, virt_dev);
2114 
2115 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116 		max_bandwidth = HS_BW_LIMIT;
2117 		/* Convert percent of bus BW reserved to blocks reserved */
2118 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2119 	} else {
2120 		max_bandwidth = FS_BW_LIMIT;
2121 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2122 	}
2123 
2124 	bw_table = virt_dev->bw_table;
2125 	/* We need to translate the max packet size and max ESIT payloads into
2126 	 * the units the hardware uses.
2127 	 */
2128 	block_size = xhci_get_block_size(virt_dev->udev);
2129 
2130 	/* If we are manipulating a LS/FS device under a HS hub, double check
2131 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2132 	 */
2133 	if (virt_dev->tt_info) {
2134 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135 				"Recalculating BW for rootport %u",
2136 				virt_dev->real_port);
2137 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139 					"newly activated TT.\n");
2140 			return -ENOMEM;
2141 		}
2142 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 				"Recalculating BW for TT slot %u port %u",
2144 				virt_dev->tt_info->slot_id,
2145 				virt_dev->tt_info->ttport);
2146 	} else {
2147 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148 				"Recalculating BW for rootport %u",
2149 				virt_dev->real_port);
2150 	}
2151 
2152 	/* Add in how much bandwidth will be used for interval zero, or the
2153 	 * rounded max ESIT payload + number of packets * largest overhead.
2154 	 */
2155 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156 		bw_table->interval_bw[0].num_packets *
2157 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2158 
2159 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160 		unsigned int bw_added;
2161 		unsigned int largest_mps;
2162 		unsigned int interval_overhead;
2163 
2164 		/*
2165 		 * How many packets could we transmit in this interval?
2166 		 * If packets didn't fit in the previous interval, we will need
2167 		 * to transmit that many packets twice within this interval.
2168 		 */
2169 		packets_remaining = 2 * packets_remaining +
2170 			bw_table->interval_bw[i].num_packets;
2171 
2172 		/* Find the largest max packet size of this or the previous
2173 		 * interval.
2174 		 */
2175 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2176 			largest_mps = 0;
2177 		else {
2178 			struct xhci_virt_ep *virt_ep;
2179 			struct list_head *ep_entry;
2180 
2181 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2182 			virt_ep = list_entry(ep_entry,
2183 					struct xhci_virt_ep, bw_endpoint_list);
2184 			/* Convert to blocks, rounding up */
2185 			largest_mps = DIV_ROUND_UP(
2186 					virt_ep->bw_info.max_packet_size,
2187 					block_size);
2188 		}
2189 		if (largest_mps > packet_size)
2190 			packet_size = largest_mps;
2191 
2192 		/* Use the larger overhead of this or the previous interval. */
2193 		interval_overhead = xhci_get_largest_overhead(
2194 				&bw_table->interval_bw[i]);
2195 		if (interval_overhead > overhead)
2196 			overhead = interval_overhead;
2197 
2198 		/* How many packets can we evenly distribute across
2199 		 * (1 << (i + 1)) possible scheduling opportunities?
2200 		 */
2201 		packets_transmitted = packets_remaining >> (i + 1);
2202 
2203 		/* Add in the bandwidth used for those scheduled packets */
2204 		bw_added = packets_transmitted * (overhead + packet_size);
2205 
2206 		/* How many packets do we have remaining to transmit? */
2207 		packets_remaining = packets_remaining % (1 << (i + 1));
2208 
2209 		/* What largest max packet size should those packets have? */
2210 		/* If we've transmitted all packets, don't carry over the
2211 		 * largest packet size.
2212 		 */
2213 		if (packets_remaining == 0) {
2214 			packet_size = 0;
2215 			overhead = 0;
2216 		} else if (packets_transmitted > 0) {
2217 			/* Otherwise if we do have remaining packets, and we've
2218 			 * scheduled some packets in this interval, take the
2219 			 * largest max packet size from endpoints with this
2220 			 * interval.
2221 			 */
2222 			packet_size = largest_mps;
2223 			overhead = interval_overhead;
2224 		}
2225 		/* Otherwise carry over packet_size and overhead from the last
2226 		 * time we had a remainder.
2227 		 */
2228 		bw_used += bw_added;
2229 		if (bw_used > max_bandwidth) {
2230 			xhci_warn(xhci, "Not enough bandwidth. "
2231 					"Proposed: %u, Max: %u\n",
2232 				bw_used, max_bandwidth);
2233 			return -ENOMEM;
2234 		}
2235 	}
2236 	/*
2237 	 * Ok, we know we have some packets left over after even-handedly
2238 	 * scheduling interval 15.  We don't know which microframes they will
2239 	 * fit into, so we over-schedule and say they will be scheduled every
2240 	 * microframe.
2241 	 */
2242 	if (packets_remaining > 0)
2243 		bw_used += overhead + packet_size;
2244 
2245 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246 		unsigned int port_index = virt_dev->real_port - 1;
2247 
2248 		/* OK, we're manipulating a HS device attached to a
2249 		 * root port bandwidth domain.  Include the number of active TTs
2250 		 * in the bandwidth used.
2251 		 */
2252 		bw_used += TT_HS_OVERHEAD *
2253 			xhci->rh_bw[port_index].num_active_tts;
2254 	}
2255 
2256 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258 		"Available: %u " "percent",
2259 		bw_used, max_bandwidth, bw_reserved,
2260 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2261 		max_bandwidth);
2262 
2263 	bw_used += bw_reserved;
2264 	if (bw_used > max_bandwidth) {
2265 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266 				bw_used, max_bandwidth);
2267 		return -ENOMEM;
2268 	}
2269 
2270 	bw_table->bw_used = bw_used;
2271 	return 0;
2272 }
2273 
2274 static bool xhci_is_async_ep(unsigned int ep_type)
2275 {
2276 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277 					ep_type != ISOC_IN_EP &&
2278 					ep_type != INT_IN_EP);
2279 }
2280 
2281 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2282 {
2283 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2284 }
2285 
2286 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2287 {
2288 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2289 
2290 	if (ep_bw->ep_interval == 0)
2291 		return SS_OVERHEAD_BURST +
2292 			(ep_bw->mult * ep_bw->num_packets *
2293 					(SS_OVERHEAD + mps));
2294 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296 				1 << ep_bw->ep_interval);
2297 
2298 }
2299 
2300 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301 		struct xhci_bw_info *ep_bw,
2302 		struct xhci_interval_bw_table *bw_table,
2303 		struct usb_device *udev,
2304 		struct xhci_virt_ep *virt_ep,
2305 		struct xhci_tt_bw_info *tt_info)
2306 {
2307 	struct xhci_interval_bw	*interval_bw;
2308 	int normalized_interval;
2309 
2310 	if (xhci_is_async_ep(ep_bw->type))
2311 		return;
2312 
2313 	if (udev->speed >= USB_SPEED_SUPER) {
2314 		if (xhci_is_sync_in_ep(ep_bw->type))
2315 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316 				xhci_get_ss_bw_consumed(ep_bw);
2317 		else
2318 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319 				xhci_get_ss_bw_consumed(ep_bw);
2320 		return;
2321 	}
2322 
2323 	/* SuperSpeed endpoints never get added to intervals in the table, so
2324 	 * this check is only valid for HS/FS/LS devices.
2325 	 */
2326 	if (list_empty(&virt_ep->bw_endpoint_list))
2327 		return;
2328 	/* For LS/FS devices, we need to translate the interval expressed in
2329 	 * microframes to frames.
2330 	 */
2331 	if (udev->speed == USB_SPEED_HIGH)
2332 		normalized_interval = ep_bw->ep_interval;
2333 	else
2334 		normalized_interval = ep_bw->ep_interval - 3;
2335 
2336 	if (normalized_interval == 0)
2337 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338 	interval_bw = &bw_table->interval_bw[normalized_interval];
2339 	interval_bw->num_packets -= ep_bw->num_packets;
2340 	switch (udev->speed) {
2341 	case USB_SPEED_LOW:
2342 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2343 		break;
2344 	case USB_SPEED_FULL:
2345 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2346 		break;
2347 	case USB_SPEED_HIGH:
2348 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2349 		break;
2350 	case USB_SPEED_SUPER:
2351 	case USB_SPEED_SUPER_PLUS:
2352 	case USB_SPEED_UNKNOWN:
2353 	case USB_SPEED_WIRELESS:
2354 		/* Should never happen because only LS/FS/HS endpoints will get
2355 		 * added to the endpoint list.
2356 		 */
2357 		return;
2358 	}
2359 	if (tt_info)
2360 		tt_info->active_eps -= 1;
2361 	list_del_init(&virt_ep->bw_endpoint_list);
2362 }
2363 
2364 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365 		struct xhci_bw_info *ep_bw,
2366 		struct xhci_interval_bw_table *bw_table,
2367 		struct usb_device *udev,
2368 		struct xhci_virt_ep *virt_ep,
2369 		struct xhci_tt_bw_info *tt_info)
2370 {
2371 	struct xhci_interval_bw	*interval_bw;
2372 	struct xhci_virt_ep *smaller_ep;
2373 	int normalized_interval;
2374 
2375 	if (xhci_is_async_ep(ep_bw->type))
2376 		return;
2377 
2378 	if (udev->speed == USB_SPEED_SUPER) {
2379 		if (xhci_is_sync_in_ep(ep_bw->type))
2380 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381 				xhci_get_ss_bw_consumed(ep_bw);
2382 		else
2383 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384 				xhci_get_ss_bw_consumed(ep_bw);
2385 		return;
2386 	}
2387 
2388 	/* For LS/FS devices, we need to translate the interval expressed in
2389 	 * microframes to frames.
2390 	 */
2391 	if (udev->speed == USB_SPEED_HIGH)
2392 		normalized_interval = ep_bw->ep_interval;
2393 	else
2394 		normalized_interval = ep_bw->ep_interval - 3;
2395 
2396 	if (normalized_interval == 0)
2397 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398 	interval_bw = &bw_table->interval_bw[normalized_interval];
2399 	interval_bw->num_packets += ep_bw->num_packets;
2400 	switch (udev->speed) {
2401 	case USB_SPEED_LOW:
2402 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2403 		break;
2404 	case USB_SPEED_FULL:
2405 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2406 		break;
2407 	case USB_SPEED_HIGH:
2408 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2409 		break;
2410 	case USB_SPEED_SUPER:
2411 	case USB_SPEED_SUPER_PLUS:
2412 	case USB_SPEED_UNKNOWN:
2413 	case USB_SPEED_WIRELESS:
2414 		/* Should never happen because only LS/FS/HS endpoints will get
2415 		 * added to the endpoint list.
2416 		 */
2417 		return;
2418 	}
2419 
2420 	if (tt_info)
2421 		tt_info->active_eps += 1;
2422 	/* Insert the endpoint into the list, largest max packet size first. */
2423 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424 			bw_endpoint_list) {
2425 		if (ep_bw->max_packet_size >=
2426 				smaller_ep->bw_info.max_packet_size) {
2427 			/* Add the new ep before the smaller endpoint */
2428 			list_add_tail(&virt_ep->bw_endpoint_list,
2429 					&smaller_ep->bw_endpoint_list);
2430 			return;
2431 		}
2432 	}
2433 	/* Add the new endpoint at the end of the list. */
2434 	list_add_tail(&virt_ep->bw_endpoint_list,
2435 			&interval_bw->endpoints);
2436 }
2437 
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 		struct xhci_virt_device *virt_dev,
2440 		int old_active_eps)
2441 {
2442 	struct xhci_root_port_bw_info *rh_bw_info;
2443 	if (!virt_dev->tt_info)
2444 		return;
2445 
2446 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 	if (old_active_eps == 0 &&
2448 				virt_dev->tt_info->active_eps != 0) {
2449 		rh_bw_info->num_active_tts += 1;
2450 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 	} else if (old_active_eps != 0 &&
2452 				virt_dev->tt_info->active_eps == 0) {
2453 		rh_bw_info->num_active_tts -= 1;
2454 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455 	}
2456 }
2457 
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 		struct xhci_virt_device *virt_dev,
2460 		struct xhci_container_ctx *in_ctx)
2461 {
2462 	struct xhci_bw_info ep_bw_info[31];
2463 	int i;
2464 	struct xhci_input_control_ctx *ctrl_ctx;
2465 	int old_active_eps = 0;
2466 
2467 	if (virt_dev->tt_info)
2468 		old_active_eps = virt_dev->tt_info->active_eps;
2469 
2470 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2471 	if (!ctrl_ctx) {
2472 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473 				__func__);
2474 		return -ENOMEM;
2475 	}
2476 
2477 	for (i = 0; i < 31; i++) {
2478 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479 			continue;
2480 
2481 		/* Make a copy of the BW info in case we need to revert this */
2482 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 				sizeof(ep_bw_info[i]));
2484 		/* Drop the endpoint from the interval table if the endpoint is
2485 		 * being dropped or changed.
2486 		 */
2487 		if (EP_IS_DROPPED(ctrl_ctx, i))
2488 			xhci_drop_ep_from_interval_table(xhci,
2489 					&virt_dev->eps[i].bw_info,
2490 					virt_dev->bw_table,
2491 					virt_dev->udev,
2492 					&virt_dev->eps[i],
2493 					virt_dev->tt_info);
2494 	}
2495 	/* Overwrite the information stored in the endpoints' bw_info */
2496 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 	for (i = 0; i < 31; i++) {
2498 		/* Add any changed or added endpoints to the interval table */
2499 		if (EP_IS_ADDED(ctrl_ctx, i))
2500 			xhci_add_ep_to_interval_table(xhci,
2501 					&virt_dev->eps[i].bw_info,
2502 					virt_dev->bw_table,
2503 					virt_dev->udev,
2504 					&virt_dev->eps[i],
2505 					virt_dev->tt_info);
2506 	}
2507 
2508 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 		/* Ok, this fits in the bandwidth we have.
2510 		 * Update the number of active TTs.
2511 		 */
2512 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513 		return 0;
2514 	}
2515 
2516 	/* We don't have enough bandwidth for this, revert the stored info. */
2517 	for (i = 0; i < 31; i++) {
2518 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519 			continue;
2520 
2521 		/* Drop the new copies of any added or changed endpoints from
2522 		 * the interval table.
2523 		 */
2524 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 			xhci_drop_ep_from_interval_table(xhci,
2526 					&virt_dev->eps[i].bw_info,
2527 					virt_dev->bw_table,
2528 					virt_dev->udev,
2529 					&virt_dev->eps[i],
2530 					virt_dev->tt_info);
2531 		}
2532 		/* Revert the endpoint back to its old information */
2533 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 				sizeof(ep_bw_info[i]));
2535 		/* Add any changed or dropped endpoints back into the table */
2536 		if (EP_IS_DROPPED(ctrl_ctx, i))
2537 			xhci_add_ep_to_interval_table(xhci,
2538 					&virt_dev->eps[i].bw_info,
2539 					virt_dev->bw_table,
2540 					virt_dev->udev,
2541 					&virt_dev->eps[i],
2542 					virt_dev->tt_info);
2543 	}
2544 	return -ENOMEM;
2545 }
2546 
2547 
2548 /* Issue a configure endpoint command or evaluate context command
2549  * and wait for it to finish.
2550  */
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 		struct usb_device *udev,
2553 		struct xhci_command *command,
2554 		bool ctx_change, bool must_succeed)
2555 {
2556 	int ret;
2557 	unsigned long flags;
2558 	struct xhci_input_control_ctx *ctrl_ctx;
2559 	struct xhci_virt_device *virt_dev;
2560 	struct xhci_slot_ctx *slot_ctx;
2561 
2562 	if (!command)
2563 		return -EINVAL;
2564 
2565 	spin_lock_irqsave(&xhci->lock, flags);
2566 
2567 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2568 		spin_unlock_irqrestore(&xhci->lock, flags);
2569 		return -ESHUTDOWN;
2570 	}
2571 
2572 	virt_dev = xhci->devs[udev->slot_id];
2573 
2574 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575 	if (!ctrl_ctx) {
2576 		spin_unlock_irqrestore(&xhci->lock, flags);
2577 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578 				__func__);
2579 		return -ENOMEM;
2580 	}
2581 
2582 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584 		spin_unlock_irqrestore(&xhci->lock, flags);
2585 		xhci_warn(xhci, "Not enough host resources, "
2586 				"active endpoint contexts = %u\n",
2587 				xhci->num_active_eps);
2588 		return -ENOMEM;
2589 	}
2590 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593 			xhci_free_host_resources(xhci, ctrl_ctx);
2594 		spin_unlock_irqrestore(&xhci->lock, flags);
2595 		xhci_warn(xhci, "Not enough bandwidth\n");
2596 		return -ENOMEM;
2597 	}
2598 
2599 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2600 	trace_xhci_configure_endpoint(slot_ctx);
2601 
2602 	if (!ctx_change)
2603 		ret = xhci_queue_configure_endpoint(xhci, command,
2604 				command->in_ctx->dma,
2605 				udev->slot_id, must_succeed);
2606 	else
2607 		ret = xhci_queue_evaluate_context(xhci, command,
2608 				command->in_ctx->dma,
2609 				udev->slot_id, must_succeed);
2610 	if (ret < 0) {
2611 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 			xhci_free_host_resources(xhci, ctrl_ctx);
2613 		spin_unlock_irqrestore(&xhci->lock, flags);
2614 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2615 				"FIXME allocate a new ring segment");
2616 		return -ENOMEM;
2617 	}
2618 	xhci_ring_cmd_db(xhci);
2619 	spin_unlock_irqrestore(&xhci->lock, flags);
2620 
2621 	/* Wait for the configure endpoint command to complete */
2622 	wait_for_completion(command->completion);
2623 
2624 	if (!ctx_change)
2625 		ret = xhci_configure_endpoint_result(xhci, udev,
2626 						     &command->status);
2627 	else
2628 		ret = xhci_evaluate_context_result(xhci, udev,
2629 						   &command->status);
2630 
2631 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632 		spin_lock_irqsave(&xhci->lock, flags);
2633 		/* If the command failed, remove the reserved resources.
2634 		 * Otherwise, clean up the estimate to include dropped eps.
2635 		 */
2636 		if (ret)
2637 			xhci_free_host_resources(xhci, ctrl_ctx);
2638 		else
2639 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640 		spin_unlock_irqrestore(&xhci->lock, flags);
2641 	}
2642 	return ret;
2643 }
2644 
2645 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646 	struct xhci_virt_device *vdev, int i)
2647 {
2648 	struct xhci_virt_ep *ep = &vdev->eps[i];
2649 
2650 	if (ep->ep_state & EP_HAS_STREAMS) {
2651 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652 				xhci_get_endpoint_address(i));
2653 		xhci_free_stream_info(xhci, ep->stream_info);
2654 		ep->stream_info = NULL;
2655 		ep->ep_state &= ~EP_HAS_STREAMS;
2656 	}
2657 }
2658 
2659 /* Called after one or more calls to xhci_add_endpoint() or
2660  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2661  * to call xhci_reset_bandwidth().
2662  *
2663  * Since we are in the middle of changing either configuration or
2664  * installing a new alt setting, the USB core won't allow URBs to be
2665  * enqueued for any endpoint on the old config or interface.  Nothing
2666  * else should be touching the xhci->devs[slot_id] structure, so we
2667  * don't need to take the xhci->lock for manipulating that.
2668  */
2669 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2670 {
2671 	int i;
2672 	int ret = 0;
2673 	struct xhci_hcd *xhci;
2674 	struct xhci_virt_device	*virt_dev;
2675 	struct xhci_input_control_ctx *ctrl_ctx;
2676 	struct xhci_slot_ctx *slot_ctx;
2677 	struct xhci_command *command;
2678 
2679 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2680 	if (ret <= 0)
2681 		return ret;
2682 	xhci = hcd_to_xhci(hcd);
2683 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2685 		return -ENODEV;
2686 
2687 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688 	virt_dev = xhci->devs[udev->slot_id];
2689 
2690 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2691 	if (!command)
2692 		return -ENOMEM;
2693 
2694 	command->in_ctx = virt_dev->in_ctx;
2695 
2696 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2698 	if (!ctrl_ctx) {
2699 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700 				__func__);
2701 		ret = -ENOMEM;
2702 		goto command_cleanup;
2703 	}
2704 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707 
2708 	/* Don't issue the command if there's no endpoints to update. */
2709 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710 	    ctrl_ctx->drop_flags == 0) {
2711 		ret = 0;
2712 		goto command_cleanup;
2713 	}
2714 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716 	for (i = 31; i >= 1; i--) {
2717 		__le32 le32 = cpu_to_le32(BIT(i));
2718 
2719 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2721 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2723 			break;
2724 		}
2725 	}
2726 
2727 	ret = xhci_configure_endpoint(xhci, udev, command,
2728 			false, false);
2729 	if (ret)
2730 		/* Callee should call reset_bandwidth() */
2731 		goto command_cleanup;
2732 
2733 	/* Free any rings that were dropped, but not changed. */
2734 	for (i = 1; i < 31; i++) {
2735 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2738 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2739 		}
2740 	}
2741 	xhci_zero_in_ctx(xhci, virt_dev);
2742 	/*
2743 	 * Install any rings for completely new endpoints or changed endpoints,
2744 	 * and free any old rings from changed endpoints.
2745 	 */
2746 	for (i = 1; i < 31; i++) {
2747 		if (!virt_dev->eps[i].new_ring)
2748 			continue;
2749 		/* Only free the old ring if it exists.
2750 		 * It may not if this is the first add of an endpoint.
2751 		 */
2752 		if (virt_dev->eps[i].ring) {
2753 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2754 		}
2755 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757 		virt_dev->eps[i].new_ring = NULL;
2758 	}
2759 command_cleanup:
2760 	kfree(command->completion);
2761 	kfree(command);
2762 
2763 	return ret;
2764 }
2765 
2766 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767 {
2768 	struct xhci_hcd *xhci;
2769 	struct xhci_virt_device	*virt_dev;
2770 	int i, ret;
2771 
2772 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773 	if (ret <= 0)
2774 		return;
2775 	xhci = hcd_to_xhci(hcd);
2776 
2777 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778 	virt_dev = xhci->devs[udev->slot_id];
2779 	/* Free any rings allocated for added endpoints */
2780 	for (i = 0; i < 31; i++) {
2781 		if (virt_dev->eps[i].new_ring) {
2782 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784 			virt_dev->eps[i].new_ring = NULL;
2785 		}
2786 	}
2787 	xhci_zero_in_ctx(xhci, virt_dev);
2788 }
2789 
2790 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791 		struct xhci_container_ctx *in_ctx,
2792 		struct xhci_container_ctx *out_ctx,
2793 		struct xhci_input_control_ctx *ctrl_ctx,
2794 		u32 add_flags, u32 drop_flags)
2795 {
2796 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2799 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2800 }
2801 
2802 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803 		unsigned int slot_id, unsigned int ep_index,
2804 		struct xhci_dequeue_state *deq_state)
2805 {
2806 	struct xhci_input_control_ctx *ctrl_ctx;
2807 	struct xhci_container_ctx *in_ctx;
2808 	struct xhci_ep_ctx *ep_ctx;
2809 	u32 added_ctxs;
2810 	dma_addr_t addr;
2811 
2812 	in_ctx = xhci->devs[slot_id]->in_ctx;
2813 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2814 	if (!ctrl_ctx) {
2815 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816 				__func__);
2817 		return;
2818 	}
2819 
2820 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821 			xhci->devs[slot_id]->out_ctx, ep_index);
2822 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824 			deq_state->new_deq_ptr);
2825 	if (addr == 0) {
2826 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2827 				"reset ep command\n");
2828 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829 				deq_state->new_deq_seg,
2830 				deq_state->new_deq_ptr);
2831 		return;
2832 	}
2833 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2834 
2835 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838 			added_ctxs, added_ctxs);
2839 }
2840 
2841 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842 			       unsigned int stream_id, struct xhci_td *td)
2843 {
2844 	struct xhci_dequeue_state deq_state;
2845 	struct usb_device *udev = td->urb->dev;
2846 
2847 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848 			"Cleaning up stalled endpoint ring");
2849 	/* We need to move the HW's dequeue pointer past this TD,
2850 	 * or it will attempt to resend it on the next doorbell ring.
2851 	 */
2852 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853 			ep_index, stream_id, td, &deq_state);
2854 
2855 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2856 		return;
2857 
2858 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2859 	 * issue a configure endpoint command later.
2860 	 */
2861 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863 				"Queueing new dequeue state");
2864 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865 				ep_index, &deq_state);
2866 	} else {
2867 		/* Better hope no one uses the input context between now and the
2868 		 * reset endpoint completion!
2869 		 * XXX: No idea how this hardware will react when stream rings
2870 		 * are enabled.
2871 		 */
2872 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873 				"Setting up input context for "
2874 				"configure endpoint command");
2875 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876 				ep_index, &deq_state);
2877 	}
2878 }
2879 
2880 /*
2881  * Called after usb core issues a clear halt control message.
2882  * The host side of the halt should already be cleared by a reset endpoint
2883  * command issued when the STALL event was received.
2884  *
2885  * The reset endpoint command may only be issued to endpoints in the halted
2886  * state. For software that wishes to reset the data toggle or sequence number
2887  * of an endpoint that isn't in the halted state this function will issue a
2888  * configure endpoint command with the Drop and Add bits set for the target
2889  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2890  */
2891 
2892 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893 		struct usb_host_endpoint *host_ep)
2894 {
2895 	struct xhci_hcd *xhci;
2896 	struct usb_device *udev;
2897 	struct xhci_virt_device *vdev;
2898 	struct xhci_virt_ep *ep;
2899 	struct xhci_input_control_ctx *ctrl_ctx;
2900 	struct xhci_command *stop_cmd, *cfg_cmd;
2901 	unsigned int ep_index;
2902 	unsigned long flags;
2903 	u32 ep_flag;
2904 
2905 	xhci = hcd_to_xhci(hcd);
2906 	if (!host_ep->hcpriv)
2907 		return;
2908 	udev = (struct usb_device *) host_ep->hcpriv;
2909 	vdev = xhci->devs[udev->slot_id];
2910 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911 	ep = &vdev->eps[ep_index];
2912 
2913 	/* Bail out if toggle is already being cleared by a endpoint reset */
2914 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2916 		return;
2917 	}
2918 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920 	    usb_endpoint_xfer_isoc(&host_ep->desc))
2921 		return;
2922 
2923 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2924 
2925 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2926 		return;
2927 
2928 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2929 	if (!stop_cmd)
2930 		return;
2931 
2932 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2933 	if (!cfg_cmd)
2934 		goto cleanup;
2935 
2936 	spin_lock_irqsave(&xhci->lock, flags);
2937 
2938 	/* block queuing new trbs and ringing ep doorbell */
2939 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2940 
2941 	/*
2942 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
2943 	 * Driver is required to synchronously cancel all transfer request.
2944 	 * Stop the endpoint to force xHC to update the output context
2945 	 */
2946 
2947 	if (!list_empty(&ep->ring->td_list)) {
2948 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949 		spin_unlock_irqrestore(&xhci->lock, flags);
2950 		goto cleanup;
2951 	}
2952 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953 	xhci_ring_cmd_db(xhci);
2954 	spin_unlock_irqrestore(&xhci->lock, flags);
2955 
2956 	wait_for_completion(stop_cmd->completion);
2957 
2958 	spin_lock_irqsave(&xhci->lock, flags);
2959 
2960 	/* config ep command clears toggle if add and drop ep flags are set */
2961 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963 					   ctrl_ctx, ep_flag, ep_flag);
2964 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2965 
2966 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967 				      udev->slot_id, false);
2968 	xhci_ring_cmd_db(xhci);
2969 	spin_unlock_irqrestore(&xhci->lock, flags);
2970 
2971 	wait_for_completion(cfg_cmd->completion);
2972 
2973 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974 	xhci_free_command(xhci, cfg_cmd);
2975 cleanup:
2976 	xhci_free_command(xhci, stop_cmd);
2977 }
2978 
2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980 		struct usb_device *udev, struct usb_host_endpoint *ep,
2981 		unsigned int slot_id)
2982 {
2983 	int ret;
2984 	unsigned int ep_index;
2985 	unsigned int ep_state;
2986 
2987 	if (!ep)
2988 		return -EINVAL;
2989 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990 	if (ret <= 0)
2991 		return -EINVAL;
2992 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994 				" descriptor for ep 0x%x does not support streams\n",
2995 				ep->desc.bEndpointAddress);
2996 		return -EINVAL;
2997 	}
2998 
2999 	ep_index = xhci_get_endpoint_index(&ep->desc);
3000 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001 	if (ep_state & EP_HAS_STREAMS ||
3002 			ep_state & EP_GETTING_STREAMS) {
3003 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004 				"already has streams set up.\n",
3005 				ep->desc.bEndpointAddress);
3006 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007 				"dynamic stream context array reallocation.\n");
3008 		return -EINVAL;
3009 	}
3010 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012 				"endpoint 0x%x; URBs are pending.\n",
3013 				ep->desc.bEndpointAddress);
3014 		return -EINVAL;
3015 	}
3016 	return 0;
3017 }
3018 
3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021 {
3022 	unsigned int max_streams;
3023 
3024 	/* The stream context array size must be a power of two */
3025 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026 	/*
3027 	 * Find out how many primary stream array entries the host controller
3028 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3029 	 * level page entries), but that's an optional feature for xHCI host
3030 	 * controllers. xHCs must support at least 4 stream IDs.
3031 	 */
3032 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033 	if (*num_stream_ctxs > max_streams) {
3034 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035 				max_streams);
3036 		*num_stream_ctxs = max_streams;
3037 		*num_streams = max_streams;
3038 	}
3039 }
3040 
3041 /* Returns an error code if one of the endpoint already has streams.
3042  * This does not change any data structures, it only checks and gathers
3043  * information.
3044  */
3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046 		struct usb_device *udev,
3047 		struct usb_host_endpoint **eps, unsigned int num_eps,
3048 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3049 {
3050 	unsigned int max_streams;
3051 	unsigned int endpoint_flag;
3052 	int i;
3053 	int ret;
3054 
3055 	for (i = 0; i < num_eps; i++) {
3056 		ret = xhci_check_streams_endpoint(xhci, udev,
3057 				eps[i], udev->slot_id);
3058 		if (ret < 0)
3059 			return ret;
3060 
3061 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062 		if (max_streams < (*num_streams - 1)) {
3063 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064 					eps[i]->desc.bEndpointAddress,
3065 					max_streams);
3066 			*num_streams = max_streams+1;
3067 		}
3068 
3069 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070 		if (*changed_ep_bitmask & endpoint_flag)
3071 			return -EINVAL;
3072 		*changed_ep_bitmask |= endpoint_flag;
3073 	}
3074 	return 0;
3075 }
3076 
3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078 		struct usb_device *udev,
3079 		struct usb_host_endpoint **eps, unsigned int num_eps)
3080 {
3081 	u32 changed_ep_bitmask = 0;
3082 	unsigned int slot_id;
3083 	unsigned int ep_index;
3084 	unsigned int ep_state;
3085 	int i;
3086 
3087 	slot_id = udev->slot_id;
3088 	if (!xhci->devs[slot_id])
3089 		return 0;
3090 
3091 	for (i = 0; i < num_eps; i++) {
3092 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094 		/* Are streams already being freed for the endpoint? */
3095 		if (ep_state & EP_GETTING_NO_STREAMS) {
3096 			xhci_warn(xhci, "WARN Can't disable streams for "
3097 					"endpoint 0x%x, "
3098 					"streams are being disabled already\n",
3099 					eps[i]->desc.bEndpointAddress);
3100 			return 0;
3101 		}
3102 		/* Are there actually any streams to free? */
3103 		if (!(ep_state & EP_HAS_STREAMS) &&
3104 				!(ep_state & EP_GETTING_STREAMS)) {
3105 			xhci_warn(xhci, "WARN Can't disable streams for "
3106 					"endpoint 0x%x, "
3107 					"streams are already disabled!\n",
3108 					eps[i]->desc.bEndpointAddress);
3109 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3110 					"with non-streams endpoint\n");
3111 			return 0;
3112 		}
3113 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114 	}
3115 	return changed_ep_bitmask;
3116 }
3117 
3118 /*
3119  * The USB device drivers use this function (through the HCD interface in USB
3120  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121  * coordinate mass storage command queueing across multiple endpoints (basically
3122  * a stream ID == a task ID).
3123  *
3124  * Setting up streams involves allocating the same size stream context array
3125  * for each endpoint and issuing a configure endpoint command for all endpoints.
3126  *
3127  * Don't allow the call to succeed if one endpoint only supports one stream
3128  * (which means it doesn't support streams at all).
3129  *
3130  * Drivers may get less stream IDs than they asked for, if the host controller
3131  * hardware or endpoints claim they can't support the number of requested
3132  * stream IDs.
3133  */
3134 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135 		struct usb_host_endpoint **eps, unsigned int num_eps,
3136 		unsigned int num_streams, gfp_t mem_flags)
3137 {
3138 	int i, ret;
3139 	struct xhci_hcd *xhci;
3140 	struct xhci_virt_device *vdev;
3141 	struct xhci_command *config_cmd;
3142 	struct xhci_input_control_ctx *ctrl_ctx;
3143 	unsigned int ep_index;
3144 	unsigned int num_stream_ctxs;
3145 	unsigned int max_packet;
3146 	unsigned long flags;
3147 	u32 changed_ep_bitmask = 0;
3148 
3149 	if (!eps)
3150 		return -EINVAL;
3151 
3152 	/* Add one to the number of streams requested to account for
3153 	 * stream 0 that is reserved for xHCI usage.
3154 	 */
3155 	num_streams += 1;
3156 	xhci = hcd_to_xhci(hcd);
3157 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158 			num_streams);
3159 
3160 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3161 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164 		return -ENOSYS;
3165 	}
3166 
3167 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3168 	if (!config_cmd)
3169 		return -ENOMEM;
3170 
3171 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3172 	if (!ctrl_ctx) {
3173 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174 				__func__);
3175 		xhci_free_command(xhci, config_cmd);
3176 		return -ENOMEM;
3177 	}
3178 
3179 	/* Check to make sure all endpoints are not already configured for
3180 	 * streams.  While we're at it, find the maximum number of streams that
3181 	 * all the endpoints will support and check for duplicate endpoints.
3182 	 */
3183 	spin_lock_irqsave(&xhci->lock, flags);
3184 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185 			num_eps, &num_streams, &changed_ep_bitmask);
3186 	if (ret < 0) {
3187 		xhci_free_command(xhci, config_cmd);
3188 		spin_unlock_irqrestore(&xhci->lock, flags);
3189 		return ret;
3190 	}
3191 	if (num_streams <= 1) {
3192 		xhci_warn(xhci, "WARN: endpoints can't handle "
3193 				"more than one stream.\n");
3194 		xhci_free_command(xhci, config_cmd);
3195 		spin_unlock_irqrestore(&xhci->lock, flags);
3196 		return -EINVAL;
3197 	}
3198 	vdev = xhci->devs[udev->slot_id];
3199 	/* Mark each endpoint as being in transition, so
3200 	 * xhci_urb_enqueue() will reject all URBs.
3201 	 */
3202 	for (i = 0; i < num_eps; i++) {
3203 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205 	}
3206 	spin_unlock_irqrestore(&xhci->lock, flags);
3207 
3208 	/* Setup internal data structures and allocate HW data structures for
3209 	 * streams (but don't install the HW structures in the input context
3210 	 * until we're sure all memory allocation succeeded).
3211 	 */
3212 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214 			num_stream_ctxs, num_streams);
3215 
3216 	for (i = 0; i < num_eps; i++) {
3217 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220 				num_stream_ctxs,
3221 				num_streams,
3222 				max_packet, mem_flags);
3223 		if (!vdev->eps[ep_index].stream_info)
3224 			goto cleanup;
3225 		/* Set maxPstreams in endpoint context and update deq ptr to
3226 		 * point to stream context array. FIXME
3227 		 */
3228 	}
3229 
3230 	/* Set up the input context for a configure endpoint command. */
3231 	for (i = 0; i < num_eps; i++) {
3232 		struct xhci_ep_ctx *ep_ctx;
3233 
3234 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3236 
3237 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238 				vdev->out_ctx, ep_index);
3239 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240 				vdev->eps[ep_index].stream_info);
3241 	}
3242 	/* Tell the HW to drop its old copy of the endpoint context info
3243 	 * and add the updated copy from the input context.
3244 	 */
3245 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246 			vdev->out_ctx, ctrl_ctx,
3247 			changed_ep_bitmask, changed_ep_bitmask);
3248 
3249 	/* Issue and wait for the configure endpoint command */
3250 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3251 			false, false);
3252 
3253 	/* xHC rejected the configure endpoint command for some reason, so we
3254 	 * leave the old ring intact and free our internal streams data
3255 	 * structure.
3256 	 */
3257 	if (ret < 0)
3258 		goto cleanup;
3259 
3260 	spin_lock_irqsave(&xhci->lock, flags);
3261 	for (i = 0; i < num_eps; i++) {
3262 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265 			 udev->slot_id, ep_index);
3266 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3267 	}
3268 	xhci_free_command(xhci, config_cmd);
3269 	spin_unlock_irqrestore(&xhci->lock, flags);
3270 
3271 	/* Subtract 1 for stream 0, which drivers can't use */
3272 	return num_streams - 1;
3273 
3274 cleanup:
3275 	/* If it didn't work, free the streams! */
3276 	for (i = 0; i < num_eps; i++) {
3277 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279 		vdev->eps[ep_index].stream_info = NULL;
3280 		/* FIXME Unset maxPstreams in endpoint context and
3281 		 * update deq ptr to point to normal string ring.
3282 		 */
3283 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3286 	}
3287 	xhci_free_command(xhci, config_cmd);
3288 	return -ENOMEM;
3289 }
3290 
3291 /* Transition the endpoint from using streams to being a "normal" endpoint
3292  * without streams.
3293  *
3294  * Modify the endpoint context state, submit a configure endpoint command,
3295  * and free all endpoint rings for streams if that completes successfully.
3296  */
3297 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298 		struct usb_host_endpoint **eps, unsigned int num_eps,
3299 		gfp_t mem_flags)
3300 {
3301 	int i, ret;
3302 	struct xhci_hcd *xhci;
3303 	struct xhci_virt_device *vdev;
3304 	struct xhci_command *command;
3305 	struct xhci_input_control_ctx *ctrl_ctx;
3306 	unsigned int ep_index;
3307 	unsigned long flags;
3308 	u32 changed_ep_bitmask;
3309 
3310 	xhci = hcd_to_xhci(hcd);
3311 	vdev = xhci->devs[udev->slot_id];
3312 
3313 	/* Set up a configure endpoint command to remove the streams rings */
3314 	spin_lock_irqsave(&xhci->lock, flags);
3315 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316 			udev, eps, num_eps);
3317 	if (changed_ep_bitmask == 0) {
3318 		spin_unlock_irqrestore(&xhci->lock, flags);
3319 		return -EINVAL;
3320 	}
3321 
3322 	/* Use the xhci_command structure from the first endpoint.  We may have
3323 	 * allocated too many, but the driver may call xhci_free_streams() for
3324 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3325 	 */
3326 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3328 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3329 	if (!ctrl_ctx) {
3330 		spin_unlock_irqrestore(&xhci->lock, flags);
3331 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3332 				__func__);
3333 		return -EINVAL;
3334 	}
3335 
3336 	for (i = 0; i < num_eps; i++) {
3337 		struct xhci_ep_ctx *ep_ctx;
3338 
3339 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342 			EP_GETTING_NO_STREAMS;
3343 
3344 		xhci_endpoint_copy(xhci, command->in_ctx,
3345 				vdev->out_ctx, ep_index);
3346 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347 				&vdev->eps[ep_index]);
3348 	}
3349 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350 			vdev->out_ctx, ctrl_ctx,
3351 			changed_ep_bitmask, changed_ep_bitmask);
3352 	spin_unlock_irqrestore(&xhci->lock, flags);
3353 
3354 	/* Issue and wait for the configure endpoint command,
3355 	 * which must succeed.
3356 	 */
3357 	ret = xhci_configure_endpoint(xhci, udev, command,
3358 			false, true);
3359 
3360 	/* xHC rejected the configure endpoint command for some reason, so we
3361 	 * leave the streams rings intact.
3362 	 */
3363 	if (ret < 0)
3364 		return ret;
3365 
3366 	spin_lock_irqsave(&xhci->lock, flags);
3367 	for (i = 0; i < num_eps; i++) {
3368 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370 		vdev->eps[ep_index].stream_info = NULL;
3371 		/* FIXME Unset maxPstreams in endpoint context and
3372 		 * update deq ptr to point to normal string ring.
3373 		 */
3374 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3376 	}
3377 	spin_unlock_irqrestore(&xhci->lock, flags);
3378 
3379 	return 0;
3380 }
3381 
3382 /*
3383  * Deletes endpoint resources for endpoints that were active before a Reset
3384  * Device command, or a Disable Slot command.  The Reset Device command leaves
3385  * the control endpoint intact, whereas the Disable Slot command deletes it.
3386  *
3387  * Must be called with xhci->lock held.
3388  */
3389 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3391 {
3392 	int i;
3393 	unsigned int num_dropped_eps = 0;
3394 	unsigned int drop_flags = 0;
3395 
3396 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397 		if (virt_dev->eps[i].ring) {
3398 			drop_flags |= 1 << i;
3399 			num_dropped_eps++;
3400 		}
3401 	}
3402 	xhci->num_active_eps -= num_dropped_eps;
3403 	if (num_dropped_eps)
3404 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405 				"Dropped %u ep ctxs, flags = 0x%x, "
3406 				"%u now active.",
3407 				num_dropped_eps, drop_flags,
3408 				xhci->num_active_eps);
3409 }
3410 
3411 /*
3412  * This submits a Reset Device Command, which will set the device state to 0,
3413  * set the device address to 0, and disable all the endpoints except the default
3414  * control endpoint.  The USB core should come back and call
3415  * xhci_address_device(), and then re-set up the configuration.  If this is
3416  * called because of a usb_reset_and_verify_device(), then the old alternate
3417  * settings will be re-installed through the normal bandwidth allocation
3418  * functions.
3419  *
3420  * Wait for the Reset Device command to finish.  Remove all structures
3421  * associated with the endpoints that were disabled.  Clear the input device
3422  * structure? Reset the control endpoint 0 max packet size?
3423  *
3424  * If the virt_dev to be reset does not exist or does not match the udev,
3425  * it means the device is lost, possibly due to the xHC restore error and
3426  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427  * re-allocate the device.
3428  */
3429 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430 		struct usb_device *udev)
3431 {
3432 	int ret, i;
3433 	unsigned long flags;
3434 	struct xhci_hcd *xhci;
3435 	unsigned int slot_id;
3436 	struct xhci_virt_device *virt_dev;
3437 	struct xhci_command *reset_device_cmd;
3438 	struct xhci_slot_ctx *slot_ctx;
3439 	int old_active_eps = 0;
3440 
3441 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442 	if (ret <= 0)
3443 		return ret;
3444 	xhci = hcd_to_xhci(hcd);
3445 	slot_id = udev->slot_id;
3446 	virt_dev = xhci->devs[slot_id];
3447 	if (!virt_dev) {
3448 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449 				"not exist. Re-allocate the device\n", slot_id);
3450 		ret = xhci_alloc_dev(hcd, udev);
3451 		if (ret == 1)
3452 			return 0;
3453 		else
3454 			return -EINVAL;
3455 	}
3456 
3457 	if (virt_dev->tt_info)
3458 		old_active_eps = virt_dev->tt_info->active_eps;
3459 
3460 	if (virt_dev->udev != udev) {
3461 		/* If the virt_dev and the udev does not match, this virt_dev
3462 		 * may belong to another udev.
3463 		 * Re-allocate the device.
3464 		 */
3465 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 				"not match the udev. Re-allocate the device\n",
3467 				slot_id);
3468 		ret = xhci_alloc_dev(hcd, udev);
3469 		if (ret == 1)
3470 			return 0;
3471 		else
3472 			return -EINVAL;
3473 	}
3474 
3475 	/* If device is not setup, there is no point in resetting it */
3476 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 						SLOT_STATE_DISABLED)
3479 		return 0;
3480 
3481 	trace_xhci_discover_or_reset_device(slot_ctx);
3482 
3483 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484 	/* Allocate the command structure that holds the struct completion.
3485 	 * Assume we're in process context, since the normal device reset
3486 	 * process has to wait for the device anyway.  Storage devices are
3487 	 * reset as part of error handling, so use GFP_NOIO instead of
3488 	 * GFP_KERNEL.
3489 	 */
3490 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491 	if (!reset_device_cmd) {
3492 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3493 		return -ENOMEM;
3494 	}
3495 
3496 	/* Attempt to submit the Reset Device command to the command ring */
3497 	spin_lock_irqsave(&xhci->lock, flags);
3498 
3499 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3500 	if (ret) {
3501 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502 		spin_unlock_irqrestore(&xhci->lock, flags);
3503 		goto command_cleanup;
3504 	}
3505 	xhci_ring_cmd_db(xhci);
3506 	spin_unlock_irqrestore(&xhci->lock, flags);
3507 
3508 	/* Wait for the Reset Device command to finish */
3509 	wait_for_completion(reset_device_cmd->completion);
3510 
3511 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512 	 * unless we tried to reset a slot ID that wasn't enabled,
3513 	 * or the device wasn't in the addressed or configured state.
3514 	 */
3515 	ret = reset_device_cmd->status;
3516 	switch (ret) {
3517 	case COMP_COMMAND_ABORTED:
3518 	case COMP_COMMAND_RING_STOPPED:
3519 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3520 		ret = -ETIME;
3521 		goto command_cleanup;
3522 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3525 				slot_id,
3526 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527 		xhci_dbg(xhci, "Not freeing device rings.\n");
3528 		/* Don't treat this as an error.  May change my mind later. */
3529 		ret = 0;
3530 		goto command_cleanup;
3531 	case COMP_SUCCESS:
3532 		xhci_dbg(xhci, "Successful reset device command.\n");
3533 		break;
3534 	default:
3535 		if (xhci_is_vendor_info_code(xhci, ret))
3536 			break;
3537 		xhci_warn(xhci, "Unknown completion code %u for "
3538 				"reset device command.\n", ret);
3539 		ret = -EINVAL;
3540 		goto command_cleanup;
3541 	}
3542 
3543 	/* Free up host controller endpoint resources */
3544 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545 		spin_lock_irqsave(&xhci->lock, flags);
3546 		/* Don't delete the default control endpoint resources */
3547 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548 		spin_unlock_irqrestore(&xhci->lock, flags);
3549 	}
3550 
3551 	/* Everything but endpoint 0 is disabled, so free the rings. */
3552 	for (i = 1; i < 31; i++) {
3553 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3554 
3555 		if (ep->ep_state & EP_HAS_STREAMS) {
3556 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557 					xhci_get_endpoint_address(i));
3558 			xhci_free_stream_info(xhci, ep->stream_info);
3559 			ep->stream_info = NULL;
3560 			ep->ep_state &= ~EP_HAS_STREAMS;
3561 		}
3562 
3563 		if (ep->ring) {
3564 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3566 		}
3567 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568 			xhci_drop_ep_from_interval_table(xhci,
3569 					&virt_dev->eps[i].bw_info,
3570 					virt_dev->bw_table,
3571 					udev,
3572 					&virt_dev->eps[i],
3573 					virt_dev->tt_info);
3574 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3575 	}
3576 	/* If necessary, update the number of active TTs on this root port */
3577 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3578 	ret = 0;
3579 
3580 command_cleanup:
3581 	xhci_free_command(xhci, reset_device_cmd);
3582 	return ret;
3583 }
3584 
3585 /*
3586  * At this point, the struct usb_device is about to go away, the device has
3587  * disconnected, and all traffic has been stopped and the endpoints have been
3588  * disabled.  Free any HC data structures associated with that device.
3589  */
3590 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591 {
3592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593 	struct xhci_virt_device *virt_dev;
3594 	struct xhci_slot_ctx *slot_ctx;
3595 	int i, ret;
3596 
3597 #ifndef CONFIG_USB_DEFAULT_PERSIST
3598 	/*
3599 	 * We called pm_runtime_get_noresume when the device was attached.
3600 	 * Decrement the counter here to allow controller to runtime suspend
3601 	 * if no devices remain.
3602 	 */
3603 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604 		pm_runtime_put_noidle(hcd->self.controller);
3605 #endif
3606 
3607 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608 	/* If the host is halted due to driver unload, we still need to free the
3609 	 * device.
3610 	 */
3611 	if (ret <= 0 && ret != -ENODEV)
3612 		return;
3613 
3614 	virt_dev = xhci->devs[udev->slot_id];
3615 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616 	trace_xhci_free_dev(slot_ctx);
3617 
3618 	/* Stop any wayward timer functions (which may grab the lock) */
3619 	for (i = 0; i < 31; i++) {
3620 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622 	}
3623 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624 	ret = xhci_disable_slot(xhci, udev->slot_id);
3625 	if (ret)
3626 		xhci_free_virt_device(xhci, udev->slot_id);
3627 }
3628 
3629 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3630 {
3631 	struct xhci_command *command;
3632 	unsigned long flags;
3633 	u32 state;
3634 	int ret = 0;
3635 
3636 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3637 	if (!command)
3638 		return -ENOMEM;
3639 
3640 	spin_lock_irqsave(&xhci->lock, flags);
3641 	/* Don't disable the slot if the host controller is dead. */
3642 	state = readl(&xhci->op_regs->status);
3643 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3644 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3645 		spin_unlock_irqrestore(&xhci->lock, flags);
3646 		kfree(command);
3647 		return -ENODEV;
3648 	}
3649 
3650 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3651 				slot_id);
3652 	if (ret) {
3653 		spin_unlock_irqrestore(&xhci->lock, flags);
3654 		kfree(command);
3655 		return ret;
3656 	}
3657 	xhci_ring_cmd_db(xhci);
3658 	spin_unlock_irqrestore(&xhci->lock, flags);
3659 	return ret;
3660 }
3661 
3662 /*
3663  * Checks if we have enough host controller resources for the default control
3664  * endpoint.
3665  *
3666  * Must be called with xhci->lock held.
3667  */
3668 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3669 {
3670 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3671 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3672 				"Not enough ep ctxs: "
3673 				"%u active, need to add 1, limit is %u.",
3674 				xhci->num_active_eps, xhci->limit_active_eps);
3675 		return -ENOMEM;
3676 	}
3677 	xhci->num_active_eps += 1;
3678 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679 			"Adding 1 ep ctx, %u now active.",
3680 			xhci->num_active_eps);
3681 	return 0;
3682 }
3683 
3684 
3685 /*
3686  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3687  * timed out, or allocating memory failed.  Returns 1 on success.
3688  */
3689 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3690 {
3691 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3692 	struct xhci_virt_device *vdev;
3693 	struct xhci_slot_ctx *slot_ctx;
3694 	unsigned long flags;
3695 	int ret, slot_id;
3696 	struct xhci_command *command;
3697 
3698 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3699 	if (!command)
3700 		return 0;
3701 
3702 	spin_lock_irqsave(&xhci->lock, flags);
3703 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3704 	if (ret) {
3705 		spin_unlock_irqrestore(&xhci->lock, flags);
3706 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3707 		xhci_free_command(xhci, command);
3708 		return 0;
3709 	}
3710 	xhci_ring_cmd_db(xhci);
3711 	spin_unlock_irqrestore(&xhci->lock, flags);
3712 
3713 	wait_for_completion(command->completion);
3714 	slot_id = command->slot_id;
3715 
3716 	if (!slot_id || command->status != COMP_SUCCESS) {
3717 		xhci_err(xhci, "Error while assigning device slot ID\n");
3718 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3719 				HCS_MAX_SLOTS(
3720 					readl(&xhci->cap_regs->hcs_params1)));
3721 		xhci_free_command(xhci, command);
3722 		return 0;
3723 	}
3724 
3725 	xhci_free_command(xhci, command);
3726 
3727 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3728 		spin_lock_irqsave(&xhci->lock, flags);
3729 		ret = xhci_reserve_host_control_ep_resources(xhci);
3730 		if (ret) {
3731 			spin_unlock_irqrestore(&xhci->lock, flags);
3732 			xhci_warn(xhci, "Not enough host resources, "
3733 					"active endpoint contexts = %u\n",
3734 					xhci->num_active_eps);
3735 			goto disable_slot;
3736 		}
3737 		spin_unlock_irqrestore(&xhci->lock, flags);
3738 	}
3739 	/* Use GFP_NOIO, since this function can be called from
3740 	 * xhci_discover_or_reset_device(), which may be called as part of
3741 	 * mass storage driver error handling.
3742 	 */
3743 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3744 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3745 		goto disable_slot;
3746 	}
3747 	vdev = xhci->devs[slot_id];
3748 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3749 	trace_xhci_alloc_dev(slot_ctx);
3750 
3751 	udev->slot_id = slot_id;
3752 
3753 	xhci_debugfs_create_slot(xhci, slot_id);
3754 
3755 #ifndef CONFIG_USB_DEFAULT_PERSIST
3756 	/*
3757 	 * If resetting upon resume, we can't put the controller into runtime
3758 	 * suspend if there is a device attached.
3759 	 */
3760 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3761 		pm_runtime_get_noresume(hcd->self.controller);
3762 #endif
3763 
3764 	/* Is this a LS or FS device under a HS hub? */
3765 	/* Hub or peripherial? */
3766 	return 1;
3767 
3768 disable_slot:
3769 	ret = xhci_disable_slot(xhci, udev->slot_id);
3770 	if (ret)
3771 		xhci_free_virt_device(xhci, udev->slot_id);
3772 
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Issue an Address Device command and optionally send a corresponding
3778  * SetAddress request to the device.
3779  */
3780 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3781 			     enum xhci_setup_dev setup)
3782 {
3783 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3784 	unsigned long flags;
3785 	struct xhci_virt_device *virt_dev;
3786 	int ret = 0;
3787 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3788 	struct xhci_slot_ctx *slot_ctx;
3789 	struct xhci_input_control_ctx *ctrl_ctx;
3790 	u64 temp_64;
3791 	struct xhci_command *command = NULL;
3792 
3793 	mutex_lock(&xhci->mutex);
3794 
3795 	if (xhci->xhc_state) {	/* dying, removing or halted */
3796 		ret = -ESHUTDOWN;
3797 		goto out;
3798 	}
3799 
3800 	if (!udev->slot_id) {
3801 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3802 				"Bad Slot ID %d", udev->slot_id);
3803 		ret = -EINVAL;
3804 		goto out;
3805 	}
3806 
3807 	virt_dev = xhci->devs[udev->slot_id];
3808 
3809 	if (WARN_ON(!virt_dev)) {
3810 		/*
3811 		 * In plug/unplug torture test with an NEC controller,
3812 		 * a zero-dereference was observed once due to virt_dev = 0.
3813 		 * Print useful debug rather than crash if it is observed again!
3814 		 */
3815 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3816 			udev->slot_id);
3817 		ret = -EINVAL;
3818 		goto out;
3819 	}
3820 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3821 	trace_xhci_setup_device_slot(slot_ctx);
3822 
3823 	if (setup == SETUP_CONTEXT_ONLY) {
3824 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3825 		    SLOT_STATE_DEFAULT) {
3826 			xhci_dbg(xhci, "Slot already in default state\n");
3827 			goto out;
3828 		}
3829 	}
3830 
3831 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3832 	if (!command) {
3833 		ret = -ENOMEM;
3834 		goto out;
3835 	}
3836 
3837 	command->in_ctx = virt_dev->in_ctx;
3838 
3839 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3840 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3841 	if (!ctrl_ctx) {
3842 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3843 				__func__);
3844 		ret = -EINVAL;
3845 		goto out;
3846 	}
3847 	/*
3848 	 * If this is the first Set Address since device plug-in or
3849 	 * virt_device realloaction after a resume with an xHCI power loss,
3850 	 * then set up the slot context.
3851 	 */
3852 	if (!slot_ctx->dev_info)
3853 		xhci_setup_addressable_virt_dev(xhci, udev);
3854 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3855 	else
3856 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3857 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3858 	ctrl_ctx->drop_flags = 0;
3859 
3860 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3862 
3863 	spin_lock_irqsave(&xhci->lock, flags);
3864 	trace_xhci_setup_device(virt_dev);
3865 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3866 					udev->slot_id, setup);
3867 	if (ret) {
3868 		spin_unlock_irqrestore(&xhci->lock, flags);
3869 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3870 				"FIXME: allocate a command ring segment");
3871 		goto out;
3872 	}
3873 	xhci_ring_cmd_db(xhci);
3874 	spin_unlock_irqrestore(&xhci->lock, flags);
3875 
3876 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3877 	wait_for_completion(command->completion);
3878 
3879 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3880 	 * the SetAddress() "recovery interval" required by USB and aborting the
3881 	 * command on a timeout.
3882 	 */
3883 	switch (command->status) {
3884 	case COMP_COMMAND_ABORTED:
3885 	case COMP_COMMAND_RING_STOPPED:
3886 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3887 		ret = -ETIME;
3888 		break;
3889 	case COMP_CONTEXT_STATE_ERROR:
3890 	case COMP_SLOT_NOT_ENABLED_ERROR:
3891 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3892 			 act, udev->slot_id);
3893 		ret = -EINVAL;
3894 		break;
3895 	case COMP_USB_TRANSACTION_ERROR:
3896 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3897 
3898 		mutex_unlock(&xhci->mutex);
3899 		ret = xhci_disable_slot(xhci, udev->slot_id);
3900 		if (!ret)
3901 			xhci_alloc_dev(hcd, udev);
3902 		kfree(command->completion);
3903 		kfree(command);
3904 		return -EPROTO;
3905 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3906 		dev_warn(&udev->dev,
3907 			 "ERROR: Incompatible device for setup %s command\n", act);
3908 		ret = -ENODEV;
3909 		break;
3910 	case COMP_SUCCESS:
3911 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 			       "Successful setup %s command", act);
3913 		break;
3914 	default:
3915 		xhci_err(xhci,
3916 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3917 			 act, command->status);
3918 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3919 		ret = -EINVAL;
3920 		break;
3921 	}
3922 	if (ret)
3923 		goto out;
3924 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3925 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3926 			"Op regs DCBAA ptr = %#016llx", temp_64);
3927 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 		"Slot ID %d dcbaa entry @%p = %#016llx",
3929 		udev->slot_id,
3930 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3931 		(unsigned long long)
3932 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3933 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934 			"Output Context DMA address = %#08llx",
3935 			(unsigned long long)virt_dev->out_ctx->dma);
3936 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3937 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3938 	/*
3939 	 * USB core uses address 1 for the roothubs, so we add one to the
3940 	 * address given back to us by the HC.
3941 	 */
3942 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3943 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3944 	/* Zero the input context control for later use */
3945 	ctrl_ctx->add_flags = 0;
3946 	ctrl_ctx->drop_flags = 0;
3947 
3948 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949 		       "Internal device address = %d",
3950 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3951 out:
3952 	mutex_unlock(&xhci->mutex);
3953 	if (command) {
3954 		kfree(command->completion);
3955 		kfree(command);
3956 	}
3957 	return ret;
3958 }
3959 
3960 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3961 {
3962 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3963 }
3964 
3965 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3968 }
3969 
3970 /*
3971  * Transfer the port index into real index in the HW port status
3972  * registers. Caculate offset between the port's PORTSC register
3973  * and port status base. Divide the number of per port register
3974  * to get the real index. The raw port number bases 1.
3975  */
3976 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3977 {
3978 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3979 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3980 	__le32 __iomem *addr;
3981 	int raw_port;
3982 
3983 	if (hcd->speed < HCD_USB3)
3984 		addr = xhci->usb2_ports[port1 - 1];
3985 	else
3986 		addr = xhci->usb3_ports[port1 - 1];
3987 
3988 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3989 	return raw_port;
3990 }
3991 
3992 /*
3993  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3994  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3995  */
3996 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3997 			struct usb_device *udev, u16 max_exit_latency)
3998 {
3999 	struct xhci_virt_device *virt_dev;
4000 	struct xhci_command *command;
4001 	struct xhci_input_control_ctx *ctrl_ctx;
4002 	struct xhci_slot_ctx *slot_ctx;
4003 	unsigned long flags;
4004 	int ret;
4005 
4006 	spin_lock_irqsave(&xhci->lock, flags);
4007 
4008 	virt_dev = xhci->devs[udev->slot_id];
4009 
4010 	/*
4011 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4012 	 * xHC was re-initialized. Exit latency will be set later after
4013 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4014 	 */
4015 
4016 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4017 		spin_unlock_irqrestore(&xhci->lock, flags);
4018 		return 0;
4019 	}
4020 
4021 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4022 	command = xhci->lpm_command;
4023 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4024 	if (!ctrl_ctx) {
4025 		spin_unlock_irqrestore(&xhci->lock, flags);
4026 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4027 				__func__);
4028 		return -ENOMEM;
4029 	}
4030 
4031 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4032 	spin_unlock_irqrestore(&xhci->lock, flags);
4033 
4034 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4035 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4036 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4037 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4038 	slot_ctx->dev_state = 0;
4039 
4040 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4041 			"Set up evaluate context for LPM MEL change.");
4042 
4043 	/* Issue and wait for the evaluate context command. */
4044 	ret = xhci_configure_endpoint(xhci, udev, command,
4045 			true, true);
4046 
4047 	if (!ret) {
4048 		spin_lock_irqsave(&xhci->lock, flags);
4049 		virt_dev->current_mel = max_exit_latency;
4050 		spin_unlock_irqrestore(&xhci->lock, flags);
4051 	}
4052 	return ret;
4053 }
4054 
4055 #ifdef CONFIG_PM
4056 
4057 /* BESL to HIRD Encoding array for USB2 LPM */
4058 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4059 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4060 
4061 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4062 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4063 					struct usb_device *udev)
4064 {
4065 	int u2del, besl, besl_host;
4066 	int besl_device = 0;
4067 	u32 field;
4068 
4069 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4070 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4071 
4072 	if (field & USB_BESL_SUPPORT) {
4073 		for (besl_host = 0; besl_host < 16; besl_host++) {
4074 			if (xhci_besl_encoding[besl_host] >= u2del)
4075 				break;
4076 		}
4077 		/* Use baseline BESL value as default */
4078 		if (field & USB_BESL_BASELINE_VALID)
4079 			besl_device = USB_GET_BESL_BASELINE(field);
4080 		else if (field & USB_BESL_DEEP_VALID)
4081 			besl_device = USB_GET_BESL_DEEP(field);
4082 	} else {
4083 		if (u2del <= 50)
4084 			besl_host = 0;
4085 		else
4086 			besl_host = (u2del - 51) / 75 + 1;
4087 	}
4088 
4089 	besl = besl_host + besl_device;
4090 	if (besl > 15)
4091 		besl = 15;
4092 
4093 	return besl;
4094 }
4095 
4096 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4097 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4098 {
4099 	u32 field;
4100 	int l1;
4101 	int besld = 0;
4102 	int hirdm = 0;
4103 
4104 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4105 
4106 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4107 	l1 = udev->l1_params.timeout / 256;
4108 
4109 	/* device has preferred BESLD */
4110 	if (field & USB_BESL_DEEP_VALID) {
4111 		besld = USB_GET_BESL_DEEP(field);
4112 		hirdm = 1;
4113 	}
4114 
4115 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4116 }
4117 
4118 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4119 			struct usb_device *udev, int enable)
4120 {
4121 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4122 	__le32 __iomem	**port_array;
4123 	__le32 __iomem	*pm_addr, *hlpm_addr;
4124 	u32		pm_val, hlpm_val, field;
4125 	unsigned int	port_num;
4126 	unsigned long	flags;
4127 	int		hird, exit_latency;
4128 	int		ret;
4129 
4130 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4131 			!udev->lpm_capable)
4132 		return -EPERM;
4133 
4134 	if (!udev->parent || udev->parent->parent ||
4135 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4136 		return -EPERM;
4137 
4138 	if (udev->usb2_hw_lpm_capable != 1)
4139 		return -EPERM;
4140 
4141 	spin_lock_irqsave(&xhci->lock, flags);
4142 
4143 	port_array = xhci->usb2_ports;
4144 	port_num = udev->portnum - 1;
4145 	pm_addr = port_array[port_num] + PORTPMSC;
4146 	pm_val = readl(pm_addr);
4147 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4148 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4149 
4150 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4151 			enable ? "enable" : "disable", port_num + 1);
4152 
4153 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4154 		/* Host supports BESL timeout instead of HIRD */
4155 		if (udev->usb2_hw_lpm_besl_capable) {
4156 			/* if device doesn't have a preferred BESL value use a
4157 			 * default one which works with mixed HIRD and BESL
4158 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4159 			 */
4160 			if ((field & USB_BESL_SUPPORT) &&
4161 			    (field & USB_BESL_BASELINE_VALID))
4162 				hird = USB_GET_BESL_BASELINE(field);
4163 			else
4164 				hird = udev->l1_params.besl;
4165 
4166 			exit_latency = xhci_besl_encoding[hird];
4167 			spin_unlock_irqrestore(&xhci->lock, flags);
4168 
4169 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4170 			 * input context for link powermanagement evaluate
4171 			 * context commands. It is protected by hcd->bandwidth
4172 			 * mutex and is shared by all devices. We need to set
4173 			 * the max ext latency in USB 2 BESL LPM as well, so
4174 			 * use the same mutex and xhci_change_max_exit_latency()
4175 			 */
4176 			mutex_lock(hcd->bandwidth_mutex);
4177 			ret = xhci_change_max_exit_latency(xhci, udev,
4178 							   exit_latency);
4179 			mutex_unlock(hcd->bandwidth_mutex);
4180 
4181 			if (ret < 0)
4182 				return ret;
4183 			spin_lock_irqsave(&xhci->lock, flags);
4184 
4185 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4186 			writel(hlpm_val, hlpm_addr);
4187 			/* flush write */
4188 			readl(hlpm_addr);
4189 		} else {
4190 			hird = xhci_calculate_hird_besl(xhci, udev);
4191 		}
4192 
4193 		pm_val &= ~PORT_HIRD_MASK;
4194 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4195 		writel(pm_val, pm_addr);
4196 		pm_val = readl(pm_addr);
4197 		pm_val |= PORT_HLE;
4198 		writel(pm_val, pm_addr);
4199 		/* flush write */
4200 		readl(pm_addr);
4201 	} else {
4202 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4203 		writel(pm_val, pm_addr);
4204 		/* flush write */
4205 		readl(pm_addr);
4206 		if (udev->usb2_hw_lpm_besl_capable) {
4207 			spin_unlock_irqrestore(&xhci->lock, flags);
4208 			mutex_lock(hcd->bandwidth_mutex);
4209 			xhci_change_max_exit_latency(xhci, udev, 0);
4210 			mutex_unlock(hcd->bandwidth_mutex);
4211 			return 0;
4212 		}
4213 	}
4214 
4215 	spin_unlock_irqrestore(&xhci->lock, flags);
4216 	return 0;
4217 }
4218 
4219 /* check if a usb2 port supports a given extened capability protocol
4220  * only USB2 ports extended protocol capability values are cached.
4221  * Return 1 if capability is supported
4222  */
4223 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4224 					   unsigned capability)
4225 {
4226 	u32 port_offset, port_count;
4227 	int i;
4228 
4229 	for (i = 0; i < xhci->num_ext_caps; i++) {
4230 		if (xhci->ext_caps[i] & capability) {
4231 			/* port offsets starts at 1 */
4232 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4233 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4234 			if (port >= port_offset &&
4235 			    port < port_offset + port_count)
4236 				return 1;
4237 		}
4238 	}
4239 	return 0;
4240 }
4241 
4242 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4243 {
4244 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4245 	int		portnum = udev->portnum - 1;
4246 
4247 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4248 			!udev->lpm_capable)
4249 		return 0;
4250 
4251 	/* we only support lpm for non-hub device connected to root hub yet */
4252 	if (!udev->parent || udev->parent->parent ||
4253 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4254 		return 0;
4255 
4256 	if (xhci->hw_lpm_support == 1 &&
4257 			xhci_check_usb2_port_capability(
4258 				xhci, portnum, XHCI_HLC)) {
4259 		udev->usb2_hw_lpm_capable = 1;
4260 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4261 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4262 		if (xhci_check_usb2_port_capability(xhci, portnum,
4263 					XHCI_BLC))
4264 			udev->usb2_hw_lpm_besl_capable = 1;
4265 	}
4266 
4267 	return 0;
4268 }
4269 
4270 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4271 
4272 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4273 static unsigned long long xhci_service_interval_to_ns(
4274 		struct usb_endpoint_descriptor *desc)
4275 {
4276 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4277 }
4278 
4279 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4280 		enum usb3_link_state state)
4281 {
4282 	unsigned long long sel;
4283 	unsigned long long pel;
4284 	unsigned int max_sel_pel;
4285 	char *state_name;
4286 
4287 	switch (state) {
4288 	case USB3_LPM_U1:
4289 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4290 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4291 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4292 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4293 		state_name = "U1";
4294 		break;
4295 	case USB3_LPM_U2:
4296 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4297 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4298 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4299 		state_name = "U2";
4300 		break;
4301 	default:
4302 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4303 				__func__);
4304 		return USB3_LPM_DISABLED;
4305 	}
4306 
4307 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4308 		return USB3_LPM_DEVICE_INITIATED;
4309 
4310 	if (sel > max_sel_pel)
4311 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4312 				"due to long SEL %llu ms\n",
4313 				state_name, sel);
4314 	else
4315 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4316 				"due to long PEL %llu ms\n",
4317 				state_name, pel);
4318 	return USB3_LPM_DISABLED;
4319 }
4320 
4321 /* The U1 timeout should be the maximum of the following values:
4322  *  - For control endpoints, U1 system exit latency (SEL) * 3
4323  *  - For bulk endpoints, U1 SEL * 5
4324  *  - For interrupt endpoints:
4325  *    - Notification EPs, U1 SEL * 3
4326  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4327  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4328  */
4329 static unsigned long long xhci_calculate_intel_u1_timeout(
4330 		struct usb_device *udev,
4331 		struct usb_endpoint_descriptor *desc)
4332 {
4333 	unsigned long long timeout_ns;
4334 	int ep_type;
4335 	int intr_type;
4336 
4337 	ep_type = usb_endpoint_type(desc);
4338 	switch (ep_type) {
4339 	case USB_ENDPOINT_XFER_CONTROL:
4340 		timeout_ns = udev->u1_params.sel * 3;
4341 		break;
4342 	case USB_ENDPOINT_XFER_BULK:
4343 		timeout_ns = udev->u1_params.sel * 5;
4344 		break;
4345 	case USB_ENDPOINT_XFER_INT:
4346 		intr_type = usb_endpoint_interrupt_type(desc);
4347 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4348 			timeout_ns = udev->u1_params.sel * 3;
4349 			break;
4350 		}
4351 		/* Otherwise the calculation is the same as isoc eps */
4352 		/* fall through */
4353 	case USB_ENDPOINT_XFER_ISOC:
4354 		timeout_ns = xhci_service_interval_to_ns(desc);
4355 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4356 		if (timeout_ns < udev->u1_params.sel * 2)
4357 			timeout_ns = udev->u1_params.sel * 2;
4358 		break;
4359 	default:
4360 		return 0;
4361 	}
4362 
4363 	return timeout_ns;
4364 }
4365 
4366 /* Returns the hub-encoded U1 timeout value. */
4367 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4368 		struct usb_device *udev,
4369 		struct usb_endpoint_descriptor *desc)
4370 {
4371 	unsigned long long timeout_ns;
4372 
4373 	if (xhci->quirks & XHCI_INTEL_HOST)
4374 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4375 	else
4376 		timeout_ns = udev->u1_params.sel;
4377 
4378 	/* The U1 timeout is encoded in 1us intervals.
4379 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4380 	 */
4381 	if (timeout_ns == USB3_LPM_DISABLED)
4382 		timeout_ns = 1;
4383 	else
4384 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4385 
4386 	/* If the necessary timeout value is bigger than what we can set in the
4387 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4388 	 */
4389 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4390 		return timeout_ns;
4391 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4392 			"due to long timeout %llu ms\n", timeout_ns);
4393 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4394 }
4395 
4396 /* The U2 timeout should be the maximum of:
4397  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4398  *  - largest bInterval of any active periodic endpoint (to avoid going
4399  *    into lower power link states between intervals).
4400  *  - the U2 Exit Latency of the device
4401  */
4402 static unsigned long long xhci_calculate_intel_u2_timeout(
4403 		struct usb_device *udev,
4404 		struct usb_endpoint_descriptor *desc)
4405 {
4406 	unsigned long long timeout_ns;
4407 	unsigned long long u2_del_ns;
4408 
4409 	timeout_ns = 10 * 1000 * 1000;
4410 
4411 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4412 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4413 		timeout_ns = xhci_service_interval_to_ns(desc);
4414 
4415 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4416 	if (u2_del_ns > timeout_ns)
4417 		timeout_ns = u2_del_ns;
4418 
4419 	return timeout_ns;
4420 }
4421 
4422 /* Returns the hub-encoded U2 timeout value. */
4423 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4424 		struct usb_device *udev,
4425 		struct usb_endpoint_descriptor *desc)
4426 {
4427 	unsigned long long timeout_ns;
4428 
4429 	if (xhci->quirks & XHCI_INTEL_HOST)
4430 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4431 	else
4432 		timeout_ns = udev->u2_params.sel;
4433 
4434 	/* The U2 timeout is encoded in 256us intervals */
4435 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4436 	/* If the necessary timeout value is bigger than what we can set in the
4437 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4438 	 */
4439 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4440 		return timeout_ns;
4441 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4442 			"due to long timeout %llu ms\n", timeout_ns);
4443 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4444 }
4445 
4446 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447 		struct usb_device *udev,
4448 		struct usb_endpoint_descriptor *desc,
4449 		enum usb3_link_state state,
4450 		u16 *timeout)
4451 {
4452 	if (state == USB3_LPM_U1)
4453 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4454 	else if (state == USB3_LPM_U2)
4455 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4456 
4457 	return USB3_LPM_DISABLED;
4458 }
4459 
4460 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4461 		struct usb_device *udev,
4462 		struct usb_endpoint_descriptor *desc,
4463 		enum usb3_link_state state,
4464 		u16 *timeout)
4465 {
4466 	u16 alt_timeout;
4467 
4468 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4469 		desc, state, timeout);
4470 
4471 	/* If we found we can't enable hub-initiated LPM, or
4472 	 * the U1 or U2 exit latency was too high to allow
4473 	 * device-initiated LPM as well, just stop searching.
4474 	 */
4475 	if (alt_timeout == USB3_LPM_DISABLED ||
4476 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4477 		*timeout = alt_timeout;
4478 		return -E2BIG;
4479 	}
4480 	if (alt_timeout > *timeout)
4481 		*timeout = alt_timeout;
4482 	return 0;
4483 }
4484 
4485 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4486 		struct usb_device *udev,
4487 		struct usb_host_interface *alt,
4488 		enum usb3_link_state state,
4489 		u16 *timeout)
4490 {
4491 	int j;
4492 
4493 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4494 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4495 					&alt->endpoint[j].desc, state, timeout))
4496 			return -E2BIG;
4497 		continue;
4498 	}
4499 	return 0;
4500 }
4501 
4502 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4503 		enum usb3_link_state state)
4504 {
4505 	struct usb_device *parent;
4506 	unsigned int num_hubs;
4507 
4508 	if (state == USB3_LPM_U2)
4509 		return 0;
4510 
4511 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4512 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4513 			parent = parent->parent)
4514 		num_hubs++;
4515 
4516 	if (num_hubs < 2)
4517 		return 0;
4518 
4519 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4520 			" below second-tier hub.\n");
4521 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4522 			"to decrease power consumption.\n");
4523 	return -E2BIG;
4524 }
4525 
4526 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4527 		struct usb_device *udev,
4528 		enum usb3_link_state state)
4529 {
4530 	if (xhci->quirks & XHCI_INTEL_HOST)
4531 		return xhci_check_intel_tier_policy(udev, state);
4532 	else
4533 		return 0;
4534 }
4535 
4536 /* Returns the U1 or U2 timeout that should be enabled.
4537  * If the tier check or timeout setting functions return with a non-zero exit
4538  * code, that means the timeout value has been finalized and we shouldn't look
4539  * at any more endpoints.
4540  */
4541 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4542 			struct usb_device *udev, enum usb3_link_state state)
4543 {
4544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4545 	struct usb_host_config *config;
4546 	char *state_name;
4547 	int i;
4548 	u16 timeout = USB3_LPM_DISABLED;
4549 
4550 	if (state == USB3_LPM_U1)
4551 		state_name = "U1";
4552 	else if (state == USB3_LPM_U2)
4553 		state_name = "U2";
4554 	else {
4555 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4556 				state);
4557 		return timeout;
4558 	}
4559 
4560 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4561 		return timeout;
4562 
4563 	/* Gather some information about the currently installed configuration
4564 	 * and alternate interface settings.
4565 	 */
4566 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4567 			state, &timeout))
4568 		return timeout;
4569 
4570 	config = udev->actconfig;
4571 	if (!config)
4572 		return timeout;
4573 
4574 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4575 		struct usb_driver *driver;
4576 		struct usb_interface *intf = config->interface[i];
4577 
4578 		if (!intf)
4579 			continue;
4580 
4581 		/* Check if any currently bound drivers want hub-initiated LPM
4582 		 * disabled.
4583 		 */
4584 		if (intf->dev.driver) {
4585 			driver = to_usb_driver(intf->dev.driver);
4586 			if (driver && driver->disable_hub_initiated_lpm) {
4587 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4588 						"at request of driver %s\n",
4589 						state_name, driver->name);
4590 				return xhci_get_timeout_no_hub_lpm(udev, state);
4591 			}
4592 		}
4593 
4594 		/* Not sure how this could happen... */
4595 		if (!intf->cur_altsetting)
4596 			continue;
4597 
4598 		if (xhci_update_timeout_for_interface(xhci, udev,
4599 					intf->cur_altsetting,
4600 					state, &timeout))
4601 			return timeout;
4602 	}
4603 	return timeout;
4604 }
4605 
4606 static int calculate_max_exit_latency(struct usb_device *udev,
4607 		enum usb3_link_state state_changed,
4608 		u16 hub_encoded_timeout)
4609 {
4610 	unsigned long long u1_mel_us = 0;
4611 	unsigned long long u2_mel_us = 0;
4612 	unsigned long long mel_us = 0;
4613 	bool disabling_u1;
4614 	bool disabling_u2;
4615 	bool enabling_u1;
4616 	bool enabling_u2;
4617 
4618 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4619 			hub_encoded_timeout == USB3_LPM_DISABLED);
4620 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4621 			hub_encoded_timeout == USB3_LPM_DISABLED);
4622 
4623 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4624 			hub_encoded_timeout != USB3_LPM_DISABLED);
4625 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4626 			hub_encoded_timeout != USB3_LPM_DISABLED);
4627 
4628 	/* If U1 was already enabled and we're not disabling it,
4629 	 * or we're going to enable U1, account for the U1 max exit latency.
4630 	 */
4631 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4632 			enabling_u1)
4633 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4634 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4635 			enabling_u2)
4636 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4637 
4638 	if (u1_mel_us > u2_mel_us)
4639 		mel_us = u1_mel_us;
4640 	else
4641 		mel_us = u2_mel_us;
4642 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4643 	if (mel_us > MAX_EXIT) {
4644 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4645 				"is too big.\n", mel_us);
4646 		return -E2BIG;
4647 	}
4648 	return mel_us;
4649 }
4650 
4651 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4652 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4653 			struct usb_device *udev, enum usb3_link_state state)
4654 {
4655 	struct xhci_hcd	*xhci;
4656 	u16 hub_encoded_timeout;
4657 	int mel;
4658 	int ret;
4659 
4660 	xhci = hcd_to_xhci(hcd);
4661 	/* The LPM timeout values are pretty host-controller specific, so don't
4662 	 * enable hub-initiated timeouts unless the vendor has provided
4663 	 * information about their timeout algorithm.
4664 	 */
4665 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4666 			!xhci->devs[udev->slot_id])
4667 		return USB3_LPM_DISABLED;
4668 
4669 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4670 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4671 	if (mel < 0) {
4672 		/* Max Exit Latency is too big, disable LPM. */
4673 		hub_encoded_timeout = USB3_LPM_DISABLED;
4674 		mel = 0;
4675 	}
4676 
4677 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4678 	if (ret)
4679 		return ret;
4680 	return hub_encoded_timeout;
4681 }
4682 
4683 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684 			struct usb_device *udev, enum usb3_link_state state)
4685 {
4686 	struct xhci_hcd	*xhci;
4687 	u16 mel;
4688 
4689 	xhci = hcd_to_xhci(hcd);
4690 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4691 			!xhci->devs[udev->slot_id])
4692 		return 0;
4693 
4694 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4695 	return xhci_change_max_exit_latency(xhci, udev, mel);
4696 }
4697 #else /* CONFIG_PM */
4698 
4699 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4700 				struct usb_device *udev, int enable)
4701 {
4702 	return 0;
4703 }
4704 
4705 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4706 {
4707 	return 0;
4708 }
4709 
4710 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4711 			struct usb_device *udev, enum usb3_link_state state)
4712 {
4713 	return USB3_LPM_DISABLED;
4714 }
4715 
4716 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4717 			struct usb_device *udev, enum usb3_link_state state)
4718 {
4719 	return 0;
4720 }
4721 #endif	/* CONFIG_PM */
4722 
4723 /*-------------------------------------------------------------------------*/
4724 
4725 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4726  * internal data structures for the device.
4727  */
4728 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4729 			struct usb_tt *tt, gfp_t mem_flags)
4730 {
4731 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4732 	struct xhci_virt_device *vdev;
4733 	struct xhci_command *config_cmd;
4734 	struct xhci_input_control_ctx *ctrl_ctx;
4735 	struct xhci_slot_ctx *slot_ctx;
4736 	unsigned long flags;
4737 	unsigned think_time;
4738 	int ret;
4739 
4740 	/* Ignore root hubs */
4741 	if (!hdev->parent)
4742 		return 0;
4743 
4744 	vdev = xhci->devs[hdev->slot_id];
4745 	if (!vdev) {
4746 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4747 		return -EINVAL;
4748 	}
4749 
4750 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4751 	if (!config_cmd)
4752 		return -ENOMEM;
4753 
4754 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4755 	if (!ctrl_ctx) {
4756 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4757 				__func__);
4758 		xhci_free_command(xhci, config_cmd);
4759 		return -ENOMEM;
4760 	}
4761 
4762 	spin_lock_irqsave(&xhci->lock, flags);
4763 	if (hdev->speed == USB_SPEED_HIGH &&
4764 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4765 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4766 		xhci_free_command(xhci, config_cmd);
4767 		spin_unlock_irqrestore(&xhci->lock, flags);
4768 		return -ENOMEM;
4769 	}
4770 
4771 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4772 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4773 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4774 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4775 	/*
4776 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4777 	 * but it may be already set to 1 when setup an xHCI virtual
4778 	 * device, so clear it anyway.
4779 	 */
4780 	if (tt->multi)
4781 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4782 	else if (hdev->speed == USB_SPEED_FULL)
4783 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4784 
4785 	if (xhci->hci_version > 0x95) {
4786 		xhci_dbg(xhci, "xHCI version %x needs hub "
4787 				"TT think time and number of ports\n",
4788 				(unsigned int) xhci->hci_version);
4789 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4790 		/* Set TT think time - convert from ns to FS bit times.
4791 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4792 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4793 		 *
4794 		 * xHCI 1.0: this field shall be 0 if the device is not a
4795 		 * High-spped hub.
4796 		 */
4797 		think_time = tt->think_time;
4798 		if (think_time != 0)
4799 			think_time = (think_time / 666) - 1;
4800 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4801 			slot_ctx->tt_info |=
4802 				cpu_to_le32(TT_THINK_TIME(think_time));
4803 	} else {
4804 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4805 				"TT think time or number of ports\n",
4806 				(unsigned int) xhci->hci_version);
4807 	}
4808 	slot_ctx->dev_state = 0;
4809 	spin_unlock_irqrestore(&xhci->lock, flags);
4810 
4811 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4812 			(xhci->hci_version > 0x95) ?
4813 			"configure endpoint" : "evaluate context");
4814 
4815 	/* Issue and wait for the configure endpoint or
4816 	 * evaluate context command.
4817 	 */
4818 	if (xhci->hci_version > 0x95)
4819 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4820 				false, false);
4821 	else
4822 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4823 				true, false);
4824 
4825 	xhci_free_command(xhci, config_cmd);
4826 	return ret;
4827 }
4828 
4829 static int xhci_get_frame(struct usb_hcd *hcd)
4830 {
4831 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832 	/* EHCI mods by the periodic size.  Why? */
4833 	return readl(&xhci->run_regs->microframe_index) >> 3;
4834 }
4835 
4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4837 {
4838 	struct xhci_hcd		*xhci;
4839 	/*
4840 	 * TODO: Check with DWC3 clients for sysdev according to
4841 	 * quirks
4842 	 */
4843 	struct device		*dev = hcd->self.sysdev;
4844 	unsigned int		minor_rev;
4845 	int			retval;
4846 
4847 	/* Accept arbitrarily long scatter-gather lists */
4848 	hcd->self.sg_tablesize = ~0;
4849 
4850 	/* support to build packet from discontinuous buffers */
4851 	hcd->self.no_sg_constraint = 1;
4852 
4853 	/* XHCI controllers don't stop the ep queue on short packets :| */
4854 	hcd->self.no_stop_on_short = 1;
4855 
4856 	xhci = hcd_to_xhci(hcd);
4857 
4858 	if (usb_hcd_is_primary_hcd(hcd)) {
4859 		xhci->main_hcd = hcd;
4860 		/* Mark the first roothub as being USB 2.0.
4861 		 * The xHCI driver will register the USB 3.0 roothub.
4862 		 */
4863 		hcd->speed = HCD_USB2;
4864 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4865 		/*
4866 		 * USB 2.0 roothub under xHCI has an integrated TT,
4867 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4868 		 * companion controller.
4869 		 */
4870 		hcd->has_tt = 1;
4871 	} else {
4872 		/*
4873 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4874 		 * minor revision instead of sbrn
4875 		 */
4876 		minor_rev = xhci->usb3_rhub.min_rev;
4877 		if (minor_rev) {
4878 			hcd->speed = HCD_USB31;
4879 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4880 		}
4881 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4882 			  minor_rev,
4883 			  minor_rev ? "Enhanced" : "");
4884 
4885 		/* xHCI private pointer was set in xhci_pci_probe for the second
4886 		 * registered roothub.
4887 		 */
4888 		return 0;
4889 	}
4890 
4891 	mutex_init(&xhci->mutex);
4892 	xhci->cap_regs = hcd->regs;
4893 	xhci->op_regs = hcd->regs +
4894 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4895 	xhci->run_regs = hcd->regs +
4896 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4897 	/* Cache read-only capability registers */
4898 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4899 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4900 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4901 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4902 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4903 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4904 	if (xhci->hci_version > 0x100)
4905 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4906 
4907 	xhci->quirks |= quirks;
4908 
4909 	get_quirks(dev, xhci);
4910 
4911 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4912 	 * success event after a short transfer. This quirk will ignore such
4913 	 * spurious event.
4914 	 */
4915 	if (xhci->hci_version > 0x96)
4916 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4917 
4918 	/* Make sure the HC is halted. */
4919 	retval = xhci_halt(xhci);
4920 	if (retval)
4921 		return retval;
4922 
4923 	xhci_dbg(xhci, "Resetting HCD\n");
4924 	/* Reset the internal HC memory state and registers. */
4925 	retval = xhci_reset(xhci);
4926 	if (retval)
4927 		return retval;
4928 	xhci_dbg(xhci, "Reset complete\n");
4929 
4930 	/*
4931 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4932 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4933 	 * address memory pointers actually. So, this driver clears the AC64
4934 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4935 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4936 	 */
4937 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4938 		xhci->hcc_params &= ~BIT(0);
4939 
4940 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4941 	 * if xHC supports 64-bit addressing */
4942 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4943 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4944 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4945 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4946 	} else {
4947 		/*
4948 		 * This is to avoid error in cases where a 32-bit USB
4949 		 * controller is used on a 64-bit capable system.
4950 		 */
4951 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4952 		if (retval)
4953 			return retval;
4954 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4955 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4956 	}
4957 
4958 	xhci_dbg(xhci, "Calling HCD init\n");
4959 	/* Initialize HCD and host controller data structures. */
4960 	retval = xhci_init(hcd);
4961 	if (retval)
4962 		return retval;
4963 	xhci_dbg(xhci, "Called HCD init\n");
4964 
4965 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4966 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4967 
4968 	return 0;
4969 }
4970 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4971 
4972 static const struct hc_driver xhci_hc_driver = {
4973 	.description =		"xhci-hcd",
4974 	.product_desc =		"xHCI Host Controller",
4975 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4976 
4977 	/*
4978 	 * generic hardware linkage
4979 	 */
4980 	.irq =			xhci_irq,
4981 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4982 
4983 	/*
4984 	 * basic lifecycle operations
4985 	 */
4986 	.reset =		NULL, /* set in xhci_init_driver() */
4987 	.start =		xhci_run,
4988 	.stop =			xhci_stop,
4989 	.shutdown =		xhci_shutdown,
4990 
4991 	/*
4992 	 * managing i/o requests and associated device resources
4993 	 */
4994 	.urb_enqueue =		xhci_urb_enqueue,
4995 	.urb_dequeue =		xhci_urb_dequeue,
4996 	.alloc_dev =		xhci_alloc_dev,
4997 	.free_dev =		xhci_free_dev,
4998 	.alloc_streams =	xhci_alloc_streams,
4999 	.free_streams =		xhci_free_streams,
5000 	.add_endpoint =		xhci_add_endpoint,
5001 	.drop_endpoint =	xhci_drop_endpoint,
5002 	.endpoint_reset =	xhci_endpoint_reset,
5003 	.check_bandwidth =	xhci_check_bandwidth,
5004 	.reset_bandwidth =	xhci_reset_bandwidth,
5005 	.address_device =	xhci_address_device,
5006 	.enable_device =	xhci_enable_device,
5007 	.update_hub_device =	xhci_update_hub_device,
5008 	.reset_device =		xhci_discover_or_reset_device,
5009 
5010 	/*
5011 	 * scheduling support
5012 	 */
5013 	.get_frame_number =	xhci_get_frame,
5014 
5015 	/*
5016 	 * root hub support
5017 	 */
5018 	.hub_control =		xhci_hub_control,
5019 	.hub_status_data =	xhci_hub_status_data,
5020 	.bus_suspend =		xhci_bus_suspend,
5021 	.bus_resume =		xhci_bus_resume,
5022 
5023 	/*
5024 	 * call back when device connected and addressed
5025 	 */
5026 	.update_device =        xhci_update_device,
5027 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5028 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5029 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5030 	.find_raw_port_number =	xhci_find_raw_port_number,
5031 };
5032 
5033 void xhci_init_driver(struct hc_driver *drv,
5034 		      const struct xhci_driver_overrides *over)
5035 {
5036 	BUG_ON(!over);
5037 
5038 	/* Copy the generic table to drv then apply the overrides */
5039 	*drv = xhci_hc_driver;
5040 
5041 	if (over) {
5042 		drv->hcd_priv_size += over->extra_priv_size;
5043 		if (over->reset)
5044 			drv->reset = over->reset;
5045 		if (over->start)
5046 			drv->start = over->start;
5047 	}
5048 }
5049 EXPORT_SYMBOL_GPL(xhci_init_driver);
5050 
5051 MODULE_DESCRIPTION(DRIVER_DESC);
5052 MODULE_AUTHOR(DRIVER_AUTHOR);
5053 MODULE_LICENSE("GPL");
5054 
5055 static int __init xhci_hcd_init(void)
5056 {
5057 	/*
5058 	 * Check the compiler generated sizes of structures that must be laid
5059 	 * out in specific ways for hardware access.
5060 	 */
5061 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5062 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5063 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5064 	/* xhci_device_control has eight fields, and also
5065 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5066 	 */
5067 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5068 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5069 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5070 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5071 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5072 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5073 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5074 
5075 	if (usb_disabled())
5076 		return -ENODEV;
5077 
5078 	xhci_debugfs_create_root();
5079 
5080 	return 0;
5081 }
5082 
5083 /*
5084  * If an init function is provided, an exit function must also be provided
5085  * to allow module unload.
5086  */
5087 static void __exit xhci_hcd_fini(void)
5088 {
5089 	xhci_debugfs_remove_root();
5090 }
5091 
5092 module_init(xhci_hcd_init);
5093 module_exit(xhci_hcd_fini);
5094