1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; i++) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 #ifdef CONFIG_PCI 220 static int xhci_free_msi(struct xhci_hcd *xhci) 221 { 222 int i; 223 224 if (!xhci->msix_entries) 225 return -EINVAL; 226 227 for (i = 0; i < xhci->msix_count; i++) 228 if (xhci->msix_entries[i].vector) 229 free_irq(xhci->msix_entries[i].vector, 230 xhci_to_hcd(xhci)); 231 return 0; 232 } 233 234 /* 235 * Set up MSI 236 */ 237 static int xhci_setup_msi(struct xhci_hcd *xhci) 238 { 239 int ret; 240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 241 242 ret = pci_enable_msi(pdev); 243 if (ret) { 244 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 245 "failed to allocate MSI entry"); 246 return ret; 247 } 248 249 ret = request_irq(pdev->irq, xhci_msi_irq, 250 0, "xhci_hcd", xhci_to_hcd(xhci)); 251 if (ret) { 252 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 253 "disable MSI interrupt"); 254 pci_disable_msi(pdev); 255 } 256 257 return ret; 258 } 259 260 /* 261 * Free IRQs 262 * free all IRQs request 263 */ 264 static void xhci_free_irq(struct xhci_hcd *xhci) 265 { 266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 267 int ret; 268 269 /* return if using legacy interrupt */ 270 if (xhci_to_hcd(xhci)->irq > 0) 271 return; 272 273 ret = xhci_free_msi(xhci); 274 if (!ret) 275 return; 276 if (pdev->irq > 0) 277 free_irq(pdev->irq, xhci_to_hcd(xhci)); 278 279 return; 280 } 281 282 /* 283 * Set up MSI-X 284 */ 285 static int xhci_setup_msix(struct xhci_hcd *xhci) 286 { 287 int i, ret = 0; 288 struct usb_hcd *hcd = xhci_to_hcd(xhci); 289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 290 291 /* 292 * calculate number of msi-x vectors supported. 293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 294 * with max number of interrupters based on the xhci HCSPARAMS1. 295 * - num_online_cpus: maximum msi-x vectors per CPUs core. 296 * Add additional 1 vector to ensure always available interrupt. 297 */ 298 xhci->msix_count = min(num_online_cpus() + 1, 299 HCS_MAX_INTRS(xhci->hcs_params1)); 300 301 xhci->msix_entries = 302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 303 GFP_KERNEL); 304 if (!xhci->msix_entries) 305 return -ENOMEM; 306 307 for (i = 0; i < xhci->msix_count; i++) { 308 xhci->msix_entries[i].entry = i; 309 xhci->msix_entries[i].vector = 0; 310 } 311 312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "Failed to enable MSI-X"); 316 goto free_entries; 317 } 318 319 for (i = 0; i < xhci->msix_count; i++) { 320 ret = request_irq(xhci->msix_entries[i].vector, 321 xhci_msi_irq, 322 0, "xhci_hcd", xhci_to_hcd(xhci)); 323 if (ret) 324 goto disable_msix; 325 } 326 327 hcd->msix_enabled = 1; 328 return ret; 329 330 disable_msix: 331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 332 xhci_free_irq(xhci); 333 pci_disable_msix(pdev); 334 free_entries: 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 return ret; 338 } 339 340 /* Free any IRQs and disable MSI-X */ 341 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 342 { 343 struct usb_hcd *hcd = xhci_to_hcd(xhci); 344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 345 346 if (xhci->quirks & XHCI_PLAT) 347 return; 348 349 xhci_free_irq(xhci); 350 351 if (xhci->msix_entries) { 352 pci_disable_msix(pdev); 353 kfree(xhci->msix_entries); 354 xhci->msix_entries = NULL; 355 } else { 356 pci_disable_msi(pdev); 357 } 358 359 hcd->msix_enabled = 0; 360 return; 361 } 362 363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 364 { 365 int i; 366 367 if (xhci->msix_entries) { 368 for (i = 0; i < xhci->msix_count; i++) 369 synchronize_irq(xhci->msix_entries[i].vector); 370 } 371 } 372 373 static int xhci_try_enable_msi(struct usb_hcd *hcd) 374 { 375 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 376 struct pci_dev *pdev; 377 int ret; 378 379 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 380 if (xhci->quirks & XHCI_PLAT) 381 return 0; 382 383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 384 /* 385 * Some Fresco Logic host controllers advertise MSI, but fail to 386 * generate interrupts. Don't even try to enable MSI. 387 */ 388 if (xhci->quirks & XHCI_BROKEN_MSI) 389 goto legacy_irq; 390 391 /* unregister the legacy interrupt */ 392 if (hcd->irq) 393 free_irq(hcd->irq, hcd); 394 hcd->irq = 0; 395 396 ret = xhci_setup_msix(xhci); 397 if (ret) 398 /* fall back to msi*/ 399 ret = xhci_setup_msi(xhci); 400 401 if (!ret) 402 /* hcd->irq is 0, we have MSI */ 403 return 0; 404 405 if (!pdev->irq) { 406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 407 return -EINVAL; 408 } 409 410 legacy_irq: 411 if (!strlen(hcd->irq_descr)) 412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 413 hcd->driver->description, hcd->self.busnum); 414 415 /* fall back to legacy interrupt*/ 416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 417 hcd->irq_descr, hcd); 418 if (ret) { 419 xhci_err(xhci, "request interrupt %d failed\n", 420 pdev->irq); 421 return ret; 422 } 423 hcd->irq = pdev->irq; 424 return 0; 425 } 426 427 #else 428 429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 430 { 431 return 0; 432 } 433 434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 435 { 436 } 437 438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 439 { 440 } 441 442 #endif 443 444 static void compliance_mode_recovery(unsigned long arg) 445 { 446 struct xhci_hcd *xhci; 447 struct usb_hcd *hcd; 448 u32 temp; 449 int i; 450 451 xhci = (struct xhci_hcd *)arg; 452 453 for (i = 0; i < xhci->num_usb3_ports; i++) { 454 temp = readl(xhci->usb3_ports[i]); 455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 456 /* 457 * Compliance Mode Detected. Letting USB Core 458 * handle the Warm Reset 459 */ 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "Compliance mode detected->port %d", 462 i + 1); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Attempting compliance mode recovery"); 465 hcd = xhci->shared_hcd; 466 467 if (hcd->state == HC_STATE_SUSPENDED) 468 usb_hcd_resume_root_hub(hcd); 469 470 usb_hcd_poll_rh_status(hcd); 471 } 472 } 473 474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 475 mod_timer(&xhci->comp_mode_recovery_timer, 476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 477 } 478 479 /* 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 481 * that causes ports behind that hardware to enter compliance mode sometimes. 482 * The quirk creates a timer that polls every 2 seconds the link state of 483 * each host controller's port and recovers it by issuing a Warm reset 484 * if Compliance mode is detected, otherwise the port will become "dead" (no 485 * device connections or disconnections will be detected anymore). Becasue no 486 * status event is generated when entering compliance mode (per xhci spec), 487 * this quirk is needed on systems that have the failing hardware installed. 488 */ 489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 490 { 491 xhci->port_status_u0 = 0; 492 setup_timer(&xhci->comp_mode_recovery_timer, 493 compliance_mode_recovery, (unsigned long)xhci); 494 xhci->comp_mode_recovery_timer.expires = jiffies + 495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 496 497 add_timer(&xhci->comp_mode_recovery_timer); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Compliance mode recovery timer initialized"); 500 } 501 502 /* 503 * This function identifies the systems that have installed the SN65LVPE502CP 504 * USB3.0 re-driver and that need the Compliance Mode Quirk. 505 * Systems: 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 507 */ 508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 509 { 510 const char *dmi_product_name, *dmi_sys_vendor; 511 512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 514 if (!dmi_product_name || !dmi_sys_vendor) 515 return false; 516 517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 518 return false; 519 520 if (strstr(dmi_product_name, "Z420") || 521 strstr(dmi_product_name, "Z620") || 522 strstr(dmi_product_name, "Z820") || 523 strstr(dmi_product_name, "Z1 Workstation")) 524 return true; 525 526 return false; 527 } 528 529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 530 { 531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 532 } 533 534 535 /* 536 * Initialize memory for HCD and xHC (one-time init). 537 * 538 * Program the PAGESIZE register, initialize the device context array, create 539 * device contexts (?), set up a command ring segment (or two?), create event 540 * ring (one for now). 541 */ 542 int xhci_init(struct usb_hcd *hcd) 543 { 544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 545 int retval = 0; 546 547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 548 spin_lock_init(&xhci->lock); 549 if (xhci->hci_version == 0x95 && link_quirk) { 550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 551 "QUIRK: Not clearing Link TRB chain bits."); 552 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 553 } else { 554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 555 "xHCI doesn't need link TRB QUIRK"); 556 } 557 retval = xhci_mem_init(xhci, GFP_KERNEL); 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 559 560 /* Initializing Compliance Mode Recovery Data If Needed */ 561 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 562 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 563 compliance_mode_recovery_timer_init(xhci); 564 } 565 566 return retval; 567 } 568 569 /*-------------------------------------------------------------------------*/ 570 571 572 static int xhci_run_finished(struct xhci_hcd *xhci) 573 { 574 if (xhci_start(xhci)) { 575 xhci_halt(xhci); 576 return -ENODEV; 577 } 578 xhci->shared_hcd->state = HC_STATE_RUNNING; 579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 580 581 if (xhci->quirks & XHCI_NEC_HOST) 582 xhci_ring_cmd_db(xhci); 583 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished xhci_run for USB3 roothub"); 586 return 0; 587 } 588 589 /* 590 * Start the HC after it was halted. 591 * 592 * This function is called by the USB core when the HC driver is added. 593 * Its opposite is xhci_stop(). 594 * 595 * xhci_init() must be called once before this function can be called. 596 * Reset the HC, enable device slot contexts, program DCBAAP, and 597 * set command ring pointer and event ring pointer. 598 * 599 * Setup MSI-X vectors and enable interrupts. 600 */ 601 int xhci_run(struct usb_hcd *hcd) 602 { 603 u32 temp; 604 u64 temp_64; 605 int ret; 606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 607 608 /* Start the xHCI host controller running only after the USB 2.0 roothub 609 * is setup. 610 */ 611 612 hcd->uses_new_polling = 1; 613 if (!usb_hcd_is_primary_hcd(hcd)) 614 return xhci_run_finished(xhci); 615 616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 617 618 ret = xhci_try_enable_msi(hcd); 619 if (ret) 620 return ret; 621 622 xhci_dbg(xhci, "Command ring memory map follows:\n"); 623 xhci_debug_ring(xhci, xhci->cmd_ring); 624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 625 xhci_dbg_cmd_ptrs(xhci); 626 627 xhci_dbg(xhci, "ERST memory map follows:\n"); 628 xhci_dbg_erst(xhci, &xhci->erst); 629 xhci_dbg(xhci, "Event ring:\n"); 630 xhci_debug_ring(xhci, xhci->event_ring); 631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 633 temp_64 &= ~ERST_PTR_MASK; 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 636 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Set the interrupt modulation register"); 639 temp = readl(&xhci->ir_set->irq_control); 640 temp &= ~ER_IRQ_INTERVAL_MASK; 641 /* 642 * the increment interval is 8 times as much as that defined 643 * in xHCI spec on MTK's controller 644 */ 645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 646 writel(temp, &xhci->ir_set->irq_control); 647 648 /* Set the HCD state before we enable the irqs */ 649 temp = readl(&xhci->op_regs->command); 650 temp |= (CMD_EIE); 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "// Enable interrupts, cmd = 0x%x.", temp); 653 writel(temp, &xhci->op_regs->command); 654 655 temp = readl(&xhci->ir_set->irq_pending); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 660 xhci_print_ir_set(xhci, 0); 661 662 if (xhci->quirks & XHCI_NEC_HOST) { 663 struct xhci_command *command; 664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 665 if (!command) 666 return -ENOMEM; 667 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 668 TRB_TYPE(TRB_NEC_GET_FW)); 669 } 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "Finished xhci_run for USB2 roothub"); 672 return 0; 673 } 674 EXPORT_SYMBOL_GPL(xhci_run); 675 676 /* 677 * Stop xHCI driver. 678 * 679 * This function is called by the USB core when the HC driver is removed. 680 * Its opposite is xhci_run(). 681 * 682 * Disable device contexts, disable IRQs, and quiesce the HC. 683 * Reset the HC, finish any completed transactions, and cleanup memory. 684 */ 685 void xhci_stop(struct usb_hcd *hcd) 686 { 687 u32 temp; 688 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 689 690 mutex_lock(&xhci->mutex); 691 692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 693 spin_lock_irq(&xhci->lock); 694 695 xhci->xhc_state |= XHCI_STATE_HALTED; 696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 697 xhci_halt(xhci); 698 xhci_reset(xhci); 699 spin_unlock_irq(&xhci->lock); 700 } 701 702 if (!usb_hcd_is_primary_hcd(hcd)) { 703 mutex_unlock(&xhci->mutex); 704 return; 705 } 706 707 xhci_cleanup_msix(xhci); 708 709 /* Deleting Compliance Mode Recovery Timer */ 710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 711 (!(xhci_all_ports_seen_u0(xhci)))) { 712 del_timer_sync(&xhci->comp_mode_recovery_timer); 713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 714 "%s: compliance mode recovery timer deleted", 715 __func__); 716 } 717 718 if (xhci->quirks & XHCI_AMD_PLL_FIX) 719 usb_amd_dev_put(); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 722 "// Disabling event ring interrupts"); 723 temp = readl(&xhci->op_regs->status); 724 writel(temp & ~STS_EINT, &xhci->op_regs->status); 725 temp = readl(&xhci->ir_set->irq_pending); 726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 727 xhci_print_ir_set(xhci, 0); 728 729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 730 xhci_mem_cleanup(xhci); 731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 732 "xhci_stop completed - status = %x", 733 readl(&xhci->op_regs->status)); 734 mutex_unlock(&xhci->mutex); 735 } 736 737 /* 738 * Shutdown HC (not bus-specific) 739 * 740 * This is called when the machine is rebooting or halting. We assume that the 741 * machine will be powered off, and the HC's internal state will be reset. 742 * Don't bother to free memory. 743 * 744 * This will only ever be called with the main usb_hcd (the USB3 roothub). 745 */ 746 void xhci_shutdown(struct usb_hcd *hcd) 747 { 748 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 749 750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 752 753 spin_lock_irq(&xhci->lock); 754 xhci_halt(xhci); 755 /* Workaround for spurious wakeups at shutdown with HSW */ 756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 757 xhci_reset(xhci); 758 spin_unlock_irq(&xhci->lock); 759 760 xhci_cleanup_msix(xhci); 761 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_shutdown completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 766 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 769 } 770 771 #ifdef CONFIG_PM 772 static void xhci_save_registers(struct xhci_hcd *xhci) 773 { 774 xhci->s3.command = readl(&xhci->op_regs->command); 775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 783 } 784 785 static void xhci_restore_registers(struct xhci_hcd *xhci) 786 { 787 writel(xhci->s3.command, &xhci->op_regs->command); 788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 796 } 797 798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 799 { 800 u64 val_64; 801 802 /* step 2: initialize command ring buffer */ 803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 806 xhci->cmd_ring->dequeue) & 807 (u64) ~CMD_RING_RSVD_BITS) | 808 xhci->cmd_ring->cycle_state; 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "// Setting command ring address to 0x%llx", 811 (long unsigned long) val_64); 812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 813 } 814 815 /* 816 * The whole command ring must be cleared to zero when we suspend the host. 817 * 818 * The host doesn't save the command ring pointer in the suspend well, so we 819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 820 * aligned, because of the reserved bits in the command ring dequeue pointer 821 * register. Therefore, we can't just set the dequeue pointer back in the 822 * middle of the ring (TRBs are 16-byte aligned). 823 */ 824 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 825 { 826 struct xhci_ring *ring; 827 struct xhci_segment *seg; 828 829 ring = xhci->cmd_ring; 830 seg = ring->deq_seg; 831 do { 832 memset(seg->trbs, 0, 833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 835 cpu_to_le32(~TRB_CYCLE); 836 seg = seg->next; 837 } while (seg != ring->deq_seg); 838 839 /* Reset the software enqueue and dequeue pointers */ 840 ring->deq_seg = ring->first_seg; 841 ring->dequeue = ring->first_seg->trbs; 842 ring->enq_seg = ring->deq_seg; 843 ring->enqueue = ring->dequeue; 844 845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 846 /* 847 * Ring is now zeroed, so the HW should look for change of ownership 848 * when the cycle bit is set to 1. 849 */ 850 ring->cycle_state = 1; 851 852 /* 853 * Reset the hardware dequeue pointer. 854 * Yes, this will need to be re-written after resume, but we're paranoid 855 * and want to make sure the hardware doesn't access bogus memory 856 * because, say, the BIOS or an SMI started the host without changing 857 * the command ring pointers. 858 */ 859 xhci_set_cmd_ring_deq(xhci); 860 } 861 862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 863 { 864 int port_index; 865 __le32 __iomem **port_array; 866 unsigned long flags; 867 u32 t1, t2; 868 869 spin_lock_irqsave(&xhci->lock, flags); 870 871 /* disable usb3 ports Wake bits */ 872 port_index = xhci->num_usb3_ports; 873 port_array = xhci->usb3_ports; 874 while (port_index--) { 875 t1 = readl(port_array[port_index]); 876 t1 = xhci_port_state_to_neutral(t1); 877 t2 = t1 & ~PORT_WAKE_BITS; 878 if (t1 != t2) 879 writel(t2, port_array[port_index]); 880 } 881 882 /* disable usb2 ports Wake bits */ 883 port_index = xhci->num_usb2_ports; 884 port_array = xhci->usb2_ports; 885 while (port_index--) { 886 t1 = readl(port_array[port_index]); 887 t1 = xhci_port_state_to_neutral(t1); 888 t2 = t1 & ~PORT_WAKE_BITS; 889 if (t1 != t2) 890 writel(t2, port_array[port_index]); 891 } 892 893 spin_unlock_irqrestore(&xhci->lock, flags); 894 } 895 896 /* 897 * Stop HC (not bus-specific) 898 * 899 * This is called when the machine transition into S3/S4 mode. 900 * 901 */ 902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 903 { 904 int rc = 0; 905 unsigned int delay = XHCI_MAX_HALT_USEC; 906 struct usb_hcd *hcd = xhci_to_hcd(xhci); 907 u32 command; 908 909 if (!hcd->state) 910 return 0; 911 912 if (hcd->state != HC_STATE_SUSPENDED || 913 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 914 return -EINVAL; 915 916 /* Clear root port wake on bits if wakeup not allowed. */ 917 if (!do_wakeup) 918 xhci_disable_port_wake_on_bits(xhci); 919 920 /* Don't poll the roothubs on bus suspend. */ 921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 923 del_timer_sync(&hcd->rh_timer); 924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 925 del_timer_sync(&xhci->shared_hcd->rh_timer); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 930 /* step 1: stop endpoint */ 931 /* skipped assuming that port suspend has done */ 932 933 /* step 2: clear Run/Stop bit */ 934 command = readl(&xhci->op_regs->command); 935 command &= ~CMD_RUN; 936 writel(command, &xhci->op_regs->command); 937 938 /* Some chips from Fresco Logic need an extraordinary delay */ 939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 940 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_HALT, STS_HALT, delay)) { 943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 944 spin_unlock_irq(&xhci->lock); 945 return -ETIMEDOUT; 946 } 947 xhci_clear_command_ring(xhci); 948 949 /* step 3: save registers */ 950 xhci_save_registers(xhci); 951 952 /* step 4: set CSS flag */ 953 command = readl(&xhci->op_regs->command); 954 command |= CMD_CSS; 955 writel(command, &xhci->op_regs->command); 956 if (xhci_handshake(&xhci->op_regs->status, 957 STS_SAVE, 0, 10 * 1000)) { 958 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 959 spin_unlock_irq(&xhci->lock); 960 return -ETIMEDOUT; 961 } 962 spin_unlock_irq(&xhci->lock); 963 964 /* 965 * Deleting Compliance Mode Recovery Timer because the xHCI Host 966 * is about to be suspended. 967 */ 968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 969 (!(xhci_all_ports_seen_u0(xhci)))) { 970 del_timer_sync(&xhci->comp_mode_recovery_timer); 971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 972 "%s: compliance mode recovery timer deleted", 973 __func__); 974 } 975 976 /* step 5: remove core well power */ 977 /* synchronize irq when using MSI-X */ 978 xhci_msix_sync_irqs(xhci); 979 980 return rc; 981 } 982 EXPORT_SYMBOL_GPL(xhci_suspend); 983 984 /* 985 * start xHC (not bus-specific) 986 * 987 * This is called when the machine transition from S3/S4 mode. 988 * 989 */ 990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 991 { 992 u32 command, temp = 0, status; 993 struct usb_hcd *hcd = xhci_to_hcd(xhci); 994 struct usb_hcd *secondary_hcd; 995 int retval = 0; 996 bool comp_timer_running = false; 997 998 if (!hcd->state) 999 return 0; 1000 1001 /* Wait a bit if either of the roothubs need to settle from the 1002 * transition into bus suspend. 1003 */ 1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1005 time_before(jiffies, 1006 xhci->bus_state[1].next_statechange)) 1007 msleep(100); 1008 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1011 1012 spin_lock_irq(&xhci->lock); 1013 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1014 hibernated = true; 1015 1016 if (!hibernated) { 1017 /* step 1: restore register */ 1018 xhci_restore_registers(xhci); 1019 /* step 2: initialize command ring buffer */ 1020 xhci_set_cmd_ring_deq(xhci); 1021 /* step 3: restore state and start state*/ 1022 /* step 3: set CRS flag */ 1023 command = readl(&xhci->op_regs->command); 1024 command |= CMD_CRS; 1025 writel(command, &xhci->op_regs->command); 1026 if (xhci_handshake(&xhci->op_regs->status, 1027 STS_RESTORE, 0, 10 * 1000)) { 1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1029 spin_unlock_irq(&xhci->lock); 1030 return -ETIMEDOUT; 1031 } 1032 temp = readl(&xhci->op_regs->status); 1033 } 1034 1035 /* If restore operation fails, re-initialize the HC during resume */ 1036 if ((temp & STS_SRE) || hibernated) { 1037 1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1039 !(xhci_all_ports_seen_u0(xhci))) { 1040 del_timer_sync(&xhci->comp_mode_recovery_timer); 1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1042 "Compliance Mode Recovery Timer deleted!"); 1043 } 1044 1045 /* Let the USB core know _both_ roothubs lost power. */ 1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1048 1049 xhci_dbg(xhci, "Stop HCD\n"); 1050 xhci_halt(xhci); 1051 xhci_reset(xhci); 1052 spin_unlock_irq(&xhci->lock); 1053 xhci_cleanup_msix(xhci); 1054 1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1056 temp = readl(&xhci->op_regs->status); 1057 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1058 temp = readl(&xhci->ir_set->irq_pending); 1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1060 xhci_print_ir_set(xhci, 0); 1061 1062 xhci_dbg(xhci, "cleaning up memory\n"); 1063 xhci_mem_cleanup(xhci); 1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1065 readl(&xhci->op_regs->status)); 1066 1067 /* USB core calls the PCI reinit and start functions twice: 1068 * first with the primary HCD, and then with the secondary HCD. 1069 * If we don't do the same, the host will never be started. 1070 */ 1071 if (!usb_hcd_is_primary_hcd(hcd)) 1072 secondary_hcd = hcd; 1073 else 1074 secondary_hcd = xhci->shared_hcd; 1075 1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1077 retval = xhci_init(hcd->primary_hcd); 1078 if (retval) 1079 return retval; 1080 comp_timer_running = true; 1081 1082 xhci_dbg(xhci, "Start the primary HCD\n"); 1083 retval = xhci_run(hcd->primary_hcd); 1084 if (!retval) { 1085 xhci_dbg(xhci, "Start the secondary HCD\n"); 1086 retval = xhci_run(secondary_hcd); 1087 } 1088 hcd->state = HC_STATE_SUSPENDED; 1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1090 goto done; 1091 } 1092 1093 /* step 4: set Run/Stop bit */ 1094 command = readl(&xhci->op_regs->command); 1095 command |= CMD_RUN; 1096 writel(command, &xhci->op_regs->command); 1097 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1098 0, 250 * 1000); 1099 1100 /* step 5: walk topology and initialize portsc, 1101 * portpmsc and portli 1102 */ 1103 /* this is done in bus_resume */ 1104 1105 /* step 6: restart each of the previously 1106 * Running endpoints by ringing their doorbells 1107 */ 1108 1109 spin_unlock_irq(&xhci->lock); 1110 1111 done: 1112 if (retval == 0) { 1113 /* Resume root hubs only when have pending events. */ 1114 status = readl(&xhci->op_regs->status); 1115 if (status & STS_EINT) { 1116 usb_hcd_resume_root_hub(xhci->shared_hcd); 1117 usb_hcd_resume_root_hub(hcd); 1118 } 1119 } 1120 1121 /* 1122 * If system is subject to the Quirk, Compliance Mode Timer needs to 1123 * be re-initialized Always after a system resume. Ports are subject 1124 * to suffer the Compliance Mode issue again. It doesn't matter if 1125 * ports have entered previously to U0 before system's suspension. 1126 */ 1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1128 compliance_mode_recovery_timer_init(xhci); 1129 1130 /* Re-enable port polling. */ 1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1133 usb_hcd_poll_rh_status(xhci->shared_hcd); 1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1135 usb_hcd_poll_rh_status(hcd); 1136 1137 return retval; 1138 } 1139 EXPORT_SYMBOL_GPL(xhci_resume); 1140 #endif /* CONFIG_PM */ 1141 1142 /*-------------------------------------------------------------------------*/ 1143 1144 /** 1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1147 * value to right shift 1 for the bitmask. 1148 * 1149 * Index = (epnum * 2) + direction - 1, 1150 * where direction = 0 for OUT, 1 for IN. 1151 * For control endpoints, the IN index is used (OUT index is unused), so 1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1153 */ 1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1155 { 1156 unsigned int index; 1157 if (usb_endpoint_xfer_control(desc)) 1158 index = (unsigned int) (usb_endpoint_num(desc)*2); 1159 else 1160 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1162 return index; 1163 } 1164 1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1166 * address from the XHCI endpoint index. 1167 */ 1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1169 { 1170 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1172 return direction | number; 1173 } 1174 1175 /* Find the flag for this endpoint (for use in the control context). Use the 1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1177 * bit 1, etc. 1178 */ 1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1180 { 1181 return 1 << (xhci_get_endpoint_index(desc) + 1); 1182 } 1183 1184 /* Find the flag for this endpoint (for use in the control context). Use the 1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1186 * bit 1, etc. 1187 */ 1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1189 { 1190 return 1 << (ep_index + 1); 1191 } 1192 1193 /* Compute the last valid endpoint context index. Basically, this is the 1194 * endpoint index plus one. For slot contexts with more than valid endpoint, 1195 * we find the most significant bit set in the added contexts flags. 1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1198 */ 1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1200 { 1201 return fls(added_ctxs) - 1; 1202 } 1203 1204 /* Returns 1 if the arguments are OK; 1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1206 */ 1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1209 const char *func) { 1210 struct xhci_hcd *xhci; 1211 struct xhci_virt_device *virt_dev; 1212 1213 if (!hcd || (check_ep && !ep) || !udev) { 1214 pr_debug("xHCI %s called with invalid args\n", func); 1215 return -EINVAL; 1216 } 1217 if (!udev->parent) { 1218 pr_debug("xHCI %s called for root hub\n", func); 1219 return 0; 1220 } 1221 1222 xhci = hcd_to_xhci(hcd); 1223 if (check_virt_dev) { 1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1226 func); 1227 return -EINVAL; 1228 } 1229 1230 virt_dev = xhci->devs[udev->slot_id]; 1231 if (virt_dev->udev != udev) { 1232 xhci_dbg(xhci, "xHCI %s called with udev and " 1233 "virt_dev does not match\n", func); 1234 return -EINVAL; 1235 } 1236 } 1237 1238 if (xhci->xhc_state & XHCI_STATE_HALTED) 1239 return -ENODEV; 1240 1241 return 1; 1242 } 1243 1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1245 struct usb_device *udev, struct xhci_command *command, 1246 bool ctx_change, bool must_succeed); 1247 1248 /* 1249 * Full speed devices may have a max packet size greater than 8 bytes, but the 1250 * USB core doesn't know that until it reads the first 8 bytes of the 1251 * descriptor. If the usb_device's max packet size changes after that point, 1252 * we need to issue an evaluate context command and wait on it. 1253 */ 1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1255 unsigned int ep_index, struct urb *urb) 1256 { 1257 struct xhci_container_ctx *out_ctx; 1258 struct xhci_input_control_ctx *ctrl_ctx; 1259 struct xhci_ep_ctx *ep_ctx; 1260 struct xhci_command *command; 1261 int max_packet_size; 1262 int hw_max_packet_size; 1263 int ret = 0; 1264 1265 out_ctx = xhci->devs[slot_id]->out_ctx; 1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1269 if (hw_max_packet_size != max_packet_size) { 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max Packet Size for ep 0 changed."); 1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1273 "Max packet size in usb_device = %d", 1274 max_packet_size); 1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1276 "Max packet size in xHCI HW = %d", 1277 hw_max_packet_size); 1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1279 "Issuing evaluate context command."); 1280 1281 /* Set up the input context flags for the command */ 1282 /* FIXME: This won't work if a non-default control endpoint 1283 * changes max packet sizes. 1284 */ 1285 1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1287 if (!command) 1288 return -ENOMEM; 1289 1290 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1292 if (!ctrl_ctx) { 1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1294 __func__); 1295 ret = -ENOMEM; 1296 goto command_cleanup; 1297 } 1298 /* Set up the modified control endpoint 0 */ 1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1300 xhci->devs[slot_id]->out_ctx, ep_index); 1301 1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1305 1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1307 ctrl_ctx->drop_flags = 0; 1308 1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1312 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1313 1314 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1315 true, false); 1316 1317 /* Clean up the input context for later use by bandwidth 1318 * functions. 1319 */ 1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1321 command_cleanup: 1322 kfree(command->completion); 1323 kfree(command); 1324 } 1325 return ret; 1326 } 1327 1328 /* 1329 * non-error returns are a promise to giveback() the urb later 1330 * we drop ownership so next owner (or urb unlink) can get it 1331 */ 1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1333 { 1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1335 unsigned long flags; 1336 int ret = 0; 1337 unsigned int slot_id, ep_index, ep_state; 1338 struct urb_priv *urb_priv; 1339 int num_tds; 1340 1341 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1342 true, true, __func__) <= 0) 1343 return -EINVAL; 1344 1345 slot_id = urb->dev->slot_id; 1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1347 1348 if (!HCD_HW_ACCESSIBLE(hcd)) { 1349 if (!in_interrupt()) 1350 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1351 return -ESHUTDOWN; 1352 } 1353 1354 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1355 num_tds = urb->number_of_packets; 1356 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1357 urb->transfer_buffer_length > 0 && 1358 urb->transfer_flags & URB_ZERO_PACKET && 1359 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1360 num_tds = 2; 1361 else 1362 num_tds = 1; 1363 1364 urb_priv = kzalloc(sizeof(struct urb_priv) + 1365 num_tds * sizeof(struct xhci_td), mem_flags); 1366 if (!urb_priv) 1367 return -ENOMEM; 1368 1369 urb_priv->num_tds = num_tds; 1370 urb_priv->num_tds_done = 0; 1371 urb->hcpriv = urb_priv; 1372 1373 trace_xhci_urb_enqueue(urb); 1374 1375 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1376 /* Check to see if the max packet size for the default control 1377 * endpoint changed during FS device enumeration 1378 */ 1379 if (urb->dev->speed == USB_SPEED_FULL) { 1380 ret = xhci_check_maxpacket(xhci, slot_id, 1381 ep_index, urb); 1382 if (ret < 0) { 1383 xhci_urb_free_priv(urb_priv); 1384 urb->hcpriv = NULL; 1385 return ret; 1386 } 1387 } 1388 } 1389 1390 spin_lock_irqsave(&xhci->lock, flags); 1391 1392 if (xhci->xhc_state & XHCI_STATE_DYING) { 1393 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1394 urb->ep->desc.bEndpointAddress, urb); 1395 ret = -ESHUTDOWN; 1396 goto free_priv; 1397 } 1398 1399 switch (usb_endpoint_type(&urb->ep->desc)) { 1400 1401 case USB_ENDPOINT_XFER_CONTROL: 1402 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1403 slot_id, ep_index); 1404 break; 1405 case USB_ENDPOINT_XFER_BULK: 1406 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1407 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1408 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1409 ep_state); 1410 ret = -EINVAL; 1411 break; 1412 } 1413 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1414 slot_id, ep_index); 1415 break; 1416 1417 1418 case USB_ENDPOINT_XFER_INT: 1419 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1420 slot_id, ep_index); 1421 break; 1422 1423 case USB_ENDPOINT_XFER_ISOC: 1424 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1425 slot_id, ep_index); 1426 } 1427 1428 if (ret) { 1429 free_priv: 1430 xhci_urb_free_priv(urb_priv); 1431 urb->hcpriv = NULL; 1432 } 1433 spin_unlock_irqrestore(&xhci->lock, flags); 1434 return ret; 1435 } 1436 1437 /* 1438 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1439 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1440 * should pick up where it left off in the TD, unless a Set Transfer Ring 1441 * Dequeue Pointer is issued. 1442 * 1443 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1444 * the ring. Since the ring is a contiguous structure, they can't be physically 1445 * removed. Instead, there are two options: 1446 * 1447 * 1) If the HC is in the middle of processing the URB to be canceled, we 1448 * simply move the ring's dequeue pointer past those TRBs using the Set 1449 * Transfer Ring Dequeue Pointer command. This will be the common case, 1450 * when drivers timeout on the last submitted URB and attempt to cancel. 1451 * 1452 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1453 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1454 * HC will need to invalidate the any TRBs it has cached after the stop 1455 * endpoint command, as noted in the xHCI 0.95 errata. 1456 * 1457 * 3) The TD may have completed by the time the Stop Endpoint Command 1458 * completes, so software needs to handle that case too. 1459 * 1460 * This function should protect against the TD enqueueing code ringing the 1461 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1462 * It also needs to account for multiple cancellations on happening at the same 1463 * time for the same endpoint. 1464 * 1465 * Note that this function can be called in any context, or so says 1466 * usb_hcd_unlink_urb() 1467 */ 1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1469 { 1470 unsigned long flags; 1471 int ret, i; 1472 u32 temp; 1473 struct xhci_hcd *xhci; 1474 struct urb_priv *urb_priv; 1475 struct xhci_td *td; 1476 unsigned int ep_index; 1477 struct xhci_ring *ep_ring; 1478 struct xhci_virt_ep *ep; 1479 struct xhci_command *command; 1480 1481 xhci = hcd_to_xhci(hcd); 1482 spin_lock_irqsave(&xhci->lock, flags); 1483 1484 trace_xhci_urb_dequeue(urb); 1485 1486 /* Make sure the URB hasn't completed or been unlinked already */ 1487 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1488 if (ret || !urb->hcpriv) 1489 goto done; 1490 temp = readl(&xhci->op_regs->status); 1491 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1492 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1493 "HW died, freeing TD."); 1494 urb_priv = urb->hcpriv; 1495 for (i = urb_priv->num_tds_done; 1496 i < urb_priv->num_tds && xhci->devs[urb->dev->slot_id]; 1497 i++) { 1498 td = &urb_priv->td[i]; 1499 if (!list_empty(&td->td_list)) 1500 list_del_init(&td->td_list); 1501 if (!list_empty(&td->cancelled_td_list)) 1502 list_del_init(&td->cancelled_td_list); 1503 } 1504 1505 usb_hcd_unlink_urb_from_ep(hcd, urb); 1506 spin_unlock_irqrestore(&xhci->lock, flags); 1507 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1508 xhci_urb_free_priv(urb_priv); 1509 return ret; 1510 } 1511 1512 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1513 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1514 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1515 if (!ep_ring) { 1516 ret = -EINVAL; 1517 goto done; 1518 } 1519 1520 urb_priv = urb->hcpriv; 1521 i = urb_priv->num_tds_done; 1522 if (i < urb_priv->num_tds) 1523 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1524 "Cancel URB %p, dev %s, ep 0x%x, " 1525 "starting at offset 0x%llx", 1526 urb, urb->dev->devpath, 1527 urb->ep->desc.bEndpointAddress, 1528 (unsigned long long) xhci_trb_virt_to_dma( 1529 urb_priv->td[i].start_seg, 1530 urb_priv->td[i].first_trb)); 1531 1532 for (; i < urb_priv->num_tds; i++) { 1533 td = &urb_priv->td[i]; 1534 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1535 } 1536 1537 /* Queue a stop endpoint command, but only if this is 1538 * the first cancellation to be handled. 1539 */ 1540 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1541 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1542 if (!command) { 1543 ret = -ENOMEM; 1544 goto done; 1545 } 1546 ep->ep_state |= EP_STOP_CMD_PENDING; 1547 ep->stop_cmd_timer.expires = jiffies + 1548 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1549 add_timer(&ep->stop_cmd_timer); 1550 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1551 ep_index, 0); 1552 xhci_ring_cmd_db(xhci); 1553 } 1554 done: 1555 spin_unlock_irqrestore(&xhci->lock, flags); 1556 return ret; 1557 } 1558 1559 /* Drop an endpoint from a new bandwidth configuration for this device. 1560 * Only one call to this function is allowed per endpoint before 1561 * check_bandwidth() or reset_bandwidth() must be called. 1562 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1563 * add the endpoint to the schedule with possibly new parameters denoted by a 1564 * different endpoint descriptor in usb_host_endpoint. 1565 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1566 * not allowed. 1567 * 1568 * The USB core will not allow URBs to be queued to an endpoint that is being 1569 * disabled, so there's no need for mutual exclusion to protect 1570 * the xhci->devs[slot_id] structure. 1571 */ 1572 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1573 struct usb_host_endpoint *ep) 1574 { 1575 struct xhci_hcd *xhci; 1576 struct xhci_container_ctx *in_ctx, *out_ctx; 1577 struct xhci_input_control_ctx *ctrl_ctx; 1578 unsigned int ep_index; 1579 struct xhci_ep_ctx *ep_ctx; 1580 u32 drop_flag; 1581 u32 new_add_flags, new_drop_flags; 1582 int ret; 1583 1584 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1585 if (ret <= 0) 1586 return ret; 1587 xhci = hcd_to_xhci(hcd); 1588 if (xhci->xhc_state & XHCI_STATE_DYING) 1589 return -ENODEV; 1590 1591 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1592 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1593 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1594 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1595 __func__, drop_flag); 1596 return 0; 1597 } 1598 1599 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1600 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1601 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1602 if (!ctrl_ctx) { 1603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1604 __func__); 1605 return 0; 1606 } 1607 1608 ep_index = xhci_get_endpoint_index(&ep->desc); 1609 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1610 /* If the HC already knows the endpoint is disabled, 1611 * or the HCD has noted it is disabled, ignore this request 1612 */ 1613 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1614 le32_to_cpu(ctrl_ctx->drop_flags) & 1615 xhci_get_endpoint_flag(&ep->desc)) { 1616 /* Do not warn when called after a usb_device_reset */ 1617 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1618 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1619 __func__, ep); 1620 return 0; 1621 } 1622 1623 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1624 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1625 1626 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1627 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1628 1629 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1630 1631 if (xhci->quirks & XHCI_MTK_HOST) 1632 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1633 1634 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1635 (unsigned int) ep->desc.bEndpointAddress, 1636 udev->slot_id, 1637 (unsigned int) new_drop_flags, 1638 (unsigned int) new_add_flags); 1639 return 0; 1640 } 1641 1642 /* Add an endpoint to a new possible bandwidth configuration for this device. 1643 * Only one call to this function is allowed per endpoint before 1644 * check_bandwidth() or reset_bandwidth() must be called. 1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1646 * add the endpoint to the schedule with possibly new parameters denoted by a 1647 * different endpoint descriptor in usb_host_endpoint. 1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1649 * not allowed. 1650 * 1651 * The USB core will not allow URBs to be queued to an endpoint until the 1652 * configuration or alt setting is installed in the device, so there's no need 1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1654 */ 1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1656 struct usb_host_endpoint *ep) 1657 { 1658 struct xhci_hcd *xhci; 1659 struct xhci_container_ctx *in_ctx; 1660 unsigned int ep_index; 1661 struct xhci_input_control_ctx *ctrl_ctx; 1662 u32 added_ctxs; 1663 u32 new_add_flags, new_drop_flags; 1664 struct xhci_virt_device *virt_dev; 1665 int ret = 0; 1666 1667 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1668 if (ret <= 0) { 1669 /* So we won't queue a reset ep command for a root hub */ 1670 ep->hcpriv = NULL; 1671 return ret; 1672 } 1673 xhci = hcd_to_xhci(hcd); 1674 if (xhci->xhc_state & XHCI_STATE_DYING) 1675 return -ENODEV; 1676 1677 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1678 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1679 /* FIXME when we have to issue an evaluate endpoint command to 1680 * deal with ep0 max packet size changing once we get the 1681 * descriptors 1682 */ 1683 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1684 __func__, added_ctxs); 1685 return 0; 1686 } 1687 1688 virt_dev = xhci->devs[udev->slot_id]; 1689 in_ctx = virt_dev->in_ctx; 1690 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1691 if (!ctrl_ctx) { 1692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1693 __func__); 1694 return 0; 1695 } 1696 1697 ep_index = xhci_get_endpoint_index(&ep->desc); 1698 /* If this endpoint is already in use, and the upper layers are trying 1699 * to add it again without dropping it, reject the addition. 1700 */ 1701 if (virt_dev->eps[ep_index].ring && 1702 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1703 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1704 "without dropping it.\n", 1705 (unsigned int) ep->desc.bEndpointAddress); 1706 return -EINVAL; 1707 } 1708 1709 /* If the HCD has already noted the endpoint is enabled, 1710 * ignore this request. 1711 */ 1712 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1713 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1714 __func__, ep); 1715 return 0; 1716 } 1717 1718 /* 1719 * Configuration and alternate setting changes must be done in 1720 * process context, not interrupt context (or so documenation 1721 * for usb_set_interface() and usb_set_configuration() claim). 1722 */ 1723 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1724 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1725 __func__, ep->desc.bEndpointAddress); 1726 return -ENOMEM; 1727 } 1728 1729 if (xhci->quirks & XHCI_MTK_HOST) { 1730 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1731 if (ret < 0) { 1732 xhci_free_or_cache_endpoint_ring(xhci, 1733 virt_dev, ep_index); 1734 return ret; 1735 } 1736 } 1737 1738 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1739 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1740 1741 /* If xhci_endpoint_disable() was called for this endpoint, but the 1742 * xHC hasn't been notified yet through the check_bandwidth() call, 1743 * this re-adds a new state for the endpoint from the new endpoint 1744 * descriptors. We must drop and re-add this endpoint, so we leave the 1745 * drop flags alone. 1746 */ 1747 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1748 1749 /* Store the usb_device pointer for later use */ 1750 ep->hcpriv = udev; 1751 1752 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1753 (unsigned int) ep->desc.bEndpointAddress, 1754 udev->slot_id, 1755 (unsigned int) new_drop_flags, 1756 (unsigned int) new_add_flags); 1757 return 0; 1758 } 1759 1760 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1761 { 1762 struct xhci_input_control_ctx *ctrl_ctx; 1763 struct xhci_ep_ctx *ep_ctx; 1764 struct xhci_slot_ctx *slot_ctx; 1765 int i; 1766 1767 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1768 if (!ctrl_ctx) { 1769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1770 __func__); 1771 return; 1772 } 1773 1774 /* When a device's add flag and drop flag are zero, any subsequent 1775 * configure endpoint command will leave that endpoint's state 1776 * untouched. Make sure we don't leave any old state in the input 1777 * endpoint contexts. 1778 */ 1779 ctrl_ctx->drop_flags = 0; 1780 ctrl_ctx->add_flags = 0; 1781 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1782 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1783 /* Endpoint 0 is always valid */ 1784 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1785 for (i = 1; i < 31; i++) { 1786 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1787 ep_ctx->ep_info = 0; 1788 ep_ctx->ep_info2 = 0; 1789 ep_ctx->deq = 0; 1790 ep_ctx->tx_info = 0; 1791 } 1792 } 1793 1794 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1795 struct usb_device *udev, u32 *cmd_status) 1796 { 1797 int ret; 1798 1799 switch (*cmd_status) { 1800 case COMP_COMMAND_ABORTED: 1801 case COMP_STOPPED: 1802 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1803 ret = -ETIME; 1804 break; 1805 case COMP_RESOURCE_ERROR: 1806 dev_warn(&udev->dev, 1807 "Not enough host controller resources for new device state.\n"); 1808 ret = -ENOMEM; 1809 /* FIXME: can we allocate more resources for the HC? */ 1810 break; 1811 case COMP_BANDWIDTH_ERROR: 1812 case COMP_SECONDARY_BANDWIDTH_ERROR: 1813 dev_warn(&udev->dev, 1814 "Not enough bandwidth for new device state.\n"); 1815 ret = -ENOSPC; 1816 /* FIXME: can we go back to the old state? */ 1817 break; 1818 case COMP_TRB_ERROR: 1819 /* the HCD set up something wrong */ 1820 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1821 "add flag = 1, " 1822 "and endpoint is not disabled.\n"); 1823 ret = -EINVAL; 1824 break; 1825 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1826 dev_warn(&udev->dev, 1827 "ERROR: Incompatible device for endpoint configure command.\n"); 1828 ret = -ENODEV; 1829 break; 1830 case COMP_SUCCESS: 1831 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1832 "Successful Endpoint Configure command"); 1833 ret = 0; 1834 break; 1835 default: 1836 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1837 *cmd_status); 1838 ret = -EINVAL; 1839 break; 1840 } 1841 return ret; 1842 } 1843 1844 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1845 struct usb_device *udev, u32 *cmd_status) 1846 { 1847 int ret; 1848 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1849 1850 switch (*cmd_status) { 1851 case COMP_COMMAND_ABORTED: 1852 case COMP_STOPPED: 1853 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1854 ret = -ETIME; 1855 break; 1856 case COMP_PARAMETER_ERROR: 1857 dev_warn(&udev->dev, 1858 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1859 ret = -EINVAL; 1860 break; 1861 case COMP_SLOT_NOT_ENABLED_ERROR: 1862 dev_warn(&udev->dev, 1863 "WARN: slot not enabled for evaluate context command.\n"); 1864 ret = -EINVAL; 1865 break; 1866 case COMP_CONTEXT_STATE_ERROR: 1867 dev_warn(&udev->dev, 1868 "WARN: invalid context state for evaluate context command.\n"); 1869 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1870 ret = -EINVAL; 1871 break; 1872 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1873 dev_warn(&udev->dev, 1874 "ERROR: Incompatible device for evaluate context command.\n"); 1875 ret = -ENODEV; 1876 break; 1877 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1878 /* Max Exit Latency too large error */ 1879 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1880 ret = -EINVAL; 1881 break; 1882 case COMP_SUCCESS: 1883 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1884 "Successful evaluate context command"); 1885 ret = 0; 1886 break; 1887 default: 1888 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1889 *cmd_status); 1890 ret = -EINVAL; 1891 break; 1892 } 1893 return ret; 1894 } 1895 1896 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1897 struct xhci_input_control_ctx *ctrl_ctx) 1898 { 1899 u32 valid_add_flags; 1900 u32 valid_drop_flags; 1901 1902 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1903 * (bit 1). The default control endpoint is added during the Address 1904 * Device command and is never removed until the slot is disabled. 1905 */ 1906 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1907 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1908 1909 /* Use hweight32 to count the number of ones in the add flags, or 1910 * number of endpoints added. Don't count endpoints that are changed 1911 * (both added and dropped). 1912 */ 1913 return hweight32(valid_add_flags) - 1914 hweight32(valid_add_flags & valid_drop_flags); 1915 } 1916 1917 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1918 struct xhci_input_control_ctx *ctrl_ctx) 1919 { 1920 u32 valid_add_flags; 1921 u32 valid_drop_flags; 1922 1923 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1924 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1925 1926 return hweight32(valid_drop_flags) - 1927 hweight32(valid_add_flags & valid_drop_flags); 1928 } 1929 1930 /* 1931 * We need to reserve the new number of endpoints before the configure endpoint 1932 * command completes. We can't subtract the dropped endpoints from the number 1933 * of active endpoints until the command completes because we can oversubscribe 1934 * the host in this case: 1935 * 1936 * - the first configure endpoint command drops more endpoints than it adds 1937 * - a second configure endpoint command that adds more endpoints is queued 1938 * - the first configure endpoint command fails, so the config is unchanged 1939 * - the second command may succeed, even though there isn't enough resources 1940 * 1941 * Must be called with xhci->lock held. 1942 */ 1943 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1944 struct xhci_input_control_ctx *ctrl_ctx) 1945 { 1946 u32 added_eps; 1947 1948 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1949 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1950 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1951 "Not enough ep ctxs: " 1952 "%u active, need to add %u, limit is %u.", 1953 xhci->num_active_eps, added_eps, 1954 xhci->limit_active_eps); 1955 return -ENOMEM; 1956 } 1957 xhci->num_active_eps += added_eps; 1958 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1959 "Adding %u ep ctxs, %u now active.", added_eps, 1960 xhci->num_active_eps); 1961 return 0; 1962 } 1963 1964 /* 1965 * The configure endpoint was failed by the xHC for some other reason, so we 1966 * need to revert the resources that failed configuration would have used. 1967 * 1968 * Must be called with xhci->lock held. 1969 */ 1970 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1971 struct xhci_input_control_ctx *ctrl_ctx) 1972 { 1973 u32 num_failed_eps; 1974 1975 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1976 xhci->num_active_eps -= num_failed_eps; 1977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1978 "Removing %u failed ep ctxs, %u now active.", 1979 num_failed_eps, 1980 xhci->num_active_eps); 1981 } 1982 1983 /* 1984 * Now that the command has completed, clean up the active endpoint count by 1985 * subtracting out the endpoints that were dropped (but not changed). 1986 * 1987 * Must be called with xhci->lock held. 1988 */ 1989 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1990 struct xhci_input_control_ctx *ctrl_ctx) 1991 { 1992 u32 num_dropped_eps; 1993 1994 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1995 xhci->num_active_eps -= num_dropped_eps; 1996 if (num_dropped_eps) 1997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1998 "Removing %u dropped ep ctxs, %u now active.", 1999 num_dropped_eps, 2000 xhci->num_active_eps); 2001 } 2002 2003 static unsigned int xhci_get_block_size(struct usb_device *udev) 2004 { 2005 switch (udev->speed) { 2006 case USB_SPEED_LOW: 2007 case USB_SPEED_FULL: 2008 return FS_BLOCK; 2009 case USB_SPEED_HIGH: 2010 return HS_BLOCK; 2011 case USB_SPEED_SUPER: 2012 case USB_SPEED_SUPER_PLUS: 2013 return SS_BLOCK; 2014 case USB_SPEED_UNKNOWN: 2015 case USB_SPEED_WIRELESS: 2016 default: 2017 /* Should never happen */ 2018 return 1; 2019 } 2020 } 2021 2022 static unsigned int 2023 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2024 { 2025 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2026 return LS_OVERHEAD; 2027 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2028 return FS_OVERHEAD; 2029 return HS_OVERHEAD; 2030 } 2031 2032 /* If we are changing a LS/FS device under a HS hub, 2033 * make sure (if we are activating a new TT) that the HS bus has enough 2034 * bandwidth for this new TT. 2035 */ 2036 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2037 struct xhci_virt_device *virt_dev, 2038 int old_active_eps) 2039 { 2040 struct xhci_interval_bw_table *bw_table; 2041 struct xhci_tt_bw_info *tt_info; 2042 2043 /* Find the bandwidth table for the root port this TT is attached to. */ 2044 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2045 tt_info = virt_dev->tt_info; 2046 /* If this TT already had active endpoints, the bandwidth for this TT 2047 * has already been added. Removing all periodic endpoints (and thus 2048 * making the TT enactive) will only decrease the bandwidth used. 2049 */ 2050 if (old_active_eps) 2051 return 0; 2052 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2053 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2054 return -ENOMEM; 2055 return 0; 2056 } 2057 /* Not sure why we would have no new active endpoints... 2058 * 2059 * Maybe because of an Evaluate Context change for a hub update or a 2060 * control endpoint 0 max packet size change? 2061 * FIXME: skip the bandwidth calculation in that case. 2062 */ 2063 return 0; 2064 } 2065 2066 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2067 struct xhci_virt_device *virt_dev) 2068 { 2069 unsigned int bw_reserved; 2070 2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2072 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2073 return -ENOMEM; 2074 2075 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2076 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2077 return -ENOMEM; 2078 2079 return 0; 2080 } 2081 2082 /* 2083 * This algorithm is a very conservative estimate of the worst-case scheduling 2084 * scenario for any one interval. The hardware dynamically schedules the 2085 * packets, so we can't tell which microframe could be the limiting factor in 2086 * the bandwidth scheduling. This only takes into account periodic endpoints. 2087 * 2088 * Obviously, we can't solve an NP complete problem to find the minimum worst 2089 * case scenario. Instead, we come up with an estimate that is no less than 2090 * the worst case bandwidth used for any one microframe, but may be an 2091 * over-estimate. 2092 * 2093 * We walk the requirements for each endpoint by interval, starting with the 2094 * smallest interval, and place packets in the schedule where there is only one 2095 * possible way to schedule packets for that interval. In order to simplify 2096 * this algorithm, we record the largest max packet size for each interval, and 2097 * assume all packets will be that size. 2098 * 2099 * For interval 0, we obviously must schedule all packets for each interval. 2100 * The bandwidth for interval 0 is just the amount of data to be transmitted 2101 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2102 * the number of packets). 2103 * 2104 * For interval 1, we have two possible microframes to schedule those packets 2105 * in. For this algorithm, if we can schedule the same number of packets for 2106 * each possible scheduling opportunity (each microframe), we will do so. The 2107 * remaining number of packets will be saved to be transmitted in the gaps in 2108 * the next interval's scheduling sequence. 2109 * 2110 * As we move those remaining packets to be scheduled with interval 2 packets, 2111 * we have to double the number of remaining packets to transmit. This is 2112 * because the intervals are actually powers of 2, and we would be transmitting 2113 * the previous interval's packets twice in this interval. We also have to be 2114 * sure that when we look at the largest max packet size for this interval, we 2115 * also look at the largest max packet size for the remaining packets and take 2116 * the greater of the two. 2117 * 2118 * The algorithm continues to evenly distribute packets in each scheduling 2119 * opportunity, and push the remaining packets out, until we get to the last 2120 * interval. Then those packets and their associated overhead are just added 2121 * to the bandwidth used. 2122 */ 2123 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2124 struct xhci_virt_device *virt_dev, 2125 int old_active_eps) 2126 { 2127 unsigned int bw_reserved; 2128 unsigned int max_bandwidth; 2129 unsigned int bw_used; 2130 unsigned int block_size; 2131 struct xhci_interval_bw_table *bw_table; 2132 unsigned int packet_size = 0; 2133 unsigned int overhead = 0; 2134 unsigned int packets_transmitted = 0; 2135 unsigned int packets_remaining = 0; 2136 unsigned int i; 2137 2138 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2139 return xhci_check_ss_bw(xhci, virt_dev); 2140 2141 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2142 max_bandwidth = HS_BW_LIMIT; 2143 /* Convert percent of bus BW reserved to blocks reserved */ 2144 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2145 } else { 2146 max_bandwidth = FS_BW_LIMIT; 2147 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2148 } 2149 2150 bw_table = virt_dev->bw_table; 2151 /* We need to translate the max packet size and max ESIT payloads into 2152 * the units the hardware uses. 2153 */ 2154 block_size = xhci_get_block_size(virt_dev->udev); 2155 2156 /* If we are manipulating a LS/FS device under a HS hub, double check 2157 * that the HS bus has enough bandwidth if we are activing a new TT. 2158 */ 2159 if (virt_dev->tt_info) { 2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2161 "Recalculating BW for rootport %u", 2162 virt_dev->real_port); 2163 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2164 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2165 "newly activated TT.\n"); 2166 return -ENOMEM; 2167 } 2168 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2169 "Recalculating BW for TT slot %u port %u", 2170 virt_dev->tt_info->slot_id, 2171 virt_dev->tt_info->ttport); 2172 } else { 2173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2174 "Recalculating BW for rootport %u", 2175 virt_dev->real_port); 2176 } 2177 2178 /* Add in how much bandwidth will be used for interval zero, or the 2179 * rounded max ESIT payload + number of packets * largest overhead. 2180 */ 2181 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2182 bw_table->interval_bw[0].num_packets * 2183 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2184 2185 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2186 unsigned int bw_added; 2187 unsigned int largest_mps; 2188 unsigned int interval_overhead; 2189 2190 /* 2191 * How many packets could we transmit in this interval? 2192 * If packets didn't fit in the previous interval, we will need 2193 * to transmit that many packets twice within this interval. 2194 */ 2195 packets_remaining = 2 * packets_remaining + 2196 bw_table->interval_bw[i].num_packets; 2197 2198 /* Find the largest max packet size of this or the previous 2199 * interval. 2200 */ 2201 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2202 largest_mps = 0; 2203 else { 2204 struct xhci_virt_ep *virt_ep; 2205 struct list_head *ep_entry; 2206 2207 ep_entry = bw_table->interval_bw[i].endpoints.next; 2208 virt_ep = list_entry(ep_entry, 2209 struct xhci_virt_ep, bw_endpoint_list); 2210 /* Convert to blocks, rounding up */ 2211 largest_mps = DIV_ROUND_UP( 2212 virt_ep->bw_info.max_packet_size, 2213 block_size); 2214 } 2215 if (largest_mps > packet_size) 2216 packet_size = largest_mps; 2217 2218 /* Use the larger overhead of this or the previous interval. */ 2219 interval_overhead = xhci_get_largest_overhead( 2220 &bw_table->interval_bw[i]); 2221 if (interval_overhead > overhead) 2222 overhead = interval_overhead; 2223 2224 /* How many packets can we evenly distribute across 2225 * (1 << (i + 1)) possible scheduling opportunities? 2226 */ 2227 packets_transmitted = packets_remaining >> (i + 1); 2228 2229 /* Add in the bandwidth used for those scheduled packets */ 2230 bw_added = packets_transmitted * (overhead + packet_size); 2231 2232 /* How many packets do we have remaining to transmit? */ 2233 packets_remaining = packets_remaining % (1 << (i + 1)); 2234 2235 /* What largest max packet size should those packets have? */ 2236 /* If we've transmitted all packets, don't carry over the 2237 * largest packet size. 2238 */ 2239 if (packets_remaining == 0) { 2240 packet_size = 0; 2241 overhead = 0; 2242 } else if (packets_transmitted > 0) { 2243 /* Otherwise if we do have remaining packets, and we've 2244 * scheduled some packets in this interval, take the 2245 * largest max packet size from endpoints with this 2246 * interval. 2247 */ 2248 packet_size = largest_mps; 2249 overhead = interval_overhead; 2250 } 2251 /* Otherwise carry over packet_size and overhead from the last 2252 * time we had a remainder. 2253 */ 2254 bw_used += bw_added; 2255 if (bw_used > max_bandwidth) { 2256 xhci_warn(xhci, "Not enough bandwidth. " 2257 "Proposed: %u, Max: %u\n", 2258 bw_used, max_bandwidth); 2259 return -ENOMEM; 2260 } 2261 } 2262 /* 2263 * Ok, we know we have some packets left over after even-handedly 2264 * scheduling interval 15. We don't know which microframes they will 2265 * fit into, so we over-schedule and say they will be scheduled every 2266 * microframe. 2267 */ 2268 if (packets_remaining > 0) 2269 bw_used += overhead + packet_size; 2270 2271 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2272 unsigned int port_index = virt_dev->real_port - 1; 2273 2274 /* OK, we're manipulating a HS device attached to a 2275 * root port bandwidth domain. Include the number of active TTs 2276 * in the bandwidth used. 2277 */ 2278 bw_used += TT_HS_OVERHEAD * 2279 xhci->rh_bw[port_index].num_active_tts; 2280 } 2281 2282 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2283 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2284 "Available: %u " "percent", 2285 bw_used, max_bandwidth, bw_reserved, 2286 (max_bandwidth - bw_used - bw_reserved) * 100 / 2287 max_bandwidth); 2288 2289 bw_used += bw_reserved; 2290 if (bw_used > max_bandwidth) { 2291 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2292 bw_used, max_bandwidth); 2293 return -ENOMEM; 2294 } 2295 2296 bw_table->bw_used = bw_used; 2297 return 0; 2298 } 2299 2300 static bool xhci_is_async_ep(unsigned int ep_type) 2301 { 2302 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2303 ep_type != ISOC_IN_EP && 2304 ep_type != INT_IN_EP); 2305 } 2306 2307 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2308 { 2309 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2310 } 2311 2312 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2313 { 2314 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2315 2316 if (ep_bw->ep_interval == 0) 2317 return SS_OVERHEAD_BURST + 2318 (ep_bw->mult * ep_bw->num_packets * 2319 (SS_OVERHEAD + mps)); 2320 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2321 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2322 1 << ep_bw->ep_interval); 2323 2324 } 2325 2326 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2327 struct xhci_bw_info *ep_bw, 2328 struct xhci_interval_bw_table *bw_table, 2329 struct usb_device *udev, 2330 struct xhci_virt_ep *virt_ep, 2331 struct xhci_tt_bw_info *tt_info) 2332 { 2333 struct xhci_interval_bw *interval_bw; 2334 int normalized_interval; 2335 2336 if (xhci_is_async_ep(ep_bw->type)) 2337 return; 2338 2339 if (udev->speed >= USB_SPEED_SUPER) { 2340 if (xhci_is_sync_in_ep(ep_bw->type)) 2341 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2342 xhci_get_ss_bw_consumed(ep_bw); 2343 else 2344 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2345 xhci_get_ss_bw_consumed(ep_bw); 2346 return; 2347 } 2348 2349 /* SuperSpeed endpoints never get added to intervals in the table, so 2350 * this check is only valid for HS/FS/LS devices. 2351 */ 2352 if (list_empty(&virt_ep->bw_endpoint_list)) 2353 return; 2354 /* For LS/FS devices, we need to translate the interval expressed in 2355 * microframes to frames. 2356 */ 2357 if (udev->speed == USB_SPEED_HIGH) 2358 normalized_interval = ep_bw->ep_interval; 2359 else 2360 normalized_interval = ep_bw->ep_interval - 3; 2361 2362 if (normalized_interval == 0) 2363 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2364 interval_bw = &bw_table->interval_bw[normalized_interval]; 2365 interval_bw->num_packets -= ep_bw->num_packets; 2366 switch (udev->speed) { 2367 case USB_SPEED_LOW: 2368 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2369 break; 2370 case USB_SPEED_FULL: 2371 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2372 break; 2373 case USB_SPEED_HIGH: 2374 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2375 break; 2376 case USB_SPEED_SUPER: 2377 case USB_SPEED_SUPER_PLUS: 2378 case USB_SPEED_UNKNOWN: 2379 case USB_SPEED_WIRELESS: 2380 /* Should never happen because only LS/FS/HS endpoints will get 2381 * added to the endpoint list. 2382 */ 2383 return; 2384 } 2385 if (tt_info) 2386 tt_info->active_eps -= 1; 2387 list_del_init(&virt_ep->bw_endpoint_list); 2388 } 2389 2390 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2391 struct xhci_bw_info *ep_bw, 2392 struct xhci_interval_bw_table *bw_table, 2393 struct usb_device *udev, 2394 struct xhci_virt_ep *virt_ep, 2395 struct xhci_tt_bw_info *tt_info) 2396 { 2397 struct xhci_interval_bw *interval_bw; 2398 struct xhci_virt_ep *smaller_ep; 2399 int normalized_interval; 2400 2401 if (xhci_is_async_ep(ep_bw->type)) 2402 return; 2403 2404 if (udev->speed == USB_SPEED_SUPER) { 2405 if (xhci_is_sync_in_ep(ep_bw->type)) 2406 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2407 xhci_get_ss_bw_consumed(ep_bw); 2408 else 2409 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2410 xhci_get_ss_bw_consumed(ep_bw); 2411 return; 2412 } 2413 2414 /* For LS/FS devices, we need to translate the interval expressed in 2415 * microframes to frames. 2416 */ 2417 if (udev->speed == USB_SPEED_HIGH) 2418 normalized_interval = ep_bw->ep_interval; 2419 else 2420 normalized_interval = ep_bw->ep_interval - 3; 2421 2422 if (normalized_interval == 0) 2423 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2424 interval_bw = &bw_table->interval_bw[normalized_interval]; 2425 interval_bw->num_packets += ep_bw->num_packets; 2426 switch (udev->speed) { 2427 case USB_SPEED_LOW: 2428 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2429 break; 2430 case USB_SPEED_FULL: 2431 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2432 break; 2433 case USB_SPEED_HIGH: 2434 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2435 break; 2436 case USB_SPEED_SUPER: 2437 case USB_SPEED_SUPER_PLUS: 2438 case USB_SPEED_UNKNOWN: 2439 case USB_SPEED_WIRELESS: 2440 /* Should never happen because only LS/FS/HS endpoints will get 2441 * added to the endpoint list. 2442 */ 2443 return; 2444 } 2445 2446 if (tt_info) 2447 tt_info->active_eps += 1; 2448 /* Insert the endpoint into the list, largest max packet size first. */ 2449 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2450 bw_endpoint_list) { 2451 if (ep_bw->max_packet_size >= 2452 smaller_ep->bw_info.max_packet_size) { 2453 /* Add the new ep before the smaller endpoint */ 2454 list_add_tail(&virt_ep->bw_endpoint_list, 2455 &smaller_ep->bw_endpoint_list); 2456 return; 2457 } 2458 } 2459 /* Add the new endpoint at the end of the list. */ 2460 list_add_tail(&virt_ep->bw_endpoint_list, 2461 &interval_bw->endpoints); 2462 } 2463 2464 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2465 struct xhci_virt_device *virt_dev, 2466 int old_active_eps) 2467 { 2468 struct xhci_root_port_bw_info *rh_bw_info; 2469 if (!virt_dev->tt_info) 2470 return; 2471 2472 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2473 if (old_active_eps == 0 && 2474 virt_dev->tt_info->active_eps != 0) { 2475 rh_bw_info->num_active_tts += 1; 2476 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2477 } else if (old_active_eps != 0 && 2478 virt_dev->tt_info->active_eps == 0) { 2479 rh_bw_info->num_active_tts -= 1; 2480 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2481 } 2482 } 2483 2484 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2485 struct xhci_virt_device *virt_dev, 2486 struct xhci_container_ctx *in_ctx) 2487 { 2488 struct xhci_bw_info ep_bw_info[31]; 2489 int i; 2490 struct xhci_input_control_ctx *ctrl_ctx; 2491 int old_active_eps = 0; 2492 2493 if (virt_dev->tt_info) 2494 old_active_eps = virt_dev->tt_info->active_eps; 2495 2496 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2497 if (!ctrl_ctx) { 2498 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2499 __func__); 2500 return -ENOMEM; 2501 } 2502 2503 for (i = 0; i < 31; i++) { 2504 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2505 continue; 2506 2507 /* Make a copy of the BW info in case we need to revert this */ 2508 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2509 sizeof(ep_bw_info[i])); 2510 /* Drop the endpoint from the interval table if the endpoint is 2511 * being dropped or changed. 2512 */ 2513 if (EP_IS_DROPPED(ctrl_ctx, i)) 2514 xhci_drop_ep_from_interval_table(xhci, 2515 &virt_dev->eps[i].bw_info, 2516 virt_dev->bw_table, 2517 virt_dev->udev, 2518 &virt_dev->eps[i], 2519 virt_dev->tt_info); 2520 } 2521 /* Overwrite the information stored in the endpoints' bw_info */ 2522 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2523 for (i = 0; i < 31; i++) { 2524 /* Add any changed or added endpoints to the interval table */ 2525 if (EP_IS_ADDED(ctrl_ctx, i)) 2526 xhci_add_ep_to_interval_table(xhci, 2527 &virt_dev->eps[i].bw_info, 2528 virt_dev->bw_table, 2529 virt_dev->udev, 2530 &virt_dev->eps[i], 2531 virt_dev->tt_info); 2532 } 2533 2534 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2535 /* Ok, this fits in the bandwidth we have. 2536 * Update the number of active TTs. 2537 */ 2538 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2539 return 0; 2540 } 2541 2542 /* We don't have enough bandwidth for this, revert the stored info. */ 2543 for (i = 0; i < 31; i++) { 2544 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2545 continue; 2546 2547 /* Drop the new copies of any added or changed endpoints from 2548 * the interval table. 2549 */ 2550 if (EP_IS_ADDED(ctrl_ctx, i)) { 2551 xhci_drop_ep_from_interval_table(xhci, 2552 &virt_dev->eps[i].bw_info, 2553 virt_dev->bw_table, 2554 virt_dev->udev, 2555 &virt_dev->eps[i], 2556 virt_dev->tt_info); 2557 } 2558 /* Revert the endpoint back to its old information */ 2559 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2560 sizeof(ep_bw_info[i])); 2561 /* Add any changed or dropped endpoints back into the table */ 2562 if (EP_IS_DROPPED(ctrl_ctx, i)) 2563 xhci_add_ep_to_interval_table(xhci, 2564 &virt_dev->eps[i].bw_info, 2565 virt_dev->bw_table, 2566 virt_dev->udev, 2567 &virt_dev->eps[i], 2568 virt_dev->tt_info); 2569 } 2570 return -ENOMEM; 2571 } 2572 2573 2574 /* Issue a configure endpoint command or evaluate context command 2575 * and wait for it to finish. 2576 */ 2577 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2578 struct usb_device *udev, 2579 struct xhci_command *command, 2580 bool ctx_change, bool must_succeed) 2581 { 2582 int ret; 2583 unsigned long flags; 2584 struct xhci_input_control_ctx *ctrl_ctx; 2585 struct xhci_virt_device *virt_dev; 2586 2587 if (!command) 2588 return -EINVAL; 2589 2590 spin_lock_irqsave(&xhci->lock, flags); 2591 virt_dev = xhci->devs[udev->slot_id]; 2592 2593 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2594 if (!ctrl_ctx) { 2595 spin_unlock_irqrestore(&xhci->lock, flags); 2596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2597 __func__); 2598 return -ENOMEM; 2599 } 2600 2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2602 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2603 spin_unlock_irqrestore(&xhci->lock, flags); 2604 xhci_warn(xhci, "Not enough host resources, " 2605 "active endpoint contexts = %u\n", 2606 xhci->num_active_eps); 2607 return -ENOMEM; 2608 } 2609 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2610 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2612 xhci_free_host_resources(xhci, ctrl_ctx); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 xhci_warn(xhci, "Not enough bandwidth\n"); 2615 return -ENOMEM; 2616 } 2617 2618 if (!ctx_change) 2619 ret = xhci_queue_configure_endpoint(xhci, command, 2620 command->in_ctx->dma, 2621 udev->slot_id, must_succeed); 2622 else 2623 ret = xhci_queue_evaluate_context(xhci, command, 2624 command->in_ctx->dma, 2625 udev->slot_id, must_succeed); 2626 if (ret < 0) { 2627 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2628 xhci_free_host_resources(xhci, ctrl_ctx); 2629 spin_unlock_irqrestore(&xhci->lock, flags); 2630 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2631 "FIXME allocate a new ring segment"); 2632 return -ENOMEM; 2633 } 2634 xhci_ring_cmd_db(xhci); 2635 spin_unlock_irqrestore(&xhci->lock, flags); 2636 2637 /* Wait for the configure endpoint command to complete */ 2638 wait_for_completion(command->completion); 2639 2640 if (!ctx_change) 2641 ret = xhci_configure_endpoint_result(xhci, udev, 2642 &command->status); 2643 else 2644 ret = xhci_evaluate_context_result(xhci, udev, 2645 &command->status); 2646 2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2648 spin_lock_irqsave(&xhci->lock, flags); 2649 /* If the command failed, remove the reserved resources. 2650 * Otherwise, clean up the estimate to include dropped eps. 2651 */ 2652 if (ret) 2653 xhci_free_host_resources(xhci, ctrl_ctx); 2654 else 2655 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2656 spin_unlock_irqrestore(&xhci->lock, flags); 2657 } 2658 return ret; 2659 } 2660 2661 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2662 struct xhci_virt_device *vdev, int i) 2663 { 2664 struct xhci_virt_ep *ep = &vdev->eps[i]; 2665 2666 if (ep->ep_state & EP_HAS_STREAMS) { 2667 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2668 xhci_get_endpoint_address(i)); 2669 xhci_free_stream_info(xhci, ep->stream_info); 2670 ep->stream_info = NULL; 2671 ep->ep_state &= ~EP_HAS_STREAMS; 2672 } 2673 } 2674 2675 /* Called after one or more calls to xhci_add_endpoint() or 2676 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2677 * to call xhci_reset_bandwidth(). 2678 * 2679 * Since we are in the middle of changing either configuration or 2680 * installing a new alt setting, the USB core won't allow URBs to be 2681 * enqueued for any endpoint on the old config or interface. Nothing 2682 * else should be touching the xhci->devs[slot_id] structure, so we 2683 * don't need to take the xhci->lock for manipulating that. 2684 */ 2685 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2686 { 2687 int i; 2688 int ret = 0; 2689 struct xhci_hcd *xhci; 2690 struct xhci_virt_device *virt_dev; 2691 struct xhci_input_control_ctx *ctrl_ctx; 2692 struct xhci_slot_ctx *slot_ctx; 2693 struct xhci_command *command; 2694 2695 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2696 if (ret <= 0) 2697 return ret; 2698 xhci = hcd_to_xhci(hcd); 2699 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2700 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2701 return -ENODEV; 2702 2703 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2704 virt_dev = xhci->devs[udev->slot_id]; 2705 2706 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2707 if (!command) 2708 return -ENOMEM; 2709 2710 command->in_ctx = virt_dev->in_ctx; 2711 2712 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2713 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2714 if (!ctrl_ctx) { 2715 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2716 __func__); 2717 ret = -ENOMEM; 2718 goto command_cleanup; 2719 } 2720 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2721 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2722 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2723 2724 /* Don't issue the command if there's no endpoints to update. */ 2725 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2726 ctrl_ctx->drop_flags == 0) { 2727 ret = 0; 2728 goto command_cleanup; 2729 } 2730 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2731 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2732 for (i = 31; i >= 1; i--) { 2733 __le32 le32 = cpu_to_le32(BIT(i)); 2734 2735 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2736 || (ctrl_ctx->add_flags & le32) || i == 1) { 2737 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2738 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2739 break; 2740 } 2741 } 2742 xhci_dbg(xhci, "New Input Control Context:\n"); 2743 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2744 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2745 2746 ret = xhci_configure_endpoint(xhci, udev, command, 2747 false, false); 2748 if (ret) 2749 /* Callee should call reset_bandwidth() */ 2750 goto command_cleanup; 2751 2752 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2753 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2754 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2755 2756 /* Free any rings that were dropped, but not changed. */ 2757 for (i = 1; i < 31; i++) { 2758 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2759 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2760 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2761 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2762 } 2763 } 2764 xhci_zero_in_ctx(xhci, virt_dev); 2765 /* 2766 * Install any rings for completely new endpoints or changed endpoints, 2767 * and free or cache any old rings from changed endpoints. 2768 */ 2769 for (i = 1; i < 31; i++) { 2770 if (!virt_dev->eps[i].new_ring) 2771 continue; 2772 /* Only cache or free the old ring if it exists. 2773 * It may not if this is the first add of an endpoint. 2774 */ 2775 if (virt_dev->eps[i].ring) { 2776 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2777 } 2778 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2779 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2780 virt_dev->eps[i].new_ring = NULL; 2781 } 2782 command_cleanup: 2783 kfree(command->completion); 2784 kfree(command); 2785 2786 return ret; 2787 } 2788 2789 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2790 { 2791 struct xhci_hcd *xhci; 2792 struct xhci_virt_device *virt_dev; 2793 int i, ret; 2794 2795 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2796 if (ret <= 0) 2797 return; 2798 xhci = hcd_to_xhci(hcd); 2799 2800 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2801 virt_dev = xhci->devs[udev->slot_id]; 2802 /* Free any rings allocated for added endpoints */ 2803 for (i = 0; i < 31; i++) { 2804 if (virt_dev->eps[i].new_ring) { 2805 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2806 virt_dev->eps[i].new_ring = NULL; 2807 } 2808 } 2809 xhci_zero_in_ctx(xhci, virt_dev); 2810 } 2811 2812 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2813 struct xhci_container_ctx *in_ctx, 2814 struct xhci_container_ctx *out_ctx, 2815 struct xhci_input_control_ctx *ctrl_ctx, 2816 u32 add_flags, u32 drop_flags) 2817 { 2818 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2819 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2820 xhci_slot_copy(xhci, in_ctx, out_ctx); 2821 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2822 2823 xhci_dbg(xhci, "Input Context:\n"); 2824 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2825 } 2826 2827 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2828 unsigned int slot_id, unsigned int ep_index, 2829 struct xhci_dequeue_state *deq_state) 2830 { 2831 struct xhci_input_control_ctx *ctrl_ctx; 2832 struct xhci_container_ctx *in_ctx; 2833 struct xhci_ep_ctx *ep_ctx; 2834 u32 added_ctxs; 2835 dma_addr_t addr; 2836 2837 in_ctx = xhci->devs[slot_id]->in_ctx; 2838 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2839 if (!ctrl_ctx) { 2840 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2841 __func__); 2842 return; 2843 } 2844 2845 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2846 xhci->devs[slot_id]->out_ctx, ep_index); 2847 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2848 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2849 deq_state->new_deq_ptr); 2850 if (addr == 0) { 2851 xhci_warn(xhci, "WARN Cannot submit config ep after " 2852 "reset ep command\n"); 2853 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2854 deq_state->new_deq_seg, 2855 deq_state->new_deq_ptr); 2856 return; 2857 } 2858 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2859 2860 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2861 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2862 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2863 added_ctxs, added_ctxs); 2864 } 2865 2866 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2867 unsigned int ep_index, struct xhci_td *td) 2868 { 2869 struct xhci_dequeue_state deq_state; 2870 struct xhci_virt_ep *ep; 2871 struct usb_device *udev = td->urb->dev; 2872 2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2874 "Cleaning up stalled endpoint ring"); 2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2876 /* We need to move the HW's dequeue pointer past this TD, 2877 * or it will attempt to resend it on the next doorbell ring. 2878 */ 2879 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2880 ep_index, ep->stopped_stream, td, &deq_state); 2881 2882 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2883 return; 2884 2885 /* HW with the reset endpoint quirk will use the saved dequeue state to 2886 * issue a configure endpoint command later. 2887 */ 2888 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2889 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2890 "Queueing new dequeue state"); 2891 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2892 ep_index, ep->stopped_stream, &deq_state); 2893 } else { 2894 /* Better hope no one uses the input context between now and the 2895 * reset endpoint completion! 2896 * XXX: No idea how this hardware will react when stream rings 2897 * are enabled. 2898 */ 2899 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2900 "Setting up input context for " 2901 "configure endpoint command"); 2902 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2903 ep_index, &deq_state); 2904 } 2905 } 2906 2907 /* Called when clearing halted device. The core should have sent the control 2908 * message to clear the device halt condition. The host side of the halt should 2909 * already be cleared with a reset endpoint command issued when the STALL tx 2910 * event was received. 2911 * 2912 * Context: in_interrupt 2913 */ 2914 2915 void xhci_endpoint_reset(struct usb_hcd *hcd, 2916 struct usb_host_endpoint *ep) 2917 { 2918 struct xhci_hcd *xhci; 2919 2920 xhci = hcd_to_xhci(hcd); 2921 2922 /* 2923 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2924 * The Reset Endpoint Command may only be issued to endpoints in the 2925 * Halted state. If software wishes reset the Data Toggle or Sequence 2926 * Number of an endpoint that isn't in the Halted state, then software 2927 * may issue a Configure Endpoint Command with the Drop and Add bits set 2928 * for the target endpoint. that is in the Stopped state. 2929 */ 2930 2931 /* For now just print debug to follow the situation */ 2932 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2933 ep->desc.bEndpointAddress); 2934 } 2935 2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2937 struct usb_device *udev, struct usb_host_endpoint *ep, 2938 unsigned int slot_id) 2939 { 2940 int ret; 2941 unsigned int ep_index; 2942 unsigned int ep_state; 2943 2944 if (!ep) 2945 return -EINVAL; 2946 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2947 if (ret <= 0) 2948 return -EINVAL; 2949 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2950 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2951 " descriptor for ep 0x%x does not support streams\n", 2952 ep->desc.bEndpointAddress); 2953 return -EINVAL; 2954 } 2955 2956 ep_index = xhci_get_endpoint_index(&ep->desc); 2957 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2958 if (ep_state & EP_HAS_STREAMS || 2959 ep_state & EP_GETTING_STREAMS) { 2960 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2961 "already has streams set up.\n", 2962 ep->desc.bEndpointAddress); 2963 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2964 "dynamic stream context array reallocation.\n"); 2965 return -EINVAL; 2966 } 2967 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2968 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2969 "endpoint 0x%x; URBs are pending.\n", 2970 ep->desc.bEndpointAddress); 2971 return -EINVAL; 2972 } 2973 return 0; 2974 } 2975 2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2977 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2978 { 2979 unsigned int max_streams; 2980 2981 /* The stream context array size must be a power of two */ 2982 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2983 /* 2984 * Find out how many primary stream array entries the host controller 2985 * supports. Later we may use secondary stream arrays (similar to 2nd 2986 * level page entries), but that's an optional feature for xHCI host 2987 * controllers. xHCs must support at least 4 stream IDs. 2988 */ 2989 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2990 if (*num_stream_ctxs > max_streams) { 2991 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2992 max_streams); 2993 *num_stream_ctxs = max_streams; 2994 *num_streams = max_streams; 2995 } 2996 } 2997 2998 /* Returns an error code if one of the endpoint already has streams. 2999 * This does not change any data structures, it only checks and gathers 3000 * information. 3001 */ 3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3003 struct usb_device *udev, 3004 struct usb_host_endpoint **eps, unsigned int num_eps, 3005 unsigned int *num_streams, u32 *changed_ep_bitmask) 3006 { 3007 unsigned int max_streams; 3008 unsigned int endpoint_flag; 3009 int i; 3010 int ret; 3011 3012 for (i = 0; i < num_eps; i++) { 3013 ret = xhci_check_streams_endpoint(xhci, udev, 3014 eps[i], udev->slot_id); 3015 if (ret < 0) 3016 return ret; 3017 3018 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3019 if (max_streams < (*num_streams - 1)) { 3020 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3021 eps[i]->desc.bEndpointAddress, 3022 max_streams); 3023 *num_streams = max_streams+1; 3024 } 3025 3026 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3027 if (*changed_ep_bitmask & endpoint_flag) 3028 return -EINVAL; 3029 *changed_ep_bitmask |= endpoint_flag; 3030 } 3031 return 0; 3032 } 3033 3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3035 struct usb_device *udev, 3036 struct usb_host_endpoint **eps, unsigned int num_eps) 3037 { 3038 u32 changed_ep_bitmask = 0; 3039 unsigned int slot_id; 3040 unsigned int ep_index; 3041 unsigned int ep_state; 3042 int i; 3043 3044 slot_id = udev->slot_id; 3045 if (!xhci->devs[slot_id]) 3046 return 0; 3047 3048 for (i = 0; i < num_eps; i++) { 3049 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3050 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3051 /* Are streams already being freed for the endpoint? */ 3052 if (ep_state & EP_GETTING_NO_STREAMS) { 3053 xhci_warn(xhci, "WARN Can't disable streams for " 3054 "endpoint 0x%x, " 3055 "streams are being disabled already\n", 3056 eps[i]->desc.bEndpointAddress); 3057 return 0; 3058 } 3059 /* Are there actually any streams to free? */ 3060 if (!(ep_state & EP_HAS_STREAMS) && 3061 !(ep_state & EP_GETTING_STREAMS)) { 3062 xhci_warn(xhci, "WARN Can't disable streams for " 3063 "endpoint 0x%x, " 3064 "streams are already disabled!\n", 3065 eps[i]->desc.bEndpointAddress); 3066 xhci_warn(xhci, "WARN xhci_free_streams() called " 3067 "with non-streams endpoint\n"); 3068 return 0; 3069 } 3070 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3071 } 3072 return changed_ep_bitmask; 3073 } 3074 3075 /* 3076 * The USB device drivers use this function (through the HCD interface in USB 3077 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3078 * coordinate mass storage command queueing across multiple endpoints (basically 3079 * a stream ID == a task ID). 3080 * 3081 * Setting up streams involves allocating the same size stream context array 3082 * for each endpoint and issuing a configure endpoint command for all endpoints. 3083 * 3084 * Don't allow the call to succeed if one endpoint only supports one stream 3085 * (which means it doesn't support streams at all). 3086 * 3087 * Drivers may get less stream IDs than they asked for, if the host controller 3088 * hardware or endpoints claim they can't support the number of requested 3089 * stream IDs. 3090 */ 3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3092 struct usb_host_endpoint **eps, unsigned int num_eps, 3093 unsigned int num_streams, gfp_t mem_flags) 3094 { 3095 int i, ret; 3096 struct xhci_hcd *xhci; 3097 struct xhci_virt_device *vdev; 3098 struct xhci_command *config_cmd; 3099 struct xhci_input_control_ctx *ctrl_ctx; 3100 unsigned int ep_index; 3101 unsigned int num_stream_ctxs; 3102 unsigned int max_packet; 3103 unsigned long flags; 3104 u32 changed_ep_bitmask = 0; 3105 3106 if (!eps) 3107 return -EINVAL; 3108 3109 /* Add one to the number of streams requested to account for 3110 * stream 0 that is reserved for xHCI usage. 3111 */ 3112 num_streams += 1; 3113 xhci = hcd_to_xhci(hcd); 3114 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3115 num_streams); 3116 3117 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3118 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3119 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3120 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3121 return -ENOSYS; 3122 } 3123 3124 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3125 if (!config_cmd) { 3126 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3127 return -ENOMEM; 3128 } 3129 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3130 if (!ctrl_ctx) { 3131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3132 __func__); 3133 xhci_free_command(xhci, config_cmd); 3134 return -ENOMEM; 3135 } 3136 3137 /* Check to make sure all endpoints are not already configured for 3138 * streams. While we're at it, find the maximum number of streams that 3139 * all the endpoints will support and check for duplicate endpoints. 3140 */ 3141 spin_lock_irqsave(&xhci->lock, flags); 3142 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3143 num_eps, &num_streams, &changed_ep_bitmask); 3144 if (ret < 0) { 3145 xhci_free_command(xhci, config_cmd); 3146 spin_unlock_irqrestore(&xhci->lock, flags); 3147 return ret; 3148 } 3149 if (num_streams <= 1) { 3150 xhci_warn(xhci, "WARN: endpoints can't handle " 3151 "more than one stream.\n"); 3152 xhci_free_command(xhci, config_cmd); 3153 spin_unlock_irqrestore(&xhci->lock, flags); 3154 return -EINVAL; 3155 } 3156 vdev = xhci->devs[udev->slot_id]; 3157 /* Mark each endpoint as being in transition, so 3158 * xhci_urb_enqueue() will reject all URBs. 3159 */ 3160 for (i = 0; i < num_eps; i++) { 3161 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3162 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3163 } 3164 spin_unlock_irqrestore(&xhci->lock, flags); 3165 3166 /* Setup internal data structures and allocate HW data structures for 3167 * streams (but don't install the HW structures in the input context 3168 * until we're sure all memory allocation succeeded). 3169 */ 3170 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3171 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3172 num_stream_ctxs, num_streams); 3173 3174 for (i = 0; i < num_eps; i++) { 3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3176 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3177 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3178 num_stream_ctxs, 3179 num_streams, 3180 max_packet, mem_flags); 3181 if (!vdev->eps[ep_index].stream_info) 3182 goto cleanup; 3183 /* Set maxPstreams in endpoint context and update deq ptr to 3184 * point to stream context array. FIXME 3185 */ 3186 } 3187 3188 /* Set up the input context for a configure endpoint command. */ 3189 for (i = 0; i < num_eps; i++) { 3190 struct xhci_ep_ctx *ep_ctx; 3191 3192 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3193 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3194 3195 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3196 vdev->out_ctx, ep_index); 3197 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3198 vdev->eps[ep_index].stream_info); 3199 } 3200 /* Tell the HW to drop its old copy of the endpoint context info 3201 * and add the updated copy from the input context. 3202 */ 3203 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3204 vdev->out_ctx, ctrl_ctx, 3205 changed_ep_bitmask, changed_ep_bitmask); 3206 3207 /* Issue and wait for the configure endpoint command */ 3208 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3209 false, false); 3210 3211 /* xHC rejected the configure endpoint command for some reason, so we 3212 * leave the old ring intact and free our internal streams data 3213 * structure. 3214 */ 3215 if (ret < 0) 3216 goto cleanup; 3217 3218 spin_lock_irqsave(&xhci->lock, flags); 3219 for (i = 0; i < num_eps; i++) { 3220 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3221 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3222 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3223 udev->slot_id, ep_index); 3224 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3225 } 3226 xhci_free_command(xhci, config_cmd); 3227 spin_unlock_irqrestore(&xhci->lock, flags); 3228 3229 /* Subtract 1 for stream 0, which drivers can't use */ 3230 return num_streams - 1; 3231 3232 cleanup: 3233 /* If it didn't work, free the streams! */ 3234 for (i = 0; i < num_eps; i++) { 3235 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3236 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3237 vdev->eps[ep_index].stream_info = NULL; 3238 /* FIXME Unset maxPstreams in endpoint context and 3239 * update deq ptr to point to normal string ring. 3240 */ 3241 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3242 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3243 xhci_endpoint_zero(xhci, vdev, eps[i]); 3244 } 3245 xhci_free_command(xhci, config_cmd); 3246 return -ENOMEM; 3247 } 3248 3249 /* Transition the endpoint from using streams to being a "normal" endpoint 3250 * without streams. 3251 * 3252 * Modify the endpoint context state, submit a configure endpoint command, 3253 * and free all endpoint rings for streams if that completes successfully. 3254 */ 3255 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3256 struct usb_host_endpoint **eps, unsigned int num_eps, 3257 gfp_t mem_flags) 3258 { 3259 int i, ret; 3260 struct xhci_hcd *xhci; 3261 struct xhci_virt_device *vdev; 3262 struct xhci_command *command; 3263 struct xhci_input_control_ctx *ctrl_ctx; 3264 unsigned int ep_index; 3265 unsigned long flags; 3266 u32 changed_ep_bitmask; 3267 3268 xhci = hcd_to_xhci(hcd); 3269 vdev = xhci->devs[udev->slot_id]; 3270 3271 /* Set up a configure endpoint command to remove the streams rings */ 3272 spin_lock_irqsave(&xhci->lock, flags); 3273 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3274 udev, eps, num_eps); 3275 if (changed_ep_bitmask == 0) { 3276 spin_unlock_irqrestore(&xhci->lock, flags); 3277 return -EINVAL; 3278 } 3279 3280 /* Use the xhci_command structure from the first endpoint. We may have 3281 * allocated too many, but the driver may call xhci_free_streams() for 3282 * each endpoint it grouped into one call to xhci_alloc_streams(). 3283 */ 3284 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3285 command = vdev->eps[ep_index].stream_info->free_streams_command; 3286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3287 if (!ctrl_ctx) { 3288 spin_unlock_irqrestore(&xhci->lock, flags); 3289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3290 __func__); 3291 return -EINVAL; 3292 } 3293 3294 for (i = 0; i < num_eps; i++) { 3295 struct xhci_ep_ctx *ep_ctx; 3296 3297 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3298 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3299 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3300 EP_GETTING_NO_STREAMS; 3301 3302 xhci_endpoint_copy(xhci, command->in_ctx, 3303 vdev->out_ctx, ep_index); 3304 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3305 &vdev->eps[ep_index]); 3306 } 3307 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3308 vdev->out_ctx, ctrl_ctx, 3309 changed_ep_bitmask, changed_ep_bitmask); 3310 spin_unlock_irqrestore(&xhci->lock, flags); 3311 3312 /* Issue and wait for the configure endpoint command, 3313 * which must succeed. 3314 */ 3315 ret = xhci_configure_endpoint(xhci, udev, command, 3316 false, true); 3317 3318 /* xHC rejected the configure endpoint command for some reason, so we 3319 * leave the streams rings intact. 3320 */ 3321 if (ret < 0) 3322 return ret; 3323 3324 spin_lock_irqsave(&xhci->lock, flags); 3325 for (i = 0; i < num_eps; i++) { 3326 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3327 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3328 vdev->eps[ep_index].stream_info = NULL; 3329 /* FIXME Unset maxPstreams in endpoint context and 3330 * update deq ptr to point to normal string ring. 3331 */ 3332 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3333 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3334 } 3335 spin_unlock_irqrestore(&xhci->lock, flags); 3336 3337 return 0; 3338 } 3339 3340 /* 3341 * Deletes endpoint resources for endpoints that were active before a Reset 3342 * Device command, or a Disable Slot command. The Reset Device command leaves 3343 * the control endpoint intact, whereas the Disable Slot command deletes it. 3344 * 3345 * Must be called with xhci->lock held. 3346 */ 3347 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3348 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3349 { 3350 int i; 3351 unsigned int num_dropped_eps = 0; 3352 unsigned int drop_flags = 0; 3353 3354 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3355 if (virt_dev->eps[i].ring) { 3356 drop_flags |= 1 << i; 3357 num_dropped_eps++; 3358 } 3359 } 3360 xhci->num_active_eps -= num_dropped_eps; 3361 if (num_dropped_eps) 3362 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3363 "Dropped %u ep ctxs, flags = 0x%x, " 3364 "%u now active.", 3365 num_dropped_eps, drop_flags, 3366 xhci->num_active_eps); 3367 } 3368 3369 /* 3370 * This submits a Reset Device Command, which will set the device state to 0, 3371 * set the device address to 0, and disable all the endpoints except the default 3372 * control endpoint. The USB core should come back and call 3373 * xhci_address_device(), and then re-set up the configuration. If this is 3374 * called because of a usb_reset_and_verify_device(), then the old alternate 3375 * settings will be re-installed through the normal bandwidth allocation 3376 * functions. 3377 * 3378 * Wait for the Reset Device command to finish. Remove all structures 3379 * associated with the endpoints that were disabled. Clear the input device 3380 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3381 * 3382 * If the virt_dev to be reset does not exist or does not match the udev, 3383 * it means the device is lost, possibly due to the xHC restore error and 3384 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3385 * re-allocate the device. 3386 */ 3387 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3388 { 3389 int ret, i; 3390 unsigned long flags; 3391 struct xhci_hcd *xhci; 3392 unsigned int slot_id; 3393 struct xhci_virt_device *virt_dev; 3394 struct xhci_command *reset_device_cmd; 3395 int last_freed_endpoint; 3396 struct xhci_slot_ctx *slot_ctx; 3397 int old_active_eps = 0; 3398 3399 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3400 if (ret <= 0) 3401 return ret; 3402 xhci = hcd_to_xhci(hcd); 3403 slot_id = udev->slot_id; 3404 virt_dev = xhci->devs[slot_id]; 3405 if (!virt_dev) { 3406 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3407 "not exist. Re-allocate the device\n", slot_id); 3408 ret = xhci_alloc_dev(hcd, udev); 3409 if (ret == 1) 3410 return 0; 3411 else 3412 return -EINVAL; 3413 } 3414 3415 if (virt_dev->tt_info) 3416 old_active_eps = virt_dev->tt_info->active_eps; 3417 3418 if (virt_dev->udev != udev) { 3419 /* If the virt_dev and the udev does not match, this virt_dev 3420 * may belong to another udev. 3421 * Re-allocate the device. 3422 */ 3423 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3424 "not match the udev. Re-allocate the device\n", 3425 slot_id); 3426 ret = xhci_alloc_dev(hcd, udev); 3427 if (ret == 1) 3428 return 0; 3429 else 3430 return -EINVAL; 3431 } 3432 3433 /* If device is not setup, there is no point in resetting it */ 3434 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3435 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3436 SLOT_STATE_DISABLED) 3437 return 0; 3438 3439 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3440 /* Allocate the command structure that holds the struct completion. 3441 * Assume we're in process context, since the normal device reset 3442 * process has to wait for the device anyway. Storage devices are 3443 * reset as part of error handling, so use GFP_NOIO instead of 3444 * GFP_KERNEL. 3445 */ 3446 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3447 if (!reset_device_cmd) { 3448 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3449 return -ENOMEM; 3450 } 3451 3452 /* Attempt to submit the Reset Device command to the command ring */ 3453 spin_lock_irqsave(&xhci->lock, flags); 3454 3455 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3456 if (ret) { 3457 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3458 spin_unlock_irqrestore(&xhci->lock, flags); 3459 goto command_cleanup; 3460 } 3461 xhci_ring_cmd_db(xhci); 3462 spin_unlock_irqrestore(&xhci->lock, flags); 3463 3464 /* Wait for the Reset Device command to finish */ 3465 wait_for_completion(reset_device_cmd->completion); 3466 3467 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3468 * unless we tried to reset a slot ID that wasn't enabled, 3469 * or the device wasn't in the addressed or configured state. 3470 */ 3471 ret = reset_device_cmd->status; 3472 switch (ret) { 3473 case COMP_COMMAND_ABORTED: 3474 case COMP_STOPPED: 3475 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3476 ret = -ETIME; 3477 goto command_cleanup; 3478 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3479 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3480 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3481 slot_id, 3482 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3483 xhci_dbg(xhci, "Not freeing device rings.\n"); 3484 /* Don't treat this as an error. May change my mind later. */ 3485 ret = 0; 3486 goto command_cleanup; 3487 case COMP_SUCCESS: 3488 xhci_dbg(xhci, "Successful reset device command.\n"); 3489 break; 3490 default: 3491 if (xhci_is_vendor_info_code(xhci, ret)) 3492 break; 3493 xhci_warn(xhci, "Unknown completion code %u for " 3494 "reset device command.\n", ret); 3495 ret = -EINVAL; 3496 goto command_cleanup; 3497 } 3498 3499 /* Free up host controller endpoint resources */ 3500 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3501 spin_lock_irqsave(&xhci->lock, flags); 3502 /* Don't delete the default control endpoint resources */ 3503 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3504 spin_unlock_irqrestore(&xhci->lock, flags); 3505 } 3506 3507 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3508 last_freed_endpoint = 1; 3509 for (i = 1; i < 31; i++) { 3510 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3511 3512 if (ep->ep_state & EP_HAS_STREAMS) { 3513 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3514 xhci_get_endpoint_address(i)); 3515 xhci_free_stream_info(xhci, ep->stream_info); 3516 ep->stream_info = NULL; 3517 ep->ep_state &= ~EP_HAS_STREAMS; 3518 } 3519 3520 if (ep->ring) { 3521 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3522 last_freed_endpoint = i; 3523 } 3524 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3525 xhci_drop_ep_from_interval_table(xhci, 3526 &virt_dev->eps[i].bw_info, 3527 virt_dev->bw_table, 3528 udev, 3529 &virt_dev->eps[i], 3530 virt_dev->tt_info); 3531 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3532 } 3533 /* If necessary, update the number of active TTs on this root port */ 3534 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3535 3536 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3537 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3538 ret = 0; 3539 3540 command_cleanup: 3541 xhci_free_command(xhci, reset_device_cmd); 3542 return ret; 3543 } 3544 3545 /* 3546 * At this point, the struct usb_device is about to go away, the device has 3547 * disconnected, and all traffic has been stopped and the endpoints have been 3548 * disabled. Free any HC data structures associated with that device. 3549 */ 3550 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3551 { 3552 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3553 struct xhci_virt_device *virt_dev; 3554 unsigned long flags; 3555 u32 state; 3556 int i, ret; 3557 struct xhci_command *command; 3558 3559 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3560 if (!command) 3561 return; 3562 3563 #ifndef CONFIG_USB_DEFAULT_PERSIST 3564 /* 3565 * We called pm_runtime_get_noresume when the device was attached. 3566 * Decrement the counter here to allow controller to runtime suspend 3567 * if no devices remain. 3568 */ 3569 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3570 pm_runtime_put_noidle(hcd->self.controller); 3571 #endif 3572 3573 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3574 /* If the host is halted due to driver unload, we still need to free the 3575 * device. 3576 */ 3577 if (ret <= 0 && ret != -ENODEV) { 3578 kfree(command); 3579 return; 3580 } 3581 3582 virt_dev = xhci->devs[udev->slot_id]; 3583 3584 /* Stop any wayward timer functions (which may grab the lock) */ 3585 for (i = 0; i < 31; i++) { 3586 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3587 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3588 } 3589 3590 spin_lock_irqsave(&xhci->lock, flags); 3591 /* Don't disable the slot if the host controller is dead. */ 3592 state = readl(&xhci->op_regs->status); 3593 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3594 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3595 xhci_free_virt_device(xhci, udev->slot_id); 3596 spin_unlock_irqrestore(&xhci->lock, flags); 3597 kfree(command); 3598 return; 3599 } 3600 3601 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3602 udev->slot_id)) { 3603 spin_unlock_irqrestore(&xhci->lock, flags); 3604 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3605 return; 3606 } 3607 xhci_ring_cmd_db(xhci); 3608 spin_unlock_irqrestore(&xhci->lock, flags); 3609 3610 /* 3611 * Event command completion handler will free any data structures 3612 * associated with the slot. XXX Can free sleep? 3613 */ 3614 } 3615 3616 /* 3617 * Checks if we have enough host controller resources for the default control 3618 * endpoint. 3619 * 3620 * Must be called with xhci->lock held. 3621 */ 3622 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3623 { 3624 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3625 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3626 "Not enough ep ctxs: " 3627 "%u active, need to add 1, limit is %u.", 3628 xhci->num_active_eps, xhci->limit_active_eps); 3629 return -ENOMEM; 3630 } 3631 xhci->num_active_eps += 1; 3632 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3633 "Adding 1 ep ctx, %u now active.", 3634 xhci->num_active_eps); 3635 return 0; 3636 } 3637 3638 3639 /* 3640 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3641 * timed out, or allocating memory failed. Returns 1 on success. 3642 */ 3643 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3644 { 3645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3646 unsigned long flags; 3647 int ret, slot_id; 3648 struct xhci_command *command; 3649 3650 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3651 if (!command) 3652 return 0; 3653 3654 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3655 mutex_lock(&xhci->mutex); 3656 spin_lock_irqsave(&xhci->lock, flags); 3657 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3658 if (ret) { 3659 spin_unlock_irqrestore(&xhci->lock, flags); 3660 mutex_unlock(&xhci->mutex); 3661 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3662 xhci_free_command(xhci, command); 3663 return 0; 3664 } 3665 xhci_ring_cmd_db(xhci); 3666 spin_unlock_irqrestore(&xhci->lock, flags); 3667 3668 wait_for_completion(command->completion); 3669 slot_id = command->slot_id; 3670 mutex_unlock(&xhci->mutex); 3671 3672 if (!slot_id || command->status != COMP_SUCCESS) { 3673 xhci_err(xhci, "Error while assigning device slot ID\n"); 3674 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3675 HCS_MAX_SLOTS( 3676 readl(&xhci->cap_regs->hcs_params1))); 3677 xhci_free_command(xhci, command); 3678 return 0; 3679 } 3680 3681 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3682 spin_lock_irqsave(&xhci->lock, flags); 3683 ret = xhci_reserve_host_control_ep_resources(xhci); 3684 if (ret) { 3685 spin_unlock_irqrestore(&xhci->lock, flags); 3686 xhci_warn(xhci, "Not enough host resources, " 3687 "active endpoint contexts = %u\n", 3688 xhci->num_active_eps); 3689 goto disable_slot; 3690 } 3691 spin_unlock_irqrestore(&xhci->lock, flags); 3692 } 3693 /* Use GFP_NOIO, since this function can be called from 3694 * xhci_discover_or_reset_device(), which may be called as part of 3695 * mass storage driver error handling. 3696 */ 3697 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3698 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3699 goto disable_slot; 3700 } 3701 udev->slot_id = slot_id; 3702 3703 #ifndef CONFIG_USB_DEFAULT_PERSIST 3704 /* 3705 * If resetting upon resume, we can't put the controller into runtime 3706 * suspend if there is a device attached. 3707 */ 3708 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3709 pm_runtime_get_noresume(hcd->self.controller); 3710 #endif 3711 3712 3713 xhci_free_command(xhci, command); 3714 /* Is this a LS or FS device under a HS hub? */ 3715 /* Hub or peripherial? */ 3716 return 1; 3717 3718 disable_slot: 3719 /* Disable slot, if we can do it without mem alloc */ 3720 spin_lock_irqsave(&xhci->lock, flags); 3721 kfree(command->completion); 3722 command->completion = NULL; 3723 command->status = 0; 3724 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3725 udev->slot_id)) 3726 xhci_ring_cmd_db(xhci); 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 return 0; 3729 } 3730 3731 /* 3732 * Issue an Address Device command and optionally send a corresponding 3733 * SetAddress request to the device. 3734 */ 3735 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3736 enum xhci_setup_dev setup) 3737 { 3738 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3739 unsigned long flags; 3740 struct xhci_virt_device *virt_dev; 3741 int ret = 0; 3742 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3743 struct xhci_slot_ctx *slot_ctx; 3744 struct xhci_input_control_ctx *ctrl_ctx; 3745 u64 temp_64; 3746 struct xhci_command *command = NULL; 3747 3748 mutex_lock(&xhci->mutex); 3749 3750 if (xhci->xhc_state) { /* dying, removing or halted */ 3751 ret = -ESHUTDOWN; 3752 goto out; 3753 } 3754 3755 if (!udev->slot_id) { 3756 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3757 "Bad Slot ID %d", udev->slot_id); 3758 ret = -EINVAL; 3759 goto out; 3760 } 3761 3762 virt_dev = xhci->devs[udev->slot_id]; 3763 3764 if (WARN_ON(!virt_dev)) { 3765 /* 3766 * In plug/unplug torture test with an NEC controller, 3767 * a zero-dereference was observed once due to virt_dev = 0. 3768 * Print useful debug rather than crash if it is observed again! 3769 */ 3770 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3771 udev->slot_id); 3772 ret = -EINVAL; 3773 goto out; 3774 } 3775 3776 if (setup == SETUP_CONTEXT_ONLY) { 3777 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3778 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3779 SLOT_STATE_DEFAULT) { 3780 xhci_dbg(xhci, "Slot already in default state\n"); 3781 goto out; 3782 } 3783 } 3784 3785 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3786 if (!command) { 3787 ret = -ENOMEM; 3788 goto out; 3789 } 3790 3791 command->in_ctx = virt_dev->in_ctx; 3792 3793 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3794 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3795 if (!ctrl_ctx) { 3796 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3797 __func__); 3798 ret = -EINVAL; 3799 goto out; 3800 } 3801 /* 3802 * If this is the first Set Address since device plug-in or 3803 * virt_device realloaction after a resume with an xHCI power loss, 3804 * then set up the slot context. 3805 */ 3806 if (!slot_ctx->dev_info) 3807 xhci_setup_addressable_virt_dev(xhci, udev); 3808 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3809 else 3810 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3811 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3812 ctrl_ctx->drop_flags = 0; 3813 3814 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3815 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3816 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3817 le32_to_cpu(slot_ctx->dev_info) >> 27); 3818 3819 spin_lock_irqsave(&xhci->lock, flags); 3820 trace_xhci_setup_device(virt_dev); 3821 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3822 udev->slot_id, setup); 3823 if (ret) { 3824 spin_unlock_irqrestore(&xhci->lock, flags); 3825 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3826 "FIXME: allocate a command ring segment"); 3827 goto out; 3828 } 3829 xhci_ring_cmd_db(xhci); 3830 spin_unlock_irqrestore(&xhci->lock, flags); 3831 3832 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3833 wait_for_completion(command->completion); 3834 3835 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3836 * the SetAddress() "recovery interval" required by USB and aborting the 3837 * command on a timeout. 3838 */ 3839 switch (command->status) { 3840 case COMP_COMMAND_ABORTED: 3841 case COMP_STOPPED: 3842 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3843 ret = -ETIME; 3844 break; 3845 case COMP_CONTEXT_STATE_ERROR: 3846 case COMP_SLOT_NOT_ENABLED_ERROR: 3847 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3848 act, udev->slot_id); 3849 ret = -EINVAL; 3850 break; 3851 case COMP_USB_TRANSACTION_ERROR: 3852 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3853 ret = -EPROTO; 3854 break; 3855 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3856 dev_warn(&udev->dev, 3857 "ERROR: Incompatible device for setup %s command\n", act); 3858 ret = -ENODEV; 3859 break; 3860 case COMP_SUCCESS: 3861 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3862 "Successful setup %s command", act); 3863 break; 3864 default: 3865 xhci_err(xhci, 3866 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3867 act, command->status); 3868 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3869 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3870 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3871 ret = -EINVAL; 3872 break; 3873 } 3874 if (ret) 3875 goto out; 3876 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3877 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3878 "Op regs DCBAA ptr = %#016llx", temp_64); 3879 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3880 "Slot ID %d dcbaa entry @%p = %#016llx", 3881 udev->slot_id, 3882 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3883 (unsigned long long) 3884 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3885 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3886 "Output Context DMA address = %#08llx", 3887 (unsigned long long)virt_dev->out_ctx->dma); 3888 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3889 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3890 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3891 le32_to_cpu(slot_ctx->dev_info) >> 27); 3892 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3893 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3894 /* 3895 * USB core uses address 1 for the roothubs, so we add one to the 3896 * address given back to us by the HC. 3897 */ 3898 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3899 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3900 le32_to_cpu(slot_ctx->dev_info) >> 27); 3901 /* Zero the input context control for later use */ 3902 ctrl_ctx->add_flags = 0; 3903 ctrl_ctx->drop_flags = 0; 3904 3905 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3906 "Internal device address = %d", 3907 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3908 out: 3909 mutex_unlock(&xhci->mutex); 3910 if (command) { 3911 kfree(command->completion); 3912 kfree(command); 3913 } 3914 return ret; 3915 } 3916 3917 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3918 { 3919 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3920 } 3921 3922 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3923 { 3924 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3925 } 3926 3927 /* 3928 * Transfer the port index into real index in the HW port status 3929 * registers. Caculate offset between the port's PORTSC register 3930 * and port status base. Divide the number of per port register 3931 * to get the real index. The raw port number bases 1. 3932 */ 3933 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3934 { 3935 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3936 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3937 __le32 __iomem *addr; 3938 int raw_port; 3939 3940 if (hcd->speed < HCD_USB3) 3941 addr = xhci->usb2_ports[port1 - 1]; 3942 else 3943 addr = xhci->usb3_ports[port1 - 1]; 3944 3945 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3946 return raw_port; 3947 } 3948 3949 /* 3950 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3951 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3952 */ 3953 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3954 struct usb_device *udev, u16 max_exit_latency) 3955 { 3956 struct xhci_virt_device *virt_dev; 3957 struct xhci_command *command; 3958 struct xhci_input_control_ctx *ctrl_ctx; 3959 struct xhci_slot_ctx *slot_ctx; 3960 unsigned long flags; 3961 int ret; 3962 3963 spin_lock_irqsave(&xhci->lock, flags); 3964 3965 virt_dev = xhci->devs[udev->slot_id]; 3966 3967 /* 3968 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3969 * xHC was re-initialized. Exit latency will be set later after 3970 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3971 */ 3972 3973 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3974 spin_unlock_irqrestore(&xhci->lock, flags); 3975 return 0; 3976 } 3977 3978 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3979 command = xhci->lpm_command; 3980 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3981 if (!ctrl_ctx) { 3982 spin_unlock_irqrestore(&xhci->lock, flags); 3983 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3984 __func__); 3985 return -ENOMEM; 3986 } 3987 3988 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3989 spin_unlock_irqrestore(&xhci->lock, flags); 3990 3991 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3992 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3993 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3994 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3995 slot_ctx->dev_state = 0; 3996 3997 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3998 "Set up evaluate context for LPM MEL change."); 3999 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4000 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4001 4002 /* Issue and wait for the evaluate context command. */ 4003 ret = xhci_configure_endpoint(xhci, udev, command, 4004 true, true); 4005 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4006 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4007 4008 if (!ret) { 4009 spin_lock_irqsave(&xhci->lock, flags); 4010 virt_dev->current_mel = max_exit_latency; 4011 spin_unlock_irqrestore(&xhci->lock, flags); 4012 } 4013 return ret; 4014 } 4015 4016 #ifdef CONFIG_PM 4017 4018 /* BESL to HIRD Encoding array for USB2 LPM */ 4019 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4020 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4021 4022 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4023 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4024 struct usb_device *udev) 4025 { 4026 int u2del, besl, besl_host; 4027 int besl_device = 0; 4028 u32 field; 4029 4030 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4031 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4032 4033 if (field & USB_BESL_SUPPORT) { 4034 for (besl_host = 0; besl_host < 16; besl_host++) { 4035 if (xhci_besl_encoding[besl_host] >= u2del) 4036 break; 4037 } 4038 /* Use baseline BESL value as default */ 4039 if (field & USB_BESL_BASELINE_VALID) 4040 besl_device = USB_GET_BESL_BASELINE(field); 4041 else if (field & USB_BESL_DEEP_VALID) 4042 besl_device = USB_GET_BESL_DEEP(field); 4043 } else { 4044 if (u2del <= 50) 4045 besl_host = 0; 4046 else 4047 besl_host = (u2del - 51) / 75 + 1; 4048 } 4049 4050 besl = besl_host + besl_device; 4051 if (besl > 15) 4052 besl = 15; 4053 4054 return besl; 4055 } 4056 4057 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4058 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4059 { 4060 u32 field; 4061 int l1; 4062 int besld = 0; 4063 int hirdm = 0; 4064 4065 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4066 4067 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4068 l1 = udev->l1_params.timeout / 256; 4069 4070 /* device has preferred BESLD */ 4071 if (field & USB_BESL_DEEP_VALID) { 4072 besld = USB_GET_BESL_DEEP(field); 4073 hirdm = 1; 4074 } 4075 4076 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4077 } 4078 4079 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4080 struct usb_device *udev, int enable) 4081 { 4082 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4083 __le32 __iomem **port_array; 4084 __le32 __iomem *pm_addr, *hlpm_addr; 4085 u32 pm_val, hlpm_val, field; 4086 unsigned int port_num; 4087 unsigned long flags; 4088 int hird, exit_latency; 4089 int ret; 4090 4091 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4092 !udev->lpm_capable) 4093 return -EPERM; 4094 4095 if (!udev->parent || udev->parent->parent || 4096 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4097 return -EPERM; 4098 4099 if (udev->usb2_hw_lpm_capable != 1) 4100 return -EPERM; 4101 4102 spin_lock_irqsave(&xhci->lock, flags); 4103 4104 port_array = xhci->usb2_ports; 4105 port_num = udev->portnum - 1; 4106 pm_addr = port_array[port_num] + PORTPMSC; 4107 pm_val = readl(pm_addr); 4108 hlpm_addr = port_array[port_num] + PORTHLPMC; 4109 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4110 4111 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4112 enable ? "enable" : "disable", port_num + 1); 4113 4114 if (enable) { 4115 /* Host supports BESL timeout instead of HIRD */ 4116 if (udev->usb2_hw_lpm_besl_capable) { 4117 /* if device doesn't have a preferred BESL value use a 4118 * default one which works with mixed HIRD and BESL 4119 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4120 */ 4121 if ((field & USB_BESL_SUPPORT) && 4122 (field & USB_BESL_BASELINE_VALID)) 4123 hird = USB_GET_BESL_BASELINE(field); 4124 else 4125 hird = udev->l1_params.besl; 4126 4127 exit_latency = xhci_besl_encoding[hird]; 4128 spin_unlock_irqrestore(&xhci->lock, flags); 4129 4130 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4131 * input context for link powermanagement evaluate 4132 * context commands. It is protected by hcd->bandwidth 4133 * mutex and is shared by all devices. We need to set 4134 * the max ext latency in USB 2 BESL LPM as well, so 4135 * use the same mutex and xhci_change_max_exit_latency() 4136 */ 4137 mutex_lock(hcd->bandwidth_mutex); 4138 ret = xhci_change_max_exit_latency(xhci, udev, 4139 exit_latency); 4140 mutex_unlock(hcd->bandwidth_mutex); 4141 4142 if (ret < 0) 4143 return ret; 4144 spin_lock_irqsave(&xhci->lock, flags); 4145 4146 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4147 writel(hlpm_val, hlpm_addr); 4148 /* flush write */ 4149 readl(hlpm_addr); 4150 } else { 4151 hird = xhci_calculate_hird_besl(xhci, udev); 4152 } 4153 4154 pm_val &= ~PORT_HIRD_MASK; 4155 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4156 writel(pm_val, pm_addr); 4157 pm_val = readl(pm_addr); 4158 pm_val |= PORT_HLE; 4159 writel(pm_val, pm_addr); 4160 /* flush write */ 4161 readl(pm_addr); 4162 } else { 4163 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4164 writel(pm_val, pm_addr); 4165 /* flush write */ 4166 readl(pm_addr); 4167 if (udev->usb2_hw_lpm_besl_capable) { 4168 spin_unlock_irqrestore(&xhci->lock, flags); 4169 mutex_lock(hcd->bandwidth_mutex); 4170 xhci_change_max_exit_latency(xhci, udev, 0); 4171 mutex_unlock(hcd->bandwidth_mutex); 4172 return 0; 4173 } 4174 } 4175 4176 spin_unlock_irqrestore(&xhci->lock, flags); 4177 return 0; 4178 } 4179 4180 /* check if a usb2 port supports a given extened capability protocol 4181 * only USB2 ports extended protocol capability values are cached. 4182 * Return 1 if capability is supported 4183 */ 4184 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4185 unsigned capability) 4186 { 4187 u32 port_offset, port_count; 4188 int i; 4189 4190 for (i = 0; i < xhci->num_ext_caps; i++) { 4191 if (xhci->ext_caps[i] & capability) { 4192 /* port offsets starts at 1 */ 4193 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4194 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4195 if (port >= port_offset && 4196 port < port_offset + port_count) 4197 return 1; 4198 } 4199 } 4200 return 0; 4201 } 4202 4203 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4204 { 4205 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4206 int portnum = udev->portnum - 1; 4207 4208 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4209 !udev->lpm_capable) 4210 return 0; 4211 4212 /* we only support lpm for non-hub device connected to root hub yet */ 4213 if (!udev->parent || udev->parent->parent || 4214 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4215 return 0; 4216 4217 if (xhci->hw_lpm_support == 1 && 4218 xhci_check_usb2_port_capability( 4219 xhci, portnum, XHCI_HLC)) { 4220 udev->usb2_hw_lpm_capable = 1; 4221 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4222 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4223 if (xhci_check_usb2_port_capability(xhci, portnum, 4224 XHCI_BLC)) 4225 udev->usb2_hw_lpm_besl_capable = 1; 4226 } 4227 4228 return 0; 4229 } 4230 4231 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4232 4233 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4234 static unsigned long long xhci_service_interval_to_ns( 4235 struct usb_endpoint_descriptor *desc) 4236 { 4237 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4238 } 4239 4240 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4241 enum usb3_link_state state) 4242 { 4243 unsigned long long sel; 4244 unsigned long long pel; 4245 unsigned int max_sel_pel; 4246 char *state_name; 4247 4248 switch (state) { 4249 case USB3_LPM_U1: 4250 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4251 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4252 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4253 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4254 state_name = "U1"; 4255 break; 4256 case USB3_LPM_U2: 4257 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4258 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4259 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4260 state_name = "U2"; 4261 break; 4262 default: 4263 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4264 __func__); 4265 return USB3_LPM_DISABLED; 4266 } 4267 4268 if (sel <= max_sel_pel && pel <= max_sel_pel) 4269 return USB3_LPM_DEVICE_INITIATED; 4270 4271 if (sel > max_sel_pel) 4272 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4273 "due to long SEL %llu ms\n", 4274 state_name, sel); 4275 else 4276 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4277 "due to long PEL %llu ms\n", 4278 state_name, pel); 4279 return USB3_LPM_DISABLED; 4280 } 4281 4282 /* The U1 timeout should be the maximum of the following values: 4283 * - For control endpoints, U1 system exit latency (SEL) * 3 4284 * - For bulk endpoints, U1 SEL * 5 4285 * - For interrupt endpoints: 4286 * - Notification EPs, U1 SEL * 3 4287 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4288 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4289 */ 4290 static unsigned long long xhci_calculate_intel_u1_timeout( 4291 struct usb_device *udev, 4292 struct usb_endpoint_descriptor *desc) 4293 { 4294 unsigned long long timeout_ns; 4295 int ep_type; 4296 int intr_type; 4297 4298 ep_type = usb_endpoint_type(desc); 4299 switch (ep_type) { 4300 case USB_ENDPOINT_XFER_CONTROL: 4301 timeout_ns = udev->u1_params.sel * 3; 4302 break; 4303 case USB_ENDPOINT_XFER_BULK: 4304 timeout_ns = udev->u1_params.sel * 5; 4305 break; 4306 case USB_ENDPOINT_XFER_INT: 4307 intr_type = usb_endpoint_interrupt_type(desc); 4308 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4309 timeout_ns = udev->u1_params.sel * 3; 4310 break; 4311 } 4312 /* Otherwise the calculation is the same as isoc eps */ 4313 case USB_ENDPOINT_XFER_ISOC: 4314 timeout_ns = xhci_service_interval_to_ns(desc); 4315 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4316 if (timeout_ns < udev->u1_params.sel * 2) 4317 timeout_ns = udev->u1_params.sel * 2; 4318 break; 4319 default: 4320 return 0; 4321 } 4322 4323 return timeout_ns; 4324 } 4325 4326 /* Returns the hub-encoded U1 timeout value. */ 4327 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4328 struct usb_device *udev, 4329 struct usb_endpoint_descriptor *desc) 4330 { 4331 unsigned long long timeout_ns; 4332 4333 if (xhci->quirks & XHCI_INTEL_HOST) 4334 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4335 else 4336 timeout_ns = udev->u1_params.sel; 4337 4338 /* The U1 timeout is encoded in 1us intervals. 4339 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4340 */ 4341 if (timeout_ns == USB3_LPM_DISABLED) 4342 timeout_ns = 1; 4343 else 4344 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4345 4346 /* If the necessary timeout value is bigger than what we can set in the 4347 * USB 3.0 hub, we have to disable hub-initiated U1. 4348 */ 4349 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4350 return timeout_ns; 4351 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4352 "due to long timeout %llu ms\n", timeout_ns); 4353 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4354 } 4355 4356 /* The U2 timeout should be the maximum of: 4357 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4358 * - largest bInterval of any active periodic endpoint (to avoid going 4359 * into lower power link states between intervals). 4360 * - the U2 Exit Latency of the device 4361 */ 4362 static unsigned long long xhci_calculate_intel_u2_timeout( 4363 struct usb_device *udev, 4364 struct usb_endpoint_descriptor *desc) 4365 { 4366 unsigned long long timeout_ns; 4367 unsigned long long u2_del_ns; 4368 4369 timeout_ns = 10 * 1000 * 1000; 4370 4371 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4372 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4373 timeout_ns = xhci_service_interval_to_ns(desc); 4374 4375 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4376 if (u2_del_ns > timeout_ns) 4377 timeout_ns = u2_del_ns; 4378 4379 return timeout_ns; 4380 } 4381 4382 /* Returns the hub-encoded U2 timeout value. */ 4383 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4384 struct usb_device *udev, 4385 struct usb_endpoint_descriptor *desc) 4386 { 4387 unsigned long long timeout_ns; 4388 4389 if (xhci->quirks & XHCI_INTEL_HOST) 4390 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4391 else 4392 timeout_ns = udev->u2_params.sel; 4393 4394 /* The U2 timeout is encoded in 256us intervals */ 4395 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4396 /* If the necessary timeout value is bigger than what we can set in the 4397 * USB 3.0 hub, we have to disable hub-initiated U2. 4398 */ 4399 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4400 return timeout_ns; 4401 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4402 "due to long timeout %llu ms\n", timeout_ns); 4403 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4404 } 4405 4406 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4407 struct usb_device *udev, 4408 struct usb_endpoint_descriptor *desc, 4409 enum usb3_link_state state, 4410 u16 *timeout) 4411 { 4412 if (state == USB3_LPM_U1) 4413 return xhci_calculate_u1_timeout(xhci, udev, desc); 4414 else if (state == USB3_LPM_U2) 4415 return xhci_calculate_u2_timeout(xhci, udev, desc); 4416 4417 return USB3_LPM_DISABLED; 4418 } 4419 4420 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4421 struct usb_device *udev, 4422 struct usb_endpoint_descriptor *desc, 4423 enum usb3_link_state state, 4424 u16 *timeout) 4425 { 4426 u16 alt_timeout; 4427 4428 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4429 desc, state, timeout); 4430 4431 /* If we found we can't enable hub-initiated LPM, or 4432 * the U1 or U2 exit latency was too high to allow 4433 * device-initiated LPM as well, just stop searching. 4434 */ 4435 if (alt_timeout == USB3_LPM_DISABLED || 4436 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4437 *timeout = alt_timeout; 4438 return -E2BIG; 4439 } 4440 if (alt_timeout > *timeout) 4441 *timeout = alt_timeout; 4442 return 0; 4443 } 4444 4445 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4446 struct usb_device *udev, 4447 struct usb_host_interface *alt, 4448 enum usb3_link_state state, 4449 u16 *timeout) 4450 { 4451 int j; 4452 4453 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4454 if (xhci_update_timeout_for_endpoint(xhci, udev, 4455 &alt->endpoint[j].desc, state, timeout)) 4456 return -E2BIG; 4457 continue; 4458 } 4459 return 0; 4460 } 4461 4462 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4463 enum usb3_link_state state) 4464 { 4465 struct usb_device *parent; 4466 unsigned int num_hubs; 4467 4468 if (state == USB3_LPM_U2) 4469 return 0; 4470 4471 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4472 for (parent = udev->parent, num_hubs = 0; parent->parent; 4473 parent = parent->parent) 4474 num_hubs++; 4475 4476 if (num_hubs < 2) 4477 return 0; 4478 4479 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4480 " below second-tier hub.\n"); 4481 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4482 "to decrease power consumption.\n"); 4483 return -E2BIG; 4484 } 4485 4486 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4487 struct usb_device *udev, 4488 enum usb3_link_state state) 4489 { 4490 if (xhci->quirks & XHCI_INTEL_HOST) 4491 return xhci_check_intel_tier_policy(udev, state); 4492 else 4493 return 0; 4494 } 4495 4496 /* Returns the U1 or U2 timeout that should be enabled. 4497 * If the tier check or timeout setting functions return with a non-zero exit 4498 * code, that means the timeout value has been finalized and we shouldn't look 4499 * at any more endpoints. 4500 */ 4501 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4502 struct usb_device *udev, enum usb3_link_state state) 4503 { 4504 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4505 struct usb_host_config *config; 4506 char *state_name; 4507 int i; 4508 u16 timeout = USB3_LPM_DISABLED; 4509 4510 if (state == USB3_LPM_U1) 4511 state_name = "U1"; 4512 else if (state == USB3_LPM_U2) 4513 state_name = "U2"; 4514 else { 4515 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4516 state); 4517 return timeout; 4518 } 4519 4520 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4521 return timeout; 4522 4523 /* Gather some information about the currently installed configuration 4524 * and alternate interface settings. 4525 */ 4526 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4527 state, &timeout)) 4528 return timeout; 4529 4530 config = udev->actconfig; 4531 if (!config) 4532 return timeout; 4533 4534 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4535 struct usb_driver *driver; 4536 struct usb_interface *intf = config->interface[i]; 4537 4538 if (!intf) 4539 continue; 4540 4541 /* Check if any currently bound drivers want hub-initiated LPM 4542 * disabled. 4543 */ 4544 if (intf->dev.driver) { 4545 driver = to_usb_driver(intf->dev.driver); 4546 if (driver && driver->disable_hub_initiated_lpm) { 4547 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4548 "at request of driver %s\n", 4549 state_name, driver->name); 4550 return xhci_get_timeout_no_hub_lpm(udev, state); 4551 } 4552 } 4553 4554 /* Not sure how this could happen... */ 4555 if (!intf->cur_altsetting) 4556 continue; 4557 4558 if (xhci_update_timeout_for_interface(xhci, udev, 4559 intf->cur_altsetting, 4560 state, &timeout)) 4561 return timeout; 4562 } 4563 return timeout; 4564 } 4565 4566 static int calculate_max_exit_latency(struct usb_device *udev, 4567 enum usb3_link_state state_changed, 4568 u16 hub_encoded_timeout) 4569 { 4570 unsigned long long u1_mel_us = 0; 4571 unsigned long long u2_mel_us = 0; 4572 unsigned long long mel_us = 0; 4573 bool disabling_u1; 4574 bool disabling_u2; 4575 bool enabling_u1; 4576 bool enabling_u2; 4577 4578 disabling_u1 = (state_changed == USB3_LPM_U1 && 4579 hub_encoded_timeout == USB3_LPM_DISABLED); 4580 disabling_u2 = (state_changed == USB3_LPM_U2 && 4581 hub_encoded_timeout == USB3_LPM_DISABLED); 4582 4583 enabling_u1 = (state_changed == USB3_LPM_U1 && 4584 hub_encoded_timeout != USB3_LPM_DISABLED); 4585 enabling_u2 = (state_changed == USB3_LPM_U2 && 4586 hub_encoded_timeout != USB3_LPM_DISABLED); 4587 4588 /* If U1 was already enabled and we're not disabling it, 4589 * or we're going to enable U1, account for the U1 max exit latency. 4590 */ 4591 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4592 enabling_u1) 4593 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4594 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4595 enabling_u2) 4596 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4597 4598 if (u1_mel_us > u2_mel_us) 4599 mel_us = u1_mel_us; 4600 else 4601 mel_us = u2_mel_us; 4602 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4603 if (mel_us > MAX_EXIT) { 4604 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4605 "is too big.\n", mel_us); 4606 return -E2BIG; 4607 } 4608 return mel_us; 4609 } 4610 4611 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4612 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4613 struct usb_device *udev, enum usb3_link_state state) 4614 { 4615 struct xhci_hcd *xhci; 4616 u16 hub_encoded_timeout; 4617 int mel; 4618 int ret; 4619 4620 xhci = hcd_to_xhci(hcd); 4621 /* The LPM timeout values are pretty host-controller specific, so don't 4622 * enable hub-initiated timeouts unless the vendor has provided 4623 * information about their timeout algorithm. 4624 */ 4625 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4626 !xhci->devs[udev->slot_id]) 4627 return USB3_LPM_DISABLED; 4628 4629 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4630 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4631 if (mel < 0) { 4632 /* Max Exit Latency is too big, disable LPM. */ 4633 hub_encoded_timeout = USB3_LPM_DISABLED; 4634 mel = 0; 4635 } 4636 4637 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4638 if (ret) 4639 return ret; 4640 return hub_encoded_timeout; 4641 } 4642 4643 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4644 struct usb_device *udev, enum usb3_link_state state) 4645 { 4646 struct xhci_hcd *xhci; 4647 u16 mel; 4648 4649 xhci = hcd_to_xhci(hcd); 4650 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4651 !xhci->devs[udev->slot_id]) 4652 return 0; 4653 4654 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4655 return xhci_change_max_exit_latency(xhci, udev, mel); 4656 } 4657 #else /* CONFIG_PM */ 4658 4659 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4660 struct usb_device *udev, int enable) 4661 { 4662 return 0; 4663 } 4664 4665 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4666 { 4667 return 0; 4668 } 4669 4670 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4671 struct usb_device *udev, enum usb3_link_state state) 4672 { 4673 return USB3_LPM_DISABLED; 4674 } 4675 4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4677 struct usb_device *udev, enum usb3_link_state state) 4678 { 4679 return 0; 4680 } 4681 #endif /* CONFIG_PM */ 4682 4683 /*-------------------------------------------------------------------------*/ 4684 4685 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4686 * internal data structures for the device. 4687 */ 4688 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4689 struct usb_tt *tt, gfp_t mem_flags) 4690 { 4691 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4692 struct xhci_virt_device *vdev; 4693 struct xhci_command *config_cmd; 4694 struct xhci_input_control_ctx *ctrl_ctx; 4695 struct xhci_slot_ctx *slot_ctx; 4696 unsigned long flags; 4697 unsigned think_time; 4698 int ret; 4699 4700 /* Ignore root hubs */ 4701 if (!hdev->parent) 4702 return 0; 4703 4704 vdev = xhci->devs[hdev->slot_id]; 4705 if (!vdev) { 4706 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4707 return -EINVAL; 4708 } 4709 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4710 if (!config_cmd) { 4711 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4712 return -ENOMEM; 4713 } 4714 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4715 if (!ctrl_ctx) { 4716 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4717 __func__); 4718 xhci_free_command(xhci, config_cmd); 4719 return -ENOMEM; 4720 } 4721 4722 spin_lock_irqsave(&xhci->lock, flags); 4723 if (hdev->speed == USB_SPEED_HIGH && 4724 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4725 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4726 xhci_free_command(xhci, config_cmd); 4727 spin_unlock_irqrestore(&xhci->lock, flags); 4728 return -ENOMEM; 4729 } 4730 4731 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4732 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4733 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4734 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4735 /* 4736 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4737 * but it may be already set to 1 when setup an xHCI virtual 4738 * device, so clear it anyway. 4739 */ 4740 if (tt->multi) 4741 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4742 else if (hdev->speed == USB_SPEED_FULL) 4743 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4744 4745 if (xhci->hci_version > 0x95) { 4746 xhci_dbg(xhci, "xHCI version %x needs hub " 4747 "TT think time and number of ports\n", 4748 (unsigned int) xhci->hci_version); 4749 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4750 /* Set TT think time - convert from ns to FS bit times. 4751 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4752 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4753 * 4754 * xHCI 1.0: this field shall be 0 if the device is not a 4755 * High-spped hub. 4756 */ 4757 think_time = tt->think_time; 4758 if (think_time != 0) 4759 think_time = (think_time / 666) - 1; 4760 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4761 slot_ctx->tt_info |= 4762 cpu_to_le32(TT_THINK_TIME(think_time)); 4763 } else { 4764 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4765 "TT think time or number of ports\n", 4766 (unsigned int) xhci->hci_version); 4767 } 4768 slot_ctx->dev_state = 0; 4769 spin_unlock_irqrestore(&xhci->lock, flags); 4770 4771 xhci_dbg(xhci, "Set up %s for hub device.\n", 4772 (xhci->hci_version > 0x95) ? 4773 "configure endpoint" : "evaluate context"); 4774 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4775 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4776 4777 /* Issue and wait for the configure endpoint or 4778 * evaluate context command. 4779 */ 4780 if (xhci->hci_version > 0x95) 4781 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4782 false, false); 4783 else 4784 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4785 true, false); 4786 4787 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4788 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4789 4790 xhci_free_command(xhci, config_cmd); 4791 return ret; 4792 } 4793 4794 int xhci_get_frame(struct usb_hcd *hcd) 4795 { 4796 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4797 /* EHCI mods by the periodic size. Why? */ 4798 return readl(&xhci->run_regs->microframe_index) >> 3; 4799 } 4800 4801 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4802 { 4803 struct xhci_hcd *xhci; 4804 struct device *dev = hcd->self.controller; 4805 int retval; 4806 4807 /* Accept arbitrarily long scatter-gather lists */ 4808 hcd->self.sg_tablesize = ~0; 4809 4810 /* support to build packet from discontinuous buffers */ 4811 hcd->self.no_sg_constraint = 1; 4812 4813 /* XHCI controllers don't stop the ep queue on short packets :| */ 4814 hcd->self.no_stop_on_short = 1; 4815 4816 xhci = hcd_to_xhci(hcd); 4817 4818 if (usb_hcd_is_primary_hcd(hcd)) { 4819 xhci->main_hcd = hcd; 4820 /* Mark the first roothub as being USB 2.0. 4821 * The xHCI driver will register the USB 3.0 roothub. 4822 */ 4823 hcd->speed = HCD_USB2; 4824 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4825 /* 4826 * USB 2.0 roothub under xHCI has an integrated TT, 4827 * (rate matching hub) as opposed to having an OHCI/UHCI 4828 * companion controller. 4829 */ 4830 hcd->has_tt = 1; 4831 } else { 4832 if (xhci->sbrn == 0x31) { 4833 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4834 hcd->speed = HCD_USB31; 4835 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4836 } 4837 /* xHCI private pointer was set in xhci_pci_probe for the second 4838 * registered roothub. 4839 */ 4840 return 0; 4841 } 4842 4843 mutex_init(&xhci->mutex); 4844 xhci->cap_regs = hcd->regs; 4845 xhci->op_regs = hcd->regs + 4846 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4847 xhci->run_regs = hcd->regs + 4848 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4849 /* Cache read-only capability registers */ 4850 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4851 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4852 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4853 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4854 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4855 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4856 if (xhci->hci_version > 0x100) 4857 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4858 xhci_print_registers(xhci); 4859 4860 xhci->quirks |= quirks; 4861 4862 get_quirks(dev, xhci); 4863 4864 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4865 * success event after a short transfer. This quirk will ignore such 4866 * spurious event. 4867 */ 4868 if (xhci->hci_version > 0x96) 4869 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4870 4871 /* Make sure the HC is halted. */ 4872 retval = xhci_halt(xhci); 4873 if (retval) 4874 return retval; 4875 4876 xhci_dbg(xhci, "Resetting HCD\n"); 4877 /* Reset the internal HC memory state and registers. */ 4878 retval = xhci_reset(xhci); 4879 if (retval) 4880 return retval; 4881 xhci_dbg(xhci, "Reset complete\n"); 4882 4883 /* 4884 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4885 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4886 * address memory pointers actually. So, this driver clears the AC64 4887 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4888 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4889 */ 4890 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4891 xhci->hcc_params &= ~BIT(0); 4892 4893 /* Set dma_mask and coherent_dma_mask to 64-bits, 4894 * if xHC supports 64-bit addressing */ 4895 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4896 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4897 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4898 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4899 } else { 4900 /* 4901 * This is to avoid error in cases where a 32-bit USB 4902 * controller is used on a 64-bit capable system. 4903 */ 4904 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4905 if (retval) 4906 return retval; 4907 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4908 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4909 } 4910 4911 xhci_dbg(xhci, "Calling HCD init\n"); 4912 /* Initialize HCD and host controller data structures. */ 4913 retval = xhci_init(hcd); 4914 if (retval) 4915 return retval; 4916 xhci_dbg(xhci, "Called HCD init\n"); 4917 4918 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4919 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4920 4921 return 0; 4922 } 4923 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4924 4925 static const struct hc_driver xhci_hc_driver = { 4926 .description = "xhci-hcd", 4927 .product_desc = "xHCI Host Controller", 4928 .hcd_priv_size = sizeof(struct xhci_hcd), 4929 4930 /* 4931 * generic hardware linkage 4932 */ 4933 .irq = xhci_irq, 4934 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4935 4936 /* 4937 * basic lifecycle operations 4938 */ 4939 .reset = NULL, /* set in xhci_init_driver() */ 4940 .start = xhci_run, 4941 .stop = xhci_stop, 4942 .shutdown = xhci_shutdown, 4943 4944 /* 4945 * managing i/o requests and associated device resources 4946 */ 4947 .urb_enqueue = xhci_urb_enqueue, 4948 .urb_dequeue = xhci_urb_dequeue, 4949 .alloc_dev = xhci_alloc_dev, 4950 .free_dev = xhci_free_dev, 4951 .alloc_streams = xhci_alloc_streams, 4952 .free_streams = xhci_free_streams, 4953 .add_endpoint = xhci_add_endpoint, 4954 .drop_endpoint = xhci_drop_endpoint, 4955 .endpoint_reset = xhci_endpoint_reset, 4956 .check_bandwidth = xhci_check_bandwidth, 4957 .reset_bandwidth = xhci_reset_bandwidth, 4958 .address_device = xhci_address_device, 4959 .enable_device = xhci_enable_device, 4960 .update_hub_device = xhci_update_hub_device, 4961 .reset_device = xhci_discover_or_reset_device, 4962 4963 /* 4964 * scheduling support 4965 */ 4966 .get_frame_number = xhci_get_frame, 4967 4968 /* 4969 * root hub support 4970 */ 4971 .hub_control = xhci_hub_control, 4972 .hub_status_data = xhci_hub_status_data, 4973 .bus_suspend = xhci_bus_suspend, 4974 .bus_resume = xhci_bus_resume, 4975 4976 /* 4977 * call back when device connected and addressed 4978 */ 4979 .update_device = xhci_update_device, 4980 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4981 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4982 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4983 .find_raw_port_number = xhci_find_raw_port_number, 4984 }; 4985 4986 void xhci_init_driver(struct hc_driver *drv, 4987 const struct xhci_driver_overrides *over) 4988 { 4989 BUG_ON(!over); 4990 4991 /* Copy the generic table to drv then apply the overrides */ 4992 *drv = xhci_hc_driver; 4993 4994 if (over) { 4995 drv->hcd_priv_size += over->extra_priv_size; 4996 if (over->reset) 4997 drv->reset = over->reset; 4998 if (over->start) 4999 drv->start = over->start; 5000 } 5001 } 5002 EXPORT_SYMBOL_GPL(xhci_init_driver); 5003 5004 MODULE_DESCRIPTION(DRIVER_DESC); 5005 MODULE_AUTHOR(DRIVER_AUTHOR); 5006 MODULE_LICENSE("GPL"); 5007 5008 static int __init xhci_hcd_init(void) 5009 { 5010 /* 5011 * Check the compiler generated sizes of structures that must be laid 5012 * out in specific ways for hardware access. 5013 */ 5014 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5015 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5016 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5017 /* xhci_device_control has eight fields, and also 5018 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5019 */ 5020 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5021 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5022 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5023 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5024 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5025 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5026 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5027 5028 if (usb_disabled()) 5029 return -ENODEV; 5030 5031 return 0; 5032 } 5033 5034 /* 5035 * If an init function is provided, an exit function must also be provided 5036 * to allow module unload. 5037 */ 5038 static void __exit xhci_hcd_fini(void) { } 5039 5040 module_init(xhci_hcd_init); 5041 module_exit(xhci_hcd_fini); 5042