1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 static void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 793 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 794 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 795 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 796 } 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 890 { 891 struct xhci_port **ports; 892 int port_index; 893 unsigned long flags; 894 u32 t1, t2, portsc; 895 896 spin_lock_irqsave(&xhci->lock, flags); 897 898 /* disable usb3 ports Wake bits */ 899 port_index = xhci->usb3_rhub.num_ports; 900 ports = xhci->usb3_rhub.ports; 901 while (port_index--) { 902 t1 = readl(ports[port_index]->addr); 903 portsc = t1; 904 t1 = xhci_port_state_to_neutral(t1); 905 t2 = t1 & ~PORT_WAKE_BITS; 906 if (t1 != t2) { 907 writel(t2, ports[port_index]->addr); 908 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 909 xhci->usb3_rhub.hcd->self.busnum, 910 port_index + 1, portsc, t2); 911 } 912 } 913 914 /* disable usb2 ports Wake bits */ 915 port_index = xhci->usb2_rhub.num_ports; 916 ports = xhci->usb2_rhub.ports; 917 while (port_index--) { 918 t1 = readl(ports[port_index]->addr); 919 portsc = t1; 920 t1 = xhci_port_state_to_neutral(t1); 921 t2 = t1 & ~PORT_WAKE_BITS; 922 if (t1 != t2) { 923 writel(t2, ports[port_index]->addr); 924 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 925 xhci->usb2_rhub.hcd->self.busnum, 926 port_index + 1, portsc, t2); 927 } 928 } 929 spin_unlock_irqrestore(&xhci->lock, flags); 930 } 931 932 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 933 { 934 struct xhci_port **ports; 935 int port_index; 936 u32 status; 937 u32 portsc; 938 939 status = readl(&xhci->op_regs->status); 940 if (status & STS_EINT) 941 return true; 942 /* 943 * Checking STS_EINT is not enough as there is a lag between a change 944 * bit being set and the Port Status Change Event that it generated 945 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 946 */ 947 948 port_index = xhci->usb2_rhub.num_ports; 949 ports = xhci->usb2_rhub.ports; 950 while (port_index--) { 951 portsc = readl(ports[port_index]->addr); 952 if (portsc & PORT_CHANGE_MASK || 953 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 954 return true; 955 } 956 port_index = xhci->usb3_rhub.num_ports; 957 ports = xhci->usb3_rhub.ports; 958 while (port_index--) { 959 portsc = readl(ports[port_index]->addr); 960 if (portsc & PORT_CHANGE_MASK || 961 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 962 return true; 963 } 964 return false; 965 } 966 967 /* 968 * Stop HC (not bus-specific) 969 * 970 * This is called when the machine transition into S3/S4 mode. 971 * 972 */ 973 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 974 { 975 int rc = 0; 976 unsigned int delay = XHCI_MAX_HALT_USEC; 977 struct usb_hcd *hcd = xhci_to_hcd(xhci); 978 u32 command; 979 u32 res; 980 981 if (!hcd->state) 982 return 0; 983 984 if (hcd->state != HC_STATE_SUSPENDED || 985 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 986 return -EINVAL; 987 988 xhci_dbc_suspend(xhci); 989 990 /* Clear root port wake on bits if wakeup not allowed. */ 991 if (!do_wakeup) 992 xhci_disable_port_wake_on_bits(xhci); 993 994 /* Don't poll the roothubs on bus suspend. */ 995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 997 del_timer_sync(&hcd->rh_timer); 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 del_timer_sync(&xhci->shared_hcd->rh_timer); 1000 1001 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1002 usleep_range(1000, 1500); 1003 1004 spin_lock_irq(&xhci->lock); 1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 /* step 1: stop endpoint */ 1008 /* skipped assuming that port suspend has done */ 1009 1010 /* step 2: clear Run/Stop bit */ 1011 command = readl(&xhci->op_regs->command); 1012 command &= ~CMD_RUN; 1013 writel(command, &xhci->op_regs->command); 1014 1015 /* Some chips from Fresco Logic need an extraordinary delay */ 1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1017 1018 if (xhci_handshake(&xhci->op_regs->status, 1019 STS_HALT, STS_HALT, delay)) { 1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1021 spin_unlock_irq(&xhci->lock); 1022 return -ETIMEDOUT; 1023 } 1024 xhci_clear_command_ring(xhci); 1025 1026 /* step 3: save registers */ 1027 xhci_save_registers(xhci); 1028 1029 /* step 4: set CSS flag */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_CSS; 1032 writel(command, &xhci->op_regs->command); 1033 xhci->broken_suspend = 0; 1034 if (xhci_handshake(&xhci->op_regs->status, 1035 STS_SAVE, 0, 10 * 1000)) { 1036 /* 1037 * AMD SNPS xHC 3.0 occasionally does not clear the 1038 * SSS bit of USBSTS and when driver tries to poll 1039 * to see if the xHC clears BIT(8) which never happens 1040 * and driver assumes that controller is not responding 1041 * and times out. To workaround this, its good to check 1042 * if SRE and HCE bits are not set (as per xhci 1043 * Section 5.4.2) and bypass the timeout. 1044 */ 1045 res = readl(&xhci->op_regs->status); 1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1047 (((res & STS_SRE) == 0) && 1048 ((res & STS_HCE) == 0))) { 1049 xhci->broken_suspend = 1; 1050 } else { 1051 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1052 spin_unlock_irq(&xhci->lock); 1053 return -ETIMEDOUT; 1054 } 1055 } 1056 spin_unlock_irq(&xhci->lock); 1057 1058 /* 1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1060 * is about to be suspended. 1061 */ 1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1063 (!(xhci_all_ports_seen_u0(xhci)))) { 1064 del_timer_sync(&xhci->comp_mode_recovery_timer); 1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1066 "%s: compliance mode recovery timer deleted", 1067 __func__); 1068 } 1069 1070 /* step 5: remove core well power */ 1071 /* synchronize irq when using MSI-X */ 1072 xhci_msix_sync_irqs(xhci); 1073 1074 return rc; 1075 } 1076 EXPORT_SYMBOL_GPL(xhci_suspend); 1077 1078 /* 1079 * start xHC (not bus-specific) 1080 * 1081 * This is called when the machine transition from S3/S4 mode. 1082 * 1083 */ 1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1085 { 1086 u32 command, temp = 0; 1087 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1088 struct usb_hcd *secondary_hcd; 1089 int retval = 0; 1090 bool comp_timer_running = false; 1091 1092 if (!hcd->state) 1093 return 0; 1094 1095 /* Wait a bit if either of the roothubs need to settle from the 1096 * transition into bus suspend. 1097 */ 1098 1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1101 msleep(100); 1102 1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1108 hibernated = true; 1109 1110 if (!hibernated) { 1111 /* step 1: restore register */ 1112 xhci_restore_registers(xhci); 1113 /* step 2: initialize command ring buffer */ 1114 xhci_set_cmd_ring_deq(xhci); 1115 /* step 3: restore state and start state*/ 1116 /* step 3: set CRS flag */ 1117 command = readl(&xhci->op_regs->command); 1118 command |= CMD_CRS; 1119 writel(command, &xhci->op_regs->command); 1120 /* 1121 * Some controllers take up to 55+ ms to complete the controller 1122 * restore so setting the timeout to 100ms. Xhci specification 1123 * doesn't mention any timeout value. 1124 */ 1125 if (xhci_handshake(&xhci->op_regs->status, 1126 STS_RESTORE, 0, 100 * 1000)) { 1127 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1128 spin_unlock_irq(&xhci->lock); 1129 return -ETIMEDOUT; 1130 } 1131 temp = readl(&xhci->op_regs->status); 1132 } 1133 1134 /* If restore operation fails, re-initialize the HC during resume */ 1135 if ((temp & STS_SRE) || hibernated) { 1136 1137 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1138 !(xhci_all_ports_seen_u0(xhci))) { 1139 del_timer_sync(&xhci->comp_mode_recovery_timer); 1140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1141 "Compliance Mode Recovery Timer deleted!"); 1142 } 1143 1144 /* Let the USB core know _both_ roothubs lost power. */ 1145 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1146 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1147 1148 xhci_dbg(xhci, "Stop HCD\n"); 1149 xhci_halt(xhci); 1150 xhci_zero_64b_regs(xhci); 1151 xhci_reset(xhci); 1152 spin_unlock_irq(&xhci->lock); 1153 xhci_cleanup_msix(xhci); 1154 1155 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1156 temp = readl(&xhci->op_regs->status); 1157 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1158 temp = readl(&xhci->ir_set->irq_pending); 1159 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1160 1161 xhci_dbg(xhci, "cleaning up memory\n"); 1162 xhci_mem_cleanup(xhci); 1163 xhci_debugfs_exit(xhci); 1164 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1165 readl(&xhci->op_regs->status)); 1166 1167 /* USB core calls the PCI reinit and start functions twice: 1168 * first with the primary HCD, and then with the secondary HCD. 1169 * If we don't do the same, the host will never be started. 1170 */ 1171 if (!usb_hcd_is_primary_hcd(hcd)) 1172 secondary_hcd = hcd; 1173 else 1174 secondary_hcd = xhci->shared_hcd; 1175 1176 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1177 retval = xhci_init(hcd->primary_hcd); 1178 if (retval) 1179 return retval; 1180 comp_timer_running = true; 1181 1182 xhci_dbg(xhci, "Start the primary HCD\n"); 1183 retval = xhci_run(hcd->primary_hcd); 1184 if (!retval) { 1185 xhci_dbg(xhci, "Start the secondary HCD\n"); 1186 retval = xhci_run(secondary_hcd); 1187 } 1188 hcd->state = HC_STATE_SUSPENDED; 1189 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1190 goto done; 1191 } 1192 1193 /* step 4: set Run/Stop bit */ 1194 command = readl(&xhci->op_regs->command); 1195 command |= CMD_RUN; 1196 writel(command, &xhci->op_regs->command); 1197 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1198 0, 250 * 1000); 1199 1200 /* step 5: walk topology and initialize portsc, 1201 * portpmsc and portli 1202 */ 1203 /* this is done in bus_resume */ 1204 1205 /* step 6: restart each of the previously 1206 * Running endpoints by ringing their doorbells 1207 */ 1208 1209 spin_unlock_irq(&xhci->lock); 1210 1211 xhci_dbc_resume(xhci); 1212 1213 done: 1214 if (retval == 0) { 1215 /* Resume root hubs only when have pending events. */ 1216 if (xhci_pending_portevent(xhci)) { 1217 usb_hcd_resume_root_hub(xhci->shared_hcd); 1218 usb_hcd_resume_root_hub(hcd); 1219 } 1220 } 1221 1222 /* 1223 * If system is subject to the Quirk, Compliance Mode Timer needs to 1224 * be re-initialized Always after a system resume. Ports are subject 1225 * to suffer the Compliance Mode issue again. It doesn't matter if 1226 * ports have entered previously to U0 before system's suspension. 1227 */ 1228 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1229 compliance_mode_recovery_timer_init(xhci); 1230 1231 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1232 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1233 1234 /* Re-enable port polling. */ 1235 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1236 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1237 usb_hcd_poll_rh_status(xhci->shared_hcd); 1238 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1239 usb_hcd_poll_rh_status(hcd); 1240 1241 return retval; 1242 } 1243 EXPORT_SYMBOL_GPL(xhci_resume); 1244 #endif /* CONFIG_PM */ 1245 1246 /*-------------------------------------------------------------------------*/ 1247 1248 /* 1249 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1250 * we'll copy the actual data into the TRB address register. This is limited to 1251 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1252 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1253 */ 1254 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1255 gfp_t mem_flags) 1256 { 1257 if (xhci_urb_suitable_for_idt(urb)) 1258 return 0; 1259 1260 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1261 } 1262 1263 /** 1264 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1265 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1266 * value to right shift 1 for the bitmask. 1267 * 1268 * Index = (epnum * 2) + direction - 1, 1269 * where direction = 0 for OUT, 1 for IN. 1270 * For control endpoints, the IN index is used (OUT index is unused), so 1271 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1272 */ 1273 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1274 { 1275 unsigned int index; 1276 if (usb_endpoint_xfer_control(desc)) 1277 index = (unsigned int) (usb_endpoint_num(desc)*2); 1278 else 1279 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1280 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1281 return index; 1282 } 1283 1284 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1285 * address from the XHCI endpoint index. 1286 */ 1287 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1288 { 1289 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1290 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1291 return direction | number; 1292 } 1293 1294 /* Find the flag for this endpoint (for use in the control context). Use the 1295 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1296 * bit 1, etc. 1297 */ 1298 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1299 { 1300 return 1 << (xhci_get_endpoint_index(desc) + 1); 1301 } 1302 1303 /* Find the flag for this endpoint (for use in the control context). Use the 1304 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1305 * bit 1, etc. 1306 */ 1307 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1308 { 1309 return 1 << (ep_index + 1); 1310 } 1311 1312 /* Compute the last valid endpoint context index. Basically, this is the 1313 * endpoint index plus one. For slot contexts with more than valid endpoint, 1314 * we find the most significant bit set in the added contexts flags. 1315 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1316 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1317 */ 1318 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1319 { 1320 return fls(added_ctxs) - 1; 1321 } 1322 1323 /* Returns 1 if the arguments are OK; 1324 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1325 */ 1326 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1327 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1328 const char *func) { 1329 struct xhci_hcd *xhci; 1330 struct xhci_virt_device *virt_dev; 1331 1332 if (!hcd || (check_ep && !ep) || !udev) { 1333 pr_debug("xHCI %s called with invalid args\n", func); 1334 return -EINVAL; 1335 } 1336 if (!udev->parent) { 1337 pr_debug("xHCI %s called for root hub\n", func); 1338 return 0; 1339 } 1340 1341 xhci = hcd_to_xhci(hcd); 1342 if (check_virt_dev) { 1343 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1344 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1345 func); 1346 return -EINVAL; 1347 } 1348 1349 virt_dev = xhci->devs[udev->slot_id]; 1350 if (virt_dev->udev != udev) { 1351 xhci_dbg(xhci, "xHCI %s called with udev and " 1352 "virt_dev does not match\n", func); 1353 return -EINVAL; 1354 } 1355 } 1356 1357 if (xhci->xhc_state & XHCI_STATE_HALTED) 1358 return -ENODEV; 1359 1360 return 1; 1361 } 1362 1363 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1364 struct usb_device *udev, struct xhci_command *command, 1365 bool ctx_change, bool must_succeed); 1366 1367 /* 1368 * Full speed devices may have a max packet size greater than 8 bytes, but the 1369 * USB core doesn't know that until it reads the first 8 bytes of the 1370 * descriptor. If the usb_device's max packet size changes after that point, 1371 * we need to issue an evaluate context command and wait on it. 1372 */ 1373 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1374 unsigned int ep_index, struct urb *urb) 1375 { 1376 struct xhci_container_ctx *out_ctx; 1377 struct xhci_input_control_ctx *ctrl_ctx; 1378 struct xhci_ep_ctx *ep_ctx; 1379 struct xhci_command *command; 1380 int max_packet_size; 1381 int hw_max_packet_size; 1382 int ret = 0; 1383 1384 out_ctx = xhci->devs[slot_id]->out_ctx; 1385 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1386 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1387 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1388 if (hw_max_packet_size != max_packet_size) { 1389 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1390 "Max Packet Size for ep 0 changed."); 1391 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1392 "Max packet size in usb_device = %d", 1393 max_packet_size); 1394 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1395 "Max packet size in xHCI HW = %d", 1396 hw_max_packet_size); 1397 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1398 "Issuing evaluate context command."); 1399 1400 /* Set up the input context flags for the command */ 1401 /* FIXME: This won't work if a non-default control endpoint 1402 * changes max packet sizes. 1403 */ 1404 1405 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1406 if (!command) 1407 return -ENOMEM; 1408 1409 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1410 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1411 if (!ctrl_ctx) { 1412 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1413 __func__); 1414 ret = -ENOMEM; 1415 goto command_cleanup; 1416 } 1417 /* Set up the modified control endpoint 0 */ 1418 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1419 xhci->devs[slot_id]->out_ctx, ep_index); 1420 1421 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1422 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1423 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1424 1425 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1426 ctrl_ctx->drop_flags = 0; 1427 1428 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1429 true, false); 1430 1431 /* Clean up the input context for later use by bandwidth 1432 * functions. 1433 */ 1434 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1435 command_cleanup: 1436 kfree(command->completion); 1437 kfree(command); 1438 } 1439 return ret; 1440 } 1441 1442 /* 1443 * non-error returns are a promise to giveback() the urb later 1444 * we drop ownership so next owner (or urb unlink) can get it 1445 */ 1446 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1447 { 1448 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1449 unsigned long flags; 1450 int ret = 0; 1451 unsigned int slot_id, ep_index; 1452 unsigned int *ep_state; 1453 struct urb_priv *urb_priv; 1454 int num_tds; 1455 1456 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1457 true, true, __func__) <= 0) 1458 return -EINVAL; 1459 1460 slot_id = urb->dev->slot_id; 1461 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1462 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1463 1464 if (!HCD_HW_ACCESSIBLE(hcd)) { 1465 if (!in_interrupt()) 1466 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1467 return -ESHUTDOWN; 1468 } 1469 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1470 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1471 return -ENODEV; 1472 } 1473 1474 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1475 num_tds = urb->number_of_packets; 1476 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1477 urb->transfer_buffer_length > 0 && 1478 urb->transfer_flags & URB_ZERO_PACKET && 1479 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1480 num_tds = 2; 1481 else 1482 num_tds = 1; 1483 1484 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1485 if (!urb_priv) 1486 return -ENOMEM; 1487 1488 urb_priv->num_tds = num_tds; 1489 urb_priv->num_tds_done = 0; 1490 urb->hcpriv = urb_priv; 1491 1492 trace_xhci_urb_enqueue(urb); 1493 1494 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1495 /* Check to see if the max packet size for the default control 1496 * endpoint changed during FS device enumeration 1497 */ 1498 if (urb->dev->speed == USB_SPEED_FULL) { 1499 ret = xhci_check_maxpacket(xhci, slot_id, 1500 ep_index, urb); 1501 if (ret < 0) { 1502 xhci_urb_free_priv(urb_priv); 1503 urb->hcpriv = NULL; 1504 return ret; 1505 } 1506 } 1507 } 1508 1509 spin_lock_irqsave(&xhci->lock, flags); 1510 1511 if (xhci->xhc_state & XHCI_STATE_DYING) { 1512 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1513 urb->ep->desc.bEndpointAddress, urb); 1514 ret = -ESHUTDOWN; 1515 goto free_priv; 1516 } 1517 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1518 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1519 *ep_state); 1520 ret = -EINVAL; 1521 goto free_priv; 1522 } 1523 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1524 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1525 ret = -EINVAL; 1526 goto free_priv; 1527 } 1528 1529 switch (usb_endpoint_type(&urb->ep->desc)) { 1530 1531 case USB_ENDPOINT_XFER_CONTROL: 1532 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1533 slot_id, ep_index); 1534 break; 1535 case USB_ENDPOINT_XFER_BULK: 1536 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1537 slot_id, ep_index); 1538 break; 1539 case USB_ENDPOINT_XFER_INT: 1540 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1541 slot_id, ep_index); 1542 break; 1543 case USB_ENDPOINT_XFER_ISOC: 1544 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1545 slot_id, ep_index); 1546 } 1547 1548 if (ret) { 1549 free_priv: 1550 xhci_urb_free_priv(urb_priv); 1551 urb->hcpriv = NULL; 1552 } 1553 spin_unlock_irqrestore(&xhci->lock, flags); 1554 return ret; 1555 } 1556 1557 /* 1558 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1559 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1560 * should pick up where it left off in the TD, unless a Set Transfer Ring 1561 * Dequeue Pointer is issued. 1562 * 1563 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1564 * the ring. Since the ring is a contiguous structure, they can't be physically 1565 * removed. Instead, there are two options: 1566 * 1567 * 1) If the HC is in the middle of processing the URB to be canceled, we 1568 * simply move the ring's dequeue pointer past those TRBs using the Set 1569 * Transfer Ring Dequeue Pointer command. This will be the common case, 1570 * when drivers timeout on the last submitted URB and attempt to cancel. 1571 * 1572 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1573 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1574 * HC will need to invalidate the any TRBs it has cached after the stop 1575 * endpoint command, as noted in the xHCI 0.95 errata. 1576 * 1577 * 3) The TD may have completed by the time the Stop Endpoint Command 1578 * completes, so software needs to handle that case too. 1579 * 1580 * This function should protect against the TD enqueueing code ringing the 1581 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1582 * It also needs to account for multiple cancellations on happening at the same 1583 * time for the same endpoint. 1584 * 1585 * Note that this function can be called in any context, or so says 1586 * usb_hcd_unlink_urb() 1587 */ 1588 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1589 { 1590 unsigned long flags; 1591 int ret, i; 1592 u32 temp; 1593 struct xhci_hcd *xhci; 1594 struct urb_priv *urb_priv; 1595 struct xhci_td *td; 1596 unsigned int ep_index; 1597 struct xhci_ring *ep_ring; 1598 struct xhci_virt_ep *ep; 1599 struct xhci_command *command; 1600 struct xhci_virt_device *vdev; 1601 1602 xhci = hcd_to_xhci(hcd); 1603 spin_lock_irqsave(&xhci->lock, flags); 1604 1605 trace_xhci_urb_dequeue(urb); 1606 1607 /* Make sure the URB hasn't completed or been unlinked already */ 1608 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1609 if (ret) 1610 goto done; 1611 1612 /* give back URB now if we can't queue it for cancel */ 1613 vdev = xhci->devs[urb->dev->slot_id]; 1614 urb_priv = urb->hcpriv; 1615 if (!vdev || !urb_priv) 1616 goto err_giveback; 1617 1618 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1619 ep = &vdev->eps[ep_index]; 1620 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1621 if (!ep || !ep_ring) 1622 goto err_giveback; 1623 1624 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1625 temp = readl(&xhci->op_regs->status); 1626 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1627 xhci_hc_died(xhci); 1628 goto done; 1629 } 1630 1631 /* 1632 * check ring is not re-allocated since URB was enqueued. If it is, then 1633 * make sure none of the ring related pointers in this URB private data 1634 * are touched, such as td_list, otherwise we overwrite freed data 1635 */ 1636 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1637 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1638 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1639 td = &urb_priv->td[i]; 1640 if (!list_empty(&td->cancelled_td_list)) 1641 list_del_init(&td->cancelled_td_list); 1642 } 1643 goto err_giveback; 1644 } 1645 1646 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1647 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1648 "HC halted, freeing TD manually."); 1649 for (i = urb_priv->num_tds_done; 1650 i < urb_priv->num_tds; 1651 i++) { 1652 td = &urb_priv->td[i]; 1653 if (!list_empty(&td->td_list)) 1654 list_del_init(&td->td_list); 1655 if (!list_empty(&td->cancelled_td_list)) 1656 list_del_init(&td->cancelled_td_list); 1657 } 1658 goto err_giveback; 1659 } 1660 1661 i = urb_priv->num_tds_done; 1662 if (i < urb_priv->num_tds) 1663 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1664 "Cancel URB %p, dev %s, ep 0x%x, " 1665 "starting at offset 0x%llx", 1666 urb, urb->dev->devpath, 1667 urb->ep->desc.bEndpointAddress, 1668 (unsigned long long) xhci_trb_virt_to_dma( 1669 urb_priv->td[i].start_seg, 1670 urb_priv->td[i].first_trb)); 1671 1672 for (; i < urb_priv->num_tds; i++) { 1673 td = &urb_priv->td[i]; 1674 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1675 } 1676 1677 /* Queue a stop endpoint command, but only if this is 1678 * the first cancellation to be handled. 1679 */ 1680 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1681 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1682 if (!command) { 1683 ret = -ENOMEM; 1684 goto done; 1685 } 1686 ep->ep_state |= EP_STOP_CMD_PENDING; 1687 ep->stop_cmd_timer.expires = jiffies + 1688 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1689 add_timer(&ep->stop_cmd_timer); 1690 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1691 ep_index, 0); 1692 xhci_ring_cmd_db(xhci); 1693 } 1694 done: 1695 spin_unlock_irqrestore(&xhci->lock, flags); 1696 return ret; 1697 1698 err_giveback: 1699 if (urb_priv) 1700 xhci_urb_free_priv(urb_priv); 1701 usb_hcd_unlink_urb_from_ep(hcd, urb); 1702 spin_unlock_irqrestore(&xhci->lock, flags); 1703 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1704 return ret; 1705 } 1706 1707 /* Drop an endpoint from a new bandwidth configuration for this device. 1708 * Only one call to this function is allowed per endpoint before 1709 * check_bandwidth() or reset_bandwidth() must be called. 1710 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1711 * add the endpoint to the schedule with possibly new parameters denoted by a 1712 * different endpoint descriptor in usb_host_endpoint. 1713 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1714 * not allowed. 1715 * 1716 * The USB core will not allow URBs to be queued to an endpoint that is being 1717 * disabled, so there's no need for mutual exclusion to protect 1718 * the xhci->devs[slot_id] structure. 1719 */ 1720 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1721 struct usb_host_endpoint *ep) 1722 { 1723 struct xhci_hcd *xhci; 1724 struct xhci_container_ctx *in_ctx, *out_ctx; 1725 struct xhci_input_control_ctx *ctrl_ctx; 1726 unsigned int ep_index; 1727 struct xhci_ep_ctx *ep_ctx; 1728 u32 drop_flag; 1729 u32 new_add_flags, new_drop_flags; 1730 int ret; 1731 1732 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1733 if (ret <= 0) 1734 return ret; 1735 xhci = hcd_to_xhci(hcd); 1736 if (xhci->xhc_state & XHCI_STATE_DYING) 1737 return -ENODEV; 1738 1739 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1740 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1741 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1742 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1743 __func__, drop_flag); 1744 return 0; 1745 } 1746 1747 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1748 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1749 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1750 if (!ctrl_ctx) { 1751 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1752 __func__); 1753 return 0; 1754 } 1755 1756 ep_index = xhci_get_endpoint_index(&ep->desc); 1757 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1758 /* If the HC already knows the endpoint is disabled, 1759 * or the HCD has noted it is disabled, ignore this request 1760 */ 1761 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1762 le32_to_cpu(ctrl_ctx->drop_flags) & 1763 xhci_get_endpoint_flag(&ep->desc)) { 1764 /* Do not warn when called after a usb_device_reset */ 1765 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1766 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1767 __func__, ep); 1768 return 0; 1769 } 1770 1771 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1772 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1773 1774 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1775 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1776 1777 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1778 1779 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1780 1781 if (xhci->quirks & XHCI_MTK_HOST) 1782 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1783 1784 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1785 (unsigned int) ep->desc.bEndpointAddress, 1786 udev->slot_id, 1787 (unsigned int) new_drop_flags, 1788 (unsigned int) new_add_flags); 1789 return 0; 1790 } 1791 1792 /* Add an endpoint to a new possible bandwidth configuration for this device. 1793 * Only one call to this function is allowed per endpoint before 1794 * check_bandwidth() or reset_bandwidth() must be called. 1795 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1796 * add the endpoint to the schedule with possibly new parameters denoted by a 1797 * different endpoint descriptor in usb_host_endpoint. 1798 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1799 * not allowed. 1800 * 1801 * The USB core will not allow URBs to be queued to an endpoint until the 1802 * configuration or alt setting is installed in the device, so there's no need 1803 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1804 */ 1805 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1806 struct usb_host_endpoint *ep) 1807 { 1808 struct xhci_hcd *xhci; 1809 struct xhci_container_ctx *in_ctx; 1810 unsigned int ep_index; 1811 struct xhci_input_control_ctx *ctrl_ctx; 1812 struct xhci_ep_ctx *ep_ctx; 1813 u32 added_ctxs; 1814 u32 new_add_flags, new_drop_flags; 1815 struct xhci_virt_device *virt_dev; 1816 int ret = 0; 1817 1818 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1819 if (ret <= 0) { 1820 /* So we won't queue a reset ep command for a root hub */ 1821 ep->hcpriv = NULL; 1822 return ret; 1823 } 1824 xhci = hcd_to_xhci(hcd); 1825 if (xhci->xhc_state & XHCI_STATE_DYING) 1826 return -ENODEV; 1827 1828 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1829 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1830 /* FIXME when we have to issue an evaluate endpoint command to 1831 * deal with ep0 max packet size changing once we get the 1832 * descriptors 1833 */ 1834 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1835 __func__, added_ctxs); 1836 return 0; 1837 } 1838 1839 virt_dev = xhci->devs[udev->slot_id]; 1840 in_ctx = virt_dev->in_ctx; 1841 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1842 if (!ctrl_ctx) { 1843 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1844 __func__); 1845 return 0; 1846 } 1847 1848 ep_index = xhci_get_endpoint_index(&ep->desc); 1849 /* If this endpoint is already in use, and the upper layers are trying 1850 * to add it again without dropping it, reject the addition. 1851 */ 1852 if (virt_dev->eps[ep_index].ring && 1853 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1854 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1855 "without dropping it.\n", 1856 (unsigned int) ep->desc.bEndpointAddress); 1857 return -EINVAL; 1858 } 1859 1860 /* If the HCD has already noted the endpoint is enabled, 1861 * ignore this request. 1862 */ 1863 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1864 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1865 __func__, ep); 1866 return 0; 1867 } 1868 1869 /* 1870 * Configuration and alternate setting changes must be done in 1871 * process context, not interrupt context (or so documenation 1872 * for usb_set_interface() and usb_set_configuration() claim). 1873 */ 1874 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1875 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1876 __func__, ep->desc.bEndpointAddress); 1877 return -ENOMEM; 1878 } 1879 1880 if (xhci->quirks & XHCI_MTK_HOST) { 1881 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1882 if (ret < 0) { 1883 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1884 virt_dev->eps[ep_index].new_ring = NULL; 1885 return ret; 1886 } 1887 } 1888 1889 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1890 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1891 1892 /* If xhci_endpoint_disable() was called for this endpoint, but the 1893 * xHC hasn't been notified yet through the check_bandwidth() call, 1894 * this re-adds a new state for the endpoint from the new endpoint 1895 * descriptors. We must drop and re-add this endpoint, so we leave the 1896 * drop flags alone. 1897 */ 1898 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1899 1900 /* Store the usb_device pointer for later use */ 1901 ep->hcpriv = udev; 1902 1903 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1904 trace_xhci_add_endpoint(ep_ctx); 1905 1906 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1907 1908 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1909 (unsigned int) ep->desc.bEndpointAddress, 1910 udev->slot_id, 1911 (unsigned int) new_drop_flags, 1912 (unsigned int) new_add_flags); 1913 return 0; 1914 } 1915 1916 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1917 { 1918 struct xhci_input_control_ctx *ctrl_ctx; 1919 struct xhci_ep_ctx *ep_ctx; 1920 struct xhci_slot_ctx *slot_ctx; 1921 int i; 1922 1923 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1924 if (!ctrl_ctx) { 1925 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1926 __func__); 1927 return; 1928 } 1929 1930 /* When a device's add flag and drop flag are zero, any subsequent 1931 * configure endpoint command will leave that endpoint's state 1932 * untouched. Make sure we don't leave any old state in the input 1933 * endpoint contexts. 1934 */ 1935 ctrl_ctx->drop_flags = 0; 1936 ctrl_ctx->add_flags = 0; 1937 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1938 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1939 /* Endpoint 0 is always valid */ 1940 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1941 for (i = 1; i < 31; i++) { 1942 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1943 ep_ctx->ep_info = 0; 1944 ep_ctx->ep_info2 = 0; 1945 ep_ctx->deq = 0; 1946 ep_ctx->tx_info = 0; 1947 } 1948 } 1949 1950 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1951 struct usb_device *udev, u32 *cmd_status) 1952 { 1953 int ret; 1954 1955 switch (*cmd_status) { 1956 case COMP_COMMAND_ABORTED: 1957 case COMP_COMMAND_RING_STOPPED: 1958 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1959 ret = -ETIME; 1960 break; 1961 case COMP_RESOURCE_ERROR: 1962 dev_warn(&udev->dev, 1963 "Not enough host controller resources for new device state.\n"); 1964 ret = -ENOMEM; 1965 /* FIXME: can we allocate more resources for the HC? */ 1966 break; 1967 case COMP_BANDWIDTH_ERROR: 1968 case COMP_SECONDARY_BANDWIDTH_ERROR: 1969 dev_warn(&udev->dev, 1970 "Not enough bandwidth for new device state.\n"); 1971 ret = -ENOSPC; 1972 /* FIXME: can we go back to the old state? */ 1973 break; 1974 case COMP_TRB_ERROR: 1975 /* the HCD set up something wrong */ 1976 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1977 "add flag = 1, " 1978 "and endpoint is not disabled.\n"); 1979 ret = -EINVAL; 1980 break; 1981 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1982 dev_warn(&udev->dev, 1983 "ERROR: Incompatible device for endpoint configure command.\n"); 1984 ret = -ENODEV; 1985 break; 1986 case COMP_SUCCESS: 1987 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1988 "Successful Endpoint Configure command"); 1989 ret = 0; 1990 break; 1991 default: 1992 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1993 *cmd_status); 1994 ret = -EINVAL; 1995 break; 1996 } 1997 return ret; 1998 } 1999 2000 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2001 struct usb_device *udev, u32 *cmd_status) 2002 { 2003 int ret; 2004 2005 switch (*cmd_status) { 2006 case COMP_COMMAND_ABORTED: 2007 case COMP_COMMAND_RING_STOPPED: 2008 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2009 ret = -ETIME; 2010 break; 2011 case COMP_PARAMETER_ERROR: 2012 dev_warn(&udev->dev, 2013 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2014 ret = -EINVAL; 2015 break; 2016 case COMP_SLOT_NOT_ENABLED_ERROR: 2017 dev_warn(&udev->dev, 2018 "WARN: slot not enabled for evaluate context command.\n"); 2019 ret = -EINVAL; 2020 break; 2021 case COMP_CONTEXT_STATE_ERROR: 2022 dev_warn(&udev->dev, 2023 "WARN: invalid context state for evaluate context command.\n"); 2024 ret = -EINVAL; 2025 break; 2026 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2027 dev_warn(&udev->dev, 2028 "ERROR: Incompatible device for evaluate context command.\n"); 2029 ret = -ENODEV; 2030 break; 2031 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2032 /* Max Exit Latency too large error */ 2033 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2034 ret = -EINVAL; 2035 break; 2036 case COMP_SUCCESS: 2037 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2038 "Successful evaluate context command"); 2039 ret = 0; 2040 break; 2041 default: 2042 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2043 *cmd_status); 2044 ret = -EINVAL; 2045 break; 2046 } 2047 return ret; 2048 } 2049 2050 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2051 struct xhci_input_control_ctx *ctrl_ctx) 2052 { 2053 u32 valid_add_flags; 2054 u32 valid_drop_flags; 2055 2056 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2057 * (bit 1). The default control endpoint is added during the Address 2058 * Device command and is never removed until the slot is disabled. 2059 */ 2060 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2061 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2062 2063 /* Use hweight32 to count the number of ones in the add flags, or 2064 * number of endpoints added. Don't count endpoints that are changed 2065 * (both added and dropped). 2066 */ 2067 return hweight32(valid_add_flags) - 2068 hweight32(valid_add_flags & valid_drop_flags); 2069 } 2070 2071 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2072 struct xhci_input_control_ctx *ctrl_ctx) 2073 { 2074 u32 valid_add_flags; 2075 u32 valid_drop_flags; 2076 2077 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2078 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2079 2080 return hweight32(valid_drop_flags) - 2081 hweight32(valid_add_flags & valid_drop_flags); 2082 } 2083 2084 /* 2085 * We need to reserve the new number of endpoints before the configure endpoint 2086 * command completes. We can't subtract the dropped endpoints from the number 2087 * of active endpoints until the command completes because we can oversubscribe 2088 * the host in this case: 2089 * 2090 * - the first configure endpoint command drops more endpoints than it adds 2091 * - a second configure endpoint command that adds more endpoints is queued 2092 * - the first configure endpoint command fails, so the config is unchanged 2093 * - the second command may succeed, even though there isn't enough resources 2094 * 2095 * Must be called with xhci->lock held. 2096 */ 2097 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2098 struct xhci_input_control_ctx *ctrl_ctx) 2099 { 2100 u32 added_eps; 2101 2102 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2103 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2104 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2105 "Not enough ep ctxs: " 2106 "%u active, need to add %u, limit is %u.", 2107 xhci->num_active_eps, added_eps, 2108 xhci->limit_active_eps); 2109 return -ENOMEM; 2110 } 2111 xhci->num_active_eps += added_eps; 2112 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2113 "Adding %u ep ctxs, %u now active.", added_eps, 2114 xhci->num_active_eps); 2115 return 0; 2116 } 2117 2118 /* 2119 * The configure endpoint was failed by the xHC for some other reason, so we 2120 * need to revert the resources that failed configuration would have used. 2121 * 2122 * Must be called with xhci->lock held. 2123 */ 2124 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2125 struct xhci_input_control_ctx *ctrl_ctx) 2126 { 2127 u32 num_failed_eps; 2128 2129 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2130 xhci->num_active_eps -= num_failed_eps; 2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2132 "Removing %u failed ep ctxs, %u now active.", 2133 num_failed_eps, 2134 xhci->num_active_eps); 2135 } 2136 2137 /* 2138 * Now that the command has completed, clean up the active endpoint count by 2139 * subtracting out the endpoints that were dropped (but not changed). 2140 * 2141 * Must be called with xhci->lock held. 2142 */ 2143 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2144 struct xhci_input_control_ctx *ctrl_ctx) 2145 { 2146 u32 num_dropped_eps; 2147 2148 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2149 xhci->num_active_eps -= num_dropped_eps; 2150 if (num_dropped_eps) 2151 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2152 "Removing %u dropped ep ctxs, %u now active.", 2153 num_dropped_eps, 2154 xhci->num_active_eps); 2155 } 2156 2157 static unsigned int xhci_get_block_size(struct usb_device *udev) 2158 { 2159 switch (udev->speed) { 2160 case USB_SPEED_LOW: 2161 case USB_SPEED_FULL: 2162 return FS_BLOCK; 2163 case USB_SPEED_HIGH: 2164 return HS_BLOCK; 2165 case USB_SPEED_SUPER: 2166 case USB_SPEED_SUPER_PLUS: 2167 return SS_BLOCK; 2168 case USB_SPEED_UNKNOWN: 2169 case USB_SPEED_WIRELESS: 2170 default: 2171 /* Should never happen */ 2172 return 1; 2173 } 2174 } 2175 2176 static unsigned int 2177 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2178 { 2179 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2180 return LS_OVERHEAD; 2181 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2182 return FS_OVERHEAD; 2183 return HS_OVERHEAD; 2184 } 2185 2186 /* If we are changing a LS/FS device under a HS hub, 2187 * make sure (if we are activating a new TT) that the HS bus has enough 2188 * bandwidth for this new TT. 2189 */ 2190 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2191 struct xhci_virt_device *virt_dev, 2192 int old_active_eps) 2193 { 2194 struct xhci_interval_bw_table *bw_table; 2195 struct xhci_tt_bw_info *tt_info; 2196 2197 /* Find the bandwidth table for the root port this TT is attached to. */ 2198 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2199 tt_info = virt_dev->tt_info; 2200 /* If this TT already had active endpoints, the bandwidth for this TT 2201 * has already been added. Removing all periodic endpoints (and thus 2202 * making the TT enactive) will only decrease the bandwidth used. 2203 */ 2204 if (old_active_eps) 2205 return 0; 2206 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2207 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2208 return -ENOMEM; 2209 return 0; 2210 } 2211 /* Not sure why we would have no new active endpoints... 2212 * 2213 * Maybe because of an Evaluate Context change for a hub update or a 2214 * control endpoint 0 max packet size change? 2215 * FIXME: skip the bandwidth calculation in that case. 2216 */ 2217 return 0; 2218 } 2219 2220 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2221 struct xhci_virt_device *virt_dev) 2222 { 2223 unsigned int bw_reserved; 2224 2225 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2226 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2227 return -ENOMEM; 2228 2229 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2230 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2231 return -ENOMEM; 2232 2233 return 0; 2234 } 2235 2236 /* 2237 * This algorithm is a very conservative estimate of the worst-case scheduling 2238 * scenario for any one interval. The hardware dynamically schedules the 2239 * packets, so we can't tell which microframe could be the limiting factor in 2240 * the bandwidth scheduling. This only takes into account periodic endpoints. 2241 * 2242 * Obviously, we can't solve an NP complete problem to find the minimum worst 2243 * case scenario. Instead, we come up with an estimate that is no less than 2244 * the worst case bandwidth used for any one microframe, but may be an 2245 * over-estimate. 2246 * 2247 * We walk the requirements for each endpoint by interval, starting with the 2248 * smallest interval, and place packets in the schedule where there is only one 2249 * possible way to schedule packets for that interval. In order to simplify 2250 * this algorithm, we record the largest max packet size for each interval, and 2251 * assume all packets will be that size. 2252 * 2253 * For interval 0, we obviously must schedule all packets for each interval. 2254 * The bandwidth for interval 0 is just the amount of data to be transmitted 2255 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2256 * the number of packets). 2257 * 2258 * For interval 1, we have two possible microframes to schedule those packets 2259 * in. For this algorithm, if we can schedule the same number of packets for 2260 * each possible scheduling opportunity (each microframe), we will do so. The 2261 * remaining number of packets will be saved to be transmitted in the gaps in 2262 * the next interval's scheduling sequence. 2263 * 2264 * As we move those remaining packets to be scheduled with interval 2 packets, 2265 * we have to double the number of remaining packets to transmit. This is 2266 * because the intervals are actually powers of 2, and we would be transmitting 2267 * the previous interval's packets twice in this interval. We also have to be 2268 * sure that when we look at the largest max packet size for this interval, we 2269 * also look at the largest max packet size for the remaining packets and take 2270 * the greater of the two. 2271 * 2272 * The algorithm continues to evenly distribute packets in each scheduling 2273 * opportunity, and push the remaining packets out, until we get to the last 2274 * interval. Then those packets and their associated overhead are just added 2275 * to the bandwidth used. 2276 */ 2277 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2278 struct xhci_virt_device *virt_dev, 2279 int old_active_eps) 2280 { 2281 unsigned int bw_reserved; 2282 unsigned int max_bandwidth; 2283 unsigned int bw_used; 2284 unsigned int block_size; 2285 struct xhci_interval_bw_table *bw_table; 2286 unsigned int packet_size = 0; 2287 unsigned int overhead = 0; 2288 unsigned int packets_transmitted = 0; 2289 unsigned int packets_remaining = 0; 2290 unsigned int i; 2291 2292 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2293 return xhci_check_ss_bw(xhci, virt_dev); 2294 2295 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2296 max_bandwidth = HS_BW_LIMIT; 2297 /* Convert percent of bus BW reserved to blocks reserved */ 2298 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2299 } else { 2300 max_bandwidth = FS_BW_LIMIT; 2301 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2302 } 2303 2304 bw_table = virt_dev->bw_table; 2305 /* We need to translate the max packet size and max ESIT payloads into 2306 * the units the hardware uses. 2307 */ 2308 block_size = xhci_get_block_size(virt_dev->udev); 2309 2310 /* If we are manipulating a LS/FS device under a HS hub, double check 2311 * that the HS bus has enough bandwidth if we are activing a new TT. 2312 */ 2313 if (virt_dev->tt_info) { 2314 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2315 "Recalculating BW for rootport %u", 2316 virt_dev->real_port); 2317 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2318 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2319 "newly activated TT.\n"); 2320 return -ENOMEM; 2321 } 2322 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2323 "Recalculating BW for TT slot %u port %u", 2324 virt_dev->tt_info->slot_id, 2325 virt_dev->tt_info->ttport); 2326 } else { 2327 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2328 "Recalculating BW for rootport %u", 2329 virt_dev->real_port); 2330 } 2331 2332 /* Add in how much bandwidth will be used for interval zero, or the 2333 * rounded max ESIT payload + number of packets * largest overhead. 2334 */ 2335 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2336 bw_table->interval_bw[0].num_packets * 2337 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2338 2339 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2340 unsigned int bw_added; 2341 unsigned int largest_mps; 2342 unsigned int interval_overhead; 2343 2344 /* 2345 * How many packets could we transmit in this interval? 2346 * If packets didn't fit in the previous interval, we will need 2347 * to transmit that many packets twice within this interval. 2348 */ 2349 packets_remaining = 2 * packets_remaining + 2350 bw_table->interval_bw[i].num_packets; 2351 2352 /* Find the largest max packet size of this or the previous 2353 * interval. 2354 */ 2355 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2356 largest_mps = 0; 2357 else { 2358 struct xhci_virt_ep *virt_ep; 2359 struct list_head *ep_entry; 2360 2361 ep_entry = bw_table->interval_bw[i].endpoints.next; 2362 virt_ep = list_entry(ep_entry, 2363 struct xhci_virt_ep, bw_endpoint_list); 2364 /* Convert to blocks, rounding up */ 2365 largest_mps = DIV_ROUND_UP( 2366 virt_ep->bw_info.max_packet_size, 2367 block_size); 2368 } 2369 if (largest_mps > packet_size) 2370 packet_size = largest_mps; 2371 2372 /* Use the larger overhead of this or the previous interval. */ 2373 interval_overhead = xhci_get_largest_overhead( 2374 &bw_table->interval_bw[i]); 2375 if (interval_overhead > overhead) 2376 overhead = interval_overhead; 2377 2378 /* How many packets can we evenly distribute across 2379 * (1 << (i + 1)) possible scheduling opportunities? 2380 */ 2381 packets_transmitted = packets_remaining >> (i + 1); 2382 2383 /* Add in the bandwidth used for those scheduled packets */ 2384 bw_added = packets_transmitted * (overhead + packet_size); 2385 2386 /* How many packets do we have remaining to transmit? */ 2387 packets_remaining = packets_remaining % (1 << (i + 1)); 2388 2389 /* What largest max packet size should those packets have? */ 2390 /* If we've transmitted all packets, don't carry over the 2391 * largest packet size. 2392 */ 2393 if (packets_remaining == 0) { 2394 packet_size = 0; 2395 overhead = 0; 2396 } else if (packets_transmitted > 0) { 2397 /* Otherwise if we do have remaining packets, and we've 2398 * scheduled some packets in this interval, take the 2399 * largest max packet size from endpoints with this 2400 * interval. 2401 */ 2402 packet_size = largest_mps; 2403 overhead = interval_overhead; 2404 } 2405 /* Otherwise carry over packet_size and overhead from the last 2406 * time we had a remainder. 2407 */ 2408 bw_used += bw_added; 2409 if (bw_used > max_bandwidth) { 2410 xhci_warn(xhci, "Not enough bandwidth. " 2411 "Proposed: %u, Max: %u\n", 2412 bw_used, max_bandwidth); 2413 return -ENOMEM; 2414 } 2415 } 2416 /* 2417 * Ok, we know we have some packets left over after even-handedly 2418 * scheduling interval 15. We don't know which microframes they will 2419 * fit into, so we over-schedule and say they will be scheduled every 2420 * microframe. 2421 */ 2422 if (packets_remaining > 0) 2423 bw_used += overhead + packet_size; 2424 2425 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2426 unsigned int port_index = virt_dev->real_port - 1; 2427 2428 /* OK, we're manipulating a HS device attached to a 2429 * root port bandwidth domain. Include the number of active TTs 2430 * in the bandwidth used. 2431 */ 2432 bw_used += TT_HS_OVERHEAD * 2433 xhci->rh_bw[port_index].num_active_tts; 2434 } 2435 2436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2437 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2438 "Available: %u " "percent", 2439 bw_used, max_bandwidth, bw_reserved, 2440 (max_bandwidth - bw_used - bw_reserved) * 100 / 2441 max_bandwidth); 2442 2443 bw_used += bw_reserved; 2444 if (bw_used > max_bandwidth) { 2445 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2446 bw_used, max_bandwidth); 2447 return -ENOMEM; 2448 } 2449 2450 bw_table->bw_used = bw_used; 2451 return 0; 2452 } 2453 2454 static bool xhci_is_async_ep(unsigned int ep_type) 2455 { 2456 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2457 ep_type != ISOC_IN_EP && 2458 ep_type != INT_IN_EP); 2459 } 2460 2461 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2462 { 2463 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2464 } 2465 2466 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2467 { 2468 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2469 2470 if (ep_bw->ep_interval == 0) 2471 return SS_OVERHEAD_BURST + 2472 (ep_bw->mult * ep_bw->num_packets * 2473 (SS_OVERHEAD + mps)); 2474 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2475 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2476 1 << ep_bw->ep_interval); 2477 2478 } 2479 2480 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2481 struct xhci_bw_info *ep_bw, 2482 struct xhci_interval_bw_table *bw_table, 2483 struct usb_device *udev, 2484 struct xhci_virt_ep *virt_ep, 2485 struct xhci_tt_bw_info *tt_info) 2486 { 2487 struct xhci_interval_bw *interval_bw; 2488 int normalized_interval; 2489 2490 if (xhci_is_async_ep(ep_bw->type)) 2491 return; 2492 2493 if (udev->speed >= USB_SPEED_SUPER) { 2494 if (xhci_is_sync_in_ep(ep_bw->type)) 2495 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2496 xhci_get_ss_bw_consumed(ep_bw); 2497 else 2498 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2499 xhci_get_ss_bw_consumed(ep_bw); 2500 return; 2501 } 2502 2503 /* SuperSpeed endpoints never get added to intervals in the table, so 2504 * this check is only valid for HS/FS/LS devices. 2505 */ 2506 if (list_empty(&virt_ep->bw_endpoint_list)) 2507 return; 2508 /* For LS/FS devices, we need to translate the interval expressed in 2509 * microframes to frames. 2510 */ 2511 if (udev->speed == USB_SPEED_HIGH) 2512 normalized_interval = ep_bw->ep_interval; 2513 else 2514 normalized_interval = ep_bw->ep_interval - 3; 2515 2516 if (normalized_interval == 0) 2517 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2518 interval_bw = &bw_table->interval_bw[normalized_interval]; 2519 interval_bw->num_packets -= ep_bw->num_packets; 2520 switch (udev->speed) { 2521 case USB_SPEED_LOW: 2522 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2523 break; 2524 case USB_SPEED_FULL: 2525 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2526 break; 2527 case USB_SPEED_HIGH: 2528 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2529 break; 2530 case USB_SPEED_SUPER: 2531 case USB_SPEED_SUPER_PLUS: 2532 case USB_SPEED_UNKNOWN: 2533 case USB_SPEED_WIRELESS: 2534 /* Should never happen because only LS/FS/HS endpoints will get 2535 * added to the endpoint list. 2536 */ 2537 return; 2538 } 2539 if (tt_info) 2540 tt_info->active_eps -= 1; 2541 list_del_init(&virt_ep->bw_endpoint_list); 2542 } 2543 2544 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2545 struct xhci_bw_info *ep_bw, 2546 struct xhci_interval_bw_table *bw_table, 2547 struct usb_device *udev, 2548 struct xhci_virt_ep *virt_ep, 2549 struct xhci_tt_bw_info *tt_info) 2550 { 2551 struct xhci_interval_bw *interval_bw; 2552 struct xhci_virt_ep *smaller_ep; 2553 int normalized_interval; 2554 2555 if (xhci_is_async_ep(ep_bw->type)) 2556 return; 2557 2558 if (udev->speed == USB_SPEED_SUPER) { 2559 if (xhci_is_sync_in_ep(ep_bw->type)) 2560 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2561 xhci_get_ss_bw_consumed(ep_bw); 2562 else 2563 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2564 xhci_get_ss_bw_consumed(ep_bw); 2565 return; 2566 } 2567 2568 /* For LS/FS devices, we need to translate the interval expressed in 2569 * microframes to frames. 2570 */ 2571 if (udev->speed == USB_SPEED_HIGH) 2572 normalized_interval = ep_bw->ep_interval; 2573 else 2574 normalized_interval = ep_bw->ep_interval - 3; 2575 2576 if (normalized_interval == 0) 2577 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2578 interval_bw = &bw_table->interval_bw[normalized_interval]; 2579 interval_bw->num_packets += ep_bw->num_packets; 2580 switch (udev->speed) { 2581 case USB_SPEED_LOW: 2582 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2583 break; 2584 case USB_SPEED_FULL: 2585 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2586 break; 2587 case USB_SPEED_HIGH: 2588 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2589 break; 2590 case USB_SPEED_SUPER: 2591 case USB_SPEED_SUPER_PLUS: 2592 case USB_SPEED_UNKNOWN: 2593 case USB_SPEED_WIRELESS: 2594 /* Should never happen because only LS/FS/HS endpoints will get 2595 * added to the endpoint list. 2596 */ 2597 return; 2598 } 2599 2600 if (tt_info) 2601 tt_info->active_eps += 1; 2602 /* Insert the endpoint into the list, largest max packet size first. */ 2603 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2604 bw_endpoint_list) { 2605 if (ep_bw->max_packet_size >= 2606 smaller_ep->bw_info.max_packet_size) { 2607 /* Add the new ep before the smaller endpoint */ 2608 list_add_tail(&virt_ep->bw_endpoint_list, 2609 &smaller_ep->bw_endpoint_list); 2610 return; 2611 } 2612 } 2613 /* Add the new endpoint at the end of the list. */ 2614 list_add_tail(&virt_ep->bw_endpoint_list, 2615 &interval_bw->endpoints); 2616 } 2617 2618 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2619 struct xhci_virt_device *virt_dev, 2620 int old_active_eps) 2621 { 2622 struct xhci_root_port_bw_info *rh_bw_info; 2623 if (!virt_dev->tt_info) 2624 return; 2625 2626 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2627 if (old_active_eps == 0 && 2628 virt_dev->tt_info->active_eps != 0) { 2629 rh_bw_info->num_active_tts += 1; 2630 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2631 } else if (old_active_eps != 0 && 2632 virt_dev->tt_info->active_eps == 0) { 2633 rh_bw_info->num_active_tts -= 1; 2634 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2635 } 2636 } 2637 2638 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2639 struct xhci_virt_device *virt_dev, 2640 struct xhci_container_ctx *in_ctx) 2641 { 2642 struct xhci_bw_info ep_bw_info[31]; 2643 int i; 2644 struct xhci_input_control_ctx *ctrl_ctx; 2645 int old_active_eps = 0; 2646 2647 if (virt_dev->tt_info) 2648 old_active_eps = virt_dev->tt_info->active_eps; 2649 2650 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2651 if (!ctrl_ctx) { 2652 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2653 __func__); 2654 return -ENOMEM; 2655 } 2656 2657 for (i = 0; i < 31; i++) { 2658 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2659 continue; 2660 2661 /* Make a copy of the BW info in case we need to revert this */ 2662 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2663 sizeof(ep_bw_info[i])); 2664 /* Drop the endpoint from the interval table if the endpoint is 2665 * being dropped or changed. 2666 */ 2667 if (EP_IS_DROPPED(ctrl_ctx, i)) 2668 xhci_drop_ep_from_interval_table(xhci, 2669 &virt_dev->eps[i].bw_info, 2670 virt_dev->bw_table, 2671 virt_dev->udev, 2672 &virt_dev->eps[i], 2673 virt_dev->tt_info); 2674 } 2675 /* Overwrite the information stored in the endpoints' bw_info */ 2676 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2677 for (i = 0; i < 31; i++) { 2678 /* Add any changed or added endpoints to the interval table */ 2679 if (EP_IS_ADDED(ctrl_ctx, i)) 2680 xhci_add_ep_to_interval_table(xhci, 2681 &virt_dev->eps[i].bw_info, 2682 virt_dev->bw_table, 2683 virt_dev->udev, 2684 &virt_dev->eps[i], 2685 virt_dev->tt_info); 2686 } 2687 2688 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2689 /* Ok, this fits in the bandwidth we have. 2690 * Update the number of active TTs. 2691 */ 2692 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2693 return 0; 2694 } 2695 2696 /* We don't have enough bandwidth for this, revert the stored info. */ 2697 for (i = 0; i < 31; i++) { 2698 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2699 continue; 2700 2701 /* Drop the new copies of any added or changed endpoints from 2702 * the interval table. 2703 */ 2704 if (EP_IS_ADDED(ctrl_ctx, i)) { 2705 xhci_drop_ep_from_interval_table(xhci, 2706 &virt_dev->eps[i].bw_info, 2707 virt_dev->bw_table, 2708 virt_dev->udev, 2709 &virt_dev->eps[i], 2710 virt_dev->tt_info); 2711 } 2712 /* Revert the endpoint back to its old information */ 2713 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2714 sizeof(ep_bw_info[i])); 2715 /* Add any changed or dropped endpoints back into the table */ 2716 if (EP_IS_DROPPED(ctrl_ctx, i)) 2717 xhci_add_ep_to_interval_table(xhci, 2718 &virt_dev->eps[i].bw_info, 2719 virt_dev->bw_table, 2720 virt_dev->udev, 2721 &virt_dev->eps[i], 2722 virt_dev->tt_info); 2723 } 2724 return -ENOMEM; 2725 } 2726 2727 2728 /* Issue a configure endpoint command or evaluate context command 2729 * and wait for it to finish. 2730 */ 2731 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2732 struct usb_device *udev, 2733 struct xhci_command *command, 2734 bool ctx_change, bool must_succeed) 2735 { 2736 int ret; 2737 unsigned long flags; 2738 struct xhci_input_control_ctx *ctrl_ctx; 2739 struct xhci_virt_device *virt_dev; 2740 struct xhci_slot_ctx *slot_ctx; 2741 2742 if (!command) 2743 return -EINVAL; 2744 2745 spin_lock_irqsave(&xhci->lock, flags); 2746 2747 if (xhci->xhc_state & XHCI_STATE_DYING) { 2748 spin_unlock_irqrestore(&xhci->lock, flags); 2749 return -ESHUTDOWN; 2750 } 2751 2752 virt_dev = xhci->devs[udev->slot_id]; 2753 2754 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2755 if (!ctrl_ctx) { 2756 spin_unlock_irqrestore(&xhci->lock, flags); 2757 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2758 __func__); 2759 return -ENOMEM; 2760 } 2761 2762 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2763 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2764 spin_unlock_irqrestore(&xhci->lock, flags); 2765 xhci_warn(xhci, "Not enough host resources, " 2766 "active endpoint contexts = %u\n", 2767 xhci->num_active_eps); 2768 return -ENOMEM; 2769 } 2770 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2771 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2772 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2773 xhci_free_host_resources(xhci, ctrl_ctx); 2774 spin_unlock_irqrestore(&xhci->lock, flags); 2775 xhci_warn(xhci, "Not enough bandwidth\n"); 2776 return -ENOMEM; 2777 } 2778 2779 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2780 2781 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2782 trace_xhci_configure_endpoint(slot_ctx); 2783 2784 if (!ctx_change) 2785 ret = xhci_queue_configure_endpoint(xhci, command, 2786 command->in_ctx->dma, 2787 udev->slot_id, must_succeed); 2788 else 2789 ret = xhci_queue_evaluate_context(xhci, command, 2790 command->in_ctx->dma, 2791 udev->slot_id, must_succeed); 2792 if (ret < 0) { 2793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2794 xhci_free_host_resources(xhci, ctrl_ctx); 2795 spin_unlock_irqrestore(&xhci->lock, flags); 2796 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2797 "FIXME allocate a new ring segment"); 2798 return -ENOMEM; 2799 } 2800 xhci_ring_cmd_db(xhci); 2801 spin_unlock_irqrestore(&xhci->lock, flags); 2802 2803 /* Wait for the configure endpoint command to complete */ 2804 wait_for_completion(command->completion); 2805 2806 if (!ctx_change) 2807 ret = xhci_configure_endpoint_result(xhci, udev, 2808 &command->status); 2809 else 2810 ret = xhci_evaluate_context_result(xhci, udev, 2811 &command->status); 2812 2813 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2814 spin_lock_irqsave(&xhci->lock, flags); 2815 /* If the command failed, remove the reserved resources. 2816 * Otherwise, clean up the estimate to include dropped eps. 2817 */ 2818 if (ret) 2819 xhci_free_host_resources(xhci, ctrl_ctx); 2820 else 2821 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2822 spin_unlock_irqrestore(&xhci->lock, flags); 2823 } 2824 return ret; 2825 } 2826 2827 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2828 struct xhci_virt_device *vdev, int i) 2829 { 2830 struct xhci_virt_ep *ep = &vdev->eps[i]; 2831 2832 if (ep->ep_state & EP_HAS_STREAMS) { 2833 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2834 xhci_get_endpoint_address(i)); 2835 xhci_free_stream_info(xhci, ep->stream_info); 2836 ep->stream_info = NULL; 2837 ep->ep_state &= ~EP_HAS_STREAMS; 2838 } 2839 } 2840 2841 /* Called after one or more calls to xhci_add_endpoint() or 2842 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2843 * to call xhci_reset_bandwidth(). 2844 * 2845 * Since we are in the middle of changing either configuration or 2846 * installing a new alt setting, the USB core won't allow URBs to be 2847 * enqueued for any endpoint on the old config or interface. Nothing 2848 * else should be touching the xhci->devs[slot_id] structure, so we 2849 * don't need to take the xhci->lock for manipulating that. 2850 */ 2851 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2852 { 2853 int i; 2854 int ret = 0; 2855 struct xhci_hcd *xhci; 2856 struct xhci_virt_device *virt_dev; 2857 struct xhci_input_control_ctx *ctrl_ctx; 2858 struct xhci_slot_ctx *slot_ctx; 2859 struct xhci_command *command; 2860 2861 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2862 if (ret <= 0) 2863 return ret; 2864 xhci = hcd_to_xhci(hcd); 2865 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2866 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2867 return -ENODEV; 2868 2869 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2870 virt_dev = xhci->devs[udev->slot_id]; 2871 2872 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2873 if (!command) 2874 return -ENOMEM; 2875 2876 command->in_ctx = virt_dev->in_ctx; 2877 2878 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2879 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2880 if (!ctrl_ctx) { 2881 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2882 __func__); 2883 ret = -ENOMEM; 2884 goto command_cleanup; 2885 } 2886 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2887 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2888 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2889 2890 /* Don't issue the command if there's no endpoints to update. */ 2891 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2892 ctrl_ctx->drop_flags == 0) { 2893 ret = 0; 2894 goto command_cleanup; 2895 } 2896 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2897 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2898 for (i = 31; i >= 1; i--) { 2899 __le32 le32 = cpu_to_le32(BIT(i)); 2900 2901 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2902 || (ctrl_ctx->add_flags & le32) || i == 1) { 2903 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2904 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2905 break; 2906 } 2907 } 2908 2909 ret = xhci_configure_endpoint(xhci, udev, command, 2910 false, false); 2911 if (ret) 2912 /* Callee should call reset_bandwidth() */ 2913 goto command_cleanup; 2914 2915 /* Free any rings that were dropped, but not changed. */ 2916 for (i = 1; i < 31; i++) { 2917 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2918 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2919 xhci_free_endpoint_ring(xhci, virt_dev, i); 2920 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2921 } 2922 } 2923 xhci_zero_in_ctx(xhci, virt_dev); 2924 /* 2925 * Install any rings for completely new endpoints or changed endpoints, 2926 * and free any old rings from changed endpoints. 2927 */ 2928 for (i = 1; i < 31; i++) { 2929 if (!virt_dev->eps[i].new_ring) 2930 continue; 2931 /* Only free the old ring if it exists. 2932 * It may not if this is the first add of an endpoint. 2933 */ 2934 if (virt_dev->eps[i].ring) { 2935 xhci_free_endpoint_ring(xhci, virt_dev, i); 2936 } 2937 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2938 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2939 virt_dev->eps[i].new_ring = NULL; 2940 } 2941 command_cleanup: 2942 kfree(command->completion); 2943 kfree(command); 2944 2945 return ret; 2946 } 2947 2948 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2949 { 2950 struct xhci_hcd *xhci; 2951 struct xhci_virt_device *virt_dev; 2952 int i, ret; 2953 2954 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2955 if (ret <= 0) 2956 return; 2957 xhci = hcd_to_xhci(hcd); 2958 2959 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2960 virt_dev = xhci->devs[udev->slot_id]; 2961 /* Free any rings allocated for added endpoints */ 2962 for (i = 0; i < 31; i++) { 2963 if (virt_dev->eps[i].new_ring) { 2964 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2965 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2966 virt_dev->eps[i].new_ring = NULL; 2967 } 2968 } 2969 xhci_zero_in_ctx(xhci, virt_dev); 2970 } 2971 2972 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2973 struct xhci_container_ctx *in_ctx, 2974 struct xhci_container_ctx *out_ctx, 2975 struct xhci_input_control_ctx *ctrl_ctx, 2976 u32 add_flags, u32 drop_flags) 2977 { 2978 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2979 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2980 xhci_slot_copy(xhci, in_ctx, out_ctx); 2981 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2982 } 2983 2984 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2985 unsigned int slot_id, unsigned int ep_index, 2986 struct xhci_dequeue_state *deq_state) 2987 { 2988 struct xhci_input_control_ctx *ctrl_ctx; 2989 struct xhci_container_ctx *in_ctx; 2990 struct xhci_ep_ctx *ep_ctx; 2991 u32 added_ctxs; 2992 dma_addr_t addr; 2993 2994 in_ctx = xhci->devs[slot_id]->in_ctx; 2995 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2996 if (!ctrl_ctx) { 2997 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2998 __func__); 2999 return; 3000 } 3001 3002 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3003 xhci->devs[slot_id]->out_ctx, ep_index); 3004 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3005 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3006 deq_state->new_deq_ptr); 3007 if (addr == 0) { 3008 xhci_warn(xhci, "WARN Cannot submit config ep after " 3009 "reset ep command\n"); 3010 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3011 deq_state->new_deq_seg, 3012 deq_state->new_deq_ptr); 3013 return; 3014 } 3015 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3016 3017 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3018 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3019 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3020 added_ctxs, added_ctxs); 3021 } 3022 3023 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 3024 unsigned int stream_id, struct xhci_td *td) 3025 { 3026 struct xhci_dequeue_state deq_state; 3027 struct usb_device *udev = td->urb->dev; 3028 3029 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3030 "Cleaning up stalled endpoint ring"); 3031 /* We need to move the HW's dequeue pointer past this TD, 3032 * or it will attempt to resend it on the next doorbell ring. 3033 */ 3034 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3035 ep_index, stream_id, td, &deq_state); 3036 3037 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3038 return; 3039 3040 /* HW with the reset endpoint quirk will use the saved dequeue state to 3041 * issue a configure endpoint command later. 3042 */ 3043 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3044 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3045 "Queueing new dequeue state"); 3046 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3047 ep_index, &deq_state); 3048 } else { 3049 /* Better hope no one uses the input context between now and the 3050 * reset endpoint completion! 3051 * XXX: No idea how this hardware will react when stream rings 3052 * are enabled. 3053 */ 3054 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3055 "Setting up input context for " 3056 "configure endpoint command"); 3057 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3058 ep_index, &deq_state); 3059 } 3060 } 3061 3062 /* 3063 * Called after usb core issues a clear halt control message. 3064 * The host side of the halt should already be cleared by a reset endpoint 3065 * command issued when the STALL event was received. 3066 * 3067 * The reset endpoint command may only be issued to endpoints in the halted 3068 * state. For software that wishes to reset the data toggle or sequence number 3069 * of an endpoint that isn't in the halted state this function will issue a 3070 * configure endpoint command with the Drop and Add bits set for the target 3071 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3072 */ 3073 3074 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3075 struct usb_host_endpoint *host_ep) 3076 { 3077 struct xhci_hcd *xhci; 3078 struct usb_device *udev; 3079 struct xhci_virt_device *vdev; 3080 struct xhci_virt_ep *ep; 3081 struct xhci_input_control_ctx *ctrl_ctx; 3082 struct xhci_command *stop_cmd, *cfg_cmd; 3083 unsigned int ep_index; 3084 unsigned long flags; 3085 u32 ep_flag; 3086 3087 xhci = hcd_to_xhci(hcd); 3088 if (!host_ep->hcpriv) 3089 return; 3090 udev = (struct usb_device *) host_ep->hcpriv; 3091 vdev = xhci->devs[udev->slot_id]; 3092 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3093 ep = &vdev->eps[ep_index]; 3094 3095 /* Bail out if toggle is already being cleared by a endpoint reset */ 3096 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3097 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3098 return; 3099 } 3100 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3101 if (usb_endpoint_xfer_control(&host_ep->desc) || 3102 usb_endpoint_xfer_isoc(&host_ep->desc)) 3103 return; 3104 3105 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3106 3107 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3108 return; 3109 3110 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3111 if (!stop_cmd) 3112 return; 3113 3114 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3115 if (!cfg_cmd) 3116 goto cleanup; 3117 3118 spin_lock_irqsave(&xhci->lock, flags); 3119 3120 /* block queuing new trbs and ringing ep doorbell */ 3121 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3122 3123 /* 3124 * Make sure endpoint ring is empty before resetting the toggle/seq. 3125 * Driver is required to synchronously cancel all transfer request. 3126 * Stop the endpoint to force xHC to update the output context 3127 */ 3128 3129 if (!list_empty(&ep->ring->td_list)) { 3130 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3131 spin_unlock_irqrestore(&xhci->lock, flags); 3132 xhci_free_command(xhci, cfg_cmd); 3133 goto cleanup; 3134 } 3135 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3136 xhci_ring_cmd_db(xhci); 3137 spin_unlock_irqrestore(&xhci->lock, flags); 3138 3139 wait_for_completion(stop_cmd->completion); 3140 3141 spin_lock_irqsave(&xhci->lock, flags); 3142 3143 /* config ep command clears toggle if add and drop ep flags are set */ 3144 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3145 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3146 ctrl_ctx, ep_flag, ep_flag); 3147 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3148 3149 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3150 udev->slot_id, false); 3151 xhci_ring_cmd_db(xhci); 3152 spin_unlock_irqrestore(&xhci->lock, flags); 3153 3154 wait_for_completion(cfg_cmd->completion); 3155 3156 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3157 xhci_free_command(xhci, cfg_cmd); 3158 cleanup: 3159 xhci_free_command(xhci, stop_cmd); 3160 } 3161 3162 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3163 struct usb_device *udev, struct usb_host_endpoint *ep, 3164 unsigned int slot_id) 3165 { 3166 int ret; 3167 unsigned int ep_index; 3168 unsigned int ep_state; 3169 3170 if (!ep) 3171 return -EINVAL; 3172 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3173 if (ret <= 0) 3174 return -EINVAL; 3175 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3176 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3177 " descriptor for ep 0x%x does not support streams\n", 3178 ep->desc.bEndpointAddress); 3179 return -EINVAL; 3180 } 3181 3182 ep_index = xhci_get_endpoint_index(&ep->desc); 3183 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3184 if (ep_state & EP_HAS_STREAMS || 3185 ep_state & EP_GETTING_STREAMS) { 3186 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3187 "already has streams set up.\n", 3188 ep->desc.bEndpointAddress); 3189 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3190 "dynamic stream context array reallocation.\n"); 3191 return -EINVAL; 3192 } 3193 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3194 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3195 "endpoint 0x%x; URBs are pending.\n", 3196 ep->desc.bEndpointAddress); 3197 return -EINVAL; 3198 } 3199 return 0; 3200 } 3201 3202 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3203 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3204 { 3205 unsigned int max_streams; 3206 3207 /* The stream context array size must be a power of two */ 3208 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3209 /* 3210 * Find out how many primary stream array entries the host controller 3211 * supports. Later we may use secondary stream arrays (similar to 2nd 3212 * level page entries), but that's an optional feature for xHCI host 3213 * controllers. xHCs must support at least 4 stream IDs. 3214 */ 3215 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3216 if (*num_stream_ctxs > max_streams) { 3217 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3218 max_streams); 3219 *num_stream_ctxs = max_streams; 3220 *num_streams = max_streams; 3221 } 3222 } 3223 3224 /* Returns an error code if one of the endpoint already has streams. 3225 * This does not change any data structures, it only checks and gathers 3226 * information. 3227 */ 3228 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3229 struct usb_device *udev, 3230 struct usb_host_endpoint **eps, unsigned int num_eps, 3231 unsigned int *num_streams, u32 *changed_ep_bitmask) 3232 { 3233 unsigned int max_streams; 3234 unsigned int endpoint_flag; 3235 int i; 3236 int ret; 3237 3238 for (i = 0; i < num_eps; i++) { 3239 ret = xhci_check_streams_endpoint(xhci, udev, 3240 eps[i], udev->slot_id); 3241 if (ret < 0) 3242 return ret; 3243 3244 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3245 if (max_streams < (*num_streams - 1)) { 3246 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3247 eps[i]->desc.bEndpointAddress, 3248 max_streams); 3249 *num_streams = max_streams+1; 3250 } 3251 3252 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3253 if (*changed_ep_bitmask & endpoint_flag) 3254 return -EINVAL; 3255 *changed_ep_bitmask |= endpoint_flag; 3256 } 3257 return 0; 3258 } 3259 3260 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3261 struct usb_device *udev, 3262 struct usb_host_endpoint **eps, unsigned int num_eps) 3263 { 3264 u32 changed_ep_bitmask = 0; 3265 unsigned int slot_id; 3266 unsigned int ep_index; 3267 unsigned int ep_state; 3268 int i; 3269 3270 slot_id = udev->slot_id; 3271 if (!xhci->devs[slot_id]) 3272 return 0; 3273 3274 for (i = 0; i < num_eps; i++) { 3275 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3276 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3277 /* Are streams already being freed for the endpoint? */ 3278 if (ep_state & EP_GETTING_NO_STREAMS) { 3279 xhci_warn(xhci, "WARN Can't disable streams for " 3280 "endpoint 0x%x, " 3281 "streams are being disabled already\n", 3282 eps[i]->desc.bEndpointAddress); 3283 return 0; 3284 } 3285 /* Are there actually any streams to free? */ 3286 if (!(ep_state & EP_HAS_STREAMS) && 3287 !(ep_state & EP_GETTING_STREAMS)) { 3288 xhci_warn(xhci, "WARN Can't disable streams for " 3289 "endpoint 0x%x, " 3290 "streams are already disabled!\n", 3291 eps[i]->desc.bEndpointAddress); 3292 xhci_warn(xhci, "WARN xhci_free_streams() called " 3293 "with non-streams endpoint\n"); 3294 return 0; 3295 } 3296 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3297 } 3298 return changed_ep_bitmask; 3299 } 3300 3301 /* 3302 * The USB device drivers use this function (through the HCD interface in USB 3303 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3304 * coordinate mass storage command queueing across multiple endpoints (basically 3305 * a stream ID == a task ID). 3306 * 3307 * Setting up streams involves allocating the same size stream context array 3308 * for each endpoint and issuing a configure endpoint command for all endpoints. 3309 * 3310 * Don't allow the call to succeed if one endpoint only supports one stream 3311 * (which means it doesn't support streams at all). 3312 * 3313 * Drivers may get less stream IDs than they asked for, if the host controller 3314 * hardware or endpoints claim they can't support the number of requested 3315 * stream IDs. 3316 */ 3317 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3318 struct usb_host_endpoint **eps, unsigned int num_eps, 3319 unsigned int num_streams, gfp_t mem_flags) 3320 { 3321 int i, ret; 3322 struct xhci_hcd *xhci; 3323 struct xhci_virt_device *vdev; 3324 struct xhci_command *config_cmd; 3325 struct xhci_input_control_ctx *ctrl_ctx; 3326 unsigned int ep_index; 3327 unsigned int num_stream_ctxs; 3328 unsigned int max_packet; 3329 unsigned long flags; 3330 u32 changed_ep_bitmask = 0; 3331 3332 if (!eps) 3333 return -EINVAL; 3334 3335 /* Add one to the number of streams requested to account for 3336 * stream 0 that is reserved for xHCI usage. 3337 */ 3338 num_streams += 1; 3339 xhci = hcd_to_xhci(hcd); 3340 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3341 num_streams); 3342 3343 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3344 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3345 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3346 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3347 return -ENOSYS; 3348 } 3349 3350 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3351 if (!config_cmd) 3352 return -ENOMEM; 3353 3354 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3355 if (!ctrl_ctx) { 3356 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3357 __func__); 3358 xhci_free_command(xhci, config_cmd); 3359 return -ENOMEM; 3360 } 3361 3362 /* Check to make sure all endpoints are not already configured for 3363 * streams. While we're at it, find the maximum number of streams that 3364 * all the endpoints will support and check for duplicate endpoints. 3365 */ 3366 spin_lock_irqsave(&xhci->lock, flags); 3367 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3368 num_eps, &num_streams, &changed_ep_bitmask); 3369 if (ret < 0) { 3370 xhci_free_command(xhci, config_cmd); 3371 spin_unlock_irqrestore(&xhci->lock, flags); 3372 return ret; 3373 } 3374 if (num_streams <= 1) { 3375 xhci_warn(xhci, "WARN: endpoints can't handle " 3376 "more than one stream.\n"); 3377 xhci_free_command(xhci, config_cmd); 3378 spin_unlock_irqrestore(&xhci->lock, flags); 3379 return -EINVAL; 3380 } 3381 vdev = xhci->devs[udev->slot_id]; 3382 /* Mark each endpoint as being in transition, so 3383 * xhci_urb_enqueue() will reject all URBs. 3384 */ 3385 for (i = 0; i < num_eps; i++) { 3386 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3387 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3388 } 3389 spin_unlock_irqrestore(&xhci->lock, flags); 3390 3391 /* Setup internal data structures and allocate HW data structures for 3392 * streams (but don't install the HW structures in the input context 3393 * until we're sure all memory allocation succeeded). 3394 */ 3395 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3396 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3397 num_stream_ctxs, num_streams); 3398 3399 for (i = 0; i < num_eps; i++) { 3400 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3401 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3402 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3403 num_stream_ctxs, 3404 num_streams, 3405 max_packet, mem_flags); 3406 if (!vdev->eps[ep_index].stream_info) 3407 goto cleanup; 3408 /* Set maxPstreams in endpoint context and update deq ptr to 3409 * point to stream context array. FIXME 3410 */ 3411 } 3412 3413 /* Set up the input context for a configure endpoint command. */ 3414 for (i = 0; i < num_eps; i++) { 3415 struct xhci_ep_ctx *ep_ctx; 3416 3417 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3418 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3419 3420 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3421 vdev->out_ctx, ep_index); 3422 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3423 vdev->eps[ep_index].stream_info); 3424 } 3425 /* Tell the HW to drop its old copy of the endpoint context info 3426 * and add the updated copy from the input context. 3427 */ 3428 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3429 vdev->out_ctx, ctrl_ctx, 3430 changed_ep_bitmask, changed_ep_bitmask); 3431 3432 /* Issue and wait for the configure endpoint command */ 3433 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3434 false, false); 3435 3436 /* xHC rejected the configure endpoint command for some reason, so we 3437 * leave the old ring intact and free our internal streams data 3438 * structure. 3439 */ 3440 if (ret < 0) 3441 goto cleanup; 3442 3443 spin_lock_irqsave(&xhci->lock, flags); 3444 for (i = 0; i < num_eps; i++) { 3445 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3446 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3447 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3448 udev->slot_id, ep_index); 3449 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3450 } 3451 xhci_free_command(xhci, config_cmd); 3452 spin_unlock_irqrestore(&xhci->lock, flags); 3453 3454 /* Subtract 1 for stream 0, which drivers can't use */ 3455 return num_streams - 1; 3456 3457 cleanup: 3458 /* If it didn't work, free the streams! */ 3459 for (i = 0; i < num_eps; i++) { 3460 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3461 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3462 vdev->eps[ep_index].stream_info = NULL; 3463 /* FIXME Unset maxPstreams in endpoint context and 3464 * update deq ptr to point to normal string ring. 3465 */ 3466 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3467 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3468 xhci_endpoint_zero(xhci, vdev, eps[i]); 3469 } 3470 xhci_free_command(xhci, config_cmd); 3471 return -ENOMEM; 3472 } 3473 3474 /* Transition the endpoint from using streams to being a "normal" endpoint 3475 * without streams. 3476 * 3477 * Modify the endpoint context state, submit a configure endpoint command, 3478 * and free all endpoint rings for streams if that completes successfully. 3479 */ 3480 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3481 struct usb_host_endpoint **eps, unsigned int num_eps, 3482 gfp_t mem_flags) 3483 { 3484 int i, ret; 3485 struct xhci_hcd *xhci; 3486 struct xhci_virt_device *vdev; 3487 struct xhci_command *command; 3488 struct xhci_input_control_ctx *ctrl_ctx; 3489 unsigned int ep_index; 3490 unsigned long flags; 3491 u32 changed_ep_bitmask; 3492 3493 xhci = hcd_to_xhci(hcd); 3494 vdev = xhci->devs[udev->slot_id]; 3495 3496 /* Set up a configure endpoint command to remove the streams rings */ 3497 spin_lock_irqsave(&xhci->lock, flags); 3498 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3499 udev, eps, num_eps); 3500 if (changed_ep_bitmask == 0) { 3501 spin_unlock_irqrestore(&xhci->lock, flags); 3502 return -EINVAL; 3503 } 3504 3505 /* Use the xhci_command structure from the first endpoint. We may have 3506 * allocated too many, but the driver may call xhci_free_streams() for 3507 * each endpoint it grouped into one call to xhci_alloc_streams(). 3508 */ 3509 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3510 command = vdev->eps[ep_index].stream_info->free_streams_command; 3511 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3512 if (!ctrl_ctx) { 3513 spin_unlock_irqrestore(&xhci->lock, flags); 3514 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3515 __func__); 3516 return -EINVAL; 3517 } 3518 3519 for (i = 0; i < num_eps; i++) { 3520 struct xhci_ep_ctx *ep_ctx; 3521 3522 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3523 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3524 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3525 EP_GETTING_NO_STREAMS; 3526 3527 xhci_endpoint_copy(xhci, command->in_ctx, 3528 vdev->out_ctx, ep_index); 3529 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3530 &vdev->eps[ep_index]); 3531 } 3532 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3533 vdev->out_ctx, ctrl_ctx, 3534 changed_ep_bitmask, changed_ep_bitmask); 3535 spin_unlock_irqrestore(&xhci->lock, flags); 3536 3537 /* Issue and wait for the configure endpoint command, 3538 * which must succeed. 3539 */ 3540 ret = xhci_configure_endpoint(xhci, udev, command, 3541 false, true); 3542 3543 /* xHC rejected the configure endpoint command for some reason, so we 3544 * leave the streams rings intact. 3545 */ 3546 if (ret < 0) 3547 return ret; 3548 3549 spin_lock_irqsave(&xhci->lock, flags); 3550 for (i = 0; i < num_eps; i++) { 3551 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3552 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3553 vdev->eps[ep_index].stream_info = NULL; 3554 /* FIXME Unset maxPstreams in endpoint context and 3555 * update deq ptr to point to normal string ring. 3556 */ 3557 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3558 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3559 } 3560 spin_unlock_irqrestore(&xhci->lock, flags); 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * Deletes endpoint resources for endpoints that were active before a Reset 3567 * Device command, or a Disable Slot command. The Reset Device command leaves 3568 * the control endpoint intact, whereas the Disable Slot command deletes it. 3569 * 3570 * Must be called with xhci->lock held. 3571 */ 3572 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3573 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3574 { 3575 int i; 3576 unsigned int num_dropped_eps = 0; 3577 unsigned int drop_flags = 0; 3578 3579 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3580 if (virt_dev->eps[i].ring) { 3581 drop_flags |= 1 << i; 3582 num_dropped_eps++; 3583 } 3584 } 3585 xhci->num_active_eps -= num_dropped_eps; 3586 if (num_dropped_eps) 3587 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3588 "Dropped %u ep ctxs, flags = 0x%x, " 3589 "%u now active.", 3590 num_dropped_eps, drop_flags, 3591 xhci->num_active_eps); 3592 } 3593 3594 /* 3595 * This submits a Reset Device Command, which will set the device state to 0, 3596 * set the device address to 0, and disable all the endpoints except the default 3597 * control endpoint. The USB core should come back and call 3598 * xhci_address_device(), and then re-set up the configuration. If this is 3599 * called because of a usb_reset_and_verify_device(), then the old alternate 3600 * settings will be re-installed through the normal bandwidth allocation 3601 * functions. 3602 * 3603 * Wait for the Reset Device command to finish. Remove all structures 3604 * associated with the endpoints that were disabled. Clear the input device 3605 * structure? Reset the control endpoint 0 max packet size? 3606 * 3607 * If the virt_dev to be reset does not exist or does not match the udev, 3608 * it means the device is lost, possibly due to the xHC restore error and 3609 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3610 * re-allocate the device. 3611 */ 3612 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3613 struct usb_device *udev) 3614 { 3615 int ret, i; 3616 unsigned long flags; 3617 struct xhci_hcd *xhci; 3618 unsigned int slot_id; 3619 struct xhci_virt_device *virt_dev; 3620 struct xhci_command *reset_device_cmd; 3621 struct xhci_slot_ctx *slot_ctx; 3622 int old_active_eps = 0; 3623 3624 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3625 if (ret <= 0) 3626 return ret; 3627 xhci = hcd_to_xhci(hcd); 3628 slot_id = udev->slot_id; 3629 virt_dev = xhci->devs[slot_id]; 3630 if (!virt_dev) { 3631 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3632 "not exist. Re-allocate the device\n", slot_id); 3633 ret = xhci_alloc_dev(hcd, udev); 3634 if (ret == 1) 3635 return 0; 3636 else 3637 return -EINVAL; 3638 } 3639 3640 if (virt_dev->tt_info) 3641 old_active_eps = virt_dev->tt_info->active_eps; 3642 3643 if (virt_dev->udev != udev) { 3644 /* If the virt_dev and the udev does not match, this virt_dev 3645 * may belong to another udev. 3646 * Re-allocate the device. 3647 */ 3648 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3649 "not match the udev. Re-allocate the device\n", 3650 slot_id); 3651 ret = xhci_alloc_dev(hcd, udev); 3652 if (ret == 1) 3653 return 0; 3654 else 3655 return -EINVAL; 3656 } 3657 3658 /* If device is not setup, there is no point in resetting it */ 3659 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3660 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3661 SLOT_STATE_DISABLED) 3662 return 0; 3663 3664 trace_xhci_discover_or_reset_device(slot_ctx); 3665 3666 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3667 /* Allocate the command structure that holds the struct completion. 3668 * Assume we're in process context, since the normal device reset 3669 * process has to wait for the device anyway. Storage devices are 3670 * reset as part of error handling, so use GFP_NOIO instead of 3671 * GFP_KERNEL. 3672 */ 3673 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3674 if (!reset_device_cmd) { 3675 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3676 return -ENOMEM; 3677 } 3678 3679 /* Attempt to submit the Reset Device command to the command ring */ 3680 spin_lock_irqsave(&xhci->lock, flags); 3681 3682 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3683 if (ret) { 3684 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3685 spin_unlock_irqrestore(&xhci->lock, flags); 3686 goto command_cleanup; 3687 } 3688 xhci_ring_cmd_db(xhci); 3689 spin_unlock_irqrestore(&xhci->lock, flags); 3690 3691 /* Wait for the Reset Device command to finish */ 3692 wait_for_completion(reset_device_cmd->completion); 3693 3694 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3695 * unless we tried to reset a slot ID that wasn't enabled, 3696 * or the device wasn't in the addressed or configured state. 3697 */ 3698 ret = reset_device_cmd->status; 3699 switch (ret) { 3700 case COMP_COMMAND_ABORTED: 3701 case COMP_COMMAND_RING_STOPPED: 3702 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3703 ret = -ETIME; 3704 goto command_cleanup; 3705 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3706 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3707 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3708 slot_id, 3709 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3710 xhci_dbg(xhci, "Not freeing device rings.\n"); 3711 /* Don't treat this as an error. May change my mind later. */ 3712 ret = 0; 3713 goto command_cleanup; 3714 case COMP_SUCCESS: 3715 xhci_dbg(xhci, "Successful reset device command.\n"); 3716 break; 3717 default: 3718 if (xhci_is_vendor_info_code(xhci, ret)) 3719 break; 3720 xhci_warn(xhci, "Unknown completion code %u for " 3721 "reset device command.\n", ret); 3722 ret = -EINVAL; 3723 goto command_cleanup; 3724 } 3725 3726 /* Free up host controller endpoint resources */ 3727 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3728 spin_lock_irqsave(&xhci->lock, flags); 3729 /* Don't delete the default control endpoint resources */ 3730 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3731 spin_unlock_irqrestore(&xhci->lock, flags); 3732 } 3733 3734 /* Everything but endpoint 0 is disabled, so free the rings. */ 3735 for (i = 1; i < 31; i++) { 3736 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3737 3738 if (ep->ep_state & EP_HAS_STREAMS) { 3739 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3740 xhci_get_endpoint_address(i)); 3741 xhci_free_stream_info(xhci, ep->stream_info); 3742 ep->stream_info = NULL; 3743 ep->ep_state &= ~EP_HAS_STREAMS; 3744 } 3745 3746 if (ep->ring) { 3747 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3748 xhci_free_endpoint_ring(xhci, virt_dev, i); 3749 } 3750 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3751 xhci_drop_ep_from_interval_table(xhci, 3752 &virt_dev->eps[i].bw_info, 3753 virt_dev->bw_table, 3754 udev, 3755 &virt_dev->eps[i], 3756 virt_dev->tt_info); 3757 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3758 } 3759 /* If necessary, update the number of active TTs on this root port */ 3760 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3761 virt_dev->flags = 0; 3762 ret = 0; 3763 3764 command_cleanup: 3765 xhci_free_command(xhci, reset_device_cmd); 3766 return ret; 3767 } 3768 3769 /* 3770 * At this point, the struct usb_device is about to go away, the device has 3771 * disconnected, and all traffic has been stopped and the endpoints have been 3772 * disabled. Free any HC data structures associated with that device. 3773 */ 3774 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3775 { 3776 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3777 struct xhci_virt_device *virt_dev; 3778 struct xhci_slot_ctx *slot_ctx; 3779 int i, ret; 3780 3781 #ifndef CONFIG_USB_DEFAULT_PERSIST 3782 /* 3783 * We called pm_runtime_get_noresume when the device was attached. 3784 * Decrement the counter here to allow controller to runtime suspend 3785 * if no devices remain. 3786 */ 3787 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3788 pm_runtime_put_noidle(hcd->self.controller); 3789 #endif 3790 3791 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3792 /* If the host is halted due to driver unload, we still need to free the 3793 * device. 3794 */ 3795 if (ret <= 0 && ret != -ENODEV) 3796 return; 3797 3798 virt_dev = xhci->devs[udev->slot_id]; 3799 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3800 trace_xhci_free_dev(slot_ctx); 3801 3802 /* Stop any wayward timer functions (which may grab the lock) */ 3803 for (i = 0; i < 31; i++) { 3804 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3805 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3806 } 3807 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3808 virt_dev->udev = NULL; 3809 ret = xhci_disable_slot(xhci, udev->slot_id); 3810 if (ret) 3811 xhci_free_virt_device(xhci, udev->slot_id); 3812 } 3813 3814 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3815 { 3816 struct xhci_command *command; 3817 unsigned long flags; 3818 u32 state; 3819 int ret = 0; 3820 3821 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3822 if (!command) 3823 return -ENOMEM; 3824 3825 spin_lock_irqsave(&xhci->lock, flags); 3826 /* Don't disable the slot if the host controller is dead. */ 3827 state = readl(&xhci->op_regs->status); 3828 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3829 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3830 spin_unlock_irqrestore(&xhci->lock, flags); 3831 kfree(command); 3832 return -ENODEV; 3833 } 3834 3835 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3836 slot_id); 3837 if (ret) { 3838 spin_unlock_irqrestore(&xhci->lock, flags); 3839 kfree(command); 3840 return ret; 3841 } 3842 xhci_ring_cmd_db(xhci); 3843 spin_unlock_irqrestore(&xhci->lock, flags); 3844 return ret; 3845 } 3846 3847 /* 3848 * Checks if we have enough host controller resources for the default control 3849 * endpoint. 3850 * 3851 * Must be called with xhci->lock held. 3852 */ 3853 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3854 { 3855 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3856 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3857 "Not enough ep ctxs: " 3858 "%u active, need to add 1, limit is %u.", 3859 xhci->num_active_eps, xhci->limit_active_eps); 3860 return -ENOMEM; 3861 } 3862 xhci->num_active_eps += 1; 3863 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3864 "Adding 1 ep ctx, %u now active.", 3865 xhci->num_active_eps); 3866 return 0; 3867 } 3868 3869 3870 /* 3871 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3872 * timed out, or allocating memory failed. Returns 1 on success. 3873 */ 3874 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3875 { 3876 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3877 struct xhci_virt_device *vdev; 3878 struct xhci_slot_ctx *slot_ctx; 3879 unsigned long flags; 3880 int ret, slot_id; 3881 struct xhci_command *command; 3882 3883 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3884 if (!command) 3885 return 0; 3886 3887 spin_lock_irqsave(&xhci->lock, flags); 3888 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3889 if (ret) { 3890 spin_unlock_irqrestore(&xhci->lock, flags); 3891 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3892 xhci_free_command(xhci, command); 3893 return 0; 3894 } 3895 xhci_ring_cmd_db(xhci); 3896 spin_unlock_irqrestore(&xhci->lock, flags); 3897 3898 wait_for_completion(command->completion); 3899 slot_id = command->slot_id; 3900 3901 if (!slot_id || command->status != COMP_SUCCESS) { 3902 xhci_err(xhci, "Error while assigning device slot ID\n"); 3903 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3904 HCS_MAX_SLOTS( 3905 readl(&xhci->cap_regs->hcs_params1))); 3906 xhci_free_command(xhci, command); 3907 return 0; 3908 } 3909 3910 xhci_free_command(xhci, command); 3911 3912 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3913 spin_lock_irqsave(&xhci->lock, flags); 3914 ret = xhci_reserve_host_control_ep_resources(xhci); 3915 if (ret) { 3916 spin_unlock_irqrestore(&xhci->lock, flags); 3917 xhci_warn(xhci, "Not enough host resources, " 3918 "active endpoint contexts = %u\n", 3919 xhci->num_active_eps); 3920 goto disable_slot; 3921 } 3922 spin_unlock_irqrestore(&xhci->lock, flags); 3923 } 3924 /* Use GFP_NOIO, since this function can be called from 3925 * xhci_discover_or_reset_device(), which may be called as part of 3926 * mass storage driver error handling. 3927 */ 3928 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3929 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3930 goto disable_slot; 3931 } 3932 vdev = xhci->devs[slot_id]; 3933 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3934 trace_xhci_alloc_dev(slot_ctx); 3935 3936 udev->slot_id = slot_id; 3937 3938 xhci_debugfs_create_slot(xhci, slot_id); 3939 3940 #ifndef CONFIG_USB_DEFAULT_PERSIST 3941 /* 3942 * If resetting upon resume, we can't put the controller into runtime 3943 * suspend if there is a device attached. 3944 */ 3945 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3946 pm_runtime_get_noresume(hcd->self.controller); 3947 #endif 3948 3949 /* Is this a LS or FS device under a HS hub? */ 3950 /* Hub or peripherial? */ 3951 return 1; 3952 3953 disable_slot: 3954 ret = xhci_disable_slot(xhci, udev->slot_id); 3955 if (ret) 3956 xhci_free_virt_device(xhci, udev->slot_id); 3957 3958 return 0; 3959 } 3960 3961 /* 3962 * Issue an Address Device command and optionally send a corresponding 3963 * SetAddress request to the device. 3964 */ 3965 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3966 enum xhci_setup_dev setup) 3967 { 3968 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3969 unsigned long flags; 3970 struct xhci_virt_device *virt_dev; 3971 int ret = 0; 3972 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3973 struct xhci_slot_ctx *slot_ctx; 3974 struct xhci_input_control_ctx *ctrl_ctx; 3975 u64 temp_64; 3976 struct xhci_command *command = NULL; 3977 3978 mutex_lock(&xhci->mutex); 3979 3980 if (xhci->xhc_state) { /* dying, removing or halted */ 3981 ret = -ESHUTDOWN; 3982 goto out; 3983 } 3984 3985 if (!udev->slot_id) { 3986 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3987 "Bad Slot ID %d", udev->slot_id); 3988 ret = -EINVAL; 3989 goto out; 3990 } 3991 3992 virt_dev = xhci->devs[udev->slot_id]; 3993 3994 if (WARN_ON(!virt_dev)) { 3995 /* 3996 * In plug/unplug torture test with an NEC controller, 3997 * a zero-dereference was observed once due to virt_dev = 0. 3998 * Print useful debug rather than crash if it is observed again! 3999 */ 4000 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4001 udev->slot_id); 4002 ret = -EINVAL; 4003 goto out; 4004 } 4005 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4006 trace_xhci_setup_device_slot(slot_ctx); 4007 4008 if (setup == SETUP_CONTEXT_ONLY) { 4009 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4010 SLOT_STATE_DEFAULT) { 4011 xhci_dbg(xhci, "Slot already in default state\n"); 4012 goto out; 4013 } 4014 } 4015 4016 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4017 if (!command) { 4018 ret = -ENOMEM; 4019 goto out; 4020 } 4021 4022 command->in_ctx = virt_dev->in_ctx; 4023 4024 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4025 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4026 if (!ctrl_ctx) { 4027 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4028 __func__); 4029 ret = -EINVAL; 4030 goto out; 4031 } 4032 /* 4033 * If this is the first Set Address since device plug-in or 4034 * virt_device realloaction after a resume with an xHCI power loss, 4035 * then set up the slot context. 4036 */ 4037 if (!slot_ctx->dev_info) 4038 xhci_setup_addressable_virt_dev(xhci, udev); 4039 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4040 else 4041 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4042 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4043 ctrl_ctx->drop_flags = 0; 4044 4045 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4046 le32_to_cpu(slot_ctx->dev_info) >> 27); 4047 4048 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4049 spin_lock_irqsave(&xhci->lock, flags); 4050 trace_xhci_setup_device(virt_dev); 4051 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4052 udev->slot_id, setup); 4053 if (ret) { 4054 spin_unlock_irqrestore(&xhci->lock, flags); 4055 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4056 "FIXME: allocate a command ring segment"); 4057 goto out; 4058 } 4059 xhci_ring_cmd_db(xhci); 4060 spin_unlock_irqrestore(&xhci->lock, flags); 4061 4062 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4063 wait_for_completion(command->completion); 4064 4065 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4066 * the SetAddress() "recovery interval" required by USB and aborting the 4067 * command on a timeout. 4068 */ 4069 switch (command->status) { 4070 case COMP_COMMAND_ABORTED: 4071 case COMP_COMMAND_RING_STOPPED: 4072 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4073 ret = -ETIME; 4074 break; 4075 case COMP_CONTEXT_STATE_ERROR: 4076 case COMP_SLOT_NOT_ENABLED_ERROR: 4077 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4078 act, udev->slot_id); 4079 ret = -EINVAL; 4080 break; 4081 case COMP_USB_TRANSACTION_ERROR: 4082 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4083 4084 mutex_unlock(&xhci->mutex); 4085 ret = xhci_disable_slot(xhci, udev->slot_id); 4086 if (!ret) 4087 xhci_alloc_dev(hcd, udev); 4088 kfree(command->completion); 4089 kfree(command); 4090 return -EPROTO; 4091 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4092 dev_warn(&udev->dev, 4093 "ERROR: Incompatible device for setup %s command\n", act); 4094 ret = -ENODEV; 4095 break; 4096 case COMP_SUCCESS: 4097 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4098 "Successful setup %s command", act); 4099 break; 4100 default: 4101 xhci_err(xhci, 4102 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4103 act, command->status); 4104 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4105 ret = -EINVAL; 4106 break; 4107 } 4108 if (ret) 4109 goto out; 4110 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4111 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4112 "Op regs DCBAA ptr = %#016llx", temp_64); 4113 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4114 "Slot ID %d dcbaa entry @%p = %#016llx", 4115 udev->slot_id, 4116 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4117 (unsigned long long) 4118 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4119 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4120 "Output Context DMA address = %#08llx", 4121 (unsigned long long)virt_dev->out_ctx->dma); 4122 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4123 le32_to_cpu(slot_ctx->dev_info) >> 27); 4124 /* 4125 * USB core uses address 1 for the roothubs, so we add one to the 4126 * address given back to us by the HC. 4127 */ 4128 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4129 le32_to_cpu(slot_ctx->dev_info) >> 27); 4130 /* Zero the input context control for later use */ 4131 ctrl_ctx->add_flags = 0; 4132 ctrl_ctx->drop_flags = 0; 4133 4134 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4135 "Internal device address = %d", 4136 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4137 out: 4138 mutex_unlock(&xhci->mutex); 4139 if (command) { 4140 kfree(command->completion); 4141 kfree(command); 4142 } 4143 return ret; 4144 } 4145 4146 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4147 { 4148 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4149 } 4150 4151 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4152 { 4153 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4154 } 4155 4156 /* 4157 * Transfer the port index into real index in the HW port status 4158 * registers. Caculate offset between the port's PORTSC register 4159 * and port status base. Divide the number of per port register 4160 * to get the real index. The raw port number bases 1. 4161 */ 4162 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4163 { 4164 struct xhci_hub *rhub; 4165 4166 rhub = xhci_get_rhub(hcd); 4167 return rhub->ports[port1 - 1]->hw_portnum + 1; 4168 } 4169 4170 /* 4171 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4172 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4173 */ 4174 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4175 struct usb_device *udev, u16 max_exit_latency) 4176 { 4177 struct xhci_virt_device *virt_dev; 4178 struct xhci_command *command; 4179 struct xhci_input_control_ctx *ctrl_ctx; 4180 struct xhci_slot_ctx *slot_ctx; 4181 unsigned long flags; 4182 int ret; 4183 4184 spin_lock_irqsave(&xhci->lock, flags); 4185 4186 virt_dev = xhci->devs[udev->slot_id]; 4187 4188 /* 4189 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4190 * xHC was re-initialized. Exit latency will be set later after 4191 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4192 */ 4193 4194 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4195 spin_unlock_irqrestore(&xhci->lock, flags); 4196 return 0; 4197 } 4198 4199 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4200 command = xhci->lpm_command; 4201 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4202 if (!ctrl_ctx) { 4203 spin_unlock_irqrestore(&xhci->lock, flags); 4204 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4205 __func__); 4206 return -ENOMEM; 4207 } 4208 4209 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4210 spin_unlock_irqrestore(&xhci->lock, flags); 4211 4212 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4213 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4214 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4215 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4216 slot_ctx->dev_state = 0; 4217 4218 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4219 "Set up evaluate context for LPM MEL change."); 4220 4221 /* Issue and wait for the evaluate context command. */ 4222 ret = xhci_configure_endpoint(xhci, udev, command, 4223 true, true); 4224 4225 if (!ret) { 4226 spin_lock_irqsave(&xhci->lock, flags); 4227 virt_dev->current_mel = max_exit_latency; 4228 spin_unlock_irqrestore(&xhci->lock, flags); 4229 } 4230 return ret; 4231 } 4232 4233 #ifdef CONFIG_PM 4234 4235 /* BESL to HIRD Encoding array for USB2 LPM */ 4236 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4237 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4238 4239 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4240 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4241 struct usb_device *udev) 4242 { 4243 int u2del, besl, besl_host; 4244 int besl_device = 0; 4245 u32 field; 4246 4247 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4248 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4249 4250 if (field & USB_BESL_SUPPORT) { 4251 for (besl_host = 0; besl_host < 16; besl_host++) { 4252 if (xhci_besl_encoding[besl_host] >= u2del) 4253 break; 4254 } 4255 /* Use baseline BESL value as default */ 4256 if (field & USB_BESL_BASELINE_VALID) 4257 besl_device = USB_GET_BESL_BASELINE(field); 4258 else if (field & USB_BESL_DEEP_VALID) 4259 besl_device = USB_GET_BESL_DEEP(field); 4260 } else { 4261 if (u2del <= 50) 4262 besl_host = 0; 4263 else 4264 besl_host = (u2del - 51) / 75 + 1; 4265 } 4266 4267 besl = besl_host + besl_device; 4268 if (besl > 15) 4269 besl = 15; 4270 4271 return besl; 4272 } 4273 4274 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4275 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4276 { 4277 u32 field; 4278 int l1; 4279 int besld = 0; 4280 int hirdm = 0; 4281 4282 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4283 4284 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4285 l1 = udev->l1_params.timeout / 256; 4286 4287 /* device has preferred BESLD */ 4288 if (field & USB_BESL_DEEP_VALID) { 4289 besld = USB_GET_BESL_DEEP(field); 4290 hirdm = 1; 4291 } 4292 4293 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4294 } 4295 4296 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4297 struct usb_device *udev, int enable) 4298 { 4299 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4300 struct xhci_port **ports; 4301 __le32 __iomem *pm_addr, *hlpm_addr; 4302 u32 pm_val, hlpm_val, field; 4303 unsigned int port_num; 4304 unsigned long flags; 4305 int hird, exit_latency; 4306 int ret; 4307 4308 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4309 !udev->lpm_capable) 4310 return -EPERM; 4311 4312 if (!udev->parent || udev->parent->parent || 4313 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4314 return -EPERM; 4315 4316 if (udev->usb2_hw_lpm_capable != 1) 4317 return -EPERM; 4318 4319 spin_lock_irqsave(&xhci->lock, flags); 4320 4321 ports = xhci->usb2_rhub.ports; 4322 port_num = udev->portnum - 1; 4323 pm_addr = ports[port_num]->addr + PORTPMSC; 4324 pm_val = readl(pm_addr); 4325 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4326 4327 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4328 enable ? "enable" : "disable", port_num + 1); 4329 4330 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4331 /* Host supports BESL timeout instead of HIRD */ 4332 if (udev->usb2_hw_lpm_besl_capable) { 4333 /* if device doesn't have a preferred BESL value use a 4334 * default one which works with mixed HIRD and BESL 4335 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4336 */ 4337 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4338 if ((field & USB_BESL_SUPPORT) && 4339 (field & USB_BESL_BASELINE_VALID)) 4340 hird = USB_GET_BESL_BASELINE(field); 4341 else 4342 hird = udev->l1_params.besl; 4343 4344 exit_latency = xhci_besl_encoding[hird]; 4345 spin_unlock_irqrestore(&xhci->lock, flags); 4346 4347 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4348 * input context for link powermanagement evaluate 4349 * context commands. It is protected by hcd->bandwidth 4350 * mutex and is shared by all devices. We need to set 4351 * the max ext latency in USB 2 BESL LPM as well, so 4352 * use the same mutex and xhci_change_max_exit_latency() 4353 */ 4354 mutex_lock(hcd->bandwidth_mutex); 4355 ret = xhci_change_max_exit_latency(xhci, udev, 4356 exit_latency); 4357 mutex_unlock(hcd->bandwidth_mutex); 4358 4359 if (ret < 0) 4360 return ret; 4361 spin_lock_irqsave(&xhci->lock, flags); 4362 4363 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4364 writel(hlpm_val, hlpm_addr); 4365 /* flush write */ 4366 readl(hlpm_addr); 4367 } else { 4368 hird = xhci_calculate_hird_besl(xhci, udev); 4369 } 4370 4371 pm_val &= ~PORT_HIRD_MASK; 4372 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4373 writel(pm_val, pm_addr); 4374 pm_val = readl(pm_addr); 4375 pm_val |= PORT_HLE; 4376 writel(pm_val, pm_addr); 4377 /* flush write */ 4378 readl(pm_addr); 4379 } else { 4380 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4381 writel(pm_val, pm_addr); 4382 /* flush write */ 4383 readl(pm_addr); 4384 if (udev->usb2_hw_lpm_besl_capable) { 4385 spin_unlock_irqrestore(&xhci->lock, flags); 4386 mutex_lock(hcd->bandwidth_mutex); 4387 xhci_change_max_exit_latency(xhci, udev, 0); 4388 mutex_unlock(hcd->bandwidth_mutex); 4389 return 0; 4390 } 4391 } 4392 4393 spin_unlock_irqrestore(&xhci->lock, flags); 4394 return 0; 4395 } 4396 4397 /* check if a usb2 port supports a given extened capability protocol 4398 * only USB2 ports extended protocol capability values are cached. 4399 * Return 1 if capability is supported 4400 */ 4401 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4402 unsigned capability) 4403 { 4404 u32 port_offset, port_count; 4405 int i; 4406 4407 for (i = 0; i < xhci->num_ext_caps; i++) { 4408 if (xhci->ext_caps[i] & capability) { 4409 /* port offsets starts at 1 */ 4410 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4411 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4412 if (port >= port_offset && 4413 port < port_offset + port_count) 4414 return 1; 4415 } 4416 } 4417 return 0; 4418 } 4419 4420 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4421 { 4422 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4423 int portnum = udev->portnum - 1; 4424 4425 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4426 return 0; 4427 4428 /* we only support lpm for non-hub device connected to root hub yet */ 4429 if (!udev->parent || udev->parent->parent || 4430 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4431 return 0; 4432 4433 if (xhci->hw_lpm_support == 1 && 4434 xhci_check_usb2_port_capability( 4435 xhci, portnum, XHCI_HLC)) { 4436 udev->usb2_hw_lpm_capable = 1; 4437 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4438 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4439 if (xhci_check_usb2_port_capability(xhci, portnum, 4440 XHCI_BLC)) 4441 udev->usb2_hw_lpm_besl_capable = 1; 4442 } 4443 4444 return 0; 4445 } 4446 4447 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4448 4449 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4450 static unsigned long long xhci_service_interval_to_ns( 4451 struct usb_endpoint_descriptor *desc) 4452 { 4453 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4454 } 4455 4456 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4457 enum usb3_link_state state) 4458 { 4459 unsigned long long sel; 4460 unsigned long long pel; 4461 unsigned int max_sel_pel; 4462 char *state_name; 4463 4464 switch (state) { 4465 case USB3_LPM_U1: 4466 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4467 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4468 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4469 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4470 state_name = "U1"; 4471 break; 4472 case USB3_LPM_U2: 4473 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4474 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4475 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4476 state_name = "U2"; 4477 break; 4478 default: 4479 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4480 __func__); 4481 return USB3_LPM_DISABLED; 4482 } 4483 4484 if (sel <= max_sel_pel && pel <= max_sel_pel) 4485 return USB3_LPM_DEVICE_INITIATED; 4486 4487 if (sel > max_sel_pel) 4488 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4489 "due to long SEL %llu ms\n", 4490 state_name, sel); 4491 else 4492 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4493 "due to long PEL %llu ms\n", 4494 state_name, pel); 4495 return USB3_LPM_DISABLED; 4496 } 4497 4498 /* The U1 timeout should be the maximum of the following values: 4499 * - For control endpoints, U1 system exit latency (SEL) * 3 4500 * - For bulk endpoints, U1 SEL * 5 4501 * - For interrupt endpoints: 4502 * - Notification EPs, U1 SEL * 3 4503 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4504 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4505 */ 4506 static unsigned long long xhci_calculate_intel_u1_timeout( 4507 struct usb_device *udev, 4508 struct usb_endpoint_descriptor *desc) 4509 { 4510 unsigned long long timeout_ns; 4511 int ep_type; 4512 int intr_type; 4513 4514 ep_type = usb_endpoint_type(desc); 4515 switch (ep_type) { 4516 case USB_ENDPOINT_XFER_CONTROL: 4517 timeout_ns = udev->u1_params.sel * 3; 4518 break; 4519 case USB_ENDPOINT_XFER_BULK: 4520 timeout_ns = udev->u1_params.sel * 5; 4521 break; 4522 case USB_ENDPOINT_XFER_INT: 4523 intr_type = usb_endpoint_interrupt_type(desc); 4524 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4525 timeout_ns = udev->u1_params.sel * 3; 4526 break; 4527 } 4528 /* Otherwise the calculation is the same as isoc eps */ 4529 /* fall through */ 4530 case USB_ENDPOINT_XFER_ISOC: 4531 timeout_ns = xhci_service_interval_to_ns(desc); 4532 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4533 if (timeout_ns < udev->u1_params.sel * 2) 4534 timeout_ns = udev->u1_params.sel * 2; 4535 break; 4536 default: 4537 return 0; 4538 } 4539 4540 return timeout_ns; 4541 } 4542 4543 /* Returns the hub-encoded U1 timeout value. */ 4544 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4545 struct usb_device *udev, 4546 struct usb_endpoint_descriptor *desc) 4547 { 4548 unsigned long long timeout_ns; 4549 4550 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4551 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4552 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4553 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4554 return USB3_LPM_DISABLED; 4555 } 4556 } 4557 4558 if (xhci->quirks & XHCI_INTEL_HOST) 4559 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4560 else 4561 timeout_ns = udev->u1_params.sel; 4562 4563 /* The U1 timeout is encoded in 1us intervals. 4564 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4565 */ 4566 if (timeout_ns == USB3_LPM_DISABLED) 4567 timeout_ns = 1; 4568 else 4569 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4570 4571 /* If the necessary timeout value is bigger than what we can set in the 4572 * USB 3.0 hub, we have to disable hub-initiated U1. 4573 */ 4574 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4575 return timeout_ns; 4576 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4577 "due to long timeout %llu ms\n", timeout_ns); 4578 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4579 } 4580 4581 /* The U2 timeout should be the maximum of: 4582 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4583 * - largest bInterval of any active periodic endpoint (to avoid going 4584 * into lower power link states between intervals). 4585 * - the U2 Exit Latency of the device 4586 */ 4587 static unsigned long long xhci_calculate_intel_u2_timeout( 4588 struct usb_device *udev, 4589 struct usb_endpoint_descriptor *desc) 4590 { 4591 unsigned long long timeout_ns; 4592 unsigned long long u2_del_ns; 4593 4594 timeout_ns = 10 * 1000 * 1000; 4595 4596 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4597 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4598 timeout_ns = xhci_service_interval_to_ns(desc); 4599 4600 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4601 if (u2_del_ns > timeout_ns) 4602 timeout_ns = u2_del_ns; 4603 4604 return timeout_ns; 4605 } 4606 4607 /* Returns the hub-encoded U2 timeout value. */ 4608 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4609 struct usb_device *udev, 4610 struct usb_endpoint_descriptor *desc) 4611 { 4612 unsigned long long timeout_ns; 4613 4614 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4615 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4616 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4617 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4618 return USB3_LPM_DISABLED; 4619 } 4620 } 4621 4622 if (xhci->quirks & XHCI_INTEL_HOST) 4623 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4624 else 4625 timeout_ns = udev->u2_params.sel; 4626 4627 /* The U2 timeout is encoded in 256us intervals */ 4628 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4629 /* If the necessary timeout value is bigger than what we can set in the 4630 * USB 3.0 hub, we have to disable hub-initiated U2. 4631 */ 4632 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4633 return timeout_ns; 4634 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4635 "due to long timeout %llu ms\n", timeout_ns); 4636 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4637 } 4638 4639 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4640 struct usb_device *udev, 4641 struct usb_endpoint_descriptor *desc, 4642 enum usb3_link_state state, 4643 u16 *timeout) 4644 { 4645 if (state == USB3_LPM_U1) 4646 return xhci_calculate_u1_timeout(xhci, udev, desc); 4647 else if (state == USB3_LPM_U2) 4648 return xhci_calculate_u2_timeout(xhci, udev, desc); 4649 4650 return USB3_LPM_DISABLED; 4651 } 4652 4653 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4654 struct usb_device *udev, 4655 struct usb_endpoint_descriptor *desc, 4656 enum usb3_link_state state, 4657 u16 *timeout) 4658 { 4659 u16 alt_timeout; 4660 4661 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4662 desc, state, timeout); 4663 4664 /* If we found we can't enable hub-initiated LPM, or 4665 * the U1 or U2 exit latency was too high to allow 4666 * device-initiated LPM as well, just stop searching. 4667 */ 4668 if (alt_timeout == USB3_LPM_DISABLED || 4669 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4670 *timeout = alt_timeout; 4671 return -E2BIG; 4672 } 4673 if (alt_timeout > *timeout) 4674 *timeout = alt_timeout; 4675 return 0; 4676 } 4677 4678 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4679 struct usb_device *udev, 4680 struct usb_host_interface *alt, 4681 enum usb3_link_state state, 4682 u16 *timeout) 4683 { 4684 int j; 4685 4686 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4687 if (xhci_update_timeout_for_endpoint(xhci, udev, 4688 &alt->endpoint[j].desc, state, timeout)) 4689 return -E2BIG; 4690 continue; 4691 } 4692 return 0; 4693 } 4694 4695 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4696 enum usb3_link_state state) 4697 { 4698 struct usb_device *parent; 4699 unsigned int num_hubs; 4700 4701 if (state == USB3_LPM_U2) 4702 return 0; 4703 4704 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4705 for (parent = udev->parent, num_hubs = 0; parent->parent; 4706 parent = parent->parent) 4707 num_hubs++; 4708 4709 if (num_hubs < 2) 4710 return 0; 4711 4712 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4713 " below second-tier hub.\n"); 4714 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4715 "to decrease power consumption.\n"); 4716 return -E2BIG; 4717 } 4718 4719 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4720 struct usb_device *udev, 4721 enum usb3_link_state state) 4722 { 4723 if (xhci->quirks & XHCI_INTEL_HOST) 4724 return xhci_check_intel_tier_policy(udev, state); 4725 else 4726 return 0; 4727 } 4728 4729 /* Returns the U1 or U2 timeout that should be enabled. 4730 * If the tier check or timeout setting functions return with a non-zero exit 4731 * code, that means the timeout value has been finalized and we shouldn't look 4732 * at any more endpoints. 4733 */ 4734 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4735 struct usb_device *udev, enum usb3_link_state state) 4736 { 4737 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4738 struct usb_host_config *config; 4739 char *state_name; 4740 int i; 4741 u16 timeout = USB3_LPM_DISABLED; 4742 4743 if (state == USB3_LPM_U1) 4744 state_name = "U1"; 4745 else if (state == USB3_LPM_U2) 4746 state_name = "U2"; 4747 else { 4748 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4749 state); 4750 return timeout; 4751 } 4752 4753 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4754 return timeout; 4755 4756 /* Gather some information about the currently installed configuration 4757 * and alternate interface settings. 4758 */ 4759 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4760 state, &timeout)) 4761 return timeout; 4762 4763 config = udev->actconfig; 4764 if (!config) 4765 return timeout; 4766 4767 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4768 struct usb_driver *driver; 4769 struct usb_interface *intf = config->interface[i]; 4770 4771 if (!intf) 4772 continue; 4773 4774 /* Check if any currently bound drivers want hub-initiated LPM 4775 * disabled. 4776 */ 4777 if (intf->dev.driver) { 4778 driver = to_usb_driver(intf->dev.driver); 4779 if (driver && driver->disable_hub_initiated_lpm) { 4780 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4781 "at request of driver %s\n", 4782 state_name, driver->name); 4783 return xhci_get_timeout_no_hub_lpm(udev, state); 4784 } 4785 } 4786 4787 /* Not sure how this could happen... */ 4788 if (!intf->cur_altsetting) 4789 continue; 4790 4791 if (xhci_update_timeout_for_interface(xhci, udev, 4792 intf->cur_altsetting, 4793 state, &timeout)) 4794 return timeout; 4795 } 4796 return timeout; 4797 } 4798 4799 static int calculate_max_exit_latency(struct usb_device *udev, 4800 enum usb3_link_state state_changed, 4801 u16 hub_encoded_timeout) 4802 { 4803 unsigned long long u1_mel_us = 0; 4804 unsigned long long u2_mel_us = 0; 4805 unsigned long long mel_us = 0; 4806 bool disabling_u1; 4807 bool disabling_u2; 4808 bool enabling_u1; 4809 bool enabling_u2; 4810 4811 disabling_u1 = (state_changed == USB3_LPM_U1 && 4812 hub_encoded_timeout == USB3_LPM_DISABLED); 4813 disabling_u2 = (state_changed == USB3_LPM_U2 && 4814 hub_encoded_timeout == USB3_LPM_DISABLED); 4815 4816 enabling_u1 = (state_changed == USB3_LPM_U1 && 4817 hub_encoded_timeout != USB3_LPM_DISABLED); 4818 enabling_u2 = (state_changed == USB3_LPM_U2 && 4819 hub_encoded_timeout != USB3_LPM_DISABLED); 4820 4821 /* If U1 was already enabled and we're not disabling it, 4822 * or we're going to enable U1, account for the U1 max exit latency. 4823 */ 4824 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4825 enabling_u1) 4826 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4827 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4828 enabling_u2) 4829 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4830 4831 if (u1_mel_us > u2_mel_us) 4832 mel_us = u1_mel_us; 4833 else 4834 mel_us = u2_mel_us; 4835 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4836 if (mel_us > MAX_EXIT) { 4837 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4838 "is too big.\n", mel_us); 4839 return -E2BIG; 4840 } 4841 return mel_us; 4842 } 4843 4844 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4845 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4846 struct usb_device *udev, enum usb3_link_state state) 4847 { 4848 struct xhci_hcd *xhci; 4849 u16 hub_encoded_timeout; 4850 int mel; 4851 int ret; 4852 4853 xhci = hcd_to_xhci(hcd); 4854 /* The LPM timeout values are pretty host-controller specific, so don't 4855 * enable hub-initiated timeouts unless the vendor has provided 4856 * information about their timeout algorithm. 4857 */ 4858 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4859 !xhci->devs[udev->slot_id]) 4860 return USB3_LPM_DISABLED; 4861 4862 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4863 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4864 if (mel < 0) { 4865 /* Max Exit Latency is too big, disable LPM. */ 4866 hub_encoded_timeout = USB3_LPM_DISABLED; 4867 mel = 0; 4868 } 4869 4870 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4871 if (ret) 4872 return ret; 4873 return hub_encoded_timeout; 4874 } 4875 4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4877 struct usb_device *udev, enum usb3_link_state state) 4878 { 4879 struct xhci_hcd *xhci; 4880 u16 mel; 4881 4882 xhci = hcd_to_xhci(hcd); 4883 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4884 !xhci->devs[udev->slot_id]) 4885 return 0; 4886 4887 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4888 return xhci_change_max_exit_latency(xhci, udev, mel); 4889 } 4890 #else /* CONFIG_PM */ 4891 4892 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4893 struct usb_device *udev, int enable) 4894 { 4895 return 0; 4896 } 4897 4898 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4899 { 4900 return 0; 4901 } 4902 4903 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4904 struct usb_device *udev, enum usb3_link_state state) 4905 { 4906 return USB3_LPM_DISABLED; 4907 } 4908 4909 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4910 struct usb_device *udev, enum usb3_link_state state) 4911 { 4912 return 0; 4913 } 4914 #endif /* CONFIG_PM */ 4915 4916 /*-------------------------------------------------------------------------*/ 4917 4918 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4919 * internal data structures for the device. 4920 */ 4921 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4922 struct usb_tt *tt, gfp_t mem_flags) 4923 { 4924 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4925 struct xhci_virt_device *vdev; 4926 struct xhci_command *config_cmd; 4927 struct xhci_input_control_ctx *ctrl_ctx; 4928 struct xhci_slot_ctx *slot_ctx; 4929 unsigned long flags; 4930 unsigned think_time; 4931 int ret; 4932 4933 /* Ignore root hubs */ 4934 if (!hdev->parent) 4935 return 0; 4936 4937 vdev = xhci->devs[hdev->slot_id]; 4938 if (!vdev) { 4939 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4940 return -EINVAL; 4941 } 4942 4943 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4944 if (!config_cmd) 4945 return -ENOMEM; 4946 4947 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4948 if (!ctrl_ctx) { 4949 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4950 __func__); 4951 xhci_free_command(xhci, config_cmd); 4952 return -ENOMEM; 4953 } 4954 4955 spin_lock_irqsave(&xhci->lock, flags); 4956 if (hdev->speed == USB_SPEED_HIGH && 4957 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4958 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4959 xhci_free_command(xhci, config_cmd); 4960 spin_unlock_irqrestore(&xhci->lock, flags); 4961 return -ENOMEM; 4962 } 4963 4964 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4965 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4966 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4967 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4968 /* 4969 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4970 * but it may be already set to 1 when setup an xHCI virtual 4971 * device, so clear it anyway. 4972 */ 4973 if (tt->multi) 4974 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4975 else if (hdev->speed == USB_SPEED_FULL) 4976 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4977 4978 if (xhci->hci_version > 0x95) { 4979 xhci_dbg(xhci, "xHCI version %x needs hub " 4980 "TT think time and number of ports\n", 4981 (unsigned int) xhci->hci_version); 4982 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4983 /* Set TT think time - convert from ns to FS bit times. 4984 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4985 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4986 * 4987 * xHCI 1.0: this field shall be 0 if the device is not a 4988 * High-spped hub. 4989 */ 4990 think_time = tt->think_time; 4991 if (think_time != 0) 4992 think_time = (think_time / 666) - 1; 4993 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4994 slot_ctx->tt_info |= 4995 cpu_to_le32(TT_THINK_TIME(think_time)); 4996 } else { 4997 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4998 "TT think time or number of ports\n", 4999 (unsigned int) xhci->hci_version); 5000 } 5001 slot_ctx->dev_state = 0; 5002 spin_unlock_irqrestore(&xhci->lock, flags); 5003 5004 xhci_dbg(xhci, "Set up %s for hub device.\n", 5005 (xhci->hci_version > 0x95) ? 5006 "configure endpoint" : "evaluate context"); 5007 5008 /* Issue and wait for the configure endpoint or 5009 * evaluate context command. 5010 */ 5011 if (xhci->hci_version > 0x95) 5012 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5013 false, false); 5014 else 5015 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5016 true, false); 5017 5018 xhci_free_command(xhci, config_cmd); 5019 return ret; 5020 } 5021 5022 static int xhci_get_frame(struct usb_hcd *hcd) 5023 { 5024 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5025 /* EHCI mods by the periodic size. Why? */ 5026 return readl(&xhci->run_regs->microframe_index) >> 3; 5027 } 5028 5029 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5030 { 5031 struct xhci_hcd *xhci; 5032 /* 5033 * TODO: Check with DWC3 clients for sysdev according to 5034 * quirks 5035 */ 5036 struct device *dev = hcd->self.sysdev; 5037 unsigned int minor_rev; 5038 int retval; 5039 5040 /* Accept arbitrarily long scatter-gather lists */ 5041 hcd->self.sg_tablesize = ~0; 5042 5043 /* support to build packet from discontinuous buffers */ 5044 hcd->self.no_sg_constraint = 1; 5045 5046 /* XHCI controllers don't stop the ep queue on short packets :| */ 5047 hcd->self.no_stop_on_short = 1; 5048 5049 xhci = hcd_to_xhci(hcd); 5050 5051 if (usb_hcd_is_primary_hcd(hcd)) { 5052 xhci->main_hcd = hcd; 5053 xhci->usb2_rhub.hcd = hcd; 5054 /* Mark the first roothub as being USB 2.0. 5055 * The xHCI driver will register the USB 3.0 roothub. 5056 */ 5057 hcd->speed = HCD_USB2; 5058 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5059 /* 5060 * USB 2.0 roothub under xHCI has an integrated TT, 5061 * (rate matching hub) as opposed to having an OHCI/UHCI 5062 * companion controller. 5063 */ 5064 hcd->has_tt = 1; 5065 } else { 5066 /* 5067 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5068 * minor revision instead of sbrn. Minor revision is a two digit 5069 * BCD containing minor and sub-minor numbers, only show minor. 5070 */ 5071 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5072 5073 switch (minor_rev) { 5074 case 2: 5075 hcd->speed = HCD_USB32; 5076 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5077 hcd->self.root_hub->rx_lanes = 2; 5078 hcd->self.root_hub->tx_lanes = 2; 5079 break; 5080 case 1: 5081 hcd->speed = HCD_USB31; 5082 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5083 break; 5084 } 5085 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5086 minor_rev, 5087 minor_rev ? "Enhanced " : ""); 5088 5089 xhci->usb3_rhub.hcd = hcd; 5090 /* xHCI private pointer was set in xhci_pci_probe for the second 5091 * registered roothub. 5092 */ 5093 return 0; 5094 } 5095 5096 mutex_init(&xhci->mutex); 5097 xhci->cap_regs = hcd->regs; 5098 xhci->op_regs = hcd->regs + 5099 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5100 xhci->run_regs = hcd->regs + 5101 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5102 /* Cache read-only capability registers */ 5103 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5104 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5105 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5106 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5107 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5108 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5109 if (xhci->hci_version > 0x100) 5110 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5111 5112 xhci->quirks |= quirks; 5113 5114 get_quirks(dev, xhci); 5115 5116 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5117 * success event after a short transfer. This quirk will ignore such 5118 * spurious event. 5119 */ 5120 if (xhci->hci_version > 0x96) 5121 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5122 5123 /* Make sure the HC is halted. */ 5124 retval = xhci_halt(xhci); 5125 if (retval) 5126 return retval; 5127 5128 xhci_zero_64b_regs(xhci); 5129 5130 xhci_dbg(xhci, "Resetting HCD\n"); 5131 /* Reset the internal HC memory state and registers. */ 5132 retval = xhci_reset(xhci); 5133 if (retval) 5134 return retval; 5135 xhci_dbg(xhci, "Reset complete\n"); 5136 5137 /* 5138 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5139 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5140 * address memory pointers actually. So, this driver clears the AC64 5141 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5142 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5143 */ 5144 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5145 xhci->hcc_params &= ~BIT(0); 5146 5147 /* Set dma_mask and coherent_dma_mask to 64-bits, 5148 * if xHC supports 64-bit addressing */ 5149 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5150 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5151 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5152 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5153 } else { 5154 /* 5155 * This is to avoid error in cases where a 32-bit USB 5156 * controller is used on a 64-bit capable system. 5157 */ 5158 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5159 if (retval) 5160 return retval; 5161 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5162 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5163 } 5164 5165 xhci_dbg(xhci, "Calling HCD init\n"); 5166 /* Initialize HCD and host controller data structures. */ 5167 retval = xhci_init(hcd); 5168 if (retval) 5169 return retval; 5170 xhci_dbg(xhci, "Called HCD init\n"); 5171 5172 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5173 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5174 5175 return 0; 5176 } 5177 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5178 5179 static const struct hc_driver xhci_hc_driver = { 5180 .description = "xhci-hcd", 5181 .product_desc = "xHCI Host Controller", 5182 .hcd_priv_size = sizeof(struct xhci_hcd), 5183 5184 /* 5185 * generic hardware linkage 5186 */ 5187 .irq = xhci_irq, 5188 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5189 5190 /* 5191 * basic lifecycle operations 5192 */ 5193 .reset = NULL, /* set in xhci_init_driver() */ 5194 .start = xhci_run, 5195 .stop = xhci_stop, 5196 .shutdown = xhci_shutdown, 5197 5198 /* 5199 * managing i/o requests and associated device resources 5200 */ 5201 .map_urb_for_dma = xhci_map_urb_for_dma, 5202 .urb_enqueue = xhci_urb_enqueue, 5203 .urb_dequeue = xhci_urb_dequeue, 5204 .alloc_dev = xhci_alloc_dev, 5205 .free_dev = xhci_free_dev, 5206 .alloc_streams = xhci_alloc_streams, 5207 .free_streams = xhci_free_streams, 5208 .add_endpoint = xhci_add_endpoint, 5209 .drop_endpoint = xhci_drop_endpoint, 5210 .endpoint_reset = xhci_endpoint_reset, 5211 .check_bandwidth = xhci_check_bandwidth, 5212 .reset_bandwidth = xhci_reset_bandwidth, 5213 .address_device = xhci_address_device, 5214 .enable_device = xhci_enable_device, 5215 .update_hub_device = xhci_update_hub_device, 5216 .reset_device = xhci_discover_or_reset_device, 5217 5218 /* 5219 * scheduling support 5220 */ 5221 .get_frame_number = xhci_get_frame, 5222 5223 /* 5224 * root hub support 5225 */ 5226 .hub_control = xhci_hub_control, 5227 .hub_status_data = xhci_hub_status_data, 5228 .bus_suspend = xhci_bus_suspend, 5229 .bus_resume = xhci_bus_resume, 5230 .get_resuming_ports = xhci_get_resuming_ports, 5231 5232 /* 5233 * call back when device connected and addressed 5234 */ 5235 .update_device = xhci_update_device, 5236 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5237 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5238 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5239 .find_raw_port_number = xhci_find_raw_port_number, 5240 }; 5241 5242 void xhci_init_driver(struct hc_driver *drv, 5243 const struct xhci_driver_overrides *over) 5244 { 5245 BUG_ON(!over); 5246 5247 /* Copy the generic table to drv then apply the overrides */ 5248 *drv = xhci_hc_driver; 5249 5250 if (over) { 5251 drv->hcd_priv_size += over->extra_priv_size; 5252 if (over->reset) 5253 drv->reset = over->reset; 5254 if (over->start) 5255 drv->start = over->start; 5256 } 5257 } 5258 EXPORT_SYMBOL_GPL(xhci_init_driver); 5259 5260 MODULE_DESCRIPTION(DRIVER_DESC); 5261 MODULE_AUTHOR(DRIVER_AUTHOR); 5262 MODULE_LICENSE("GPL"); 5263 5264 static int __init xhci_hcd_init(void) 5265 { 5266 /* 5267 * Check the compiler generated sizes of structures that must be laid 5268 * out in specific ways for hardware access. 5269 */ 5270 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5271 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5272 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5273 /* xhci_device_control has eight fields, and also 5274 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5275 */ 5276 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5277 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5278 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5279 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5280 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5281 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5282 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5283 5284 if (usb_disabled()) 5285 return -ENODEV; 5286 5287 xhci_debugfs_create_root(); 5288 5289 return 0; 5290 } 5291 5292 /* 5293 * If an init function is provided, an exit function must also be provided 5294 * to allow module unload. 5295 */ 5296 static void __exit xhci_hcd_fini(void) 5297 { 5298 xhci_debugfs_remove_root(); 5299 } 5300 5301 module_init(xhci_hcd_init); 5302 module_exit(xhci_hcd_fini); 5303