1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41 static int link_quirk; 42 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45 static unsigned int quirks; 46 module_param(quirks, uint, S_IRUGO); 47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 50 /* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 64 { 65 u32 result; 66 67 do { 68 result = readl(ptr); 69 if (result == ~(u32)0) /* card removed */ 70 return -ENODEV; 71 result &= mask; 72 if (result == done) 73 return 0; 74 udelay(1); 75 usec--; 76 } while (usec > 0); 77 return -ETIMEDOUT; 78 } 79 80 /* 81 * Disable interrupts and begin the xHCI halting process. 82 */ 83 void xhci_quiesce(struct xhci_hcd *xhci) 84 { 85 u32 halted; 86 u32 cmd; 87 u32 mask; 88 89 mask = ~(XHCI_IRQS); 90 halted = readl(&xhci->op_regs->status) & STS_HALT; 91 if (!halted) 92 mask &= ~CMD_RUN; 93 94 cmd = readl(&xhci->op_regs->command); 95 cmd &= mask; 96 writel(cmd, &xhci->op_regs->command); 97 } 98 99 /* 100 * Force HC into halt state. 101 * 102 * Disable any IRQs and clear the run/stop bit. 103 * HC will complete any current and actively pipelined transactions, and 104 * should halt within 16 ms of the run/stop bit being cleared. 105 * Read HC Halted bit in the status register to see when the HC is finished. 106 */ 107 int xhci_halt(struct xhci_hcd *xhci) 108 { 109 int ret; 110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 111 xhci_quiesce(xhci); 112 113 ret = xhci_handshake(&xhci->op_regs->status, 114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 115 if (!ret) { 116 xhci->xhc_state |= XHCI_STATE_HALTED; 117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 118 } else 119 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 120 XHCI_MAX_HALT_USEC); 121 return ret; 122 } 123 124 /* 125 * Set the run bit and wait for the host to be running. 126 */ 127 static int xhci_start(struct xhci_hcd *xhci) 128 { 129 u32 temp; 130 int ret; 131 132 temp = readl(&xhci->op_regs->command); 133 temp |= (CMD_RUN); 134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 135 temp); 136 writel(temp, &xhci->op_regs->command); 137 138 /* 139 * Wait for the HCHalted Status bit to be 0 to indicate the host is 140 * running. 141 */ 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, 0, XHCI_MAX_HALT_USEC); 144 if (ret == -ETIMEDOUT) 145 xhci_err(xhci, "Host took too long to start, " 146 "waited %u microseconds.\n", 147 XHCI_MAX_HALT_USEC); 148 if (!ret) 149 xhci->xhc_state &= ~XHCI_STATE_HALTED; 150 return ret; 151 } 152 153 /* 154 * Reset a halted HC. 155 * 156 * This resets pipelines, timers, counters, state machines, etc. 157 * Transactions will be terminated immediately, and operational registers 158 * will be set to their defaults. 159 */ 160 int xhci_reset(struct xhci_hcd *xhci) 161 { 162 u32 command; 163 u32 state; 164 int ret, i; 165 166 state = readl(&xhci->op_regs->status); 167 if ((state & STS_HALT) == 0) { 168 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 169 return 0; 170 } 171 172 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 173 command = readl(&xhci->op_regs->command); 174 command |= CMD_RESET; 175 writel(command, &xhci->op_regs->command); 176 177 ret = xhci_handshake(&xhci->op_regs->command, 178 CMD_RESET, 0, 10 * 1000 * 1000); 179 if (ret) 180 return ret; 181 182 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 183 "Wait for controller to be ready for doorbell rings"); 184 /* 185 * xHCI cannot write to any doorbells or operational registers other 186 * than status until the "Controller Not Ready" flag is cleared. 187 */ 188 ret = xhci_handshake(&xhci->op_regs->status, 189 STS_CNR, 0, 10 * 1000 * 1000); 190 191 for (i = 0; i < 2; ++i) { 192 xhci->bus_state[i].port_c_suspend = 0; 193 xhci->bus_state[i].suspended_ports = 0; 194 xhci->bus_state[i].resuming_ports = 0; 195 } 196 197 return ret; 198 } 199 200 #ifdef CONFIG_PCI 201 static int xhci_free_msi(struct xhci_hcd *xhci) 202 { 203 int i; 204 205 if (!xhci->msix_entries) 206 return -EINVAL; 207 208 for (i = 0; i < xhci->msix_count; i++) 209 if (xhci->msix_entries[i].vector) 210 free_irq(xhci->msix_entries[i].vector, 211 xhci_to_hcd(xhci)); 212 return 0; 213 } 214 215 /* 216 * Set up MSI 217 */ 218 static int xhci_setup_msi(struct xhci_hcd *xhci) 219 { 220 int ret; 221 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 222 223 ret = pci_enable_msi(pdev); 224 if (ret) { 225 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 226 "failed to allocate MSI entry"); 227 return ret; 228 } 229 230 ret = request_irq(pdev->irq, xhci_msi_irq, 231 0, "xhci_hcd", xhci_to_hcd(xhci)); 232 if (ret) { 233 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 234 "disable MSI interrupt"); 235 pci_disable_msi(pdev); 236 } 237 238 return ret; 239 } 240 241 /* 242 * Free IRQs 243 * free all IRQs request 244 */ 245 static void xhci_free_irq(struct xhci_hcd *xhci) 246 { 247 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 248 int ret; 249 250 /* return if using legacy interrupt */ 251 if (xhci_to_hcd(xhci)->irq > 0) 252 return; 253 254 ret = xhci_free_msi(xhci); 255 if (!ret) 256 return; 257 if (pdev->irq > 0) 258 free_irq(pdev->irq, xhci_to_hcd(xhci)); 259 260 return; 261 } 262 263 /* 264 * Set up MSI-X 265 */ 266 static int xhci_setup_msix(struct xhci_hcd *xhci) 267 { 268 int i, ret = 0; 269 struct usb_hcd *hcd = xhci_to_hcd(xhci); 270 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 271 272 /* 273 * calculate number of msi-x vectors supported. 274 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 275 * with max number of interrupters based on the xhci HCSPARAMS1. 276 * - num_online_cpus: maximum msi-x vectors per CPUs core. 277 * Add additional 1 vector to ensure always available interrupt. 278 */ 279 xhci->msix_count = min(num_online_cpus() + 1, 280 HCS_MAX_INTRS(xhci->hcs_params1)); 281 282 xhci->msix_entries = 283 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 284 GFP_KERNEL); 285 if (!xhci->msix_entries) { 286 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 287 return -ENOMEM; 288 } 289 290 for (i = 0; i < xhci->msix_count; i++) { 291 xhci->msix_entries[i].entry = i; 292 xhci->msix_entries[i].vector = 0; 293 } 294 295 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 296 if (ret) { 297 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 298 "Failed to enable MSI-X"); 299 goto free_entries; 300 } 301 302 for (i = 0; i < xhci->msix_count; i++) { 303 ret = request_irq(xhci->msix_entries[i].vector, 304 xhci_msi_irq, 305 0, "xhci_hcd", xhci_to_hcd(xhci)); 306 if (ret) 307 goto disable_msix; 308 } 309 310 hcd->msix_enabled = 1; 311 return ret; 312 313 disable_msix: 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 315 xhci_free_irq(xhci); 316 pci_disable_msix(pdev); 317 free_entries: 318 kfree(xhci->msix_entries); 319 xhci->msix_entries = NULL; 320 return ret; 321 } 322 323 /* Free any IRQs and disable MSI-X */ 324 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 325 { 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 328 329 if (xhci->quirks & XHCI_PLAT) 330 return; 331 332 xhci_free_irq(xhci); 333 334 if (xhci->msix_entries) { 335 pci_disable_msix(pdev); 336 kfree(xhci->msix_entries); 337 xhci->msix_entries = NULL; 338 } else { 339 pci_disable_msi(pdev); 340 } 341 342 hcd->msix_enabled = 0; 343 return; 344 } 345 346 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 347 { 348 int i; 349 350 if (xhci->msix_entries) { 351 for (i = 0; i < xhci->msix_count; i++) 352 synchronize_irq(xhci->msix_entries[i].vector); 353 } 354 } 355 356 static int xhci_try_enable_msi(struct usb_hcd *hcd) 357 { 358 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 359 struct pci_dev *pdev; 360 int ret; 361 362 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 363 if (xhci->quirks & XHCI_PLAT) 364 return 0; 365 366 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 367 /* 368 * Some Fresco Logic host controllers advertise MSI, but fail to 369 * generate interrupts. Don't even try to enable MSI. 370 */ 371 if (xhci->quirks & XHCI_BROKEN_MSI) 372 goto legacy_irq; 373 374 /* unregister the legacy interrupt */ 375 if (hcd->irq) 376 free_irq(hcd->irq, hcd); 377 hcd->irq = 0; 378 379 ret = xhci_setup_msix(xhci); 380 if (ret) 381 /* fall back to msi*/ 382 ret = xhci_setup_msi(xhci); 383 384 if (!ret) 385 /* hcd->irq is 0, we have MSI */ 386 return 0; 387 388 if (!pdev->irq) { 389 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 390 return -EINVAL; 391 } 392 393 legacy_irq: 394 if (!strlen(hcd->irq_descr)) 395 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 396 hcd->driver->description, hcd->self.busnum); 397 398 /* fall back to legacy interrupt*/ 399 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 400 hcd->irq_descr, hcd); 401 if (ret) { 402 xhci_err(xhci, "request interrupt %d failed\n", 403 pdev->irq); 404 return ret; 405 } 406 hcd->irq = pdev->irq; 407 return 0; 408 } 409 410 #else 411 412 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 413 { 414 return 0; 415 } 416 417 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 418 { 419 } 420 421 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 422 { 423 } 424 425 #endif 426 427 static void compliance_mode_recovery(unsigned long arg) 428 { 429 struct xhci_hcd *xhci; 430 struct usb_hcd *hcd; 431 u32 temp; 432 int i; 433 434 xhci = (struct xhci_hcd *)arg; 435 436 for (i = 0; i < xhci->num_usb3_ports; i++) { 437 temp = readl(xhci->usb3_ports[i]); 438 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 439 /* 440 * Compliance Mode Detected. Letting USB Core 441 * handle the Warm Reset 442 */ 443 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 444 "Compliance mode detected->port %d", 445 i + 1); 446 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 447 "Attempting compliance mode recovery"); 448 hcd = xhci->shared_hcd; 449 450 if (hcd->state == HC_STATE_SUSPENDED) 451 usb_hcd_resume_root_hub(hcd); 452 453 usb_hcd_poll_rh_status(hcd); 454 } 455 } 456 457 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 458 mod_timer(&xhci->comp_mode_recovery_timer, 459 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 460 } 461 462 /* 463 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 464 * that causes ports behind that hardware to enter compliance mode sometimes. 465 * The quirk creates a timer that polls every 2 seconds the link state of 466 * each host controller's port and recovers it by issuing a Warm reset 467 * if Compliance mode is detected, otherwise the port will become "dead" (no 468 * device connections or disconnections will be detected anymore). Becasue no 469 * status event is generated when entering compliance mode (per xhci spec), 470 * this quirk is needed on systems that have the failing hardware installed. 471 */ 472 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 473 { 474 xhci->port_status_u0 = 0; 475 setup_timer(&xhci->comp_mode_recovery_timer, 476 compliance_mode_recovery, (unsigned long)xhci); 477 xhci->comp_mode_recovery_timer.expires = jiffies + 478 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 479 480 set_timer_slack(&xhci->comp_mode_recovery_timer, 481 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 482 add_timer(&xhci->comp_mode_recovery_timer); 483 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 484 "Compliance mode recovery timer initialized"); 485 } 486 487 /* 488 * This function identifies the systems that have installed the SN65LVPE502CP 489 * USB3.0 re-driver and that need the Compliance Mode Quirk. 490 * Systems: 491 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 492 */ 493 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 494 { 495 const char *dmi_product_name, *dmi_sys_vendor; 496 497 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 498 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 499 if (!dmi_product_name || !dmi_sys_vendor) 500 return false; 501 502 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 503 return false; 504 505 if (strstr(dmi_product_name, "Z420") || 506 strstr(dmi_product_name, "Z620") || 507 strstr(dmi_product_name, "Z820") || 508 strstr(dmi_product_name, "Z1 Workstation")) 509 return true; 510 511 return false; 512 } 513 514 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 515 { 516 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 517 } 518 519 520 /* 521 * Initialize memory for HCD and xHC (one-time init). 522 * 523 * Program the PAGESIZE register, initialize the device context array, create 524 * device contexts (?), set up a command ring segment (or two?), create event 525 * ring (one for now). 526 */ 527 int xhci_init(struct usb_hcd *hcd) 528 { 529 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 530 int retval = 0; 531 532 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 533 spin_lock_init(&xhci->lock); 534 if (xhci->hci_version == 0x95 && link_quirk) { 535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 536 "QUIRK: Not clearing Link TRB chain bits."); 537 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 538 } else { 539 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 540 "xHCI doesn't need link TRB QUIRK"); 541 } 542 retval = xhci_mem_init(xhci, GFP_KERNEL); 543 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 544 545 /* Initializing Compliance Mode Recovery Data If Needed */ 546 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 547 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 548 compliance_mode_recovery_timer_init(xhci); 549 } 550 551 return retval; 552 } 553 554 /*-------------------------------------------------------------------------*/ 555 556 557 static int xhci_run_finished(struct xhci_hcd *xhci) 558 { 559 if (xhci_start(xhci)) { 560 xhci_halt(xhci); 561 return -ENODEV; 562 } 563 xhci->shared_hcd->state = HC_STATE_RUNNING; 564 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 565 566 if (xhci->quirks & XHCI_NEC_HOST) 567 xhci_ring_cmd_db(xhci); 568 569 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 570 "Finished xhci_run for USB3 roothub"); 571 return 0; 572 } 573 574 /* 575 * Start the HC after it was halted. 576 * 577 * This function is called by the USB core when the HC driver is added. 578 * Its opposite is xhci_stop(). 579 * 580 * xhci_init() must be called once before this function can be called. 581 * Reset the HC, enable device slot contexts, program DCBAAP, and 582 * set command ring pointer and event ring pointer. 583 * 584 * Setup MSI-X vectors and enable interrupts. 585 */ 586 int xhci_run(struct usb_hcd *hcd) 587 { 588 u32 temp; 589 u64 temp_64; 590 int ret; 591 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 592 593 /* Start the xHCI host controller running only after the USB 2.0 roothub 594 * is setup. 595 */ 596 597 hcd->uses_new_polling = 1; 598 if (!usb_hcd_is_primary_hcd(hcd)) 599 return xhci_run_finished(xhci); 600 601 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 602 603 ret = xhci_try_enable_msi(hcd); 604 if (ret) 605 return ret; 606 607 xhci_dbg(xhci, "Command ring memory map follows:\n"); 608 xhci_debug_ring(xhci, xhci->cmd_ring); 609 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 610 xhci_dbg_cmd_ptrs(xhci); 611 612 xhci_dbg(xhci, "ERST memory map follows:\n"); 613 xhci_dbg_erst(xhci, &xhci->erst); 614 xhci_dbg(xhci, "Event ring:\n"); 615 xhci_debug_ring(xhci, xhci->event_ring); 616 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 617 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 618 temp_64 &= ~ERST_PTR_MASK; 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 620 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 621 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "// Set the interrupt modulation register"); 624 temp = readl(&xhci->ir_set->irq_control); 625 temp &= ~ER_IRQ_INTERVAL_MASK; 626 temp |= (u32) 160; 627 writel(temp, &xhci->ir_set->irq_control); 628 629 /* Set the HCD state before we enable the irqs */ 630 temp = readl(&xhci->op_regs->command); 631 temp |= (CMD_EIE); 632 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 633 "// Enable interrupts, cmd = 0x%x.", temp); 634 writel(temp, &xhci->op_regs->command); 635 636 temp = readl(&xhci->ir_set->irq_pending); 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 639 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 640 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 641 xhci_print_ir_set(xhci, 0); 642 643 if (xhci->quirks & XHCI_NEC_HOST) { 644 struct xhci_command *command; 645 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 646 if (!command) 647 return -ENOMEM; 648 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 649 TRB_TYPE(TRB_NEC_GET_FW)); 650 } 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "Finished xhci_run for USB2 roothub"); 653 return 0; 654 } 655 EXPORT_SYMBOL_GPL(xhci_run); 656 657 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 658 { 659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 660 661 spin_lock_irq(&xhci->lock); 662 xhci_halt(xhci); 663 spin_unlock_irq(&xhci->lock); 664 } 665 666 /* 667 * Stop xHCI driver. 668 * 669 * This function is called by the USB core when the HC driver is removed. 670 * Its opposite is xhci_run(). 671 * 672 * Disable device contexts, disable IRQs, and quiesce the HC. 673 * Reset the HC, finish any completed transactions, and cleanup memory. 674 */ 675 void xhci_stop(struct usb_hcd *hcd) 676 { 677 u32 temp; 678 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 679 680 if (!usb_hcd_is_primary_hcd(hcd)) { 681 xhci_only_stop_hcd(xhci->shared_hcd); 682 return; 683 } 684 685 spin_lock_irq(&xhci->lock); 686 /* Make sure the xHC is halted for a USB3 roothub 687 * (xhci_stop() could be called as part of failed init). 688 */ 689 xhci_halt(xhci); 690 xhci_reset(xhci); 691 spin_unlock_irq(&xhci->lock); 692 693 xhci_cleanup_msix(xhci); 694 695 /* Deleting Compliance Mode Recovery Timer */ 696 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 697 (!(xhci_all_ports_seen_u0(xhci)))) { 698 del_timer_sync(&xhci->comp_mode_recovery_timer); 699 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 700 "%s: compliance mode recovery timer deleted", 701 __func__); 702 } 703 704 if (xhci->quirks & XHCI_AMD_PLL_FIX) 705 usb_amd_dev_put(); 706 707 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 708 "// Disabling event ring interrupts"); 709 temp = readl(&xhci->op_regs->status); 710 writel(temp & ~STS_EINT, &xhci->op_regs->status); 711 temp = readl(&xhci->ir_set->irq_pending); 712 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 713 xhci_print_ir_set(xhci, 0); 714 715 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 716 xhci_mem_cleanup(xhci); 717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 718 "xhci_stop completed - status = %x", 719 readl(&xhci->op_regs->status)); 720 } 721 722 /* 723 * Shutdown HC (not bus-specific) 724 * 725 * This is called when the machine is rebooting or halting. We assume that the 726 * machine will be powered off, and the HC's internal state will be reset. 727 * Don't bother to free memory. 728 * 729 * This will only ever be called with the main usb_hcd (the USB3 roothub). 730 */ 731 void xhci_shutdown(struct usb_hcd *hcd) 732 { 733 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 734 735 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 736 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 737 738 spin_lock_irq(&xhci->lock); 739 xhci_halt(xhci); 740 /* Workaround for spurious wakeups at shutdown with HSW */ 741 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 742 xhci_reset(xhci); 743 spin_unlock_irq(&xhci->lock); 744 745 xhci_cleanup_msix(xhci); 746 747 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 748 "xhci_shutdown completed - status = %x", 749 readl(&xhci->op_regs->status)); 750 751 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 752 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 753 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 754 } 755 756 #ifdef CONFIG_PM 757 static void xhci_save_registers(struct xhci_hcd *xhci) 758 { 759 xhci->s3.command = readl(&xhci->op_regs->command); 760 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 761 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 762 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 763 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 764 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 765 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 766 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 767 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 768 } 769 770 static void xhci_restore_registers(struct xhci_hcd *xhci) 771 { 772 writel(xhci->s3.command, &xhci->op_regs->command); 773 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 774 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 775 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 776 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 777 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 778 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 779 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 780 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 781 } 782 783 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 784 { 785 u64 val_64; 786 787 /* step 2: initialize command ring buffer */ 788 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 789 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 790 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 791 xhci->cmd_ring->dequeue) & 792 (u64) ~CMD_RING_RSVD_BITS) | 793 xhci->cmd_ring->cycle_state; 794 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 795 "// Setting command ring address to 0x%llx", 796 (long unsigned long) val_64); 797 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 798 } 799 800 /* 801 * The whole command ring must be cleared to zero when we suspend the host. 802 * 803 * The host doesn't save the command ring pointer in the suspend well, so we 804 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 805 * aligned, because of the reserved bits in the command ring dequeue pointer 806 * register. Therefore, we can't just set the dequeue pointer back in the 807 * middle of the ring (TRBs are 16-byte aligned). 808 */ 809 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 810 { 811 struct xhci_ring *ring; 812 struct xhci_segment *seg; 813 814 ring = xhci->cmd_ring; 815 seg = ring->deq_seg; 816 do { 817 memset(seg->trbs, 0, 818 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 819 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 820 cpu_to_le32(~TRB_CYCLE); 821 seg = seg->next; 822 } while (seg != ring->deq_seg); 823 824 /* Reset the software enqueue and dequeue pointers */ 825 ring->deq_seg = ring->first_seg; 826 ring->dequeue = ring->first_seg->trbs; 827 ring->enq_seg = ring->deq_seg; 828 ring->enqueue = ring->dequeue; 829 830 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 831 /* 832 * Ring is now zeroed, so the HW should look for change of ownership 833 * when the cycle bit is set to 1. 834 */ 835 ring->cycle_state = 1; 836 837 /* 838 * Reset the hardware dequeue pointer. 839 * Yes, this will need to be re-written after resume, but we're paranoid 840 * and want to make sure the hardware doesn't access bogus memory 841 * because, say, the BIOS or an SMI started the host without changing 842 * the command ring pointers. 843 */ 844 xhci_set_cmd_ring_deq(xhci); 845 } 846 847 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 848 { 849 int port_index; 850 __le32 __iomem **port_array; 851 unsigned long flags; 852 u32 t1, t2; 853 854 spin_lock_irqsave(&xhci->lock, flags); 855 856 /* disble usb3 ports Wake bits*/ 857 port_index = xhci->num_usb3_ports; 858 port_array = xhci->usb3_ports; 859 while (port_index--) { 860 t1 = readl(port_array[port_index]); 861 t1 = xhci_port_state_to_neutral(t1); 862 t2 = t1 & ~PORT_WAKE_BITS; 863 if (t1 != t2) 864 writel(t2, port_array[port_index]); 865 } 866 867 /* disble usb2 ports Wake bits*/ 868 port_index = xhci->num_usb2_ports; 869 port_array = xhci->usb2_ports; 870 while (port_index--) { 871 t1 = readl(port_array[port_index]); 872 t1 = xhci_port_state_to_neutral(t1); 873 t2 = t1 & ~PORT_WAKE_BITS; 874 if (t1 != t2) 875 writel(t2, port_array[port_index]); 876 } 877 878 spin_unlock_irqrestore(&xhci->lock, flags); 879 } 880 881 /* 882 * Stop HC (not bus-specific) 883 * 884 * This is called when the machine transition into S3/S4 mode. 885 * 886 */ 887 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 888 { 889 int rc = 0; 890 unsigned int delay = XHCI_MAX_HALT_USEC; 891 struct usb_hcd *hcd = xhci_to_hcd(xhci); 892 u32 command; 893 894 if (!hcd->state) 895 return 0; 896 897 if (hcd->state != HC_STATE_SUSPENDED || 898 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 899 return -EINVAL; 900 901 /* Clear root port wake on bits if wakeup not allowed. */ 902 if (!do_wakeup) 903 xhci_disable_port_wake_on_bits(xhci); 904 905 /* Don't poll the roothubs on bus suspend. */ 906 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 907 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 908 del_timer_sync(&hcd->rh_timer); 909 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 910 del_timer_sync(&xhci->shared_hcd->rh_timer); 911 912 spin_lock_irq(&xhci->lock); 913 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 914 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 915 /* step 1: stop endpoint */ 916 /* skipped assuming that port suspend has done */ 917 918 /* step 2: clear Run/Stop bit */ 919 command = readl(&xhci->op_regs->command); 920 command &= ~CMD_RUN; 921 writel(command, &xhci->op_regs->command); 922 923 /* Some chips from Fresco Logic need an extraordinary delay */ 924 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 925 926 if (xhci_handshake(&xhci->op_regs->status, 927 STS_HALT, STS_HALT, delay)) { 928 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 929 spin_unlock_irq(&xhci->lock); 930 return -ETIMEDOUT; 931 } 932 xhci_clear_command_ring(xhci); 933 934 /* step 3: save registers */ 935 xhci_save_registers(xhci); 936 937 /* step 4: set CSS flag */ 938 command = readl(&xhci->op_regs->command); 939 command |= CMD_CSS; 940 writel(command, &xhci->op_regs->command); 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_SAVE, 0, 10 * 1000)) { 943 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 944 spin_unlock_irq(&xhci->lock); 945 return -ETIMEDOUT; 946 } 947 spin_unlock_irq(&xhci->lock); 948 949 /* 950 * Deleting Compliance Mode Recovery Timer because the xHCI Host 951 * is about to be suspended. 952 */ 953 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 954 (!(xhci_all_ports_seen_u0(xhci)))) { 955 del_timer_sync(&xhci->comp_mode_recovery_timer); 956 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 957 "%s: compliance mode recovery timer deleted", 958 __func__); 959 } 960 961 /* step 5: remove core well power */ 962 /* synchronize irq when using MSI-X */ 963 xhci_msix_sync_irqs(xhci); 964 965 return rc; 966 } 967 EXPORT_SYMBOL_GPL(xhci_suspend); 968 969 /* 970 * start xHC (not bus-specific) 971 * 972 * This is called when the machine transition from S3/S4 mode. 973 * 974 */ 975 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 976 { 977 u32 command, temp = 0, status; 978 struct usb_hcd *hcd = xhci_to_hcd(xhci); 979 struct usb_hcd *secondary_hcd; 980 int retval = 0; 981 bool comp_timer_running = false; 982 983 if (!hcd->state) 984 return 0; 985 986 /* Wait a bit if either of the roothubs need to settle from the 987 * transition into bus suspend. 988 */ 989 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 990 time_before(jiffies, 991 xhci->bus_state[1].next_statechange)) 992 msleep(100); 993 994 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 995 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 996 997 spin_lock_irq(&xhci->lock); 998 if (xhci->quirks & XHCI_RESET_ON_RESUME) 999 hibernated = true; 1000 1001 if (!hibernated) { 1002 /* step 1: restore register */ 1003 xhci_restore_registers(xhci); 1004 /* step 2: initialize command ring buffer */ 1005 xhci_set_cmd_ring_deq(xhci); 1006 /* step 3: restore state and start state*/ 1007 /* step 3: set CRS flag */ 1008 command = readl(&xhci->op_regs->command); 1009 command |= CMD_CRS; 1010 writel(command, &xhci->op_regs->command); 1011 if (xhci_handshake(&xhci->op_regs->status, 1012 STS_RESTORE, 0, 10 * 1000)) { 1013 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1014 spin_unlock_irq(&xhci->lock); 1015 return -ETIMEDOUT; 1016 } 1017 temp = readl(&xhci->op_regs->status); 1018 } 1019 1020 /* If restore operation fails, re-initialize the HC during resume */ 1021 if ((temp & STS_SRE) || hibernated) { 1022 1023 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1024 !(xhci_all_ports_seen_u0(xhci))) { 1025 del_timer_sync(&xhci->comp_mode_recovery_timer); 1026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1027 "Compliance Mode Recovery Timer deleted!"); 1028 } 1029 1030 /* Let the USB core know _both_ roothubs lost power. */ 1031 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1032 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1033 1034 xhci_dbg(xhci, "Stop HCD\n"); 1035 xhci_halt(xhci); 1036 xhci_reset(xhci); 1037 spin_unlock_irq(&xhci->lock); 1038 xhci_cleanup_msix(xhci); 1039 1040 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1041 temp = readl(&xhci->op_regs->status); 1042 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1043 temp = readl(&xhci->ir_set->irq_pending); 1044 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1045 xhci_print_ir_set(xhci, 0); 1046 1047 xhci_dbg(xhci, "cleaning up memory\n"); 1048 xhci_mem_cleanup(xhci); 1049 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1050 readl(&xhci->op_regs->status)); 1051 1052 /* USB core calls the PCI reinit and start functions twice: 1053 * first with the primary HCD, and then with the secondary HCD. 1054 * If we don't do the same, the host will never be started. 1055 */ 1056 if (!usb_hcd_is_primary_hcd(hcd)) 1057 secondary_hcd = hcd; 1058 else 1059 secondary_hcd = xhci->shared_hcd; 1060 1061 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1062 retval = xhci_init(hcd->primary_hcd); 1063 if (retval) 1064 return retval; 1065 comp_timer_running = true; 1066 1067 xhci_dbg(xhci, "Start the primary HCD\n"); 1068 retval = xhci_run(hcd->primary_hcd); 1069 if (!retval) { 1070 xhci_dbg(xhci, "Start the secondary HCD\n"); 1071 retval = xhci_run(secondary_hcd); 1072 } 1073 hcd->state = HC_STATE_SUSPENDED; 1074 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1075 goto done; 1076 } 1077 1078 /* step 4: set Run/Stop bit */ 1079 command = readl(&xhci->op_regs->command); 1080 command |= CMD_RUN; 1081 writel(command, &xhci->op_regs->command); 1082 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1083 0, 250 * 1000); 1084 1085 /* step 5: walk topology and initialize portsc, 1086 * portpmsc and portli 1087 */ 1088 /* this is done in bus_resume */ 1089 1090 /* step 6: restart each of the previously 1091 * Running endpoints by ringing their doorbells 1092 */ 1093 1094 spin_unlock_irq(&xhci->lock); 1095 1096 done: 1097 if (retval == 0) { 1098 /* Resume root hubs only when have pending events. */ 1099 status = readl(&xhci->op_regs->status); 1100 if (status & STS_EINT) { 1101 usb_hcd_resume_root_hub(hcd); 1102 usb_hcd_resume_root_hub(xhci->shared_hcd); 1103 } 1104 } 1105 1106 /* 1107 * If system is subject to the Quirk, Compliance Mode Timer needs to 1108 * be re-initialized Always after a system resume. Ports are subject 1109 * to suffer the Compliance Mode issue again. It doesn't matter if 1110 * ports have entered previously to U0 before system's suspension. 1111 */ 1112 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1113 compliance_mode_recovery_timer_init(xhci); 1114 1115 /* Re-enable port polling. */ 1116 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1117 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1118 usb_hcd_poll_rh_status(hcd); 1119 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1120 usb_hcd_poll_rh_status(xhci->shared_hcd); 1121 1122 return retval; 1123 } 1124 EXPORT_SYMBOL_GPL(xhci_resume); 1125 #endif /* CONFIG_PM */ 1126 1127 /*-------------------------------------------------------------------------*/ 1128 1129 /** 1130 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1131 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1132 * value to right shift 1 for the bitmask. 1133 * 1134 * Index = (epnum * 2) + direction - 1, 1135 * where direction = 0 for OUT, 1 for IN. 1136 * For control endpoints, the IN index is used (OUT index is unused), so 1137 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1138 */ 1139 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1140 { 1141 unsigned int index; 1142 if (usb_endpoint_xfer_control(desc)) 1143 index = (unsigned int) (usb_endpoint_num(desc)*2); 1144 else 1145 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1146 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1147 return index; 1148 } 1149 1150 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1151 * address from the XHCI endpoint index. 1152 */ 1153 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1154 { 1155 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1156 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1157 return direction | number; 1158 } 1159 1160 /* Find the flag for this endpoint (for use in the control context). Use the 1161 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1162 * bit 1, etc. 1163 */ 1164 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1165 { 1166 return 1 << (xhci_get_endpoint_index(desc) + 1); 1167 } 1168 1169 /* Find the flag for this endpoint (for use in the control context). Use the 1170 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1171 * bit 1, etc. 1172 */ 1173 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1174 { 1175 return 1 << (ep_index + 1); 1176 } 1177 1178 /* Compute the last valid endpoint context index. Basically, this is the 1179 * endpoint index plus one. For slot contexts with more than valid endpoint, 1180 * we find the most significant bit set in the added contexts flags. 1181 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1182 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1183 */ 1184 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1185 { 1186 return fls(added_ctxs) - 1; 1187 } 1188 1189 /* Returns 1 if the arguments are OK; 1190 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1191 */ 1192 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1193 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1194 const char *func) { 1195 struct xhci_hcd *xhci; 1196 struct xhci_virt_device *virt_dev; 1197 1198 if (!hcd || (check_ep && !ep) || !udev) { 1199 pr_debug("xHCI %s called with invalid args\n", func); 1200 return -EINVAL; 1201 } 1202 if (!udev->parent) { 1203 pr_debug("xHCI %s called for root hub\n", func); 1204 return 0; 1205 } 1206 1207 xhci = hcd_to_xhci(hcd); 1208 if (check_virt_dev) { 1209 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1210 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1211 func); 1212 return -EINVAL; 1213 } 1214 1215 virt_dev = xhci->devs[udev->slot_id]; 1216 if (virt_dev->udev != udev) { 1217 xhci_dbg(xhci, "xHCI %s called with udev and " 1218 "virt_dev does not match\n", func); 1219 return -EINVAL; 1220 } 1221 } 1222 1223 if (xhci->xhc_state & XHCI_STATE_HALTED) 1224 return -ENODEV; 1225 1226 return 1; 1227 } 1228 1229 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1230 struct usb_device *udev, struct xhci_command *command, 1231 bool ctx_change, bool must_succeed); 1232 1233 /* 1234 * Full speed devices may have a max packet size greater than 8 bytes, but the 1235 * USB core doesn't know that until it reads the first 8 bytes of the 1236 * descriptor. If the usb_device's max packet size changes after that point, 1237 * we need to issue an evaluate context command and wait on it. 1238 */ 1239 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1240 unsigned int ep_index, struct urb *urb) 1241 { 1242 struct xhci_container_ctx *out_ctx; 1243 struct xhci_input_control_ctx *ctrl_ctx; 1244 struct xhci_ep_ctx *ep_ctx; 1245 struct xhci_command *command; 1246 int max_packet_size; 1247 int hw_max_packet_size; 1248 int ret = 0; 1249 1250 out_ctx = xhci->devs[slot_id]->out_ctx; 1251 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1252 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1253 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1254 if (hw_max_packet_size != max_packet_size) { 1255 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1256 "Max Packet Size for ep 0 changed."); 1257 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1258 "Max packet size in usb_device = %d", 1259 max_packet_size); 1260 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1261 "Max packet size in xHCI HW = %d", 1262 hw_max_packet_size); 1263 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1264 "Issuing evaluate context command."); 1265 1266 /* Set up the input context flags for the command */ 1267 /* FIXME: This won't work if a non-default control endpoint 1268 * changes max packet sizes. 1269 */ 1270 1271 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1272 if (!command) 1273 return -ENOMEM; 1274 1275 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1276 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1277 if (!ctrl_ctx) { 1278 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1279 __func__); 1280 ret = -ENOMEM; 1281 goto command_cleanup; 1282 } 1283 /* Set up the modified control endpoint 0 */ 1284 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1285 xhci->devs[slot_id]->out_ctx, ep_index); 1286 1287 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1288 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1289 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1290 1291 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1292 ctrl_ctx->drop_flags = 0; 1293 1294 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1295 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1296 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1297 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1298 1299 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1300 true, false); 1301 1302 /* Clean up the input context for later use by bandwidth 1303 * functions. 1304 */ 1305 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1306 command_cleanup: 1307 kfree(command->completion); 1308 kfree(command); 1309 } 1310 return ret; 1311 } 1312 1313 /* 1314 * non-error returns are a promise to giveback() the urb later 1315 * we drop ownership so next owner (or urb unlink) can get it 1316 */ 1317 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1318 { 1319 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1320 struct xhci_td *buffer; 1321 unsigned long flags; 1322 int ret = 0; 1323 unsigned int slot_id, ep_index; 1324 struct urb_priv *urb_priv; 1325 int size, i; 1326 1327 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1328 true, true, __func__) <= 0) 1329 return -EINVAL; 1330 1331 slot_id = urb->dev->slot_id; 1332 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1333 1334 if (!HCD_HW_ACCESSIBLE(hcd)) { 1335 if (!in_interrupt()) 1336 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1337 ret = -ESHUTDOWN; 1338 goto exit; 1339 } 1340 1341 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1342 size = urb->number_of_packets; 1343 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1344 urb->transfer_buffer_length > 0 && 1345 urb->transfer_flags & URB_ZERO_PACKET && 1346 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1347 size = 2; 1348 else 1349 size = 1; 1350 1351 urb_priv = kzalloc(sizeof(struct urb_priv) + 1352 size * sizeof(struct xhci_td *), mem_flags); 1353 if (!urb_priv) 1354 return -ENOMEM; 1355 1356 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1357 if (!buffer) { 1358 kfree(urb_priv); 1359 return -ENOMEM; 1360 } 1361 1362 for (i = 0; i < size; i++) { 1363 urb_priv->td[i] = buffer; 1364 buffer++; 1365 } 1366 1367 urb_priv->length = size; 1368 urb_priv->td_cnt = 0; 1369 urb->hcpriv = urb_priv; 1370 1371 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1372 /* Check to see if the max packet size for the default control 1373 * endpoint changed during FS device enumeration 1374 */ 1375 if (urb->dev->speed == USB_SPEED_FULL) { 1376 ret = xhci_check_maxpacket(xhci, slot_id, 1377 ep_index, urb); 1378 if (ret < 0) { 1379 xhci_urb_free_priv(urb_priv); 1380 urb->hcpriv = NULL; 1381 return ret; 1382 } 1383 } 1384 1385 /* We have a spinlock and interrupts disabled, so we must pass 1386 * atomic context to this function, which may allocate memory. 1387 */ 1388 spin_lock_irqsave(&xhci->lock, flags); 1389 if (xhci->xhc_state & XHCI_STATE_DYING) 1390 goto dying; 1391 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1392 slot_id, ep_index); 1393 if (ret) 1394 goto free_priv; 1395 spin_unlock_irqrestore(&xhci->lock, flags); 1396 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1397 spin_lock_irqsave(&xhci->lock, flags); 1398 if (xhci->xhc_state & XHCI_STATE_DYING) 1399 goto dying; 1400 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1401 EP_GETTING_STREAMS) { 1402 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1403 "is transitioning to using streams.\n"); 1404 ret = -EINVAL; 1405 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1406 EP_GETTING_NO_STREAMS) { 1407 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1408 "is transitioning to " 1409 "not having streams.\n"); 1410 ret = -EINVAL; 1411 } else { 1412 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1413 slot_id, ep_index); 1414 } 1415 if (ret) 1416 goto free_priv; 1417 spin_unlock_irqrestore(&xhci->lock, flags); 1418 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1419 spin_lock_irqsave(&xhci->lock, flags); 1420 if (xhci->xhc_state & XHCI_STATE_DYING) 1421 goto dying; 1422 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1423 slot_id, ep_index); 1424 if (ret) 1425 goto free_priv; 1426 spin_unlock_irqrestore(&xhci->lock, flags); 1427 } else { 1428 spin_lock_irqsave(&xhci->lock, flags); 1429 if (xhci->xhc_state & XHCI_STATE_DYING) 1430 goto dying; 1431 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1432 slot_id, ep_index); 1433 if (ret) 1434 goto free_priv; 1435 spin_unlock_irqrestore(&xhci->lock, flags); 1436 } 1437 exit: 1438 return ret; 1439 dying: 1440 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1441 "non-responsive xHCI host.\n", 1442 urb->ep->desc.bEndpointAddress, urb); 1443 ret = -ESHUTDOWN; 1444 free_priv: 1445 xhci_urb_free_priv(urb_priv); 1446 urb->hcpriv = NULL; 1447 spin_unlock_irqrestore(&xhci->lock, flags); 1448 return ret; 1449 } 1450 1451 /* Get the right ring for the given URB. 1452 * If the endpoint supports streams, boundary check the URB's stream ID. 1453 * If the endpoint doesn't support streams, return the singular endpoint ring. 1454 */ 1455 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1456 struct urb *urb) 1457 { 1458 unsigned int slot_id; 1459 unsigned int ep_index; 1460 unsigned int stream_id; 1461 struct xhci_virt_ep *ep; 1462 1463 slot_id = urb->dev->slot_id; 1464 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1465 stream_id = urb->stream_id; 1466 ep = &xhci->devs[slot_id]->eps[ep_index]; 1467 /* Common case: no streams */ 1468 if (!(ep->ep_state & EP_HAS_STREAMS)) 1469 return ep->ring; 1470 1471 if (stream_id == 0) { 1472 xhci_warn(xhci, 1473 "WARN: Slot ID %u, ep index %u has streams, " 1474 "but URB has no stream ID.\n", 1475 slot_id, ep_index); 1476 return NULL; 1477 } 1478 1479 if (stream_id < ep->stream_info->num_streams) 1480 return ep->stream_info->stream_rings[stream_id]; 1481 1482 xhci_warn(xhci, 1483 "WARN: Slot ID %u, ep index %u has " 1484 "stream IDs 1 to %u allocated, " 1485 "but stream ID %u is requested.\n", 1486 slot_id, ep_index, 1487 ep->stream_info->num_streams - 1, 1488 stream_id); 1489 return NULL; 1490 } 1491 1492 /* 1493 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1494 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1495 * should pick up where it left off in the TD, unless a Set Transfer Ring 1496 * Dequeue Pointer is issued. 1497 * 1498 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1499 * the ring. Since the ring is a contiguous structure, they can't be physically 1500 * removed. Instead, there are two options: 1501 * 1502 * 1) If the HC is in the middle of processing the URB to be canceled, we 1503 * simply move the ring's dequeue pointer past those TRBs using the Set 1504 * Transfer Ring Dequeue Pointer command. This will be the common case, 1505 * when drivers timeout on the last submitted URB and attempt to cancel. 1506 * 1507 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1508 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1509 * HC will need to invalidate the any TRBs it has cached after the stop 1510 * endpoint command, as noted in the xHCI 0.95 errata. 1511 * 1512 * 3) The TD may have completed by the time the Stop Endpoint Command 1513 * completes, so software needs to handle that case too. 1514 * 1515 * This function should protect against the TD enqueueing code ringing the 1516 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1517 * It also needs to account for multiple cancellations on happening at the same 1518 * time for the same endpoint. 1519 * 1520 * Note that this function can be called in any context, or so says 1521 * usb_hcd_unlink_urb() 1522 */ 1523 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1524 { 1525 unsigned long flags; 1526 int ret, i; 1527 u32 temp; 1528 struct xhci_hcd *xhci; 1529 struct urb_priv *urb_priv; 1530 struct xhci_td *td; 1531 unsigned int ep_index; 1532 struct xhci_ring *ep_ring; 1533 struct xhci_virt_ep *ep; 1534 struct xhci_command *command; 1535 1536 xhci = hcd_to_xhci(hcd); 1537 spin_lock_irqsave(&xhci->lock, flags); 1538 /* Make sure the URB hasn't completed or been unlinked already */ 1539 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1540 if (ret || !urb->hcpriv) 1541 goto done; 1542 temp = readl(&xhci->op_regs->status); 1543 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1544 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1545 "HW died, freeing TD."); 1546 urb_priv = urb->hcpriv; 1547 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1548 td = urb_priv->td[i]; 1549 if (!list_empty(&td->td_list)) 1550 list_del_init(&td->td_list); 1551 if (!list_empty(&td->cancelled_td_list)) 1552 list_del_init(&td->cancelled_td_list); 1553 } 1554 1555 usb_hcd_unlink_urb_from_ep(hcd, urb); 1556 spin_unlock_irqrestore(&xhci->lock, flags); 1557 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1558 xhci_urb_free_priv(urb_priv); 1559 return ret; 1560 } 1561 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1562 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1563 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1564 "Ep 0x%x: URB %p to be canceled on " 1565 "non-responsive xHCI host.", 1566 urb->ep->desc.bEndpointAddress, urb); 1567 /* Let the stop endpoint command watchdog timer (which set this 1568 * state) finish cleaning up the endpoint TD lists. We must 1569 * have caught it in the middle of dropping a lock and giving 1570 * back an URB. 1571 */ 1572 goto done; 1573 } 1574 1575 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1576 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1577 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1578 if (!ep_ring) { 1579 ret = -EINVAL; 1580 goto done; 1581 } 1582 1583 urb_priv = urb->hcpriv; 1584 i = urb_priv->td_cnt; 1585 if (i < urb_priv->length) 1586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1587 "Cancel URB %p, dev %s, ep 0x%x, " 1588 "starting at offset 0x%llx", 1589 urb, urb->dev->devpath, 1590 urb->ep->desc.bEndpointAddress, 1591 (unsigned long long) xhci_trb_virt_to_dma( 1592 urb_priv->td[i]->start_seg, 1593 urb_priv->td[i]->first_trb)); 1594 1595 for (; i < urb_priv->length; i++) { 1596 td = urb_priv->td[i]; 1597 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1598 } 1599 1600 /* Queue a stop endpoint command, but only if this is 1601 * the first cancellation to be handled. 1602 */ 1603 if (!(ep->ep_state & EP_HALT_PENDING)) { 1604 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1605 if (!command) { 1606 ret = -ENOMEM; 1607 goto done; 1608 } 1609 ep->ep_state |= EP_HALT_PENDING; 1610 ep->stop_cmds_pending++; 1611 ep->stop_cmd_timer.expires = jiffies + 1612 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1613 add_timer(&ep->stop_cmd_timer); 1614 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1615 ep_index, 0); 1616 xhci_ring_cmd_db(xhci); 1617 } 1618 done: 1619 spin_unlock_irqrestore(&xhci->lock, flags); 1620 return ret; 1621 } 1622 1623 /* Drop an endpoint from a new bandwidth configuration for this device. 1624 * Only one call to this function is allowed per endpoint before 1625 * check_bandwidth() or reset_bandwidth() must be called. 1626 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1627 * add the endpoint to the schedule with possibly new parameters denoted by a 1628 * different endpoint descriptor in usb_host_endpoint. 1629 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1630 * not allowed. 1631 * 1632 * The USB core will not allow URBs to be queued to an endpoint that is being 1633 * disabled, so there's no need for mutual exclusion to protect 1634 * the xhci->devs[slot_id] structure. 1635 */ 1636 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1637 struct usb_host_endpoint *ep) 1638 { 1639 struct xhci_hcd *xhci; 1640 struct xhci_container_ctx *in_ctx, *out_ctx; 1641 struct xhci_input_control_ctx *ctrl_ctx; 1642 unsigned int ep_index; 1643 struct xhci_ep_ctx *ep_ctx; 1644 u32 drop_flag; 1645 u32 new_add_flags, new_drop_flags; 1646 int ret; 1647 1648 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1649 if (ret <= 0) 1650 return ret; 1651 xhci = hcd_to_xhci(hcd); 1652 if (xhci->xhc_state & XHCI_STATE_DYING) 1653 return -ENODEV; 1654 1655 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1656 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1657 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1658 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1659 __func__, drop_flag); 1660 return 0; 1661 } 1662 1663 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1664 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1665 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1666 if (!ctrl_ctx) { 1667 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1668 __func__); 1669 return 0; 1670 } 1671 1672 ep_index = xhci_get_endpoint_index(&ep->desc); 1673 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1674 /* If the HC already knows the endpoint is disabled, 1675 * or the HCD has noted it is disabled, ignore this request 1676 */ 1677 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1678 cpu_to_le32(EP_STATE_DISABLED)) || 1679 le32_to_cpu(ctrl_ctx->drop_flags) & 1680 xhci_get_endpoint_flag(&ep->desc)) { 1681 /* Do not warn when called after a usb_device_reset */ 1682 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1683 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1684 __func__, ep); 1685 return 0; 1686 } 1687 1688 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1689 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1690 1691 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1692 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1693 1694 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1695 1696 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1697 (unsigned int) ep->desc.bEndpointAddress, 1698 udev->slot_id, 1699 (unsigned int) new_drop_flags, 1700 (unsigned int) new_add_flags); 1701 return 0; 1702 } 1703 1704 /* Add an endpoint to a new possible bandwidth configuration for this device. 1705 * Only one call to this function is allowed per endpoint before 1706 * check_bandwidth() or reset_bandwidth() must be called. 1707 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1708 * add the endpoint to the schedule with possibly new parameters denoted by a 1709 * different endpoint descriptor in usb_host_endpoint. 1710 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1711 * not allowed. 1712 * 1713 * The USB core will not allow URBs to be queued to an endpoint until the 1714 * configuration or alt setting is installed in the device, so there's no need 1715 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1716 */ 1717 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1718 struct usb_host_endpoint *ep) 1719 { 1720 struct xhci_hcd *xhci; 1721 struct xhci_container_ctx *in_ctx; 1722 unsigned int ep_index; 1723 struct xhci_input_control_ctx *ctrl_ctx; 1724 u32 added_ctxs; 1725 u32 new_add_flags, new_drop_flags; 1726 struct xhci_virt_device *virt_dev; 1727 int ret = 0; 1728 1729 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1730 if (ret <= 0) { 1731 /* So we won't queue a reset ep command for a root hub */ 1732 ep->hcpriv = NULL; 1733 return ret; 1734 } 1735 xhci = hcd_to_xhci(hcd); 1736 if (xhci->xhc_state & XHCI_STATE_DYING) 1737 return -ENODEV; 1738 1739 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1740 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1741 /* FIXME when we have to issue an evaluate endpoint command to 1742 * deal with ep0 max packet size changing once we get the 1743 * descriptors 1744 */ 1745 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1746 __func__, added_ctxs); 1747 return 0; 1748 } 1749 1750 virt_dev = xhci->devs[udev->slot_id]; 1751 in_ctx = virt_dev->in_ctx; 1752 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1753 if (!ctrl_ctx) { 1754 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1755 __func__); 1756 return 0; 1757 } 1758 1759 ep_index = xhci_get_endpoint_index(&ep->desc); 1760 /* If this endpoint is already in use, and the upper layers are trying 1761 * to add it again without dropping it, reject the addition. 1762 */ 1763 if (virt_dev->eps[ep_index].ring && 1764 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1765 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1766 "without dropping it.\n", 1767 (unsigned int) ep->desc.bEndpointAddress); 1768 return -EINVAL; 1769 } 1770 1771 /* If the HCD has already noted the endpoint is enabled, 1772 * ignore this request. 1773 */ 1774 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1775 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1776 __func__, ep); 1777 return 0; 1778 } 1779 1780 /* 1781 * Configuration and alternate setting changes must be done in 1782 * process context, not interrupt context (or so documenation 1783 * for usb_set_interface() and usb_set_configuration() claim). 1784 */ 1785 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1786 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1787 __func__, ep->desc.bEndpointAddress); 1788 return -ENOMEM; 1789 } 1790 1791 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1792 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1793 1794 /* If xhci_endpoint_disable() was called for this endpoint, but the 1795 * xHC hasn't been notified yet through the check_bandwidth() call, 1796 * this re-adds a new state for the endpoint from the new endpoint 1797 * descriptors. We must drop and re-add this endpoint, so we leave the 1798 * drop flags alone. 1799 */ 1800 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1801 1802 /* Store the usb_device pointer for later use */ 1803 ep->hcpriv = udev; 1804 1805 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1806 (unsigned int) ep->desc.bEndpointAddress, 1807 udev->slot_id, 1808 (unsigned int) new_drop_flags, 1809 (unsigned int) new_add_flags); 1810 return 0; 1811 } 1812 1813 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1814 { 1815 struct xhci_input_control_ctx *ctrl_ctx; 1816 struct xhci_ep_ctx *ep_ctx; 1817 struct xhci_slot_ctx *slot_ctx; 1818 int i; 1819 1820 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1821 if (!ctrl_ctx) { 1822 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1823 __func__); 1824 return; 1825 } 1826 1827 /* When a device's add flag and drop flag are zero, any subsequent 1828 * configure endpoint command will leave that endpoint's state 1829 * untouched. Make sure we don't leave any old state in the input 1830 * endpoint contexts. 1831 */ 1832 ctrl_ctx->drop_flags = 0; 1833 ctrl_ctx->add_flags = 0; 1834 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1835 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1836 /* Endpoint 0 is always valid */ 1837 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1838 for (i = 1; i < 31; ++i) { 1839 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1840 ep_ctx->ep_info = 0; 1841 ep_ctx->ep_info2 = 0; 1842 ep_ctx->deq = 0; 1843 ep_ctx->tx_info = 0; 1844 } 1845 } 1846 1847 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1848 struct usb_device *udev, u32 *cmd_status) 1849 { 1850 int ret; 1851 1852 switch (*cmd_status) { 1853 case COMP_CMD_ABORT: 1854 case COMP_CMD_STOP: 1855 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1856 ret = -ETIME; 1857 break; 1858 case COMP_ENOMEM: 1859 dev_warn(&udev->dev, 1860 "Not enough host controller resources for new device state.\n"); 1861 ret = -ENOMEM; 1862 /* FIXME: can we allocate more resources for the HC? */ 1863 break; 1864 case COMP_BW_ERR: 1865 case COMP_2ND_BW_ERR: 1866 dev_warn(&udev->dev, 1867 "Not enough bandwidth for new device state.\n"); 1868 ret = -ENOSPC; 1869 /* FIXME: can we go back to the old state? */ 1870 break; 1871 case COMP_TRB_ERR: 1872 /* the HCD set up something wrong */ 1873 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1874 "add flag = 1, " 1875 "and endpoint is not disabled.\n"); 1876 ret = -EINVAL; 1877 break; 1878 case COMP_DEV_ERR: 1879 dev_warn(&udev->dev, 1880 "ERROR: Incompatible device for endpoint configure command.\n"); 1881 ret = -ENODEV; 1882 break; 1883 case COMP_SUCCESS: 1884 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1885 "Successful Endpoint Configure command"); 1886 ret = 0; 1887 break; 1888 default: 1889 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1890 *cmd_status); 1891 ret = -EINVAL; 1892 break; 1893 } 1894 return ret; 1895 } 1896 1897 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1898 struct usb_device *udev, u32 *cmd_status) 1899 { 1900 int ret; 1901 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1902 1903 switch (*cmd_status) { 1904 case COMP_CMD_ABORT: 1905 case COMP_CMD_STOP: 1906 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1907 ret = -ETIME; 1908 break; 1909 case COMP_EINVAL: 1910 dev_warn(&udev->dev, 1911 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1912 ret = -EINVAL; 1913 break; 1914 case COMP_EBADSLT: 1915 dev_warn(&udev->dev, 1916 "WARN: slot not enabled for evaluate context command.\n"); 1917 ret = -EINVAL; 1918 break; 1919 case COMP_CTX_STATE: 1920 dev_warn(&udev->dev, 1921 "WARN: invalid context state for evaluate context command.\n"); 1922 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1923 ret = -EINVAL; 1924 break; 1925 case COMP_DEV_ERR: 1926 dev_warn(&udev->dev, 1927 "ERROR: Incompatible device for evaluate context command.\n"); 1928 ret = -ENODEV; 1929 break; 1930 case COMP_MEL_ERR: 1931 /* Max Exit Latency too large error */ 1932 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1933 ret = -EINVAL; 1934 break; 1935 case COMP_SUCCESS: 1936 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1937 "Successful evaluate context command"); 1938 ret = 0; 1939 break; 1940 default: 1941 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1942 *cmd_status); 1943 ret = -EINVAL; 1944 break; 1945 } 1946 return ret; 1947 } 1948 1949 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1950 struct xhci_input_control_ctx *ctrl_ctx) 1951 { 1952 u32 valid_add_flags; 1953 u32 valid_drop_flags; 1954 1955 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1956 * (bit 1). The default control endpoint is added during the Address 1957 * Device command and is never removed until the slot is disabled. 1958 */ 1959 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1960 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1961 1962 /* Use hweight32 to count the number of ones in the add flags, or 1963 * number of endpoints added. Don't count endpoints that are changed 1964 * (both added and dropped). 1965 */ 1966 return hweight32(valid_add_flags) - 1967 hweight32(valid_add_flags & valid_drop_flags); 1968 } 1969 1970 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1971 struct xhci_input_control_ctx *ctrl_ctx) 1972 { 1973 u32 valid_add_flags; 1974 u32 valid_drop_flags; 1975 1976 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1977 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1978 1979 return hweight32(valid_drop_flags) - 1980 hweight32(valid_add_flags & valid_drop_flags); 1981 } 1982 1983 /* 1984 * We need to reserve the new number of endpoints before the configure endpoint 1985 * command completes. We can't subtract the dropped endpoints from the number 1986 * of active endpoints until the command completes because we can oversubscribe 1987 * the host in this case: 1988 * 1989 * - the first configure endpoint command drops more endpoints than it adds 1990 * - a second configure endpoint command that adds more endpoints is queued 1991 * - the first configure endpoint command fails, so the config is unchanged 1992 * - the second command may succeed, even though there isn't enough resources 1993 * 1994 * Must be called with xhci->lock held. 1995 */ 1996 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1997 struct xhci_input_control_ctx *ctrl_ctx) 1998 { 1999 u32 added_eps; 2000 2001 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2002 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2003 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2004 "Not enough ep ctxs: " 2005 "%u active, need to add %u, limit is %u.", 2006 xhci->num_active_eps, added_eps, 2007 xhci->limit_active_eps); 2008 return -ENOMEM; 2009 } 2010 xhci->num_active_eps += added_eps; 2011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2012 "Adding %u ep ctxs, %u now active.", added_eps, 2013 xhci->num_active_eps); 2014 return 0; 2015 } 2016 2017 /* 2018 * The configure endpoint was failed by the xHC for some other reason, so we 2019 * need to revert the resources that failed configuration would have used. 2020 * 2021 * Must be called with xhci->lock held. 2022 */ 2023 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2024 struct xhci_input_control_ctx *ctrl_ctx) 2025 { 2026 u32 num_failed_eps; 2027 2028 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2029 xhci->num_active_eps -= num_failed_eps; 2030 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2031 "Removing %u failed ep ctxs, %u now active.", 2032 num_failed_eps, 2033 xhci->num_active_eps); 2034 } 2035 2036 /* 2037 * Now that the command has completed, clean up the active endpoint count by 2038 * subtracting out the endpoints that were dropped (but not changed). 2039 * 2040 * Must be called with xhci->lock held. 2041 */ 2042 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2043 struct xhci_input_control_ctx *ctrl_ctx) 2044 { 2045 u32 num_dropped_eps; 2046 2047 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2048 xhci->num_active_eps -= num_dropped_eps; 2049 if (num_dropped_eps) 2050 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2051 "Removing %u dropped ep ctxs, %u now active.", 2052 num_dropped_eps, 2053 xhci->num_active_eps); 2054 } 2055 2056 static unsigned int xhci_get_block_size(struct usb_device *udev) 2057 { 2058 switch (udev->speed) { 2059 case USB_SPEED_LOW: 2060 case USB_SPEED_FULL: 2061 return FS_BLOCK; 2062 case USB_SPEED_HIGH: 2063 return HS_BLOCK; 2064 case USB_SPEED_SUPER: 2065 return SS_BLOCK; 2066 case USB_SPEED_UNKNOWN: 2067 case USB_SPEED_WIRELESS: 2068 default: 2069 /* Should never happen */ 2070 return 1; 2071 } 2072 } 2073 2074 static unsigned int 2075 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2076 { 2077 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2078 return LS_OVERHEAD; 2079 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2080 return FS_OVERHEAD; 2081 return HS_OVERHEAD; 2082 } 2083 2084 /* If we are changing a LS/FS device under a HS hub, 2085 * make sure (if we are activating a new TT) that the HS bus has enough 2086 * bandwidth for this new TT. 2087 */ 2088 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2089 struct xhci_virt_device *virt_dev, 2090 int old_active_eps) 2091 { 2092 struct xhci_interval_bw_table *bw_table; 2093 struct xhci_tt_bw_info *tt_info; 2094 2095 /* Find the bandwidth table for the root port this TT is attached to. */ 2096 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2097 tt_info = virt_dev->tt_info; 2098 /* If this TT already had active endpoints, the bandwidth for this TT 2099 * has already been added. Removing all periodic endpoints (and thus 2100 * making the TT enactive) will only decrease the bandwidth used. 2101 */ 2102 if (old_active_eps) 2103 return 0; 2104 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2105 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2106 return -ENOMEM; 2107 return 0; 2108 } 2109 /* Not sure why we would have no new active endpoints... 2110 * 2111 * Maybe because of an Evaluate Context change for a hub update or a 2112 * control endpoint 0 max packet size change? 2113 * FIXME: skip the bandwidth calculation in that case. 2114 */ 2115 return 0; 2116 } 2117 2118 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2119 struct xhci_virt_device *virt_dev) 2120 { 2121 unsigned int bw_reserved; 2122 2123 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2124 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2125 return -ENOMEM; 2126 2127 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2128 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2129 return -ENOMEM; 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * This algorithm is a very conservative estimate of the worst-case scheduling 2136 * scenario for any one interval. The hardware dynamically schedules the 2137 * packets, so we can't tell which microframe could be the limiting factor in 2138 * the bandwidth scheduling. This only takes into account periodic endpoints. 2139 * 2140 * Obviously, we can't solve an NP complete problem to find the minimum worst 2141 * case scenario. Instead, we come up with an estimate that is no less than 2142 * the worst case bandwidth used for any one microframe, but may be an 2143 * over-estimate. 2144 * 2145 * We walk the requirements for each endpoint by interval, starting with the 2146 * smallest interval, and place packets in the schedule where there is only one 2147 * possible way to schedule packets for that interval. In order to simplify 2148 * this algorithm, we record the largest max packet size for each interval, and 2149 * assume all packets will be that size. 2150 * 2151 * For interval 0, we obviously must schedule all packets for each interval. 2152 * The bandwidth for interval 0 is just the amount of data to be transmitted 2153 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2154 * the number of packets). 2155 * 2156 * For interval 1, we have two possible microframes to schedule those packets 2157 * in. For this algorithm, if we can schedule the same number of packets for 2158 * each possible scheduling opportunity (each microframe), we will do so. The 2159 * remaining number of packets will be saved to be transmitted in the gaps in 2160 * the next interval's scheduling sequence. 2161 * 2162 * As we move those remaining packets to be scheduled with interval 2 packets, 2163 * we have to double the number of remaining packets to transmit. This is 2164 * because the intervals are actually powers of 2, and we would be transmitting 2165 * the previous interval's packets twice in this interval. We also have to be 2166 * sure that when we look at the largest max packet size for this interval, we 2167 * also look at the largest max packet size for the remaining packets and take 2168 * the greater of the two. 2169 * 2170 * The algorithm continues to evenly distribute packets in each scheduling 2171 * opportunity, and push the remaining packets out, until we get to the last 2172 * interval. Then those packets and their associated overhead are just added 2173 * to the bandwidth used. 2174 */ 2175 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2176 struct xhci_virt_device *virt_dev, 2177 int old_active_eps) 2178 { 2179 unsigned int bw_reserved; 2180 unsigned int max_bandwidth; 2181 unsigned int bw_used; 2182 unsigned int block_size; 2183 struct xhci_interval_bw_table *bw_table; 2184 unsigned int packet_size = 0; 2185 unsigned int overhead = 0; 2186 unsigned int packets_transmitted = 0; 2187 unsigned int packets_remaining = 0; 2188 unsigned int i; 2189 2190 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2191 return xhci_check_ss_bw(xhci, virt_dev); 2192 2193 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2194 max_bandwidth = HS_BW_LIMIT; 2195 /* Convert percent of bus BW reserved to blocks reserved */ 2196 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2197 } else { 2198 max_bandwidth = FS_BW_LIMIT; 2199 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2200 } 2201 2202 bw_table = virt_dev->bw_table; 2203 /* We need to translate the max packet size and max ESIT payloads into 2204 * the units the hardware uses. 2205 */ 2206 block_size = xhci_get_block_size(virt_dev->udev); 2207 2208 /* If we are manipulating a LS/FS device under a HS hub, double check 2209 * that the HS bus has enough bandwidth if we are activing a new TT. 2210 */ 2211 if (virt_dev->tt_info) { 2212 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2213 "Recalculating BW for rootport %u", 2214 virt_dev->real_port); 2215 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2216 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2217 "newly activated TT.\n"); 2218 return -ENOMEM; 2219 } 2220 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2221 "Recalculating BW for TT slot %u port %u", 2222 virt_dev->tt_info->slot_id, 2223 virt_dev->tt_info->ttport); 2224 } else { 2225 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2226 "Recalculating BW for rootport %u", 2227 virt_dev->real_port); 2228 } 2229 2230 /* Add in how much bandwidth will be used for interval zero, or the 2231 * rounded max ESIT payload + number of packets * largest overhead. 2232 */ 2233 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2234 bw_table->interval_bw[0].num_packets * 2235 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2236 2237 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2238 unsigned int bw_added; 2239 unsigned int largest_mps; 2240 unsigned int interval_overhead; 2241 2242 /* 2243 * How many packets could we transmit in this interval? 2244 * If packets didn't fit in the previous interval, we will need 2245 * to transmit that many packets twice within this interval. 2246 */ 2247 packets_remaining = 2 * packets_remaining + 2248 bw_table->interval_bw[i].num_packets; 2249 2250 /* Find the largest max packet size of this or the previous 2251 * interval. 2252 */ 2253 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2254 largest_mps = 0; 2255 else { 2256 struct xhci_virt_ep *virt_ep; 2257 struct list_head *ep_entry; 2258 2259 ep_entry = bw_table->interval_bw[i].endpoints.next; 2260 virt_ep = list_entry(ep_entry, 2261 struct xhci_virt_ep, bw_endpoint_list); 2262 /* Convert to blocks, rounding up */ 2263 largest_mps = DIV_ROUND_UP( 2264 virt_ep->bw_info.max_packet_size, 2265 block_size); 2266 } 2267 if (largest_mps > packet_size) 2268 packet_size = largest_mps; 2269 2270 /* Use the larger overhead of this or the previous interval. */ 2271 interval_overhead = xhci_get_largest_overhead( 2272 &bw_table->interval_bw[i]); 2273 if (interval_overhead > overhead) 2274 overhead = interval_overhead; 2275 2276 /* How many packets can we evenly distribute across 2277 * (1 << (i + 1)) possible scheduling opportunities? 2278 */ 2279 packets_transmitted = packets_remaining >> (i + 1); 2280 2281 /* Add in the bandwidth used for those scheduled packets */ 2282 bw_added = packets_transmitted * (overhead + packet_size); 2283 2284 /* How many packets do we have remaining to transmit? */ 2285 packets_remaining = packets_remaining % (1 << (i + 1)); 2286 2287 /* What largest max packet size should those packets have? */ 2288 /* If we've transmitted all packets, don't carry over the 2289 * largest packet size. 2290 */ 2291 if (packets_remaining == 0) { 2292 packet_size = 0; 2293 overhead = 0; 2294 } else if (packets_transmitted > 0) { 2295 /* Otherwise if we do have remaining packets, and we've 2296 * scheduled some packets in this interval, take the 2297 * largest max packet size from endpoints with this 2298 * interval. 2299 */ 2300 packet_size = largest_mps; 2301 overhead = interval_overhead; 2302 } 2303 /* Otherwise carry over packet_size and overhead from the last 2304 * time we had a remainder. 2305 */ 2306 bw_used += bw_added; 2307 if (bw_used > max_bandwidth) { 2308 xhci_warn(xhci, "Not enough bandwidth. " 2309 "Proposed: %u, Max: %u\n", 2310 bw_used, max_bandwidth); 2311 return -ENOMEM; 2312 } 2313 } 2314 /* 2315 * Ok, we know we have some packets left over after even-handedly 2316 * scheduling interval 15. We don't know which microframes they will 2317 * fit into, so we over-schedule and say they will be scheduled every 2318 * microframe. 2319 */ 2320 if (packets_remaining > 0) 2321 bw_used += overhead + packet_size; 2322 2323 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2324 unsigned int port_index = virt_dev->real_port - 1; 2325 2326 /* OK, we're manipulating a HS device attached to a 2327 * root port bandwidth domain. Include the number of active TTs 2328 * in the bandwidth used. 2329 */ 2330 bw_used += TT_HS_OVERHEAD * 2331 xhci->rh_bw[port_index].num_active_tts; 2332 } 2333 2334 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2335 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2336 "Available: %u " "percent", 2337 bw_used, max_bandwidth, bw_reserved, 2338 (max_bandwidth - bw_used - bw_reserved) * 100 / 2339 max_bandwidth); 2340 2341 bw_used += bw_reserved; 2342 if (bw_used > max_bandwidth) { 2343 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2344 bw_used, max_bandwidth); 2345 return -ENOMEM; 2346 } 2347 2348 bw_table->bw_used = bw_used; 2349 return 0; 2350 } 2351 2352 static bool xhci_is_async_ep(unsigned int ep_type) 2353 { 2354 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2355 ep_type != ISOC_IN_EP && 2356 ep_type != INT_IN_EP); 2357 } 2358 2359 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2360 { 2361 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2362 } 2363 2364 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2365 { 2366 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2367 2368 if (ep_bw->ep_interval == 0) 2369 return SS_OVERHEAD_BURST + 2370 (ep_bw->mult * ep_bw->num_packets * 2371 (SS_OVERHEAD + mps)); 2372 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2373 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2374 1 << ep_bw->ep_interval); 2375 2376 } 2377 2378 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2379 struct xhci_bw_info *ep_bw, 2380 struct xhci_interval_bw_table *bw_table, 2381 struct usb_device *udev, 2382 struct xhci_virt_ep *virt_ep, 2383 struct xhci_tt_bw_info *tt_info) 2384 { 2385 struct xhci_interval_bw *interval_bw; 2386 int normalized_interval; 2387 2388 if (xhci_is_async_ep(ep_bw->type)) 2389 return; 2390 2391 if (udev->speed == USB_SPEED_SUPER) { 2392 if (xhci_is_sync_in_ep(ep_bw->type)) 2393 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2394 xhci_get_ss_bw_consumed(ep_bw); 2395 else 2396 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2397 xhci_get_ss_bw_consumed(ep_bw); 2398 return; 2399 } 2400 2401 /* SuperSpeed endpoints never get added to intervals in the table, so 2402 * this check is only valid for HS/FS/LS devices. 2403 */ 2404 if (list_empty(&virt_ep->bw_endpoint_list)) 2405 return; 2406 /* For LS/FS devices, we need to translate the interval expressed in 2407 * microframes to frames. 2408 */ 2409 if (udev->speed == USB_SPEED_HIGH) 2410 normalized_interval = ep_bw->ep_interval; 2411 else 2412 normalized_interval = ep_bw->ep_interval - 3; 2413 2414 if (normalized_interval == 0) 2415 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2416 interval_bw = &bw_table->interval_bw[normalized_interval]; 2417 interval_bw->num_packets -= ep_bw->num_packets; 2418 switch (udev->speed) { 2419 case USB_SPEED_LOW: 2420 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2421 break; 2422 case USB_SPEED_FULL: 2423 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2424 break; 2425 case USB_SPEED_HIGH: 2426 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2427 break; 2428 case USB_SPEED_SUPER: 2429 case USB_SPEED_UNKNOWN: 2430 case USB_SPEED_WIRELESS: 2431 /* Should never happen because only LS/FS/HS endpoints will get 2432 * added to the endpoint list. 2433 */ 2434 return; 2435 } 2436 if (tt_info) 2437 tt_info->active_eps -= 1; 2438 list_del_init(&virt_ep->bw_endpoint_list); 2439 } 2440 2441 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2442 struct xhci_bw_info *ep_bw, 2443 struct xhci_interval_bw_table *bw_table, 2444 struct usb_device *udev, 2445 struct xhci_virt_ep *virt_ep, 2446 struct xhci_tt_bw_info *tt_info) 2447 { 2448 struct xhci_interval_bw *interval_bw; 2449 struct xhci_virt_ep *smaller_ep; 2450 int normalized_interval; 2451 2452 if (xhci_is_async_ep(ep_bw->type)) 2453 return; 2454 2455 if (udev->speed == USB_SPEED_SUPER) { 2456 if (xhci_is_sync_in_ep(ep_bw->type)) 2457 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2458 xhci_get_ss_bw_consumed(ep_bw); 2459 else 2460 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2461 xhci_get_ss_bw_consumed(ep_bw); 2462 return; 2463 } 2464 2465 /* For LS/FS devices, we need to translate the interval expressed in 2466 * microframes to frames. 2467 */ 2468 if (udev->speed == USB_SPEED_HIGH) 2469 normalized_interval = ep_bw->ep_interval; 2470 else 2471 normalized_interval = ep_bw->ep_interval - 3; 2472 2473 if (normalized_interval == 0) 2474 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2475 interval_bw = &bw_table->interval_bw[normalized_interval]; 2476 interval_bw->num_packets += ep_bw->num_packets; 2477 switch (udev->speed) { 2478 case USB_SPEED_LOW: 2479 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2480 break; 2481 case USB_SPEED_FULL: 2482 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2483 break; 2484 case USB_SPEED_HIGH: 2485 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2486 break; 2487 case USB_SPEED_SUPER: 2488 case USB_SPEED_UNKNOWN: 2489 case USB_SPEED_WIRELESS: 2490 /* Should never happen because only LS/FS/HS endpoints will get 2491 * added to the endpoint list. 2492 */ 2493 return; 2494 } 2495 2496 if (tt_info) 2497 tt_info->active_eps += 1; 2498 /* Insert the endpoint into the list, largest max packet size first. */ 2499 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2500 bw_endpoint_list) { 2501 if (ep_bw->max_packet_size >= 2502 smaller_ep->bw_info.max_packet_size) { 2503 /* Add the new ep before the smaller endpoint */ 2504 list_add_tail(&virt_ep->bw_endpoint_list, 2505 &smaller_ep->bw_endpoint_list); 2506 return; 2507 } 2508 } 2509 /* Add the new endpoint at the end of the list. */ 2510 list_add_tail(&virt_ep->bw_endpoint_list, 2511 &interval_bw->endpoints); 2512 } 2513 2514 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2515 struct xhci_virt_device *virt_dev, 2516 int old_active_eps) 2517 { 2518 struct xhci_root_port_bw_info *rh_bw_info; 2519 if (!virt_dev->tt_info) 2520 return; 2521 2522 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2523 if (old_active_eps == 0 && 2524 virt_dev->tt_info->active_eps != 0) { 2525 rh_bw_info->num_active_tts += 1; 2526 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2527 } else if (old_active_eps != 0 && 2528 virt_dev->tt_info->active_eps == 0) { 2529 rh_bw_info->num_active_tts -= 1; 2530 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2531 } 2532 } 2533 2534 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2535 struct xhci_virt_device *virt_dev, 2536 struct xhci_container_ctx *in_ctx) 2537 { 2538 struct xhci_bw_info ep_bw_info[31]; 2539 int i; 2540 struct xhci_input_control_ctx *ctrl_ctx; 2541 int old_active_eps = 0; 2542 2543 if (virt_dev->tt_info) 2544 old_active_eps = virt_dev->tt_info->active_eps; 2545 2546 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2547 if (!ctrl_ctx) { 2548 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2549 __func__); 2550 return -ENOMEM; 2551 } 2552 2553 for (i = 0; i < 31; i++) { 2554 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2555 continue; 2556 2557 /* Make a copy of the BW info in case we need to revert this */ 2558 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2559 sizeof(ep_bw_info[i])); 2560 /* Drop the endpoint from the interval table if the endpoint is 2561 * being dropped or changed. 2562 */ 2563 if (EP_IS_DROPPED(ctrl_ctx, i)) 2564 xhci_drop_ep_from_interval_table(xhci, 2565 &virt_dev->eps[i].bw_info, 2566 virt_dev->bw_table, 2567 virt_dev->udev, 2568 &virt_dev->eps[i], 2569 virt_dev->tt_info); 2570 } 2571 /* Overwrite the information stored in the endpoints' bw_info */ 2572 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2573 for (i = 0; i < 31; i++) { 2574 /* Add any changed or added endpoints to the interval table */ 2575 if (EP_IS_ADDED(ctrl_ctx, i)) 2576 xhci_add_ep_to_interval_table(xhci, 2577 &virt_dev->eps[i].bw_info, 2578 virt_dev->bw_table, 2579 virt_dev->udev, 2580 &virt_dev->eps[i], 2581 virt_dev->tt_info); 2582 } 2583 2584 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2585 /* Ok, this fits in the bandwidth we have. 2586 * Update the number of active TTs. 2587 */ 2588 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2589 return 0; 2590 } 2591 2592 /* We don't have enough bandwidth for this, revert the stored info. */ 2593 for (i = 0; i < 31; i++) { 2594 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2595 continue; 2596 2597 /* Drop the new copies of any added or changed endpoints from 2598 * the interval table. 2599 */ 2600 if (EP_IS_ADDED(ctrl_ctx, i)) { 2601 xhci_drop_ep_from_interval_table(xhci, 2602 &virt_dev->eps[i].bw_info, 2603 virt_dev->bw_table, 2604 virt_dev->udev, 2605 &virt_dev->eps[i], 2606 virt_dev->tt_info); 2607 } 2608 /* Revert the endpoint back to its old information */ 2609 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2610 sizeof(ep_bw_info[i])); 2611 /* Add any changed or dropped endpoints back into the table */ 2612 if (EP_IS_DROPPED(ctrl_ctx, i)) 2613 xhci_add_ep_to_interval_table(xhci, 2614 &virt_dev->eps[i].bw_info, 2615 virt_dev->bw_table, 2616 virt_dev->udev, 2617 &virt_dev->eps[i], 2618 virt_dev->tt_info); 2619 } 2620 return -ENOMEM; 2621 } 2622 2623 2624 /* Issue a configure endpoint command or evaluate context command 2625 * and wait for it to finish. 2626 */ 2627 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2628 struct usb_device *udev, 2629 struct xhci_command *command, 2630 bool ctx_change, bool must_succeed) 2631 { 2632 int ret; 2633 unsigned long flags; 2634 struct xhci_input_control_ctx *ctrl_ctx; 2635 struct xhci_virt_device *virt_dev; 2636 2637 if (!command) 2638 return -EINVAL; 2639 2640 spin_lock_irqsave(&xhci->lock, flags); 2641 virt_dev = xhci->devs[udev->slot_id]; 2642 2643 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2644 if (!ctrl_ctx) { 2645 spin_unlock_irqrestore(&xhci->lock, flags); 2646 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2647 __func__); 2648 return -ENOMEM; 2649 } 2650 2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2652 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2653 spin_unlock_irqrestore(&xhci->lock, flags); 2654 xhci_warn(xhci, "Not enough host resources, " 2655 "active endpoint contexts = %u\n", 2656 xhci->num_active_eps); 2657 return -ENOMEM; 2658 } 2659 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2660 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2661 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2662 xhci_free_host_resources(xhci, ctrl_ctx); 2663 spin_unlock_irqrestore(&xhci->lock, flags); 2664 xhci_warn(xhci, "Not enough bandwidth\n"); 2665 return -ENOMEM; 2666 } 2667 2668 if (!ctx_change) 2669 ret = xhci_queue_configure_endpoint(xhci, command, 2670 command->in_ctx->dma, 2671 udev->slot_id, must_succeed); 2672 else 2673 ret = xhci_queue_evaluate_context(xhci, command, 2674 command->in_ctx->dma, 2675 udev->slot_id, must_succeed); 2676 if (ret < 0) { 2677 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2678 xhci_free_host_resources(xhci, ctrl_ctx); 2679 spin_unlock_irqrestore(&xhci->lock, flags); 2680 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2681 "FIXME allocate a new ring segment"); 2682 return -ENOMEM; 2683 } 2684 xhci_ring_cmd_db(xhci); 2685 spin_unlock_irqrestore(&xhci->lock, flags); 2686 2687 /* Wait for the configure endpoint command to complete */ 2688 wait_for_completion(command->completion); 2689 2690 if (!ctx_change) 2691 ret = xhci_configure_endpoint_result(xhci, udev, 2692 &command->status); 2693 else 2694 ret = xhci_evaluate_context_result(xhci, udev, 2695 &command->status); 2696 2697 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2698 spin_lock_irqsave(&xhci->lock, flags); 2699 /* If the command failed, remove the reserved resources. 2700 * Otherwise, clean up the estimate to include dropped eps. 2701 */ 2702 if (ret) 2703 xhci_free_host_resources(xhci, ctrl_ctx); 2704 else 2705 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2706 spin_unlock_irqrestore(&xhci->lock, flags); 2707 } 2708 return ret; 2709 } 2710 2711 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2712 struct xhci_virt_device *vdev, int i) 2713 { 2714 struct xhci_virt_ep *ep = &vdev->eps[i]; 2715 2716 if (ep->ep_state & EP_HAS_STREAMS) { 2717 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2718 xhci_get_endpoint_address(i)); 2719 xhci_free_stream_info(xhci, ep->stream_info); 2720 ep->stream_info = NULL; 2721 ep->ep_state &= ~EP_HAS_STREAMS; 2722 } 2723 } 2724 2725 /* Called after one or more calls to xhci_add_endpoint() or 2726 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2727 * to call xhci_reset_bandwidth(). 2728 * 2729 * Since we are in the middle of changing either configuration or 2730 * installing a new alt setting, the USB core won't allow URBs to be 2731 * enqueued for any endpoint on the old config or interface. Nothing 2732 * else should be touching the xhci->devs[slot_id] structure, so we 2733 * don't need to take the xhci->lock for manipulating that. 2734 */ 2735 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2736 { 2737 int i; 2738 int ret = 0; 2739 struct xhci_hcd *xhci; 2740 struct xhci_virt_device *virt_dev; 2741 struct xhci_input_control_ctx *ctrl_ctx; 2742 struct xhci_slot_ctx *slot_ctx; 2743 struct xhci_command *command; 2744 2745 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2746 if (ret <= 0) 2747 return ret; 2748 xhci = hcd_to_xhci(hcd); 2749 if (xhci->xhc_state & XHCI_STATE_DYING) 2750 return -ENODEV; 2751 2752 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2753 virt_dev = xhci->devs[udev->slot_id]; 2754 2755 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2756 if (!command) 2757 return -ENOMEM; 2758 2759 command->in_ctx = virt_dev->in_ctx; 2760 2761 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2762 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2763 if (!ctrl_ctx) { 2764 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2765 __func__); 2766 ret = -ENOMEM; 2767 goto command_cleanup; 2768 } 2769 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2770 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2771 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2772 2773 /* Don't issue the command if there's no endpoints to update. */ 2774 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2775 ctrl_ctx->drop_flags == 0) { 2776 ret = 0; 2777 goto command_cleanup; 2778 } 2779 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2780 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2781 for (i = 31; i >= 1; i--) { 2782 __le32 le32 = cpu_to_le32(BIT(i)); 2783 2784 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2785 || (ctrl_ctx->add_flags & le32) || i == 1) { 2786 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2787 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2788 break; 2789 } 2790 } 2791 xhci_dbg(xhci, "New Input Control Context:\n"); 2792 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2793 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2794 2795 ret = xhci_configure_endpoint(xhci, udev, command, 2796 false, false); 2797 if (ret) 2798 /* Callee should call reset_bandwidth() */ 2799 goto command_cleanup; 2800 2801 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2802 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2803 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2804 2805 /* Free any rings that were dropped, but not changed. */ 2806 for (i = 1; i < 31; ++i) { 2807 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2808 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2809 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2810 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2811 } 2812 } 2813 xhci_zero_in_ctx(xhci, virt_dev); 2814 /* 2815 * Install any rings for completely new endpoints or changed endpoints, 2816 * and free or cache any old rings from changed endpoints. 2817 */ 2818 for (i = 1; i < 31; ++i) { 2819 if (!virt_dev->eps[i].new_ring) 2820 continue; 2821 /* Only cache or free the old ring if it exists. 2822 * It may not if this is the first add of an endpoint. 2823 */ 2824 if (virt_dev->eps[i].ring) { 2825 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2826 } 2827 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2828 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2829 virt_dev->eps[i].new_ring = NULL; 2830 } 2831 command_cleanup: 2832 kfree(command->completion); 2833 kfree(command); 2834 2835 return ret; 2836 } 2837 2838 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2839 { 2840 struct xhci_hcd *xhci; 2841 struct xhci_virt_device *virt_dev; 2842 int i, ret; 2843 2844 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2845 if (ret <= 0) 2846 return; 2847 xhci = hcd_to_xhci(hcd); 2848 2849 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2850 virt_dev = xhci->devs[udev->slot_id]; 2851 /* Free any rings allocated for added endpoints */ 2852 for (i = 0; i < 31; ++i) { 2853 if (virt_dev->eps[i].new_ring) { 2854 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2855 virt_dev->eps[i].new_ring = NULL; 2856 } 2857 } 2858 xhci_zero_in_ctx(xhci, virt_dev); 2859 } 2860 2861 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2862 struct xhci_container_ctx *in_ctx, 2863 struct xhci_container_ctx *out_ctx, 2864 struct xhci_input_control_ctx *ctrl_ctx, 2865 u32 add_flags, u32 drop_flags) 2866 { 2867 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2868 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2869 xhci_slot_copy(xhci, in_ctx, out_ctx); 2870 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2871 2872 xhci_dbg(xhci, "Input Context:\n"); 2873 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2874 } 2875 2876 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2877 unsigned int slot_id, unsigned int ep_index, 2878 struct xhci_dequeue_state *deq_state) 2879 { 2880 struct xhci_input_control_ctx *ctrl_ctx; 2881 struct xhci_container_ctx *in_ctx; 2882 struct xhci_ep_ctx *ep_ctx; 2883 u32 added_ctxs; 2884 dma_addr_t addr; 2885 2886 in_ctx = xhci->devs[slot_id]->in_ctx; 2887 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2888 if (!ctrl_ctx) { 2889 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2890 __func__); 2891 return; 2892 } 2893 2894 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2895 xhci->devs[slot_id]->out_ctx, ep_index); 2896 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2897 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2898 deq_state->new_deq_ptr); 2899 if (addr == 0) { 2900 xhci_warn(xhci, "WARN Cannot submit config ep after " 2901 "reset ep command\n"); 2902 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2903 deq_state->new_deq_seg, 2904 deq_state->new_deq_ptr); 2905 return; 2906 } 2907 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2908 2909 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2910 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2911 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2912 added_ctxs, added_ctxs); 2913 } 2914 2915 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2916 unsigned int ep_index, struct xhci_td *td) 2917 { 2918 struct xhci_dequeue_state deq_state; 2919 struct xhci_virt_ep *ep; 2920 struct usb_device *udev = td->urb->dev; 2921 2922 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2923 "Cleaning up stalled endpoint ring"); 2924 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2925 /* We need to move the HW's dequeue pointer past this TD, 2926 * or it will attempt to resend it on the next doorbell ring. 2927 */ 2928 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2929 ep_index, ep->stopped_stream, td, &deq_state); 2930 2931 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2932 return; 2933 2934 /* HW with the reset endpoint quirk will use the saved dequeue state to 2935 * issue a configure endpoint command later. 2936 */ 2937 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2938 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2939 "Queueing new dequeue state"); 2940 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2941 ep_index, ep->stopped_stream, &deq_state); 2942 } else { 2943 /* Better hope no one uses the input context between now and the 2944 * reset endpoint completion! 2945 * XXX: No idea how this hardware will react when stream rings 2946 * are enabled. 2947 */ 2948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2949 "Setting up input context for " 2950 "configure endpoint command"); 2951 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2952 ep_index, &deq_state); 2953 } 2954 } 2955 2956 /* Called when clearing halted device. The core should have sent the control 2957 * message to clear the device halt condition. The host side of the halt should 2958 * already be cleared with a reset endpoint command issued when the STALL tx 2959 * event was received. 2960 * 2961 * Context: in_interrupt 2962 */ 2963 2964 void xhci_endpoint_reset(struct usb_hcd *hcd, 2965 struct usb_host_endpoint *ep) 2966 { 2967 struct xhci_hcd *xhci; 2968 2969 xhci = hcd_to_xhci(hcd); 2970 2971 /* 2972 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2973 * The Reset Endpoint Command may only be issued to endpoints in the 2974 * Halted state. If software wishes reset the Data Toggle or Sequence 2975 * Number of an endpoint that isn't in the Halted state, then software 2976 * may issue a Configure Endpoint Command with the Drop and Add bits set 2977 * for the target endpoint. that is in the Stopped state. 2978 */ 2979 2980 /* For now just print debug to follow the situation */ 2981 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2982 ep->desc.bEndpointAddress); 2983 } 2984 2985 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2986 struct usb_device *udev, struct usb_host_endpoint *ep, 2987 unsigned int slot_id) 2988 { 2989 int ret; 2990 unsigned int ep_index; 2991 unsigned int ep_state; 2992 2993 if (!ep) 2994 return -EINVAL; 2995 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2996 if (ret <= 0) 2997 return -EINVAL; 2998 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2999 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3000 " descriptor for ep 0x%x does not support streams\n", 3001 ep->desc.bEndpointAddress); 3002 return -EINVAL; 3003 } 3004 3005 ep_index = xhci_get_endpoint_index(&ep->desc); 3006 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3007 if (ep_state & EP_HAS_STREAMS || 3008 ep_state & EP_GETTING_STREAMS) { 3009 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3010 "already has streams set up.\n", 3011 ep->desc.bEndpointAddress); 3012 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3013 "dynamic stream context array reallocation.\n"); 3014 return -EINVAL; 3015 } 3016 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3017 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3018 "endpoint 0x%x; URBs are pending.\n", 3019 ep->desc.bEndpointAddress); 3020 return -EINVAL; 3021 } 3022 return 0; 3023 } 3024 3025 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3026 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3027 { 3028 unsigned int max_streams; 3029 3030 /* The stream context array size must be a power of two */ 3031 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3032 /* 3033 * Find out how many primary stream array entries the host controller 3034 * supports. Later we may use secondary stream arrays (similar to 2nd 3035 * level page entries), but that's an optional feature for xHCI host 3036 * controllers. xHCs must support at least 4 stream IDs. 3037 */ 3038 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3039 if (*num_stream_ctxs > max_streams) { 3040 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3041 max_streams); 3042 *num_stream_ctxs = max_streams; 3043 *num_streams = max_streams; 3044 } 3045 } 3046 3047 /* Returns an error code if one of the endpoint already has streams. 3048 * This does not change any data structures, it only checks and gathers 3049 * information. 3050 */ 3051 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3052 struct usb_device *udev, 3053 struct usb_host_endpoint **eps, unsigned int num_eps, 3054 unsigned int *num_streams, u32 *changed_ep_bitmask) 3055 { 3056 unsigned int max_streams; 3057 unsigned int endpoint_flag; 3058 int i; 3059 int ret; 3060 3061 for (i = 0; i < num_eps; i++) { 3062 ret = xhci_check_streams_endpoint(xhci, udev, 3063 eps[i], udev->slot_id); 3064 if (ret < 0) 3065 return ret; 3066 3067 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3068 if (max_streams < (*num_streams - 1)) { 3069 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3070 eps[i]->desc.bEndpointAddress, 3071 max_streams); 3072 *num_streams = max_streams+1; 3073 } 3074 3075 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3076 if (*changed_ep_bitmask & endpoint_flag) 3077 return -EINVAL; 3078 *changed_ep_bitmask |= endpoint_flag; 3079 } 3080 return 0; 3081 } 3082 3083 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3084 struct usb_device *udev, 3085 struct usb_host_endpoint **eps, unsigned int num_eps) 3086 { 3087 u32 changed_ep_bitmask = 0; 3088 unsigned int slot_id; 3089 unsigned int ep_index; 3090 unsigned int ep_state; 3091 int i; 3092 3093 slot_id = udev->slot_id; 3094 if (!xhci->devs[slot_id]) 3095 return 0; 3096 3097 for (i = 0; i < num_eps; i++) { 3098 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3099 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3100 /* Are streams already being freed for the endpoint? */ 3101 if (ep_state & EP_GETTING_NO_STREAMS) { 3102 xhci_warn(xhci, "WARN Can't disable streams for " 3103 "endpoint 0x%x, " 3104 "streams are being disabled already\n", 3105 eps[i]->desc.bEndpointAddress); 3106 return 0; 3107 } 3108 /* Are there actually any streams to free? */ 3109 if (!(ep_state & EP_HAS_STREAMS) && 3110 !(ep_state & EP_GETTING_STREAMS)) { 3111 xhci_warn(xhci, "WARN Can't disable streams for " 3112 "endpoint 0x%x, " 3113 "streams are already disabled!\n", 3114 eps[i]->desc.bEndpointAddress); 3115 xhci_warn(xhci, "WARN xhci_free_streams() called " 3116 "with non-streams endpoint\n"); 3117 return 0; 3118 } 3119 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3120 } 3121 return changed_ep_bitmask; 3122 } 3123 3124 /* 3125 * The USB device drivers use this function (through the HCD interface in USB 3126 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3127 * coordinate mass storage command queueing across multiple endpoints (basically 3128 * a stream ID == a task ID). 3129 * 3130 * Setting up streams involves allocating the same size stream context array 3131 * for each endpoint and issuing a configure endpoint command for all endpoints. 3132 * 3133 * Don't allow the call to succeed if one endpoint only supports one stream 3134 * (which means it doesn't support streams at all). 3135 * 3136 * Drivers may get less stream IDs than they asked for, if the host controller 3137 * hardware or endpoints claim they can't support the number of requested 3138 * stream IDs. 3139 */ 3140 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3141 struct usb_host_endpoint **eps, unsigned int num_eps, 3142 unsigned int num_streams, gfp_t mem_flags) 3143 { 3144 int i, ret; 3145 struct xhci_hcd *xhci; 3146 struct xhci_virt_device *vdev; 3147 struct xhci_command *config_cmd; 3148 struct xhci_input_control_ctx *ctrl_ctx; 3149 unsigned int ep_index; 3150 unsigned int num_stream_ctxs; 3151 unsigned long flags; 3152 u32 changed_ep_bitmask = 0; 3153 3154 if (!eps) 3155 return -EINVAL; 3156 3157 /* Add one to the number of streams requested to account for 3158 * stream 0 that is reserved for xHCI usage. 3159 */ 3160 num_streams += 1; 3161 xhci = hcd_to_xhci(hcd); 3162 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3163 num_streams); 3164 3165 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3166 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3167 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3168 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3169 return -ENOSYS; 3170 } 3171 3172 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3173 if (!config_cmd) { 3174 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3175 return -ENOMEM; 3176 } 3177 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3178 if (!ctrl_ctx) { 3179 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3180 __func__); 3181 xhci_free_command(xhci, config_cmd); 3182 return -ENOMEM; 3183 } 3184 3185 /* Check to make sure all endpoints are not already configured for 3186 * streams. While we're at it, find the maximum number of streams that 3187 * all the endpoints will support and check for duplicate endpoints. 3188 */ 3189 spin_lock_irqsave(&xhci->lock, flags); 3190 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3191 num_eps, &num_streams, &changed_ep_bitmask); 3192 if (ret < 0) { 3193 xhci_free_command(xhci, config_cmd); 3194 spin_unlock_irqrestore(&xhci->lock, flags); 3195 return ret; 3196 } 3197 if (num_streams <= 1) { 3198 xhci_warn(xhci, "WARN: endpoints can't handle " 3199 "more than one stream.\n"); 3200 xhci_free_command(xhci, config_cmd); 3201 spin_unlock_irqrestore(&xhci->lock, flags); 3202 return -EINVAL; 3203 } 3204 vdev = xhci->devs[udev->slot_id]; 3205 /* Mark each endpoint as being in transition, so 3206 * xhci_urb_enqueue() will reject all URBs. 3207 */ 3208 for (i = 0; i < num_eps; i++) { 3209 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3210 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3211 } 3212 spin_unlock_irqrestore(&xhci->lock, flags); 3213 3214 /* Setup internal data structures and allocate HW data structures for 3215 * streams (but don't install the HW structures in the input context 3216 * until we're sure all memory allocation succeeded). 3217 */ 3218 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3219 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3220 num_stream_ctxs, num_streams); 3221 3222 for (i = 0; i < num_eps; i++) { 3223 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3224 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3225 num_stream_ctxs, 3226 num_streams, mem_flags); 3227 if (!vdev->eps[ep_index].stream_info) 3228 goto cleanup; 3229 /* Set maxPstreams in endpoint context and update deq ptr to 3230 * point to stream context array. FIXME 3231 */ 3232 } 3233 3234 /* Set up the input context for a configure endpoint command. */ 3235 for (i = 0; i < num_eps; i++) { 3236 struct xhci_ep_ctx *ep_ctx; 3237 3238 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3239 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3240 3241 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3242 vdev->out_ctx, ep_index); 3243 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3244 vdev->eps[ep_index].stream_info); 3245 } 3246 /* Tell the HW to drop its old copy of the endpoint context info 3247 * and add the updated copy from the input context. 3248 */ 3249 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3250 vdev->out_ctx, ctrl_ctx, 3251 changed_ep_bitmask, changed_ep_bitmask); 3252 3253 /* Issue and wait for the configure endpoint command */ 3254 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3255 false, false); 3256 3257 /* xHC rejected the configure endpoint command for some reason, so we 3258 * leave the old ring intact and free our internal streams data 3259 * structure. 3260 */ 3261 if (ret < 0) 3262 goto cleanup; 3263 3264 spin_lock_irqsave(&xhci->lock, flags); 3265 for (i = 0; i < num_eps; i++) { 3266 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3267 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3268 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3269 udev->slot_id, ep_index); 3270 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3271 } 3272 xhci_free_command(xhci, config_cmd); 3273 spin_unlock_irqrestore(&xhci->lock, flags); 3274 3275 /* Subtract 1 for stream 0, which drivers can't use */ 3276 return num_streams - 1; 3277 3278 cleanup: 3279 /* If it didn't work, free the streams! */ 3280 for (i = 0; i < num_eps; i++) { 3281 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3282 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3283 vdev->eps[ep_index].stream_info = NULL; 3284 /* FIXME Unset maxPstreams in endpoint context and 3285 * update deq ptr to point to normal string ring. 3286 */ 3287 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3288 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3289 xhci_endpoint_zero(xhci, vdev, eps[i]); 3290 } 3291 xhci_free_command(xhci, config_cmd); 3292 return -ENOMEM; 3293 } 3294 3295 /* Transition the endpoint from using streams to being a "normal" endpoint 3296 * without streams. 3297 * 3298 * Modify the endpoint context state, submit a configure endpoint command, 3299 * and free all endpoint rings for streams if that completes successfully. 3300 */ 3301 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3302 struct usb_host_endpoint **eps, unsigned int num_eps, 3303 gfp_t mem_flags) 3304 { 3305 int i, ret; 3306 struct xhci_hcd *xhci; 3307 struct xhci_virt_device *vdev; 3308 struct xhci_command *command; 3309 struct xhci_input_control_ctx *ctrl_ctx; 3310 unsigned int ep_index; 3311 unsigned long flags; 3312 u32 changed_ep_bitmask; 3313 3314 xhci = hcd_to_xhci(hcd); 3315 vdev = xhci->devs[udev->slot_id]; 3316 3317 /* Set up a configure endpoint command to remove the streams rings */ 3318 spin_lock_irqsave(&xhci->lock, flags); 3319 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3320 udev, eps, num_eps); 3321 if (changed_ep_bitmask == 0) { 3322 spin_unlock_irqrestore(&xhci->lock, flags); 3323 return -EINVAL; 3324 } 3325 3326 /* Use the xhci_command structure from the first endpoint. We may have 3327 * allocated too many, but the driver may call xhci_free_streams() for 3328 * each endpoint it grouped into one call to xhci_alloc_streams(). 3329 */ 3330 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3331 command = vdev->eps[ep_index].stream_info->free_streams_command; 3332 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3333 if (!ctrl_ctx) { 3334 spin_unlock_irqrestore(&xhci->lock, flags); 3335 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3336 __func__); 3337 return -EINVAL; 3338 } 3339 3340 for (i = 0; i < num_eps; i++) { 3341 struct xhci_ep_ctx *ep_ctx; 3342 3343 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3344 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3345 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3346 EP_GETTING_NO_STREAMS; 3347 3348 xhci_endpoint_copy(xhci, command->in_ctx, 3349 vdev->out_ctx, ep_index); 3350 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3351 &vdev->eps[ep_index]); 3352 } 3353 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3354 vdev->out_ctx, ctrl_ctx, 3355 changed_ep_bitmask, changed_ep_bitmask); 3356 spin_unlock_irqrestore(&xhci->lock, flags); 3357 3358 /* Issue and wait for the configure endpoint command, 3359 * which must succeed. 3360 */ 3361 ret = xhci_configure_endpoint(xhci, udev, command, 3362 false, true); 3363 3364 /* xHC rejected the configure endpoint command for some reason, so we 3365 * leave the streams rings intact. 3366 */ 3367 if (ret < 0) 3368 return ret; 3369 3370 spin_lock_irqsave(&xhci->lock, flags); 3371 for (i = 0; i < num_eps; i++) { 3372 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3373 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3374 vdev->eps[ep_index].stream_info = NULL; 3375 /* FIXME Unset maxPstreams in endpoint context and 3376 * update deq ptr to point to normal string ring. 3377 */ 3378 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3379 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3380 } 3381 spin_unlock_irqrestore(&xhci->lock, flags); 3382 3383 return 0; 3384 } 3385 3386 /* 3387 * Deletes endpoint resources for endpoints that were active before a Reset 3388 * Device command, or a Disable Slot command. The Reset Device command leaves 3389 * the control endpoint intact, whereas the Disable Slot command deletes it. 3390 * 3391 * Must be called with xhci->lock held. 3392 */ 3393 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3394 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3395 { 3396 int i; 3397 unsigned int num_dropped_eps = 0; 3398 unsigned int drop_flags = 0; 3399 3400 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3401 if (virt_dev->eps[i].ring) { 3402 drop_flags |= 1 << i; 3403 num_dropped_eps++; 3404 } 3405 } 3406 xhci->num_active_eps -= num_dropped_eps; 3407 if (num_dropped_eps) 3408 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3409 "Dropped %u ep ctxs, flags = 0x%x, " 3410 "%u now active.", 3411 num_dropped_eps, drop_flags, 3412 xhci->num_active_eps); 3413 } 3414 3415 /* 3416 * This submits a Reset Device Command, which will set the device state to 0, 3417 * set the device address to 0, and disable all the endpoints except the default 3418 * control endpoint. The USB core should come back and call 3419 * xhci_address_device(), and then re-set up the configuration. If this is 3420 * called because of a usb_reset_and_verify_device(), then the old alternate 3421 * settings will be re-installed through the normal bandwidth allocation 3422 * functions. 3423 * 3424 * Wait for the Reset Device command to finish. Remove all structures 3425 * associated with the endpoints that were disabled. Clear the input device 3426 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3427 * 3428 * If the virt_dev to be reset does not exist or does not match the udev, 3429 * it means the device is lost, possibly due to the xHC restore error and 3430 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3431 * re-allocate the device. 3432 */ 3433 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3434 { 3435 int ret, i; 3436 unsigned long flags; 3437 struct xhci_hcd *xhci; 3438 unsigned int slot_id; 3439 struct xhci_virt_device *virt_dev; 3440 struct xhci_command *reset_device_cmd; 3441 int last_freed_endpoint; 3442 struct xhci_slot_ctx *slot_ctx; 3443 int old_active_eps = 0; 3444 3445 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3446 if (ret <= 0) 3447 return ret; 3448 xhci = hcd_to_xhci(hcd); 3449 slot_id = udev->slot_id; 3450 virt_dev = xhci->devs[slot_id]; 3451 if (!virt_dev) { 3452 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3453 "not exist. Re-allocate the device\n", slot_id); 3454 ret = xhci_alloc_dev(hcd, udev); 3455 if (ret == 1) 3456 return 0; 3457 else 3458 return -EINVAL; 3459 } 3460 3461 if (virt_dev->tt_info) 3462 old_active_eps = virt_dev->tt_info->active_eps; 3463 3464 if (virt_dev->udev != udev) { 3465 /* If the virt_dev and the udev does not match, this virt_dev 3466 * may belong to another udev. 3467 * Re-allocate the device. 3468 */ 3469 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3470 "not match the udev. Re-allocate the device\n", 3471 slot_id); 3472 ret = xhci_alloc_dev(hcd, udev); 3473 if (ret == 1) 3474 return 0; 3475 else 3476 return -EINVAL; 3477 } 3478 3479 /* If device is not setup, there is no point in resetting it */ 3480 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3481 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3482 SLOT_STATE_DISABLED) 3483 return 0; 3484 3485 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3486 /* Allocate the command structure that holds the struct completion. 3487 * Assume we're in process context, since the normal device reset 3488 * process has to wait for the device anyway. Storage devices are 3489 * reset as part of error handling, so use GFP_NOIO instead of 3490 * GFP_KERNEL. 3491 */ 3492 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3493 if (!reset_device_cmd) { 3494 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3495 return -ENOMEM; 3496 } 3497 3498 /* Attempt to submit the Reset Device command to the command ring */ 3499 spin_lock_irqsave(&xhci->lock, flags); 3500 3501 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3502 if (ret) { 3503 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3504 spin_unlock_irqrestore(&xhci->lock, flags); 3505 goto command_cleanup; 3506 } 3507 xhci_ring_cmd_db(xhci); 3508 spin_unlock_irqrestore(&xhci->lock, flags); 3509 3510 /* Wait for the Reset Device command to finish */ 3511 wait_for_completion(reset_device_cmd->completion); 3512 3513 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3514 * unless we tried to reset a slot ID that wasn't enabled, 3515 * or the device wasn't in the addressed or configured state. 3516 */ 3517 ret = reset_device_cmd->status; 3518 switch (ret) { 3519 case COMP_CMD_ABORT: 3520 case COMP_CMD_STOP: 3521 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3522 ret = -ETIME; 3523 goto command_cleanup; 3524 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3525 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3526 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3527 slot_id, 3528 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3529 xhci_dbg(xhci, "Not freeing device rings.\n"); 3530 /* Don't treat this as an error. May change my mind later. */ 3531 ret = 0; 3532 goto command_cleanup; 3533 case COMP_SUCCESS: 3534 xhci_dbg(xhci, "Successful reset device command.\n"); 3535 break; 3536 default: 3537 if (xhci_is_vendor_info_code(xhci, ret)) 3538 break; 3539 xhci_warn(xhci, "Unknown completion code %u for " 3540 "reset device command.\n", ret); 3541 ret = -EINVAL; 3542 goto command_cleanup; 3543 } 3544 3545 /* Free up host controller endpoint resources */ 3546 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3547 spin_lock_irqsave(&xhci->lock, flags); 3548 /* Don't delete the default control endpoint resources */ 3549 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3550 spin_unlock_irqrestore(&xhci->lock, flags); 3551 } 3552 3553 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3554 last_freed_endpoint = 1; 3555 for (i = 1; i < 31; ++i) { 3556 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3557 3558 if (ep->ep_state & EP_HAS_STREAMS) { 3559 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3560 xhci_get_endpoint_address(i)); 3561 xhci_free_stream_info(xhci, ep->stream_info); 3562 ep->stream_info = NULL; 3563 ep->ep_state &= ~EP_HAS_STREAMS; 3564 } 3565 3566 if (ep->ring) { 3567 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3568 last_freed_endpoint = i; 3569 } 3570 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3571 xhci_drop_ep_from_interval_table(xhci, 3572 &virt_dev->eps[i].bw_info, 3573 virt_dev->bw_table, 3574 udev, 3575 &virt_dev->eps[i], 3576 virt_dev->tt_info); 3577 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3578 } 3579 /* If necessary, update the number of active TTs on this root port */ 3580 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3581 3582 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3583 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3584 ret = 0; 3585 3586 command_cleanup: 3587 xhci_free_command(xhci, reset_device_cmd); 3588 return ret; 3589 } 3590 3591 /* 3592 * At this point, the struct usb_device is about to go away, the device has 3593 * disconnected, and all traffic has been stopped and the endpoints have been 3594 * disabled. Free any HC data structures associated with that device. 3595 */ 3596 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3597 { 3598 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3599 struct xhci_virt_device *virt_dev; 3600 unsigned long flags; 3601 u32 state; 3602 int i, ret; 3603 struct xhci_command *command; 3604 3605 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3606 if (!command) 3607 return; 3608 3609 #ifndef CONFIG_USB_DEFAULT_PERSIST 3610 /* 3611 * We called pm_runtime_get_noresume when the device was attached. 3612 * Decrement the counter here to allow controller to runtime suspend 3613 * if no devices remain. 3614 */ 3615 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3616 pm_runtime_put_noidle(hcd->self.controller); 3617 #endif 3618 3619 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3620 /* If the host is halted due to driver unload, we still need to free the 3621 * device. 3622 */ 3623 if (ret <= 0 && ret != -ENODEV) { 3624 kfree(command); 3625 return; 3626 } 3627 3628 virt_dev = xhci->devs[udev->slot_id]; 3629 3630 /* Stop any wayward timer functions (which may grab the lock) */ 3631 for (i = 0; i < 31; ++i) { 3632 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3633 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3634 } 3635 3636 spin_lock_irqsave(&xhci->lock, flags); 3637 /* Don't disable the slot if the host controller is dead. */ 3638 state = readl(&xhci->op_regs->status); 3639 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3640 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3641 xhci_free_virt_device(xhci, udev->slot_id); 3642 spin_unlock_irqrestore(&xhci->lock, flags); 3643 kfree(command); 3644 return; 3645 } 3646 3647 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3648 udev->slot_id)) { 3649 spin_unlock_irqrestore(&xhci->lock, flags); 3650 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3651 return; 3652 } 3653 xhci_ring_cmd_db(xhci); 3654 spin_unlock_irqrestore(&xhci->lock, flags); 3655 3656 /* 3657 * Event command completion handler will free any data structures 3658 * associated with the slot. XXX Can free sleep? 3659 */ 3660 } 3661 3662 /* 3663 * Checks if we have enough host controller resources for the default control 3664 * endpoint. 3665 * 3666 * Must be called with xhci->lock held. 3667 */ 3668 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3669 { 3670 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3672 "Not enough ep ctxs: " 3673 "%u active, need to add 1, limit is %u.", 3674 xhci->num_active_eps, xhci->limit_active_eps); 3675 return -ENOMEM; 3676 } 3677 xhci->num_active_eps += 1; 3678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3679 "Adding 1 ep ctx, %u now active.", 3680 xhci->num_active_eps); 3681 return 0; 3682 } 3683 3684 3685 /* 3686 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3687 * timed out, or allocating memory failed. Returns 1 on success. 3688 */ 3689 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3690 { 3691 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3692 unsigned long flags; 3693 int ret, slot_id; 3694 struct xhci_command *command; 3695 3696 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3697 if (!command) 3698 return 0; 3699 3700 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3701 mutex_lock(&xhci->mutex); 3702 spin_lock_irqsave(&xhci->lock, flags); 3703 command->completion = &xhci->addr_dev; 3704 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3705 if (ret) { 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 mutex_unlock(&xhci->mutex); 3708 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3709 kfree(command); 3710 return 0; 3711 } 3712 xhci_ring_cmd_db(xhci); 3713 spin_unlock_irqrestore(&xhci->lock, flags); 3714 3715 wait_for_completion(command->completion); 3716 slot_id = xhci->slot_id; 3717 mutex_unlock(&xhci->mutex); 3718 3719 if (!slot_id || command->status != COMP_SUCCESS) { 3720 xhci_err(xhci, "Error while assigning device slot ID\n"); 3721 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3722 HCS_MAX_SLOTS( 3723 readl(&xhci->cap_regs->hcs_params1))); 3724 kfree(command); 3725 return 0; 3726 } 3727 3728 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3729 spin_lock_irqsave(&xhci->lock, flags); 3730 ret = xhci_reserve_host_control_ep_resources(xhci); 3731 if (ret) { 3732 spin_unlock_irqrestore(&xhci->lock, flags); 3733 xhci_warn(xhci, "Not enough host resources, " 3734 "active endpoint contexts = %u\n", 3735 xhci->num_active_eps); 3736 goto disable_slot; 3737 } 3738 spin_unlock_irqrestore(&xhci->lock, flags); 3739 } 3740 /* Use GFP_NOIO, since this function can be called from 3741 * xhci_discover_or_reset_device(), which may be called as part of 3742 * mass storage driver error handling. 3743 */ 3744 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3745 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3746 goto disable_slot; 3747 } 3748 udev->slot_id = slot_id; 3749 3750 #ifndef CONFIG_USB_DEFAULT_PERSIST 3751 /* 3752 * If resetting upon resume, we can't put the controller into runtime 3753 * suspend if there is a device attached. 3754 */ 3755 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3756 pm_runtime_get_noresume(hcd->self.controller); 3757 #endif 3758 3759 3760 kfree(command); 3761 /* Is this a LS or FS device under a HS hub? */ 3762 /* Hub or peripherial? */ 3763 return 1; 3764 3765 disable_slot: 3766 /* Disable slot, if we can do it without mem alloc */ 3767 spin_lock_irqsave(&xhci->lock, flags); 3768 command->completion = NULL; 3769 command->status = 0; 3770 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3771 udev->slot_id)) 3772 xhci_ring_cmd_db(xhci); 3773 spin_unlock_irqrestore(&xhci->lock, flags); 3774 return 0; 3775 } 3776 3777 /* 3778 * Issue an Address Device command and optionally send a corresponding 3779 * SetAddress request to the device. 3780 */ 3781 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3782 enum xhci_setup_dev setup) 3783 { 3784 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3785 unsigned long flags; 3786 struct xhci_virt_device *virt_dev; 3787 int ret = 0; 3788 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3789 struct xhci_slot_ctx *slot_ctx; 3790 struct xhci_input_control_ctx *ctrl_ctx; 3791 u64 temp_64; 3792 struct xhci_command *command = NULL; 3793 3794 mutex_lock(&xhci->mutex); 3795 3796 if (!udev->slot_id) { 3797 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3798 "Bad Slot ID %d", udev->slot_id); 3799 ret = -EINVAL; 3800 goto out; 3801 } 3802 3803 virt_dev = xhci->devs[udev->slot_id]; 3804 3805 if (WARN_ON(!virt_dev)) { 3806 /* 3807 * In plug/unplug torture test with an NEC controller, 3808 * a zero-dereference was observed once due to virt_dev = 0. 3809 * Print useful debug rather than crash if it is observed again! 3810 */ 3811 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3812 udev->slot_id); 3813 ret = -EINVAL; 3814 goto out; 3815 } 3816 3817 if (setup == SETUP_CONTEXT_ONLY) { 3818 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3819 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3820 SLOT_STATE_DEFAULT) { 3821 xhci_dbg(xhci, "Slot already in default state\n"); 3822 goto out; 3823 } 3824 } 3825 3826 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3827 if (!command) { 3828 ret = -ENOMEM; 3829 goto out; 3830 } 3831 3832 command->in_ctx = virt_dev->in_ctx; 3833 command->completion = &xhci->addr_dev; 3834 3835 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3836 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3837 if (!ctrl_ctx) { 3838 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3839 __func__); 3840 ret = -EINVAL; 3841 goto out; 3842 } 3843 /* 3844 * If this is the first Set Address since device plug-in or 3845 * virt_device realloaction after a resume with an xHCI power loss, 3846 * then set up the slot context. 3847 */ 3848 if (!slot_ctx->dev_info) 3849 xhci_setup_addressable_virt_dev(xhci, udev); 3850 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3851 else 3852 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3853 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3854 ctrl_ctx->drop_flags = 0; 3855 3856 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3857 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3858 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3859 le32_to_cpu(slot_ctx->dev_info) >> 27); 3860 3861 spin_lock_irqsave(&xhci->lock, flags); 3862 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3863 udev->slot_id, setup); 3864 if (ret) { 3865 spin_unlock_irqrestore(&xhci->lock, flags); 3866 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3867 "FIXME: allocate a command ring segment"); 3868 goto out; 3869 } 3870 xhci_ring_cmd_db(xhci); 3871 spin_unlock_irqrestore(&xhci->lock, flags); 3872 3873 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3874 wait_for_completion(command->completion); 3875 3876 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3877 * the SetAddress() "recovery interval" required by USB and aborting the 3878 * command on a timeout. 3879 */ 3880 switch (command->status) { 3881 case COMP_CMD_ABORT: 3882 case COMP_CMD_STOP: 3883 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3884 ret = -ETIME; 3885 break; 3886 case COMP_CTX_STATE: 3887 case COMP_EBADSLT: 3888 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3889 act, udev->slot_id); 3890 ret = -EINVAL; 3891 break; 3892 case COMP_TX_ERR: 3893 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3894 ret = -EPROTO; 3895 break; 3896 case COMP_DEV_ERR: 3897 dev_warn(&udev->dev, 3898 "ERROR: Incompatible device for setup %s command\n", act); 3899 ret = -ENODEV; 3900 break; 3901 case COMP_SUCCESS: 3902 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3903 "Successful setup %s command", act); 3904 break; 3905 default: 3906 xhci_err(xhci, 3907 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3908 act, command->status); 3909 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3910 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3911 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3912 ret = -EINVAL; 3913 break; 3914 } 3915 if (ret) 3916 goto out; 3917 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3918 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3919 "Op regs DCBAA ptr = %#016llx", temp_64); 3920 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3921 "Slot ID %d dcbaa entry @%p = %#016llx", 3922 udev->slot_id, 3923 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3924 (unsigned long long) 3925 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3926 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3927 "Output Context DMA address = %#08llx", 3928 (unsigned long long)virt_dev->out_ctx->dma); 3929 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3930 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3931 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3932 le32_to_cpu(slot_ctx->dev_info) >> 27); 3933 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3934 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3935 /* 3936 * USB core uses address 1 for the roothubs, so we add one to the 3937 * address given back to us by the HC. 3938 */ 3939 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3940 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3941 le32_to_cpu(slot_ctx->dev_info) >> 27); 3942 /* Zero the input context control for later use */ 3943 ctrl_ctx->add_flags = 0; 3944 ctrl_ctx->drop_flags = 0; 3945 3946 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3947 "Internal device address = %d", 3948 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3949 out: 3950 mutex_unlock(&xhci->mutex); 3951 kfree(command); 3952 return ret; 3953 } 3954 3955 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3956 { 3957 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3958 } 3959 3960 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3961 { 3962 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3963 } 3964 3965 /* 3966 * Transfer the port index into real index in the HW port status 3967 * registers. Caculate offset between the port's PORTSC register 3968 * and port status base. Divide the number of per port register 3969 * to get the real index. The raw port number bases 1. 3970 */ 3971 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3972 { 3973 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3974 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3975 __le32 __iomem *addr; 3976 int raw_port; 3977 3978 if (hcd->speed != HCD_USB3) 3979 addr = xhci->usb2_ports[port1 - 1]; 3980 else 3981 addr = xhci->usb3_ports[port1 - 1]; 3982 3983 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3984 return raw_port; 3985 } 3986 3987 /* 3988 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3989 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3990 */ 3991 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3992 struct usb_device *udev, u16 max_exit_latency) 3993 { 3994 struct xhci_virt_device *virt_dev; 3995 struct xhci_command *command; 3996 struct xhci_input_control_ctx *ctrl_ctx; 3997 struct xhci_slot_ctx *slot_ctx; 3998 unsigned long flags; 3999 int ret; 4000 4001 spin_lock_irqsave(&xhci->lock, flags); 4002 4003 virt_dev = xhci->devs[udev->slot_id]; 4004 4005 /* 4006 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4007 * xHC was re-initialized. Exit latency will be set later after 4008 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4009 */ 4010 4011 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4012 spin_unlock_irqrestore(&xhci->lock, flags); 4013 return 0; 4014 } 4015 4016 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4017 command = xhci->lpm_command; 4018 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4019 if (!ctrl_ctx) { 4020 spin_unlock_irqrestore(&xhci->lock, flags); 4021 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4022 __func__); 4023 return -ENOMEM; 4024 } 4025 4026 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4027 spin_unlock_irqrestore(&xhci->lock, flags); 4028 4029 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4030 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4031 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4032 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4033 slot_ctx->dev_state = 0; 4034 4035 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4036 "Set up evaluate context for LPM MEL change."); 4037 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4038 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4039 4040 /* Issue and wait for the evaluate context command. */ 4041 ret = xhci_configure_endpoint(xhci, udev, command, 4042 true, true); 4043 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4044 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4045 4046 if (!ret) { 4047 spin_lock_irqsave(&xhci->lock, flags); 4048 virt_dev->current_mel = max_exit_latency; 4049 spin_unlock_irqrestore(&xhci->lock, flags); 4050 } 4051 return ret; 4052 } 4053 4054 #ifdef CONFIG_PM 4055 4056 /* BESL to HIRD Encoding array for USB2 LPM */ 4057 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4058 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4059 4060 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4061 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4062 struct usb_device *udev) 4063 { 4064 int u2del, besl, besl_host; 4065 int besl_device = 0; 4066 u32 field; 4067 4068 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4069 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4070 4071 if (field & USB_BESL_SUPPORT) { 4072 for (besl_host = 0; besl_host < 16; besl_host++) { 4073 if (xhci_besl_encoding[besl_host] >= u2del) 4074 break; 4075 } 4076 /* Use baseline BESL value as default */ 4077 if (field & USB_BESL_BASELINE_VALID) 4078 besl_device = USB_GET_BESL_BASELINE(field); 4079 else if (field & USB_BESL_DEEP_VALID) 4080 besl_device = USB_GET_BESL_DEEP(field); 4081 } else { 4082 if (u2del <= 50) 4083 besl_host = 0; 4084 else 4085 besl_host = (u2del - 51) / 75 + 1; 4086 } 4087 4088 besl = besl_host + besl_device; 4089 if (besl > 15) 4090 besl = 15; 4091 4092 return besl; 4093 } 4094 4095 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4096 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4097 { 4098 u32 field; 4099 int l1; 4100 int besld = 0; 4101 int hirdm = 0; 4102 4103 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4104 4105 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4106 l1 = udev->l1_params.timeout / 256; 4107 4108 /* device has preferred BESLD */ 4109 if (field & USB_BESL_DEEP_VALID) { 4110 besld = USB_GET_BESL_DEEP(field); 4111 hirdm = 1; 4112 } 4113 4114 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4115 } 4116 4117 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4118 struct usb_device *udev, int enable) 4119 { 4120 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4121 __le32 __iomem **port_array; 4122 __le32 __iomem *pm_addr, *hlpm_addr; 4123 u32 pm_val, hlpm_val, field; 4124 unsigned int port_num; 4125 unsigned long flags; 4126 int hird, exit_latency; 4127 int ret; 4128 4129 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4130 !udev->lpm_capable) 4131 return -EPERM; 4132 4133 if (!udev->parent || udev->parent->parent || 4134 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4135 return -EPERM; 4136 4137 if (udev->usb2_hw_lpm_capable != 1) 4138 return -EPERM; 4139 4140 spin_lock_irqsave(&xhci->lock, flags); 4141 4142 port_array = xhci->usb2_ports; 4143 port_num = udev->portnum - 1; 4144 pm_addr = port_array[port_num] + PORTPMSC; 4145 pm_val = readl(pm_addr); 4146 hlpm_addr = port_array[port_num] + PORTHLPMC; 4147 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4148 4149 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4150 enable ? "enable" : "disable", port_num + 1); 4151 4152 if (enable) { 4153 /* Host supports BESL timeout instead of HIRD */ 4154 if (udev->usb2_hw_lpm_besl_capable) { 4155 /* if device doesn't have a preferred BESL value use a 4156 * default one which works with mixed HIRD and BESL 4157 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4158 */ 4159 if ((field & USB_BESL_SUPPORT) && 4160 (field & USB_BESL_BASELINE_VALID)) 4161 hird = USB_GET_BESL_BASELINE(field); 4162 else 4163 hird = udev->l1_params.besl; 4164 4165 exit_latency = xhci_besl_encoding[hird]; 4166 spin_unlock_irqrestore(&xhci->lock, flags); 4167 4168 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4169 * input context for link powermanagement evaluate 4170 * context commands. It is protected by hcd->bandwidth 4171 * mutex and is shared by all devices. We need to set 4172 * the max ext latency in USB 2 BESL LPM as well, so 4173 * use the same mutex and xhci_change_max_exit_latency() 4174 */ 4175 mutex_lock(hcd->bandwidth_mutex); 4176 ret = xhci_change_max_exit_latency(xhci, udev, 4177 exit_latency); 4178 mutex_unlock(hcd->bandwidth_mutex); 4179 4180 if (ret < 0) 4181 return ret; 4182 spin_lock_irqsave(&xhci->lock, flags); 4183 4184 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4185 writel(hlpm_val, hlpm_addr); 4186 /* flush write */ 4187 readl(hlpm_addr); 4188 } else { 4189 hird = xhci_calculate_hird_besl(xhci, udev); 4190 } 4191 4192 pm_val &= ~PORT_HIRD_MASK; 4193 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4194 writel(pm_val, pm_addr); 4195 pm_val = readl(pm_addr); 4196 pm_val |= PORT_HLE; 4197 writel(pm_val, pm_addr); 4198 /* flush write */ 4199 readl(pm_addr); 4200 } else { 4201 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4202 writel(pm_val, pm_addr); 4203 /* flush write */ 4204 readl(pm_addr); 4205 if (udev->usb2_hw_lpm_besl_capable) { 4206 spin_unlock_irqrestore(&xhci->lock, flags); 4207 mutex_lock(hcd->bandwidth_mutex); 4208 xhci_change_max_exit_latency(xhci, udev, 0); 4209 mutex_unlock(hcd->bandwidth_mutex); 4210 return 0; 4211 } 4212 } 4213 4214 spin_unlock_irqrestore(&xhci->lock, flags); 4215 return 0; 4216 } 4217 4218 /* check if a usb2 port supports a given extened capability protocol 4219 * only USB2 ports extended protocol capability values are cached. 4220 * Return 1 if capability is supported 4221 */ 4222 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4223 unsigned capability) 4224 { 4225 u32 port_offset, port_count; 4226 int i; 4227 4228 for (i = 0; i < xhci->num_ext_caps; i++) { 4229 if (xhci->ext_caps[i] & capability) { 4230 /* port offsets starts at 1 */ 4231 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4232 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4233 if (port >= port_offset && 4234 port < port_offset + port_count) 4235 return 1; 4236 } 4237 } 4238 return 0; 4239 } 4240 4241 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4242 { 4243 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4244 int portnum = udev->portnum - 1; 4245 4246 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4247 !udev->lpm_capable) 4248 return 0; 4249 4250 /* we only support lpm for non-hub device connected to root hub yet */ 4251 if (!udev->parent || udev->parent->parent || 4252 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4253 return 0; 4254 4255 if (xhci->hw_lpm_support == 1 && 4256 xhci_check_usb2_port_capability( 4257 xhci, portnum, XHCI_HLC)) { 4258 udev->usb2_hw_lpm_capable = 1; 4259 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4260 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4261 if (xhci_check_usb2_port_capability(xhci, portnum, 4262 XHCI_BLC)) 4263 udev->usb2_hw_lpm_besl_capable = 1; 4264 } 4265 4266 return 0; 4267 } 4268 4269 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4270 4271 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4272 static unsigned long long xhci_service_interval_to_ns( 4273 struct usb_endpoint_descriptor *desc) 4274 { 4275 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4276 } 4277 4278 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4279 enum usb3_link_state state) 4280 { 4281 unsigned long long sel; 4282 unsigned long long pel; 4283 unsigned int max_sel_pel; 4284 char *state_name; 4285 4286 switch (state) { 4287 case USB3_LPM_U1: 4288 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4289 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4290 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4291 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4292 state_name = "U1"; 4293 break; 4294 case USB3_LPM_U2: 4295 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4296 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4297 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4298 state_name = "U2"; 4299 break; 4300 default: 4301 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4302 __func__); 4303 return USB3_LPM_DISABLED; 4304 } 4305 4306 if (sel <= max_sel_pel && pel <= max_sel_pel) 4307 return USB3_LPM_DEVICE_INITIATED; 4308 4309 if (sel > max_sel_pel) 4310 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4311 "due to long SEL %llu ms\n", 4312 state_name, sel); 4313 else 4314 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4315 "due to long PEL %llu ms\n", 4316 state_name, pel); 4317 return USB3_LPM_DISABLED; 4318 } 4319 4320 /* The U1 timeout should be the maximum of the following values: 4321 * - For control endpoints, U1 system exit latency (SEL) * 3 4322 * - For bulk endpoints, U1 SEL * 5 4323 * - For interrupt endpoints: 4324 * - Notification EPs, U1 SEL * 3 4325 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4326 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4327 */ 4328 static unsigned long long xhci_calculate_intel_u1_timeout( 4329 struct usb_device *udev, 4330 struct usb_endpoint_descriptor *desc) 4331 { 4332 unsigned long long timeout_ns; 4333 int ep_type; 4334 int intr_type; 4335 4336 ep_type = usb_endpoint_type(desc); 4337 switch (ep_type) { 4338 case USB_ENDPOINT_XFER_CONTROL: 4339 timeout_ns = udev->u1_params.sel * 3; 4340 break; 4341 case USB_ENDPOINT_XFER_BULK: 4342 timeout_ns = udev->u1_params.sel * 5; 4343 break; 4344 case USB_ENDPOINT_XFER_INT: 4345 intr_type = usb_endpoint_interrupt_type(desc); 4346 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4347 timeout_ns = udev->u1_params.sel * 3; 4348 break; 4349 } 4350 /* Otherwise the calculation is the same as isoc eps */ 4351 case USB_ENDPOINT_XFER_ISOC: 4352 timeout_ns = xhci_service_interval_to_ns(desc); 4353 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4354 if (timeout_ns < udev->u1_params.sel * 2) 4355 timeout_ns = udev->u1_params.sel * 2; 4356 break; 4357 default: 4358 return 0; 4359 } 4360 4361 return timeout_ns; 4362 } 4363 4364 /* Returns the hub-encoded U1 timeout value. */ 4365 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4366 struct usb_device *udev, 4367 struct usb_endpoint_descriptor *desc) 4368 { 4369 unsigned long long timeout_ns; 4370 4371 if (xhci->quirks & XHCI_INTEL_HOST) 4372 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4373 else 4374 timeout_ns = udev->u1_params.sel; 4375 4376 /* The U1 timeout is encoded in 1us intervals. 4377 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4378 */ 4379 if (timeout_ns == USB3_LPM_DISABLED) 4380 timeout_ns = 1; 4381 else 4382 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4383 4384 /* If the necessary timeout value is bigger than what we can set in the 4385 * USB 3.0 hub, we have to disable hub-initiated U1. 4386 */ 4387 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4388 return timeout_ns; 4389 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4390 "due to long timeout %llu ms\n", timeout_ns); 4391 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4392 } 4393 4394 /* The U2 timeout should be the maximum of: 4395 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4396 * - largest bInterval of any active periodic endpoint (to avoid going 4397 * into lower power link states between intervals). 4398 * - the U2 Exit Latency of the device 4399 */ 4400 static unsigned long long xhci_calculate_intel_u2_timeout( 4401 struct usb_device *udev, 4402 struct usb_endpoint_descriptor *desc) 4403 { 4404 unsigned long long timeout_ns; 4405 unsigned long long u2_del_ns; 4406 4407 timeout_ns = 10 * 1000 * 1000; 4408 4409 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4410 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4411 timeout_ns = xhci_service_interval_to_ns(desc); 4412 4413 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4414 if (u2_del_ns > timeout_ns) 4415 timeout_ns = u2_del_ns; 4416 4417 return timeout_ns; 4418 } 4419 4420 /* Returns the hub-encoded U2 timeout value. */ 4421 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4422 struct usb_device *udev, 4423 struct usb_endpoint_descriptor *desc) 4424 { 4425 unsigned long long timeout_ns; 4426 4427 if (xhci->quirks & XHCI_INTEL_HOST) 4428 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4429 else 4430 timeout_ns = udev->u2_params.sel; 4431 4432 /* The U2 timeout is encoded in 256us intervals */ 4433 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4434 /* If the necessary timeout value is bigger than what we can set in the 4435 * USB 3.0 hub, we have to disable hub-initiated U2. 4436 */ 4437 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4438 return timeout_ns; 4439 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4440 "due to long timeout %llu ms\n", timeout_ns); 4441 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4442 } 4443 4444 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4445 struct usb_device *udev, 4446 struct usb_endpoint_descriptor *desc, 4447 enum usb3_link_state state, 4448 u16 *timeout) 4449 { 4450 if (state == USB3_LPM_U1) 4451 return xhci_calculate_u1_timeout(xhci, udev, desc); 4452 else if (state == USB3_LPM_U2) 4453 return xhci_calculate_u2_timeout(xhci, udev, desc); 4454 4455 return USB3_LPM_DISABLED; 4456 } 4457 4458 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4459 struct usb_device *udev, 4460 struct usb_endpoint_descriptor *desc, 4461 enum usb3_link_state state, 4462 u16 *timeout) 4463 { 4464 u16 alt_timeout; 4465 4466 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4467 desc, state, timeout); 4468 4469 /* If we found we can't enable hub-initiated LPM, or 4470 * the U1 or U2 exit latency was too high to allow 4471 * device-initiated LPM as well, just stop searching. 4472 */ 4473 if (alt_timeout == USB3_LPM_DISABLED || 4474 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4475 *timeout = alt_timeout; 4476 return -E2BIG; 4477 } 4478 if (alt_timeout > *timeout) 4479 *timeout = alt_timeout; 4480 return 0; 4481 } 4482 4483 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4484 struct usb_device *udev, 4485 struct usb_host_interface *alt, 4486 enum usb3_link_state state, 4487 u16 *timeout) 4488 { 4489 int j; 4490 4491 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4492 if (xhci_update_timeout_for_endpoint(xhci, udev, 4493 &alt->endpoint[j].desc, state, timeout)) 4494 return -E2BIG; 4495 continue; 4496 } 4497 return 0; 4498 } 4499 4500 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4501 enum usb3_link_state state) 4502 { 4503 struct usb_device *parent; 4504 unsigned int num_hubs; 4505 4506 if (state == USB3_LPM_U2) 4507 return 0; 4508 4509 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4510 for (parent = udev->parent, num_hubs = 0; parent->parent; 4511 parent = parent->parent) 4512 num_hubs++; 4513 4514 if (num_hubs < 2) 4515 return 0; 4516 4517 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4518 " below second-tier hub.\n"); 4519 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4520 "to decrease power consumption.\n"); 4521 return -E2BIG; 4522 } 4523 4524 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4525 struct usb_device *udev, 4526 enum usb3_link_state state) 4527 { 4528 if (xhci->quirks & XHCI_INTEL_HOST) 4529 return xhci_check_intel_tier_policy(udev, state); 4530 else 4531 return 0; 4532 } 4533 4534 /* Returns the U1 or U2 timeout that should be enabled. 4535 * If the tier check or timeout setting functions return with a non-zero exit 4536 * code, that means the timeout value has been finalized and we shouldn't look 4537 * at any more endpoints. 4538 */ 4539 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4540 struct usb_device *udev, enum usb3_link_state state) 4541 { 4542 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4543 struct usb_host_config *config; 4544 char *state_name; 4545 int i; 4546 u16 timeout = USB3_LPM_DISABLED; 4547 4548 if (state == USB3_LPM_U1) 4549 state_name = "U1"; 4550 else if (state == USB3_LPM_U2) 4551 state_name = "U2"; 4552 else { 4553 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4554 state); 4555 return timeout; 4556 } 4557 4558 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4559 return timeout; 4560 4561 /* Gather some information about the currently installed configuration 4562 * and alternate interface settings. 4563 */ 4564 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4565 state, &timeout)) 4566 return timeout; 4567 4568 config = udev->actconfig; 4569 if (!config) 4570 return timeout; 4571 4572 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4573 struct usb_driver *driver; 4574 struct usb_interface *intf = config->interface[i]; 4575 4576 if (!intf) 4577 continue; 4578 4579 /* Check if any currently bound drivers want hub-initiated LPM 4580 * disabled. 4581 */ 4582 if (intf->dev.driver) { 4583 driver = to_usb_driver(intf->dev.driver); 4584 if (driver && driver->disable_hub_initiated_lpm) { 4585 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4586 "at request of driver %s\n", 4587 state_name, driver->name); 4588 return xhci_get_timeout_no_hub_lpm(udev, state); 4589 } 4590 } 4591 4592 /* Not sure how this could happen... */ 4593 if (!intf->cur_altsetting) 4594 continue; 4595 4596 if (xhci_update_timeout_for_interface(xhci, udev, 4597 intf->cur_altsetting, 4598 state, &timeout)) 4599 return timeout; 4600 } 4601 return timeout; 4602 } 4603 4604 static int calculate_max_exit_latency(struct usb_device *udev, 4605 enum usb3_link_state state_changed, 4606 u16 hub_encoded_timeout) 4607 { 4608 unsigned long long u1_mel_us = 0; 4609 unsigned long long u2_mel_us = 0; 4610 unsigned long long mel_us = 0; 4611 bool disabling_u1; 4612 bool disabling_u2; 4613 bool enabling_u1; 4614 bool enabling_u2; 4615 4616 disabling_u1 = (state_changed == USB3_LPM_U1 && 4617 hub_encoded_timeout == USB3_LPM_DISABLED); 4618 disabling_u2 = (state_changed == USB3_LPM_U2 && 4619 hub_encoded_timeout == USB3_LPM_DISABLED); 4620 4621 enabling_u1 = (state_changed == USB3_LPM_U1 && 4622 hub_encoded_timeout != USB3_LPM_DISABLED); 4623 enabling_u2 = (state_changed == USB3_LPM_U2 && 4624 hub_encoded_timeout != USB3_LPM_DISABLED); 4625 4626 /* If U1 was already enabled and we're not disabling it, 4627 * or we're going to enable U1, account for the U1 max exit latency. 4628 */ 4629 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4630 enabling_u1) 4631 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4632 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4633 enabling_u2) 4634 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4635 4636 if (u1_mel_us > u2_mel_us) 4637 mel_us = u1_mel_us; 4638 else 4639 mel_us = u2_mel_us; 4640 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4641 if (mel_us > MAX_EXIT) { 4642 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4643 "is too big.\n", mel_us); 4644 return -E2BIG; 4645 } 4646 return mel_us; 4647 } 4648 4649 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4650 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4651 struct usb_device *udev, enum usb3_link_state state) 4652 { 4653 struct xhci_hcd *xhci; 4654 u16 hub_encoded_timeout; 4655 int mel; 4656 int ret; 4657 4658 xhci = hcd_to_xhci(hcd); 4659 /* The LPM timeout values are pretty host-controller specific, so don't 4660 * enable hub-initiated timeouts unless the vendor has provided 4661 * information about their timeout algorithm. 4662 */ 4663 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4664 !xhci->devs[udev->slot_id]) 4665 return USB3_LPM_DISABLED; 4666 4667 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4668 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4669 if (mel < 0) { 4670 /* Max Exit Latency is too big, disable LPM. */ 4671 hub_encoded_timeout = USB3_LPM_DISABLED; 4672 mel = 0; 4673 } 4674 4675 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4676 if (ret) 4677 return ret; 4678 return hub_encoded_timeout; 4679 } 4680 4681 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4682 struct usb_device *udev, enum usb3_link_state state) 4683 { 4684 struct xhci_hcd *xhci; 4685 u16 mel; 4686 4687 xhci = hcd_to_xhci(hcd); 4688 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4689 !xhci->devs[udev->slot_id]) 4690 return 0; 4691 4692 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4693 return xhci_change_max_exit_latency(xhci, udev, mel); 4694 } 4695 #else /* CONFIG_PM */ 4696 4697 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4698 struct usb_device *udev, int enable) 4699 { 4700 return 0; 4701 } 4702 4703 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4704 { 4705 return 0; 4706 } 4707 4708 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4709 struct usb_device *udev, enum usb3_link_state state) 4710 { 4711 return USB3_LPM_DISABLED; 4712 } 4713 4714 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4715 struct usb_device *udev, enum usb3_link_state state) 4716 { 4717 return 0; 4718 } 4719 #endif /* CONFIG_PM */ 4720 4721 /*-------------------------------------------------------------------------*/ 4722 4723 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4724 * internal data structures for the device. 4725 */ 4726 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4727 struct usb_tt *tt, gfp_t mem_flags) 4728 { 4729 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4730 struct xhci_virt_device *vdev; 4731 struct xhci_command *config_cmd; 4732 struct xhci_input_control_ctx *ctrl_ctx; 4733 struct xhci_slot_ctx *slot_ctx; 4734 unsigned long flags; 4735 unsigned think_time; 4736 int ret; 4737 4738 /* Ignore root hubs */ 4739 if (!hdev->parent) 4740 return 0; 4741 4742 vdev = xhci->devs[hdev->slot_id]; 4743 if (!vdev) { 4744 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4745 return -EINVAL; 4746 } 4747 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4748 if (!config_cmd) { 4749 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4750 return -ENOMEM; 4751 } 4752 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4753 if (!ctrl_ctx) { 4754 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4755 __func__); 4756 xhci_free_command(xhci, config_cmd); 4757 return -ENOMEM; 4758 } 4759 4760 spin_lock_irqsave(&xhci->lock, flags); 4761 if (hdev->speed == USB_SPEED_HIGH && 4762 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4763 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4764 xhci_free_command(xhci, config_cmd); 4765 spin_unlock_irqrestore(&xhci->lock, flags); 4766 return -ENOMEM; 4767 } 4768 4769 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4770 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4771 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4772 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4773 if (tt->multi) 4774 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4775 if (xhci->hci_version > 0x95) { 4776 xhci_dbg(xhci, "xHCI version %x needs hub " 4777 "TT think time and number of ports\n", 4778 (unsigned int) xhci->hci_version); 4779 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4780 /* Set TT think time - convert from ns to FS bit times. 4781 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4782 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4783 * 4784 * xHCI 1.0: this field shall be 0 if the device is not a 4785 * High-spped hub. 4786 */ 4787 think_time = tt->think_time; 4788 if (think_time != 0) 4789 think_time = (think_time / 666) - 1; 4790 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4791 slot_ctx->tt_info |= 4792 cpu_to_le32(TT_THINK_TIME(think_time)); 4793 } else { 4794 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4795 "TT think time or number of ports\n", 4796 (unsigned int) xhci->hci_version); 4797 } 4798 slot_ctx->dev_state = 0; 4799 spin_unlock_irqrestore(&xhci->lock, flags); 4800 4801 xhci_dbg(xhci, "Set up %s for hub device.\n", 4802 (xhci->hci_version > 0x95) ? 4803 "configure endpoint" : "evaluate context"); 4804 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4805 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4806 4807 /* Issue and wait for the configure endpoint or 4808 * evaluate context command. 4809 */ 4810 if (xhci->hci_version > 0x95) 4811 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4812 false, false); 4813 else 4814 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4815 true, false); 4816 4817 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4818 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4819 4820 xhci_free_command(xhci, config_cmd); 4821 return ret; 4822 } 4823 4824 int xhci_get_frame(struct usb_hcd *hcd) 4825 { 4826 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4827 /* EHCI mods by the periodic size. Why? */ 4828 return readl(&xhci->run_regs->microframe_index) >> 3; 4829 } 4830 4831 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4832 { 4833 struct xhci_hcd *xhci; 4834 struct device *dev = hcd->self.controller; 4835 int retval; 4836 4837 /* Accept arbitrarily long scatter-gather lists */ 4838 hcd->self.sg_tablesize = ~0; 4839 4840 /* support to build packet from discontinuous buffers */ 4841 hcd->self.no_sg_constraint = 1; 4842 4843 /* XHCI controllers don't stop the ep queue on short packets :| */ 4844 hcd->self.no_stop_on_short = 1; 4845 4846 if (usb_hcd_is_primary_hcd(hcd)) { 4847 xhci = hcd_to_xhci(hcd); 4848 xhci->main_hcd = hcd; 4849 /* Mark the first roothub as being USB 2.0. 4850 * The xHCI driver will register the USB 3.0 roothub. 4851 */ 4852 hcd->speed = HCD_USB2; 4853 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4854 /* 4855 * USB 2.0 roothub under xHCI has an integrated TT, 4856 * (rate matching hub) as opposed to having an OHCI/UHCI 4857 * companion controller. 4858 */ 4859 hcd->has_tt = 1; 4860 } else { 4861 /* xHCI private pointer was set in xhci_pci_probe for the second 4862 * registered roothub. 4863 */ 4864 return 0; 4865 } 4866 4867 mutex_init(&xhci->mutex); 4868 xhci->cap_regs = hcd->regs; 4869 xhci->op_regs = hcd->regs + 4870 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4871 xhci->run_regs = hcd->regs + 4872 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4873 /* Cache read-only capability registers */ 4874 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4875 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4876 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4877 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4878 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4879 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4880 xhci_print_registers(xhci); 4881 4882 xhci->quirks = quirks; 4883 4884 get_quirks(dev, xhci); 4885 4886 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4887 * success event after a short transfer. This quirk will ignore such 4888 * spurious event. 4889 */ 4890 if (xhci->hci_version > 0x96) 4891 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4892 4893 /* Make sure the HC is halted. */ 4894 retval = xhci_halt(xhci); 4895 if (retval) 4896 return retval; 4897 4898 xhci_dbg(xhci, "Resetting HCD\n"); 4899 /* Reset the internal HC memory state and registers. */ 4900 retval = xhci_reset(xhci); 4901 if (retval) 4902 return retval; 4903 xhci_dbg(xhci, "Reset complete\n"); 4904 4905 /* Set dma_mask and coherent_dma_mask to 64-bits, 4906 * if xHC supports 64-bit addressing */ 4907 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4908 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4909 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4910 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4911 } 4912 4913 xhci_dbg(xhci, "Calling HCD init\n"); 4914 /* Initialize HCD and host controller data structures. */ 4915 retval = xhci_init(hcd); 4916 if (retval) 4917 return retval; 4918 xhci_dbg(xhci, "Called HCD init\n"); 4919 4920 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4921 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4922 4923 return 0; 4924 } 4925 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4926 4927 static const struct hc_driver xhci_hc_driver = { 4928 .description = "xhci-hcd", 4929 .product_desc = "xHCI Host Controller", 4930 .hcd_priv_size = sizeof(struct xhci_hcd *), 4931 4932 /* 4933 * generic hardware linkage 4934 */ 4935 .irq = xhci_irq, 4936 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4937 4938 /* 4939 * basic lifecycle operations 4940 */ 4941 .reset = NULL, /* set in xhci_init_driver() */ 4942 .start = xhci_run, 4943 .stop = xhci_stop, 4944 .shutdown = xhci_shutdown, 4945 4946 /* 4947 * managing i/o requests and associated device resources 4948 */ 4949 .urb_enqueue = xhci_urb_enqueue, 4950 .urb_dequeue = xhci_urb_dequeue, 4951 .alloc_dev = xhci_alloc_dev, 4952 .free_dev = xhci_free_dev, 4953 .alloc_streams = xhci_alloc_streams, 4954 .free_streams = xhci_free_streams, 4955 .add_endpoint = xhci_add_endpoint, 4956 .drop_endpoint = xhci_drop_endpoint, 4957 .endpoint_reset = xhci_endpoint_reset, 4958 .check_bandwidth = xhci_check_bandwidth, 4959 .reset_bandwidth = xhci_reset_bandwidth, 4960 .address_device = xhci_address_device, 4961 .enable_device = xhci_enable_device, 4962 .update_hub_device = xhci_update_hub_device, 4963 .reset_device = xhci_discover_or_reset_device, 4964 4965 /* 4966 * scheduling support 4967 */ 4968 .get_frame_number = xhci_get_frame, 4969 4970 /* 4971 * root hub support 4972 */ 4973 .hub_control = xhci_hub_control, 4974 .hub_status_data = xhci_hub_status_data, 4975 .bus_suspend = xhci_bus_suspend, 4976 .bus_resume = xhci_bus_resume, 4977 4978 /* 4979 * call back when device connected and addressed 4980 */ 4981 .update_device = xhci_update_device, 4982 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4983 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4984 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4985 .find_raw_port_number = xhci_find_raw_port_number, 4986 }; 4987 4988 void xhci_init_driver(struct hc_driver *drv, 4989 const struct xhci_driver_overrides *over) 4990 { 4991 BUG_ON(!over); 4992 4993 /* Copy the generic table to drv then apply the overrides */ 4994 *drv = xhci_hc_driver; 4995 4996 if (over) { 4997 drv->hcd_priv_size += over->extra_priv_size; 4998 if (over->reset) 4999 drv->reset = over->reset; 5000 if (over->start) 5001 drv->start = over->start; 5002 } 5003 } 5004 EXPORT_SYMBOL_GPL(xhci_init_driver); 5005 5006 MODULE_DESCRIPTION(DRIVER_DESC); 5007 MODULE_AUTHOR(DRIVER_AUTHOR); 5008 MODULE_LICENSE("GPL"); 5009 5010 static int __init xhci_hcd_init(void) 5011 { 5012 /* 5013 * Check the compiler generated sizes of structures that must be laid 5014 * out in specific ways for hardware access. 5015 */ 5016 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5017 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5018 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5019 /* xhci_device_control has eight fields, and also 5020 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5021 */ 5022 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5023 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5024 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5025 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 5026 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5027 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5028 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5029 return 0; 5030 } 5031 5032 /* 5033 * If an init function is provided, an exit function must also be provided 5034 * to allow module unload. 5035 */ 5036 static void __exit xhci_hcd_fini(void) { } 5037 5038 module_init(xhci_hcd_init); 5039 module_exit(xhci_hcd_fini); 5040