xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 
67 	do {
68 		result = readl(ptr);
69 		if (result == ~(u32)0)		/* card removed */
70 			return -ENODEV;
71 		result &= mask;
72 		if (result == done)
73 			return 0;
74 		udelay(1);
75 		usec--;
76 	} while (usec > 0);
77 	return -ETIMEDOUT;
78 }
79 
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 	u32 halted;
86 	u32 cmd;
87 	u32 mask;
88 
89 	mask = ~(XHCI_IRQS);
90 	halted = readl(&xhci->op_regs->status) & STS_HALT;
91 	if (!halted)
92 		mask &= ~CMD_RUN;
93 
94 	cmd = readl(&xhci->op_regs->command);
95 	cmd &= mask;
96 	writel(cmd, &xhci->op_regs->command);
97 }
98 
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 	int ret;
110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 	xhci_quiesce(xhci);
112 
113 	ret = xhci_handshake(&xhci->op_regs->status,
114 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 	if (!ret) {
116 		xhci->xhc_state |= XHCI_STATE_HALTED;
117 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 	} else
119 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 				XHCI_MAX_HALT_USEC);
121 	return ret;
122 }
123 
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 	u32 temp;
130 	int ret;
131 
132 	temp = readl(&xhci->op_regs->command);
133 	temp |= (CMD_RUN);
134 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 			temp);
136 	writel(temp, &xhci->op_regs->command);
137 
138 	/*
139 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 	 * running.
141 	 */
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 	if (ret == -ETIMEDOUT)
145 		xhci_err(xhci, "Host took too long to start, "
146 				"waited %u microseconds.\n",
147 				XHCI_MAX_HALT_USEC);
148 	if (!ret)
149 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
150 	return ret;
151 }
152 
153 /*
154  * Reset a halted HC.
155  *
156  * This resets pipelines, timers, counters, state machines, etc.
157  * Transactions will be terminated immediately, and operational registers
158  * will be set to their defaults.
159  */
160 int xhci_reset(struct xhci_hcd *xhci)
161 {
162 	u32 command;
163 	u32 state;
164 	int ret, i;
165 
166 	state = readl(&xhci->op_regs->status);
167 	if ((state & STS_HALT) == 0) {
168 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
169 		return 0;
170 	}
171 
172 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
173 	command = readl(&xhci->op_regs->command);
174 	command |= CMD_RESET;
175 	writel(command, &xhci->op_regs->command);
176 
177 	ret = xhci_handshake(&xhci->op_regs->command,
178 			CMD_RESET, 0, 10 * 1000 * 1000);
179 	if (ret)
180 		return ret;
181 
182 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
183 			 "Wait for controller to be ready for doorbell rings");
184 	/*
185 	 * xHCI cannot write to any doorbells or operational registers other
186 	 * than status until the "Controller Not Ready" flag is cleared.
187 	 */
188 	ret = xhci_handshake(&xhci->op_regs->status,
189 			STS_CNR, 0, 10 * 1000 * 1000);
190 
191 	for (i = 0; i < 2; ++i) {
192 		xhci->bus_state[i].port_c_suspend = 0;
193 		xhci->bus_state[i].suspended_ports = 0;
194 		xhci->bus_state[i].resuming_ports = 0;
195 	}
196 
197 	return ret;
198 }
199 
200 #ifdef CONFIG_PCI
201 static int xhci_free_msi(struct xhci_hcd *xhci)
202 {
203 	int i;
204 
205 	if (!xhci->msix_entries)
206 		return -EINVAL;
207 
208 	for (i = 0; i < xhci->msix_count; i++)
209 		if (xhci->msix_entries[i].vector)
210 			free_irq(xhci->msix_entries[i].vector,
211 					xhci_to_hcd(xhci));
212 	return 0;
213 }
214 
215 /*
216  * Set up MSI
217  */
218 static int xhci_setup_msi(struct xhci_hcd *xhci)
219 {
220 	int ret;
221 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
222 
223 	ret = pci_enable_msi(pdev);
224 	if (ret) {
225 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
226 				"failed to allocate MSI entry");
227 		return ret;
228 	}
229 
230 	ret = request_irq(pdev->irq, xhci_msi_irq,
231 				0, "xhci_hcd", xhci_to_hcd(xhci));
232 	if (ret) {
233 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
234 				"disable MSI interrupt");
235 		pci_disable_msi(pdev);
236 	}
237 
238 	return ret;
239 }
240 
241 /*
242  * Free IRQs
243  * free all IRQs request
244  */
245 static void xhci_free_irq(struct xhci_hcd *xhci)
246 {
247 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
248 	int ret;
249 
250 	/* return if using legacy interrupt */
251 	if (xhci_to_hcd(xhci)->irq > 0)
252 		return;
253 
254 	ret = xhci_free_msi(xhci);
255 	if (!ret)
256 		return;
257 	if (pdev->irq > 0)
258 		free_irq(pdev->irq, xhci_to_hcd(xhci));
259 
260 	return;
261 }
262 
263 /*
264  * Set up MSI-X
265  */
266 static int xhci_setup_msix(struct xhci_hcd *xhci)
267 {
268 	int i, ret = 0;
269 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
270 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
271 
272 	/*
273 	 * calculate number of msi-x vectors supported.
274 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
275 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
276 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
277 	 *   Add additional 1 vector to ensure always available interrupt.
278 	 */
279 	xhci->msix_count = min(num_online_cpus() + 1,
280 				HCS_MAX_INTRS(xhci->hcs_params1));
281 
282 	xhci->msix_entries =
283 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
284 				GFP_KERNEL);
285 	if (!xhci->msix_entries) {
286 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
287 		return -ENOMEM;
288 	}
289 
290 	for (i = 0; i < xhci->msix_count; i++) {
291 		xhci->msix_entries[i].entry = i;
292 		xhci->msix_entries[i].vector = 0;
293 	}
294 
295 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
296 	if (ret) {
297 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
298 				"Failed to enable MSI-X");
299 		goto free_entries;
300 	}
301 
302 	for (i = 0; i < xhci->msix_count; i++) {
303 		ret = request_irq(xhci->msix_entries[i].vector,
304 				xhci_msi_irq,
305 				0, "xhci_hcd", xhci_to_hcd(xhci));
306 		if (ret)
307 			goto disable_msix;
308 	}
309 
310 	hcd->msix_enabled = 1;
311 	return ret;
312 
313 disable_msix:
314 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
315 	xhci_free_irq(xhci);
316 	pci_disable_msix(pdev);
317 free_entries:
318 	kfree(xhci->msix_entries);
319 	xhci->msix_entries = NULL;
320 	return ret;
321 }
322 
323 /* Free any IRQs and disable MSI-X */
324 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
325 {
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328 
329 	if (xhci->quirks & XHCI_PLAT)
330 		return;
331 
332 	xhci_free_irq(xhci);
333 
334 	if (xhci->msix_entries) {
335 		pci_disable_msix(pdev);
336 		kfree(xhci->msix_entries);
337 		xhci->msix_entries = NULL;
338 	} else {
339 		pci_disable_msi(pdev);
340 	}
341 
342 	hcd->msix_enabled = 0;
343 	return;
344 }
345 
346 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
347 {
348 	int i;
349 
350 	if (xhci->msix_entries) {
351 		for (i = 0; i < xhci->msix_count; i++)
352 			synchronize_irq(xhci->msix_entries[i].vector);
353 	}
354 }
355 
356 static int xhci_try_enable_msi(struct usb_hcd *hcd)
357 {
358 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
359 	struct pci_dev  *pdev;
360 	int ret;
361 
362 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
363 	if (xhci->quirks & XHCI_PLAT)
364 		return 0;
365 
366 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
367 	/*
368 	 * Some Fresco Logic host controllers advertise MSI, but fail to
369 	 * generate interrupts.  Don't even try to enable MSI.
370 	 */
371 	if (xhci->quirks & XHCI_BROKEN_MSI)
372 		goto legacy_irq;
373 
374 	/* unregister the legacy interrupt */
375 	if (hcd->irq)
376 		free_irq(hcd->irq, hcd);
377 	hcd->irq = 0;
378 
379 	ret = xhci_setup_msix(xhci);
380 	if (ret)
381 		/* fall back to msi*/
382 		ret = xhci_setup_msi(xhci);
383 
384 	if (!ret)
385 		/* hcd->irq is 0, we have MSI */
386 		return 0;
387 
388 	if (!pdev->irq) {
389 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
390 		return -EINVAL;
391 	}
392 
393  legacy_irq:
394 	if (!strlen(hcd->irq_descr))
395 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
396 			 hcd->driver->description, hcd->self.busnum);
397 
398 	/* fall back to legacy interrupt*/
399 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
400 			hcd->irq_descr, hcd);
401 	if (ret) {
402 		xhci_err(xhci, "request interrupt %d failed\n",
403 				pdev->irq);
404 		return ret;
405 	}
406 	hcd->irq = pdev->irq;
407 	return 0;
408 }
409 
410 #else
411 
412 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
413 {
414 	return 0;
415 }
416 
417 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
418 {
419 }
420 
421 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
422 {
423 }
424 
425 #endif
426 
427 static void compliance_mode_recovery(unsigned long arg)
428 {
429 	struct xhci_hcd *xhci;
430 	struct usb_hcd *hcd;
431 	u32 temp;
432 	int i;
433 
434 	xhci = (struct xhci_hcd *)arg;
435 
436 	for (i = 0; i < xhci->num_usb3_ports; i++) {
437 		temp = readl(xhci->usb3_ports[i]);
438 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
439 			/*
440 			 * Compliance Mode Detected. Letting USB Core
441 			 * handle the Warm Reset
442 			 */
443 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
444 					"Compliance mode detected->port %d",
445 					i + 1);
446 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
447 					"Attempting compliance mode recovery");
448 			hcd = xhci->shared_hcd;
449 
450 			if (hcd->state == HC_STATE_SUSPENDED)
451 				usb_hcd_resume_root_hub(hcd);
452 
453 			usb_hcd_poll_rh_status(hcd);
454 		}
455 	}
456 
457 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
458 		mod_timer(&xhci->comp_mode_recovery_timer,
459 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
460 }
461 
462 /*
463  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
464  * that causes ports behind that hardware to enter compliance mode sometimes.
465  * The quirk creates a timer that polls every 2 seconds the link state of
466  * each host controller's port and recovers it by issuing a Warm reset
467  * if Compliance mode is detected, otherwise the port will become "dead" (no
468  * device connections or disconnections will be detected anymore). Becasue no
469  * status event is generated when entering compliance mode (per xhci spec),
470  * this quirk is needed on systems that have the failing hardware installed.
471  */
472 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
473 {
474 	xhci->port_status_u0 = 0;
475 	setup_timer(&xhci->comp_mode_recovery_timer,
476 		    compliance_mode_recovery, (unsigned long)xhci);
477 	xhci->comp_mode_recovery_timer.expires = jiffies +
478 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
479 
480 	set_timer_slack(&xhci->comp_mode_recovery_timer,
481 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
482 	add_timer(&xhci->comp_mode_recovery_timer);
483 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
484 			"Compliance mode recovery timer initialized");
485 }
486 
487 /*
488  * This function identifies the systems that have installed the SN65LVPE502CP
489  * USB3.0 re-driver and that need the Compliance Mode Quirk.
490  * Systems:
491  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
492  */
493 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
494 {
495 	const char *dmi_product_name, *dmi_sys_vendor;
496 
497 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
498 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
499 	if (!dmi_product_name || !dmi_sys_vendor)
500 		return false;
501 
502 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
503 		return false;
504 
505 	if (strstr(dmi_product_name, "Z420") ||
506 			strstr(dmi_product_name, "Z620") ||
507 			strstr(dmi_product_name, "Z820") ||
508 			strstr(dmi_product_name, "Z1 Workstation"))
509 		return true;
510 
511 	return false;
512 }
513 
514 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
515 {
516 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
517 }
518 
519 
520 /*
521  * Initialize memory for HCD and xHC (one-time init).
522  *
523  * Program the PAGESIZE register, initialize the device context array, create
524  * device contexts (?), set up a command ring segment (or two?), create event
525  * ring (one for now).
526  */
527 int xhci_init(struct usb_hcd *hcd)
528 {
529 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
530 	int retval = 0;
531 
532 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
533 	spin_lock_init(&xhci->lock);
534 	if (xhci->hci_version == 0x95 && link_quirk) {
535 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536 				"QUIRK: Not clearing Link TRB chain bits.");
537 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
538 	} else {
539 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 				"xHCI doesn't need link TRB QUIRK");
541 	}
542 	retval = xhci_mem_init(xhci, GFP_KERNEL);
543 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
544 
545 	/* Initializing Compliance Mode Recovery Data If Needed */
546 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
547 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
548 		compliance_mode_recovery_timer_init(xhci);
549 	}
550 
551 	return retval;
552 }
553 
554 /*-------------------------------------------------------------------------*/
555 
556 
557 static int xhci_run_finished(struct xhci_hcd *xhci)
558 {
559 	if (xhci_start(xhci)) {
560 		xhci_halt(xhci);
561 		return -ENODEV;
562 	}
563 	xhci->shared_hcd->state = HC_STATE_RUNNING;
564 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
565 
566 	if (xhci->quirks & XHCI_NEC_HOST)
567 		xhci_ring_cmd_db(xhci);
568 
569 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
570 			"Finished xhci_run for USB3 roothub");
571 	return 0;
572 }
573 
574 /*
575  * Start the HC after it was halted.
576  *
577  * This function is called by the USB core when the HC driver is added.
578  * Its opposite is xhci_stop().
579  *
580  * xhci_init() must be called once before this function can be called.
581  * Reset the HC, enable device slot contexts, program DCBAAP, and
582  * set command ring pointer and event ring pointer.
583  *
584  * Setup MSI-X vectors and enable interrupts.
585  */
586 int xhci_run(struct usb_hcd *hcd)
587 {
588 	u32 temp;
589 	u64 temp_64;
590 	int ret;
591 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
592 
593 	/* Start the xHCI host controller running only after the USB 2.0 roothub
594 	 * is setup.
595 	 */
596 
597 	hcd->uses_new_polling = 1;
598 	if (!usb_hcd_is_primary_hcd(hcd))
599 		return xhci_run_finished(xhci);
600 
601 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
602 
603 	ret = xhci_try_enable_msi(hcd);
604 	if (ret)
605 		return ret;
606 
607 	xhci_dbg(xhci, "Command ring memory map follows:\n");
608 	xhci_debug_ring(xhci, xhci->cmd_ring);
609 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
610 	xhci_dbg_cmd_ptrs(xhci);
611 
612 	xhci_dbg(xhci, "ERST memory map follows:\n");
613 	xhci_dbg_erst(xhci, &xhci->erst);
614 	xhci_dbg(xhci, "Event ring:\n");
615 	xhci_debug_ring(xhci, xhci->event_ring);
616 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
617 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
618 	temp_64 &= ~ERST_PTR_MASK;
619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
621 
622 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 			"// Set the interrupt modulation register");
624 	temp = readl(&xhci->ir_set->irq_control);
625 	temp &= ~ER_IRQ_INTERVAL_MASK;
626 	temp |= (u32) 160;
627 	writel(temp, &xhci->ir_set->irq_control);
628 
629 	/* Set the HCD state before we enable the irqs */
630 	temp = readl(&xhci->op_regs->command);
631 	temp |= (CMD_EIE);
632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 			"// Enable interrupts, cmd = 0x%x.", temp);
634 	writel(temp, &xhci->op_regs->command);
635 
636 	temp = readl(&xhci->ir_set->irq_pending);
637 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
639 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
640 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
641 	xhci_print_ir_set(xhci, 0);
642 
643 	if (xhci->quirks & XHCI_NEC_HOST) {
644 		struct xhci_command *command;
645 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
646 		if (!command)
647 			return -ENOMEM;
648 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
649 				TRB_TYPE(TRB_NEC_GET_FW));
650 	}
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 			"Finished xhci_run for USB2 roothub");
653 	return 0;
654 }
655 EXPORT_SYMBOL_GPL(xhci_run);
656 
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660 
661 	spin_lock_irq(&xhci->lock);
662 	xhci_halt(xhci);
663 	spin_unlock_irq(&xhci->lock);
664 }
665 
666 /*
667  * Stop xHCI driver.
668  *
669  * This function is called by the USB core when the HC driver is removed.
670  * Its opposite is xhci_run().
671  *
672  * Disable device contexts, disable IRQs, and quiesce the HC.
673  * Reset the HC, finish any completed transactions, and cleanup memory.
674  */
675 void xhci_stop(struct usb_hcd *hcd)
676 {
677 	u32 temp;
678 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679 
680 	if (!usb_hcd_is_primary_hcd(hcd)) {
681 		xhci_only_stop_hcd(xhci->shared_hcd);
682 		return;
683 	}
684 
685 	spin_lock_irq(&xhci->lock);
686 	/* Make sure the xHC is halted for a USB3 roothub
687 	 * (xhci_stop() could be called as part of failed init).
688 	 */
689 	xhci_halt(xhci);
690 	xhci_reset(xhci);
691 	spin_unlock_irq(&xhci->lock);
692 
693 	xhci_cleanup_msix(xhci);
694 
695 	/* Deleting Compliance Mode Recovery Timer */
696 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
697 			(!(xhci_all_ports_seen_u0(xhci)))) {
698 		del_timer_sync(&xhci->comp_mode_recovery_timer);
699 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
700 				"%s: compliance mode recovery timer deleted",
701 				__func__);
702 	}
703 
704 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
705 		usb_amd_dev_put();
706 
707 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 			"// Disabling event ring interrupts");
709 	temp = readl(&xhci->op_regs->status);
710 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
711 	temp = readl(&xhci->ir_set->irq_pending);
712 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
713 	xhci_print_ir_set(xhci, 0);
714 
715 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
716 	xhci_mem_cleanup(xhci);
717 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718 			"xhci_stop completed - status = %x",
719 			readl(&xhci->op_regs->status));
720 }
721 
722 /*
723  * Shutdown HC (not bus-specific)
724  *
725  * This is called when the machine is rebooting or halting.  We assume that the
726  * machine will be powered off, and the HC's internal state will be reset.
727  * Don't bother to free memory.
728  *
729  * This will only ever be called with the main usb_hcd (the USB3 roothub).
730  */
731 void xhci_shutdown(struct usb_hcd *hcd)
732 {
733 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
734 
735 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
736 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
737 
738 	spin_lock_irq(&xhci->lock);
739 	xhci_halt(xhci);
740 	/* Workaround for spurious wakeups at shutdown with HSW */
741 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
742 		xhci_reset(xhci);
743 	spin_unlock_irq(&xhci->lock);
744 
745 	xhci_cleanup_msix(xhci);
746 
747 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
748 			"xhci_shutdown completed - status = %x",
749 			readl(&xhci->op_regs->status));
750 
751 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
752 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
754 }
755 
756 #ifdef CONFIG_PM
757 static void xhci_save_registers(struct xhci_hcd *xhci)
758 {
759 	xhci->s3.command = readl(&xhci->op_regs->command);
760 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
761 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
762 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
763 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
764 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
765 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
766 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
767 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
768 }
769 
770 static void xhci_restore_registers(struct xhci_hcd *xhci)
771 {
772 	writel(xhci->s3.command, &xhci->op_regs->command);
773 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
774 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
775 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
776 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
777 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
778 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
779 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
780 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
781 }
782 
783 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
784 {
785 	u64	val_64;
786 
787 	/* step 2: initialize command ring buffer */
788 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
789 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
790 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
791 				      xhci->cmd_ring->dequeue) &
792 		 (u64) ~CMD_RING_RSVD_BITS) |
793 		xhci->cmd_ring->cycle_state;
794 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
795 			"// Setting command ring address to 0x%llx",
796 			(long unsigned long) val_64);
797 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
798 }
799 
800 /*
801  * The whole command ring must be cleared to zero when we suspend the host.
802  *
803  * The host doesn't save the command ring pointer in the suspend well, so we
804  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
805  * aligned, because of the reserved bits in the command ring dequeue pointer
806  * register.  Therefore, we can't just set the dequeue pointer back in the
807  * middle of the ring (TRBs are 16-byte aligned).
808  */
809 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
810 {
811 	struct xhci_ring *ring;
812 	struct xhci_segment *seg;
813 
814 	ring = xhci->cmd_ring;
815 	seg = ring->deq_seg;
816 	do {
817 		memset(seg->trbs, 0,
818 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
819 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
820 			cpu_to_le32(~TRB_CYCLE);
821 		seg = seg->next;
822 	} while (seg != ring->deq_seg);
823 
824 	/* Reset the software enqueue and dequeue pointers */
825 	ring->deq_seg = ring->first_seg;
826 	ring->dequeue = ring->first_seg->trbs;
827 	ring->enq_seg = ring->deq_seg;
828 	ring->enqueue = ring->dequeue;
829 
830 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
831 	/*
832 	 * Ring is now zeroed, so the HW should look for change of ownership
833 	 * when the cycle bit is set to 1.
834 	 */
835 	ring->cycle_state = 1;
836 
837 	/*
838 	 * Reset the hardware dequeue pointer.
839 	 * Yes, this will need to be re-written after resume, but we're paranoid
840 	 * and want to make sure the hardware doesn't access bogus memory
841 	 * because, say, the BIOS or an SMI started the host without changing
842 	 * the command ring pointers.
843 	 */
844 	xhci_set_cmd_ring_deq(xhci);
845 }
846 
847 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
848 {
849 	int port_index;
850 	__le32 __iomem **port_array;
851 	unsigned long flags;
852 	u32 t1, t2;
853 
854 	spin_lock_irqsave(&xhci->lock, flags);
855 
856 	/* disble usb3 ports Wake bits*/
857 	port_index = xhci->num_usb3_ports;
858 	port_array = xhci->usb3_ports;
859 	while (port_index--) {
860 		t1 = readl(port_array[port_index]);
861 		t1 = xhci_port_state_to_neutral(t1);
862 		t2 = t1 & ~PORT_WAKE_BITS;
863 		if (t1 != t2)
864 			writel(t2, port_array[port_index]);
865 	}
866 
867 	/* disble usb2 ports Wake bits*/
868 	port_index = xhci->num_usb2_ports;
869 	port_array = xhci->usb2_ports;
870 	while (port_index--) {
871 		t1 = readl(port_array[port_index]);
872 		t1 = xhci_port_state_to_neutral(t1);
873 		t2 = t1 & ~PORT_WAKE_BITS;
874 		if (t1 != t2)
875 			writel(t2, port_array[port_index]);
876 	}
877 
878 	spin_unlock_irqrestore(&xhci->lock, flags);
879 }
880 
881 /*
882  * Stop HC (not bus-specific)
883  *
884  * This is called when the machine transition into S3/S4 mode.
885  *
886  */
887 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
888 {
889 	int			rc = 0;
890 	unsigned int		delay = XHCI_MAX_HALT_USEC;
891 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
892 	u32			command;
893 
894 	if (!hcd->state)
895 		return 0;
896 
897 	if (hcd->state != HC_STATE_SUSPENDED ||
898 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
899 		return -EINVAL;
900 
901 	/* Clear root port wake on bits if wakeup not allowed. */
902 	if (!do_wakeup)
903 		xhci_disable_port_wake_on_bits(xhci);
904 
905 	/* Don't poll the roothubs on bus suspend. */
906 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
907 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
908 	del_timer_sync(&hcd->rh_timer);
909 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
910 	del_timer_sync(&xhci->shared_hcd->rh_timer);
911 
912 	spin_lock_irq(&xhci->lock);
913 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
914 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
915 	/* step 1: stop endpoint */
916 	/* skipped assuming that port suspend has done */
917 
918 	/* step 2: clear Run/Stop bit */
919 	command = readl(&xhci->op_regs->command);
920 	command &= ~CMD_RUN;
921 	writel(command, &xhci->op_regs->command);
922 
923 	/* Some chips from Fresco Logic need an extraordinary delay */
924 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
925 
926 	if (xhci_handshake(&xhci->op_regs->status,
927 		      STS_HALT, STS_HALT, delay)) {
928 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
929 		spin_unlock_irq(&xhci->lock);
930 		return -ETIMEDOUT;
931 	}
932 	xhci_clear_command_ring(xhci);
933 
934 	/* step 3: save registers */
935 	xhci_save_registers(xhci);
936 
937 	/* step 4: set CSS flag */
938 	command = readl(&xhci->op_regs->command);
939 	command |= CMD_CSS;
940 	writel(command, &xhci->op_regs->command);
941 	if (xhci_handshake(&xhci->op_regs->status,
942 				STS_SAVE, 0, 10 * 1000)) {
943 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
944 		spin_unlock_irq(&xhci->lock);
945 		return -ETIMEDOUT;
946 	}
947 	spin_unlock_irq(&xhci->lock);
948 
949 	/*
950 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
951 	 * is about to be suspended.
952 	 */
953 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
954 			(!(xhci_all_ports_seen_u0(xhci)))) {
955 		del_timer_sync(&xhci->comp_mode_recovery_timer);
956 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
957 				"%s: compliance mode recovery timer deleted",
958 				__func__);
959 	}
960 
961 	/* step 5: remove core well power */
962 	/* synchronize irq when using MSI-X */
963 	xhci_msix_sync_irqs(xhci);
964 
965 	return rc;
966 }
967 EXPORT_SYMBOL_GPL(xhci_suspend);
968 
969 /*
970  * start xHC (not bus-specific)
971  *
972  * This is called when the machine transition from S3/S4 mode.
973  *
974  */
975 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
976 {
977 	u32			command, temp = 0, status;
978 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
979 	struct usb_hcd		*secondary_hcd;
980 	int			retval = 0;
981 	bool			comp_timer_running = false;
982 
983 	if (!hcd->state)
984 		return 0;
985 
986 	/* Wait a bit if either of the roothubs need to settle from the
987 	 * transition into bus suspend.
988 	 */
989 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
990 			time_before(jiffies,
991 				xhci->bus_state[1].next_statechange))
992 		msleep(100);
993 
994 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
995 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
996 
997 	spin_lock_irq(&xhci->lock);
998 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
999 		hibernated = true;
1000 
1001 	if (!hibernated) {
1002 		/* step 1: restore register */
1003 		xhci_restore_registers(xhci);
1004 		/* step 2: initialize command ring buffer */
1005 		xhci_set_cmd_ring_deq(xhci);
1006 		/* step 3: restore state and start state*/
1007 		/* step 3: set CRS flag */
1008 		command = readl(&xhci->op_regs->command);
1009 		command |= CMD_CRS;
1010 		writel(command, &xhci->op_regs->command);
1011 		if (xhci_handshake(&xhci->op_regs->status,
1012 			      STS_RESTORE, 0, 10 * 1000)) {
1013 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1014 			spin_unlock_irq(&xhci->lock);
1015 			return -ETIMEDOUT;
1016 		}
1017 		temp = readl(&xhci->op_regs->status);
1018 	}
1019 
1020 	/* If restore operation fails, re-initialize the HC during resume */
1021 	if ((temp & STS_SRE) || hibernated) {
1022 
1023 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1024 				!(xhci_all_ports_seen_u0(xhci))) {
1025 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1026 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1027 				"Compliance Mode Recovery Timer deleted!");
1028 		}
1029 
1030 		/* Let the USB core know _both_ roothubs lost power. */
1031 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1032 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1033 
1034 		xhci_dbg(xhci, "Stop HCD\n");
1035 		xhci_halt(xhci);
1036 		xhci_reset(xhci);
1037 		spin_unlock_irq(&xhci->lock);
1038 		xhci_cleanup_msix(xhci);
1039 
1040 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1041 		temp = readl(&xhci->op_regs->status);
1042 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1043 		temp = readl(&xhci->ir_set->irq_pending);
1044 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1045 		xhci_print_ir_set(xhci, 0);
1046 
1047 		xhci_dbg(xhci, "cleaning up memory\n");
1048 		xhci_mem_cleanup(xhci);
1049 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1050 			    readl(&xhci->op_regs->status));
1051 
1052 		/* USB core calls the PCI reinit and start functions twice:
1053 		 * first with the primary HCD, and then with the secondary HCD.
1054 		 * If we don't do the same, the host will never be started.
1055 		 */
1056 		if (!usb_hcd_is_primary_hcd(hcd))
1057 			secondary_hcd = hcd;
1058 		else
1059 			secondary_hcd = xhci->shared_hcd;
1060 
1061 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1062 		retval = xhci_init(hcd->primary_hcd);
1063 		if (retval)
1064 			return retval;
1065 		comp_timer_running = true;
1066 
1067 		xhci_dbg(xhci, "Start the primary HCD\n");
1068 		retval = xhci_run(hcd->primary_hcd);
1069 		if (!retval) {
1070 			xhci_dbg(xhci, "Start the secondary HCD\n");
1071 			retval = xhci_run(secondary_hcd);
1072 		}
1073 		hcd->state = HC_STATE_SUSPENDED;
1074 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1075 		goto done;
1076 	}
1077 
1078 	/* step 4: set Run/Stop bit */
1079 	command = readl(&xhci->op_regs->command);
1080 	command |= CMD_RUN;
1081 	writel(command, &xhci->op_regs->command);
1082 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1083 		  0, 250 * 1000);
1084 
1085 	/* step 5: walk topology and initialize portsc,
1086 	 * portpmsc and portli
1087 	 */
1088 	/* this is done in bus_resume */
1089 
1090 	/* step 6: restart each of the previously
1091 	 * Running endpoints by ringing their doorbells
1092 	 */
1093 
1094 	spin_unlock_irq(&xhci->lock);
1095 
1096  done:
1097 	if (retval == 0) {
1098 		/* Resume root hubs only when have pending events. */
1099 		status = readl(&xhci->op_regs->status);
1100 		if (status & STS_EINT) {
1101 			usb_hcd_resume_root_hub(hcd);
1102 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1108 	 * be re-initialized Always after a system resume. Ports are subject
1109 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1110 	 * ports have entered previously to U0 before system's suspension.
1111 	 */
1112 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1113 		compliance_mode_recovery_timer_init(xhci);
1114 
1115 	/* Re-enable port polling. */
1116 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1117 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1118 	usb_hcd_poll_rh_status(hcd);
1119 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1120 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1121 
1122 	return retval;
1123 }
1124 EXPORT_SYMBOL_GPL(xhci_resume);
1125 #endif	/* CONFIG_PM */
1126 
1127 /*-------------------------------------------------------------------------*/
1128 
1129 /**
1130  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1131  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1132  * value to right shift 1 for the bitmask.
1133  *
1134  * Index  = (epnum * 2) + direction - 1,
1135  * where direction = 0 for OUT, 1 for IN.
1136  * For control endpoints, the IN index is used (OUT index is unused), so
1137  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1138  */
1139 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1140 {
1141 	unsigned int index;
1142 	if (usb_endpoint_xfer_control(desc))
1143 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1144 	else
1145 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1146 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1147 	return index;
1148 }
1149 
1150 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1151  * address from the XHCI endpoint index.
1152  */
1153 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1154 {
1155 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1156 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1157 	return direction | number;
1158 }
1159 
1160 /* Find the flag for this endpoint (for use in the control context).  Use the
1161  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1162  * bit 1, etc.
1163  */
1164 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1165 {
1166 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1167 }
1168 
1169 /* Find the flag for this endpoint (for use in the control context).  Use the
1170  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1171  * bit 1, etc.
1172  */
1173 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1174 {
1175 	return 1 << (ep_index + 1);
1176 }
1177 
1178 /* Compute the last valid endpoint context index.  Basically, this is the
1179  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1180  * we find the most significant bit set in the added contexts flags.
1181  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1182  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1183  */
1184 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1185 {
1186 	return fls(added_ctxs) - 1;
1187 }
1188 
1189 /* Returns 1 if the arguments are OK;
1190  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1191  */
1192 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1193 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1194 		const char *func) {
1195 	struct xhci_hcd	*xhci;
1196 	struct xhci_virt_device	*virt_dev;
1197 
1198 	if (!hcd || (check_ep && !ep) || !udev) {
1199 		pr_debug("xHCI %s called with invalid args\n", func);
1200 		return -EINVAL;
1201 	}
1202 	if (!udev->parent) {
1203 		pr_debug("xHCI %s called for root hub\n", func);
1204 		return 0;
1205 	}
1206 
1207 	xhci = hcd_to_xhci(hcd);
1208 	if (check_virt_dev) {
1209 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1210 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1211 					func);
1212 			return -EINVAL;
1213 		}
1214 
1215 		virt_dev = xhci->devs[udev->slot_id];
1216 		if (virt_dev->udev != udev) {
1217 			xhci_dbg(xhci, "xHCI %s called with udev and "
1218 					  "virt_dev does not match\n", func);
1219 			return -EINVAL;
1220 		}
1221 	}
1222 
1223 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1224 		return -ENODEV;
1225 
1226 	return 1;
1227 }
1228 
1229 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1230 		struct usb_device *udev, struct xhci_command *command,
1231 		bool ctx_change, bool must_succeed);
1232 
1233 /*
1234  * Full speed devices may have a max packet size greater than 8 bytes, but the
1235  * USB core doesn't know that until it reads the first 8 bytes of the
1236  * descriptor.  If the usb_device's max packet size changes after that point,
1237  * we need to issue an evaluate context command and wait on it.
1238  */
1239 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1240 		unsigned int ep_index, struct urb *urb)
1241 {
1242 	struct xhci_container_ctx *out_ctx;
1243 	struct xhci_input_control_ctx *ctrl_ctx;
1244 	struct xhci_ep_ctx *ep_ctx;
1245 	struct xhci_command *command;
1246 	int max_packet_size;
1247 	int hw_max_packet_size;
1248 	int ret = 0;
1249 
1250 	out_ctx = xhci->devs[slot_id]->out_ctx;
1251 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1252 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1253 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1254 	if (hw_max_packet_size != max_packet_size) {
1255 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1256 				"Max Packet Size for ep 0 changed.");
1257 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1258 				"Max packet size in usb_device = %d",
1259 				max_packet_size);
1260 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261 				"Max packet size in xHCI HW = %d",
1262 				hw_max_packet_size);
1263 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264 				"Issuing evaluate context command.");
1265 
1266 		/* Set up the input context flags for the command */
1267 		/* FIXME: This won't work if a non-default control endpoint
1268 		 * changes max packet sizes.
1269 		 */
1270 
1271 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1272 		if (!command)
1273 			return -ENOMEM;
1274 
1275 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1276 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1277 		if (!ctrl_ctx) {
1278 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1279 					__func__);
1280 			ret = -ENOMEM;
1281 			goto command_cleanup;
1282 		}
1283 		/* Set up the modified control endpoint 0 */
1284 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1285 				xhci->devs[slot_id]->out_ctx, ep_index);
1286 
1287 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1288 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1289 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1290 
1291 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1292 		ctrl_ctx->drop_flags = 0;
1293 
1294 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1295 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1296 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1297 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1298 
1299 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1300 				true, false);
1301 
1302 		/* Clean up the input context for later use by bandwidth
1303 		 * functions.
1304 		 */
1305 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1306 command_cleanup:
1307 		kfree(command->completion);
1308 		kfree(command);
1309 	}
1310 	return ret;
1311 }
1312 
1313 /*
1314  * non-error returns are a promise to giveback() the urb later
1315  * we drop ownership so next owner (or urb unlink) can get it
1316  */
1317 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1318 {
1319 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1320 	struct xhci_td *buffer;
1321 	unsigned long flags;
1322 	int ret = 0;
1323 	unsigned int slot_id, ep_index;
1324 	struct urb_priv	*urb_priv;
1325 	int size, i;
1326 
1327 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1328 					true, true, __func__) <= 0)
1329 		return -EINVAL;
1330 
1331 	slot_id = urb->dev->slot_id;
1332 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1333 
1334 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1335 		if (!in_interrupt())
1336 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1337 		ret = -ESHUTDOWN;
1338 		goto exit;
1339 	}
1340 
1341 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1342 		size = urb->number_of_packets;
1343 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1344 	    urb->transfer_buffer_length > 0 &&
1345 	    urb->transfer_flags & URB_ZERO_PACKET &&
1346 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1347 		size = 2;
1348 	else
1349 		size = 1;
1350 
1351 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1352 				  size * sizeof(struct xhci_td *), mem_flags);
1353 	if (!urb_priv)
1354 		return -ENOMEM;
1355 
1356 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1357 	if (!buffer) {
1358 		kfree(urb_priv);
1359 		return -ENOMEM;
1360 	}
1361 
1362 	for (i = 0; i < size; i++) {
1363 		urb_priv->td[i] = buffer;
1364 		buffer++;
1365 	}
1366 
1367 	urb_priv->length = size;
1368 	urb_priv->td_cnt = 0;
1369 	urb->hcpriv = urb_priv;
1370 
1371 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1372 		/* Check to see if the max packet size for the default control
1373 		 * endpoint changed during FS device enumeration
1374 		 */
1375 		if (urb->dev->speed == USB_SPEED_FULL) {
1376 			ret = xhci_check_maxpacket(xhci, slot_id,
1377 					ep_index, urb);
1378 			if (ret < 0) {
1379 				xhci_urb_free_priv(urb_priv);
1380 				urb->hcpriv = NULL;
1381 				return ret;
1382 			}
1383 		}
1384 
1385 		/* We have a spinlock and interrupts disabled, so we must pass
1386 		 * atomic context to this function, which may allocate memory.
1387 		 */
1388 		spin_lock_irqsave(&xhci->lock, flags);
1389 		if (xhci->xhc_state & XHCI_STATE_DYING)
1390 			goto dying;
1391 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1392 				slot_id, ep_index);
1393 		if (ret)
1394 			goto free_priv;
1395 		spin_unlock_irqrestore(&xhci->lock, flags);
1396 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1397 		spin_lock_irqsave(&xhci->lock, flags);
1398 		if (xhci->xhc_state & XHCI_STATE_DYING)
1399 			goto dying;
1400 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1401 				EP_GETTING_STREAMS) {
1402 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1403 					"is transitioning to using streams.\n");
1404 			ret = -EINVAL;
1405 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1406 				EP_GETTING_NO_STREAMS) {
1407 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1408 					"is transitioning to "
1409 					"not having streams.\n");
1410 			ret = -EINVAL;
1411 		} else {
1412 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1413 					slot_id, ep_index);
1414 		}
1415 		if (ret)
1416 			goto free_priv;
1417 		spin_unlock_irqrestore(&xhci->lock, flags);
1418 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1419 		spin_lock_irqsave(&xhci->lock, flags);
1420 		if (xhci->xhc_state & XHCI_STATE_DYING)
1421 			goto dying;
1422 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1423 				slot_id, ep_index);
1424 		if (ret)
1425 			goto free_priv;
1426 		spin_unlock_irqrestore(&xhci->lock, flags);
1427 	} else {
1428 		spin_lock_irqsave(&xhci->lock, flags);
1429 		if (xhci->xhc_state & XHCI_STATE_DYING)
1430 			goto dying;
1431 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1432 				slot_id, ep_index);
1433 		if (ret)
1434 			goto free_priv;
1435 		spin_unlock_irqrestore(&xhci->lock, flags);
1436 	}
1437 exit:
1438 	return ret;
1439 dying:
1440 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1441 			"non-responsive xHCI host.\n",
1442 			urb->ep->desc.bEndpointAddress, urb);
1443 	ret = -ESHUTDOWN;
1444 free_priv:
1445 	xhci_urb_free_priv(urb_priv);
1446 	urb->hcpriv = NULL;
1447 	spin_unlock_irqrestore(&xhci->lock, flags);
1448 	return ret;
1449 }
1450 
1451 /* Get the right ring for the given URB.
1452  * If the endpoint supports streams, boundary check the URB's stream ID.
1453  * If the endpoint doesn't support streams, return the singular endpoint ring.
1454  */
1455 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1456 		struct urb *urb)
1457 {
1458 	unsigned int slot_id;
1459 	unsigned int ep_index;
1460 	unsigned int stream_id;
1461 	struct xhci_virt_ep *ep;
1462 
1463 	slot_id = urb->dev->slot_id;
1464 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1465 	stream_id = urb->stream_id;
1466 	ep = &xhci->devs[slot_id]->eps[ep_index];
1467 	/* Common case: no streams */
1468 	if (!(ep->ep_state & EP_HAS_STREAMS))
1469 		return ep->ring;
1470 
1471 	if (stream_id == 0) {
1472 		xhci_warn(xhci,
1473 				"WARN: Slot ID %u, ep index %u has streams, "
1474 				"but URB has no stream ID.\n",
1475 				slot_id, ep_index);
1476 		return NULL;
1477 	}
1478 
1479 	if (stream_id < ep->stream_info->num_streams)
1480 		return ep->stream_info->stream_rings[stream_id];
1481 
1482 	xhci_warn(xhci,
1483 			"WARN: Slot ID %u, ep index %u has "
1484 			"stream IDs 1 to %u allocated, "
1485 			"but stream ID %u is requested.\n",
1486 			slot_id, ep_index,
1487 			ep->stream_info->num_streams - 1,
1488 			stream_id);
1489 	return NULL;
1490 }
1491 
1492 /*
1493  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1494  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1495  * should pick up where it left off in the TD, unless a Set Transfer Ring
1496  * Dequeue Pointer is issued.
1497  *
1498  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1499  * the ring.  Since the ring is a contiguous structure, they can't be physically
1500  * removed.  Instead, there are two options:
1501  *
1502  *  1) If the HC is in the middle of processing the URB to be canceled, we
1503  *     simply move the ring's dequeue pointer past those TRBs using the Set
1504  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1505  *     when drivers timeout on the last submitted URB and attempt to cancel.
1506  *
1507  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1508  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1509  *     HC will need to invalidate the any TRBs it has cached after the stop
1510  *     endpoint command, as noted in the xHCI 0.95 errata.
1511  *
1512  *  3) The TD may have completed by the time the Stop Endpoint Command
1513  *     completes, so software needs to handle that case too.
1514  *
1515  * This function should protect against the TD enqueueing code ringing the
1516  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1517  * It also needs to account for multiple cancellations on happening at the same
1518  * time for the same endpoint.
1519  *
1520  * Note that this function can be called in any context, or so says
1521  * usb_hcd_unlink_urb()
1522  */
1523 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1524 {
1525 	unsigned long flags;
1526 	int ret, i;
1527 	u32 temp;
1528 	struct xhci_hcd *xhci;
1529 	struct urb_priv	*urb_priv;
1530 	struct xhci_td *td;
1531 	unsigned int ep_index;
1532 	struct xhci_ring *ep_ring;
1533 	struct xhci_virt_ep *ep;
1534 	struct xhci_command *command;
1535 
1536 	xhci = hcd_to_xhci(hcd);
1537 	spin_lock_irqsave(&xhci->lock, flags);
1538 	/* Make sure the URB hasn't completed or been unlinked already */
1539 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1540 	if (ret || !urb->hcpriv)
1541 		goto done;
1542 	temp = readl(&xhci->op_regs->status);
1543 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1544 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1545 				"HW died, freeing TD.");
1546 		urb_priv = urb->hcpriv;
1547 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1548 			td = urb_priv->td[i];
1549 			if (!list_empty(&td->td_list))
1550 				list_del_init(&td->td_list);
1551 			if (!list_empty(&td->cancelled_td_list))
1552 				list_del_init(&td->cancelled_td_list);
1553 		}
1554 
1555 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1556 		spin_unlock_irqrestore(&xhci->lock, flags);
1557 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1558 		xhci_urb_free_priv(urb_priv);
1559 		return ret;
1560 	}
1561 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1562 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1563 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1564 				"Ep 0x%x: URB %p to be canceled on "
1565 				"non-responsive xHCI host.",
1566 				urb->ep->desc.bEndpointAddress, urb);
1567 		/* Let the stop endpoint command watchdog timer (which set this
1568 		 * state) finish cleaning up the endpoint TD lists.  We must
1569 		 * have caught it in the middle of dropping a lock and giving
1570 		 * back an URB.
1571 		 */
1572 		goto done;
1573 	}
1574 
1575 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1576 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1577 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1578 	if (!ep_ring) {
1579 		ret = -EINVAL;
1580 		goto done;
1581 	}
1582 
1583 	urb_priv = urb->hcpriv;
1584 	i = urb_priv->td_cnt;
1585 	if (i < urb_priv->length)
1586 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1587 				"Cancel URB %p, dev %s, ep 0x%x, "
1588 				"starting at offset 0x%llx",
1589 				urb, urb->dev->devpath,
1590 				urb->ep->desc.bEndpointAddress,
1591 				(unsigned long long) xhci_trb_virt_to_dma(
1592 					urb_priv->td[i]->start_seg,
1593 					urb_priv->td[i]->first_trb));
1594 
1595 	for (; i < urb_priv->length; i++) {
1596 		td = urb_priv->td[i];
1597 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1598 	}
1599 
1600 	/* Queue a stop endpoint command, but only if this is
1601 	 * the first cancellation to be handled.
1602 	 */
1603 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1604 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1605 		if (!command) {
1606 			ret = -ENOMEM;
1607 			goto done;
1608 		}
1609 		ep->ep_state |= EP_HALT_PENDING;
1610 		ep->stop_cmds_pending++;
1611 		ep->stop_cmd_timer.expires = jiffies +
1612 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1613 		add_timer(&ep->stop_cmd_timer);
1614 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1615 					 ep_index, 0);
1616 		xhci_ring_cmd_db(xhci);
1617 	}
1618 done:
1619 	spin_unlock_irqrestore(&xhci->lock, flags);
1620 	return ret;
1621 }
1622 
1623 /* Drop an endpoint from a new bandwidth configuration for this device.
1624  * Only one call to this function is allowed per endpoint before
1625  * check_bandwidth() or reset_bandwidth() must be called.
1626  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1627  * add the endpoint to the schedule with possibly new parameters denoted by a
1628  * different endpoint descriptor in usb_host_endpoint.
1629  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1630  * not allowed.
1631  *
1632  * The USB core will not allow URBs to be queued to an endpoint that is being
1633  * disabled, so there's no need for mutual exclusion to protect
1634  * the xhci->devs[slot_id] structure.
1635  */
1636 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1637 		struct usb_host_endpoint *ep)
1638 {
1639 	struct xhci_hcd *xhci;
1640 	struct xhci_container_ctx *in_ctx, *out_ctx;
1641 	struct xhci_input_control_ctx *ctrl_ctx;
1642 	unsigned int ep_index;
1643 	struct xhci_ep_ctx *ep_ctx;
1644 	u32 drop_flag;
1645 	u32 new_add_flags, new_drop_flags;
1646 	int ret;
1647 
1648 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1649 	if (ret <= 0)
1650 		return ret;
1651 	xhci = hcd_to_xhci(hcd);
1652 	if (xhci->xhc_state & XHCI_STATE_DYING)
1653 		return -ENODEV;
1654 
1655 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1656 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1657 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1658 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1659 				__func__, drop_flag);
1660 		return 0;
1661 	}
1662 
1663 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1664 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1665 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1666 	if (!ctrl_ctx) {
1667 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1668 				__func__);
1669 		return 0;
1670 	}
1671 
1672 	ep_index = xhci_get_endpoint_index(&ep->desc);
1673 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1674 	/* If the HC already knows the endpoint is disabled,
1675 	 * or the HCD has noted it is disabled, ignore this request
1676 	 */
1677 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1678 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1679 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1680 	    xhci_get_endpoint_flag(&ep->desc)) {
1681 		/* Do not warn when called after a usb_device_reset */
1682 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1683 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1684 				  __func__, ep);
1685 		return 0;
1686 	}
1687 
1688 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1689 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1690 
1691 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1692 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1693 
1694 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1695 
1696 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1697 			(unsigned int) ep->desc.bEndpointAddress,
1698 			udev->slot_id,
1699 			(unsigned int) new_drop_flags,
1700 			(unsigned int) new_add_flags);
1701 	return 0;
1702 }
1703 
1704 /* Add an endpoint to a new possible bandwidth configuration for this device.
1705  * Only one call to this function is allowed per endpoint before
1706  * check_bandwidth() or reset_bandwidth() must be called.
1707  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1708  * add the endpoint to the schedule with possibly new parameters denoted by a
1709  * different endpoint descriptor in usb_host_endpoint.
1710  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1711  * not allowed.
1712  *
1713  * The USB core will not allow URBs to be queued to an endpoint until the
1714  * configuration or alt setting is installed in the device, so there's no need
1715  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1716  */
1717 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1718 		struct usb_host_endpoint *ep)
1719 {
1720 	struct xhci_hcd *xhci;
1721 	struct xhci_container_ctx *in_ctx;
1722 	unsigned int ep_index;
1723 	struct xhci_input_control_ctx *ctrl_ctx;
1724 	u32 added_ctxs;
1725 	u32 new_add_flags, new_drop_flags;
1726 	struct xhci_virt_device *virt_dev;
1727 	int ret = 0;
1728 
1729 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1730 	if (ret <= 0) {
1731 		/* So we won't queue a reset ep command for a root hub */
1732 		ep->hcpriv = NULL;
1733 		return ret;
1734 	}
1735 	xhci = hcd_to_xhci(hcd);
1736 	if (xhci->xhc_state & XHCI_STATE_DYING)
1737 		return -ENODEV;
1738 
1739 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1740 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1741 		/* FIXME when we have to issue an evaluate endpoint command to
1742 		 * deal with ep0 max packet size changing once we get the
1743 		 * descriptors
1744 		 */
1745 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1746 				__func__, added_ctxs);
1747 		return 0;
1748 	}
1749 
1750 	virt_dev = xhci->devs[udev->slot_id];
1751 	in_ctx = virt_dev->in_ctx;
1752 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1753 	if (!ctrl_ctx) {
1754 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1755 				__func__);
1756 		return 0;
1757 	}
1758 
1759 	ep_index = xhci_get_endpoint_index(&ep->desc);
1760 	/* If this endpoint is already in use, and the upper layers are trying
1761 	 * to add it again without dropping it, reject the addition.
1762 	 */
1763 	if (virt_dev->eps[ep_index].ring &&
1764 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1765 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1766 				"without dropping it.\n",
1767 				(unsigned int) ep->desc.bEndpointAddress);
1768 		return -EINVAL;
1769 	}
1770 
1771 	/* If the HCD has already noted the endpoint is enabled,
1772 	 * ignore this request.
1773 	 */
1774 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1775 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1776 				__func__, ep);
1777 		return 0;
1778 	}
1779 
1780 	/*
1781 	 * Configuration and alternate setting changes must be done in
1782 	 * process context, not interrupt context (or so documenation
1783 	 * for usb_set_interface() and usb_set_configuration() claim).
1784 	 */
1785 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1786 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1787 				__func__, ep->desc.bEndpointAddress);
1788 		return -ENOMEM;
1789 	}
1790 
1791 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1792 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1793 
1794 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1795 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1796 	 * this re-adds a new state for the endpoint from the new endpoint
1797 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1798 	 * drop flags alone.
1799 	 */
1800 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1801 
1802 	/* Store the usb_device pointer for later use */
1803 	ep->hcpriv = udev;
1804 
1805 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1806 			(unsigned int) ep->desc.bEndpointAddress,
1807 			udev->slot_id,
1808 			(unsigned int) new_drop_flags,
1809 			(unsigned int) new_add_flags);
1810 	return 0;
1811 }
1812 
1813 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1814 {
1815 	struct xhci_input_control_ctx *ctrl_ctx;
1816 	struct xhci_ep_ctx *ep_ctx;
1817 	struct xhci_slot_ctx *slot_ctx;
1818 	int i;
1819 
1820 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1821 	if (!ctrl_ctx) {
1822 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1823 				__func__);
1824 		return;
1825 	}
1826 
1827 	/* When a device's add flag and drop flag are zero, any subsequent
1828 	 * configure endpoint command will leave that endpoint's state
1829 	 * untouched.  Make sure we don't leave any old state in the input
1830 	 * endpoint contexts.
1831 	 */
1832 	ctrl_ctx->drop_flags = 0;
1833 	ctrl_ctx->add_flags = 0;
1834 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1835 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1836 	/* Endpoint 0 is always valid */
1837 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1838 	for (i = 1; i < 31; ++i) {
1839 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1840 		ep_ctx->ep_info = 0;
1841 		ep_ctx->ep_info2 = 0;
1842 		ep_ctx->deq = 0;
1843 		ep_ctx->tx_info = 0;
1844 	}
1845 }
1846 
1847 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1848 		struct usb_device *udev, u32 *cmd_status)
1849 {
1850 	int ret;
1851 
1852 	switch (*cmd_status) {
1853 	case COMP_CMD_ABORT:
1854 	case COMP_CMD_STOP:
1855 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1856 		ret = -ETIME;
1857 		break;
1858 	case COMP_ENOMEM:
1859 		dev_warn(&udev->dev,
1860 			 "Not enough host controller resources for new device state.\n");
1861 		ret = -ENOMEM;
1862 		/* FIXME: can we allocate more resources for the HC? */
1863 		break;
1864 	case COMP_BW_ERR:
1865 	case COMP_2ND_BW_ERR:
1866 		dev_warn(&udev->dev,
1867 			 "Not enough bandwidth for new device state.\n");
1868 		ret = -ENOSPC;
1869 		/* FIXME: can we go back to the old state? */
1870 		break;
1871 	case COMP_TRB_ERR:
1872 		/* the HCD set up something wrong */
1873 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1874 				"add flag = 1, "
1875 				"and endpoint is not disabled.\n");
1876 		ret = -EINVAL;
1877 		break;
1878 	case COMP_DEV_ERR:
1879 		dev_warn(&udev->dev,
1880 			 "ERROR: Incompatible device for endpoint configure command.\n");
1881 		ret = -ENODEV;
1882 		break;
1883 	case COMP_SUCCESS:
1884 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1885 				"Successful Endpoint Configure command");
1886 		ret = 0;
1887 		break;
1888 	default:
1889 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1890 				*cmd_status);
1891 		ret = -EINVAL;
1892 		break;
1893 	}
1894 	return ret;
1895 }
1896 
1897 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1898 		struct usb_device *udev, u32 *cmd_status)
1899 {
1900 	int ret;
1901 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1902 
1903 	switch (*cmd_status) {
1904 	case COMP_CMD_ABORT:
1905 	case COMP_CMD_STOP:
1906 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1907 		ret = -ETIME;
1908 		break;
1909 	case COMP_EINVAL:
1910 		dev_warn(&udev->dev,
1911 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1912 		ret = -EINVAL;
1913 		break;
1914 	case COMP_EBADSLT:
1915 		dev_warn(&udev->dev,
1916 			"WARN: slot not enabled for evaluate context command.\n");
1917 		ret = -EINVAL;
1918 		break;
1919 	case COMP_CTX_STATE:
1920 		dev_warn(&udev->dev,
1921 			"WARN: invalid context state for evaluate context command.\n");
1922 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1923 		ret = -EINVAL;
1924 		break;
1925 	case COMP_DEV_ERR:
1926 		dev_warn(&udev->dev,
1927 			"ERROR: Incompatible device for evaluate context command.\n");
1928 		ret = -ENODEV;
1929 		break;
1930 	case COMP_MEL_ERR:
1931 		/* Max Exit Latency too large error */
1932 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1933 		ret = -EINVAL;
1934 		break;
1935 	case COMP_SUCCESS:
1936 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1937 				"Successful evaluate context command");
1938 		ret = 0;
1939 		break;
1940 	default:
1941 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1942 			*cmd_status);
1943 		ret = -EINVAL;
1944 		break;
1945 	}
1946 	return ret;
1947 }
1948 
1949 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1950 		struct xhci_input_control_ctx *ctrl_ctx)
1951 {
1952 	u32 valid_add_flags;
1953 	u32 valid_drop_flags;
1954 
1955 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1956 	 * (bit 1).  The default control endpoint is added during the Address
1957 	 * Device command and is never removed until the slot is disabled.
1958 	 */
1959 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1960 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1961 
1962 	/* Use hweight32 to count the number of ones in the add flags, or
1963 	 * number of endpoints added.  Don't count endpoints that are changed
1964 	 * (both added and dropped).
1965 	 */
1966 	return hweight32(valid_add_flags) -
1967 		hweight32(valid_add_flags & valid_drop_flags);
1968 }
1969 
1970 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1971 		struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 	u32 valid_add_flags;
1974 	u32 valid_drop_flags;
1975 
1976 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1977 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1978 
1979 	return hweight32(valid_drop_flags) -
1980 		hweight32(valid_add_flags & valid_drop_flags);
1981 }
1982 
1983 /*
1984  * We need to reserve the new number of endpoints before the configure endpoint
1985  * command completes.  We can't subtract the dropped endpoints from the number
1986  * of active endpoints until the command completes because we can oversubscribe
1987  * the host in this case:
1988  *
1989  *  - the first configure endpoint command drops more endpoints than it adds
1990  *  - a second configure endpoint command that adds more endpoints is queued
1991  *  - the first configure endpoint command fails, so the config is unchanged
1992  *  - the second command may succeed, even though there isn't enough resources
1993  *
1994  * Must be called with xhci->lock held.
1995  */
1996 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1997 		struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999 	u32 added_eps;
2000 
2001 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2002 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2003 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2004 				"Not enough ep ctxs: "
2005 				"%u active, need to add %u, limit is %u.",
2006 				xhci->num_active_eps, added_eps,
2007 				xhci->limit_active_eps);
2008 		return -ENOMEM;
2009 	}
2010 	xhci->num_active_eps += added_eps;
2011 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2012 			"Adding %u ep ctxs, %u now active.", added_eps,
2013 			xhci->num_active_eps);
2014 	return 0;
2015 }
2016 
2017 /*
2018  * The configure endpoint was failed by the xHC for some other reason, so we
2019  * need to revert the resources that failed configuration would have used.
2020  *
2021  * Must be called with xhci->lock held.
2022  */
2023 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2024 		struct xhci_input_control_ctx *ctrl_ctx)
2025 {
2026 	u32 num_failed_eps;
2027 
2028 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2029 	xhci->num_active_eps -= num_failed_eps;
2030 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2031 			"Removing %u failed ep ctxs, %u now active.",
2032 			num_failed_eps,
2033 			xhci->num_active_eps);
2034 }
2035 
2036 /*
2037  * Now that the command has completed, clean up the active endpoint count by
2038  * subtracting out the endpoints that were dropped (but not changed).
2039  *
2040  * Must be called with xhci->lock held.
2041  */
2042 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2043 		struct xhci_input_control_ctx *ctrl_ctx)
2044 {
2045 	u32 num_dropped_eps;
2046 
2047 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2048 	xhci->num_active_eps -= num_dropped_eps;
2049 	if (num_dropped_eps)
2050 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2051 				"Removing %u dropped ep ctxs, %u now active.",
2052 				num_dropped_eps,
2053 				xhci->num_active_eps);
2054 }
2055 
2056 static unsigned int xhci_get_block_size(struct usb_device *udev)
2057 {
2058 	switch (udev->speed) {
2059 	case USB_SPEED_LOW:
2060 	case USB_SPEED_FULL:
2061 		return FS_BLOCK;
2062 	case USB_SPEED_HIGH:
2063 		return HS_BLOCK;
2064 	case USB_SPEED_SUPER:
2065 		return SS_BLOCK;
2066 	case USB_SPEED_UNKNOWN:
2067 	case USB_SPEED_WIRELESS:
2068 	default:
2069 		/* Should never happen */
2070 		return 1;
2071 	}
2072 }
2073 
2074 static unsigned int
2075 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2076 {
2077 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2078 		return LS_OVERHEAD;
2079 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2080 		return FS_OVERHEAD;
2081 	return HS_OVERHEAD;
2082 }
2083 
2084 /* If we are changing a LS/FS device under a HS hub,
2085  * make sure (if we are activating a new TT) that the HS bus has enough
2086  * bandwidth for this new TT.
2087  */
2088 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2089 		struct xhci_virt_device *virt_dev,
2090 		int old_active_eps)
2091 {
2092 	struct xhci_interval_bw_table *bw_table;
2093 	struct xhci_tt_bw_info *tt_info;
2094 
2095 	/* Find the bandwidth table for the root port this TT is attached to. */
2096 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2097 	tt_info = virt_dev->tt_info;
2098 	/* If this TT already had active endpoints, the bandwidth for this TT
2099 	 * has already been added.  Removing all periodic endpoints (and thus
2100 	 * making the TT enactive) will only decrease the bandwidth used.
2101 	 */
2102 	if (old_active_eps)
2103 		return 0;
2104 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2105 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2106 			return -ENOMEM;
2107 		return 0;
2108 	}
2109 	/* Not sure why we would have no new active endpoints...
2110 	 *
2111 	 * Maybe because of an Evaluate Context change for a hub update or a
2112 	 * control endpoint 0 max packet size change?
2113 	 * FIXME: skip the bandwidth calculation in that case.
2114 	 */
2115 	return 0;
2116 }
2117 
2118 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2119 		struct xhci_virt_device *virt_dev)
2120 {
2121 	unsigned int bw_reserved;
2122 
2123 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2124 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2125 		return -ENOMEM;
2126 
2127 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2128 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2129 		return -ENOMEM;
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * This algorithm is a very conservative estimate of the worst-case scheduling
2136  * scenario for any one interval.  The hardware dynamically schedules the
2137  * packets, so we can't tell which microframe could be the limiting factor in
2138  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2139  *
2140  * Obviously, we can't solve an NP complete problem to find the minimum worst
2141  * case scenario.  Instead, we come up with an estimate that is no less than
2142  * the worst case bandwidth used for any one microframe, but may be an
2143  * over-estimate.
2144  *
2145  * We walk the requirements for each endpoint by interval, starting with the
2146  * smallest interval, and place packets in the schedule where there is only one
2147  * possible way to schedule packets for that interval.  In order to simplify
2148  * this algorithm, we record the largest max packet size for each interval, and
2149  * assume all packets will be that size.
2150  *
2151  * For interval 0, we obviously must schedule all packets for each interval.
2152  * The bandwidth for interval 0 is just the amount of data to be transmitted
2153  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2154  * the number of packets).
2155  *
2156  * For interval 1, we have two possible microframes to schedule those packets
2157  * in.  For this algorithm, if we can schedule the same number of packets for
2158  * each possible scheduling opportunity (each microframe), we will do so.  The
2159  * remaining number of packets will be saved to be transmitted in the gaps in
2160  * the next interval's scheduling sequence.
2161  *
2162  * As we move those remaining packets to be scheduled with interval 2 packets,
2163  * we have to double the number of remaining packets to transmit.  This is
2164  * because the intervals are actually powers of 2, and we would be transmitting
2165  * the previous interval's packets twice in this interval.  We also have to be
2166  * sure that when we look at the largest max packet size for this interval, we
2167  * also look at the largest max packet size for the remaining packets and take
2168  * the greater of the two.
2169  *
2170  * The algorithm continues to evenly distribute packets in each scheduling
2171  * opportunity, and push the remaining packets out, until we get to the last
2172  * interval.  Then those packets and their associated overhead are just added
2173  * to the bandwidth used.
2174  */
2175 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2176 		struct xhci_virt_device *virt_dev,
2177 		int old_active_eps)
2178 {
2179 	unsigned int bw_reserved;
2180 	unsigned int max_bandwidth;
2181 	unsigned int bw_used;
2182 	unsigned int block_size;
2183 	struct xhci_interval_bw_table *bw_table;
2184 	unsigned int packet_size = 0;
2185 	unsigned int overhead = 0;
2186 	unsigned int packets_transmitted = 0;
2187 	unsigned int packets_remaining = 0;
2188 	unsigned int i;
2189 
2190 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2191 		return xhci_check_ss_bw(xhci, virt_dev);
2192 
2193 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2194 		max_bandwidth = HS_BW_LIMIT;
2195 		/* Convert percent of bus BW reserved to blocks reserved */
2196 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2197 	} else {
2198 		max_bandwidth = FS_BW_LIMIT;
2199 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2200 	}
2201 
2202 	bw_table = virt_dev->bw_table;
2203 	/* We need to translate the max packet size and max ESIT payloads into
2204 	 * the units the hardware uses.
2205 	 */
2206 	block_size = xhci_get_block_size(virt_dev->udev);
2207 
2208 	/* If we are manipulating a LS/FS device under a HS hub, double check
2209 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2210 	 */
2211 	if (virt_dev->tt_info) {
2212 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2213 				"Recalculating BW for rootport %u",
2214 				virt_dev->real_port);
2215 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2216 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2217 					"newly activated TT.\n");
2218 			return -ENOMEM;
2219 		}
2220 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221 				"Recalculating BW for TT slot %u port %u",
2222 				virt_dev->tt_info->slot_id,
2223 				virt_dev->tt_info->ttport);
2224 	} else {
2225 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2226 				"Recalculating BW for rootport %u",
2227 				virt_dev->real_port);
2228 	}
2229 
2230 	/* Add in how much bandwidth will be used for interval zero, or the
2231 	 * rounded max ESIT payload + number of packets * largest overhead.
2232 	 */
2233 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2234 		bw_table->interval_bw[0].num_packets *
2235 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2236 
2237 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2238 		unsigned int bw_added;
2239 		unsigned int largest_mps;
2240 		unsigned int interval_overhead;
2241 
2242 		/*
2243 		 * How many packets could we transmit in this interval?
2244 		 * If packets didn't fit in the previous interval, we will need
2245 		 * to transmit that many packets twice within this interval.
2246 		 */
2247 		packets_remaining = 2 * packets_remaining +
2248 			bw_table->interval_bw[i].num_packets;
2249 
2250 		/* Find the largest max packet size of this or the previous
2251 		 * interval.
2252 		 */
2253 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2254 			largest_mps = 0;
2255 		else {
2256 			struct xhci_virt_ep *virt_ep;
2257 			struct list_head *ep_entry;
2258 
2259 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2260 			virt_ep = list_entry(ep_entry,
2261 					struct xhci_virt_ep, bw_endpoint_list);
2262 			/* Convert to blocks, rounding up */
2263 			largest_mps = DIV_ROUND_UP(
2264 					virt_ep->bw_info.max_packet_size,
2265 					block_size);
2266 		}
2267 		if (largest_mps > packet_size)
2268 			packet_size = largest_mps;
2269 
2270 		/* Use the larger overhead of this or the previous interval. */
2271 		interval_overhead = xhci_get_largest_overhead(
2272 				&bw_table->interval_bw[i]);
2273 		if (interval_overhead > overhead)
2274 			overhead = interval_overhead;
2275 
2276 		/* How many packets can we evenly distribute across
2277 		 * (1 << (i + 1)) possible scheduling opportunities?
2278 		 */
2279 		packets_transmitted = packets_remaining >> (i + 1);
2280 
2281 		/* Add in the bandwidth used for those scheduled packets */
2282 		bw_added = packets_transmitted * (overhead + packet_size);
2283 
2284 		/* How many packets do we have remaining to transmit? */
2285 		packets_remaining = packets_remaining % (1 << (i + 1));
2286 
2287 		/* What largest max packet size should those packets have? */
2288 		/* If we've transmitted all packets, don't carry over the
2289 		 * largest packet size.
2290 		 */
2291 		if (packets_remaining == 0) {
2292 			packet_size = 0;
2293 			overhead = 0;
2294 		} else if (packets_transmitted > 0) {
2295 			/* Otherwise if we do have remaining packets, and we've
2296 			 * scheduled some packets in this interval, take the
2297 			 * largest max packet size from endpoints with this
2298 			 * interval.
2299 			 */
2300 			packet_size = largest_mps;
2301 			overhead = interval_overhead;
2302 		}
2303 		/* Otherwise carry over packet_size and overhead from the last
2304 		 * time we had a remainder.
2305 		 */
2306 		bw_used += bw_added;
2307 		if (bw_used > max_bandwidth) {
2308 			xhci_warn(xhci, "Not enough bandwidth. "
2309 					"Proposed: %u, Max: %u\n",
2310 				bw_used, max_bandwidth);
2311 			return -ENOMEM;
2312 		}
2313 	}
2314 	/*
2315 	 * Ok, we know we have some packets left over after even-handedly
2316 	 * scheduling interval 15.  We don't know which microframes they will
2317 	 * fit into, so we over-schedule and say they will be scheduled every
2318 	 * microframe.
2319 	 */
2320 	if (packets_remaining > 0)
2321 		bw_used += overhead + packet_size;
2322 
2323 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2324 		unsigned int port_index = virt_dev->real_port - 1;
2325 
2326 		/* OK, we're manipulating a HS device attached to a
2327 		 * root port bandwidth domain.  Include the number of active TTs
2328 		 * in the bandwidth used.
2329 		 */
2330 		bw_used += TT_HS_OVERHEAD *
2331 			xhci->rh_bw[port_index].num_active_tts;
2332 	}
2333 
2334 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2336 		"Available: %u " "percent",
2337 		bw_used, max_bandwidth, bw_reserved,
2338 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2339 		max_bandwidth);
2340 
2341 	bw_used += bw_reserved;
2342 	if (bw_used > max_bandwidth) {
2343 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2344 				bw_used, max_bandwidth);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	bw_table->bw_used = bw_used;
2349 	return 0;
2350 }
2351 
2352 static bool xhci_is_async_ep(unsigned int ep_type)
2353 {
2354 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2355 					ep_type != ISOC_IN_EP &&
2356 					ep_type != INT_IN_EP);
2357 }
2358 
2359 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2360 {
2361 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2362 }
2363 
2364 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2365 {
2366 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2367 
2368 	if (ep_bw->ep_interval == 0)
2369 		return SS_OVERHEAD_BURST +
2370 			(ep_bw->mult * ep_bw->num_packets *
2371 					(SS_OVERHEAD + mps));
2372 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2373 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2374 				1 << ep_bw->ep_interval);
2375 
2376 }
2377 
2378 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2379 		struct xhci_bw_info *ep_bw,
2380 		struct xhci_interval_bw_table *bw_table,
2381 		struct usb_device *udev,
2382 		struct xhci_virt_ep *virt_ep,
2383 		struct xhci_tt_bw_info *tt_info)
2384 {
2385 	struct xhci_interval_bw	*interval_bw;
2386 	int normalized_interval;
2387 
2388 	if (xhci_is_async_ep(ep_bw->type))
2389 		return;
2390 
2391 	if (udev->speed == USB_SPEED_SUPER) {
2392 		if (xhci_is_sync_in_ep(ep_bw->type))
2393 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2394 				xhci_get_ss_bw_consumed(ep_bw);
2395 		else
2396 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2397 				xhci_get_ss_bw_consumed(ep_bw);
2398 		return;
2399 	}
2400 
2401 	/* SuperSpeed endpoints never get added to intervals in the table, so
2402 	 * this check is only valid for HS/FS/LS devices.
2403 	 */
2404 	if (list_empty(&virt_ep->bw_endpoint_list))
2405 		return;
2406 	/* For LS/FS devices, we need to translate the interval expressed in
2407 	 * microframes to frames.
2408 	 */
2409 	if (udev->speed == USB_SPEED_HIGH)
2410 		normalized_interval = ep_bw->ep_interval;
2411 	else
2412 		normalized_interval = ep_bw->ep_interval - 3;
2413 
2414 	if (normalized_interval == 0)
2415 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2416 	interval_bw = &bw_table->interval_bw[normalized_interval];
2417 	interval_bw->num_packets -= ep_bw->num_packets;
2418 	switch (udev->speed) {
2419 	case USB_SPEED_LOW:
2420 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2421 		break;
2422 	case USB_SPEED_FULL:
2423 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2424 		break;
2425 	case USB_SPEED_HIGH:
2426 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2427 		break;
2428 	case USB_SPEED_SUPER:
2429 	case USB_SPEED_UNKNOWN:
2430 	case USB_SPEED_WIRELESS:
2431 		/* Should never happen because only LS/FS/HS endpoints will get
2432 		 * added to the endpoint list.
2433 		 */
2434 		return;
2435 	}
2436 	if (tt_info)
2437 		tt_info->active_eps -= 1;
2438 	list_del_init(&virt_ep->bw_endpoint_list);
2439 }
2440 
2441 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2442 		struct xhci_bw_info *ep_bw,
2443 		struct xhci_interval_bw_table *bw_table,
2444 		struct usb_device *udev,
2445 		struct xhci_virt_ep *virt_ep,
2446 		struct xhci_tt_bw_info *tt_info)
2447 {
2448 	struct xhci_interval_bw	*interval_bw;
2449 	struct xhci_virt_ep *smaller_ep;
2450 	int normalized_interval;
2451 
2452 	if (xhci_is_async_ep(ep_bw->type))
2453 		return;
2454 
2455 	if (udev->speed == USB_SPEED_SUPER) {
2456 		if (xhci_is_sync_in_ep(ep_bw->type))
2457 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2458 				xhci_get_ss_bw_consumed(ep_bw);
2459 		else
2460 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2461 				xhci_get_ss_bw_consumed(ep_bw);
2462 		return;
2463 	}
2464 
2465 	/* For LS/FS devices, we need to translate the interval expressed in
2466 	 * microframes to frames.
2467 	 */
2468 	if (udev->speed == USB_SPEED_HIGH)
2469 		normalized_interval = ep_bw->ep_interval;
2470 	else
2471 		normalized_interval = ep_bw->ep_interval - 3;
2472 
2473 	if (normalized_interval == 0)
2474 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2475 	interval_bw = &bw_table->interval_bw[normalized_interval];
2476 	interval_bw->num_packets += ep_bw->num_packets;
2477 	switch (udev->speed) {
2478 	case USB_SPEED_LOW:
2479 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2480 		break;
2481 	case USB_SPEED_FULL:
2482 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2483 		break;
2484 	case USB_SPEED_HIGH:
2485 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2486 		break;
2487 	case USB_SPEED_SUPER:
2488 	case USB_SPEED_UNKNOWN:
2489 	case USB_SPEED_WIRELESS:
2490 		/* Should never happen because only LS/FS/HS endpoints will get
2491 		 * added to the endpoint list.
2492 		 */
2493 		return;
2494 	}
2495 
2496 	if (tt_info)
2497 		tt_info->active_eps += 1;
2498 	/* Insert the endpoint into the list, largest max packet size first. */
2499 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2500 			bw_endpoint_list) {
2501 		if (ep_bw->max_packet_size >=
2502 				smaller_ep->bw_info.max_packet_size) {
2503 			/* Add the new ep before the smaller endpoint */
2504 			list_add_tail(&virt_ep->bw_endpoint_list,
2505 					&smaller_ep->bw_endpoint_list);
2506 			return;
2507 		}
2508 	}
2509 	/* Add the new endpoint at the end of the list. */
2510 	list_add_tail(&virt_ep->bw_endpoint_list,
2511 			&interval_bw->endpoints);
2512 }
2513 
2514 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2515 		struct xhci_virt_device *virt_dev,
2516 		int old_active_eps)
2517 {
2518 	struct xhci_root_port_bw_info *rh_bw_info;
2519 	if (!virt_dev->tt_info)
2520 		return;
2521 
2522 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2523 	if (old_active_eps == 0 &&
2524 				virt_dev->tt_info->active_eps != 0) {
2525 		rh_bw_info->num_active_tts += 1;
2526 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2527 	} else if (old_active_eps != 0 &&
2528 				virt_dev->tt_info->active_eps == 0) {
2529 		rh_bw_info->num_active_tts -= 1;
2530 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2531 	}
2532 }
2533 
2534 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2535 		struct xhci_virt_device *virt_dev,
2536 		struct xhci_container_ctx *in_ctx)
2537 {
2538 	struct xhci_bw_info ep_bw_info[31];
2539 	int i;
2540 	struct xhci_input_control_ctx *ctrl_ctx;
2541 	int old_active_eps = 0;
2542 
2543 	if (virt_dev->tt_info)
2544 		old_active_eps = virt_dev->tt_info->active_eps;
2545 
2546 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2547 	if (!ctrl_ctx) {
2548 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2549 				__func__);
2550 		return -ENOMEM;
2551 	}
2552 
2553 	for (i = 0; i < 31; i++) {
2554 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2555 			continue;
2556 
2557 		/* Make a copy of the BW info in case we need to revert this */
2558 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2559 				sizeof(ep_bw_info[i]));
2560 		/* Drop the endpoint from the interval table if the endpoint is
2561 		 * being dropped or changed.
2562 		 */
2563 		if (EP_IS_DROPPED(ctrl_ctx, i))
2564 			xhci_drop_ep_from_interval_table(xhci,
2565 					&virt_dev->eps[i].bw_info,
2566 					virt_dev->bw_table,
2567 					virt_dev->udev,
2568 					&virt_dev->eps[i],
2569 					virt_dev->tt_info);
2570 	}
2571 	/* Overwrite the information stored in the endpoints' bw_info */
2572 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2573 	for (i = 0; i < 31; i++) {
2574 		/* Add any changed or added endpoints to the interval table */
2575 		if (EP_IS_ADDED(ctrl_ctx, i))
2576 			xhci_add_ep_to_interval_table(xhci,
2577 					&virt_dev->eps[i].bw_info,
2578 					virt_dev->bw_table,
2579 					virt_dev->udev,
2580 					&virt_dev->eps[i],
2581 					virt_dev->tt_info);
2582 	}
2583 
2584 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2585 		/* Ok, this fits in the bandwidth we have.
2586 		 * Update the number of active TTs.
2587 		 */
2588 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2589 		return 0;
2590 	}
2591 
2592 	/* We don't have enough bandwidth for this, revert the stored info. */
2593 	for (i = 0; i < 31; i++) {
2594 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2595 			continue;
2596 
2597 		/* Drop the new copies of any added or changed endpoints from
2598 		 * the interval table.
2599 		 */
2600 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2601 			xhci_drop_ep_from_interval_table(xhci,
2602 					&virt_dev->eps[i].bw_info,
2603 					virt_dev->bw_table,
2604 					virt_dev->udev,
2605 					&virt_dev->eps[i],
2606 					virt_dev->tt_info);
2607 		}
2608 		/* Revert the endpoint back to its old information */
2609 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2610 				sizeof(ep_bw_info[i]));
2611 		/* Add any changed or dropped endpoints back into the table */
2612 		if (EP_IS_DROPPED(ctrl_ctx, i))
2613 			xhci_add_ep_to_interval_table(xhci,
2614 					&virt_dev->eps[i].bw_info,
2615 					virt_dev->bw_table,
2616 					virt_dev->udev,
2617 					&virt_dev->eps[i],
2618 					virt_dev->tt_info);
2619 	}
2620 	return -ENOMEM;
2621 }
2622 
2623 
2624 /* Issue a configure endpoint command or evaluate context command
2625  * and wait for it to finish.
2626  */
2627 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2628 		struct usb_device *udev,
2629 		struct xhci_command *command,
2630 		bool ctx_change, bool must_succeed)
2631 {
2632 	int ret;
2633 	unsigned long flags;
2634 	struct xhci_input_control_ctx *ctrl_ctx;
2635 	struct xhci_virt_device *virt_dev;
2636 
2637 	if (!command)
2638 		return -EINVAL;
2639 
2640 	spin_lock_irqsave(&xhci->lock, flags);
2641 	virt_dev = xhci->devs[udev->slot_id];
2642 
2643 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2644 	if (!ctrl_ctx) {
2645 		spin_unlock_irqrestore(&xhci->lock, flags);
2646 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2647 				__func__);
2648 		return -ENOMEM;
2649 	}
2650 
2651 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2652 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2653 		spin_unlock_irqrestore(&xhci->lock, flags);
2654 		xhci_warn(xhci, "Not enough host resources, "
2655 				"active endpoint contexts = %u\n",
2656 				xhci->num_active_eps);
2657 		return -ENOMEM;
2658 	}
2659 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2660 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2661 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2662 			xhci_free_host_resources(xhci, ctrl_ctx);
2663 		spin_unlock_irqrestore(&xhci->lock, flags);
2664 		xhci_warn(xhci, "Not enough bandwidth\n");
2665 		return -ENOMEM;
2666 	}
2667 
2668 	if (!ctx_change)
2669 		ret = xhci_queue_configure_endpoint(xhci, command,
2670 				command->in_ctx->dma,
2671 				udev->slot_id, must_succeed);
2672 	else
2673 		ret = xhci_queue_evaluate_context(xhci, command,
2674 				command->in_ctx->dma,
2675 				udev->slot_id, must_succeed);
2676 	if (ret < 0) {
2677 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2678 			xhci_free_host_resources(xhci, ctrl_ctx);
2679 		spin_unlock_irqrestore(&xhci->lock, flags);
2680 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2681 				"FIXME allocate a new ring segment");
2682 		return -ENOMEM;
2683 	}
2684 	xhci_ring_cmd_db(xhci);
2685 	spin_unlock_irqrestore(&xhci->lock, flags);
2686 
2687 	/* Wait for the configure endpoint command to complete */
2688 	wait_for_completion(command->completion);
2689 
2690 	if (!ctx_change)
2691 		ret = xhci_configure_endpoint_result(xhci, udev,
2692 						     &command->status);
2693 	else
2694 		ret = xhci_evaluate_context_result(xhci, udev,
2695 						   &command->status);
2696 
2697 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2698 		spin_lock_irqsave(&xhci->lock, flags);
2699 		/* If the command failed, remove the reserved resources.
2700 		 * Otherwise, clean up the estimate to include dropped eps.
2701 		 */
2702 		if (ret)
2703 			xhci_free_host_resources(xhci, ctrl_ctx);
2704 		else
2705 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2706 		spin_unlock_irqrestore(&xhci->lock, flags);
2707 	}
2708 	return ret;
2709 }
2710 
2711 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2712 	struct xhci_virt_device *vdev, int i)
2713 {
2714 	struct xhci_virt_ep *ep = &vdev->eps[i];
2715 
2716 	if (ep->ep_state & EP_HAS_STREAMS) {
2717 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2718 				xhci_get_endpoint_address(i));
2719 		xhci_free_stream_info(xhci, ep->stream_info);
2720 		ep->stream_info = NULL;
2721 		ep->ep_state &= ~EP_HAS_STREAMS;
2722 	}
2723 }
2724 
2725 /* Called after one or more calls to xhci_add_endpoint() or
2726  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2727  * to call xhci_reset_bandwidth().
2728  *
2729  * Since we are in the middle of changing either configuration or
2730  * installing a new alt setting, the USB core won't allow URBs to be
2731  * enqueued for any endpoint on the old config or interface.  Nothing
2732  * else should be touching the xhci->devs[slot_id] structure, so we
2733  * don't need to take the xhci->lock for manipulating that.
2734  */
2735 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2736 {
2737 	int i;
2738 	int ret = 0;
2739 	struct xhci_hcd *xhci;
2740 	struct xhci_virt_device	*virt_dev;
2741 	struct xhci_input_control_ctx *ctrl_ctx;
2742 	struct xhci_slot_ctx *slot_ctx;
2743 	struct xhci_command *command;
2744 
2745 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2746 	if (ret <= 0)
2747 		return ret;
2748 	xhci = hcd_to_xhci(hcd);
2749 	if (xhci->xhc_state & XHCI_STATE_DYING)
2750 		return -ENODEV;
2751 
2752 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2753 	virt_dev = xhci->devs[udev->slot_id];
2754 
2755 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2756 	if (!command)
2757 		return -ENOMEM;
2758 
2759 	command->in_ctx = virt_dev->in_ctx;
2760 
2761 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2762 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2763 	if (!ctrl_ctx) {
2764 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2765 				__func__);
2766 		ret = -ENOMEM;
2767 		goto command_cleanup;
2768 	}
2769 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2770 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2771 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2772 
2773 	/* Don't issue the command if there's no endpoints to update. */
2774 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2775 	    ctrl_ctx->drop_flags == 0) {
2776 		ret = 0;
2777 		goto command_cleanup;
2778 	}
2779 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2780 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2781 	for (i = 31; i >= 1; i--) {
2782 		__le32 le32 = cpu_to_le32(BIT(i));
2783 
2784 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2785 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2786 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2787 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2788 			break;
2789 		}
2790 	}
2791 	xhci_dbg(xhci, "New Input Control Context:\n");
2792 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2793 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2794 
2795 	ret = xhci_configure_endpoint(xhci, udev, command,
2796 			false, false);
2797 	if (ret)
2798 		/* Callee should call reset_bandwidth() */
2799 		goto command_cleanup;
2800 
2801 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2802 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2803 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2804 
2805 	/* Free any rings that were dropped, but not changed. */
2806 	for (i = 1; i < 31; ++i) {
2807 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2808 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2809 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2810 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2811 		}
2812 	}
2813 	xhci_zero_in_ctx(xhci, virt_dev);
2814 	/*
2815 	 * Install any rings for completely new endpoints or changed endpoints,
2816 	 * and free or cache any old rings from changed endpoints.
2817 	 */
2818 	for (i = 1; i < 31; ++i) {
2819 		if (!virt_dev->eps[i].new_ring)
2820 			continue;
2821 		/* Only cache or free the old ring if it exists.
2822 		 * It may not if this is the first add of an endpoint.
2823 		 */
2824 		if (virt_dev->eps[i].ring) {
2825 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2826 		}
2827 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2828 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2829 		virt_dev->eps[i].new_ring = NULL;
2830 	}
2831 command_cleanup:
2832 	kfree(command->completion);
2833 	kfree(command);
2834 
2835 	return ret;
2836 }
2837 
2838 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2839 {
2840 	struct xhci_hcd *xhci;
2841 	struct xhci_virt_device	*virt_dev;
2842 	int i, ret;
2843 
2844 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2845 	if (ret <= 0)
2846 		return;
2847 	xhci = hcd_to_xhci(hcd);
2848 
2849 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2850 	virt_dev = xhci->devs[udev->slot_id];
2851 	/* Free any rings allocated for added endpoints */
2852 	for (i = 0; i < 31; ++i) {
2853 		if (virt_dev->eps[i].new_ring) {
2854 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2855 			virt_dev->eps[i].new_ring = NULL;
2856 		}
2857 	}
2858 	xhci_zero_in_ctx(xhci, virt_dev);
2859 }
2860 
2861 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2862 		struct xhci_container_ctx *in_ctx,
2863 		struct xhci_container_ctx *out_ctx,
2864 		struct xhci_input_control_ctx *ctrl_ctx,
2865 		u32 add_flags, u32 drop_flags)
2866 {
2867 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2868 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2869 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2870 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2871 
2872 	xhci_dbg(xhci, "Input Context:\n");
2873 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2874 }
2875 
2876 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2877 		unsigned int slot_id, unsigned int ep_index,
2878 		struct xhci_dequeue_state *deq_state)
2879 {
2880 	struct xhci_input_control_ctx *ctrl_ctx;
2881 	struct xhci_container_ctx *in_ctx;
2882 	struct xhci_ep_ctx *ep_ctx;
2883 	u32 added_ctxs;
2884 	dma_addr_t addr;
2885 
2886 	in_ctx = xhci->devs[slot_id]->in_ctx;
2887 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2888 	if (!ctrl_ctx) {
2889 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2890 				__func__);
2891 		return;
2892 	}
2893 
2894 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2895 			xhci->devs[slot_id]->out_ctx, ep_index);
2896 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2897 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2898 			deq_state->new_deq_ptr);
2899 	if (addr == 0) {
2900 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2901 				"reset ep command\n");
2902 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2903 				deq_state->new_deq_seg,
2904 				deq_state->new_deq_ptr);
2905 		return;
2906 	}
2907 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2908 
2909 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2910 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2911 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2912 			added_ctxs, added_ctxs);
2913 }
2914 
2915 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2916 			unsigned int ep_index, struct xhci_td *td)
2917 {
2918 	struct xhci_dequeue_state deq_state;
2919 	struct xhci_virt_ep *ep;
2920 	struct usb_device *udev = td->urb->dev;
2921 
2922 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2923 			"Cleaning up stalled endpoint ring");
2924 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2925 	/* We need to move the HW's dequeue pointer past this TD,
2926 	 * or it will attempt to resend it on the next doorbell ring.
2927 	 */
2928 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2929 			ep_index, ep->stopped_stream, td, &deq_state);
2930 
2931 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2932 		return;
2933 
2934 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2935 	 * issue a configure endpoint command later.
2936 	 */
2937 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2938 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2939 				"Queueing new dequeue state");
2940 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2941 				ep_index, ep->stopped_stream, &deq_state);
2942 	} else {
2943 		/* Better hope no one uses the input context between now and the
2944 		 * reset endpoint completion!
2945 		 * XXX: No idea how this hardware will react when stream rings
2946 		 * are enabled.
2947 		 */
2948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2949 				"Setting up input context for "
2950 				"configure endpoint command");
2951 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2952 				ep_index, &deq_state);
2953 	}
2954 }
2955 
2956 /* Called when clearing halted device. The core should have sent the control
2957  * message to clear the device halt condition. The host side of the halt should
2958  * already be cleared with a reset endpoint command issued when the STALL tx
2959  * event was received.
2960  *
2961  * Context: in_interrupt
2962  */
2963 
2964 void xhci_endpoint_reset(struct usb_hcd *hcd,
2965 		struct usb_host_endpoint *ep)
2966 {
2967 	struct xhci_hcd *xhci;
2968 
2969 	xhci = hcd_to_xhci(hcd);
2970 
2971 	/*
2972 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2973 	 * The Reset Endpoint Command may only be issued to endpoints in the
2974 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2975 	 * Number of an endpoint that isn't in the Halted state, then software
2976 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2977 	 * for the target endpoint. that is in the Stopped state.
2978 	 */
2979 
2980 	/* For now just print debug to follow the situation */
2981 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2982 		 ep->desc.bEndpointAddress);
2983 }
2984 
2985 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2986 		struct usb_device *udev, struct usb_host_endpoint *ep,
2987 		unsigned int slot_id)
2988 {
2989 	int ret;
2990 	unsigned int ep_index;
2991 	unsigned int ep_state;
2992 
2993 	if (!ep)
2994 		return -EINVAL;
2995 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2996 	if (ret <= 0)
2997 		return -EINVAL;
2998 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2999 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3000 				" descriptor for ep 0x%x does not support streams\n",
3001 				ep->desc.bEndpointAddress);
3002 		return -EINVAL;
3003 	}
3004 
3005 	ep_index = xhci_get_endpoint_index(&ep->desc);
3006 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3007 	if (ep_state & EP_HAS_STREAMS ||
3008 			ep_state & EP_GETTING_STREAMS) {
3009 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3010 				"already has streams set up.\n",
3011 				ep->desc.bEndpointAddress);
3012 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3013 				"dynamic stream context array reallocation.\n");
3014 		return -EINVAL;
3015 	}
3016 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3017 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3018 				"endpoint 0x%x; URBs are pending.\n",
3019 				ep->desc.bEndpointAddress);
3020 		return -EINVAL;
3021 	}
3022 	return 0;
3023 }
3024 
3025 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3026 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3027 {
3028 	unsigned int max_streams;
3029 
3030 	/* The stream context array size must be a power of two */
3031 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3032 	/*
3033 	 * Find out how many primary stream array entries the host controller
3034 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3035 	 * level page entries), but that's an optional feature for xHCI host
3036 	 * controllers. xHCs must support at least 4 stream IDs.
3037 	 */
3038 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3039 	if (*num_stream_ctxs > max_streams) {
3040 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3041 				max_streams);
3042 		*num_stream_ctxs = max_streams;
3043 		*num_streams = max_streams;
3044 	}
3045 }
3046 
3047 /* Returns an error code if one of the endpoint already has streams.
3048  * This does not change any data structures, it only checks and gathers
3049  * information.
3050  */
3051 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3052 		struct usb_device *udev,
3053 		struct usb_host_endpoint **eps, unsigned int num_eps,
3054 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3055 {
3056 	unsigned int max_streams;
3057 	unsigned int endpoint_flag;
3058 	int i;
3059 	int ret;
3060 
3061 	for (i = 0; i < num_eps; i++) {
3062 		ret = xhci_check_streams_endpoint(xhci, udev,
3063 				eps[i], udev->slot_id);
3064 		if (ret < 0)
3065 			return ret;
3066 
3067 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3068 		if (max_streams < (*num_streams - 1)) {
3069 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3070 					eps[i]->desc.bEndpointAddress,
3071 					max_streams);
3072 			*num_streams = max_streams+1;
3073 		}
3074 
3075 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3076 		if (*changed_ep_bitmask & endpoint_flag)
3077 			return -EINVAL;
3078 		*changed_ep_bitmask |= endpoint_flag;
3079 	}
3080 	return 0;
3081 }
3082 
3083 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3084 		struct usb_device *udev,
3085 		struct usb_host_endpoint **eps, unsigned int num_eps)
3086 {
3087 	u32 changed_ep_bitmask = 0;
3088 	unsigned int slot_id;
3089 	unsigned int ep_index;
3090 	unsigned int ep_state;
3091 	int i;
3092 
3093 	slot_id = udev->slot_id;
3094 	if (!xhci->devs[slot_id])
3095 		return 0;
3096 
3097 	for (i = 0; i < num_eps; i++) {
3098 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3099 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3100 		/* Are streams already being freed for the endpoint? */
3101 		if (ep_state & EP_GETTING_NO_STREAMS) {
3102 			xhci_warn(xhci, "WARN Can't disable streams for "
3103 					"endpoint 0x%x, "
3104 					"streams are being disabled already\n",
3105 					eps[i]->desc.bEndpointAddress);
3106 			return 0;
3107 		}
3108 		/* Are there actually any streams to free? */
3109 		if (!(ep_state & EP_HAS_STREAMS) &&
3110 				!(ep_state & EP_GETTING_STREAMS)) {
3111 			xhci_warn(xhci, "WARN Can't disable streams for "
3112 					"endpoint 0x%x, "
3113 					"streams are already disabled!\n",
3114 					eps[i]->desc.bEndpointAddress);
3115 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3116 					"with non-streams endpoint\n");
3117 			return 0;
3118 		}
3119 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3120 	}
3121 	return changed_ep_bitmask;
3122 }
3123 
3124 /*
3125  * The USB device drivers use this function (through the HCD interface in USB
3126  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3127  * coordinate mass storage command queueing across multiple endpoints (basically
3128  * a stream ID == a task ID).
3129  *
3130  * Setting up streams involves allocating the same size stream context array
3131  * for each endpoint and issuing a configure endpoint command for all endpoints.
3132  *
3133  * Don't allow the call to succeed if one endpoint only supports one stream
3134  * (which means it doesn't support streams at all).
3135  *
3136  * Drivers may get less stream IDs than they asked for, if the host controller
3137  * hardware or endpoints claim they can't support the number of requested
3138  * stream IDs.
3139  */
3140 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3141 		struct usb_host_endpoint **eps, unsigned int num_eps,
3142 		unsigned int num_streams, gfp_t mem_flags)
3143 {
3144 	int i, ret;
3145 	struct xhci_hcd *xhci;
3146 	struct xhci_virt_device *vdev;
3147 	struct xhci_command *config_cmd;
3148 	struct xhci_input_control_ctx *ctrl_ctx;
3149 	unsigned int ep_index;
3150 	unsigned int num_stream_ctxs;
3151 	unsigned long flags;
3152 	u32 changed_ep_bitmask = 0;
3153 
3154 	if (!eps)
3155 		return -EINVAL;
3156 
3157 	/* Add one to the number of streams requested to account for
3158 	 * stream 0 that is reserved for xHCI usage.
3159 	 */
3160 	num_streams += 1;
3161 	xhci = hcd_to_xhci(hcd);
3162 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3163 			num_streams);
3164 
3165 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3166 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3167 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3168 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3169 		return -ENOSYS;
3170 	}
3171 
3172 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3173 	if (!config_cmd) {
3174 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3175 		return -ENOMEM;
3176 	}
3177 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3178 	if (!ctrl_ctx) {
3179 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3180 				__func__);
3181 		xhci_free_command(xhci, config_cmd);
3182 		return -ENOMEM;
3183 	}
3184 
3185 	/* Check to make sure all endpoints are not already configured for
3186 	 * streams.  While we're at it, find the maximum number of streams that
3187 	 * all the endpoints will support and check for duplicate endpoints.
3188 	 */
3189 	spin_lock_irqsave(&xhci->lock, flags);
3190 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3191 			num_eps, &num_streams, &changed_ep_bitmask);
3192 	if (ret < 0) {
3193 		xhci_free_command(xhci, config_cmd);
3194 		spin_unlock_irqrestore(&xhci->lock, flags);
3195 		return ret;
3196 	}
3197 	if (num_streams <= 1) {
3198 		xhci_warn(xhci, "WARN: endpoints can't handle "
3199 				"more than one stream.\n");
3200 		xhci_free_command(xhci, config_cmd);
3201 		spin_unlock_irqrestore(&xhci->lock, flags);
3202 		return -EINVAL;
3203 	}
3204 	vdev = xhci->devs[udev->slot_id];
3205 	/* Mark each endpoint as being in transition, so
3206 	 * xhci_urb_enqueue() will reject all URBs.
3207 	 */
3208 	for (i = 0; i < num_eps; i++) {
3209 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3210 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3211 	}
3212 	spin_unlock_irqrestore(&xhci->lock, flags);
3213 
3214 	/* Setup internal data structures and allocate HW data structures for
3215 	 * streams (but don't install the HW structures in the input context
3216 	 * until we're sure all memory allocation succeeded).
3217 	 */
3218 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3219 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3220 			num_stream_ctxs, num_streams);
3221 
3222 	for (i = 0; i < num_eps; i++) {
3223 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3225 				num_stream_ctxs,
3226 				num_streams, mem_flags);
3227 		if (!vdev->eps[ep_index].stream_info)
3228 			goto cleanup;
3229 		/* Set maxPstreams in endpoint context and update deq ptr to
3230 		 * point to stream context array. FIXME
3231 		 */
3232 	}
3233 
3234 	/* Set up the input context for a configure endpoint command. */
3235 	for (i = 0; i < num_eps; i++) {
3236 		struct xhci_ep_ctx *ep_ctx;
3237 
3238 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3240 
3241 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3242 				vdev->out_ctx, ep_index);
3243 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3244 				vdev->eps[ep_index].stream_info);
3245 	}
3246 	/* Tell the HW to drop its old copy of the endpoint context info
3247 	 * and add the updated copy from the input context.
3248 	 */
3249 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3250 			vdev->out_ctx, ctrl_ctx,
3251 			changed_ep_bitmask, changed_ep_bitmask);
3252 
3253 	/* Issue and wait for the configure endpoint command */
3254 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3255 			false, false);
3256 
3257 	/* xHC rejected the configure endpoint command for some reason, so we
3258 	 * leave the old ring intact and free our internal streams data
3259 	 * structure.
3260 	 */
3261 	if (ret < 0)
3262 		goto cleanup;
3263 
3264 	spin_lock_irqsave(&xhci->lock, flags);
3265 	for (i = 0; i < num_eps; i++) {
3266 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3268 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3269 			 udev->slot_id, ep_index);
3270 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3271 	}
3272 	xhci_free_command(xhci, config_cmd);
3273 	spin_unlock_irqrestore(&xhci->lock, flags);
3274 
3275 	/* Subtract 1 for stream 0, which drivers can't use */
3276 	return num_streams - 1;
3277 
3278 cleanup:
3279 	/* If it didn't work, free the streams! */
3280 	for (i = 0; i < num_eps; i++) {
3281 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3282 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3283 		vdev->eps[ep_index].stream_info = NULL;
3284 		/* FIXME Unset maxPstreams in endpoint context and
3285 		 * update deq ptr to point to normal string ring.
3286 		 */
3287 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3288 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3289 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3290 	}
3291 	xhci_free_command(xhci, config_cmd);
3292 	return -ENOMEM;
3293 }
3294 
3295 /* Transition the endpoint from using streams to being a "normal" endpoint
3296  * without streams.
3297  *
3298  * Modify the endpoint context state, submit a configure endpoint command,
3299  * and free all endpoint rings for streams if that completes successfully.
3300  */
3301 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3302 		struct usb_host_endpoint **eps, unsigned int num_eps,
3303 		gfp_t mem_flags)
3304 {
3305 	int i, ret;
3306 	struct xhci_hcd *xhci;
3307 	struct xhci_virt_device *vdev;
3308 	struct xhci_command *command;
3309 	struct xhci_input_control_ctx *ctrl_ctx;
3310 	unsigned int ep_index;
3311 	unsigned long flags;
3312 	u32 changed_ep_bitmask;
3313 
3314 	xhci = hcd_to_xhci(hcd);
3315 	vdev = xhci->devs[udev->slot_id];
3316 
3317 	/* Set up a configure endpoint command to remove the streams rings */
3318 	spin_lock_irqsave(&xhci->lock, flags);
3319 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3320 			udev, eps, num_eps);
3321 	if (changed_ep_bitmask == 0) {
3322 		spin_unlock_irqrestore(&xhci->lock, flags);
3323 		return -EINVAL;
3324 	}
3325 
3326 	/* Use the xhci_command structure from the first endpoint.  We may have
3327 	 * allocated too many, but the driver may call xhci_free_streams() for
3328 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3329 	 */
3330 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3331 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3332 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3333 	if (!ctrl_ctx) {
3334 		spin_unlock_irqrestore(&xhci->lock, flags);
3335 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3336 				__func__);
3337 		return -EINVAL;
3338 	}
3339 
3340 	for (i = 0; i < num_eps; i++) {
3341 		struct xhci_ep_ctx *ep_ctx;
3342 
3343 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3344 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3345 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3346 			EP_GETTING_NO_STREAMS;
3347 
3348 		xhci_endpoint_copy(xhci, command->in_ctx,
3349 				vdev->out_ctx, ep_index);
3350 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3351 				&vdev->eps[ep_index]);
3352 	}
3353 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3354 			vdev->out_ctx, ctrl_ctx,
3355 			changed_ep_bitmask, changed_ep_bitmask);
3356 	spin_unlock_irqrestore(&xhci->lock, flags);
3357 
3358 	/* Issue and wait for the configure endpoint command,
3359 	 * which must succeed.
3360 	 */
3361 	ret = xhci_configure_endpoint(xhci, udev, command,
3362 			false, true);
3363 
3364 	/* xHC rejected the configure endpoint command for some reason, so we
3365 	 * leave the streams rings intact.
3366 	 */
3367 	if (ret < 0)
3368 		return ret;
3369 
3370 	spin_lock_irqsave(&xhci->lock, flags);
3371 	for (i = 0; i < num_eps; i++) {
3372 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3374 		vdev->eps[ep_index].stream_info = NULL;
3375 		/* FIXME Unset maxPstreams in endpoint context and
3376 		 * update deq ptr to point to normal string ring.
3377 		 */
3378 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3379 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3380 	}
3381 	spin_unlock_irqrestore(&xhci->lock, flags);
3382 
3383 	return 0;
3384 }
3385 
3386 /*
3387  * Deletes endpoint resources for endpoints that were active before a Reset
3388  * Device command, or a Disable Slot command.  The Reset Device command leaves
3389  * the control endpoint intact, whereas the Disable Slot command deletes it.
3390  *
3391  * Must be called with xhci->lock held.
3392  */
3393 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3394 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3395 {
3396 	int i;
3397 	unsigned int num_dropped_eps = 0;
3398 	unsigned int drop_flags = 0;
3399 
3400 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3401 		if (virt_dev->eps[i].ring) {
3402 			drop_flags |= 1 << i;
3403 			num_dropped_eps++;
3404 		}
3405 	}
3406 	xhci->num_active_eps -= num_dropped_eps;
3407 	if (num_dropped_eps)
3408 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3409 				"Dropped %u ep ctxs, flags = 0x%x, "
3410 				"%u now active.",
3411 				num_dropped_eps, drop_flags,
3412 				xhci->num_active_eps);
3413 }
3414 
3415 /*
3416  * This submits a Reset Device Command, which will set the device state to 0,
3417  * set the device address to 0, and disable all the endpoints except the default
3418  * control endpoint.  The USB core should come back and call
3419  * xhci_address_device(), and then re-set up the configuration.  If this is
3420  * called because of a usb_reset_and_verify_device(), then the old alternate
3421  * settings will be re-installed through the normal bandwidth allocation
3422  * functions.
3423  *
3424  * Wait for the Reset Device command to finish.  Remove all structures
3425  * associated with the endpoints that were disabled.  Clear the input device
3426  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3427  *
3428  * If the virt_dev to be reset does not exist or does not match the udev,
3429  * it means the device is lost, possibly due to the xHC restore error and
3430  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3431  * re-allocate the device.
3432  */
3433 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3434 {
3435 	int ret, i;
3436 	unsigned long flags;
3437 	struct xhci_hcd *xhci;
3438 	unsigned int slot_id;
3439 	struct xhci_virt_device *virt_dev;
3440 	struct xhci_command *reset_device_cmd;
3441 	int last_freed_endpoint;
3442 	struct xhci_slot_ctx *slot_ctx;
3443 	int old_active_eps = 0;
3444 
3445 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3446 	if (ret <= 0)
3447 		return ret;
3448 	xhci = hcd_to_xhci(hcd);
3449 	slot_id = udev->slot_id;
3450 	virt_dev = xhci->devs[slot_id];
3451 	if (!virt_dev) {
3452 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3453 				"not exist. Re-allocate the device\n", slot_id);
3454 		ret = xhci_alloc_dev(hcd, udev);
3455 		if (ret == 1)
3456 			return 0;
3457 		else
3458 			return -EINVAL;
3459 	}
3460 
3461 	if (virt_dev->tt_info)
3462 		old_active_eps = virt_dev->tt_info->active_eps;
3463 
3464 	if (virt_dev->udev != udev) {
3465 		/* If the virt_dev and the udev does not match, this virt_dev
3466 		 * may belong to another udev.
3467 		 * Re-allocate the device.
3468 		 */
3469 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3470 				"not match the udev. Re-allocate the device\n",
3471 				slot_id);
3472 		ret = xhci_alloc_dev(hcd, udev);
3473 		if (ret == 1)
3474 			return 0;
3475 		else
3476 			return -EINVAL;
3477 	}
3478 
3479 	/* If device is not setup, there is no point in resetting it */
3480 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3481 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3482 						SLOT_STATE_DISABLED)
3483 		return 0;
3484 
3485 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3486 	/* Allocate the command structure that holds the struct completion.
3487 	 * Assume we're in process context, since the normal device reset
3488 	 * process has to wait for the device anyway.  Storage devices are
3489 	 * reset as part of error handling, so use GFP_NOIO instead of
3490 	 * GFP_KERNEL.
3491 	 */
3492 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3493 	if (!reset_device_cmd) {
3494 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3495 		return -ENOMEM;
3496 	}
3497 
3498 	/* Attempt to submit the Reset Device command to the command ring */
3499 	spin_lock_irqsave(&xhci->lock, flags);
3500 
3501 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3502 	if (ret) {
3503 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3504 		spin_unlock_irqrestore(&xhci->lock, flags);
3505 		goto command_cleanup;
3506 	}
3507 	xhci_ring_cmd_db(xhci);
3508 	spin_unlock_irqrestore(&xhci->lock, flags);
3509 
3510 	/* Wait for the Reset Device command to finish */
3511 	wait_for_completion(reset_device_cmd->completion);
3512 
3513 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3514 	 * unless we tried to reset a slot ID that wasn't enabled,
3515 	 * or the device wasn't in the addressed or configured state.
3516 	 */
3517 	ret = reset_device_cmd->status;
3518 	switch (ret) {
3519 	case COMP_CMD_ABORT:
3520 	case COMP_CMD_STOP:
3521 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3522 		ret = -ETIME;
3523 		goto command_cleanup;
3524 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3525 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3526 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3527 				slot_id,
3528 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3529 		xhci_dbg(xhci, "Not freeing device rings.\n");
3530 		/* Don't treat this as an error.  May change my mind later. */
3531 		ret = 0;
3532 		goto command_cleanup;
3533 	case COMP_SUCCESS:
3534 		xhci_dbg(xhci, "Successful reset device command.\n");
3535 		break;
3536 	default:
3537 		if (xhci_is_vendor_info_code(xhci, ret))
3538 			break;
3539 		xhci_warn(xhci, "Unknown completion code %u for "
3540 				"reset device command.\n", ret);
3541 		ret = -EINVAL;
3542 		goto command_cleanup;
3543 	}
3544 
3545 	/* Free up host controller endpoint resources */
3546 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3547 		spin_lock_irqsave(&xhci->lock, flags);
3548 		/* Don't delete the default control endpoint resources */
3549 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3550 		spin_unlock_irqrestore(&xhci->lock, flags);
3551 	}
3552 
3553 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3554 	last_freed_endpoint = 1;
3555 	for (i = 1; i < 31; ++i) {
3556 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3557 
3558 		if (ep->ep_state & EP_HAS_STREAMS) {
3559 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3560 					xhci_get_endpoint_address(i));
3561 			xhci_free_stream_info(xhci, ep->stream_info);
3562 			ep->stream_info = NULL;
3563 			ep->ep_state &= ~EP_HAS_STREAMS;
3564 		}
3565 
3566 		if (ep->ring) {
3567 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3568 			last_freed_endpoint = i;
3569 		}
3570 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3571 			xhci_drop_ep_from_interval_table(xhci,
3572 					&virt_dev->eps[i].bw_info,
3573 					virt_dev->bw_table,
3574 					udev,
3575 					&virt_dev->eps[i],
3576 					virt_dev->tt_info);
3577 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3578 	}
3579 	/* If necessary, update the number of active TTs on this root port */
3580 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3581 
3582 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3583 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3584 	ret = 0;
3585 
3586 command_cleanup:
3587 	xhci_free_command(xhci, reset_device_cmd);
3588 	return ret;
3589 }
3590 
3591 /*
3592  * At this point, the struct usb_device is about to go away, the device has
3593  * disconnected, and all traffic has been stopped and the endpoints have been
3594  * disabled.  Free any HC data structures associated with that device.
3595  */
3596 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3597 {
3598 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3599 	struct xhci_virt_device *virt_dev;
3600 	unsigned long flags;
3601 	u32 state;
3602 	int i, ret;
3603 	struct xhci_command *command;
3604 
3605 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3606 	if (!command)
3607 		return;
3608 
3609 #ifndef CONFIG_USB_DEFAULT_PERSIST
3610 	/*
3611 	 * We called pm_runtime_get_noresume when the device was attached.
3612 	 * Decrement the counter here to allow controller to runtime suspend
3613 	 * if no devices remain.
3614 	 */
3615 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3616 		pm_runtime_put_noidle(hcd->self.controller);
3617 #endif
3618 
3619 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3620 	/* If the host is halted due to driver unload, we still need to free the
3621 	 * device.
3622 	 */
3623 	if (ret <= 0 && ret != -ENODEV) {
3624 		kfree(command);
3625 		return;
3626 	}
3627 
3628 	virt_dev = xhci->devs[udev->slot_id];
3629 
3630 	/* Stop any wayward timer functions (which may grab the lock) */
3631 	for (i = 0; i < 31; ++i) {
3632 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3633 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3634 	}
3635 
3636 	spin_lock_irqsave(&xhci->lock, flags);
3637 	/* Don't disable the slot if the host controller is dead. */
3638 	state = readl(&xhci->op_regs->status);
3639 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3640 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3641 		xhci_free_virt_device(xhci, udev->slot_id);
3642 		spin_unlock_irqrestore(&xhci->lock, flags);
3643 		kfree(command);
3644 		return;
3645 	}
3646 
3647 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3648 				    udev->slot_id)) {
3649 		spin_unlock_irqrestore(&xhci->lock, flags);
3650 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3651 		return;
3652 	}
3653 	xhci_ring_cmd_db(xhci);
3654 	spin_unlock_irqrestore(&xhci->lock, flags);
3655 
3656 	/*
3657 	 * Event command completion handler will free any data structures
3658 	 * associated with the slot.  XXX Can free sleep?
3659 	 */
3660 }
3661 
3662 /*
3663  * Checks if we have enough host controller resources for the default control
3664  * endpoint.
3665  *
3666  * Must be called with xhci->lock held.
3667  */
3668 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3669 {
3670 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3671 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3672 				"Not enough ep ctxs: "
3673 				"%u active, need to add 1, limit is %u.",
3674 				xhci->num_active_eps, xhci->limit_active_eps);
3675 		return -ENOMEM;
3676 	}
3677 	xhci->num_active_eps += 1;
3678 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679 			"Adding 1 ep ctx, %u now active.",
3680 			xhci->num_active_eps);
3681 	return 0;
3682 }
3683 
3684 
3685 /*
3686  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3687  * timed out, or allocating memory failed.  Returns 1 on success.
3688  */
3689 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3690 {
3691 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3692 	unsigned long flags;
3693 	int ret, slot_id;
3694 	struct xhci_command *command;
3695 
3696 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3697 	if (!command)
3698 		return 0;
3699 
3700 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3701 	mutex_lock(&xhci->mutex);
3702 	spin_lock_irqsave(&xhci->lock, flags);
3703 	command->completion = &xhci->addr_dev;
3704 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705 	if (ret) {
3706 		spin_unlock_irqrestore(&xhci->lock, flags);
3707 		mutex_unlock(&xhci->mutex);
3708 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3709 		kfree(command);
3710 		return 0;
3711 	}
3712 	xhci_ring_cmd_db(xhci);
3713 	spin_unlock_irqrestore(&xhci->lock, flags);
3714 
3715 	wait_for_completion(command->completion);
3716 	slot_id = xhci->slot_id;
3717 	mutex_unlock(&xhci->mutex);
3718 
3719 	if (!slot_id || command->status != COMP_SUCCESS) {
3720 		xhci_err(xhci, "Error while assigning device slot ID\n");
3721 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3722 				HCS_MAX_SLOTS(
3723 					readl(&xhci->cap_regs->hcs_params1)));
3724 		kfree(command);
3725 		return 0;
3726 	}
3727 
3728 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3729 		spin_lock_irqsave(&xhci->lock, flags);
3730 		ret = xhci_reserve_host_control_ep_resources(xhci);
3731 		if (ret) {
3732 			spin_unlock_irqrestore(&xhci->lock, flags);
3733 			xhci_warn(xhci, "Not enough host resources, "
3734 					"active endpoint contexts = %u\n",
3735 					xhci->num_active_eps);
3736 			goto disable_slot;
3737 		}
3738 		spin_unlock_irqrestore(&xhci->lock, flags);
3739 	}
3740 	/* Use GFP_NOIO, since this function can be called from
3741 	 * xhci_discover_or_reset_device(), which may be called as part of
3742 	 * mass storage driver error handling.
3743 	 */
3744 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3745 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3746 		goto disable_slot;
3747 	}
3748 	udev->slot_id = slot_id;
3749 
3750 #ifndef CONFIG_USB_DEFAULT_PERSIST
3751 	/*
3752 	 * If resetting upon resume, we can't put the controller into runtime
3753 	 * suspend if there is a device attached.
3754 	 */
3755 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3756 		pm_runtime_get_noresume(hcd->self.controller);
3757 #endif
3758 
3759 
3760 	kfree(command);
3761 	/* Is this a LS or FS device under a HS hub? */
3762 	/* Hub or peripherial? */
3763 	return 1;
3764 
3765 disable_slot:
3766 	/* Disable slot, if we can do it without mem alloc */
3767 	spin_lock_irqsave(&xhci->lock, flags);
3768 	command->completion = NULL;
3769 	command->status = 0;
3770 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3771 				     udev->slot_id))
3772 		xhci_ring_cmd_db(xhci);
3773 	spin_unlock_irqrestore(&xhci->lock, flags);
3774 	return 0;
3775 }
3776 
3777 /*
3778  * Issue an Address Device command and optionally send a corresponding
3779  * SetAddress request to the device.
3780  */
3781 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3782 			     enum xhci_setup_dev setup)
3783 {
3784 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3785 	unsigned long flags;
3786 	struct xhci_virt_device *virt_dev;
3787 	int ret = 0;
3788 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3789 	struct xhci_slot_ctx *slot_ctx;
3790 	struct xhci_input_control_ctx *ctrl_ctx;
3791 	u64 temp_64;
3792 	struct xhci_command *command = NULL;
3793 
3794 	mutex_lock(&xhci->mutex);
3795 
3796 	if (!udev->slot_id) {
3797 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3798 				"Bad Slot ID %d", udev->slot_id);
3799 		ret = -EINVAL;
3800 		goto out;
3801 	}
3802 
3803 	virt_dev = xhci->devs[udev->slot_id];
3804 
3805 	if (WARN_ON(!virt_dev)) {
3806 		/*
3807 		 * In plug/unplug torture test with an NEC controller,
3808 		 * a zero-dereference was observed once due to virt_dev = 0.
3809 		 * Print useful debug rather than crash if it is observed again!
3810 		 */
3811 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3812 			udev->slot_id);
3813 		ret = -EINVAL;
3814 		goto out;
3815 	}
3816 
3817 	if (setup == SETUP_CONTEXT_ONLY) {
3818 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3819 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3820 		    SLOT_STATE_DEFAULT) {
3821 			xhci_dbg(xhci, "Slot already in default state\n");
3822 			goto out;
3823 		}
3824 	}
3825 
3826 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3827 	if (!command) {
3828 		ret = -ENOMEM;
3829 		goto out;
3830 	}
3831 
3832 	command->in_ctx = virt_dev->in_ctx;
3833 	command->completion = &xhci->addr_dev;
3834 
3835 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3836 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3837 	if (!ctrl_ctx) {
3838 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3839 				__func__);
3840 		ret = -EINVAL;
3841 		goto out;
3842 	}
3843 	/*
3844 	 * If this is the first Set Address since device plug-in or
3845 	 * virt_device realloaction after a resume with an xHCI power loss,
3846 	 * then set up the slot context.
3847 	 */
3848 	if (!slot_ctx->dev_info)
3849 		xhci_setup_addressable_virt_dev(xhci, udev);
3850 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3851 	else
3852 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3853 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3854 	ctrl_ctx->drop_flags = 0;
3855 
3856 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3857 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3858 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3859 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3860 
3861 	spin_lock_irqsave(&xhci->lock, flags);
3862 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3863 					udev->slot_id, setup);
3864 	if (ret) {
3865 		spin_unlock_irqrestore(&xhci->lock, flags);
3866 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3867 				"FIXME: allocate a command ring segment");
3868 		goto out;
3869 	}
3870 	xhci_ring_cmd_db(xhci);
3871 	spin_unlock_irqrestore(&xhci->lock, flags);
3872 
3873 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3874 	wait_for_completion(command->completion);
3875 
3876 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3877 	 * the SetAddress() "recovery interval" required by USB and aborting the
3878 	 * command on a timeout.
3879 	 */
3880 	switch (command->status) {
3881 	case COMP_CMD_ABORT:
3882 	case COMP_CMD_STOP:
3883 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3884 		ret = -ETIME;
3885 		break;
3886 	case COMP_CTX_STATE:
3887 	case COMP_EBADSLT:
3888 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3889 			 act, udev->slot_id);
3890 		ret = -EINVAL;
3891 		break;
3892 	case COMP_TX_ERR:
3893 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3894 		ret = -EPROTO;
3895 		break;
3896 	case COMP_DEV_ERR:
3897 		dev_warn(&udev->dev,
3898 			 "ERROR: Incompatible device for setup %s command\n", act);
3899 		ret = -ENODEV;
3900 		break;
3901 	case COMP_SUCCESS:
3902 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903 			       "Successful setup %s command", act);
3904 		break;
3905 	default:
3906 		xhci_err(xhci,
3907 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3908 			 act, command->status);
3909 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3910 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3911 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3912 		ret = -EINVAL;
3913 		break;
3914 	}
3915 	if (ret)
3916 		goto out;
3917 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3918 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3919 			"Op regs DCBAA ptr = %#016llx", temp_64);
3920 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3921 		"Slot ID %d dcbaa entry @%p = %#016llx",
3922 		udev->slot_id,
3923 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3924 		(unsigned long long)
3925 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3926 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 			"Output Context DMA address = %#08llx",
3928 			(unsigned long long)virt_dev->out_ctx->dma);
3929 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3930 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3931 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3932 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3933 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3934 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3935 	/*
3936 	 * USB core uses address 1 for the roothubs, so we add one to the
3937 	 * address given back to us by the HC.
3938 	 */
3939 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3940 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3941 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3942 	/* Zero the input context control for later use */
3943 	ctrl_ctx->add_flags = 0;
3944 	ctrl_ctx->drop_flags = 0;
3945 
3946 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3947 		       "Internal device address = %d",
3948 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3949 out:
3950 	mutex_unlock(&xhci->mutex);
3951 	kfree(command);
3952 	return ret;
3953 }
3954 
3955 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3958 }
3959 
3960 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3961 {
3962 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3963 }
3964 
3965 /*
3966  * Transfer the port index into real index in the HW port status
3967  * registers. Caculate offset between the port's PORTSC register
3968  * and port status base. Divide the number of per port register
3969  * to get the real index. The raw port number bases 1.
3970  */
3971 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3972 {
3973 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3974 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3975 	__le32 __iomem *addr;
3976 	int raw_port;
3977 
3978 	if (hcd->speed != HCD_USB3)
3979 		addr = xhci->usb2_ports[port1 - 1];
3980 	else
3981 		addr = xhci->usb3_ports[port1 - 1];
3982 
3983 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3984 	return raw_port;
3985 }
3986 
3987 /*
3988  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3989  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3990  */
3991 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3992 			struct usb_device *udev, u16 max_exit_latency)
3993 {
3994 	struct xhci_virt_device *virt_dev;
3995 	struct xhci_command *command;
3996 	struct xhci_input_control_ctx *ctrl_ctx;
3997 	struct xhci_slot_ctx *slot_ctx;
3998 	unsigned long flags;
3999 	int ret;
4000 
4001 	spin_lock_irqsave(&xhci->lock, flags);
4002 
4003 	virt_dev = xhci->devs[udev->slot_id];
4004 
4005 	/*
4006 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4007 	 * xHC was re-initialized. Exit latency will be set later after
4008 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4009 	 */
4010 
4011 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4012 		spin_unlock_irqrestore(&xhci->lock, flags);
4013 		return 0;
4014 	}
4015 
4016 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4017 	command = xhci->lpm_command;
4018 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4019 	if (!ctrl_ctx) {
4020 		spin_unlock_irqrestore(&xhci->lock, flags);
4021 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4022 				__func__);
4023 		return -ENOMEM;
4024 	}
4025 
4026 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4027 	spin_unlock_irqrestore(&xhci->lock, flags);
4028 
4029 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4030 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4031 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4032 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4033 	slot_ctx->dev_state = 0;
4034 
4035 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4036 			"Set up evaluate context for LPM MEL change.");
4037 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4038 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4039 
4040 	/* Issue and wait for the evaluate context command. */
4041 	ret = xhci_configure_endpoint(xhci, udev, command,
4042 			true, true);
4043 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4044 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4045 
4046 	if (!ret) {
4047 		spin_lock_irqsave(&xhci->lock, flags);
4048 		virt_dev->current_mel = max_exit_latency;
4049 		spin_unlock_irqrestore(&xhci->lock, flags);
4050 	}
4051 	return ret;
4052 }
4053 
4054 #ifdef CONFIG_PM
4055 
4056 /* BESL to HIRD Encoding array for USB2 LPM */
4057 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4058 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4059 
4060 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4061 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4062 					struct usb_device *udev)
4063 {
4064 	int u2del, besl, besl_host;
4065 	int besl_device = 0;
4066 	u32 field;
4067 
4068 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4069 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4070 
4071 	if (field & USB_BESL_SUPPORT) {
4072 		for (besl_host = 0; besl_host < 16; besl_host++) {
4073 			if (xhci_besl_encoding[besl_host] >= u2del)
4074 				break;
4075 		}
4076 		/* Use baseline BESL value as default */
4077 		if (field & USB_BESL_BASELINE_VALID)
4078 			besl_device = USB_GET_BESL_BASELINE(field);
4079 		else if (field & USB_BESL_DEEP_VALID)
4080 			besl_device = USB_GET_BESL_DEEP(field);
4081 	} else {
4082 		if (u2del <= 50)
4083 			besl_host = 0;
4084 		else
4085 			besl_host = (u2del - 51) / 75 + 1;
4086 	}
4087 
4088 	besl = besl_host + besl_device;
4089 	if (besl > 15)
4090 		besl = 15;
4091 
4092 	return besl;
4093 }
4094 
4095 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4096 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4097 {
4098 	u32 field;
4099 	int l1;
4100 	int besld = 0;
4101 	int hirdm = 0;
4102 
4103 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4104 
4105 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4106 	l1 = udev->l1_params.timeout / 256;
4107 
4108 	/* device has preferred BESLD */
4109 	if (field & USB_BESL_DEEP_VALID) {
4110 		besld = USB_GET_BESL_DEEP(field);
4111 		hirdm = 1;
4112 	}
4113 
4114 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4115 }
4116 
4117 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4118 			struct usb_device *udev, int enable)
4119 {
4120 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4121 	__le32 __iomem	**port_array;
4122 	__le32 __iomem	*pm_addr, *hlpm_addr;
4123 	u32		pm_val, hlpm_val, field;
4124 	unsigned int	port_num;
4125 	unsigned long	flags;
4126 	int		hird, exit_latency;
4127 	int		ret;
4128 
4129 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4130 			!udev->lpm_capable)
4131 		return -EPERM;
4132 
4133 	if (!udev->parent || udev->parent->parent ||
4134 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4135 		return -EPERM;
4136 
4137 	if (udev->usb2_hw_lpm_capable != 1)
4138 		return -EPERM;
4139 
4140 	spin_lock_irqsave(&xhci->lock, flags);
4141 
4142 	port_array = xhci->usb2_ports;
4143 	port_num = udev->portnum - 1;
4144 	pm_addr = port_array[port_num] + PORTPMSC;
4145 	pm_val = readl(pm_addr);
4146 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4147 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4148 
4149 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4150 			enable ? "enable" : "disable", port_num + 1);
4151 
4152 	if (enable) {
4153 		/* Host supports BESL timeout instead of HIRD */
4154 		if (udev->usb2_hw_lpm_besl_capable) {
4155 			/* if device doesn't have a preferred BESL value use a
4156 			 * default one which works with mixed HIRD and BESL
4157 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4158 			 */
4159 			if ((field & USB_BESL_SUPPORT) &&
4160 			    (field & USB_BESL_BASELINE_VALID))
4161 				hird = USB_GET_BESL_BASELINE(field);
4162 			else
4163 				hird = udev->l1_params.besl;
4164 
4165 			exit_latency = xhci_besl_encoding[hird];
4166 			spin_unlock_irqrestore(&xhci->lock, flags);
4167 
4168 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4169 			 * input context for link powermanagement evaluate
4170 			 * context commands. It is protected by hcd->bandwidth
4171 			 * mutex and is shared by all devices. We need to set
4172 			 * the max ext latency in USB 2 BESL LPM as well, so
4173 			 * use the same mutex and xhci_change_max_exit_latency()
4174 			 */
4175 			mutex_lock(hcd->bandwidth_mutex);
4176 			ret = xhci_change_max_exit_latency(xhci, udev,
4177 							   exit_latency);
4178 			mutex_unlock(hcd->bandwidth_mutex);
4179 
4180 			if (ret < 0)
4181 				return ret;
4182 			spin_lock_irqsave(&xhci->lock, flags);
4183 
4184 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4185 			writel(hlpm_val, hlpm_addr);
4186 			/* flush write */
4187 			readl(hlpm_addr);
4188 		} else {
4189 			hird = xhci_calculate_hird_besl(xhci, udev);
4190 		}
4191 
4192 		pm_val &= ~PORT_HIRD_MASK;
4193 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4194 		writel(pm_val, pm_addr);
4195 		pm_val = readl(pm_addr);
4196 		pm_val |= PORT_HLE;
4197 		writel(pm_val, pm_addr);
4198 		/* flush write */
4199 		readl(pm_addr);
4200 	} else {
4201 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4202 		writel(pm_val, pm_addr);
4203 		/* flush write */
4204 		readl(pm_addr);
4205 		if (udev->usb2_hw_lpm_besl_capable) {
4206 			spin_unlock_irqrestore(&xhci->lock, flags);
4207 			mutex_lock(hcd->bandwidth_mutex);
4208 			xhci_change_max_exit_latency(xhci, udev, 0);
4209 			mutex_unlock(hcd->bandwidth_mutex);
4210 			return 0;
4211 		}
4212 	}
4213 
4214 	spin_unlock_irqrestore(&xhci->lock, flags);
4215 	return 0;
4216 }
4217 
4218 /* check if a usb2 port supports a given extened capability protocol
4219  * only USB2 ports extended protocol capability values are cached.
4220  * Return 1 if capability is supported
4221  */
4222 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4223 					   unsigned capability)
4224 {
4225 	u32 port_offset, port_count;
4226 	int i;
4227 
4228 	for (i = 0; i < xhci->num_ext_caps; i++) {
4229 		if (xhci->ext_caps[i] & capability) {
4230 			/* port offsets starts at 1 */
4231 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4232 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4233 			if (port >= port_offset &&
4234 			    port < port_offset + port_count)
4235 				return 1;
4236 		}
4237 	}
4238 	return 0;
4239 }
4240 
4241 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4242 {
4243 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4244 	int		portnum = udev->portnum - 1;
4245 
4246 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4247 			!udev->lpm_capable)
4248 		return 0;
4249 
4250 	/* we only support lpm for non-hub device connected to root hub yet */
4251 	if (!udev->parent || udev->parent->parent ||
4252 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4253 		return 0;
4254 
4255 	if (xhci->hw_lpm_support == 1 &&
4256 			xhci_check_usb2_port_capability(
4257 				xhci, portnum, XHCI_HLC)) {
4258 		udev->usb2_hw_lpm_capable = 1;
4259 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4260 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4261 		if (xhci_check_usb2_port_capability(xhci, portnum,
4262 					XHCI_BLC))
4263 			udev->usb2_hw_lpm_besl_capable = 1;
4264 	}
4265 
4266 	return 0;
4267 }
4268 
4269 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4270 
4271 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4272 static unsigned long long xhci_service_interval_to_ns(
4273 		struct usb_endpoint_descriptor *desc)
4274 {
4275 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4276 }
4277 
4278 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4279 		enum usb3_link_state state)
4280 {
4281 	unsigned long long sel;
4282 	unsigned long long pel;
4283 	unsigned int max_sel_pel;
4284 	char *state_name;
4285 
4286 	switch (state) {
4287 	case USB3_LPM_U1:
4288 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4289 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4290 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4291 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4292 		state_name = "U1";
4293 		break;
4294 	case USB3_LPM_U2:
4295 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4296 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4297 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4298 		state_name = "U2";
4299 		break;
4300 	default:
4301 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4302 				__func__);
4303 		return USB3_LPM_DISABLED;
4304 	}
4305 
4306 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4307 		return USB3_LPM_DEVICE_INITIATED;
4308 
4309 	if (sel > max_sel_pel)
4310 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4311 				"due to long SEL %llu ms\n",
4312 				state_name, sel);
4313 	else
4314 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4315 				"due to long PEL %llu ms\n",
4316 				state_name, pel);
4317 	return USB3_LPM_DISABLED;
4318 }
4319 
4320 /* The U1 timeout should be the maximum of the following values:
4321  *  - For control endpoints, U1 system exit latency (SEL) * 3
4322  *  - For bulk endpoints, U1 SEL * 5
4323  *  - For interrupt endpoints:
4324  *    - Notification EPs, U1 SEL * 3
4325  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4326  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4327  */
4328 static unsigned long long xhci_calculate_intel_u1_timeout(
4329 		struct usb_device *udev,
4330 		struct usb_endpoint_descriptor *desc)
4331 {
4332 	unsigned long long timeout_ns;
4333 	int ep_type;
4334 	int intr_type;
4335 
4336 	ep_type = usb_endpoint_type(desc);
4337 	switch (ep_type) {
4338 	case USB_ENDPOINT_XFER_CONTROL:
4339 		timeout_ns = udev->u1_params.sel * 3;
4340 		break;
4341 	case USB_ENDPOINT_XFER_BULK:
4342 		timeout_ns = udev->u1_params.sel * 5;
4343 		break;
4344 	case USB_ENDPOINT_XFER_INT:
4345 		intr_type = usb_endpoint_interrupt_type(desc);
4346 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4347 			timeout_ns = udev->u1_params.sel * 3;
4348 			break;
4349 		}
4350 		/* Otherwise the calculation is the same as isoc eps */
4351 	case USB_ENDPOINT_XFER_ISOC:
4352 		timeout_ns = xhci_service_interval_to_ns(desc);
4353 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4354 		if (timeout_ns < udev->u1_params.sel * 2)
4355 			timeout_ns = udev->u1_params.sel * 2;
4356 		break;
4357 	default:
4358 		return 0;
4359 	}
4360 
4361 	return timeout_ns;
4362 }
4363 
4364 /* Returns the hub-encoded U1 timeout value. */
4365 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4366 		struct usb_device *udev,
4367 		struct usb_endpoint_descriptor *desc)
4368 {
4369 	unsigned long long timeout_ns;
4370 
4371 	if (xhci->quirks & XHCI_INTEL_HOST)
4372 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4373 	else
4374 		timeout_ns = udev->u1_params.sel;
4375 
4376 	/* The U1 timeout is encoded in 1us intervals.
4377 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4378 	 */
4379 	if (timeout_ns == USB3_LPM_DISABLED)
4380 		timeout_ns = 1;
4381 	else
4382 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4383 
4384 	/* If the necessary timeout value is bigger than what we can set in the
4385 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4386 	 */
4387 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4388 		return timeout_ns;
4389 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4390 			"due to long timeout %llu ms\n", timeout_ns);
4391 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4392 }
4393 
4394 /* The U2 timeout should be the maximum of:
4395  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4396  *  - largest bInterval of any active periodic endpoint (to avoid going
4397  *    into lower power link states between intervals).
4398  *  - the U2 Exit Latency of the device
4399  */
4400 static unsigned long long xhci_calculate_intel_u2_timeout(
4401 		struct usb_device *udev,
4402 		struct usb_endpoint_descriptor *desc)
4403 {
4404 	unsigned long long timeout_ns;
4405 	unsigned long long u2_del_ns;
4406 
4407 	timeout_ns = 10 * 1000 * 1000;
4408 
4409 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4410 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4411 		timeout_ns = xhci_service_interval_to_ns(desc);
4412 
4413 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4414 	if (u2_del_ns > timeout_ns)
4415 		timeout_ns = u2_del_ns;
4416 
4417 	return timeout_ns;
4418 }
4419 
4420 /* Returns the hub-encoded U2 timeout value. */
4421 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4422 		struct usb_device *udev,
4423 		struct usb_endpoint_descriptor *desc)
4424 {
4425 	unsigned long long timeout_ns;
4426 
4427 	if (xhci->quirks & XHCI_INTEL_HOST)
4428 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4429 	else
4430 		timeout_ns = udev->u2_params.sel;
4431 
4432 	/* The U2 timeout is encoded in 256us intervals */
4433 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4434 	/* If the necessary timeout value is bigger than what we can set in the
4435 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4436 	 */
4437 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4438 		return timeout_ns;
4439 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4440 			"due to long timeout %llu ms\n", timeout_ns);
4441 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4442 }
4443 
4444 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4445 		struct usb_device *udev,
4446 		struct usb_endpoint_descriptor *desc,
4447 		enum usb3_link_state state,
4448 		u16 *timeout)
4449 {
4450 	if (state == USB3_LPM_U1)
4451 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4452 	else if (state == USB3_LPM_U2)
4453 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4454 
4455 	return USB3_LPM_DISABLED;
4456 }
4457 
4458 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4459 		struct usb_device *udev,
4460 		struct usb_endpoint_descriptor *desc,
4461 		enum usb3_link_state state,
4462 		u16 *timeout)
4463 {
4464 	u16 alt_timeout;
4465 
4466 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4467 		desc, state, timeout);
4468 
4469 	/* If we found we can't enable hub-initiated LPM, or
4470 	 * the U1 or U2 exit latency was too high to allow
4471 	 * device-initiated LPM as well, just stop searching.
4472 	 */
4473 	if (alt_timeout == USB3_LPM_DISABLED ||
4474 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4475 		*timeout = alt_timeout;
4476 		return -E2BIG;
4477 	}
4478 	if (alt_timeout > *timeout)
4479 		*timeout = alt_timeout;
4480 	return 0;
4481 }
4482 
4483 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4484 		struct usb_device *udev,
4485 		struct usb_host_interface *alt,
4486 		enum usb3_link_state state,
4487 		u16 *timeout)
4488 {
4489 	int j;
4490 
4491 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4492 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4493 					&alt->endpoint[j].desc, state, timeout))
4494 			return -E2BIG;
4495 		continue;
4496 	}
4497 	return 0;
4498 }
4499 
4500 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4501 		enum usb3_link_state state)
4502 {
4503 	struct usb_device *parent;
4504 	unsigned int num_hubs;
4505 
4506 	if (state == USB3_LPM_U2)
4507 		return 0;
4508 
4509 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4510 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4511 			parent = parent->parent)
4512 		num_hubs++;
4513 
4514 	if (num_hubs < 2)
4515 		return 0;
4516 
4517 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4518 			" below second-tier hub.\n");
4519 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4520 			"to decrease power consumption.\n");
4521 	return -E2BIG;
4522 }
4523 
4524 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4525 		struct usb_device *udev,
4526 		enum usb3_link_state state)
4527 {
4528 	if (xhci->quirks & XHCI_INTEL_HOST)
4529 		return xhci_check_intel_tier_policy(udev, state);
4530 	else
4531 		return 0;
4532 }
4533 
4534 /* Returns the U1 or U2 timeout that should be enabled.
4535  * If the tier check or timeout setting functions return with a non-zero exit
4536  * code, that means the timeout value has been finalized and we shouldn't look
4537  * at any more endpoints.
4538  */
4539 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4540 			struct usb_device *udev, enum usb3_link_state state)
4541 {
4542 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4543 	struct usb_host_config *config;
4544 	char *state_name;
4545 	int i;
4546 	u16 timeout = USB3_LPM_DISABLED;
4547 
4548 	if (state == USB3_LPM_U1)
4549 		state_name = "U1";
4550 	else if (state == USB3_LPM_U2)
4551 		state_name = "U2";
4552 	else {
4553 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4554 				state);
4555 		return timeout;
4556 	}
4557 
4558 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4559 		return timeout;
4560 
4561 	/* Gather some information about the currently installed configuration
4562 	 * and alternate interface settings.
4563 	 */
4564 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4565 			state, &timeout))
4566 		return timeout;
4567 
4568 	config = udev->actconfig;
4569 	if (!config)
4570 		return timeout;
4571 
4572 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4573 		struct usb_driver *driver;
4574 		struct usb_interface *intf = config->interface[i];
4575 
4576 		if (!intf)
4577 			continue;
4578 
4579 		/* Check if any currently bound drivers want hub-initiated LPM
4580 		 * disabled.
4581 		 */
4582 		if (intf->dev.driver) {
4583 			driver = to_usb_driver(intf->dev.driver);
4584 			if (driver && driver->disable_hub_initiated_lpm) {
4585 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4586 						"at request of driver %s\n",
4587 						state_name, driver->name);
4588 				return xhci_get_timeout_no_hub_lpm(udev, state);
4589 			}
4590 		}
4591 
4592 		/* Not sure how this could happen... */
4593 		if (!intf->cur_altsetting)
4594 			continue;
4595 
4596 		if (xhci_update_timeout_for_interface(xhci, udev,
4597 					intf->cur_altsetting,
4598 					state, &timeout))
4599 			return timeout;
4600 	}
4601 	return timeout;
4602 }
4603 
4604 static int calculate_max_exit_latency(struct usb_device *udev,
4605 		enum usb3_link_state state_changed,
4606 		u16 hub_encoded_timeout)
4607 {
4608 	unsigned long long u1_mel_us = 0;
4609 	unsigned long long u2_mel_us = 0;
4610 	unsigned long long mel_us = 0;
4611 	bool disabling_u1;
4612 	bool disabling_u2;
4613 	bool enabling_u1;
4614 	bool enabling_u2;
4615 
4616 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4617 			hub_encoded_timeout == USB3_LPM_DISABLED);
4618 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4619 			hub_encoded_timeout == USB3_LPM_DISABLED);
4620 
4621 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4622 			hub_encoded_timeout != USB3_LPM_DISABLED);
4623 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4624 			hub_encoded_timeout != USB3_LPM_DISABLED);
4625 
4626 	/* If U1 was already enabled and we're not disabling it,
4627 	 * or we're going to enable U1, account for the U1 max exit latency.
4628 	 */
4629 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4630 			enabling_u1)
4631 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4632 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4633 			enabling_u2)
4634 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4635 
4636 	if (u1_mel_us > u2_mel_us)
4637 		mel_us = u1_mel_us;
4638 	else
4639 		mel_us = u2_mel_us;
4640 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4641 	if (mel_us > MAX_EXIT) {
4642 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4643 				"is too big.\n", mel_us);
4644 		return -E2BIG;
4645 	}
4646 	return mel_us;
4647 }
4648 
4649 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4650 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4651 			struct usb_device *udev, enum usb3_link_state state)
4652 {
4653 	struct xhci_hcd	*xhci;
4654 	u16 hub_encoded_timeout;
4655 	int mel;
4656 	int ret;
4657 
4658 	xhci = hcd_to_xhci(hcd);
4659 	/* The LPM timeout values are pretty host-controller specific, so don't
4660 	 * enable hub-initiated timeouts unless the vendor has provided
4661 	 * information about their timeout algorithm.
4662 	 */
4663 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4664 			!xhci->devs[udev->slot_id])
4665 		return USB3_LPM_DISABLED;
4666 
4667 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4668 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4669 	if (mel < 0) {
4670 		/* Max Exit Latency is too big, disable LPM. */
4671 		hub_encoded_timeout = USB3_LPM_DISABLED;
4672 		mel = 0;
4673 	}
4674 
4675 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4676 	if (ret)
4677 		return ret;
4678 	return hub_encoded_timeout;
4679 }
4680 
4681 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4682 			struct usb_device *udev, enum usb3_link_state state)
4683 {
4684 	struct xhci_hcd	*xhci;
4685 	u16 mel;
4686 
4687 	xhci = hcd_to_xhci(hcd);
4688 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689 			!xhci->devs[udev->slot_id])
4690 		return 0;
4691 
4692 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4693 	return xhci_change_max_exit_latency(xhci, udev, mel);
4694 }
4695 #else /* CONFIG_PM */
4696 
4697 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4698 				struct usb_device *udev, int enable)
4699 {
4700 	return 0;
4701 }
4702 
4703 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4704 {
4705 	return 0;
4706 }
4707 
4708 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4709 			struct usb_device *udev, enum usb3_link_state state)
4710 {
4711 	return USB3_LPM_DISABLED;
4712 }
4713 
4714 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4715 			struct usb_device *udev, enum usb3_link_state state)
4716 {
4717 	return 0;
4718 }
4719 #endif	/* CONFIG_PM */
4720 
4721 /*-------------------------------------------------------------------------*/
4722 
4723 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4724  * internal data structures for the device.
4725  */
4726 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4727 			struct usb_tt *tt, gfp_t mem_flags)
4728 {
4729 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4730 	struct xhci_virt_device *vdev;
4731 	struct xhci_command *config_cmd;
4732 	struct xhci_input_control_ctx *ctrl_ctx;
4733 	struct xhci_slot_ctx *slot_ctx;
4734 	unsigned long flags;
4735 	unsigned think_time;
4736 	int ret;
4737 
4738 	/* Ignore root hubs */
4739 	if (!hdev->parent)
4740 		return 0;
4741 
4742 	vdev = xhci->devs[hdev->slot_id];
4743 	if (!vdev) {
4744 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4745 		return -EINVAL;
4746 	}
4747 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4748 	if (!config_cmd) {
4749 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4750 		return -ENOMEM;
4751 	}
4752 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4753 	if (!ctrl_ctx) {
4754 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4755 				__func__);
4756 		xhci_free_command(xhci, config_cmd);
4757 		return -ENOMEM;
4758 	}
4759 
4760 	spin_lock_irqsave(&xhci->lock, flags);
4761 	if (hdev->speed == USB_SPEED_HIGH &&
4762 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4763 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4764 		xhci_free_command(xhci, config_cmd);
4765 		spin_unlock_irqrestore(&xhci->lock, flags);
4766 		return -ENOMEM;
4767 	}
4768 
4769 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4770 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4771 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4772 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4773 	if (tt->multi)
4774 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4775 	if (xhci->hci_version > 0x95) {
4776 		xhci_dbg(xhci, "xHCI version %x needs hub "
4777 				"TT think time and number of ports\n",
4778 				(unsigned int) xhci->hci_version);
4779 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4780 		/* Set TT think time - convert from ns to FS bit times.
4781 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4782 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4783 		 *
4784 		 * xHCI 1.0: this field shall be 0 if the device is not a
4785 		 * High-spped hub.
4786 		 */
4787 		think_time = tt->think_time;
4788 		if (think_time != 0)
4789 			think_time = (think_time / 666) - 1;
4790 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4791 			slot_ctx->tt_info |=
4792 				cpu_to_le32(TT_THINK_TIME(think_time));
4793 	} else {
4794 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4795 				"TT think time or number of ports\n",
4796 				(unsigned int) xhci->hci_version);
4797 	}
4798 	slot_ctx->dev_state = 0;
4799 	spin_unlock_irqrestore(&xhci->lock, flags);
4800 
4801 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4802 			(xhci->hci_version > 0x95) ?
4803 			"configure endpoint" : "evaluate context");
4804 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4805 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4806 
4807 	/* Issue and wait for the configure endpoint or
4808 	 * evaluate context command.
4809 	 */
4810 	if (xhci->hci_version > 0x95)
4811 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4812 				false, false);
4813 	else
4814 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4815 				true, false);
4816 
4817 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4818 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4819 
4820 	xhci_free_command(xhci, config_cmd);
4821 	return ret;
4822 }
4823 
4824 int xhci_get_frame(struct usb_hcd *hcd)
4825 {
4826 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4827 	/* EHCI mods by the periodic size.  Why? */
4828 	return readl(&xhci->run_regs->microframe_index) >> 3;
4829 }
4830 
4831 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4832 {
4833 	struct xhci_hcd		*xhci;
4834 	struct device		*dev = hcd->self.controller;
4835 	int			retval;
4836 
4837 	/* Accept arbitrarily long scatter-gather lists */
4838 	hcd->self.sg_tablesize = ~0;
4839 
4840 	/* support to build packet from discontinuous buffers */
4841 	hcd->self.no_sg_constraint = 1;
4842 
4843 	/* XHCI controllers don't stop the ep queue on short packets :| */
4844 	hcd->self.no_stop_on_short = 1;
4845 
4846 	if (usb_hcd_is_primary_hcd(hcd)) {
4847 		xhci = hcd_to_xhci(hcd);
4848 		xhci->main_hcd = hcd;
4849 		/* Mark the first roothub as being USB 2.0.
4850 		 * The xHCI driver will register the USB 3.0 roothub.
4851 		 */
4852 		hcd->speed = HCD_USB2;
4853 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4854 		/*
4855 		 * USB 2.0 roothub under xHCI has an integrated TT,
4856 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4857 		 * companion controller.
4858 		 */
4859 		hcd->has_tt = 1;
4860 	} else {
4861 		/* xHCI private pointer was set in xhci_pci_probe for the second
4862 		 * registered roothub.
4863 		 */
4864 		return 0;
4865 	}
4866 
4867 	mutex_init(&xhci->mutex);
4868 	xhci->cap_regs = hcd->regs;
4869 	xhci->op_regs = hcd->regs +
4870 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4871 	xhci->run_regs = hcd->regs +
4872 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4873 	/* Cache read-only capability registers */
4874 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4875 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4876 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4877 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4878 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4879 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4880 	xhci_print_registers(xhci);
4881 
4882 	xhci->quirks = quirks;
4883 
4884 	get_quirks(dev, xhci);
4885 
4886 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4887 	 * success event after a short transfer. This quirk will ignore such
4888 	 * spurious event.
4889 	 */
4890 	if (xhci->hci_version > 0x96)
4891 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4892 
4893 	/* Make sure the HC is halted. */
4894 	retval = xhci_halt(xhci);
4895 	if (retval)
4896 		return retval;
4897 
4898 	xhci_dbg(xhci, "Resetting HCD\n");
4899 	/* Reset the internal HC memory state and registers. */
4900 	retval = xhci_reset(xhci);
4901 	if (retval)
4902 		return retval;
4903 	xhci_dbg(xhci, "Reset complete\n");
4904 
4905 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4906 	 * if xHC supports 64-bit addressing */
4907 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4908 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4909 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4910 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4911 	}
4912 
4913 	xhci_dbg(xhci, "Calling HCD init\n");
4914 	/* Initialize HCD and host controller data structures. */
4915 	retval = xhci_init(hcd);
4916 	if (retval)
4917 		return retval;
4918 	xhci_dbg(xhci, "Called HCD init\n");
4919 
4920 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4921 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4922 
4923 	return 0;
4924 }
4925 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4926 
4927 static const struct hc_driver xhci_hc_driver = {
4928 	.description =		"xhci-hcd",
4929 	.product_desc =		"xHCI Host Controller",
4930 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4931 
4932 	/*
4933 	 * generic hardware linkage
4934 	 */
4935 	.irq =			xhci_irq,
4936 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4937 
4938 	/*
4939 	 * basic lifecycle operations
4940 	 */
4941 	.reset =		NULL, /* set in xhci_init_driver() */
4942 	.start =		xhci_run,
4943 	.stop =			xhci_stop,
4944 	.shutdown =		xhci_shutdown,
4945 
4946 	/*
4947 	 * managing i/o requests and associated device resources
4948 	 */
4949 	.urb_enqueue =		xhci_urb_enqueue,
4950 	.urb_dequeue =		xhci_urb_dequeue,
4951 	.alloc_dev =		xhci_alloc_dev,
4952 	.free_dev =		xhci_free_dev,
4953 	.alloc_streams =	xhci_alloc_streams,
4954 	.free_streams =		xhci_free_streams,
4955 	.add_endpoint =		xhci_add_endpoint,
4956 	.drop_endpoint =	xhci_drop_endpoint,
4957 	.endpoint_reset =	xhci_endpoint_reset,
4958 	.check_bandwidth =	xhci_check_bandwidth,
4959 	.reset_bandwidth =	xhci_reset_bandwidth,
4960 	.address_device =	xhci_address_device,
4961 	.enable_device =	xhci_enable_device,
4962 	.update_hub_device =	xhci_update_hub_device,
4963 	.reset_device =		xhci_discover_or_reset_device,
4964 
4965 	/*
4966 	 * scheduling support
4967 	 */
4968 	.get_frame_number =	xhci_get_frame,
4969 
4970 	/*
4971 	 * root hub support
4972 	 */
4973 	.hub_control =		xhci_hub_control,
4974 	.hub_status_data =	xhci_hub_status_data,
4975 	.bus_suspend =		xhci_bus_suspend,
4976 	.bus_resume =		xhci_bus_resume,
4977 
4978 	/*
4979 	 * call back when device connected and addressed
4980 	 */
4981 	.update_device =        xhci_update_device,
4982 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4983 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4984 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4985 	.find_raw_port_number =	xhci_find_raw_port_number,
4986 };
4987 
4988 void xhci_init_driver(struct hc_driver *drv,
4989 		      const struct xhci_driver_overrides *over)
4990 {
4991 	BUG_ON(!over);
4992 
4993 	/* Copy the generic table to drv then apply the overrides */
4994 	*drv = xhci_hc_driver;
4995 
4996 	if (over) {
4997 		drv->hcd_priv_size += over->extra_priv_size;
4998 		if (over->reset)
4999 			drv->reset = over->reset;
5000 		if (over->start)
5001 			drv->start = over->start;
5002 	}
5003 }
5004 EXPORT_SYMBOL_GPL(xhci_init_driver);
5005 
5006 MODULE_DESCRIPTION(DRIVER_DESC);
5007 MODULE_AUTHOR(DRIVER_AUTHOR);
5008 MODULE_LICENSE("GPL");
5009 
5010 static int __init xhci_hcd_init(void)
5011 {
5012 	/*
5013 	 * Check the compiler generated sizes of structures that must be laid
5014 	 * out in specific ways for hardware access.
5015 	 */
5016 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5017 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5018 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5019 	/* xhci_device_control has eight fields, and also
5020 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5021 	 */
5022 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5023 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5024 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5025 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5026 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5027 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5028 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5029 	return 0;
5030 }
5031 
5032 /*
5033  * If an init function is provided, an exit function must also be provided
5034  * to allow module unload.
5035  */
5036 static void __exit xhci_hcd_fini(void) { }
5037 
5038 module_init(xhci_hcd_init);
5039 module_exit(xhci_hcd_fini);
5040