xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 1bdd4457)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 
73 	do {
74 		result = readl(ptr);
75 		if (result == ~(u32)0)		/* card removed */
76 			return -ENODEV;
77 		result &= mask;
78 		if (result == done)
79 			return 0;
80 		udelay(1);
81 		usec--;
82 	} while (usec > 0);
83 	return -ETIMEDOUT;
84 }
85 
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 	u32 halted;
92 	u32 cmd;
93 	u32 mask;
94 
95 	mask = ~(XHCI_IRQS);
96 	halted = readl(&xhci->op_regs->status) & STS_HALT;
97 	if (!halted)
98 		mask &= ~CMD_RUN;
99 
100 	cmd = readl(&xhci->op_regs->command);
101 	cmd &= mask;
102 	writel(cmd, &xhci->op_regs->command);
103 }
104 
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 	int ret;
116 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 	xhci_quiesce(xhci);
118 
119 	ret = xhci_handshake(&xhci->op_regs->status,
120 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 	if (ret) {
122 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 		return ret;
124 	}
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command,
202 			CMD_RESET, 0, 10 * 1000 * 1000);
203 	if (ret)
204 		return ret;
205 
206 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208 
209 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 			 "Wait for controller to be ready for doorbell rings");
211 	/*
212 	 * xHCI cannot write to any doorbells or operational registers other
213 	 * than status until the "Controller Not Ready" flag is cleared.
214 	 */
215 	ret = xhci_handshake(&xhci->op_regs->status,
216 			STS_CNR, 0, 10 * 1000 * 1000);
217 
218 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
224 
225 	return ret;
226 }
227 
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 	int err, i;
232 	u64 val;
233 
234 	/*
235 	 * Some Renesas controllers get into a weird state if they are
236 	 * reset while programmed with 64bit addresses (they will preserve
237 	 * the top half of the address in internal, non visible
238 	 * registers). You end up with half the address coming from the
239 	 * kernel, and the other half coming from the firmware. Also,
240 	 * changing the programming leads to extra accesses even if the
241 	 * controller is supposed to be halted. The controller ends up with
242 	 * a fatal fault, and is then ripe for being properly reset.
243 	 *
244 	 * Special care is taken to only apply this if the device is behind
245 	 * an iommu. Doing anything when there is no iommu is definitely
246 	 * unsafe...
247 	 */
248 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249 		return;
250 
251 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252 
253 	/* Clear HSEIE so that faults do not get signaled */
254 	val = readl(&xhci->op_regs->command);
255 	val &= ~CMD_HSEIE;
256 	writel(val, &xhci->op_regs->command);
257 
258 	/* Clear HSE (aka FATAL) */
259 	val = readl(&xhci->op_regs->status);
260 	val |= STS_FATAL;
261 	writel(val, &xhci->op_regs->status);
262 
263 	/* Now zero the registers, and brace for impact */
264 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265 	if (upper_32_bits(val))
266 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268 	if (upper_32_bits(val))
269 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270 
271 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272 		struct xhci_intr_reg __iomem *ir;
273 
274 		ir = &xhci->run_regs->ir_set[i];
275 		val = xhci_read_64(xhci, &ir->erst_base);
276 		if (upper_32_bits(val))
277 			xhci_write_64(xhci, 0, &ir->erst_base);
278 		val= xhci_read_64(xhci, &ir->erst_dequeue);
279 		if (upper_32_bits(val))
280 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
281 	}
282 
283 	/* Wait for the fault to appear. It will be cleared on reset */
284 	err = xhci_handshake(&xhci->op_regs->status,
285 			     STS_FATAL, STS_FATAL,
286 			     XHCI_MAX_HALT_USEC);
287 	if (!err)
288 		xhci_info(xhci, "Fault detected\n");
289 }
290 
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297 	int ret;
298 	/*
299 	 * TODO:Check with MSI Soc for sysdev
300 	 */
301 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302 
303 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304 	if (ret < 0) {
305 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306 				"failed to allocate MSI entry");
307 		return ret;
308 	}
309 
310 	ret = request_irq(pdev->irq, xhci_msi_irq,
311 				0, "xhci_hcd", xhci_to_hcd(xhci));
312 	if (ret) {
313 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314 				"disable MSI interrupt");
315 		pci_free_irq_vectors(pdev);
316 	}
317 
318 	return ret;
319 }
320 
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326 	int i, ret = 0;
327 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329 
330 	/*
331 	 * calculate number of msi-x vectors supported.
332 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
334 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
335 	 *   Add additional 1 vector to ensure always available interrupt.
336 	 */
337 	xhci->msix_count = min(num_online_cpus() + 1,
338 				HCS_MAX_INTRS(xhci->hcs_params1));
339 
340 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341 			PCI_IRQ_MSIX);
342 	if (ret < 0) {
343 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344 				"Failed to enable MSI-X");
345 		return ret;
346 	}
347 
348 	for (i = 0; i < xhci->msix_count; i++) {
349 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350 				"xhci_hcd", xhci_to_hcd(xhci));
351 		if (ret)
352 			goto disable_msix;
353 	}
354 
355 	hcd->msix_enabled = 1;
356 	return ret;
357 
358 disable_msix:
359 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360 	while (--i >= 0)
361 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362 	pci_free_irq_vectors(pdev);
363 	return ret;
364 }
365 
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
370 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371 
372 	if (xhci->quirks & XHCI_PLAT)
373 		return;
374 
375 	/* return if using legacy interrupt */
376 	if (hcd->irq > 0)
377 		return;
378 
379 	if (hcd->msix_enabled) {
380 		int i;
381 
382 		for (i = 0; i < xhci->msix_count; i++)
383 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384 	} else {
385 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386 	}
387 
388 	pci_free_irq_vectors(pdev);
389 	hcd->msix_enabled = 0;
390 }
391 
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
395 
396 	if (hcd->msix_enabled) {
397 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398 		int i;
399 
400 		for (i = 0; i < xhci->msix_count; i++)
401 			synchronize_irq(pci_irq_vector(pdev, i));
402 	}
403 }
404 
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408 	struct pci_dev  *pdev;
409 	int ret;
410 
411 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
412 	if (xhci->quirks & XHCI_PLAT)
413 		return 0;
414 
415 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416 	/*
417 	 * Some Fresco Logic host controllers advertise MSI, but fail to
418 	 * generate interrupts.  Don't even try to enable MSI.
419 	 */
420 	if (xhci->quirks & XHCI_BROKEN_MSI)
421 		goto legacy_irq;
422 
423 	/* unregister the legacy interrupt */
424 	if (hcd->irq)
425 		free_irq(hcd->irq, hcd);
426 	hcd->irq = 0;
427 
428 	ret = xhci_setup_msix(xhci);
429 	if (ret)
430 		/* fall back to msi*/
431 		ret = xhci_setup_msi(xhci);
432 
433 	if (!ret) {
434 		hcd->msi_enabled = 1;
435 		return 0;
436 	}
437 
438 	if (!pdev->irq) {
439 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440 		return -EINVAL;
441 	}
442 
443  legacy_irq:
444 	if (!strlen(hcd->irq_descr))
445 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446 			 hcd->driver->description, hcd->self.busnum);
447 
448 	/* fall back to legacy interrupt*/
449 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450 			hcd->irq_descr, hcd);
451 	if (ret) {
452 		xhci_err(xhci, "request interrupt %d failed\n",
453 				pdev->irq);
454 		return ret;
455 	}
456 	hcd->irq = pdev->irq;
457 	return 0;
458 }
459 
460 #else
461 
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464 	return 0;
465 }
466 
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470 
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474 
475 #endif
476 
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479 	struct xhci_hcd *xhci;
480 	struct usb_hcd *hcd;
481 	struct xhci_hub *rhub;
482 	u32 temp;
483 	int i;
484 
485 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486 	rhub = &xhci->usb3_rhub;
487 
488 	for (i = 0; i < rhub->num_ports; i++) {
489 		temp = readl(rhub->ports[i]->addr);
490 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491 			/*
492 			 * Compliance Mode Detected. Letting USB Core
493 			 * handle the Warm Reset
494 			 */
495 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 					"Compliance mode detected->port %d",
497 					i + 1);
498 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 					"Attempting compliance mode recovery");
500 			hcd = xhci->shared_hcd;
501 
502 			if (hcd->state == HC_STATE_SUSPENDED)
503 				usb_hcd_resume_root_hub(hcd);
504 
505 			usb_hcd_poll_rh_status(hcd);
506 		}
507 	}
508 
509 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510 		mod_timer(&xhci->comp_mode_recovery_timer,
511 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513 
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526 	xhci->port_status_u0 = 0;
527 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528 		    0);
529 	xhci->comp_mode_recovery_timer.expires = jiffies +
530 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531 
532 	add_timer(&xhci->comp_mode_recovery_timer);
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534 			"Compliance mode recovery timer initialized");
535 }
536 
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545 	const char *dmi_product_name, *dmi_sys_vendor;
546 
547 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549 	if (!dmi_product_name || !dmi_sys_vendor)
550 		return false;
551 
552 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553 		return false;
554 
555 	if (strstr(dmi_product_name, "Z420") ||
556 			strstr(dmi_product_name, "Z620") ||
557 			strstr(dmi_product_name, "Z820") ||
558 			strstr(dmi_product_name, "Z1 Workstation"))
559 		return true;
560 
561 	return false;
562 }
563 
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568 
569 
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580 	int retval = 0;
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583 	spin_lock_init(&xhci->lock);
584 	if (xhci->hci_version == 0x95 && link_quirk) {
585 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586 				"QUIRK: Not clearing Link TRB chain bits.");
587 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588 	} else {
589 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590 				"xHCI doesn't need link TRB QUIRK");
591 	}
592 	retval = xhci_mem_init(xhci, GFP_KERNEL);
593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594 
595 	/* Initializing Compliance Mode Recovery Data If Needed */
596 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598 		compliance_mode_recovery_timer_init(xhci);
599 	}
600 
601 	return retval;
602 }
603 
604 /*-------------------------------------------------------------------------*/
605 
606 
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609 	if (xhci_start(xhci)) {
610 		xhci_halt(xhci);
611 		return -ENODEV;
612 	}
613 	xhci->shared_hcd->state = HC_STATE_RUNNING;
614 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615 
616 	if (xhci->quirks & XHCI_NEC_HOST)
617 		xhci_ring_cmd_db(xhci);
618 
619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620 			"Finished xhci_run for USB3 roothub");
621 	return 0;
622 }
623 
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638 	u32 temp;
639 	u64 temp_64;
640 	int ret;
641 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642 
643 	/* Start the xHCI host controller running only after the USB 2.0 roothub
644 	 * is setup.
645 	 */
646 
647 	hcd->uses_new_polling = 1;
648 	if (!usb_hcd_is_primary_hcd(hcd))
649 		return xhci_run_finished(xhci);
650 
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652 
653 	ret = xhci_try_enable_msi(hcd);
654 	if (ret)
655 		return ret;
656 
657 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658 	temp_64 &= ~ERST_PTR_MASK;
659 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"// Set the interrupt modulation register");
664 	temp = readl(&xhci->ir_set->irq_control);
665 	temp &= ~ER_IRQ_INTERVAL_MASK;
666 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667 	writel(temp, &xhci->ir_set->irq_control);
668 
669 	/* Set the HCD state before we enable the irqs */
670 	temp = readl(&xhci->op_regs->command);
671 	temp |= (CMD_EIE);
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"// Enable interrupts, cmd = 0x%x.", temp);
674 	writel(temp, &xhci->op_regs->command);
675 
676 	temp = readl(&xhci->ir_set->irq_pending);
677 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681 
682 	if (xhci->quirks & XHCI_NEC_HOST) {
683 		struct xhci_command *command;
684 
685 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686 		if (!command)
687 			return -ENOMEM;
688 
689 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690 				TRB_TYPE(TRB_NEC_GET_FW));
691 		if (ret)
692 			xhci_free_command(xhci, command);
693 	}
694 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 			"Finished xhci_run for USB2 roothub");
696 
697 	xhci_dbc_init(xhci);
698 
699 	xhci_debugfs_init(xhci);
700 
701 	return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704 
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716 	u32 temp;
717 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718 
719 	mutex_lock(&xhci->mutex);
720 
721 	/* Only halt host and free memory after both hcds are removed */
722 	if (!usb_hcd_is_primary_hcd(hcd)) {
723 		mutex_unlock(&xhci->mutex);
724 		return;
725 	}
726 
727 	xhci_dbc_exit(xhci);
728 
729 	spin_lock_irq(&xhci->lock);
730 	xhci->xhc_state |= XHCI_STATE_HALTED;
731 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732 	xhci_halt(xhci);
733 	xhci_reset(xhci);
734 	spin_unlock_irq(&xhci->lock);
735 
736 	xhci_cleanup_msix(xhci);
737 
738 	/* Deleting Compliance Mode Recovery Timer */
739 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740 			(!(xhci_all_ports_seen_u0(xhci)))) {
741 		del_timer_sync(&xhci->comp_mode_recovery_timer);
742 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743 				"%s: compliance mode recovery timer deleted",
744 				__func__);
745 	}
746 
747 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
748 		usb_amd_dev_put();
749 
750 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751 			"// Disabling event ring interrupts");
752 	temp = readl(&xhci->op_regs->status);
753 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754 	temp = readl(&xhci->ir_set->irq_pending);
755 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758 	xhci_mem_cleanup(xhci);
759 	xhci_debugfs_exit(xhci);
760 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 			"xhci_stop completed - status = %x",
762 			readl(&xhci->op_regs->status));
763 	mutex_unlock(&xhci->mutex);
764 }
765 
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778 
779 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781 
782 	spin_lock_irq(&xhci->lock);
783 	xhci_halt(xhci);
784 	/* Workaround for spurious wakeups at shutdown with HSW */
785 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786 		xhci_reset(xhci);
787 	spin_unlock_irq(&xhci->lock);
788 
789 	xhci_cleanup_msix(xhci);
790 
791 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792 			"xhci_shutdown completed - status = %x",
793 			readl(&xhci->op_regs->status));
794 
795 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
796 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799 
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803 	xhci->s3.command = readl(&xhci->op_regs->command);
804 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813 
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816 	writel(xhci->s3.command, &xhci->op_regs->command);
817 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826 
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829 	u64	val_64;
830 
831 	/* step 2: initialize command ring buffer */
832 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835 				      xhci->cmd_ring->dequeue) &
836 		 (u64) ~CMD_RING_RSVD_BITS) |
837 		xhci->cmd_ring->cycle_state;
838 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839 			"// Setting command ring address to 0x%llx",
840 			(long unsigned long) val_64);
841 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843 
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855 	struct xhci_ring *ring;
856 	struct xhci_segment *seg;
857 
858 	ring = xhci->cmd_ring;
859 	seg = ring->deq_seg;
860 	do {
861 		memset(seg->trbs, 0,
862 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864 			cpu_to_le32(~TRB_CYCLE);
865 		seg = seg->next;
866 	} while (seg != ring->deq_seg);
867 
868 	/* Reset the software enqueue and dequeue pointers */
869 	ring->deq_seg = ring->first_seg;
870 	ring->dequeue = ring->first_seg->trbs;
871 	ring->enq_seg = ring->deq_seg;
872 	ring->enqueue = ring->dequeue;
873 
874 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875 	/*
876 	 * Ring is now zeroed, so the HW should look for change of ownership
877 	 * when the cycle bit is set to 1.
878 	 */
879 	ring->cycle_state = 1;
880 
881 	/*
882 	 * Reset the hardware dequeue pointer.
883 	 * Yes, this will need to be re-written after resume, but we're paranoid
884 	 * and want to make sure the hardware doesn't access bogus memory
885 	 * because, say, the BIOS or an SMI started the host without changing
886 	 * the command ring pointers.
887 	 */
888 	xhci_set_cmd_ring_deq(xhci);
889 }
890 
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893 	struct xhci_port **ports;
894 	int port_index;
895 	unsigned long flags;
896 	u32 t1, t2, portsc;
897 
898 	spin_lock_irqsave(&xhci->lock, flags);
899 
900 	/* disable usb3 ports Wake bits */
901 	port_index = xhci->usb3_rhub.num_ports;
902 	ports = xhci->usb3_rhub.ports;
903 	while (port_index--) {
904 		t1 = readl(ports[port_index]->addr);
905 		portsc = t1;
906 		t1 = xhci_port_state_to_neutral(t1);
907 		t2 = t1 & ~PORT_WAKE_BITS;
908 		if (t1 != t2) {
909 			writel(t2, ports[port_index]->addr);
910 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
911 				 xhci->usb3_rhub.hcd->self.busnum,
912 				 port_index + 1, portsc, t2);
913 		}
914 	}
915 
916 	/* disable usb2 ports Wake bits */
917 	port_index = xhci->usb2_rhub.num_ports;
918 	ports = xhci->usb2_rhub.ports;
919 	while (port_index--) {
920 		t1 = readl(ports[port_index]->addr);
921 		portsc = t1;
922 		t1 = xhci_port_state_to_neutral(t1);
923 		t2 = t1 & ~PORT_WAKE_BITS;
924 		if (t1 != t2) {
925 			writel(t2, ports[port_index]->addr);
926 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
927 				 xhci->usb2_rhub.hcd->self.busnum,
928 				 port_index + 1, portsc, t2);
929 		}
930 	}
931 	spin_unlock_irqrestore(&xhci->lock, flags);
932 }
933 
934 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
935 {
936 	struct xhci_port	**ports;
937 	int			port_index;
938 	u32			status;
939 	u32			portsc;
940 
941 	status = readl(&xhci->op_regs->status);
942 	if (status & STS_EINT)
943 		return true;
944 	/*
945 	 * Checking STS_EINT is not enough as there is a lag between a change
946 	 * bit being set and the Port Status Change Event that it generated
947 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
948 	 */
949 
950 	port_index = xhci->usb2_rhub.num_ports;
951 	ports = xhci->usb2_rhub.ports;
952 	while (port_index--) {
953 		portsc = readl(ports[port_index]->addr);
954 		if (portsc & PORT_CHANGE_MASK ||
955 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
956 			return true;
957 	}
958 	port_index = xhci->usb3_rhub.num_ports;
959 	ports = xhci->usb3_rhub.ports;
960 	while (port_index--) {
961 		portsc = readl(ports[port_index]->addr);
962 		if (portsc & PORT_CHANGE_MASK ||
963 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
964 			return true;
965 	}
966 	return false;
967 }
968 
969 /*
970  * Stop HC (not bus-specific)
971  *
972  * This is called when the machine transition into S3/S4 mode.
973  *
974  */
975 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
976 {
977 	int			rc = 0;
978 	unsigned int		delay = XHCI_MAX_HALT_USEC;
979 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
980 	u32			command;
981 	u32			res;
982 
983 	if (!hcd->state)
984 		return 0;
985 
986 	if (hcd->state != HC_STATE_SUSPENDED ||
987 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
988 		return -EINVAL;
989 
990 	xhci_dbc_suspend(xhci);
991 
992 	/* Clear root port wake on bits if wakeup not allowed. */
993 	if (!do_wakeup)
994 		xhci_disable_port_wake_on_bits(xhci);
995 
996 	/* Don't poll the roothubs on bus suspend. */
997 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
998 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 	del_timer_sync(&hcd->rh_timer);
1000 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1002 
1003 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 		usleep_range(1000, 1500);
1005 
1006 	spin_lock_irq(&xhci->lock);
1007 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 	/* step 1: stop endpoint */
1010 	/* skipped assuming that port suspend has done */
1011 
1012 	/* step 2: clear Run/Stop bit */
1013 	command = readl(&xhci->op_regs->command);
1014 	command &= ~CMD_RUN;
1015 	writel(command, &xhci->op_regs->command);
1016 
1017 	/* Some chips from Fresco Logic need an extraordinary delay */
1018 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019 
1020 	if (xhci_handshake(&xhci->op_regs->status,
1021 		      STS_HALT, STS_HALT, delay)) {
1022 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 		spin_unlock_irq(&xhci->lock);
1024 		return -ETIMEDOUT;
1025 	}
1026 	xhci_clear_command_ring(xhci);
1027 
1028 	/* step 3: save registers */
1029 	xhci_save_registers(xhci);
1030 
1031 	/* step 4: set CSS flag */
1032 	command = readl(&xhci->op_regs->command);
1033 	command |= CMD_CSS;
1034 	writel(command, &xhci->op_regs->command);
1035 	xhci->broken_suspend = 0;
1036 	if (xhci_handshake(&xhci->op_regs->status,
1037 				STS_SAVE, 0, 10 * 1000)) {
1038 	/*
1039 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 	 * SSS bit of USBSTS and when driver tries to poll
1041 	 * to see if the xHC clears BIT(8) which never happens
1042 	 * and driver assumes that controller is not responding
1043 	 * and times out. To workaround this, its good to check
1044 	 * if SRE and HCE bits are not set (as per xhci
1045 	 * Section 5.4.2) and bypass the timeout.
1046 	 */
1047 		res = readl(&xhci->op_regs->status);
1048 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 		    (((res & STS_SRE) == 0) &&
1050 				((res & STS_HCE) == 0))) {
1051 			xhci->broken_suspend = 1;
1052 		} else {
1053 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 			spin_unlock_irq(&xhci->lock);
1055 			return -ETIMEDOUT;
1056 		}
1057 	}
1058 	spin_unlock_irq(&xhci->lock);
1059 
1060 	/*
1061 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 	 * is about to be suspended.
1063 	 */
1064 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 			(!(xhci_all_ports_seen_u0(xhci)))) {
1066 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 				"%s: compliance mode recovery timer deleted",
1069 				__func__);
1070 	}
1071 
1072 	/* step 5: remove core well power */
1073 	/* synchronize irq when using MSI-X */
1074 	xhci_msix_sync_irqs(xhci);
1075 
1076 	return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079 
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088 	u32			command, temp = 0;
1089 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1090 	struct usb_hcd		*secondary_hcd;
1091 	int			retval = 0;
1092 	bool			comp_timer_running = false;
1093 
1094 	if (!hcd->state)
1095 		return 0;
1096 
1097 	/* Wait a bit if either of the roothubs need to settle from the
1098 	 * transition into bus suspend.
1099 	 */
1100 
1101 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103 		msleep(100);
1104 
1105 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107 
1108 	spin_lock_irq(&xhci->lock);
1109 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110 		hibernated = true;
1111 
1112 	if (!hibernated) {
1113 		/* step 1: restore register */
1114 		xhci_restore_registers(xhci);
1115 		/* step 2: initialize command ring buffer */
1116 		xhci_set_cmd_ring_deq(xhci);
1117 		/* step 3: restore state and start state*/
1118 		/* step 3: set CRS flag */
1119 		command = readl(&xhci->op_regs->command);
1120 		command |= CMD_CRS;
1121 		writel(command, &xhci->op_regs->command);
1122 		/*
1123 		 * Some controllers take up to 55+ ms to complete the controller
1124 		 * restore so setting the timeout to 100ms. Xhci specification
1125 		 * doesn't mention any timeout value.
1126 		 */
1127 		if (xhci_handshake(&xhci->op_regs->status,
1128 			      STS_RESTORE, 0, 100 * 1000)) {
1129 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1130 			spin_unlock_irq(&xhci->lock);
1131 			return -ETIMEDOUT;
1132 		}
1133 		temp = readl(&xhci->op_regs->status);
1134 	}
1135 
1136 	/* If restore operation fails, re-initialize the HC during resume */
1137 	if ((temp & STS_SRE) || hibernated) {
1138 
1139 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1140 				!(xhci_all_ports_seen_u0(xhci))) {
1141 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1142 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1143 				"Compliance Mode Recovery Timer deleted!");
1144 		}
1145 
1146 		/* Let the USB core know _both_ roothubs lost power. */
1147 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1148 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1149 
1150 		xhci_dbg(xhci, "Stop HCD\n");
1151 		xhci_halt(xhci);
1152 		xhci_zero_64b_regs(xhci);
1153 		xhci_reset(xhci);
1154 		spin_unlock_irq(&xhci->lock);
1155 		xhci_cleanup_msix(xhci);
1156 
1157 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1158 		temp = readl(&xhci->op_regs->status);
1159 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1160 		temp = readl(&xhci->ir_set->irq_pending);
1161 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1162 
1163 		xhci_dbg(xhci, "cleaning up memory\n");
1164 		xhci_mem_cleanup(xhci);
1165 		xhci_debugfs_exit(xhci);
1166 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1167 			    readl(&xhci->op_regs->status));
1168 
1169 		/* USB core calls the PCI reinit and start functions twice:
1170 		 * first with the primary HCD, and then with the secondary HCD.
1171 		 * If we don't do the same, the host will never be started.
1172 		 */
1173 		if (!usb_hcd_is_primary_hcd(hcd))
1174 			secondary_hcd = hcd;
1175 		else
1176 			secondary_hcd = xhci->shared_hcd;
1177 
1178 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1179 		retval = xhci_init(hcd->primary_hcd);
1180 		if (retval)
1181 			return retval;
1182 		comp_timer_running = true;
1183 
1184 		xhci_dbg(xhci, "Start the primary HCD\n");
1185 		retval = xhci_run(hcd->primary_hcd);
1186 		if (!retval) {
1187 			xhci_dbg(xhci, "Start the secondary HCD\n");
1188 			retval = xhci_run(secondary_hcd);
1189 		}
1190 		hcd->state = HC_STATE_SUSPENDED;
1191 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1192 		goto done;
1193 	}
1194 
1195 	/* step 4: set Run/Stop bit */
1196 	command = readl(&xhci->op_regs->command);
1197 	command |= CMD_RUN;
1198 	writel(command, &xhci->op_regs->command);
1199 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1200 		  0, 250 * 1000);
1201 
1202 	/* step 5: walk topology and initialize portsc,
1203 	 * portpmsc and portli
1204 	 */
1205 	/* this is done in bus_resume */
1206 
1207 	/* step 6: restart each of the previously
1208 	 * Running endpoints by ringing their doorbells
1209 	 */
1210 
1211 	spin_unlock_irq(&xhci->lock);
1212 
1213 	xhci_dbc_resume(xhci);
1214 
1215  done:
1216 	if (retval == 0) {
1217 		/* Resume root hubs only when have pending events. */
1218 		if (xhci_pending_portevent(xhci)) {
1219 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1220 			usb_hcd_resume_root_hub(hcd);
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1226 	 * be re-initialized Always after a system resume. Ports are subject
1227 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1228 	 * ports have entered previously to U0 before system's suspension.
1229 	 */
1230 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1231 		compliance_mode_recovery_timer_init(xhci);
1232 
1233 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1234 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1235 
1236 	/* Re-enable port polling. */
1237 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1238 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1239 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1240 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1241 	usb_hcd_poll_rh_status(hcd);
1242 
1243 	return retval;
1244 }
1245 EXPORT_SYMBOL_GPL(xhci_resume);
1246 #endif	/* CONFIG_PM */
1247 
1248 /*-------------------------------------------------------------------------*/
1249 
1250 /*
1251  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1252  * we'll copy the actual data into the TRB address register. This is limited to
1253  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1254  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1255  */
1256 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1257 				gfp_t mem_flags)
1258 {
1259 	if (xhci_urb_suitable_for_idt(urb))
1260 		return 0;
1261 
1262 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1263 }
1264 
1265 /**
1266  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1267  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1268  * value to right shift 1 for the bitmask.
1269  *
1270  * Index  = (epnum * 2) + direction - 1,
1271  * where direction = 0 for OUT, 1 for IN.
1272  * For control endpoints, the IN index is used (OUT index is unused), so
1273  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1274  */
1275 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1276 {
1277 	unsigned int index;
1278 	if (usb_endpoint_xfer_control(desc))
1279 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1280 	else
1281 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1282 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1283 	return index;
1284 }
1285 
1286 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1287  * address from the XHCI endpoint index.
1288  */
1289 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1290 {
1291 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1292 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1293 	return direction | number;
1294 }
1295 
1296 /* Find the flag for this endpoint (for use in the control context).  Use the
1297  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1298  * bit 1, etc.
1299  */
1300 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1301 {
1302 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1303 }
1304 
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1310 {
1311 	return 1 << (ep_index + 1);
1312 }
1313 
1314 /* Compute the last valid endpoint context index.  Basically, this is the
1315  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1316  * we find the most significant bit set in the added contexts flags.
1317  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1318  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1319  */
1320 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1321 {
1322 	return fls(added_ctxs) - 1;
1323 }
1324 
1325 /* Returns 1 if the arguments are OK;
1326  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1327  */
1328 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1329 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1330 		const char *func) {
1331 	struct xhci_hcd	*xhci;
1332 	struct xhci_virt_device	*virt_dev;
1333 
1334 	if (!hcd || (check_ep && !ep) || !udev) {
1335 		pr_debug("xHCI %s called with invalid args\n", func);
1336 		return -EINVAL;
1337 	}
1338 	if (!udev->parent) {
1339 		pr_debug("xHCI %s called for root hub\n", func);
1340 		return 0;
1341 	}
1342 
1343 	xhci = hcd_to_xhci(hcd);
1344 	if (check_virt_dev) {
1345 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1346 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1347 					func);
1348 			return -EINVAL;
1349 		}
1350 
1351 		virt_dev = xhci->devs[udev->slot_id];
1352 		if (virt_dev->udev != udev) {
1353 			xhci_dbg(xhci, "xHCI %s called with udev and "
1354 					  "virt_dev does not match\n", func);
1355 			return -EINVAL;
1356 		}
1357 	}
1358 
1359 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1360 		return -ENODEV;
1361 
1362 	return 1;
1363 }
1364 
1365 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1366 		struct usb_device *udev, struct xhci_command *command,
1367 		bool ctx_change, bool must_succeed);
1368 
1369 /*
1370  * Full speed devices may have a max packet size greater than 8 bytes, but the
1371  * USB core doesn't know that until it reads the first 8 bytes of the
1372  * descriptor.  If the usb_device's max packet size changes after that point,
1373  * we need to issue an evaluate context command and wait on it.
1374  */
1375 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1376 		unsigned int ep_index, struct urb *urb)
1377 {
1378 	struct xhci_container_ctx *out_ctx;
1379 	struct xhci_input_control_ctx *ctrl_ctx;
1380 	struct xhci_ep_ctx *ep_ctx;
1381 	struct xhci_command *command;
1382 	int max_packet_size;
1383 	int hw_max_packet_size;
1384 	int ret = 0;
1385 
1386 	out_ctx = xhci->devs[slot_id]->out_ctx;
1387 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1388 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1389 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1390 	if (hw_max_packet_size != max_packet_size) {
1391 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392 				"Max Packet Size for ep 0 changed.");
1393 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1394 				"Max packet size in usb_device = %d",
1395 				max_packet_size);
1396 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1397 				"Max packet size in xHCI HW = %d",
1398 				hw_max_packet_size);
1399 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1400 				"Issuing evaluate context command.");
1401 
1402 		/* Set up the input context flags for the command */
1403 		/* FIXME: This won't work if a non-default control endpoint
1404 		 * changes max packet sizes.
1405 		 */
1406 
1407 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1408 		if (!command)
1409 			return -ENOMEM;
1410 
1411 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1412 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1413 		if (!ctrl_ctx) {
1414 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1415 					__func__);
1416 			ret = -ENOMEM;
1417 			goto command_cleanup;
1418 		}
1419 		/* Set up the modified control endpoint 0 */
1420 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1421 				xhci->devs[slot_id]->out_ctx, ep_index);
1422 
1423 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1424 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1425 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1426 
1427 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1428 		ctrl_ctx->drop_flags = 0;
1429 
1430 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1431 				true, false);
1432 
1433 		/* Clean up the input context for later use by bandwidth
1434 		 * functions.
1435 		 */
1436 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1437 command_cleanup:
1438 		kfree(command->completion);
1439 		kfree(command);
1440 	}
1441 	return ret;
1442 }
1443 
1444 /*
1445  * non-error returns are a promise to giveback() the urb later
1446  * we drop ownership so next owner (or urb unlink) can get it
1447  */
1448 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1449 {
1450 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1451 	unsigned long flags;
1452 	int ret = 0;
1453 	unsigned int slot_id, ep_index;
1454 	unsigned int *ep_state;
1455 	struct urb_priv	*urb_priv;
1456 	int num_tds;
1457 
1458 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1459 					true, true, __func__) <= 0)
1460 		return -EINVAL;
1461 
1462 	slot_id = urb->dev->slot_id;
1463 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1464 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1465 
1466 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1467 		if (!in_interrupt())
1468 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1469 		return -ESHUTDOWN;
1470 	}
1471 
1472 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1473 		num_tds = urb->number_of_packets;
1474 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1475 	    urb->transfer_buffer_length > 0 &&
1476 	    urb->transfer_flags & URB_ZERO_PACKET &&
1477 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1478 		num_tds = 2;
1479 	else
1480 		num_tds = 1;
1481 
1482 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1483 	if (!urb_priv)
1484 		return -ENOMEM;
1485 
1486 	urb_priv->num_tds = num_tds;
1487 	urb_priv->num_tds_done = 0;
1488 	urb->hcpriv = urb_priv;
1489 
1490 	trace_xhci_urb_enqueue(urb);
1491 
1492 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493 		/* Check to see if the max packet size for the default control
1494 		 * endpoint changed during FS device enumeration
1495 		 */
1496 		if (urb->dev->speed == USB_SPEED_FULL) {
1497 			ret = xhci_check_maxpacket(xhci, slot_id,
1498 					ep_index, urb);
1499 			if (ret < 0) {
1500 				xhci_urb_free_priv(urb_priv);
1501 				urb->hcpriv = NULL;
1502 				return ret;
1503 			}
1504 		}
1505 	}
1506 
1507 	spin_lock_irqsave(&xhci->lock, flags);
1508 
1509 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1510 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1511 			 urb->ep->desc.bEndpointAddress, urb);
1512 		ret = -ESHUTDOWN;
1513 		goto free_priv;
1514 	}
1515 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1516 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1517 			  *ep_state);
1518 		ret = -EINVAL;
1519 		goto free_priv;
1520 	}
1521 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1522 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1523 		ret = -EINVAL;
1524 		goto free_priv;
1525 	}
1526 
1527 	switch (usb_endpoint_type(&urb->ep->desc)) {
1528 
1529 	case USB_ENDPOINT_XFER_CONTROL:
1530 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1531 					 slot_id, ep_index);
1532 		break;
1533 	case USB_ENDPOINT_XFER_BULK:
1534 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1535 					 slot_id, ep_index);
1536 		break;
1537 	case USB_ENDPOINT_XFER_INT:
1538 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1539 				slot_id, ep_index);
1540 		break;
1541 	case USB_ENDPOINT_XFER_ISOC:
1542 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1543 				slot_id, ep_index);
1544 	}
1545 
1546 	if (ret) {
1547 free_priv:
1548 		xhci_urb_free_priv(urb_priv);
1549 		urb->hcpriv = NULL;
1550 	}
1551 	spin_unlock_irqrestore(&xhci->lock, flags);
1552 	return ret;
1553 }
1554 
1555 /*
1556  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1557  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1558  * should pick up where it left off in the TD, unless a Set Transfer Ring
1559  * Dequeue Pointer is issued.
1560  *
1561  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1562  * the ring.  Since the ring is a contiguous structure, they can't be physically
1563  * removed.  Instead, there are two options:
1564  *
1565  *  1) If the HC is in the middle of processing the URB to be canceled, we
1566  *     simply move the ring's dequeue pointer past those TRBs using the Set
1567  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1568  *     when drivers timeout on the last submitted URB and attempt to cancel.
1569  *
1570  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1571  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1572  *     HC will need to invalidate the any TRBs it has cached after the stop
1573  *     endpoint command, as noted in the xHCI 0.95 errata.
1574  *
1575  *  3) The TD may have completed by the time the Stop Endpoint Command
1576  *     completes, so software needs to handle that case too.
1577  *
1578  * This function should protect against the TD enqueueing code ringing the
1579  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1580  * It also needs to account for multiple cancellations on happening at the same
1581  * time for the same endpoint.
1582  *
1583  * Note that this function can be called in any context, or so says
1584  * usb_hcd_unlink_urb()
1585  */
1586 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1587 {
1588 	unsigned long flags;
1589 	int ret, i;
1590 	u32 temp;
1591 	struct xhci_hcd *xhci;
1592 	struct urb_priv	*urb_priv;
1593 	struct xhci_td *td;
1594 	unsigned int ep_index;
1595 	struct xhci_ring *ep_ring;
1596 	struct xhci_virt_ep *ep;
1597 	struct xhci_command *command;
1598 	struct xhci_virt_device *vdev;
1599 
1600 	xhci = hcd_to_xhci(hcd);
1601 	spin_lock_irqsave(&xhci->lock, flags);
1602 
1603 	trace_xhci_urb_dequeue(urb);
1604 
1605 	/* Make sure the URB hasn't completed or been unlinked already */
1606 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1607 	if (ret)
1608 		goto done;
1609 
1610 	/* give back URB now if we can't queue it for cancel */
1611 	vdev = xhci->devs[urb->dev->slot_id];
1612 	urb_priv = urb->hcpriv;
1613 	if (!vdev || !urb_priv)
1614 		goto err_giveback;
1615 
1616 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1617 	ep = &vdev->eps[ep_index];
1618 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1619 	if (!ep || !ep_ring)
1620 		goto err_giveback;
1621 
1622 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1623 	temp = readl(&xhci->op_regs->status);
1624 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1625 		xhci_hc_died(xhci);
1626 		goto done;
1627 	}
1628 
1629 	/*
1630 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1631 	 * make sure none of the ring related pointers in this URB private data
1632 	 * are touched, such as td_list, otherwise we overwrite freed data
1633 	 */
1634 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1635 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1636 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1637 			td = &urb_priv->td[i];
1638 			if (!list_empty(&td->cancelled_td_list))
1639 				list_del_init(&td->cancelled_td_list);
1640 		}
1641 		goto err_giveback;
1642 	}
1643 
1644 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1645 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1646 				"HC halted, freeing TD manually.");
1647 		for (i = urb_priv->num_tds_done;
1648 		     i < urb_priv->num_tds;
1649 		     i++) {
1650 			td = &urb_priv->td[i];
1651 			if (!list_empty(&td->td_list))
1652 				list_del_init(&td->td_list);
1653 			if (!list_empty(&td->cancelled_td_list))
1654 				list_del_init(&td->cancelled_td_list);
1655 		}
1656 		goto err_giveback;
1657 	}
1658 
1659 	i = urb_priv->num_tds_done;
1660 	if (i < urb_priv->num_tds)
1661 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1662 				"Cancel URB %p, dev %s, ep 0x%x, "
1663 				"starting at offset 0x%llx",
1664 				urb, urb->dev->devpath,
1665 				urb->ep->desc.bEndpointAddress,
1666 				(unsigned long long) xhci_trb_virt_to_dma(
1667 					urb_priv->td[i].start_seg,
1668 					urb_priv->td[i].first_trb));
1669 
1670 	for (; i < urb_priv->num_tds; i++) {
1671 		td = &urb_priv->td[i];
1672 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1673 	}
1674 
1675 	/* Queue a stop endpoint command, but only if this is
1676 	 * the first cancellation to be handled.
1677 	 */
1678 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1679 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1680 		if (!command) {
1681 			ret = -ENOMEM;
1682 			goto done;
1683 		}
1684 		ep->ep_state |= EP_STOP_CMD_PENDING;
1685 		ep->stop_cmd_timer.expires = jiffies +
1686 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1687 		add_timer(&ep->stop_cmd_timer);
1688 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1689 					 ep_index, 0);
1690 		xhci_ring_cmd_db(xhci);
1691 	}
1692 done:
1693 	spin_unlock_irqrestore(&xhci->lock, flags);
1694 	return ret;
1695 
1696 err_giveback:
1697 	if (urb_priv)
1698 		xhci_urb_free_priv(urb_priv);
1699 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1700 	spin_unlock_irqrestore(&xhci->lock, flags);
1701 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1702 	return ret;
1703 }
1704 
1705 /* Drop an endpoint from a new bandwidth configuration for this device.
1706  * Only one call to this function is allowed per endpoint before
1707  * check_bandwidth() or reset_bandwidth() must be called.
1708  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1709  * add the endpoint to the schedule with possibly new parameters denoted by a
1710  * different endpoint descriptor in usb_host_endpoint.
1711  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1712  * not allowed.
1713  *
1714  * The USB core will not allow URBs to be queued to an endpoint that is being
1715  * disabled, so there's no need for mutual exclusion to protect
1716  * the xhci->devs[slot_id] structure.
1717  */
1718 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1719 		struct usb_host_endpoint *ep)
1720 {
1721 	struct xhci_hcd *xhci;
1722 	struct xhci_container_ctx *in_ctx, *out_ctx;
1723 	struct xhci_input_control_ctx *ctrl_ctx;
1724 	unsigned int ep_index;
1725 	struct xhci_ep_ctx *ep_ctx;
1726 	u32 drop_flag;
1727 	u32 new_add_flags, new_drop_flags;
1728 	int ret;
1729 
1730 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1731 	if (ret <= 0)
1732 		return ret;
1733 	xhci = hcd_to_xhci(hcd);
1734 	if (xhci->xhc_state & XHCI_STATE_DYING)
1735 		return -ENODEV;
1736 
1737 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1738 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1739 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1740 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1741 				__func__, drop_flag);
1742 		return 0;
1743 	}
1744 
1745 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1746 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1747 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1748 	if (!ctrl_ctx) {
1749 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750 				__func__);
1751 		return 0;
1752 	}
1753 
1754 	ep_index = xhci_get_endpoint_index(&ep->desc);
1755 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1756 	/* If the HC already knows the endpoint is disabled,
1757 	 * or the HCD has noted it is disabled, ignore this request
1758 	 */
1759 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1760 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1761 	    xhci_get_endpoint_flag(&ep->desc)) {
1762 		/* Do not warn when called after a usb_device_reset */
1763 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1764 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1765 				  __func__, ep);
1766 		return 0;
1767 	}
1768 
1769 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1770 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1771 
1772 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1773 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1774 
1775 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1776 
1777 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1778 
1779 	if (xhci->quirks & XHCI_MTK_HOST)
1780 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1781 
1782 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1783 			(unsigned int) ep->desc.bEndpointAddress,
1784 			udev->slot_id,
1785 			(unsigned int) new_drop_flags,
1786 			(unsigned int) new_add_flags);
1787 	return 0;
1788 }
1789 
1790 /* Add an endpoint to a new possible bandwidth configuration for this device.
1791  * Only one call to this function is allowed per endpoint before
1792  * check_bandwidth() or reset_bandwidth() must be called.
1793  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1794  * add the endpoint to the schedule with possibly new parameters denoted by a
1795  * different endpoint descriptor in usb_host_endpoint.
1796  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1797  * not allowed.
1798  *
1799  * The USB core will not allow URBs to be queued to an endpoint until the
1800  * configuration or alt setting is installed in the device, so there's no need
1801  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1802  */
1803 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1804 		struct usb_host_endpoint *ep)
1805 {
1806 	struct xhci_hcd *xhci;
1807 	struct xhci_container_ctx *in_ctx;
1808 	unsigned int ep_index;
1809 	struct xhci_input_control_ctx *ctrl_ctx;
1810 	struct xhci_ep_ctx *ep_ctx;
1811 	u32 added_ctxs;
1812 	u32 new_add_flags, new_drop_flags;
1813 	struct xhci_virt_device *virt_dev;
1814 	int ret = 0;
1815 
1816 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1817 	if (ret <= 0) {
1818 		/* So we won't queue a reset ep command for a root hub */
1819 		ep->hcpriv = NULL;
1820 		return ret;
1821 	}
1822 	xhci = hcd_to_xhci(hcd);
1823 	if (xhci->xhc_state & XHCI_STATE_DYING)
1824 		return -ENODEV;
1825 
1826 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1827 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1828 		/* FIXME when we have to issue an evaluate endpoint command to
1829 		 * deal with ep0 max packet size changing once we get the
1830 		 * descriptors
1831 		 */
1832 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1833 				__func__, added_ctxs);
1834 		return 0;
1835 	}
1836 
1837 	virt_dev = xhci->devs[udev->slot_id];
1838 	in_ctx = virt_dev->in_ctx;
1839 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1840 	if (!ctrl_ctx) {
1841 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1842 				__func__);
1843 		return 0;
1844 	}
1845 
1846 	ep_index = xhci_get_endpoint_index(&ep->desc);
1847 	/* If this endpoint is already in use, and the upper layers are trying
1848 	 * to add it again without dropping it, reject the addition.
1849 	 */
1850 	if (virt_dev->eps[ep_index].ring &&
1851 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1852 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1853 				"without dropping it.\n",
1854 				(unsigned int) ep->desc.bEndpointAddress);
1855 		return -EINVAL;
1856 	}
1857 
1858 	/* If the HCD has already noted the endpoint is enabled,
1859 	 * ignore this request.
1860 	 */
1861 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1862 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1863 				__func__, ep);
1864 		return 0;
1865 	}
1866 
1867 	/*
1868 	 * Configuration and alternate setting changes must be done in
1869 	 * process context, not interrupt context (or so documenation
1870 	 * for usb_set_interface() and usb_set_configuration() claim).
1871 	 */
1872 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1873 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1874 				__func__, ep->desc.bEndpointAddress);
1875 		return -ENOMEM;
1876 	}
1877 
1878 	if (xhci->quirks & XHCI_MTK_HOST) {
1879 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1880 		if (ret < 0) {
1881 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1882 			virt_dev->eps[ep_index].new_ring = NULL;
1883 			return ret;
1884 		}
1885 	}
1886 
1887 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1888 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1889 
1890 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1891 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1892 	 * this re-adds a new state for the endpoint from the new endpoint
1893 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1894 	 * drop flags alone.
1895 	 */
1896 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1897 
1898 	/* Store the usb_device pointer for later use */
1899 	ep->hcpriv = udev;
1900 
1901 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1902 	trace_xhci_add_endpoint(ep_ctx);
1903 
1904 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1905 
1906 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1907 			(unsigned int) ep->desc.bEndpointAddress,
1908 			udev->slot_id,
1909 			(unsigned int) new_drop_flags,
1910 			(unsigned int) new_add_flags);
1911 	return 0;
1912 }
1913 
1914 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1915 {
1916 	struct xhci_input_control_ctx *ctrl_ctx;
1917 	struct xhci_ep_ctx *ep_ctx;
1918 	struct xhci_slot_ctx *slot_ctx;
1919 	int i;
1920 
1921 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1922 	if (!ctrl_ctx) {
1923 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1924 				__func__);
1925 		return;
1926 	}
1927 
1928 	/* When a device's add flag and drop flag are zero, any subsequent
1929 	 * configure endpoint command will leave that endpoint's state
1930 	 * untouched.  Make sure we don't leave any old state in the input
1931 	 * endpoint contexts.
1932 	 */
1933 	ctrl_ctx->drop_flags = 0;
1934 	ctrl_ctx->add_flags = 0;
1935 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1936 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1937 	/* Endpoint 0 is always valid */
1938 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1939 	for (i = 1; i < 31; i++) {
1940 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1941 		ep_ctx->ep_info = 0;
1942 		ep_ctx->ep_info2 = 0;
1943 		ep_ctx->deq = 0;
1944 		ep_ctx->tx_info = 0;
1945 	}
1946 }
1947 
1948 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1949 		struct usb_device *udev, u32 *cmd_status)
1950 {
1951 	int ret;
1952 
1953 	switch (*cmd_status) {
1954 	case COMP_COMMAND_ABORTED:
1955 	case COMP_COMMAND_RING_STOPPED:
1956 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1957 		ret = -ETIME;
1958 		break;
1959 	case COMP_RESOURCE_ERROR:
1960 		dev_warn(&udev->dev,
1961 			 "Not enough host controller resources for new device state.\n");
1962 		ret = -ENOMEM;
1963 		/* FIXME: can we allocate more resources for the HC? */
1964 		break;
1965 	case COMP_BANDWIDTH_ERROR:
1966 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1967 		dev_warn(&udev->dev,
1968 			 "Not enough bandwidth for new device state.\n");
1969 		ret = -ENOSPC;
1970 		/* FIXME: can we go back to the old state? */
1971 		break;
1972 	case COMP_TRB_ERROR:
1973 		/* the HCD set up something wrong */
1974 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1975 				"add flag = 1, "
1976 				"and endpoint is not disabled.\n");
1977 		ret = -EINVAL;
1978 		break;
1979 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1980 		dev_warn(&udev->dev,
1981 			 "ERROR: Incompatible device for endpoint configure command.\n");
1982 		ret = -ENODEV;
1983 		break;
1984 	case COMP_SUCCESS:
1985 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1986 				"Successful Endpoint Configure command");
1987 		ret = 0;
1988 		break;
1989 	default:
1990 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1991 				*cmd_status);
1992 		ret = -EINVAL;
1993 		break;
1994 	}
1995 	return ret;
1996 }
1997 
1998 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1999 		struct usb_device *udev, u32 *cmd_status)
2000 {
2001 	int ret;
2002 
2003 	switch (*cmd_status) {
2004 	case COMP_COMMAND_ABORTED:
2005 	case COMP_COMMAND_RING_STOPPED:
2006 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2007 		ret = -ETIME;
2008 		break;
2009 	case COMP_PARAMETER_ERROR:
2010 		dev_warn(&udev->dev,
2011 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2012 		ret = -EINVAL;
2013 		break;
2014 	case COMP_SLOT_NOT_ENABLED_ERROR:
2015 		dev_warn(&udev->dev,
2016 			"WARN: slot not enabled for evaluate context command.\n");
2017 		ret = -EINVAL;
2018 		break;
2019 	case COMP_CONTEXT_STATE_ERROR:
2020 		dev_warn(&udev->dev,
2021 			"WARN: invalid context state for evaluate context command.\n");
2022 		ret = -EINVAL;
2023 		break;
2024 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2025 		dev_warn(&udev->dev,
2026 			"ERROR: Incompatible device for evaluate context command.\n");
2027 		ret = -ENODEV;
2028 		break;
2029 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2030 		/* Max Exit Latency too large error */
2031 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2032 		ret = -EINVAL;
2033 		break;
2034 	case COMP_SUCCESS:
2035 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2036 				"Successful evaluate context command");
2037 		ret = 0;
2038 		break;
2039 	default:
2040 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2041 			*cmd_status);
2042 		ret = -EINVAL;
2043 		break;
2044 	}
2045 	return ret;
2046 }
2047 
2048 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2049 		struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051 	u32 valid_add_flags;
2052 	u32 valid_drop_flags;
2053 
2054 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2055 	 * (bit 1).  The default control endpoint is added during the Address
2056 	 * Device command and is never removed until the slot is disabled.
2057 	 */
2058 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2059 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2060 
2061 	/* Use hweight32 to count the number of ones in the add flags, or
2062 	 * number of endpoints added.  Don't count endpoints that are changed
2063 	 * (both added and dropped).
2064 	 */
2065 	return hweight32(valid_add_flags) -
2066 		hweight32(valid_add_flags & valid_drop_flags);
2067 }
2068 
2069 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2070 		struct xhci_input_control_ctx *ctrl_ctx)
2071 {
2072 	u32 valid_add_flags;
2073 	u32 valid_drop_flags;
2074 
2075 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2076 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2077 
2078 	return hweight32(valid_drop_flags) -
2079 		hweight32(valid_add_flags & valid_drop_flags);
2080 }
2081 
2082 /*
2083  * We need to reserve the new number of endpoints before the configure endpoint
2084  * command completes.  We can't subtract the dropped endpoints from the number
2085  * of active endpoints until the command completes because we can oversubscribe
2086  * the host in this case:
2087  *
2088  *  - the first configure endpoint command drops more endpoints than it adds
2089  *  - a second configure endpoint command that adds more endpoints is queued
2090  *  - the first configure endpoint command fails, so the config is unchanged
2091  *  - the second command may succeed, even though there isn't enough resources
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2096 		struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098 	u32 added_eps;
2099 
2100 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2101 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2102 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2103 				"Not enough ep ctxs: "
2104 				"%u active, need to add %u, limit is %u.",
2105 				xhci->num_active_eps, added_eps,
2106 				xhci->limit_active_eps);
2107 		return -ENOMEM;
2108 	}
2109 	xhci->num_active_eps += added_eps;
2110 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2111 			"Adding %u ep ctxs, %u now active.", added_eps,
2112 			xhci->num_active_eps);
2113 	return 0;
2114 }
2115 
2116 /*
2117  * The configure endpoint was failed by the xHC for some other reason, so we
2118  * need to revert the resources that failed configuration would have used.
2119  *
2120  * Must be called with xhci->lock held.
2121  */
2122 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2123 		struct xhci_input_control_ctx *ctrl_ctx)
2124 {
2125 	u32 num_failed_eps;
2126 
2127 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2128 	xhci->num_active_eps -= num_failed_eps;
2129 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2130 			"Removing %u failed ep ctxs, %u now active.",
2131 			num_failed_eps,
2132 			xhci->num_active_eps);
2133 }
2134 
2135 /*
2136  * Now that the command has completed, clean up the active endpoint count by
2137  * subtracting out the endpoints that were dropped (but not changed).
2138  *
2139  * Must be called with xhci->lock held.
2140  */
2141 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2142 		struct xhci_input_control_ctx *ctrl_ctx)
2143 {
2144 	u32 num_dropped_eps;
2145 
2146 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2147 	xhci->num_active_eps -= num_dropped_eps;
2148 	if (num_dropped_eps)
2149 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150 				"Removing %u dropped ep ctxs, %u now active.",
2151 				num_dropped_eps,
2152 				xhci->num_active_eps);
2153 }
2154 
2155 static unsigned int xhci_get_block_size(struct usb_device *udev)
2156 {
2157 	switch (udev->speed) {
2158 	case USB_SPEED_LOW:
2159 	case USB_SPEED_FULL:
2160 		return FS_BLOCK;
2161 	case USB_SPEED_HIGH:
2162 		return HS_BLOCK;
2163 	case USB_SPEED_SUPER:
2164 	case USB_SPEED_SUPER_PLUS:
2165 		return SS_BLOCK;
2166 	case USB_SPEED_UNKNOWN:
2167 	case USB_SPEED_WIRELESS:
2168 	default:
2169 		/* Should never happen */
2170 		return 1;
2171 	}
2172 }
2173 
2174 static unsigned int
2175 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2176 {
2177 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2178 		return LS_OVERHEAD;
2179 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2180 		return FS_OVERHEAD;
2181 	return HS_OVERHEAD;
2182 }
2183 
2184 /* If we are changing a LS/FS device under a HS hub,
2185  * make sure (if we are activating a new TT) that the HS bus has enough
2186  * bandwidth for this new TT.
2187  */
2188 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2189 		struct xhci_virt_device *virt_dev,
2190 		int old_active_eps)
2191 {
2192 	struct xhci_interval_bw_table *bw_table;
2193 	struct xhci_tt_bw_info *tt_info;
2194 
2195 	/* Find the bandwidth table for the root port this TT is attached to. */
2196 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2197 	tt_info = virt_dev->tt_info;
2198 	/* If this TT already had active endpoints, the bandwidth for this TT
2199 	 * has already been added.  Removing all periodic endpoints (and thus
2200 	 * making the TT enactive) will only decrease the bandwidth used.
2201 	 */
2202 	if (old_active_eps)
2203 		return 0;
2204 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2205 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2206 			return -ENOMEM;
2207 		return 0;
2208 	}
2209 	/* Not sure why we would have no new active endpoints...
2210 	 *
2211 	 * Maybe because of an Evaluate Context change for a hub update or a
2212 	 * control endpoint 0 max packet size change?
2213 	 * FIXME: skip the bandwidth calculation in that case.
2214 	 */
2215 	return 0;
2216 }
2217 
2218 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2219 		struct xhci_virt_device *virt_dev)
2220 {
2221 	unsigned int bw_reserved;
2222 
2223 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2224 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2225 		return -ENOMEM;
2226 
2227 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2228 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2229 		return -ENOMEM;
2230 
2231 	return 0;
2232 }
2233 
2234 /*
2235  * This algorithm is a very conservative estimate of the worst-case scheduling
2236  * scenario for any one interval.  The hardware dynamically schedules the
2237  * packets, so we can't tell which microframe could be the limiting factor in
2238  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2239  *
2240  * Obviously, we can't solve an NP complete problem to find the minimum worst
2241  * case scenario.  Instead, we come up with an estimate that is no less than
2242  * the worst case bandwidth used for any one microframe, but may be an
2243  * over-estimate.
2244  *
2245  * We walk the requirements for each endpoint by interval, starting with the
2246  * smallest interval, and place packets in the schedule where there is only one
2247  * possible way to schedule packets for that interval.  In order to simplify
2248  * this algorithm, we record the largest max packet size for each interval, and
2249  * assume all packets will be that size.
2250  *
2251  * For interval 0, we obviously must schedule all packets for each interval.
2252  * The bandwidth for interval 0 is just the amount of data to be transmitted
2253  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2254  * the number of packets).
2255  *
2256  * For interval 1, we have two possible microframes to schedule those packets
2257  * in.  For this algorithm, if we can schedule the same number of packets for
2258  * each possible scheduling opportunity (each microframe), we will do so.  The
2259  * remaining number of packets will be saved to be transmitted in the gaps in
2260  * the next interval's scheduling sequence.
2261  *
2262  * As we move those remaining packets to be scheduled with interval 2 packets,
2263  * we have to double the number of remaining packets to transmit.  This is
2264  * because the intervals are actually powers of 2, and we would be transmitting
2265  * the previous interval's packets twice in this interval.  We also have to be
2266  * sure that when we look at the largest max packet size for this interval, we
2267  * also look at the largest max packet size for the remaining packets and take
2268  * the greater of the two.
2269  *
2270  * The algorithm continues to evenly distribute packets in each scheduling
2271  * opportunity, and push the remaining packets out, until we get to the last
2272  * interval.  Then those packets and their associated overhead are just added
2273  * to the bandwidth used.
2274  */
2275 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2276 		struct xhci_virt_device *virt_dev,
2277 		int old_active_eps)
2278 {
2279 	unsigned int bw_reserved;
2280 	unsigned int max_bandwidth;
2281 	unsigned int bw_used;
2282 	unsigned int block_size;
2283 	struct xhci_interval_bw_table *bw_table;
2284 	unsigned int packet_size = 0;
2285 	unsigned int overhead = 0;
2286 	unsigned int packets_transmitted = 0;
2287 	unsigned int packets_remaining = 0;
2288 	unsigned int i;
2289 
2290 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2291 		return xhci_check_ss_bw(xhci, virt_dev);
2292 
2293 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2294 		max_bandwidth = HS_BW_LIMIT;
2295 		/* Convert percent of bus BW reserved to blocks reserved */
2296 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2297 	} else {
2298 		max_bandwidth = FS_BW_LIMIT;
2299 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2300 	}
2301 
2302 	bw_table = virt_dev->bw_table;
2303 	/* We need to translate the max packet size and max ESIT payloads into
2304 	 * the units the hardware uses.
2305 	 */
2306 	block_size = xhci_get_block_size(virt_dev->udev);
2307 
2308 	/* If we are manipulating a LS/FS device under a HS hub, double check
2309 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2310 	 */
2311 	if (virt_dev->tt_info) {
2312 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313 				"Recalculating BW for rootport %u",
2314 				virt_dev->real_port);
2315 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2316 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2317 					"newly activated TT.\n");
2318 			return -ENOMEM;
2319 		}
2320 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2321 				"Recalculating BW for TT slot %u port %u",
2322 				virt_dev->tt_info->slot_id,
2323 				virt_dev->tt_info->ttport);
2324 	} else {
2325 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2326 				"Recalculating BW for rootport %u",
2327 				virt_dev->real_port);
2328 	}
2329 
2330 	/* Add in how much bandwidth will be used for interval zero, or the
2331 	 * rounded max ESIT payload + number of packets * largest overhead.
2332 	 */
2333 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2334 		bw_table->interval_bw[0].num_packets *
2335 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2336 
2337 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2338 		unsigned int bw_added;
2339 		unsigned int largest_mps;
2340 		unsigned int interval_overhead;
2341 
2342 		/*
2343 		 * How many packets could we transmit in this interval?
2344 		 * If packets didn't fit in the previous interval, we will need
2345 		 * to transmit that many packets twice within this interval.
2346 		 */
2347 		packets_remaining = 2 * packets_remaining +
2348 			bw_table->interval_bw[i].num_packets;
2349 
2350 		/* Find the largest max packet size of this or the previous
2351 		 * interval.
2352 		 */
2353 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2354 			largest_mps = 0;
2355 		else {
2356 			struct xhci_virt_ep *virt_ep;
2357 			struct list_head *ep_entry;
2358 
2359 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2360 			virt_ep = list_entry(ep_entry,
2361 					struct xhci_virt_ep, bw_endpoint_list);
2362 			/* Convert to blocks, rounding up */
2363 			largest_mps = DIV_ROUND_UP(
2364 					virt_ep->bw_info.max_packet_size,
2365 					block_size);
2366 		}
2367 		if (largest_mps > packet_size)
2368 			packet_size = largest_mps;
2369 
2370 		/* Use the larger overhead of this or the previous interval. */
2371 		interval_overhead = xhci_get_largest_overhead(
2372 				&bw_table->interval_bw[i]);
2373 		if (interval_overhead > overhead)
2374 			overhead = interval_overhead;
2375 
2376 		/* How many packets can we evenly distribute across
2377 		 * (1 << (i + 1)) possible scheduling opportunities?
2378 		 */
2379 		packets_transmitted = packets_remaining >> (i + 1);
2380 
2381 		/* Add in the bandwidth used for those scheduled packets */
2382 		bw_added = packets_transmitted * (overhead + packet_size);
2383 
2384 		/* How many packets do we have remaining to transmit? */
2385 		packets_remaining = packets_remaining % (1 << (i + 1));
2386 
2387 		/* What largest max packet size should those packets have? */
2388 		/* If we've transmitted all packets, don't carry over the
2389 		 * largest packet size.
2390 		 */
2391 		if (packets_remaining == 0) {
2392 			packet_size = 0;
2393 			overhead = 0;
2394 		} else if (packets_transmitted > 0) {
2395 			/* Otherwise if we do have remaining packets, and we've
2396 			 * scheduled some packets in this interval, take the
2397 			 * largest max packet size from endpoints with this
2398 			 * interval.
2399 			 */
2400 			packet_size = largest_mps;
2401 			overhead = interval_overhead;
2402 		}
2403 		/* Otherwise carry over packet_size and overhead from the last
2404 		 * time we had a remainder.
2405 		 */
2406 		bw_used += bw_added;
2407 		if (bw_used > max_bandwidth) {
2408 			xhci_warn(xhci, "Not enough bandwidth. "
2409 					"Proposed: %u, Max: %u\n",
2410 				bw_used, max_bandwidth);
2411 			return -ENOMEM;
2412 		}
2413 	}
2414 	/*
2415 	 * Ok, we know we have some packets left over after even-handedly
2416 	 * scheduling interval 15.  We don't know which microframes they will
2417 	 * fit into, so we over-schedule and say they will be scheduled every
2418 	 * microframe.
2419 	 */
2420 	if (packets_remaining > 0)
2421 		bw_used += overhead + packet_size;
2422 
2423 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2424 		unsigned int port_index = virt_dev->real_port - 1;
2425 
2426 		/* OK, we're manipulating a HS device attached to a
2427 		 * root port bandwidth domain.  Include the number of active TTs
2428 		 * in the bandwidth used.
2429 		 */
2430 		bw_used += TT_HS_OVERHEAD *
2431 			xhci->rh_bw[port_index].num_active_tts;
2432 	}
2433 
2434 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2435 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2436 		"Available: %u " "percent",
2437 		bw_used, max_bandwidth, bw_reserved,
2438 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2439 		max_bandwidth);
2440 
2441 	bw_used += bw_reserved;
2442 	if (bw_used > max_bandwidth) {
2443 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2444 				bw_used, max_bandwidth);
2445 		return -ENOMEM;
2446 	}
2447 
2448 	bw_table->bw_used = bw_used;
2449 	return 0;
2450 }
2451 
2452 static bool xhci_is_async_ep(unsigned int ep_type)
2453 {
2454 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2455 					ep_type != ISOC_IN_EP &&
2456 					ep_type != INT_IN_EP);
2457 }
2458 
2459 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2460 {
2461 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2462 }
2463 
2464 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2465 {
2466 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2467 
2468 	if (ep_bw->ep_interval == 0)
2469 		return SS_OVERHEAD_BURST +
2470 			(ep_bw->mult * ep_bw->num_packets *
2471 					(SS_OVERHEAD + mps));
2472 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2473 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2474 				1 << ep_bw->ep_interval);
2475 
2476 }
2477 
2478 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2479 		struct xhci_bw_info *ep_bw,
2480 		struct xhci_interval_bw_table *bw_table,
2481 		struct usb_device *udev,
2482 		struct xhci_virt_ep *virt_ep,
2483 		struct xhci_tt_bw_info *tt_info)
2484 {
2485 	struct xhci_interval_bw	*interval_bw;
2486 	int normalized_interval;
2487 
2488 	if (xhci_is_async_ep(ep_bw->type))
2489 		return;
2490 
2491 	if (udev->speed >= USB_SPEED_SUPER) {
2492 		if (xhci_is_sync_in_ep(ep_bw->type))
2493 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2494 				xhci_get_ss_bw_consumed(ep_bw);
2495 		else
2496 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2497 				xhci_get_ss_bw_consumed(ep_bw);
2498 		return;
2499 	}
2500 
2501 	/* SuperSpeed endpoints never get added to intervals in the table, so
2502 	 * this check is only valid for HS/FS/LS devices.
2503 	 */
2504 	if (list_empty(&virt_ep->bw_endpoint_list))
2505 		return;
2506 	/* For LS/FS devices, we need to translate the interval expressed in
2507 	 * microframes to frames.
2508 	 */
2509 	if (udev->speed == USB_SPEED_HIGH)
2510 		normalized_interval = ep_bw->ep_interval;
2511 	else
2512 		normalized_interval = ep_bw->ep_interval - 3;
2513 
2514 	if (normalized_interval == 0)
2515 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2516 	interval_bw = &bw_table->interval_bw[normalized_interval];
2517 	interval_bw->num_packets -= ep_bw->num_packets;
2518 	switch (udev->speed) {
2519 	case USB_SPEED_LOW:
2520 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2521 		break;
2522 	case USB_SPEED_FULL:
2523 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2524 		break;
2525 	case USB_SPEED_HIGH:
2526 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2527 		break;
2528 	case USB_SPEED_SUPER:
2529 	case USB_SPEED_SUPER_PLUS:
2530 	case USB_SPEED_UNKNOWN:
2531 	case USB_SPEED_WIRELESS:
2532 		/* Should never happen because only LS/FS/HS endpoints will get
2533 		 * added to the endpoint list.
2534 		 */
2535 		return;
2536 	}
2537 	if (tt_info)
2538 		tt_info->active_eps -= 1;
2539 	list_del_init(&virt_ep->bw_endpoint_list);
2540 }
2541 
2542 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2543 		struct xhci_bw_info *ep_bw,
2544 		struct xhci_interval_bw_table *bw_table,
2545 		struct usb_device *udev,
2546 		struct xhci_virt_ep *virt_ep,
2547 		struct xhci_tt_bw_info *tt_info)
2548 {
2549 	struct xhci_interval_bw	*interval_bw;
2550 	struct xhci_virt_ep *smaller_ep;
2551 	int normalized_interval;
2552 
2553 	if (xhci_is_async_ep(ep_bw->type))
2554 		return;
2555 
2556 	if (udev->speed == USB_SPEED_SUPER) {
2557 		if (xhci_is_sync_in_ep(ep_bw->type))
2558 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2559 				xhci_get_ss_bw_consumed(ep_bw);
2560 		else
2561 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2562 				xhci_get_ss_bw_consumed(ep_bw);
2563 		return;
2564 	}
2565 
2566 	/* For LS/FS devices, we need to translate the interval expressed in
2567 	 * microframes to frames.
2568 	 */
2569 	if (udev->speed == USB_SPEED_HIGH)
2570 		normalized_interval = ep_bw->ep_interval;
2571 	else
2572 		normalized_interval = ep_bw->ep_interval - 3;
2573 
2574 	if (normalized_interval == 0)
2575 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2576 	interval_bw = &bw_table->interval_bw[normalized_interval];
2577 	interval_bw->num_packets += ep_bw->num_packets;
2578 	switch (udev->speed) {
2579 	case USB_SPEED_LOW:
2580 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2581 		break;
2582 	case USB_SPEED_FULL:
2583 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2584 		break;
2585 	case USB_SPEED_HIGH:
2586 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2587 		break;
2588 	case USB_SPEED_SUPER:
2589 	case USB_SPEED_SUPER_PLUS:
2590 	case USB_SPEED_UNKNOWN:
2591 	case USB_SPEED_WIRELESS:
2592 		/* Should never happen because only LS/FS/HS endpoints will get
2593 		 * added to the endpoint list.
2594 		 */
2595 		return;
2596 	}
2597 
2598 	if (tt_info)
2599 		tt_info->active_eps += 1;
2600 	/* Insert the endpoint into the list, largest max packet size first. */
2601 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2602 			bw_endpoint_list) {
2603 		if (ep_bw->max_packet_size >=
2604 				smaller_ep->bw_info.max_packet_size) {
2605 			/* Add the new ep before the smaller endpoint */
2606 			list_add_tail(&virt_ep->bw_endpoint_list,
2607 					&smaller_ep->bw_endpoint_list);
2608 			return;
2609 		}
2610 	}
2611 	/* Add the new endpoint at the end of the list. */
2612 	list_add_tail(&virt_ep->bw_endpoint_list,
2613 			&interval_bw->endpoints);
2614 }
2615 
2616 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2617 		struct xhci_virt_device *virt_dev,
2618 		int old_active_eps)
2619 {
2620 	struct xhci_root_port_bw_info *rh_bw_info;
2621 	if (!virt_dev->tt_info)
2622 		return;
2623 
2624 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2625 	if (old_active_eps == 0 &&
2626 				virt_dev->tt_info->active_eps != 0) {
2627 		rh_bw_info->num_active_tts += 1;
2628 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2629 	} else if (old_active_eps != 0 &&
2630 				virt_dev->tt_info->active_eps == 0) {
2631 		rh_bw_info->num_active_tts -= 1;
2632 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2633 	}
2634 }
2635 
2636 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2637 		struct xhci_virt_device *virt_dev,
2638 		struct xhci_container_ctx *in_ctx)
2639 {
2640 	struct xhci_bw_info ep_bw_info[31];
2641 	int i;
2642 	struct xhci_input_control_ctx *ctrl_ctx;
2643 	int old_active_eps = 0;
2644 
2645 	if (virt_dev->tt_info)
2646 		old_active_eps = virt_dev->tt_info->active_eps;
2647 
2648 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2649 	if (!ctrl_ctx) {
2650 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2651 				__func__);
2652 		return -ENOMEM;
2653 	}
2654 
2655 	for (i = 0; i < 31; i++) {
2656 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2657 			continue;
2658 
2659 		/* Make a copy of the BW info in case we need to revert this */
2660 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2661 				sizeof(ep_bw_info[i]));
2662 		/* Drop the endpoint from the interval table if the endpoint is
2663 		 * being dropped or changed.
2664 		 */
2665 		if (EP_IS_DROPPED(ctrl_ctx, i))
2666 			xhci_drop_ep_from_interval_table(xhci,
2667 					&virt_dev->eps[i].bw_info,
2668 					virt_dev->bw_table,
2669 					virt_dev->udev,
2670 					&virt_dev->eps[i],
2671 					virt_dev->tt_info);
2672 	}
2673 	/* Overwrite the information stored in the endpoints' bw_info */
2674 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2675 	for (i = 0; i < 31; i++) {
2676 		/* Add any changed or added endpoints to the interval table */
2677 		if (EP_IS_ADDED(ctrl_ctx, i))
2678 			xhci_add_ep_to_interval_table(xhci,
2679 					&virt_dev->eps[i].bw_info,
2680 					virt_dev->bw_table,
2681 					virt_dev->udev,
2682 					&virt_dev->eps[i],
2683 					virt_dev->tt_info);
2684 	}
2685 
2686 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2687 		/* Ok, this fits in the bandwidth we have.
2688 		 * Update the number of active TTs.
2689 		 */
2690 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2691 		return 0;
2692 	}
2693 
2694 	/* We don't have enough bandwidth for this, revert the stored info. */
2695 	for (i = 0; i < 31; i++) {
2696 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2697 			continue;
2698 
2699 		/* Drop the new copies of any added or changed endpoints from
2700 		 * the interval table.
2701 		 */
2702 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2703 			xhci_drop_ep_from_interval_table(xhci,
2704 					&virt_dev->eps[i].bw_info,
2705 					virt_dev->bw_table,
2706 					virt_dev->udev,
2707 					&virt_dev->eps[i],
2708 					virt_dev->tt_info);
2709 		}
2710 		/* Revert the endpoint back to its old information */
2711 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2712 				sizeof(ep_bw_info[i]));
2713 		/* Add any changed or dropped endpoints back into the table */
2714 		if (EP_IS_DROPPED(ctrl_ctx, i))
2715 			xhci_add_ep_to_interval_table(xhci,
2716 					&virt_dev->eps[i].bw_info,
2717 					virt_dev->bw_table,
2718 					virt_dev->udev,
2719 					&virt_dev->eps[i],
2720 					virt_dev->tt_info);
2721 	}
2722 	return -ENOMEM;
2723 }
2724 
2725 
2726 /* Issue a configure endpoint command or evaluate context command
2727  * and wait for it to finish.
2728  */
2729 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2730 		struct usb_device *udev,
2731 		struct xhci_command *command,
2732 		bool ctx_change, bool must_succeed)
2733 {
2734 	int ret;
2735 	unsigned long flags;
2736 	struct xhci_input_control_ctx *ctrl_ctx;
2737 	struct xhci_virt_device *virt_dev;
2738 	struct xhci_slot_ctx *slot_ctx;
2739 
2740 	if (!command)
2741 		return -EINVAL;
2742 
2743 	spin_lock_irqsave(&xhci->lock, flags);
2744 
2745 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2746 		spin_unlock_irqrestore(&xhci->lock, flags);
2747 		return -ESHUTDOWN;
2748 	}
2749 
2750 	virt_dev = xhci->devs[udev->slot_id];
2751 
2752 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2753 	if (!ctrl_ctx) {
2754 		spin_unlock_irqrestore(&xhci->lock, flags);
2755 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2756 				__func__);
2757 		return -ENOMEM;
2758 	}
2759 
2760 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2761 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2762 		spin_unlock_irqrestore(&xhci->lock, flags);
2763 		xhci_warn(xhci, "Not enough host resources, "
2764 				"active endpoint contexts = %u\n",
2765 				xhci->num_active_eps);
2766 		return -ENOMEM;
2767 	}
2768 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2769 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2770 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2771 			xhci_free_host_resources(xhci, ctrl_ctx);
2772 		spin_unlock_irqrestore(&xhci->lock, flags);
2773 		xhci_warn(xhci, "Not enough bandwidth\n");
2774 		return -ENOMEM;
2775 	}
2776 
2777 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2778 
2779 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2780 	trace_xhci_configure_endpoint(slot_ctx);
2781 
2782 	if (!ctx_change)
2783 		ret = xhci_queue_configure_endpoint(xhci, command,
2784 				command->in_ctx->dma,
2785 				udev->slot_id, must_succeed);
2786 	else
2787 		ret = xhci_queue_evaluate_context(xhci, command,
2788 				command->in_ctx->dma,
2789 				udev->slot_id, must_succeed);
2790 	if (ret < 0) {
2791 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2792 			xhci_free_host_resources(xhci, ctrl_ctx);
2793 		spin_unlock_irqrestore(&xhci->lock, flags);
2794 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2795 				"FIXME allocate a new ring segment");
2796 		return -ENOMEM;
2797 	}
2798 	xhci_ring_cmd_db(xhci);
2799 	spin_unlock_irqrestore(&xhci->lock, flags);
2800 
2801 	/* Wait for the configure endpoint command to complete */
2802 	wait_for_completion(command->completion);
2803 
2804 	if (!ctx_change)
2805 		ret = xhci_configure_endpoint_result(xhci, udev,
2806 						     &command->status);
2807 	else
2808 		ret = xhci_evaluate_context_result(xhci, udev,
2809 						   &command->status);
2810 
2811 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2812 		spin_lock_irqsave(&xhci->lock, flags);
2813 		/* If the command failed, remove the reserved resources.
2814 		 * Otherwise, clean up the estimate to include dropped eps.
2815 		 */
2816 		if (ret)
2817 			xhci_free_host_resources(xhci, ctrl_ctx);
2818 		else
2819 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2820 		spin_unlock_irqrestore(&xhci->lock, flags);
2821 	}
2822 	return ret;
2823 }
2824 
2825 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2826 	struct xhci_virt_device *vdev, int i)
2827 {
2828 	struct xhci_virt_ep *ep = &vdev->eps[i];
2829 
2830 	if (ep->ep_state & EP_HAS_STREAMS) {
2831 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2832 				xhci_get_endpoint_address(i));
2833 		xhci_free_stream_info(xhci, ep->stream_info);
2834 		ep->stream_info = NULL;
2835 		ep->ep_state &= ~EP_HAS_STREAMS;
2836 	}
2837 }
2838 
2839 /* Called after one or more calls to xhci_add_endpoint() or
2840  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2841  * to call xhci_reset_bandwidth().
2842  *
2843  * Since we are in the middle of changing either configuration or
2844  * installing a new alt setting, the USB core won't allow URBs to be
2845  * enqueued for any endpoint on the old config or interface.  Nothing
2846  * else should be touching the xhci->devs[slot_id] structure, so we
2847  * don't need to take the xhci->lock for manipulating that.
2848  */
2849 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2850 {
2851 	int i;
2852 	int ret = 0;
2853 	struct xhci_hcd *xhci;
2854 	struct xhci_virt_device	*virt_dev;
2855 	struct xhci_input_control_ctx *ctrl_ctx;
2856 	struct xhci_slot_ctx *slot_ctx;
2857 	struct xhci_command *command;
2858 
2859 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2860 	if (ret <= 0)
2861 		return ret;
2862 	xhci = hcd_to_xhci(hcd);
2863 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2864 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2865 		return -ENODEV;
2866 
2867 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2868 	virt_dev = xhci->devs[udev->slot_id];
2869 
2870 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2871 	if (!command)
2872 		return -ENOMEM;
2873 
2874 	command->in_ctx = virt_dev->in_ctx;
2875 
2876 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2877 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2878 	if (!ctrl_ctx) {
2879 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2880 				__func__);
2881 		ret = -ENOMEM;
2882 		goto command_cleanup;
2883 	}
2884 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2885 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2886 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2887 
2888 	/* Don't issue the command if there's no endpoints to update. */
2889 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2890 	    ctrl_ctx->drop_flags == 0) {
2891 		ret = 0;
2892 		goto command_cleanup;
2893 	}
2894 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2895 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2896 	for (i = 31; i >= 1; i--) {
2897 		__le32 le32 = cpu_to_le32(BIT(i));
2898 
2899 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2900 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2901 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2902 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2903 			break;
2904 		}
2905 	}
2906 
2907 	ret = xhci_configure_endpoint(xhci, udev, command,
2908 			false, false);
2909 	if (ret)
2910 		/* Callee should call reset_bandwidth() */
2911 		goto command_cleanup;
2912 
2913 	/* Free any rings that were dropped, but not changed. */
2914 	for (i = 1; i < 31; i++) {
2915 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2916 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2917 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2918 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2919 		}
2920 	}
2921 	xhci_zero_in_ctx(xhci, virt_dev);
2922 	/*
2923 	 * Install any rings for completely new endpoints or changed endpoints,
2924 	 * and free any old rings from changed endpoints.
2925 	 */
2926 	for (i = 1; i < 31; i++) {
2927 		if (!virt_dev->eps[i].new_ring)
2928 			continue;
2929 		/* Only free the old ring if it exists.
2930 		 * It may not if this is the first add of an endpoint.
2931 		 */
2932 		if (virt_dev->eps[i].ring) {
2933 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2934 		}
2935 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2936 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2937 		virt_dev->eps[i].new_ring = NULL;
2938 	}
2939 command_cleanup:
2940 	kfree(command->completion);
2941 	kfree(command);
2942 
2943 	return ret;
2944 }
2945 
2946 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2947 {
2948 	struct xhci_hcd *xhci;
2949 	struct xhci_virt_device	*virt_dev;
2950 	int i, ret;
2951 
2952 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2953 	if (ret <= 0)
2954 		return;
2955 	xhci = hcd_to_xhci(hcd);
2956 
2957 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2958 	virt_dev = xhci->devs[udev->slot_id];
2959 	/* Free any rings allocated for added endpoints */
2960 	for (i = 0; i < 31; i++) {
2961 		if (virt_dev->eps[i].new_ring) {
2962 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2963 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2964 			virt_dev->eps[i].new_ring = NULL;
2965 		}
2966 	}
2967 	xhci_zero_in_ctx(xhci, virt_dev);
2968 }
2969 
2970 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2971 		struct xhci_container_ctx *in_ctx,
2972 		struct xhci_container_ctx *out_ctx,
2973 		struct xhci_input_control_ctx *ctrl_ctx,
2974 		u32 add_flags, u32 drop_flags)
2975 {
2976 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2977 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2978 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2979 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2980 }
2981 
2982 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2983 		unsigned int slot_id, unsigned int ep_index,
2984 		struct xhci_dequeue_state *deq_state)
2985 {
2986 	struct xhci_input_control_ctx *ctrl_ctx;
2987 	struct xhci_container_ctx *in_ctx;
2988 	struct xhci_ep_ctx *ep_ctx;
2989 	u32 added_ctxs;
2990 	dma_addr_t addr;
2991 
2992 	in_ctx = xhci->devs[slot_id]->in_ctx;
2993 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2994 	if (!ctrl_ctx) {
2995 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2996 				__func__);
2997 		return;
2998 	}
2999 
3000 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3001 			xhci->devs[slot_id]->out_ctx, ep_index);
3002 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3003 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3004 			deq_state->new_deq_ptr);
3005 	if (addr == 0) {
3006 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3007 				"reset ep command\n");
3008 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3009 				deq_state->new_deq_seg,
3010 				deq_state->new_deq_ptr);
3011 		return;
3012 	}
3013 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3014 
3015 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3016 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3017 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3018 			added_ctxs, added_ctxs);
3019 }
3020 
3021 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3022 			       unsigned int stream_id, struct xhci_td *td)
3023 {
3024 	struct xhci_dequeue_state deq_state;
3025 	struct usb_device *udev = td->urb->dev;
3026 
3027 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3028 			"Cleaning up stalled endpoint ring");
3029 	/* We need to move the HW's dequeue pointer past this TD,
3030 	 * or it will attempt to resend it on the next doorbell ring.
3031 	 */
3032 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3033 			ep_index, stream_id, td, &deq_state);
3034 
3035 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3036 		return;
3037 
3038 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3039 	 * issue a configure endpoint command later.
3040 	 */
3041 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3042 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3043 				"Queueing new dequeue state");
3044 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3045 				ep_index, &deq_state);
3046 	} else {
3047 		/* Better hope no one uses the input context between now and the
3048 		 * reset endpoint completion!
3049 		 * XXX: No idea how this hardware will react when stream rings
3050 		 * are enabled.
3051 		 */
3052 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3053 				"Setting up input context for "
3054 				"configure endpoint command");
3055 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3056 				ep_index, &deq_state);
3057 	}
3058 }
3059 
3060 /*
3061  * Called after usb core issues a clear halt control message.
3062  * The host side of the halt should already be cleared by a reset endpoint
3063  * command issued when the STALL event was received.
3064  *
3065  * The reset endpoint command may only be issued to endpoints in the halted
3066  * state. For software that wishes to reset the data toggle or sequence number
3067  * of an endpoint that isn't in the halted state this function will issue a
3068  * configure endpoint command with the Drop and Add bits set for the target
3069  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3070  */
3071 
3072 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3073 		struct usb_host_endpoint *host_ep)
3074 {
3075 	struct xhci_hcd *xhci;
3076 	struct usb_device *udev;
3077 	struct xhci_virt_device *vdev;
3078 	struct xhci_virt_ep *ep;
3079 	struct xhci_input_control_ctx *ctrl_ctx;
3080 	struct xhci_command *stop_cmd, *cfg_cmd;
3081 	unsigned int ep_index;
3082 	unsigned long flags;
3083 	u32 ep_flag;
3084 
3085 	xhci = hcd_to_xhci(hcd);
3086 	if (!host_ep->hcpriv)
3087 		return;
3088 	udev = (struct usb_device *) host_ep->hcpriv;
3089 	vdev = xhci->devs[udev->slot_id];
3090 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3091 	ep = &vdev->eps[ep_index];
3092 
3093 	/* Bail out if toggle is already being cleared by a endpoint reset */
3094 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3095 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3096 		return;
3097 	}
3098 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3099 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3100 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3101 		return;
3102 
3103 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3104 
3105 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3106 		return;
3107 
3108 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3109 	if (!stop_cmd)
3110 		return;
3111 
3112 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3113 	if (!cfg_cmd)
3114 		goto cleanup;
3115 
3116 	spin_lock_irqsave(&xhci->lock, flags);
3117 
3118 	/* block queuing new trbs and ringing ep doorbell */
3119 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3120 
3121 	/*
3122 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3123 	 * Driver is required to synchronously cancel all transfer request.
3124 	 * Stop the endpoint to force xHC to update the output context
3125 	 */
3126 
3127 	if (!list_empty(&ep->ring->td_list)) {
3128 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3129 		spin_unlock_irqrestore(&xhci->lock, flags);
3130 		xhci_free_command(xhci, cfg_cmd);
3131 		goto cleanup;
3132 	}
3133 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3134 	xhci_ring_cmd_db(xhci);
3135 	spin_unlock_irqrestore(&xhci->lock, flags);
3136 
3137 	wait_for_completion(stop_cmd->completion);
3138 
3139 	spin_lock_irqsave(&xhci->lock, flags);
3140 
3141 	/* config ep command clears toggle if add and drop ep flags are set */
3142 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3143 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3144 					   ctrl_ctx, ep_flag, ep_flag);
3145 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3146 
3147 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3148 				      udev->slot_id, false);
3149 	xhci_ring_cmd_db(xhci);
3150 	spin_unlock_irqrestore(&xhci->lock, flags);
3151 
3152 	wait_for_completion(cfg_cmd->completion);
3153 
3154 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3155 	xhci_free_command(xhci, cfg_cmd);
3156 cleanup:
3157 	xhci_free_command(xhci, stop_cmd);
3158 }
3159 
3160 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3161 		struct usb_device *udev, struct usb_host_endpoint *ep,
3162 		unsigned int slot_id)
3163 {
3164 	int ret;
3165 	unsigned int ep_index;
3166 	unsigned int ep_state;
3167 
3168 	if (!ep)
3169 		return -EINVAL;
3170 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3171 	if (ret <= 0)
3172 		return -EINVAL;
3173 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3174 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3175 				" descriptor for ep 0x%x does not support streams\n",
3176 				ep->desc.bEndpointAddress);
3177 		return -EINVAL;
3178 	}
3179 
3180 	ep_index = xhci_get_endpoint_index(&ep->desc);
3181 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3182 	if (ep_state & EP_HAS_STREAMS ||
3183 			ep_state & EP_GETTING_STREAMS) {
3184 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3185 				"already has streams set up.\n",
3186 				ep->desc.bEndpointAddress);
3187 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3188 				"dynamic stream context array reallocation.\n");
3189 		return -EINVAL;
3190 	}
3191 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3192 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3193 				"endpoint 0x%x; URBs are pending.\n",
3194 				ep->desc.bEndpointAddress);
3195 		return -EINVAL;
3196 	}
3197 	return 0;
3198 }
3199 
3200 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3201 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3202 {
3203 	unsigned int max_streams;
3204 
3205 	/* The stream context array size must be a power of two */
3206 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3207 	/*
3208 	 * Find out how many primary stream array entries the host controller
3209 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3210 	 * level page entries), but that's an optional feature for xHCI host
3211 	 * controllers. xHCs must support at least 4 stream IDs.
3212 	 */
3213 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3214 	if (*num_stream_ctxs > max_streams) {
3215 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3216 				max_streams);
3217 		*num_stream_ctxs = max_streams;
3218 		*num_streams = max_streams;
3219 	}
3220 }
3221 
3222 /* Returns an error code if one of the endpoint already has streams.
3223  * This does not change any data structures, it only checks and gathers
3224  * information.
3225  */
3226 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3227 		struct usb_device *udev,
3228 		struct usb_host_endpoint **eps, unsigned int num_eps,
3229 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3230 {
3231 	unsigned int max_streams;
3232 	unsigned int endpoint_flag;
3233 	int i;
3234 	int ret;
3235 
3236 	for (i = 0; i < num_eps; i++) {
3237 		ret = xhci_check_streams_endpoint(xhci, udev,
3238 				eps[i], udev->slot_id);
3239 		if (ret < 0)
3240 			return ret;
3241 
3242 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3243 		if (max_streams < (*num_streams - 1)) {
3244 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3245 					eps[i]->desc.bEndpointAddress,
3246 					max_streams);
3247 			*num_streams = max_streams+1;
3248 		}
3249 
3250 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3251 		if (*changed_ep_bitmask & endpoint_flag)
3252 			return -EINVAL;
3253 		*changed_ep_bitmask |= endpoint_flag;
3254 	}
3255 	return 0;
3256 }
3257 
3258 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3259 		struct usb_device *udev,
3260 		struct usb_host_endpoint **eps, unsigned int num_eps)
3261 {
3262 	u32 changed_ep_bitmask = 0;
3263 	unsigned int slot_id;
3264 	unsigned int ep_index;
3265 	unsigned int ep_state;
3266 	int i;
3267 
3268 	slot_id = udev->slot_id;
3269 	if (!xhci->devs[slot_id])
3270 		return 0;
3271 
3272 	for (i = 0; i < num_eps; i++) {
3273 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3275 		/* Are streams already being freed for the endpoint? */
3276 		if (ep_state & EP_GETTING_NO_STREAMS) {
3277 			xhci_warn(xhci, "WARN Can't disable streams for "
3278 					"endpoint 0x%x, "
3279 					"streams are being disabled already\n",
3280 					eps[i]->desc.bEndpointAddress);
3281 			return 0;
3282 		}
3283 		/* Are there actually any streams to free? */
3284 		if (!(ep_state & EP_HAS_STREAMS) &&
3285 				!(ep_state & EP_GETTING_STREAMS)) {
3286 			xhci_warn(xhci, "WARN Can't disable streams for "
3287 					"endpoint 0x%x, "
3288 					"streams are already disabled!\n",
3289 					eps[i]->desc.bEndpointAddress);
3290 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3291 					"with non-streams endpoint\n");
3292 			return 0;
3293 		}
3294 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3295 	}
3296 	return changed_ep_bitmask;
3297 }
3298 
3299 /*
3300  * The USB device drivers use this function (through the HCD interface in USB
3301  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3302  * coordinate mass storage command queueing across multiple endpoints (basically
3303  * a stream ID == a task ID).
3304  *
3305  * Setting up streams involves allocating the same size stream context array
3306  * for each endpoint and issuing a configure endpoint command for all endpoints.
3307  *
3308  * Don't allow the call to succeed if one endpoint only supports one stream
3309  * (which means it doesn't support streams at all).
3310  *
3311  * Drivers may get less stream IDs than they asked for, if the host controller
3312  * hardware or endpoints claim they can't support the number of requested
3313  * stream IDs.
3314  */
3315 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3316 		struct usb_host_endpoint **eps, unsigned int num_eps,
3317 		unsigned int num_streams, gfp_t mem_flags)
3318 {
3319 	int i, ret;
3320 	struct xhci_hcd *xhci;
3321 	struct xhci_virt_device *vdev;
3322 	struct xhci_command *config_cmd;
3323 	struct xhci_input_control_ctx *ctrl_ctx;
3324 	unsigned int ep_index;
3325 	unsigned int num_stream_ctxs;
3326 	unsigned int max_packet;
3327 	unsigned long flags;
3328 	u32 changed_ep_bitmask = 0;
3329 
3330 	if (!eps)
3331 		return -EINVAL;
3332 
3333 	/* Add one to the number of streams requested to account for
3334 	 * stream 0 that is reserved for xHCI usage.
3335 	 */
3336 	num_streams += 1;
3337 	xhci = hcd_to_xhci(hcd);
3338 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3339 			num_streams);
3340 
3341 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3342 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3343 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3344 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3345 		return -ENOSYS;
3346 	}
3347 
3348 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3349 	if (!config_cmd)
3350 		return -ENOMEM;
3351 
3352 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3353 	if (!ctrl_ctx) {
3354 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3355 				__func__);
3356 		xhci_free_command(xhci, config_cmd);
3357 		return -ENOMEM;
3358 	}
3359 
3360 	/* Check to make sure all endpoints are not already configured for
3361 	 * streams.  While we're at it, find the maximum number of streams that
3362 	 * all the endpoints will support and check for duplicate endpoints.
3363 	 */
3364 	spin_lock_irqsave(&xhci->lock, flags);
3365 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3366 			num_eps, &num_streams, &changed_ep_bitmask);
3367 	if (ret < 0) {
3368 		xhci_free_command(xhci, config_cmd);
3369 		spin_unlock_irqrestore(&xhci->lock, flags);
3370 		return ret;
3371 	}
3372 	if (num_streams <= 1) {
3373 		xhci_warn(xhci, "WARN: endpoints can't handle "
3374 				"more than one stream.\n");
3375 		xhci_free_command(xhci, config_cmd);
3376 		spin_unlock_irqrestore(&xhci->lock, flags);
3377 		return -EINVAL;
3378 	}
3379 	vdev = xhci->devs[udev->slot_id];
3380 	/* Mark each endpoint as being in transition, so
3381 	 * xhci_urb_enqueue() will reject all URBs.
3382 	 */
3383 	for (i = 0; i < num_eps; i++) {
3384 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3385 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3386 	}
3387 	spin_unlock_irqrestore(&xhci->lock, flags);
3388 
3389 	/* Setup internal data structures and allocate HW data structures for
3390 	 * streams (but don't install the HW structures in the input context
3391 	 * until we're sure all memory allocation succeeded).
3392 	 */
3393 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3394 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3395 			num_stream_ctxs, num_streams);
3396 
3397 	for (i = 0; i < num_eps; i++) {
3398 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3399 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3400 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3401 				num_stream_ctxs,
3402 				num_streams,
3403 				max_packet, mem_flags);
3404 		if (!vdev->eps[ep_index].stream_info)
3405 			goto cleanup;
3406 		/* Set maxPstreams in endpoint context and update deq ptr to
3407 		 * point to stream context array. FIXME
3408 		 */
3409 	}
3410 
3411 	/* Set up the input context for a configure endpoint command. */
3412 	for (i = 0; i < num_eps; i++) {
3413 		struct xhci_ep_ctx *ep_ctx;
3414 
3415 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3416 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3417 
3418 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3419 				vdev->out_ctx, ep_index);
3420 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3421 				vdev->eps[ep_index].stream_info);
3422 	}
3423 	/* Tell the HW to drop its old copy of the endpoint context info
3424 	 * and add the updated copy from the input context.
3425 	 */
3426 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3427 			vdev->out_ctx, ctrl_ctx,
3428 			changed_ep_bitmask, changed_ep_bitmask);
3429 
3430 	/* Issue and wait for the configure endpoint command */
3431 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3432 			false, false);
3433 
3434 	/* xHC rejected the configure endpoint command for some reason, so we
3435 	 * leave the old ring intact and free our internal streams data
3436 	 * structure.
3437 	 */
3438 	if (ret < 0)
3439 		goto cleanup;
3440 
3441 	spin_lock_irqsave(&xhci->lock, flags);
3442 	for (i = 0; i < num_eps; i++) {
3443 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3444 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3445 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3446 			 udev->slot_id, ep_index);
3447 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3448 	}
3449 	xhci_free_command(xhci, config_cmd);
3450 	spin_unlock_irqrestore(&xhci->lock, flags);
3451 
3452 	/* Subtract 1 for stream 0, which drivers can't use */
3453 	return num_streams - 1;
3454 
3455 cleanup:
3456 	/* If it didn't work, free the streams! */
3457 	for (i = 0; i < num_eps; i++) {
3458 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3459 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3460 		vdev->eps[ep_index].stream_info = NULL;
3461 		/* FIXME Unset maxPstreams in endpoint context and
3462 		 * update deq ptr to point to normal string ring.
3463 		 */
3464 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3465 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3466 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3467 	}
3468 	xhci_free_command(xhci, config_cmd);
3469 	return -ENOMEM;
3470 }
3471 
3472 /* Transition the endpoint from using streams to being a "normal" endpoint
3473  * without streams.
3474  *
3475  * Modify the endpoint context state, submit a configure endpoint command,
3476  * and free all endpoint rings for streams if that completes successfully.
3477  */
3478 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3479 		struct usb_host_endpoint **eps, unsigned int num_eps,
3480 		gfp_t mem_flags)
3481 {
3482 	int i, ret;
3483 	struct xhci_hcd *xhci;
3484 	struct xhci_virt_device *vdev;
3485 	struct xhci_command *command;
3486 	struct xhci_input_control_ctx *ctrl_ctx;
3487 	unsigned int ep_index;
3488 	unsigned long flags;
3489 	u32 changed_ep_bitmask;
3490 
3491 	xhci = hcd_to_xhci(hcd);
3492 	vdev = xhci->devs[udev->slot_id];
3493 
3494 	/* Set up a configure endpoint command to remove the streams rings */
3495 	spin_lock_irqsave(&xhci->lock, flags);
3496 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3497 			udev, eps, num_eps);
3498 	if (changed_ep_bitmask == 0) {
3499 		spin_unlock_irqrestore(&xhci->lock, flags);
3500 		return -EINVAL;
3501 	}
3502 
3503 	/* Use the xhci_command structure from the first endpoint.  We may have
3504 	 * allocated too many, but the driver may call xhci_free_streams() for
3505 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3506 	 */
3507 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3508 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3509 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3510 	if (!ctrl_ctx) {
3511 		spin_unlock_irqrestore(&xhci->lock, flags);
3512 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3513 				__func__);
3514 		return -EINVAL;
3515 	}
3516 
3517 	for (i = 0; i < num_eps; i++) {
3518 		struct xhci_ep_ctx *ep_ctx;
3519 
3520 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3521 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3522 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3523 			EP_GETTING_NO_STREAMS;
3524 
3525 		xhci_endpoint_copy(xhci, command->in_ctx,
3526 				vdev->out_ctx, ep_index);
3527 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3528 				&vdev->eps[ep_index]);
3529 	}
3530 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3531 			vdev->out_ctx, ctrl_ctx,
3532 			changed_ep_bitmask, changed_ep_bitmask);
3533 	spin_unlock_irqrestore(&xhci->lock, flags);
3534 
3535 	/* Issue and wait for the configure endpoint command,
3536 	 * which must succeed.
3537 	 */
3538 	ret = xhci_configure_endpoint(xhci, udev, command,
3539 			false, true);
3540 
3541 	/* xHC rejected the configure endpoint command for some reason, so we
3542 	 * leave the streams rings intact.
3543 	 */
3544 	if (ret < 0)
3545 		return ret;
3546 
3547 	spin_lock_irqsave(&xhci->lock, flags);
3548 	for (i = 0; i < num_eps; i++) {
3549 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551 		vdev->eps[ep_index].stream_info = NULL;
3552 		/* FIXME Unset maxPstreams in endpoint context and
3553 		 * update deq ptr to point to normal string ring.
3554 		 */
3555 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3556 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557 	}
3558 	spin_unlock_irqrestore(&xhci->lock, flags);
3559 
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Deletes endpoint resources for endpoints that were active before a Reset
3565  * Device command, or a Disable Slot command.  The Reset Device command leaves
3566  * the control endpoint intact, whereas the Disable Slot command deletes it.
3567  *
3568  * Must be called with xhci->lock held.
3569  */
3570 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3571 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3572 {
3573 	int i;
3574 	unsigned int num_dropped_eps = 0;
3575 	unsigned int drop_flags = 0;
3576 
3577 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3578 		if (virt_dev->eps[i].ring) {
3579 			drop_flags |= 1 << i;
3580 			num_dropped_eps++;
3581 		}
3582 	}
3583 	xhci->num_active_eps -= num_dropped_eps;
3584 	if (num_dropped_eps)
3585 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3586 				"Dropped %u ep ctxs, flags = 0x%x, "
3587 				"%u now active.",
3588 				num_dropped_eps, drop_flags,
3589 				xhci->num_active_eps);
3590 }
3591 
3592 /*
3593  * This submits a Reset Device Command, which will set the device state to 0,
3594  * set the device address to 0, and disable all the endpoints except the default
3595  * control endpoint.  The USB core should come back and call
3596  * xhci_address_device(), and then re-set up the configuration.  If this is
3597  * called because of a usb_reset_and_verify_device(), then the old alternate
3598  * settings will be re-installed through the normal bandwidth allocation
3599  * functions.
3600  *
3601  * Wait for the Reset Device command to finish.  Remove all structures
3602  * associated with the endpoints that were disabled.  Clear the input device
3603  * structure? Reset the control endpoint 0 max packet size?
3604  *
3605  * If the virt_dev to be reset does not exist or does not match the udev,
3606  * it means the device is lost, possibly due to the xHC restore error and
3607  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3608  * re-allocate the device.
3609  */
3610 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3611 		struct usb_device *udev)
3612 {
3613 	int ret, i;
3614 	unsigned long flags;
3615 	struct xhci_hcd *xhci;
3616 	unsigned int slot_id;
3617 	struct xhci_virt_device *virt_dev;
3618 	struct xhci_command *reset_device_cmd;
3619 	struct xhci_slot_ctx *slot_ctx;
3620 	int old_active_eps = 0;
3621 
3622 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3623 	if (ret <= 0)
3624 		return ret;
3625 	xhci = hcd_to_xhci(hcd);
3626 	slot_id = udev->slot_id;
3627 	virt_dev = xhci->devs[slot_id];
3628 	if (!virt_dev) {
3629 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3630 				"not exist. Re-allocate the device\n", slot_id);
3631 		ret = xhci_alloc_dev(hcd, udev);
3632 		if (ret == 1)
3633 			return 0;
3634 		else
3635 			return -EINVAL;
3636 	}
3637 
3638 	if (virt_dev->tt_info)
3639 		old_active_eps = virt_dev->tt_info->active_eps;
3640 
3641 	if (virt_dev->udev != udev) {
3642 		/* If the virt_dev and the udev does not match, this virt_dev
3643 		 * may belong to another udev.
3644 		 * Re-allocate the device.
3645 		 */
3646 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3647 				"not match the udev. Re-allocate the device\n",
3648 				slot_id);
3649 		ret = xhci_alloc_dev(hcd, udev);
3650 		if (ret == 1)
3651 			return 0;
3652 		else
3653 			return -EINVAL;
3654 	}
3655 
3656 	/* If device is not setup, there is no point in resetting it */
3657 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3658 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3659 						SLOT_STATE_DISABLED)
3660 		return 0;
3661 
3662 	trace_xhci_discover_or_reset_device(slot_ctx);
3663 
3664 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3665 	/* Allocate the command structure that holds the struct completion.
3666 	 * Assume we're in process context, since the normal device reset
3667 	 * process has to wait for the device anyway.  Storage devices are
3668 	 * reset as part of error handling, so use GFP_NOIO instead of
3669 	 * GFP_KERNEL.
3670 	 */
3671 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3672 	if (!reset_device_cmd) {
3673 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3674 		return -ENOMEM;
3675 	}
3676 
3677 	/* Attempt to submit the Reset Device command to the command ring */
3678 	spin_lock_irqsave(&xhci->lock, flags);
3679 
3680 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3681 	if (ret) {
3682 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3683 		spin_unlock_irqrestore(&xhci->lock, flags);
3684 		goto command_cleanup;
3685 	}
3686 	xhci_ring_cmd_db(xhci);
3687 	spin_unlock_irqrestore(&xhci->lock, flags);
3688 
3689 	/* Wait for the Reset Device command to finish */
3690 	wait_for_completion(reset_device_cmd->completion);
3691 
3692 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3693 	 * unless we tried to reset a slot ID that wasn't enabled,
3694 	 * or the device wasn't in the addressed or configured state.
3695 	 */
3696 	ret = reset_device_cmd->status;
3697 	switch (ret) {
3698 	case COMP_COMMAND_ABORTED:
3699 	case COMP_COMMAND_RING_STOPPED:
3700 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3701 		ret = -ETIME;
3702 		goto command_cleanup;
3703 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3704 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3705 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3706 				slot_id,
3707 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3708 		xhci_dbg(xhci, "Not freeing device rings.\n");
3709 		/* Don't treat this as an error.  May change my mind later. */
3710 		ret = 0;
3711 		goto command_cleanup;
3712 	case COMP_SUCCESS:
3713 		xhci_dbg(xhci, "Successful reset device command.\n");
3714 		break;
3715 	default:
3716 		if (xhci_is_vendor_info_code(xhci, ret))
3717 			break;
3718 		xhci_warn(xhci, "Unknown completion code %u for "
3719 				"reset device command.\n", ret);
3720 		ret = -EINVAL;
3721 		goto command_cleanup;
3722 	}
3723 
3724 	/* Free up host controller endpoint resources */
3725 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3726 		spin_lock_irqsave(&xhci->lock, flags);
3727 		/* Don't delete the default control endpoint resources */
3728 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3729 		spin_unlock_irqrestore(&xhci->lock, flags);
3730 	}
3731 
3732 	/* Everything but endpoint 0 is disabled, so free the rings. */
3733 	for (i = 1; i < 31; i++) {
3734 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3735 
3736 		if (ep->ep_state & EP_HAS_STREAMS) {
3737 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3738 					xhci_get_endpoint_address(i));
3739 			xhci_free_stream_info(xhci, ep->stream_info);
3740 			ep->stream_info = NULL;
3741 			ep->ep_state &= ~EP_HAS_STREAMS;
3742 		}
3743 
3744 		if (ep->ring) {
3745 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3746 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3747 		}
3748 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3749 			xhci_drop_ep_from_interval_table(xhci,
3750 					&virt_dev->eps[i].bw_info,
3751 					virt_dev->bw_table,
3752 					udev,
3753 					&virt_dev->eps[i],
3754 					virt_dev->tt_info);
3755 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3756 	}
3757 	/* If necessary, update the number of active TTs on this root port */
3758 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3759 	ret = 0;
3760 
3761 command_cleanup:
3762 	xhci_free_command(xhci, reset_device_cmd);
3763 	return ret;
3764 }
3765 
3766 /*
3767  * At this point, the struct usb_device is about to go away, the device has
3768  * disconnected, and all traffic has been stopped and the endpoints have been
3769  * disabled.  Free any HC data structures associated with that device.
3770  */
3771 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3772 {
3773 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3774 	struct xhci_virt_device *virt_dev;
3775 	struct xhci_slot_ctx *slot_ctx;
3776 	int i, ret;
3777 
3778 #ifndef CONFIG_USB_DEFAULT_PERSIST
3779 	/*
3780 	 * We called pm_runtime_get_noresume when the device was attached.
3781 	 * Decrement the counter here to allow controller to runtime suspend
3782 	 * if no devices remain.
3783 	 */
3784 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785 		pm_runtime_put_noidle(hcd->self.controller);
3786 #endif
3787 
3788 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3789 	/* If the host is halted due to driver unload, we still need to free the
3790 	 * device.
3791 	 */
3792 	if (ret <= 0 && ret != -ENODEV)
3793 		return;
3794 
3795 	virt_dev = xhci->devs[udev->slot_id];
3796 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3797 	trace_xhci_free_dev(slot_ctx);
3798 
3799 	/* Stop any wayward timer functions (which may grab the lock) */
3800 	for (i = 0; i < 31; i++) {
3801 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3802 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3803 	}
3804 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3805 	virt_dev->udev = NULL;
3806 	ret = xhci_disable_slot(xhci, udev->slot_id);
3807 	if (ret)
3808 		xhci_free_virt_device(xhci, udev->slot_id);
3809 }
3810 
3811 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3812 {
3813 	struct xhci_command *command;
3814 	unsigned long flags;
3815 	u32 state;
3816 	int ret = 0;
3817 
3818 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3819 	if (!command)
3820 		return -ENOMEM;
3821 
3822 	spin_lock_irqsave(&xhci->lock, flags);
3823 	/* Don't disable the slot if the host controller is dead. */
3824 	state = readl(&xhci->op_regs->status);
3825 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3826 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3827 		spin_unlock_irqrestore(&xhci->lock, flags);
3828 		kfree(command);
3829 		return -ENODEV;
3830 	}
3831 
3832 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3833 				slot_id);
3834 	if (ret) {
3835 		spin_unlock_irqrestore(&xhci->lock, flags);
3836 		kfree(command);
3837 		return ret;
3838 	}
3839 	xhci_ring_cmd_db(xhci);
3840 	spin_unlock_irqrestore(&xhci->lock, flags);
3841 	return ret;
3842 }
3843 
3844 /*
3845  * Checks if we have enough host controller resources for the default control
3846  * endpoint.
3847  *
3848  * Must be called with xhci->lock held.
3849  */
3850 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3851 {
3852 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3853 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3854 				"Not enough ep ctxs: "
3855 				"%u active, need to add 1, limit is %u.",
3856 				xhci->num_active_eps, xhci->limit_active_eps);
3857 		return -ENOMEM;
3858 	}
3859 	xhci->num_active_eps += 1;
3860 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3861 			"Adding 1 ep ctx, %u now active.",
3862 			xhci->num_active_eps);
3863 	return 0;
3864 }
3865 
3866 
3867 /*
3868  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3869  * timed out, or allocating memory failed.  Returns 1 on success.
3870  */
3871 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3872 {
3873 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3874 	struct xhci_virt_device *vdev;
3875 	struct xhci_slot_ctx *slot_ctx;
3876 	unsigned long flags;
3877 	int ret, slot_id;
3878 	struct xhci_command *command;
3879 
3880 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3881 	if (!command)
3882 		return 0;
3883 
3884 	spin_lock_irqsave(&xhci->lock, flags);
3885 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3886 	if (ret) {
3887 		spin_unlock_irqrestore(&xhci->lock, flags);
3888 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3889 		xhci_free_command(xhci, command);
3890 		return 0;
3891 	}
3892 	xhci_ring_cmd_db(xhci);
3893 	spin_unlock_irqrestore(&xhci->lock, flags);
3894 
3895 	wait_for_completion(command->completion);
3896 	slot_id = command->slot_id;
3897 
3898 	if (!slot_id || command->status != COMP_SUCCESS) {
3899 		xhci_err(xhci, "Error while assigning device slot ID\n");
3900 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3901 				HCS_MAX_SLOTS(
3902 					readl(&xhci->cap_regs->hcs_params1)));
3903 		xhci_free_command(xhci, command);
3904 		return 0;
3905 	}
3906 
3907 	xhci_free_command(xhci, command);
3908 
3909 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3910 		spin_lock_irqsave(&xhci->lock, flags);
3911 		ret = xhci_reserve_host_control_ep_resources(xhci);
3912 		if (ret) {
3913 			spin_unlock_irqrestore(&xhci->lock, flags);
3914 			xhci_warn(xhci, "Not enough host resources, "
3915 					"active endpoint contexts = %u\n",
3916 					xhci->num_active_eps);
3917 			goto disable_slot;
3918 		}
3919 		spin_unlock_irqrestore(&xhci->lock, flags);
3920 	}
3921 	/* Use GFP_NOIO, since this function can be called from
3922 	 * xhci_discover_or_reset_device(), which may be called as part of
3923 	 * mass storage driver error handling.
3924 	 */
3925 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3926 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3927 		goto disable_slot;
3928 	}
3929 	vdev = xhci->devs[slot_id];
3930 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3931 	trace_xhci_alloc_dev(slot_ctx);
3932 
3933 	udev->slot_id = slot_id;
3934 
3935 	xhci_debugfs_create_slot(xhci, slot_id);
3936 
3937 #ifndef CONFIG_USB_DEFAULT_PERSIST
3938 	/*
3939 	 * If resetting upon resume, we can't put the controller into runtime
3940 	 * suspend if there is a device attached.
3941 	 */
3942 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943 		pm_runtime_get_noresume(hcd->self.controller);
3944 #endif
3945 
3946 	/* Is this a LS or FS device under a HS hub? */
3947 	/* Hub or peripherial? */
3948 	return 1;
3949 
3950 disable_slot:
3951 	ret = xhci_disable_slot(xhci, udev->slot_id);
3952 	if (ret)
3953 		xhci_free_virt_device(xhci, udev->slot_id);
3954 
3955 	return 0;
3956 }
3957 
3958 /*
3959  * Issue an Address Device command and optionally send a corresponding
3960  * SetAddress request to the device.
3961  */
3962 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3963 			     enum xhci_setup_dev setup)
3964 {
3965 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3966 	unsigned long flags;
3967 	struct xhci_virt_device *virt_dev;
3968 	int ret = 0;
3969 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970 	struct xhci_slot_ctx *slot_ctx;
3971 	struct xhci_input_control_ctx *ctrl_ctx;
3972 	u64 temp_64;
3973 	struct xhci_command *command = NULL;
3974 
3975 	mutex_lock(&xhci->mutex);
3976 
3977 	if (xhci->xhc_state) {	/* dying, removing or halted */
3978 		ret = -ESHUTDOWN;
3979 		goto out;
3980 	}
3981 
3982 	if (!udev->slot_id) {
3983 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3984 				"Bad Slot ID %d", udev->slot_id);
3985 		ret = -EINVAL;
3986 		goto out;
3987 	}
3988 
3989 	virt_dev = xhci->devs[udev->slot_id];
3990 
3991 	if (WARN_ON(!virt_dev)) {
3992 		/*
3993 		 * In plug/unplug torture test with an NEC controller,
3994 		 * a zero-dereference was observed once due to virt_dev = 0.
3995 		 * Print useful debug rather than crash if it is observed again!
3996 		 */
3997 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3998 			udev->slot_id);
3999 		ret = -EINVAL;
4000 		goto out;
4001 	}
4002 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4003 	trace_xhci_setup_device_slot(slot_ctx);
4004 
4005 	if (setup == SETUP_CONTEXT_ONLY) {
4006 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4007 		    SLOT_STATE_DEFAULT) {
4008 			xhci_dbg(xhci, "Slot already in default state\n");
4009 			goto out;
4010 		}
4011 	}
4012 
4013 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4014 	if (!command) {
4015 		ret = -ENOMEM;
4016 		goto out;
4017 	}
4018 
4019 	command->in_ctx = virt_dev->in_ctx;
4020 
4021 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4022 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4023 	if (!ctrl_ctx) {
4024 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4025 				__func__);
4026 		ret = -EINVAL;
4027 		goto out;
4028 	}
4029 	/*
4030 	 * If this is the first Set Address since device plug-in or
4031 	 * virt_device realloaction after a resume with an xHCI power loss,
4032 	 * then set up the slot context.
4033 	 */
4034 	if (!slot_ctx->dev_info)
4035 		xhci_setup_addressable_virt_dev(xhci, udev);
4036 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4037 	else
4038 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4039 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4040 	ctrl_ctx->drop_flags = 0;
4041 
4042 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4043 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4044 
4045 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4046 	spin_lock_irqsave(&xhci->lock, flags);
4047 	trace_xhci_setup_device(virt_dev);
4048 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4049 					udev->slot_id, setup);
4050 	if (ret) {
4051 		spin_unlock_irqrestore(&xhci->lock, flags);
4052 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4053 				"FIXME: allocate a command ring segment");
4054 		goto out;
4055 	}
4056 	xhci_ring_cmd_db(xhci);
4057 	spin_unlock_irqrestore(&xhci->lock, flags);
4058 
4059 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4060 	wait_for_completion(command->completion);
4061 
4062 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4063 	 * the SetAddress() "recovery interval" required by USB and aborting the
4064 	 * command on a timeout.
4065 	 */
4066 	switch (command->status) {
4067 	case COMP_COMMAND_ABORTED:
4068 	case COMP_COMMAND_RING_STOPPED:
4069 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4070 		ret = -ETIME;
4071 		break;
4072 	case COMP_CONTEXT_STATE_ERROR:
4073 	case COMP_SLOT_NOT_ENABLED_ERROR:
4074 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4075 			 act, udev->slot_id);
4076 		ret = -EINVAL;
4077 		break;
4078 	case COMP_USB_TRANSACTION_ERROR:
4079 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4080 
4081 		mutex_unlock(&xhci->mutex);
4082 		ret = xhci_disable_slot(xhci, udev->slot_id);
4083 		if (!ret)
4084 			xhci_alloc_dev(hcd, udev);
4085 		kfree(command->completion);
4086 		kfree(command);
4087 		return -EPROTO;
4088 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4089 		dev_warn(&udev->dev,
4090 			 "ERROR: Incompatible device for setup %s command\n", act);
4091 		ret = -ENODEV;
4092 		break;
4093 	case COMP_SUCCESS:
4094 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4095 			       "Successful setup %s command", act);
4096 		break;
4097 	default:
4098 		xhci_err(xhci,
4099 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4100 			 act, command->status);
4101 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4102 		ret = -EINVAL;
4103 		break;
4104 	}
4105 	if (ret)
4106 		goto out;
4107 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4108 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4109 			"Op regs DCBAA ptr = %#016llx", temp_64);
4110 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4111 		"Slot ID %d dcbaa entry @%p = %#016llx",
4112 		udev->slot_id,
4113 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4114 		(unsigned long long)
4115 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4116 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4117 			"Output Context DMA address = %#08llx",
4118 			(unsigned long long)virt_dev->out_ctx->dma);
4119 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4120 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4121 	/*
4122 	 * USB core uses address 1 for the roothubs, so we add one to the
4123 	 * address given back to us by the HC.
4124 	 */
4125 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4126 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4127 	/* Zero the input context control for later use */
4128 	ctrl_ctx->add_flags = 0;
4129 	ctrl_ctx->drop_flags = 0;
4130 
4131 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4132 		       "Internal device address = %d",
4133 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4134 out:
4135 	mutex_unlock(&xhci->mutex);
4136 	if (command) {
4137 		kfree(command->completion);
4138 		kfree(command);
4139 	}
4140 	return ret;
4141 }
4142 
4143 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4144 {
4145 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4146 }
4147 
4148 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4149 {
4150 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4151 }
4152 
4153 /*
4154  * Transfer the port index into real index in the HW port status
4155  * registers. Caculate offset between the port's PORTSC register
4156  * and port status base. Divide the number of per port register
4157  * to get the real index. The raw port number bases 1.
4158  */
4159 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4160 {
4161 	struct xhci_hub *rhub;
4162 
4163 	rhub = xhci_get_rhub(hcd);
4164 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4165 }
4166 
4167 /*
4168  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4169  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4170  */
4171 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4172 			struct usb_device *udev, u16 max_exit_latency)
4173 {
4174 	struct xhci_virt_device *virt_dev;
4175 	struct xhci_command *command;
4176 	struct xhci_input_control_ctx *ctrl_ctx;
4177 	struct xhci_slot_ctx *slot_ctx;
4178 	unsigned long flags;
4179 	int ret;
4180 
4181 	spin_lock_irqsave(&xhci->lock, flags);
4182 
4183 	virt_dev = xhci->devs[udev->slot_id];
4184 
4185 	/*
4186 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4187 	 * xHC was re-initialized. Exit latency will be set later after
4188 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4189 	 */
4190 
4191 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4192 		spin_unlock_irqrestore(&xhci->lock, flags);
4193 		return 0;
4194 	}
4195 
4196 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4197 	command = xhci->lpm_command;
4198 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4199 	if (!ctrl_ctx) {
4200 		spin_unlock_irqrestore(&xhci->lock, flags);
4201 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4202 				__func__);
4203 		return -ENOMEM;
4204 	}
4205 
4206 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4207 	spin_unlock_irqrestore(&xhci->lock, flags);
4208 
4209 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4210 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4211 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4212 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4213 	slot_ctx->dev_state = 0;
4214 
4215 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4216 			"Set up evaluate context for LPM MEL change.");
4217 
4218 	/* Issue and wait for the evaluate context command. */
4219 	ret = xhci_configure_endpoint(xhci, udev, command,
4220 			true, true);
4221 
4222 	if (!ret) {
4223 		spin_lock_irqsave(&xhci->lock, flags);
4224 		virt_dev->current_mel = max_exit_latency;
4225 		spin_unlock_irqrestore(&xhci->lock, flags);
4226 	}
4227 	return ret;
4228 }
4229 
4230 #ifdef CONFIG_PM
4231 
4232 /* BESL to HIRD Encoding array for USB2 LPM */
4233 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4234 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4235 
4236 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4237 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4238 					struct usb_device *udev)
4239 {
4240 	int u2del, besl, besl_host;
4241 	int besl_device = 0;
4242 	u32 field;
4243 
4244 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4245 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4246 
4247 	if (field & USB_BESL_SUPPORT) {
4248 		for (besl_host = 0; besl_host < 16; besl_host++) {
4249 			if (xhci_besl_encoding[besl_host] >= u2del)
4250 				break;
4251 		}
4252 		/* Use baseline BESL value as default */
4253 		if (field & USB_BESL_BASELINE_VALID)
4254 			besl_device = USB_GET_BESL_BASELINE(field);
4255 		else if (field & USB_BESL_DEEP_VALID)
4256 			besl_device = USB_GET_BESL_DEEP(field);
4257 	} else {
4258 		if (u2del <= 50)
4259 			besl_host = 0;
4260 		else
4261 			besl_host = (u2del - 51) / 75 + 1;
4262 	}
4263 
4264 	besl = besl_host + besl_device;
4265 	if (besl > 15)
4266 		besl = 15;
4267 
4268 	return besl;
4269 }
4270 
4271 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4272 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4273 {
4274 	u32 field;
4275 	int l1;
4276 	int besld = 0;
4277 	int hirdm = 0;
4278 
4279 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4280 
4281 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4282 	l1 = udev->l1_params.timeout / 256;
4283 
4284 	/* device has preferred BESLD */
4285 	if (field & USB_BESL_DEEP_VALID) {
4286 		besld = USB_GET_BESL_DEEP(field);
4287 		hirdm = 1;
4288 	}
4289 
4290 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4291 }
4292 
4293 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4294 			struct usb_device *udev, int enable)
4295 {
4296 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4297 	struct xhci_port **ports;
4298 	__le32 __iomem	*pm_addr, *hlpm_addr;
4299 	u32		pm_val, hlpm_val, field;
4300 	unsigned int	port_num;
4301 	unsigned long	flags;
4302 	int		hird, exit_latency;
4303 	int		ret;
4304 
4305 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4306 			!udev->lpm_capable)
4307 		return -EPERM;
4308 
4309 	if (!udev->parent || udev->parent->parent ||
4310 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4311 		return -EPERM;
4312 
4313 	if (udev->usb2_hw_lpm_capable != 1)
4314 		return -EPERM;
4315 
4316 	spin_lock_irqsave(&xhci->lock, flags);
4317 
4318 	ports = xhci->usb2_rhub.ports;
4319 	port_num = udev->portnum - 1;
4320 	pm_addr = ports[port_num]->addr + PORTPMSC;
4321 	pm_val = readl(pm_addr);
4322 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4323 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4324 
4325 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4326 			enable ? "enable" : "disable", port_num + 1);
4327 
4328 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4329 		/* Host supports BESL timeout instead of HIRD */
4330 		if (udev->usb2_hw_lpm_besl_capable) {
4331 			/* if device doesn't have a preferred BESL value use a
4332 			 * default one which works with mixed HIRD and BESL
4333 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4334 			 */
4335 			if ((field & USB_BESL_SUPPORT) &&
4336 			    (field & USB_BESL_BASELINE_VALID))
4337 				hird = USB_GET_BESL_BASELINE(field);
4338 			else
4339 				hird = udev->l1_params.besl;
4340 
4341 			exit_latency = xhci_besl_encoding[hird];
4342 			spin_unlock_irqrestore(&xhci->lock, flags);
4343 
4344 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4345 			 * input context for link powermanagement evaluate
4346 			 * context commands. It is protected by hcd->bandwidth
4347 			 * mutex and is shared by all devices. We need to set
4348 			 * the max ext latency in USB 2 BESL LPM as well, so
4349 			 * use the same mutex and xhci_change_max_exit_latency()
4350 			 */
4351 			mutex_lock(hcd->bandwidth_mutex);
4352 			ret = xhci_change_max_exit_latency(xhci, udev,
4353 							   exit_latency);
4354 			mutex_unlock(hcd->bandwidth_mutex);
4355 
4356 			if (ret < 0)
4357 				return ret;
4358 			spin_lock_irqsave(&xhci->lock, flags);
4359 
4360 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4361 			writel(hlpm_val, hlpm_addr);
4362 			/* flush write */
4363 			readl(hlpm_addr);
4364 		} else {
4365 			hird = xhci_calculate_hird_besl(xhci, udev);
4366 		}
4367 
4368 		pm_val &= ~PORT_HIRD_MASK;
4369 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4370 		writel(pm_val, pm_addr);
4371 		pm_val = readl(pm_addr);
4372 		pm_val |= PORT_HLE;
4373 		writel(pm_val, pm_addr);
4374 		/* flush write */
4375 		readl(pm_addr);
4376 	} else {
4377 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4378 		writel(pm_val, pm_addr);
4379 		/* flush write */
4380 		readl(pm_addr);
4381 		if (udev->usb2_hw_lpm_besl_capable) {
4382 			spin_unlock_irqrestore(&xhci->lock, flags);
4383 			mutex_lock(hcd->bandwidth_mutex);
4384 			xhci_change_max_exit_latency(xhci, udev, 0);
4385 			mutex_unlock(hcd->bandwidth_mutex);
4386 			return 0;
4387 		}
4388 	}
4389 
4390 	spin_unlock_irqrestore(&xhci->lock, flags);
4391 	return 0;
4392 }
4393 
4394 /* check if a usb2 port supports a given extened capability protocol
4395  * only USB2 ports extended protocol capability values are cached.
4396  * Return 1 if capability is supported
4397  */
4398 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4399 					   unsigned capability)
4400 {
4401 	u32 port_offset, port_count;
4402 	int i;
4403 
4404 	for (i = 0; i < xhci->num_ext_caps; i++) {
4405 		if (xhci->ext_caps[i] & capability) {
4406 			/* port offsets starts at 1 */
4407 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4408 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4409 			if (port >= port_offset &&
4410 			    port < port_offset + port_count)
4411 				return 1;
4412 		}
4413 	}
4414 	return 0;
4415 }
4416 
4417 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4418 {
4419 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4420 	int		portnum = udev->portnum - 1;
4421 
4422 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4423 		return 0;
4424 
4425 	/* we only support lpm for non-hub device connected to root hub yet */
4426 	if (!udev->parent || udev->parent->parent ||
4427 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4428 		return 0;
4429 
4430 	if (xhci->hw_lpm_support == 1 &&
4431 			xhci_check_usb2_port_capability(
4432 				xhci, portnum, XHCI_HLC)) {
4433 		udev->usb2_hw_lpm_capable = 1;
4434 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4435 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4436 		if (xhci_check_usb2_port_capability(xhci, portnum,
4437 					XHCI_BLC))
4438 			udev->usb2_hw_lpm_besl_capable = 1;
4439 	}
4440 
4441 	return 0;
4442 }
4443 
4444 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4445 
4446 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4447 static unsigned long long xhci_service_interval_to_ns(
4448 		struct usb_endpoint_descriptor *desc)
4449 {
4450 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4451 }
4452 
4453 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4454 		enum usb3_link_state state)
4455 {
4456 	unsigned long long sel;
4457 	unsigned long long pel;
4458 	unsigned int max_sel_pel;
4459 	char *state_name;
4460 
4461 	switch (state) {
4462 	case USB3_LPM_U1:
4463 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4464 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4465 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4466 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4467 		state_name = "U1";
4468 		break;
4469 	case USB3_LPM_U2:
4470 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4471 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4472 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4473 		state_name = "U2";
4474 		break;
4475 	default:
4476 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4477 				__func__);
4478 		return USB3_LPM_DISABLED;
4479 	}
4480 
4481 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4482 		return USB3_LPM_DEVICE_INITIATED;
4483 
4484 	if (sel > max_sel_pel)
4485 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4486 				"due to long SEL %llu ms\n",
4487 				state_name, sel);
4488 	else
4489 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4490 				"due to long PEL %llu ms\n",
4491 				state_name, pel);
4492 	return USB3_LPM_DISABLED;
4493 }
4494 
4495 /* The U1 timeout should be the maximum of the following values:
4496  *  - For control endpoints, U1 system exit latency (SEL) * 3
4497  *  - For bulk endpoints, U1 SEL * 5
4498  *  - For interrupt endpoints:
4499  *    - Notification EPs, U1 SEL * 3
4500  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4501  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4502  */
4503 static unsigned long long xhci_calculate_intel_u1_timeout(
4504 		struct usb_device *udev,
4505 		struct usb_endpoint_descriptor *desc)
4506 {
4507 	unsigned long long timeout_ns;
4508 	int ep_type;
4509 	int intr_type;
4510 
4511 	ep_type = usb_endpoint_type(desc);
4512 	switch (ep_type) {
4513 	case USB_ENDPOINT_XFER_CONTROL:
4514 		timeout_ns = udev->u1_params.sel * 3;
4515 		break;
4516 	case USB_ENDPOINT_XFER_BULK:
4517 		timeout_ns = udev->u1_params.sel * 5;
4518 		break;
4519 	case USB_ENDPOINT_XFER_INT:
4520 		intr_type = usb_endpoint_interrupt_type(desc);
4521 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4522 			timeout_ns = udev->u1_params.sel * 3;
4523 			break;
4524 		}
4525 		/* Otherwise the calculation is the same as isoc eps */
4526 		/* fall through */
4527 	case USB_ENDPOINT_XFER_ISOC:
4528 		timeout_ns = xhci_service_interval_to_ns(desc);
4529 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4530 		if (timeout_ns < udev->u1_params.sel * 2)
4531 			timeout_ns = udev->u1_params.sel * 2;
4532 		break;
4533 	default:
4534 		return 0;
4535 	}
4536 
4537 	return timeout_ns;
4538 }
4539 
4540 /* Returns the hub-encoded U1 timeout value. */
4541 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4542 		struct usb_device *udev,
4543 		struct usb_endpoint_descriptor *desc)
4544 {
4545 	unsigned long long timeout_ns;
4546 
4547 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4548 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4549 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4550 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4551 			return USB3_LPM_DISABLED;
4552 		}
4553 	}
4554 
4555 	if (xhci->quirks & XHCI_INTEL_HOST)
4556 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4557 	else
4558 		timeout_ns = udev->u1_params.sel;
4559 
4560 	/* The U1 timeout is encoded in 1us intervals.
4561 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4562 	 */
4563 	if (timeout_ns == USB3_LPM_DISABLED)
4564 		timeout_ns = 1;
4565 	else
4566 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4567 
4568 	/* If the necessary timeout value is bigger than what we can set in the
4569 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4570 	 */
4571 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4572 		return timeout_ns;
4573 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4574 			"due to long timeout %llu ms\n", timeout_ns);
4575 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4576 }
4577 
4578 /* The U2 timeout should be the maximum of:
4579  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4580  *  - largest bInterval of any active periodic endpoint (to avoid going
4581  *    into lower power link states between intervals).
4582  *  - the U2 Exit Latency of the device
4583  */
4584 static unsigned long long xhci_calculate_intel_u2_timeout(
4585 		struct usb_device *udev,
4586 		struct usb_endpoint_descriptor *desc)
4587 {
4588 	unsigned long long timeout_ns;
4589 	unsigned long long u2_del_ns;
4590 
4591 	timeout_ns = 10 * 1000 * 1000;
4592 
4593 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4594 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4595 		timeout_ns = xhci_service_interval_to_ns(desc);
4596 
4597 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4598 	if (u2_del_ns > timeout_ns)
4599 		timeout_ns = u2_del_ns;
4600 
4601 	return timeout_ns;
4602 }
4603 
4604 /* Returns the hub-encoded U2 timeout value. */
4605 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4606 		struct usb_device *udev,
4607 		struct usb_endpoint_descriptor *desc)
4608 {
4609 	unsigned long long timeout_ns;
4610 
4611 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4612 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4613 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4614 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4615 			return USB3_LPM_DISABLED;
4616 		}
4617 	}
4618 
4619 	if (xhci->quirks & XHCI_INTEL_HOST)
4620 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4621 	else
4622 		timeout_ns = udev->u2_params.sel;
4623 
4624 	/* The U2 timeout is encoded in 256us intervals */
4625 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4626 	/* If the necessary timeout value is bigger than what we can set in the
4627 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4628 	 */
4629 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4630 		return timeout_ns;
4631 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4632 			"due to long timeout %llu ms\n", timeout_ns);
4633 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4634 }
4635 
4636 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4637 		struct usb_device *udev,
4638 		struct usb_endpoint_descriptor *desc,
4639 		enum usb3_link_state state,
4640 		u16 *timeout)
4641 {
4642 	if (state == USB3_LPM_U1)
4643 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4644 	else if (state == USB3_LPM_U2)
4645 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4646 
4647 	return USB3_LPM_DISABLED;
4648 }
4649 
4650 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4651 		struct usb_device *udev,
4652 		struct usb_endpoint_descriptor *desc,
4653 		enum usb3_link_state state,
4654 		u16 *timeout)
4655 {
4656 	u16 alt_timeout;
4657 
4658 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4659 		desc, state, timeout);
4660 
4661 	/* If we found we can't enable hub-initiated LPM, or
4662 	 * the U1 or U2 exit latency was too high to allow
4663 	 * device-initiated LPM as well, just stop searching.
4664 	 */
4665 	if (alt_timeout == USB3_LPM_DISABLED ||
4666 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4667 		*timeout = alt_timeout;
4668 		return -E2BIG;
4669 	}
4670 	if (alt_timeout > *timeout)
4671 		*timeout = alt_timeout;
4672 	return 0;
4673 }
4674 
4675 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4676 		struct usb_device *udev,
4677 		struct usb_host_interface *alt,
4678 		enum usb3_link_state state,
4679 		u16 *timeout)
4680 {
4681 	int j;
4682 
4683 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4684 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4685 					&alt->endpoint[j].desc, state, timeout))
4686 			return -E2BIG;
4687 		continue;
4688 	}
4689 	return 0;
4690 }
4691 
4692 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4693 		enum usb3_link_state state)
4694 {
4695 	struct usb_device *parent;
4696 	unsigned int num_hubs;
4697 
4698 	if (state == USB3_LPM_U2)
4699 		return 0;
4700 
4701 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4702 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4703 			parent = parent->parent)
4704 		num_hubs++;
4705 
4706 	if (num_hubs < 2)
4707 		return 0;
4708 
4709 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4710 			" below second-tier hub.\n");
4711 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4712 			"to decrease power consumption.\n");
4713 	return -E2BIG;
4714 }
4715 
4716 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4717 		struct usb_device *udev,
4718 		enum usb3_link_state state)
4719 {
4720 	if (xhci->quirks & XHCI_INTEL_HOST)
4721 		return xhci_check_intel_tier_policy(udev, state);
4722 	else
4723 		return 0;
4724 }
4725 
4726 /* Returns the U1 or U2 timeout that should be enabled.
4727  * If the tier check or timeout setting functions return with a non-zero exit
4728  * code, that means the timeout value has been finalized and we shouldn't look
4729  * at any more endpoints.
4730  */
4731 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4732 			struct usb_device *udev, enum usb3_link_state state)
4733 {
4734 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4735 	struct usb_host_config *config;
4736 	char *state_name;
4737 	int i;
4738 	u16 timeout = USB3_LPM_DISABLED;
4739 
4740 	if (state == USB3_LPM_U1)
4741 		state_name = "U1";
4742 	else if (state == USB3_LPM_U2)
4743 		state_name = "U2";
4744 	else {
4745 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4746 				state);
4747 		return timeout;
4748 	}
4749 
4750 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4751 		return timeout;
4752 
4753 	/* Gather some information about the currently installed configuration
4754 	 * and alternate interface settings.
4755 	 */
4756 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4757 			state, &timeout))
4758 		return timeout;
4759 
4760 	config = udev->actconfig;
4761 	if (!config)
4762 		return timeout;
4763 
4764 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4765 		struct usb_driver *driver;
4766 		struct usb_interface *intf = config->interface[i];
4767 
4768 		if (!intf)
4769 			continue;
4770 
4771 		/* Check if any currently bound drivers want hub-initiated LPM
4772 		 * disabled.
4773 		 */
4774 		if (intf->dev.driver) {
4775 			driver = to_usb_driver(intf->dev.driver);
4776 			if (driver && driver->disable_hub_initiated_lpm) {
4777 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4778 						"at request of driver %s\n",
4779 						state_name, driver->name);
4780 				return xhci_get_timeout_no_hub_lpm(udev, state);
4781 			}
4782 		}
4783 
4784 		/* Not sure how this could happen... */
4785 		if (!intf->cur_altsetting)
4786 			continue;
4787 
4788 		if (xhci_update_timeout_for_interface(xhci, udev,
4789 					intf->cur_altsetting,
4790 					state, &timeout))
4791 			return timeout;
4792 	}
4793 	return timeout;
4794 }
4795 
4796 static int calculate_max_exit_latency(struct usb_device *udev,
4797 		enum usb3_link_state state_changed,
4798 		u16 hub_encoded_timeout)
4799 {
4800 	unsigned long long u1_mel_us = 0;
4801 	unsigned long long u2_mel_us = 0;
4802 	unsigned long long mel_us = 0;
4803 	bool disabling_u1;
4804 	bool disabling_u2;
4805 	bool enabling_u1;
4806 	bool enabling_u2;
4807 
4808 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4809 			hub_encoded_timeout == USB3_LPM_DISABLED);
4810 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4811 			hub_encoded_timeout == USB3_LPM_DISABLED);
4812 
4813 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4814 			hub_encoded_timeout != USB3_LPM_DISABLED);
4815 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4816 			hub_encoded_timeout != USB3_LPM_DISABLED);
4817 
4818 	/* If U1 was already enabled and we're not disabling it,
4819 	 * or we're going to enable U1, account for the U1 max exit latency.
4820 	 */
4821 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4822 			enabling_u1)
4823 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4824 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4825 			enabling_u2)
4826 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4827 
4828 	if (u1_mel_us > u2_mel_us)
4829 		mel_us = u1_mel_us;
4830 	else
4831 		mel_us = u2_mel_us;
4832 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4833 	if (mel_us > MAX_EXIT) {
4834 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4835 				"is too big.\n", mel_us);
4836 		return -E2BIG;
4837 	}
4838 	return mel_us;
4839 }
4840 
4841 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4842 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843 			struct usb_device *udev, enum usb3_link_state state)
4844 {
4845 	struct xhci_hcd	*xhci;
4846 	u16 hub_encoded_timeout;
4847 	int mel;
4848 	int ret;
4849 
4850 	xhci = hcd_to_xhci(hcd);
4851 	/* The LPM timeout values are pretty host-controller specific, so don't
4852 	 * enable hub-initiated timeouts unless the vendor has provided
4853 	 * information about their timeout algorithm.
4854 	 */
4855 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4856 			!xhci->devs[udev->slot_id])
4857 		return USB3_LPM_DISABLED;
4858 
4859 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4860 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4861 	if (mel < 0) {
4862 		/* Max Exit Latency is too big, disable LPM. */
4863 		hub_encoded_timeout = USB3_LPM_DISABLED;
4864 		mel = 0;
4865 	}
4866 
4867 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4868 	if (ret)
4869 		return ret;
4870 	return hub_encoded_timeout;
4871 }
4872 
4873 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4874 			struct usb_device *udev, enum usb3_link_state state)
4875 {
4876 	struct xhci_hcd	*xhci;
4877 	u16 mel;
4878 
4879 	xhci = hcd_to_xhci(hcd);
4880 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4881 			!xhci->devs[udev->slot_id])
4882 		return 0;
4883 
4884 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4885 	return xhci_change_max_exit_latency(xhci, udev, mel);
4886 }
4887 #else /* CONFIG_PM */
4888 
4889 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4890 				struct usb_device *udev, int enable)
4891 {
4892 	return 0;
4893 }
4894 
4895 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4896 {
4897 	return 0;
4898 }
4899 
4900 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4901 			struct usb_device *udev, enum usb3_link_state state)
4902 {
4903 	return USB3_LPM_DISABLED;
4904 }
4905 
4906 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4907 			struct usb_device *udev, enum usb3_link_state state)
4908 {
4909 	return 0;
4910 }
4911 #endif	/* CONFIG_PM */
4912 
4913 /*-------------------------------------------------------------------------*/
4914 
4915 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4916  * internal data structures for the device.
4917  */
4918 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4919 			struct usb_tt *tt, gfp_t mem_flags)
4920 {
4921 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4922 	struct xhci_virt_device *vdev;
4923 	struct xhci_command *config_cmd;
4924 	struct xhci_input_control_ctx *ctrl_ctx;
4925 	struct xhci_slot_ctx *slot_ctx;
4926 	unsigned long flags;
4927 	unsigned think_time;
4928 	int ret;
4929 
4930 	/* Ignore root hubs */
4931 	if (!hdev->parent)
4932 		return 0;
4933 
4934 	vdev = xhci->devs[hdev->slot_id];
4935 	if (!vdev) {
4936 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4937 		return -EINVAL;
4938 	}
4939 
4940 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4941 	if (!config_cmd)
4942 		return -ENOMEM;
4943 
4944 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4945 	if (!ctrl_ctx) {
4946 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4947 				__func__);
4948 		xhci_free_command(xhci, config_cmd);
4949 		return -ENOMEM;
4950 	}
4951 
4952 	spin_lock_irqsave(&xhci->lock, flags);
4953 	if (hdev->speed == USB_SPEED_HIGH &&
4954 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4955 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4956 		xhci_free_command(xhci, config_cmd);
4957 		spin_unlock_irqrestore(&xhci->lock, flags);
4958 		return -ENOMEM;
4959 	}
4960 
4961 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4962 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4963 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4964 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4965 	/*
4966 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4967 	 * but it may be already set to 1 when setup an xHCI virtual
4968 	 * device, so clear it anyway.
4969 	 */
4970 	if (tt->multi)
4971 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4972 	else if (hdev->speed == USB_SPEED_FULL)
4973 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4974 
4975 	if (xhci->hci_version > 0x95) {
4976 		xhci_dbg(xhci, "xHCI version %x needs hub "
4977 				"TT think time and number of ports\n",
4978 				(unsigned int) xhci->hci_version);
4979 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4980 		/* Set TT think time - convert from ns to FS bit times.
4981 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4982 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4983 		 *
4984 		 * xHCI 1.0: this field shall be 0 if the device is not a
4985 		 * High-spped hub.
4986 		 */
4987 		think_time = tt->think_time;
4988 		if (think_time != 0)
4989 			think_time = (think_time / 666) - 1;
4990 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4991 			slot_ctx->tt_info |=
4992 				cpu_to_le32(TT_THINK_TIME(think_time));
4993 	} else {
4994 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4995 				"TT think time or number of ports\n",
4996 				(unsigned int) xhci->hci_version);
4997 	}
4998 	slot_ctx->dev_state = 0;
4999 	spin_unlock_irqrestore(&xhci->lock, flags);
5000 
5001 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5002 			(xhci->hci_version > 0x95) ?
5003 			"configure endpoint" : "evaluate context");
5004 
5005 	/* Issue and wait for the configure endpoint or
5006 	 * evaluate context command.
5007 	 */
5008 	if (xhci->hci_version > 0x95)
5009 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5010 				false, false);
5011 	else
5012 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5013 				true, false);
5014 
5015 	xhci_free_command(xhci, config_cmd);
5016 	return ret;
5017 }
5018 
5019 static int xhci_get_frame(struct usb_hcd *hcd)
5020 {
5021 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5022 	/* EHCI mods by the periodic size.  Why? */
5023 	return readl(&xhci->run_regs->microframe_index) >> 3;
5024 }
5025 
5026 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5027 {
5028 	struct xhci_hcd		*xhci;
5029 	/*
5030 	 * TODO: Check with DWC3 clients for sysdev according to
5031 	 * quirks
5032 	 */
5033 	struct device		*dev = hcd->self.sysdev;
5034 	unsigned int		minor_rev;
5035 	int			retval;
5036 
5037 	/* Accept arbitrarily long scatter-gather lists */
5038 	hcd->self.sg_tablesize = ~0;
5039 
5040 	/* support to build packet from discontinuous buffers */
5041 	hcd->self.no_sg_constraint = 1;
5042 
5043 	/* XHCI controllers don't stop the ep queue on short packets :| */
5044 	hcd->self.no_stop_on_short = 1;
5045 
5046 	xhci = hcd_to_xhci(hcd);
5047 
5048 	if (usb_hcd_is_primary_hcd(hcd)) {
5049 		xhci->main_hcd = hcd;
5050 		xhci->usb2_rhub.hcd = hcd;
5051 		/* Mark the first roothub as being USB 2.0.
5052 		 * The xHCI driver will register the USB 3.0 roothub.
5053 		 */
5054 		hcd->speed = HCD_USB2;
5055 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5056 		/*
5057 		 * USB 2.0 roothub under xHCI has an integrated TT,
5058 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5059 		 * companion controller.
5060 		 */
5061 		hcd->has_tt = 1;
5062 	} else {
5063 		/*
5064 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5065 		 * minor revision instead of sbrn
5066 		 */
5067 		minor_rev = xhci->usb3_rhub.min_rev;
5068 		if (minor_rev) {
5069 			hcd->speed = HCD_USB31;
5070 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5071 		}
5072 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5073 			  minor_rev,
5074 			  minor_rev ? "Enhanced" : "");
5075 
5076 		xhci->usb3_rhub.hcd = hcd;
5077 		/* xHCI private pointer was set in xhci_pci_probe for the second
5078 		 * registered roothub.
5079 		 */
5080 		return 0;
5081 	}
5082 
5083 	mutex_init(&xhci->mutex);
5084 	xhci->cap_regs = hcd->regs;
5085 	xhci->op_regs = hcd->regs +
5086 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5087 	xhci->run_regs = hcd->regs +
5088 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5089 	/* Cache read-only capability registers */
5090 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5091 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5092 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5093 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5094 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5095 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5096 	if (xhci->hci_version > 0x100)
5097 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5098 
5099 	xhci->quirks |= quirks;
5100 
5101 	get_quirks(dev, xhci);
5102 
5103 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5104 	 * success event after a short transfer. This quirk will ignore such
5105 	 * spurious event.
5106 	 */
5107 	if (xhci->hci_version > 0x96)
5108 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5109 
5110 	/* Make sure the HC is halted. */
5111 	retval = xhci_halt(xhci);
5112 	if (retval)
5113 		return retval;
5114 
5115 	xhci_zero_64b_regs(xhci);
5116 
5117 	xhci_dbg(xhci, "Resetting HCD\n");
5118 	/* Reset the internal HC memory state and registers. */
5119 	retval = xhci_reset(xhci);
5120 	if (retval)
5121 		return retval;
5122 	xhci_dbg(xhci, "Reset complete\n");
5123 
5124 	/*
5125 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5126 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5127 	 * address memory pointers actually. So, this driver clears the AC64
5128 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5129 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5130 	 */
5131 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5132 		xhci->hcc_params &= ~BIT(0);
5133 
5134 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5135 	 * if xHC supports 64-bit addressing */
5136 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5137 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5138 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5139 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5140 	} else {
5141 		/*
5142 		 * This is to avoid error in cases where a 32-bit USB
5143 		 * controller is used on a 64-bit capable system.
5144 		 */
5145 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5146 		if (retval)
5147 			return retval;
5148 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5149 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5150 	}
5151 
5152 	xhci_dbg(xhci, "Calling HCD init\n");
5153 	/* Initialize HCD and host controller data structures. */
5154 	retval = xhci_init(hcd);
5155 	if (retval)
5156 		return retval;
5157 	xhci_dbg(xhci, "Called HCD init\n");
5158 
5159 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5160 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5161 
5162 	return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5165 
5166 static const struct hc_driver xhci_hc_driver = {
5167 	.description =		"xhci-hcd",
5168 	.product_desc =		"xHCI Host Controller",
5169 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5170 
5171 	/*
5172 	 * generic hardware linkage
5173 	 */
5174 	.irq =			xhci_irq,
5175 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5176 
5177 	/*
5178 	 * basic lifecycle operations
5179 	 */
5180 	.reset =		NULL, /* set in xhci_init_driver() */
5181 	.start =		xhci_run,
5182 	.stop =			xhci_stop,
5183 	.shutdown =		xhci_shutdown,
5184 
5185 	/*
5186 	 * managing i/o requests and associated device resources
5187 	 */
5188 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5189 	.urb_enqueue =		xhci_urb_enqueue,
5190 	.urb_dequeue =		xhci_urb_dequeue,
5191 	.alloc_dev =		xhci_alloc_dev,
5192 	.free_dev =		xhci_free_dev,
5193 	.alloc_streams =	xhci_alloc_streams,
5194 	.free_streams =		xhci_free_streams,
5195 	.add_endpoint =		xhci_add_endpoint,
5196 	.drop_endpoint =	xhci_drop_endpoint,
5197 	.endpoint_reset =	xhci_endpoint_reset,
5198 	.check_bandwidth =	xhci_check_bandwidth,
5199 	.reset_bandwidth =	xhci_reset_bandwidth,
5200 	.address_device =	xhci_address_device,
5201 	.enable_device =	xhci_enable_device,
5202 	.update_hub_device =	xhci_update_hub_device,
5203 	.reset_device =		xhci_discover_or_reset_device,
5204 
5205 	/*
5206 	 * scheduling support
5207 	 */
5208 	.get_frame_number =	xhci_get_frame,
5209 
5210 	/*
5211 	 * root hub support
5212 	 */
5213 	.hub_control =		xhci_hub_control,
5214 	.hub_status_data =	xhci_hub_status_data,
5215 	.bus_suspend =		xhci_bus_suspend,
5216 	.bus_resume =		xhci_bus_resume,
5217 	.get_resuming_ports =	xhci_get_resuming_ports,
5218 
5219 	/*
5220 	 * call back when device connected and addressed
5221 	 */
5222 	.update_device =        xhci_update_device,
5223 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5224 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5225 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5226 	.find_raw_port_number =	xhci_find_raw_port_number,
5227 };
5228 
5229 void xhci_init_driver(struct hc_driver *drv,
5230 		      const struct xhci_driver_overrides *over)
5231 {
5232 	BUG_ON(!over);
5233 
5234 	/* Copy the generic table to drv then apply the overrides */
5235 	*drv = xhci_hc_driver;
5236 
5237 	if (over) {
5238 		drv->hcd_priv_size += over->extra_priv_size;
5239 		if (over->reset)
5240 			drv->reset = over->reset;
5241 		if (over->start)
5242 			drv->start = over->start;
5243 	}
5244 }
5245 EXPORT_SYMBOL_GPL(xhci_init_driver);
5246 
5247 MODULE_DESCRIPTION(DRIVER_DESC);
5248 MODULE_AUTHOR(DRIVER_AUTHOR);
5249 MODULE_LICENSE("GPL");
5250 
5251 static int __init xhci_hcd_init(void)
5252 {
5253 	/*
5254 	 * Check the compiler generated sizes of structures that must be laid
5255 	 * out in specific ways for hardware access.
5256 	 */
5257 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5258 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5259 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5260 	/* xhci_device_control has eight fields, and also
5261 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5262 	 */
5263 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5264 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5265 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5266 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5267 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5268 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5269 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5270 
5271 	if (usb_disabled())
5272 		return -ENODEV;
5273 
5274 	xhci_debugfs_create_root();
5275 
5276 	return 0;
5277 }
5278 
5279 /*
5280  * If an init function is provided, an exit function must also be provided
5281  * to allow module unload.
5282  */
5283 static void __exit xhci_hcd_fini(void)
5284 {
5285 	xhci_debugfs_remove_root();
5286 }
5287 
5288 module_init(xhci_hcd_init);
5289 module_exit(xhci_hcd_fini);
5290