xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 15b209cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret) {
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 	}
159 
160 	return ret;
161 }
162 
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172 	u32 command;
173 	u32 state;
174 	int ret;
175 
176 	state = readl(&xhci->op_regs->status);
177 
178 	if (state == ~(u32)0) {
179 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 		return -ENODEV;
181 	}
182 
183 	if ((state & STS_HALT) == 0) {
184 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 		return 0;
186 	}
187 
188 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 	command = readl(&xhci->op_regs->command);
190 	command |= CMD_RESET;
191 	writel(command, &xhci->op_regs->command);
192 
193 	/* Existing Intel xHCI controllers require a delay of 1 mS,
194 	 * after setting the CMD_RESET bit, and before accessing any
195 	 * HC registers. This allows the HC to complete the
196 	 * reset operation and be ready for HC register access.
197 	 * Without this delay, the subsequent HC register access,
198 	 * may result in a system hang very rarely.
199 	 */
200 	if (xhci->quirks & XHCI_INTEL_HOST)
201 		udelay(1000);
202 
203 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 	if (ret)
205 		return ret;
206 
207 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209 
210 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 			 "Wait for controller to be ready for doorbell rings");
212 	/*
213 	 * xHCI cannot write to any doorbells or operational registers other
214 	 * than status until the "Controller Not Ready" flag is cleared.
215 	 */
216 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217 
218 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
224 
225 	return ret;
226 }
227 
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 	int err, i;
232 	u64 val;
233 	u32 intrs;
234 
235 	/*
236 	 * Some Renesas controllers get into a weird state if they are
237 	 * reset while programmed with 64bit addresses (they will preserve
238 	 * the top half of the address in internal, non visible
239 	 * registers). You end up with half the address coming from the
240 	 * kernel, and the other half coming from the firmware. Also,
241 	 * changing the programming leads to extra accesses even if the
242 	 * controller is supposed to be halted. The controller ends up with
243 	 * a fatal fault, and is then ripe for being properly reset.
244 	 *
245 	 * Special care is taken to only apply this if the device is behind
246 	 * an iommu. Doing anything when there is no iommu is definitely
247 	 * unsafe...
248 	 */
249 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250 		return;
251 
252 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253 
254 	/* Clear HSEIE so that faults do not get signaled */
255 	val = readl(&xhci->op_regs->command);
256 	val &= ~CMD_HSEIE;
257 	writel(val, &xhci->op_regs->command);
258 
259 	/* Clear HSE (aka FATAL) */
260 	val = readl(&xhci->op_regs->status);
261 	val |= STS_FATAL;
262 	writel(val, &xhci->op_regs->status);
263 
264 	/* Now zero the registers, and brace for impact */
265 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 	if (upper_32_bits(val))
270 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271 
272 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 		      ARRAY_SIZE(xhci->run_regs->ir_set));
274 
275 	for (i = 0; i < intrs; i++) {
276 		struct xhci_intr_reg __iomem *ir;
277 
278 		ir = &xhci->run_regs->ir_set[i];
279 		val = xhci_read_64(xhci, &ir->erst_base);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_base);
282 		val= xhci_read_64(xhci, &ir->erst_dequeue);
283 		if (upper_32_bits(val))
284 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
285 	}
286 
287 	/* Wait for the fault to appear. It will be cleared on reset */
288 	err = xhci_handshake(&xhci->op_regs->status,
289 			     STS_FATAL, STS_FATAL,
290 			     XHCI_MAX_HALT_USEC);
291 	if (!err)
292 		xhci_info(xhci, "Fault detected\n");
293 }
294 
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301 	int ret;
302 	/*
303 	 * TODO:Check with MSI Soc for sysdev
304 	 */
305 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306 
307 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308 	if (ret < 0) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"failed to allocate MSI entry");
311 		return ret;
312 	}
313 
314 	ret = request_irq(pdev->irq, xhci_msi_irq,
315 				0, "xhci_hcd", xhci_to_hcd(xhci));
316 	if (ret) {
317 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 				"disable MSI interrupt");
319 		pci_free_irq_vectors(pdev);
320 	}
321 
322 	return ret;
323 }
324 
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330 	int i, ret;
331 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333 
334 	/*
335 	 * calculate number of msi-x vectors supported.
336 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
338 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 	 *   Add additional 1 vector to ensure always available interrupt.
340 	 */
341 	xhci->msix_count = min(num_online_cpus() + 1,
342 				HCS_MAX_INTRS(xhci->hcs_params1));
343 
344 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345 			PCI_IRQ_MSIX);
346 	if (ret < 0) {
347 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 				"Failed to enable MSI-X");
349 		return ret;
350 	}
351 
352 	for (i = 0; i < xhci->msix_count; i++) {
353 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 				"xhci_hcd", xhci_to_hcd(xhci));
355 		if (ret)
356 			goto disable_msix;
357 	}
358 
359 	hcd->msix_enabled = 1;
360 	return ret;
361 
362 disable_msix:
363 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364 	while (--i >= 0)
365 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 	pci_free_irq_vectors(pdev);
367 	return ret;
368 }
369 
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375 
376 	if (xhci->quirks & XHCI_PLAT)
377 		return;
378 
379 	/* return if using legacy interrupt */
380 	if (hcd->irq > 0)
381 		return;
382 
383 	if (hcd->msix_enabled) {
384 		int i;
385 
386 		for (i = 0; i < xhci->msix_count; i++)
387 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388 	} else {
389 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390 	}
391 
392 	pci_free_irq_vectors(pdev);
393 	hcd->msix_enabled = 0;
394 }
395 
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
399 
400 	if (hcd->msix_enabled) {
401 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402 		int i;
403 
404 		for (i = 0; i < xhci->msix_count; i++)
405 			synchronize_irq(pci_irq_vector(pdev, i));
406 	}
407 }
408 
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 	struct pci_dev  *pdev;
413 	int ret;
414 
415 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
416 	if (xhci->quirks & XHCI_PLAT)
417 		return 0;
418 
419 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 	/*
421 	 * Some Fresco Logic host controllers advertise MSI, but fail to
422 	 * generate interrupts.  Don't even try to enable MSI.
423 	 */
424 	if (xhci->quirks & XHCI_BROKEN_MSI)
425 		goto legacy_irq;
426 
427 	/* unregister the legacy interrupt */
428 	if (hcd->irq)
429 		free_irq(hcd->irq, hcd);
430 	hcd->irq = 0;
431 
432 	ret = xhci_setup_msix(xhci);
433 	if (ret)
434 		/* fall back to msi*/
435 		ret = xhci_setup_msi(xhci);
436 
437 	if (!ret) {
438 		hcd->msi_enabled = 1;
439 		return 0;
440 	}
441 
442 	if (!pdev->irq) {
443 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444 		return -EINVAL;
445 	}
446 
447  legacy_irq:
448 	if (!strlen(hcd->irq_descr))
449 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 			 hcd->driver->description, hcd->self.busnum);
451 
452 	/* fall back to legacy interrupt*/
453 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 			hcd->irq_descr, hcd);
455 	if (ret) {
456 		xhci_err(xhci, "request interrupt %d failed\n",
457 				pdev->irq);
458 		return ret;
459 	}
460 	hcd->irq = pdev->irq;
461 	return 0;
462 }
463 
464 #else
465 
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468 	return 0;
469 }
470 
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474 
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478 
479 #endif
480 
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483 	struct xhci_hcd *xhci;
484 	struct usb_hcd *hcd;
485 	struct xhci_hub *rhub;
486 	u32 temp;
487 	int i;
488 
489 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 	rhub = &xhci->usb3_rhub;
491 	hcd = rhub->hcd;
492 
493 	if (!hcd)
494 		return;
495 
496 	for (i = 0; i < rhub->num_ports; i++) {
497 		temp = readl(rhub->ports[i]->addr);
498 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499 			/*
500 			 * Compliance Mode Detected. Letting USB Core
501 			 * handle the Warm Reset
502 			 */
503 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 					"Compliance mode detected->port %d",
505 					i + 1);
506 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 					"Attempting compliance mode recovery");
508 
509 			if (hcd->state == HC_STATE_SUSPENDED)
510 				usb_hcd_resume_root_hub(hcd);
511 
512 			usb_hcd_poll_rh_status(hcd);
513 		}
514 	}
515 
516 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 		mod_timer(&xhci->comp_mode_recovery_timer,
518 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520 
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533 	xhci->port_status_u0 = 0;
534 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 		    0);
536 	xhci->comp_mode_recovery_timer.expires = jiffies +
537 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538 
539 	add_timer(&xhci->comp_mode_recovery_timer);
540 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 			"Compliance mode recovery timer initialized");
542 }
543 
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552 	const char *dmi_product_name, *dmi_sys_vendor;
553 
554 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 	if (!dmi_product_name || !dmi_sys_vendor)
557 		return false;
558 
559 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 		return false;
561 
562 	if (strstr(dmi_product_name, "Z420") ||
563 			strstr(dmi_product_name, "Z620") ||
564 			strstr(dmi_product_name, "Z820") ||
565 			strstr(dmi_product_name, "Z1 Workstation"))
566 		return true;
567 
568 	return false;
569 }
570 
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575 
576 
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 	int retval;
588 
589 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 	spin_lock_init(&xhci->lock);
591 	if (xhci->hci_version == 0x95 && link_quirk) {
592 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 				"QUIRK: Not clearing Link TRB chain bits.");
594 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 	} else {
596 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 				"xHCI doesn't need link TRB QUIRK");
598 	}
599 	retval = xhci_mem_init(xhci, GFP_KERNEL);
600 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601 
602 	/* Initializing Compliance Mode Recovery Data If Needed */
603 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 		compliance_mode_recovery_timer_init(xhci);
606 	}
607 
608 	return retval;
609 }
610 
611 /*-------------------------------------------------------------------------*/
612 
613 
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616 	unsigned long	flags;
617 	u32		temp;
618 
619 	/*
620 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 	 * Protect the short window before host is running with a lock
622 	 */
623 	spin_lock_irqsave(&xhci->lock, flags);
624 
625 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 	temp = readl(&xhci->op_regs->command);
627 	temp |= (CMD_EIE);
628 	writel(temp, &xhci->op_regs->command);
629 
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 	temp = readl(&xhci->ir_set->irq_pending);
632 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633 
634 	if (xhci_start(xhci)) {
635 		xhci_halt(xhci);
636 		spin_unlock_irqrestore(&xhci->lock, flags);
637 		return -ENODEV;
638 	}
639 
640 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641 
642 	if (xhci->quirks & XHCI_NEC_HOST)
643 		xhci_ring_cmd_db(xhci);
644 
645 	spin_unlock_irqrestore(&xhci->lock, flags);
646 
647 	return 0;
648 }
649 
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664 	u32 temp;
665 	u64 temp_64;
666 	int ret;
667 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668 
669 	/* Start the xHCI host controller running only after the USB 2.0 roothub
670 	 * is setup.
671 	 */
672 
673 	hcd->uses_new_polling = 1;
674 	if (!usb_hcd_is_primary_hcd(hcd))
675 		return xhci_run_finished(xhci);
676 
677 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678 
679 	ret = xhci_try_enable_msi(hcd);
680 	if (ret)
681 		return ret;
682 
683 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 	temp_64 &= ~ERST_PTR_MASK;
685 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687 
688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 			"// Set the interrupt modulation register");
690 	temp = readl(&xhci->ir_set->irq_control);
691 	temp &= ~ER_IRQ_INTERVAL_MASK;
692 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 	writel(temp, &xhci->ir_set->irq_control);
694 
695 	if (xhci->quirks & XHCI_NEC_HOST) {
696 		struct xhci_command *command;
697 
698 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699 		if (!command)
700 			return -ENOMEM;
701 
702 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 				TRB_TYPE(TRB_NEC_GET_FW));
704 		if (ret)
705 			xhci_free_command(xhci, command);
706 	}
707 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 			"Finished %s for main hcd", __func__);
709 
710 	xhci_create_dbc_dev(xhci);
711 
712 	xhci_debugfs_init(xhci);
713 
714 	if (xhci_has_one_roothub(xhci))
715 		return xhci_run_finished(xhci);
716 
717 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718 
719 	return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722 
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734 	u32 temp;
735 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736 
737 	mutex_lock(&xhci->mutex);
738 
739 	/* Only halt host and free memory after both hcds are removed */
740 	if (!usb_hcd_is_primary_hcd(hcd)) {
741 		mutex_unlock(&xhci->mutex);
742 		return;
743 	}
744 
745 	xhci_remove_dbc_dev(xhci);
746 
747 	spin_lock_irq(&xhci->lock);
748 	xhci->xhc_state |= XHCI_STATE_HALTED;
749 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750 	xhci_halt(xhci);
751 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 	spin_unlock_irq(&xhci->lock);
753 
754 	xhci_cleanup_msix(xhci);
755 
756 	/* Deleting Compliance Mode Recovery Timer */
757 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 			(!(xhci_all_ports_seen_u0(xhci)))) {
759 		del_timer_sync(&xhci->comp_mode_recovery_timer);
760 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 				"%s: compliance mode recovery timer deleted",
762 				__func__);
763 	}
764 
765 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
766 		usb_amd_dev_put();
767 
768 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 			"// Disabling event ring interrupts");
770 	temp = readl(&xhci->op_regs->status);
771 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 	temp = readl(&xhci->ir_set->irq_pending);
773 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774 
775 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 	xhci_mem_cleanup(xhci);
777 	xhci_debugfs_exit(xhci);
778 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 			"xhci_stop completed - status = %x",
780 			readl(&xhci->op_regs->status));
781 	mutex_unlock(&xhci->mutex);
782 }
783 
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796 
797 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799 
800 	/* Don't poll the roothubs after shutdown. */
801 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 			__func__, hcd->self.busnum);
803 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 	del_timer_sync(&hcd->rh_timer);
805 
806 	if (xhci->shared_hcd) {
807 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 		del_timer_sync(&xhci->shared_hcd->rh_timer);
809 	}
810 
811 	spin_lock_irq(&xhci->lock);
812 	xhci_halt(xhci);
813 	/* Workaround for spurious wakeups at shutdown with HSW */
814 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816 	spin_unlock_irq(&xhci->lock);
817 
818 	xhci_cleanup_msix(xhci);
819 
820 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821 			"xhci_shutdown completed - status = %x",
822 			readl(&xhci->op_regs->status));
823 }
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
825 
826 #ifdef CONFIG_PM
827 static void xhci_save_registers(struct xhci_hcd *xhci)
828 {
829 	xhci->s3.command = readl(&xhci->op_regs->command);
830 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
838 }
839 
840 static void xhci_restore_registers(struct xhci_hcd *xhci)
841 {
842 	writel(xhci->s3.command, &xhci->op_regs->command);
843 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
851 }
852 
853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
854 {
855 	u64	val_64;
856 
857 	/* step 2: initialize command ring buffer */
858 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861 				      xhci->cmd_ring->dequeue) &
862 		 (u64) ~CMD_RING_RSVD_BITS) |
863 		xhci->cmd_ring->cycle_state;
864 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865 			"// Setting command ring address to 0x%llx",
866 			(long unsigned long) val_64);
867 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
868 }
869 
870 /*
871  * The whole command ring must be cleared to zero when we suspend the host.
872  *
873  * The host doesn't save the command ring pointer in the suspend well, so we
874  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
875  * aligned, because of the reserved bits in the command ring dequeue pointer
876  * register.  Therefore, we can't just set the dequeue pointer back in the
877  * middle of the ring (TRBs are 16-byte aligned).
878  */
879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
880 {
881 	struct xhci_ring *ring;
882 	struct xhci_segment *seg;
883 
884 	ring = xhci->cmd_ring;
885 	seg = ring->deq_seg;
886 	do {
887 		memset(seg->trbs, 0,
888 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890 			cpu_to_le32(~TRB_CYCLE);
891 		seg = seg->next;
892 	} while (seg != ring->deq_seg);
893 
894 	/* Reset the software enqueue and dequeue pointers */
895 	ring->deq_seg = ring->first_seg;
896 	ring->dequeue = ring->first_seg->trbs;
897 	ring->enq_seg = ring->deq_seg;
898 	ring->enqueue = ring->dequeue;
899 
900 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
901 	/*
902 	 * Ring is now zeroed, so the HW should look for change of ownership
903 	 * when the cycle bit is set to 1.
904 	 */
905 	ring->cycle_state = 1;
906 
907 	/*
908 	 * Reset the hardware dequeue pointer.
909 	 * Yes, this will need to be re-written after resume, but we're paranoid
910 	 * and want to make sure the hardware doesn't access bogus memory
911 	 * because, say, the BIOS or an SMI started the host without changing
912 	 * the command ring pointers.
913 	 */
914 	xhci_set_cmd_ring_deq(xhci);
915 }
916 
917 /*
918  * Disable port wake bits if do_wakeup is not set.
919  *
920  * Also clear a possible internal port wake state left hanging for ports that
921  * detected termination but never successfully enumerated (trained to 0U).
922  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923  * at enumeration clears this wake, force one here as well for unconnected ports
924  */
925 
926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927 				       struct xhci_hub *rhub,
928 				       bool do_wakeup)
929 {
930 	unsigned long flags;
931 	u32 t1, t2, portsc;
932 	int i;
933 
934 	spin_lock_irqsave(&xhci->lock, flags);
935 
936 	for (i = 0; i < rhub->num_ports; i++) {
937 		portsc = readl(rhub->ports[i]->addr);
938 		t1 = xhci_port_state_to_neutral(portsc);
939 		t2 = t1;
940 
941 		/* clear wake bits if do_wake is not set */
942 		if (!do_wakeup)
943 			t2 &= ~PORT_WAKE_BITS;
944 
945 		/* Don't touch csc bit if connected or connect change is set */
946 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
947 			t2 |= PORT_CSC;
948 
949 		if (t1 != t2) {
950 			writel(t2, rhub->ports[i]->addr);
951 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
953 		}
954 	}
955 	spin_unlock_irqrestore(&xhci->lock, flags);
956 }
957 
958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
959 {
960 	struct xhci_port	**ports;
961 	int			port_index;
962 	u32			status;
963 	u32			portsc;
964 
965 	status = readl(&xhci->op_regs->status);
966 	if (status & STS_EINT)
967 		return true;
968 	/*
969 	 * Checking STS_EINT is not enough as there is a lag between a change
970 	 * bit being set and the Port Status Change Event that it generated
971 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
972 	 */
973 
974 	port_index = xhci->usb2_rhub.num_ports;
975 	ports = xhci->usb2_rhub.ports;
976 	while (port_index--) {
977 		portsc = readl(ports[port_index]->addr);
978 		if (portsc & PORT_CHANGE_MASK ||
979 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980 			return true;
981 	}
982 	port_index = xhci->usb3_rhub.num_ports;
983 	ports = xhci->usb3_rhub.ports;
984 	while (port_index--) {
985 		portsc = readl(ports[port_index]->addr);
986 		if (portsc & PORT_CHANGE_MASK ||
987 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
988 			return true;
989 	}
990 	return false;
991 }
992 
993 /*
994  * Stop HC (not bus-specific)
995  *
996  * This is called when the machine transition into S3/S4 mode.
997  *
998  */
999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001 	int			rc = 0;
1002 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1003 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1004 	u32			command;
1005 	u32			res;
1006 
1007 	if (!hcd->state)
1008 		return 0;
1009 
1010 	if (hcd->state != HC_STATE_SUSPENDED ||
1011 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012 		return -EINVAL;
1013 
1014 	/* Clear root port wake on bits if wakeup not allowed. */
1015 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017 
1018 	if (!HCD_HW_ACCESSIBLE(hcd))
1019 		return 0;
1020 
1021 	xhci_dbc_suspend(xhci);
1022 
1023 	/* Don't poll the roothubs on bus suspend. */
1024 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025 		 __func__, hcd->self.busnum);
1026 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027 	del_timer_sync(&hcd->rh_timer);
1028 	if (xhci->shared_hcd) {
1029 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1031 	}
1032 
1033 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034 		usleep_range(1000, 1500);
1035 
1036 	spin_lock_irq(&xhci->lock);
1037 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038 	if (xhci->shared_hcd)
1039 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040 	/* step 1: stop endpoint */
1041 	/* skipped assuming that port suspend has done */
1042 
1043 	/* step 2: clear Run/Stop bit */
1044 	command = readl(&xhci->op_regs->command);
1045 	command &= ~CMD_RUN;
1046 	writel(command, &xhci->op_regs->command);
1047 
1048 	/* Some chips from Fresco Logic need an extraordinary delay */
1049 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050 
1051 	if (xhci_handshake(&xhci->op_regs->status,
1052 		      STS_HALT, STS_HALT, delay)) {
1053 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054 		spin_unlock_irq(&xhci->lock);
1055 		return -ETIMEDOUT;
1056 	}
1057 	xhci_clear_command_ring(xhci);
1058 
1059 	/* step 3: save registers */
1060 	xhci_save_registers(xhci);
1061 
1062 	/* step 4: set CSS flag */
1063 	command = readl(&xhci->op_regs->command);
1064 	command |= CMD_CSS;
1065 	writel(command, &xhci->op_regs->command);
1066 	xhci->broken_suspend = 0;
1067 	if (xhci_handshake(&xhci->op_regs->status,
1068 				STS_SAVE, 0, 20 * 1000)) {
1069 	/*
1070 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1071 	 * SSS bit of USBSTS and when driver tries to poll
1072 	 * to see if the xHC clears BIT(8) which never happens
1073 	 * and driver assumes that controller is not responding
1074 	 * and times out. To workaround this, its good to check
1075 	 * if SRE and HCE bits are not set (as per xhci
1076 	 * Section 5.4.2) and bypass the timeout.
1077 	 */
1078 		res = readl(&xhci->op_regs->status);
1079 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080 		    (((res & STS_SRE) == 0) &&
1081 				((res & STS_HCE) == 0))) {
1082 			xhci->broken_suspend = 1;
1083 		} else {
1084 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085 			spin_unlock_irq(&xhci->lock);
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 	spin_unlock_irq(&xhci->lock);
1090 
1091 	/*
1092 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093 	 * is about to be suspended.
1094 	 */
1095 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096 			(!(xhci_all_ports_seen_u0(xhci)))) {
1097 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1098 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099 				"%s: compliance mode recovery timer deleted",
1100 				__func__);
1101 	}
1102 
1103 	/* step 5: remove core well power */
1104 	/* synchronize irq when using MSI-X */
1105 	xhci_msix_sync_irqs(xhci);
1106 
1107 	return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110 
1111 /*
1112  * start xHC (not bus-specific)
1113  *
1114  * This is called when the machine transition from S3/S4 mode.
1115  *
1116  */
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119 	u32			command, temp = 0;
1120 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1121 	int			retval = 0;
1122 	bool			comp_timer_running = false;
1123 	bool			pending_portevent = false;
1124 	bool			reinit_xhc = false;
1125 
1126 	if (!hcd->state)
1127 		return 0;
1128 
1129 	/* Wait a bit if either of the roothubs need to settle from the
1130 	 * transition into bus suspend.
1131 	 */
1132 
1133 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135 		msleep(100);
1136 
1137 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138 	if (xhci->shared_hcd)
1139 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140 
1141 	spin_lock_irq(&xhci->lock);
1142 
1143 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144 		reinit_xhc = true;
1145 
1146 	if (!reinit_xhc) {
1147 		/*
1148 		 * Some controllers might lose power during suspend, so wait
1149 		 * for controller not ready bit to clear, just as in xHC init.
1150 		 */
1151 		retval = xhci_handshake(&xhci->op_regs->status,
1152 					STS_CNR, 0, 10 * 1000 * 1000);
1153 		if (retval) {
1154 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1155 				  retval);
1156 			spin_unlock_irq(&xhci->lock);
1157 			return retval;
1158 		}
1159 		/* step 1: restore register */
1160 		xhci_restore_registers(xhci);
1161 		/* step 2: initialize command ring buffer */
1162 		xhci_set_cmd_ring_deq(xhci);
1163 		/* step 3: restore state and start state*/
1164 		/* step 3: set CRS flag */
1165 		command = readl(&xhci->op_regs->command);
1166 		command |= CMD_CRS;
1167 		writel(command, &xhci->op_regs->command);
1168 		/*
1169 		 * Some controllers take up to 55+ ms to complete the controller
1170 		 * restore so setting the timeout to 100ms. Xhci specification
1171 		 * doesn't mention any timeout value.
1172 		 */
1173 		if (xhci_handshake(&xhci->op_regs->status,
1174 			      STS_RESTORE, 0, 100 * 1000)) {
1175 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176 			spin_unlock_irq(&xhci->lock);
1177 			return -ETIMEDOUT;
1178 		}
1179 	}
1180 
1181 	temp = readl(&xhci->op_regs->status);
1182 
1183 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1184 	if (temp & (STS_SRE | STS_HCE)) {
1185 		reinit_xhc = true;
1186 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1187 	}
1188 
1189 	if (reinit_xhc) {
1190 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1191 				!(xhci_all_ports_seen_u0(xhci))) {
1192 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1193 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1194 				"Compliance Mode Recovery Timer deleted!");
1195 		}
1196 
1197 		/* Let the USB core know _both_ roothubs lost power. */
1198 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1199 		if (xhci->shared_hcd)
1200 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1201 
1202 		xhci_dbg(xhci, "Stop HCD\n");
1203 		xhci_halt(xhci);
1204 		xhci_zero_64b_regs(xhci);
1205 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1206 		spin_unlock_irq(&xhci->lock);
1207 		if (retval)
1208 			return retval;
1209 		xhci_cleanup_msix(xhci);
1210 
1211 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1212 		temp = readl(&xhci->op_regs->status);
1213 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1214 		temp = readl(&xhci->ir_set->irq_pending);
1215 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1216 
1217 		xhci_dbg(xhci, "cleaning up memory\n");
1218 		xhci_mem_cleanup(xhci);
1219 		xhci_debugfs_exit(xhci);
1220 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1221 			    readl(&xhci->op_regs->status));
1222 
1223 		/* USB core calls the PCI reinit and start functions twice:
1224 		 * first with the primary HCD, and then with the secondary HCD.
1225 		 * If we don't do the same, the host will never be started.
1226 		 */
1227 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1228 		retval = xhci_init(hcd);
1229 		if (retval)
1230 			return retval;
1231 		comp_timer_running = true;
1232 
1233 		xhci_dbg(xhci, "Start the primary HCD\n");
1234 		retval = xhci_run(hcd);
1235 		if (!retval && xhci->shared_hcd) {
1236 			xhci_dbg(xhci, "Start the secondary HCD\n");
1237 			retval = xhci_run(xhci->shared_hcd);
1238 		}
1239 
1240 		hcd->state = HC_STATE_SUSPENDED;
1241 		if (xhci->shared_hcd)
1242 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1243 		goto done;
1244 	}
1245 
1246 	/* step 4: set Run/Stop bit */
1247 	command = readl(&xhci->op_regs->command);
1248 	command |= CMD_RUN;
1249 	writel(command, &xhci->op_regs->command);
1250 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1251 		  0, 250 * 1000);
1252 
1253 	/* step 5: walk topology and initialize portsc,
1254 	 * portpmsc and portli
1255 	 */
1256 	/* this is done in bus_resume */
1257 
1258 	/* step 6: restart each of the previously
1259 	 * Running endpoints by ringing their doorbells
1260 	 */
1261 
1262 	spin_unlock_irq(&xhci->lock);
1263 
1264 	xhci_dbc_resume(xhci);
1265 
1266  done:
1267 	if (retval == 0) {
1268 		/*
1269 		 * Resume roothubs only if there are pending events.
1270 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1271 		 * the first wake signalling failed, give it that chance.
1272 		 */
1273 		pending_portevent = xhci_pending_portevent(xhci);
1274 		if (!pending_portevent) {
1275 			msleep(120);
1276 			pending_portevent = xhci_pending_portevent(xhci);
1277 		}
1278 
1279 		if (pending_portevent) {
1280 			if (xhci->shared_hcd)
1281 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1282 			usb_hcd_resume_root_hub(hcd);
1283 		}
1284 	}
1285 	/*
1286 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1287 	 * be re-initialized Always after a system resume. Ports are subject
1288 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1289 	 * ports have entered previously to U0 before system's suspension.
1290 	 */
1291 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1292 		compliance_mode_recovery_timer_init(xhci);
1293 
1294 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1295 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1296 
1297 	/* Re-enable port polling. */
1298 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1299 		 __func__, hcd->self.busnum);
1300 	if (xhci->shared_hcd) {
1301 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1302 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1303 	}
1304 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1305 	usb_hcd_poll_rh_status(hcd);
1306 
1307 	return retval;
1308 }
1309 EXPORT_SYMBOL_GPL(xhci_resume);
1310 #endif	/* CONFIG_PM */
1311 
1312 /*-------------------------------------------------------------------------*/
1313 
1314 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316 	void *temp;
1317 	int ret = 0;
1318 	unsigned int buf_len;
1319 	enum dma_data_direction dir;
1320 
1321 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1322 	buf_len = urb->transfer_buffer_length;
1323 
1324 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1325 			    dev_to_node(hcd->self.sysdev));
1326 
1327 	if (usb_urb_dir_out(urb))
1328 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1329 				   temp, buf_len, 0);
1330 
1331 	urb->transfer_buffer = temp;
1332 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1333 					   urb->transfer_buffer,
1334 					   urb->transfer_buffer_length,
1335 					   dir);
1336 
1337 	if (dma_mapping_error(hcd->self.sysdev,
1338 			      urb->transfer_dma)) {
1339 		ret = -EAGAIN;
1340 		kfree(temp);
1341 	} else {
1342 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1343 	}
1344 
1345 	return ret;
1346 }
1347 
1348 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1349 					  struct urb *urb)
1350 {
1351 	bool ret = false;
1352 	unsigned int i;
1353 	unsigned int len = 0;
1354 	unsigned int trb_size;
1355 	unsigned int max_pkt;
1356 	struct scatterlist *sg;
1357 	struct scatterlist *tail_sg;
1358 
1359 	tail_sg = urb->sg;
1360 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1361 
1362 	if (!urb->num_sgs)
1363 		return ret;
1364 
1365 	if (urb->dev->speed >= USB_SPEED_SUPER)
1366 		trb_size = TRB_CACHE_SIZE_SS;
1367 	else
1368 		trb_size = TRB_CACHE_SIZE_HS;
1369 
1370 	if (urb->transfer_buffer_length != 0 &&
1371 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1372 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1373 			len = len + sg->length;
1374 			if (i > trb_size - 2) {
1375 				len = len - tail_sg->length;
1376 				if (len < max_pkt) {
1377 					ret = true;
1378 					break;
1379 				}
1380 
1381 				tail_sg = sg_next(tail_sg);
1382 			}
1383 		}
1384 	}
1385 	return ret;
1386 }
1387 
1388 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1389 {
1390 	unsigned int len;
1391 	unsigned int buf_len;
1392 	enum dma_data_direction dir;
1393 
1394 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395 
1396 	buf_len = urb->transfer_buffer_length;
1397 
1398 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1399 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1400 		dma_unmap_single(hcd->self.sysdev,
1401 				 urb->transfer_dma,
1402 				 urb->transfer_buffer_length,
1403 				 dir);
1404 
1405 	if (usb_urb_dir_in(urb)) {
1406 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1407 					   urb->transfer_buffer,
1408 					   buf_len,
1409 					   0);
1410 		if (len != buf_len) {
1411 			xhci_dbg(hcd_to_xhci(hcd),
1412 				 "Copy from tmp buf to urb sg list failed\n");
1413 			urb->actual_length = len;
1414 		}
1415 	}
1416 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1417 	kfree(urb->transfer_buffer);
1418 	urb->transfer_buffer = NULL;
1419 }
1420 
1421 /*
1422  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1423  * we'll copy the actual data into the TRB address register. This is limited to
1424  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1425  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1426  */
1427 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1428 				gfp_t mem_flags)
1429 {
1430 	struct xhci_hcd *xhci;
1431 
1432 	xhci = hcd_to_xhci(hcd);
1433 
1434 	if (xhci_urb_suitable_for_idt(urb))
1435 		return 0;
1436 
1437 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1438 		if (xhci_urb_temp_buffer_required(hcd, urb))
1439 			return xhci_map_temp_buffer(hcd, urb);
1440 	}
1441 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1442 }
1443 
1444 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446 	struct xhci_hcd *xhci;
1447 	bool unmap_temp_buf = false;
1448 
1449 	xhci = hcd_to_xhci(hcd);
1450 
1451 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1452 		unmap_temp_buf = true;
1453 
1454 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1455 		xhci_unmap_temp_buf(hcd, urb);
1456 	else
1457 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1458 }
1459 
1460 /**
1461  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1462  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1463  * value to right shift 1 for the bitmask.
1464  *
1465  * Index  = (epnum * 2) + direction - 1,
1466  * where direction = 0 for OUT, 1 for IN.
1467  * For control endpoints, the IN index is used (OUT index is unused), so
1468  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1469  */
1470 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1471 {
1472 	unsigned int index;
1473 	if (usb_endpoint_xfer_control(desc))
1474 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1475 	else
1476 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1477 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1478 	return index;
1479 }
1480 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1481 
1482 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1483  * address from the XHCI endpoint index.
1484  */
1485 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1486 {
1487 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1488 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1489 	return direction | number;
1490 }
1491 
1492 /* Find the flag for this endpoint (for use in the control context).  Use the
1493  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1494  * bit 1, etc.
1495  */
1496 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1497 {
1498 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1499 }
1500 
1501 /* Compute the last valid endpoint context index.  Basically, this is the
1502  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1503  * we find the most significant bit set in the added contexts flags.
1504  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1505  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1506  */
1507 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1508 {
1509 	return fls(added_ctxs) - 1;
1510 }
1511 
1512 /* Returns 1 if the arguments are OK;
1513  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1514  */
1515 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1516 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1517 		const char *func) {
1518 	struct xhci_hcd	*xhci;
1519 	struct xhci_virt_device	*virt_dev;
1520 
1521 	if (!hcd || (check_ep && !ep) || !udev) {
1522 		pr_debug("xHCI %s called with invalid args\n", func);
1523 		return -EINVAL;
1524 	}
1525 	if (!udev->parent) {
1526 		pr_debug("xHCI %s called for root hub\n", func);
1527 		return 0;
1528 	}
1529 
1530 	xhci = hcd_to_xhci(hcd);
1531 	if (check_virt_dev) {
1532 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1533 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1534 					func);
1535 			return -EINVAL;
1536 		}
1537 
1538 		virt_dev = xhci->devs[udev->slot_id];
1539 		if (virt_dev->udev != udev) {
1540 			xhci_dbg(xhci, "xHCI %s called with udev and "
1541 					  "virt_dev does not match\n", func);
1542 			return -EINVAL;
1543 		}
1544 	}
1545 
1546 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1547 		return -ENODEV;
1548 
1549 	return 1;
1550 }
1551 
1552 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1553 		struct usb_device *udev, struct xhci_command *command,
1554 		bool ctx_change, bool must_succeed);
1555 
1556 /*
1557  * Full speed devices may have a max packet size greater than 8 bytes, but the
1558  * USB core doesn't know that until it reads the first 8 bytes of the
1559  * descriptor.  If the usb_device's max packet size changes after that point,
1560  * we need to issue an evaluate context command and wait on it.
1561  */
1562 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1563 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1564 {
1565 	struct xhci_container_ctx *out_ctx;
1566 	struct xhci_input_control_ctx *ctrl_ctx;
1567 	struct xhci_ep_ctx *ep_ctx;
1568 	struct xhci_command *command;
1569 	int max_packet_size;
1570 	int hw_max_packet_size;
1571 	int ret = 0;
1572 
1573 	out_ctx = xhci->devs[slot_id]->out_ctx;
1574 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1575 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1576 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1577 	if (hw_max_packet_size != max_packet_size) {
1578 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1579 				"Max Packet Size for ep 0 changed.");
1580 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1581 				"Max packet size in usb_device = %d",
1582 				max_packet_size);
1583 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1584 				"Max packet size in xHCI HW = %d",
1585 				hw_max_packet_size);
1586 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1587 				"Issuing evaluate context command.");
1588 
1589 		/* Set up the input context flags for the command */
1590 		/* FIXME: This won't work if a non-default control endpoint
1591 		 * changes max packet sizes.
1592 		 */
1593 
1594 		command = xhci_alloc_command(xhci, true, mem_flags);
1595 		if (!command)
1596 			return -ENOMEM;
1597 
1598 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1599 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1600 		if (!ctrl_ctx) {
1601 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1602 					__func__);
1603 			ret = -ENOMEM;
1604 			goto command_cleanup;
1605 		}
1606 		/* Set up the modified control endpoint 0 */
1607 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1608 				xhci->devs[slot_id]->out_ctx, ep_index);
1609 
1610 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1611 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1612 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1613 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1614 
1615 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1616 		ctrl_ctx->drop_flags = 0;
1617 
1618 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1619 				true, false);
1620 
1621 		/* Clean up the input context for later use by bandwidth
1622 		 * functions.
1623 		 */
1624 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1625 command_cleanup:
1626 		kfree(command->completion);
1627 		kfree(command);
1628 	}
1629 	return ret;
1630 }
1631 
1632 /*
1633  * non-error returns are a promise to giveback() the urb later
1634  * we drop ownership so next owner (or urb unlink) can get it
1635  */
1636 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1637 {
1638 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1639 	unsigned long flags;
1640 	int ret = 0;
1641 	unsigned int slot_id, ep_index;
1642 	unsigned int *ep_state;
1643 	struct urb_priv	*urb_priv;
1644 	int num_tds;
1645 
1646 	if (!urb)
1647 		return -EINVAL;
1648 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1649 					true, true, __func__);
1650 	if (ret <= 0)
1651 		return ret ? ret : -EINVAL;
1652 
1653 	slot_id = urb->dev->slot_id;
1654 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1655 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1656 
1657 	if (!HCD_HW_ACCESSIBLE(hcd))
1658 		return -ESHUTDOWN;
1659 
1660 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1661 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1662 		return -ENODEV;
1663 	}
1664 
1665 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1666 		num_tds = urb->number_of_packets;
1667 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1668 	    urb->transfer_buffer_length > 0 &&
1669 	    urb->transfer_flags & URB_ZERO_PACKET &&
1670 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1671 		num_tds = 2;
1672 	else
1673 		num_tds = 1;
1674 
1675 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1676 	if (!urb_priv)
1677 		return -ENOMEM;
1678 
1679 	urb_priv->num_tds = num_tds;
1680 	urb_priv->num_tds_done = 0;
1681 	urb->hcpriv = urb_priv;
1682 
1683 	trace_xhci_urb_enqueue(urb);
1684 
1685 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1686 		/* Check to see if the max packet size for the default control
1687 		 * endpoint changed during FS device enumeration
1688 		 */
1689 		if (urb->dev->speed == USB_SPEED_FULL) {
1690 			ret = xhci_check_maxpacket(xhci, slot_id,
1691 					ep_index, urb, mem_flags);
1692 			if (ret < 0) {
1693 				xhci_urb_free_priv(urb_priv);
1694 				urb->hcpriv = NULL;
1695 				return ret;
1696 			}
1697 		}
1698 	}
1699 
1700 	spin_lock_irqsave(&xhci->lock, flags);
1701 
1702 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1703 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1704 			 urb->ep->desc.bEndpointAddress, urb);
1705 		ret = -ESHUTDOWN;
1706 		goto free_priv;
1707 	}
1708 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1709 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1710 			  *ep_state);
1711 		ret = -EINVAL;
1712 		goto free_priv;
1713 	}
1714 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1715 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1716 		ret = -EINVAL;
1717 		goto free_priv;
1718 	}
1719 
1720 	switch (usb_endpoint_type(&urb->ep->desc)) {
1721 
1722 	case USB_ENDPOINT_XFER_CONTROL:
1723 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1724 					 slot_id, ep_index);
1725 		break;
1726 	case USB_ENDPOINT_XFER_BULK:
1727 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1728 					 slot_id, ep_index);
1729 		break;
1730 	case USB_ENDPOINT_XFER_INT:
1731 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1732 				slot_id, ep_index);
1733 		break;
1734 	case USB_ENDPOINT_XFER_ISOC:
1735 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1736 				slot_id, ep_index);
1737 	}
1738 
1739 	if (ret) {
1740 free_priv:
1741 		xhci_urb_free_priv(urb_priv);
1742 		urb->hcpriv = NULL;
1743 	}
1744 	spin_unlock_irqrestore(&xhci->lock, flags);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1750  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1751  * should pick up where it left off in the TD, unless a Set Transfer Ring
1752  * Dequeue Pointer is issued.
1753  *
1754  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1755  * the ring.  Since the ring is a contiguous structure, they can't be physically
1756  * removed.  Instead, there are two options:
1757  *
1758  *  1) If the HC is in the middle of processing the URB to be canceled, we
1759  *     simply move the ring's dequeue pointer past those TRBs using the Set
1760  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1761  *     when drivers timeout on the last submitted URB and attempt to cancel.
1762  *
1763  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1764  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1765  *     HC will need to invalidate the any TRBs it has cached after the stop
1766  *     endpoint command, as noted in the xHCI 0.95 errata.
1767  *
1768  *  3) The TD may have completed by the time the Stop Endpoint Command
1769  *     completes, so software needs to handle that case too.
1770  *
1771  * This function should protect against the TD enqueueing code ringing the
1772  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1773  * It also needs to account for multiple cancellations on happening at the same
1774  * time for the same endpoint.
1775  *
1776  * Note that this function can be called in any context, or so says
1777  * usb_hcd_unlink_urb()
1778  */
1779 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1780 {
1781 	unsigned long flags;
1782 	int ret, i;
1783 	u32 temp;
1784 	struct xhci_hcd *xhci;
1785 	struct urb_priv	*urb_priv;
1786 	struct xhci_td *td;
1787 	unsigned int ep_index;
1788 	struct xhci_ring *ep_ring;
1789 	struct xhci_virt_ep *ep;
1790 	struct xhci_command *command;
1791 	struct xhci_virt_device *vdev;
1792 
1793 	xhci = hcd_to_xhci(hcd);
1794 	spin_lock_irqsave(&xhci->lock, flags);
1795 
1796 	trace_xhci_urb_dequeue(urb);
1797 
1798 	/* Make sure the URB hasn't completed or been unlinked already */
1799 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1800 	if (ret)
1801 		goto done;
1802 
1803 	/* give back URB now if we can't queue it for cancel */
1804 	vdev = xhci->devs[urb->dev->slot_id];
1805 	urb_priv = urb->hcpriv;
1806 	if (!vdev || !urb_priv)
1807 		goto err_giveback;
1808 
1809 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1810 	ep = &vdev->eps[ep_index];
1811 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1812 	if (!ep || !ep_ring)
1813 		goto err_giveback;
1814 
1815 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1816 	temp = readl(&xhci->op_regs->status);
1817 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1818 		xhci_hc_died(xhci);
1819 		goto done;
1820 	}
1821 
1822 	/*
1823 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1824 	 * make sure none of the ring related pointers in this URB private data
1825 	 * are touched, such as td_list, otherwise we overwrite freed data
1826 	 */
1827 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1828 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1829 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1830 			td = &urb_priv->td[i];
1831 			if (!list_empty(&td->cancelled_td_list))
1832 				list_del_init(&td->cancelled_td_list);
1833 		}
1834 		goto err_giveback;
1835 	}
1836 
1837 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1838 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1839 				"HC halted, freeing TD manually.");
1840 		for (i = urb_priv->num_tds_done;
1841 		     i < urb_priv->num_tds;
1842 		     i++) {
1843 			td = &urb_priv->td[i];
1844 			if (!list_empty(&td->td_list))
1845 				list_del_init(&td->td_list);
1846 			if (!list_empty(&td->cancelled_td_list))
1847 				list_del_init(&td->cancelled_td_list);
1848 		}
1849 		goto err_giveback;
1850 	}
1851 
1852 	i = urb_priv->num_tds_done;
1853 	if (i < urb_priv->num_tds)
1854 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1855 				"Cancel URB %p, dev %s, ep 0x%x, "
1856 				"starting at offset 0x%llx",
1857 				urb, urb->dev->devpath,
1858 				urb->ep->desc.bEndpointAddress,
1859 				(unsigned long long) xhci_trb_virt_to_dma(
1860 					urb_priv->td[i].start_seg,
1861 					urb_priv->td[i].first_trb));
1862 
1863 	for (; i < urb_priv->num_tds; i++) {
1864 		td = &urb_priv->td[i];
1865 		/* TD can already be on cancelled list if ep halted on it */
1866 		if (list_empty(&td->cancelled_td_list)) {
1867 			td->cancel_status = TD_DIRTY;
1868 			list_add_tail(&td->cancelled_td_list,
1869 				      &ep->cancelled_td_list);
1870 		}
1871 	}
1872 
1873 	/* Queue a stop endpoint command, but only if this is
1874 	 * the first cancellation to be handled.
1875 	 */
1876 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1877 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1878 		if (!command) {
1879 			ret = -ENOMEM;
1880 			goto done;
1881 		}
1882 		ep->ep_state |= EP_STOP_CMD_PENDING;
1883 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1884 					 ep_index, 0);
1885 		xhci_ring_cmd_db(xhci);
1886 	}
1887 done:
1888 	spin_unlock_irqrestore(&xhci->lock, flags);
1889 	return ret;
1890 
1891 err_giveback:
1892 	if (urb_priv)
1893 		xhci_urb_free_priv(urb_priv);
1894 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1895 	spin_unlock_irqrestore(&xhci->lock, flags);
1896 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1897 	return ret;
1898 }
1899 
1900 /* Drop an endpoint from a new bandwidth configuration for this device.
1901  * Only one call to this function is allowed per endpoint before
1902  * check_bandwidth() or reset_bandwidth() must be called.
1903  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1904  * add the endpoint to the schedule with possibly new parameters denoted by a
1905  * different endpoint descriptor in usb_host_endpoint.
1906  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1907  * not allowed.
1908  *
1909  * The USB core will not allow URBs to be queued to an endpoint that is being
1910  * disabled, so there's no need for mutual exclusion to protect
1911  * the xhci->devs[slot_id] structure.
1912  */
1913 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1914 		       struct usb_host_endpoint *ep)
1915 {
1916 	struct xhci_hcd *xhci;
1917 	struct xhci_container_ctx *in_ctx, *out_ctx;
1918 	struct xhci_input_control_ctx *ctrl_ctx;
1919 	unsigned int ep_index;
1920 	struct xhci_ep_ctx *ep_ctx;
1921 	u32 drop_flag;
1922 	u32 new_add_flags, new_drop_flags;
1923 	int ret;
1924 
1925 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1926 	if (ret <= 0)
1927 		return ret;
1928 	xhci = hcd_to_xhci(hcd);
1929 	if (xhci->xhc_state & XHCI_STATE_DYING)
1930 		return -ENODEV;
1931 
1932 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1933 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1934 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1935 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1936 				__func__, drop_flag);
1937 		return 0;
1938 	}
1939 
1940 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1941 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1942 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1943 	if (!ctrl_ctx) {
1944 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1945 				__func__);
1946 		return 0;
1947 	}
1948 
1949 	ep_index = xhci_get_endpoint_index(&ep->desc);
1950 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1951 	/* If the HC already knows the endpoint is disabled,
1952 	 * or the HCD has noted it is disabled, ignore this request
1953 	 */
1954 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1955 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1956 	    xhci_get_endpoint_flag(&ep->desc)) {
1957 		/* Do not warn when called after a usb_device_reset */
1958 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1959 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1960 				  __func__, ep);
1961 		return 0;
1962 	}
1963 
1964 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1965 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1966 
1967 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1968 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1969 
1970 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1971 
1972 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1973 
1974 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1975 			(unsigned int) ep->desc.bEndpointAddress,
1976 			udev->slot_id,
1977 			(unsigned int) new_drop_flags,
1978 			(unsigned int) new_add_flags);
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1982 
1983 /* Add an endpoint to a new possible bandwidth configuration for this device.
1984  * Only one call to this function is allowed per endpoint before
1985  * check_bandwidth() or reset_bandwidth() must be called.
1986  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1987  * add the endpoint to the schedule with possibly new parameters denoted by a
1988  * different endpoint descriptor in usb_host_endpoint.
1989  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1990  * not allowed.
1991  *
1992  * The USB core will not allow URBs to be queued to an endpoint until the
1993  * configuration or alt setting is installed in the device, so there's no need
1994  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1995  */
1996 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1997 		      struct usb_host_endpoint *ep)
1998 {
1999 	struct xhci_hcd *xhci;
2000 	struct xhci_container_ctx *in_ctx;
2001 	unsigned int ep_index;
2002 	struct xhci_input_control_ctx *ctrl_ctx;
2003 	struct xhci_ep_ctx *ep_ctx;
2004 	u32 added_ctxs;
2005 	u32 new_add_flags, new_drop_flags;
2006 	struct xhci_virt_device *virt_dev;
2007 	int ret = 0;
2008 
2009 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2010 	if (ret <= 0) {
2011 		/* So we won't queue a reset ep command for a root hub */
2012 		ep->hcpriv = NULL;
2013 		return ret;
2014 	}
2015 	xhci = hcd_to_xhci(hcd);
2016 	if (xhci->xhc_state & XHCI_STATE_DYING)
2017 		return -ENODEV;
2018 
2019 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2020 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2021 		/* FIXME when we have to issue an evaluate endpoint command to
2022 		 * deal with ep0 max packet size changing once we get the
2023 		 * descriptors
2024 		 */
2025 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2026 				__func__, added_ctxs);
2027 		return 0;
2028 	}
2029 
2030 	virt_dev = xhci->devs[udev->slot_id];
2031 	in_ctx = virt_dev->in_ctx;
2032 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2033 	if (!ctrl_ctx) {
2034 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2035 				__func__);
2036 		return 0;
2037 	}
2038 
2039 	ep_index = xhci_get_endpoint_index(&ep->desc);
2040 	/* If this endpoint is already in use, and the upper layers are trying
2041 	 * to add it again without dropping it, reject the addition.
2042 	 */
2043 	if (virt_dev->eps[ep_index].ring &&
2044 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2045 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2046 				"without dropping it.\n",
2047 				(unsigned int) ep->desc.bEndpointAddress);
2048 		return -EINVAL;
2049 	}
2050 
2051 	/* If the HCD has already noted the endpoint is enabled,
2052 	 * ignore this request.
2053 	 */
2054 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2055 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2056 				__func__, ep);
2057 		return 0;
2058 	}
2059 
2060 	/*
2061 	 * Configuration and alternate setting changes must be done in
2062 	 * process context, not interrupt context (or so documenation
2063 	 * for usb_set_interface() and usb_set_configuration() claim).
2064 	 */
2065 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2066 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2067 				__func__, ep->desc.bEndpointAddress);
2068 		return -ENOMEM;
2069 	}
2070 
2071 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2072 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2073 
2074 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2075 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2076 	 * this re-adds a new state for the endpoint from the new endpoint
2077 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2078 	 * drop flags alone.
2079 	 */
2080 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2081 
2082 	/* Store the usb_device pointer for later use */
2083 	ep->hcpriv = udev;
2084 
2085 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2086 	trace_xhci_add_endpoint(ep_ctx);
2087 
2088 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2089 			(unsigned int) ep->desc.bEndpointAddress,
2090 			udev->slot_id,
2091 			(unsigned int) new_drop_flags,
2092 			(unsigned int) new_add_flags);
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2096 
2097 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2098 {
2099 	struct xhci_input_control_ctx *ctrl_ctx;
2100 	struct xhci_ep_ctx *ep_ctx;
2101 	struct xhci_slot_ctx *slot_ctx;
2102 	int i;
2103 
2104 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2105 	if (!ctrl_ctx) {
2106 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2107 				__func__);
2108 		return;
2109 	}
2110 
2111 	/* When a device's add flag and drop flag are zero, any subsequent
2112 	 * configure endpoint command will leave that endpoint's state
2113 	 * untouched.  Make sure we don't leave any old state in the input
2114 	 * endpoint contexts.
2115 	 */
2116 	ctrl_ctx->drop_flags = 0;
2117 	ctrl_ctx->add_flags = 0;
2118 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2119 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2120 	/* Endpoint 0 is always valid */
2121 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2122 	for (i = 1; i < 31; i++) {
2123 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2124 		ep_ctx->ep_info = 0;
2125 		ep_ctx->ep_info2 = 0;
2126 		ep_ctx->deq = 0;
2127 		ep_ctx->tx_info = 0;
2128 	}
2129 }
2130 
2131 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2132 		struct usb_device *udev, u32 *cmd_status)
2133 {
2134 	int ret;
2135 
2136 	switch (*cmd_status) {
2137 	case COMP_COMMAND_ABORTED:
2138 	case COMP_COMMAND_RING_STOPPED:
2139 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2140 		ret = -ETIME;
2141 		break;
2142 	case COMP_RESOURCE_ERROR:
2143 		dev_warn(&udev->dev,
2144 			 "Not enough host controller resources for new device state.\n");
2145 		ret = -ENOMEM;
2146 		/* FIXME: can we allocate more resources for the HC? */
2147 		break;
2148 	case COMP_BANDWIDTH_ERROR:
2149 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2150 		dev_warn(&udev->dev,
2151 			 "Not enough bandwidth for new device state.\n");
2152 		ret = -ENOSPC;
2153 		/* FIXME: can we go back to the old state? */
2154 		break;
2155 	case COMP_TRB_ERROR:
2156 		/* the HCD set up something wrong */
2157 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2158 				"add flag = 1, "
2159 				"and endpoint is not disabled.\n");
2160 		ret = -EINVAL;
2161 		break;
2162 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2163 		dev_warn(&udev->dev,
2164 			 "ERROR: Incompatible device for endpoint configure command.\n");
2165 		ret = -ENODEV;
2166 		break;
2167 	case COMP_SUCCESS:
2168 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2169 				"Successful Endpoint Configure command");
2170 		ret = 0;
2171 		break;
2172 	default:
2173 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2174 				*cmd_status);
2175 		ret = -EINVAL;
2176 		break;
2177 	}
2178 	return ret;
2179 }
2180 
2181 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2182 		struct usb_device *udev, u32 *cmd_status)
2183 {
2184 	int ret;
2185 
2186 	switch (*cmd_status) {
2187 	case COMP_COMMAND_ABORTED:
2188 	case COMP_COMMAND_RING_STOPPED:
2189 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2190 		ret = -ETIME;
2191 		break;
2192 	case COMP_PARAMETER_ERROR:
2193 		dev_warn(&udev->dev,
2194 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2195 		ret = -EINVAL;
2196 		break;
2197 	case COMP_SLOT_NOT_ENABLED_ERROR:
2198 		dev_warn(&udev->dev,
2199 			"WARN: slot not enabled for evaluate context command.\n");
2200 		ret = -EINVAL;
2201 		break;
2202 	case COMP_CONTEXT_STATE_ERROR:
2203 		dev_warn(&udev->dev,
2204 			"WARN: invalid context state for evaluate context command.\n");
2205 		ret = -EINVAL;
2206 		break;
2207 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2208 		dev_warn(&udev->dev,
2209 			"ERROR: Incompatible device for evaluate context command.\n");
2210 		ret = -ENODEV;
2211 		break;
2212 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2213 		/* Max Exit Latency too large error */
2214 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2215 		ret = -EINVAL;
2216 		break;
2217 	case COMP_SUCCESS:
2218 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2219 				"Successful evaluate context command");
2220 		ret = 0;
2221 		break;
2222 	default:
2223 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2224 			*cmd_status);
2225 		ret = -EINVAL;
2226 		break;
2227 	}
2228 	return ret;
2229 }
2230 
2231 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2232 		struct xhci_input_control_ctx *ctrl_ctx)
2233 {
2234 	u32 valid_add_flags;
2235 	u32 valid_drop_flags;
2236 
2237 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2238 	 * (bit 1).  The default control endpoint is added during the Address
2239 	 * Device command and is never removed until the slot is disabled.
2240 	 */
2241 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2242 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2243 
2244 	/* Use hweight32 to count the number of ones in the add flags, or
2245 	 * number of endpoints added.  Don't count endpoints that are changed
2246 	 * (both added and dropped).
2247 	 */
2248 	return hweight32(valid_add_flags) -
2249 		hweight32(valid_add_flags & valid_drop_flags);
2250 }
2251 
2252 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2253 		struct xhci_input_control_ctx *ctrl_ctx)
2254 {
2255 	u32 valid_add_flags;
2256 	u32 valid_drop_flags;
2257 
2258 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2259 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2260 
2261 	return hweight32(valid_drop_flags) -
2262 		hweight32(valid_add_flags & valid_drop_flags);
2263 }
2264 
2265 /*
2266  * We need to reserve the new number of endpoints before the configure endpoint
2267  * command completes.  We can't subtract the dropped endpoints from the number
2268  * of active endpoints until the command completes because we can oversubscribe
2269  * the host in this case:
2270  *
2271  *  - the first configure endpoint command drops more endpoints than it adds
2272  *  - a second configure endpoint command that adds more endpoints is queued
2273  *  - the first configure endpoint command fails, so the config is unchanged
2274  *  - the second command may succeed, even though there isn't enough resources
2275  *
2276  * Must be called with xhci->lock held.
2277  */
2278 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2279 		struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281 	u32 added_eps;
2282 
2283 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2284 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2285 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286 				"Not enough ep ctxs: "
2287 				"%u active, need to add %u, limit is %u.",
2288 				xhci->num_active_eps, added_eps,
2289 				xhci->limit_active_eps);
2290 		return -ENOMEM;
2291 	}
2292 	xhci->num_active_eps += added_eps;
2293 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 			"Adding %u ep ctxs, %u now active.", added_eps,
2295 			xhci->num_active_eps);
2296 	return 0;
2297 }
2298 
2299 /*
2300  * The configure endpoint was failed by the xHC for some other reason, so we
2301  * need to revert the resources that failed configuration would have used.
2302  *
2303  * Must be called with xhci->lock held.
2304  */
2305 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2306 		struct xhci_input_control_ctx *ctrl_ctx)
2307 {
2308 	u32 num_failed_eps;
2309 
2310 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2311 	xhci->num_active_eps -= num_failed_eps;
2312 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313 			"Removing %u failed ep ctxs, %u now active.",
2314 			num_failed_eps,
2315 			xhci->num_active_eps);
2316 }
2317 
2318 /*
2319  * Now that the command has completed, clean up the active endpoint count by
2320  * subtracting out the endpoints that were dropped (but not changed).
2321  *
2322  * Must be called with xhci->lock held.
2323  */
2324 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2325 		struct xhci_input_control_ctx *ctrl_ctx)
2326 {
2327 	u32 num_dropped_eps;
2328 
2329 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2330 	xhci->num_active_eps -= num_dropped_eps;
2331 	if (num_dropped_eps)
2332 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2333 				"Removing %u dropped ep ctxs, %u now active.",
2334 				num_dropped_eps,
2335 				xhci->num_active_eps);
2336 }
2337 
2338 static unsigned int xhci_get_block_size(struct usb_device *udev)
2339 {
2340 	switch (udev->speed) {
2341 	case USB_SPEED_LOW:
2342 	case USB_SPEED_FULL:
2343 		return FS_BLOCK;
2344 	case USB_SPEED_HIGH:
2345 		return HS_BLOCK;
2346 	case USB_SPEED_SUPER:
2347 	case USB_SPEED_SUPER_PLUS:
2348 		return SS_BLOCK;
2349 	case USB_SPEED_UNKNOWN:
2350 	case USB_SPEED_WIRELESS:
2351 	default:
2352 		/* Should never happen */
2353 		return 1;
2354 	}
2355 }
2356 
2357 static unsigned int
2358 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2359 {
2360 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2361 		return LS_OVERHEAD;
2362 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2363 		return FS_OVERHEAD;
2364 	return HS_OVERHEAD;
2365 }
2366 
2367 /* If we are changing a LS/FS device under a HS hub,
2368  * make sure (if we are activating a new TT) that the HS bus has enough
2369  * bandwidth for this new TT.
2370  */
2371 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2372 		struct xhci_virt_device *virt_dev,
2373 		int old_active_eps)
2374 {
2375 	struct xhci_interval_bw_table *bw_table;
2376 	struct xhci_tt_bw_info *tt_info;
2377 
2378 	/* Find the bandwidth table for the root port this TT is attached to. */
2379 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2380 	tt_info = virt_dev->tt_info;
2381 	/* If this TT already had active endpoints, the bandwidth for this TT
2382 	 * has already been added.  Removing all periodic endpoints (and thus
2383 	 * making the TT enactive) will only decrease the bandwidth used.
2384 	 */
2385 	if (old_active_eps)
2386 		return 0;
2387 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2388 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2389 			return -ENOMEM;
2390 		return 0;
2391 	}
2392 	/* Not sure why we would have no new active endpoints...
2393 	 *
2394 	 * Maybe because of an Evaluate Context change for a hub update or a
2395 	 * control endpoint 0 max packet size change?
2396 	 * FIXME: skip the bandwidth calculation in that case.
2397 	 */
2398 	return 0;
2399 }
2400 
2401 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2402 		struct xhci_virt_device *virt_dev)
2403 {
2404 	unsigned int bw_reserved;
2405 
2406 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2407 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2408 		return -ENOMEM;
2409 
2410 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2411 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2412 		return -ENOMEM;
2413 
2414 	return 0;
2415 }
2416 
2417 /*
2418  * This algorithm is a very conservative estimate of the worst-case scheduling
2419  * scenario for any one interval.  The hardware dynamically schedules the
2420  * packets, so we can't tell which microframe could be the limiting factor in
2421  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2422  *
2423  * Obviously, we can't solve an NP complete problem to find the minimum worst
2424  * case scenario.  Instead, we come up with an estimate that is no less than
2425  * the worst case bandwidth used for any one microframe, but may be an
2426  * over-estimate.
2427  *
2428  * We walk the requirements for each endpoint by interval, starting with the
2429  * smallest interval, and place packets in the schedule where there is only one
2430  * possible way to schedule packets for that interval.  In order to simplify
2431  * this algorithm, we record the largest max packet size for each interval, and
2432  * assume all packets will be that size.
2433  *
2434  * For interval 0, we obviously must schedule all packets for each interval.
2435  * The bandwidth for interval 0 is just the amount of data to be transmitted
2436  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2437  * the number of packets).
2438  *
2439  * For interval 1, we have two possible microframes to schedule those packets
2440  * in.  For this algorithm, if we can schedule the same number of packets for
2441  * each possible scheduling opportunity (each microframe), we will do so.  The
2442  * remaining number of packets will be saved to be transmitted in the gaps in
2443  * the next interval's scheduling sequence.
2444  *
2445  * As we move those remaining packets to be scheduled with interval 2 packets,
2446  * we have to double the number of remaining packets to transmit.  This is
2447  * because the intervals are actually powers of 2, and we would be transmitting
2448  * the previous interval's packets twice in this interval.  We also have to be
2449  * sure that when we look at the largest max packet size for this interval, we
2450  * also look at the largest max packet size for the remaining packets and take
2451  * the greater of the two.
2452  *
2453  * The algorithm continues to evenly distribute packets in each scheduling
2454  * opportunity, and push the remaining packets out, until we get to the last
2455  * interval.  Then those packets and their associated overhead are just added
2456  * to the bandwidth used.
2457  */
2458 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2459 		struct xhci_virt_device *virt_dev,
2460 		int old_active_eps)
2461 {
2462 	unsigned int bw_reserved;
2463 	unsigned int max_bandwidth;
2464 	unsigned int bw_used;
2465 	unsigned int block_size;
2466 	struct xhci_interval_bw_table *bw_table;
2467 	unsigned int packet_size = 0;
2468 	unsigned int overhead = 0;
2469 	unsigned int packets_transmitted = 0;
2470 	unsigned int packets_remaining = 0;
2471 	unsigned int i;
2472 
2473 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2474 		return xhci_check_ss_bw(xhci, virt_dev);
2475 
2476 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2477 		max_bandwidth = HS_BW_LIMIT;
2478 		/* Convert percent of bus BW reserved to blocks reserved */
2479 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2480 	} else {
2481 		max_bandwidth = FS_BW_LIMIT;
2482 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2483 	}
2484 
2485 	bw_table = virt_dev->bw_table;
2486 	/* We need to translate the max packet size and max ESIT payloads into
2487 	 * the units the hardware uses.
2488 	 */
2489 	block_size = xhci_get_block_size(virt_dev->udev);
2490 
2491 	/* If we are manipulating a LS/FS device under a HS hub, double check
2492 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2493 	 */
2494 	if (virt_dev->tt_info) {
2495 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496 				"Recalculating BW for rootport %u",
2497 				virt_dev->real_port);
2498 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2499 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2500 					"newly activated TT.\n");
2501 			return -ENOMEM;
2502 		}
2503 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2504 				"Recalculating BW for TT slot %u port %u",
2505 				virt_dev->tt_info->slot_id,
2506 				virt_dev->tt_info->ttport);
2507 	} else {
2508 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2509 				"Recalculating BW for rootport %u",
2510 				virt_dev->real_port);
2511 	}
2512 
2513 	/* Add in how much bandwidth will be used for interval zero, or the
2514 	 * rounded max ESIT payload + number of packets * largest overhead.
2515 	 */
2516 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2517 		bw_table->interval_bw[0].num_packets *
2518 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2519 
2520 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2521 		unsigned int bw_added;
2522 		unsigned int largest_mps;
2523 		unsigned int interval_overhead;
2524 
2525 		/*
2526 		 * How many packets could we transmit in this interval?
2527 		 * If packets didn't fit in the previous interval, we will need
2528 		 * to transmit that many packets twice within this interval.
2529 		 */
2530 		packets_remaining = 2 * packets_remaining +
2531 			bw_table->interval_bw[i].num_packets;
2532 
2533 		/* Find the largest max packet size of this or the previous
2534 		 * interval.
2535 		 */
2536 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2537 			largest_mps = 0;
2538 		else {
2539 			struct xhci_virt_ep *virt_ep;
2540 			struct list_head *ep_entry;
2541 
2542 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2543 			virt_ep = list_entry(ep_entry,
2544 					struct xhci_virt_ep, bw_endpoint_list);
2545 			/* Convert to blocks, rounding up */
2546 			largest_mps = DIV_ROUND_UP(
2547 					virt_ep->bw_info.max_packet_size,
2548 					block_size);
2549 		}
2550 		if (largest_mps > packet_size)
2551 			packet_size = largest_mps;
2552 
2553 		/* Use the larger overhead of this or the previous interval. */
2554 		interval_overhead = xhci_get_largest_overhead(
2555 				&bw_table->interval_bw[i]);
2556 		if (interval_overhead > overhead)
2557 			overhead = interval_overhead;
2558 
2559 		/* How many packets can we evenly distribute across
2560 		 * (1 << (i + 1)) possible scheduling opportunities?
2561 		 */
2562 		packets_transmitted = packets_remaining >> (i + 1);
2563 
2564 		/* Add in the bandwidth used for those scheduled packets */
2565 		bw_added = packets_transmitted * (overhead + packet_size);
2566 
2567 		/* How many packets do we have remaining to transmit? */
2568 		packets_remaining = packets_remaining % (1 << (i + 1));
2569 
2570 		/* What largest max packet size should those packets have? */
2571 		/* If we've transmitted all packets, don't carry over the
2572 		 * largest packet size.
2573 		 */
2574 		if (packets_remaining == 0) {
2575 			packet_size = 0;
2576 			overhead = 0;
2577 		} else if (packets_transmitted > 0) {
2578 			/* Otherwise if we do have remaining packets, and we've
2579 			 * scheduled some packets in this interval, take the
2580 			 * largest max packet size from endpoints with this
2581 			 * interval.
2582 			 */
2583 			packet_size = largest_mps;
2584 			overhead = interval_overhead;
2585 		}
2586 		/* Otherwise carry over packet_size and overhead from the last
2587 		 * time we had a remainder.
2588 		 */
2589 		bw_used += bw_added;
2590 		if (bw_used > max_bandwidth) {
2591 			xhci_warn(xhci, "Not enough bandwidth. "
2592 					"Proposed: %u, Max: %u\n",
2593 				bw_used, max_bandwidth);
2594 			return -ENOMEM;
2595 		}
2596 	}
2597 	/*
2598 	 * Ok, we know we have some packets left over after even-handedly
2599 	 * scheduling interval 15.  We don't know which microframes they will
2600 	 * fit into, so we over-schedule and say they will be scheduled every
2601 	 * microframe.
2602 	 */
2603 	if (packets_remaining > 0)
2604 		bw_used += overhead + packet_size;
2605 
2606 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2607 		unsigned int port_index = virt_dev->real_port - 1;
2608 
2609 		/* OK, we're manipulating a HS device attached to a
2610 		 * root port bandwidth domain.  Include the number of active TTs
2611 		 * in the bandwidth used.
2612 		 */
2613 		bw_used += TT_HS_OVERHEAD *
2614 			xhci->rh_bw[port_index].num_active_tts;
2615 	}
2616 
2617 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2618 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2619 		"Available: %u " "percent",
2620 		bw_used, max_bandwidth, bw_reserved,
2621 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2622 		max_bandwidth);
2623 
2624 	bw_used += bw_reserved;
2625 	if (bw_used > max_bandwidth) {
2626 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2627 				bw_used, max_bandwidth);
2628 		return -ENOMEM;
2629 	}
2630 
2631 	bw_table->bw_used = bw_used;
2632 	return 0;
2633 }
2634 
2635 static bool xhci_is_async_ep(unsigned int ep_type)
2636 {
2637 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2638 					ep_type != ISOC_IN_EP &&
2639 					ep_type != INT_IN_EP);
2640 }
2641 
2642 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2643 {
2644 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2645 }
2646 
2647 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2648 {
2649 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2650 
2651 	if (ep_bw->ep_interval == 0)
2652 		return SS_OVERHEAD_BURST +
2653 			(ep_bw->mult * ep_bw->num_packets *
2654 					(SS_OVERHEAD + mps));
2655 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2656 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2657 				1 << ep_bw->ep_interval);
2658 
2659 }
2660 
2661 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2662 		struct xhci_bw_info *ep_bw,
2663 		struct xhci_interval_bw_table *bw_table,
2664 		struct usb_device *udev,
2665 		struct xhci_virt_ep *virt_ep,
2666 		struct xhci_tt_bw_info *tt_info)
2667 {
2668 	struct xhci_interval_bw	*interval_bw;
2669 	int normalized_interval;
2670 
2671 	if (xhci_is_async_ep(ep_bw->type))
2672 		return;
2673 
2674 	if (udev->speed >= USB_SPEED_SUPER) {
2675 		if (xhci_is_sync_in_ep(ep_bw->type))
2676 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2677 				xhci_get_ss_bw_consumed(ep_bw);
2678 		else
2679 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2680 				xhci_get_ss_bw_consumed(ep_bw);
2681 		return;
2682 	}
2683 
2684 	/* SuperSpeed endpoints never get added to intervals in the table, so
2685 	 * this check is only valid for HS/FS/LS devices.
2686 	 */
2687 	if (list_empty(&virt_ep->bw_endpoint_list))
2688 		return;
2689 	/* For LS/FS devices, we need to translate the interval expressed in
2690 	 * microframes to frames.
2691 	 */
2692 	if (udev->speed == USB_SPEED_HIGH)
2693 		normalized_interval = ep_bw->ep_interval;
2694 	else
2695 		normalized_interval = ep_bw->ep_interval - 3;
2696 
2697 	if (normalized_interval == 0)
2698 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2699 	interval_bw = &bw_table->interval_bw[normalized_interval];
2700 	interval_bw->num_packets -= ep_bw->num_packets;
2701 	switch (udev->speed) {
2702 	case USB_SPEED_LOW:
2703 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2704 		break;
2705 	case USB_SPEED_FULL:
2706 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2707 		break;
2708 	case USB_SPEED_HIGH:
2709 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2710 		break;
2711 	case USB_SPEED_SUPER:
2712 	case USB_SPEED_SUPER_PLUS:
2713 	case USB_SPEED_UNKNOWN:
2714 	case USB_SPEED_WIRELESS:
2715 		/* Should never happen because only LS/FS/HS endpoints will get
2716 		 * added to the endpoint list.
2717 		 */
2718 		return;
2719 	}
2720 	if (tt_info)
2721 		tt_info->active_eps -= 1;
2722 	list_del_init(&virt_ep->bw_endpoint_list);
2723 }
2724 
2725 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2726 		struct xhci_bw_info *ep_bw,
2727 		struct xhci_interval_bw_table *bw_table,
2728 		struct usb_device *udev,
2729 		struct xhci_virt_ep *virt_ep,
2730 		struct xhci_tt_bw_info *tt_info)
2731 {
2732 	struct xhci_interval_bw	*interval_bw;
2733 	struct xhci_virt_ep *smaller_ep;
2734 	int normalized_interval;
2735 
2736 	if (xhci_is_async_ep(ep_bw->type))
2737 		return;
2738 
2739 	if (udev->speed == USB_SPEED_SUPER) {
2740 		if (xhci_is_sync_in_ep(ep_bw->type))
2741 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2742 				xhci_get_ss_bw_consumed(ep_bw);
2743 		else
2744 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2745 				xhci_get_ss_bw_consumed(ep_bw);
2746 		return;
2747 	}
2748 
2749 	/* For LS/FS devices, we need to translate the interval expressed in
2750 	 * microframes to frames.
2751 	 */
2752 	if (udev->speed == USB_SPEED_HIGH)
2753 		normalized_interval = ep_bw->ep_interval;
2754 	else
2755 		normalized_interval = ep_bw->ep_interval - 3;
2756 
2757 	if (normalized_interval == 0)
2758 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2759 	interval_bw = &bw_table->interval_bw[normalized_interval];
2760 	interval_bw->num_packets += ep_bw->num_packets;
2761 	switch (udev->speed) {
2762 	case USB_SPEED_LOW:
2763 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2764 		break;
2765 	case USB_SPEED_FULL:
2766 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2767 		break;
2768 	case USB_SPEED_HIGH:
2769 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2770 		break;
2771 	case USB_SPEED_SUPER:
2772 	case USB_SPEED_SUPER_PLUS:
2773 	case USB_SPEED_UNKNOWN:
2774 	case USB_SPEED_WIRELESS:
2775 		/* Should never happen because only LS/FS/HS endpoints will get
2776 		 * added to the endpoint list.
2777 		 */
2778 		return;
2779 	}
2780 
2781 	if (tt_info)
2782 		tt_info->active_eps += 1;
2783 	/* Insert the endpoint into the list, largest max packet size first. */
2784 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2785 			bw_endpoint_list) {
2786 		if (ep_bw->max_packet_size >=
2787 				smaller_ep->bw_info.max_packet_size) {
2788 			/* Add the new ep before the smaller endpoint */
2789 			list_add_tail(&virt_ep->bw_endpoint_list,
2790 					&smaller_ep->bw_endpoint_list);
2791 			return;
2792 		}
2793 	}
2794 	/* Add the new endpoint at the end of the list. */
2795 	list_add_tail(&virt_ep->bw_endpoint_list,
2796 			&interval_bw->endpoints);
2797 }
2798 
2799 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2800 		struct xhci_virt_device *virt_dev,
2801 		int old_active_eps)
2802 {
2803 	struct xhci_root_port_bw_info *rh_bw_info;
2804 	if (!virt_dev->tt_info)
2805 		return;
2806 
2807 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2808 	if (old_active_eps == 0 &&
2809 				virt_dev->tt_info->active_eps != 0) {
2810 		rh_bw_info->num_active_tts += 1;
2811 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2812 	} else if (old_active_eps != 0 &&
2813 				virt_dev->tt_info->active_eps == 0) {
2814 		rh_bw_info->num_active_tts -= 1;
2815 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2816 	}
2817 }
2818 
2819 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2820 		struct xhci_virt_device *virt_dev,
2821 		struct xhci_container_ctx *in_ctx)
2822 {
2823 	struct xhci_bw_info ep_bw_info[31];
2824 	int i;
2825 	struct xhci_input_control_ctx *ctrl_ctx;
2826 	int old_active_eps = 0;
2827 
2828 	if (virt_dev->tt_info)
2829 		old_active_eps = virt_dev->tt_info->active_eps;
2830 
2831 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2832 	if (!ctrl_ctx) {
2833 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834 				__func__);
2835 		return -ENOMEM;
2836 	}
2837 
2838 	for (i = 0; i < 31; i++) {
2839 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840 			continue;
2841 
2842 		/* Make a copy of the BW info in case we need to revert this */
2843 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2844 				sizeof(ep_bw_info[i]));
2845 		/* Drop the endpoint from the interval table if the endpoint is
2846 		 * being dropped or changed.
2847 		 */
2848 		if (EP_IS_DROPPED(ctrl_ctx, i))
2849 			xhci_drop_ep_from_interval_table(xhci,
2850 					&virt_dev->eps[i].bw_info,
2851 					virt_dev->bw_table,
2852 					virt_dev->udev,
2853 					&virt_dev->eps[i],
2854 					virt_dev->tt_info);
2855 	}
2856 	/* Overwrite the information stored in the endpoints' bw_info */
2857 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2858 	for (i = 0; i < 31; i++) {
2859 		/* Add any changed or added endpoints to the interval table */
2860 		if (EP_IS_ADDED(ctrl_ctx, i))
2861 			xhci_add_ep_to_interval_table(xhci,
2862 					&virt_dev->eps[i].bw_info,
2863 					virt_dev->bw_table,
2864 					virt_dev->udev,
2865 					&virt_dev->eps[i],
2866 					virt_dev->tt_info);
2867 	}
2868 
2869 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2870 		/* Ok, this fits in the bandwidth we have.
2871 		 * Update the number of active TTs.
2872 		 */
2873 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2874 		return 0;
2875 	}
2876 
2877 	/* We don't have enough bandwidth for this, revert the stored info. */
2878 	for (i = 0; i < 31; i++) {
2879 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2880 			continue;
2881 
2882 		/* Drop the new copies of any added or changed endpoints from
2883 		 * the interval table.
2884 		 */
2885 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2886 			xhci_drop_ep_from_interval_table(xhci,
2887 					&virt_dev->eps[i].bw_info,
2888 					virt_dev->bw_table,
2889 					virt_dev->udev,
2890 					&virt_dev->eps[i],
2891 					virt_dev->tt_info);
2892 		}
2893 		/* Revert the endpoint back to its old information */
2894 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2895 				sizeof(ep_bw_info[i]));
2896 		/* Add any changed or dropped endpoints back into the table */
2897 		if (EP_IS_DROPPED(ctrl_ctx, i))
2898 			xhci_add_ep_to_interval_table(xhci,
2899 					&virt_dev->eps[i].bw_info,
2900 					virt_dev->bw_table,
2901 					virt_dev->udev,
2902 					&virt_dev->eps[i],
2903 					virt_dev->tt_info);
2904 	}
2905 	return -ENOMEM;
2906 }
2907 
2908 
2909 /* Issue a configure endpoint command or evaluate context command
2910  * and wait for it to finish.
2911  */
2912 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2913 		struct usb_device *udev,
2914 		struct xhci_command *command,
2915 		bool ctx_change, bool must_succeed)
2916 {
2917 	int ret;
2918 	unsigned long flags;
2919 	struct xhci_input_control_ctx *ctrl_ctx;
2920 	struct xhci_virt_device *virt_dev;
2921 	struct xhci_slot_ctx *slot_ctx;
2922 
2923 	if (!command)
2924 		return -EINVAL;
2925 
2926 	spin_lock_irqsave(&xhci->lock, flags);
2927 
2928 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2929 		spin_unlock_irqrestore(&xhci->lock, flags);
2930 		return -ESHUTDOWN;
2931 	}
2932 
2933 	virt_dev = xhci->devs[udev->slot_id];
2934 
2935 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2936 	if (!ctrl_ctx) {
2937 		spin_unlock_irqrestore(&xhci->lock, flags);
2938 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2939 				__func__);
2940 		return -ENOMEM;
2941 	}
2942 
2943 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2944 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2945 		spin_unlock_irqrestore(&xhci->lock, flags);
2946 		xhci_warn(xhci, "Not enough host resources, "
2947 				"active endpoint contexts = %u\n",
2948 				xhci->num_active_eps);
2949 		return -ENOMEM;
2950 	}
2951 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2952 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2953 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2954 			xhci_free_host_resources(xhci, ctrl_ctx);
2955 		spin_unlock_irqrestore(&xhci->lock, flags);
2956 		xhci_warn(xhci, "Not enough bandwidth\n");
2957 		return -ENOMEM;
2958 	}
2959 
2960 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2961 
2962 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2963 	trace_xhci_configure_endpoint(slot_ctx);
2964 
2965 	if (!ctx_change)
2966 		ret = xhci_queue_configure_endpoint(xhci, command,
2967 				command->in_ctx->dma,
2968 				udev->slot_id, must_succeed);
2969 	else
2970 		ret = xhci_queue_evaluate_context(xhci, command,
2971 				command->in_ctx->dma,
2972 				udev->slot_id, must_succeed);
2973 	if (ret < 0) {
2974 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2975 			xhci_free_host_resources(xhci, ctrl_ctx);
2976 		spin_unlock_irqrestore(&xhci->lock, flags);
2977 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2978 				"FIXME allocate a new ring segment");
2979 		return -ENOMEM;
2980 	}
2981 	xhci_ring_cmd_db(xhci);
2982 	spin_unlock_irqrestore(&xhci->lock, flags);
2983 
2984 	/* Wait for the configure endpoint command to complete */
2985 	wait_for_completion(command->completion);
2986 
2987 	if (!ctx_change)
2988 		ret = xhci_configure_endpoint_result(xhci, udev,
2989 						     &command->status);
2990 	else
2991 		ret = xhci_evaluate_context_result(xhci, udev,
2992 						   &command->status);
2993 
2994 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2995 		spin_lock_irqsave(&xhci->lock, flags);
2996 		/* If the command failed, remove the reserved resources.
2997 		 * Otherwise, clean up the estimate to include dropped eps.
2998 		 */
2999 		if (ret)
3000 			xhci_free_host_resources(xhci, ctrl_ctx);
3001 		else
3002 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3003 		spin_unlock_irqrestore(&xhci->lock, flags);
3004 	}
3005 	return ret;
3006 }
3007 
3008 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3009 	struct xhci_virt_device *vdev, int i)
3010 {
3011 	struct xhci_virt_ep *ep = &vdev->eps[i];
3012 
3013 	if (ep->ep_state & EP_HAS_STREAMS) {
3014 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3015 				xhci_get_endpoint_address(i));
3016 		xhci_free_stream_info(xhci, ep->stream_info);
3017 		ep->stream_info = NULL;
3018 		ep->ep_state &= ~EP_HAS_STREAMS;
3019 	}
3020 }
3021 
3022 /* Called after one or more calls to xhci_add_endpoint() or
3023  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3024  * to call xhci_reset_bandwidth().
3025  *
3026  * Since we are in the middle of changing either configuration or
3027  * installing a new alt setting, the USB core won't allow URBs to be
3028  * enqueued for any endpoint on the old config or interface.  Nothing
3029  * else should be touching the xhci->devs[slot_id] structure, so we
3030  * don't need to take the xhci->lock for manipulating that.
3031  */
3032 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3033 {
3034 	int i;
3035 	int ret = 0;
3036 	struct xhci_hcd *xhci;
3037 	struct xhci_virt_device	*virt_dev;
3038 	struct xhci_input_control_ctx *ctrl_ctx;
3039 	struct xhci_slot_ctx *slot_ctx;
3040 	struct xhci_command *command;
3041 
3042 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3043 	if (ret <= 0)
3044 		return ret;
3045 	xhci = hcd_to_xhci(hcd);
3046 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3047 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3048 		return -ENODEV;
3049 
3050 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3051 	virt_dev = xhci->devs[udev->slot_id];
3052 
3053 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3054 	if (!command)
3055 		return -ENOMEM;
3056 
3057 	command->in_ctx = virt_dev->in_ctx;
3058 
3059 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3060 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3061 	if (!ctrl_ctx) {
3062 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3063 				__func__);
3064 		ret = -ENOMEM;
3065 		goto command_cleanup;
3066 	}
3067 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3068 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3069 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3070 
3071 	/* Don't issue the command if there's no endpoints to update. */
3072 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3073 	    ctrl_ctx->drop_flags == 0) {
3074 		ret = 0;
3075 		goto command_cleanup;
3076 	}
3077 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3078 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3079 	for (i = 31; i >= 1; i--) {
3080 		__le32 le32 = cpu_to_le32(BIT(i));
3081 
3082 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3083 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3084 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3085 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3086 			break;
3087 		}
3088 	}
3089 
3090 	ret = xhci_configure_endpoint(xhci, udev, command,
3091 			false, false);
3092 	if (ret)
3093 		/* Callee should call reset_bandwidth() */
3094 		goto command_cleanup;
3095 
3096 	/* Free any rings that were dropped, but not changed. */
3097 	for (i = 1; i < 31; i++) {
3098 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3099 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3100 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3101 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3102 		}
3103 	}
3104 	xhci_zero_in_ctx(xhci, virt_dev);
3105 	/*
3106 	 * Install any rings for completely new endpoints or changed endpoints,
3107 	 * and free any old rings from changed endpoints.
3108 	 */
3109 	for (i = 1; i < 31; i++) {
3110 		if (!virt_dev->eps[i].new_ring)
3111 			continue;
3112 		/* Only free the old ring if it exists.
3113 		 * It may not if this is the first add of an endpoint.
3114 		 */
3115 		if (virt_dev->eps[i].ring) {
3116 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3117 		}
3118 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3119 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3120 		virt_dev->eps[i].new_ring = NULL;
3121 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3122 	}
3123 command_cleanup:
3124 	kfree(command->completion);
3125 	kfree(command);
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3130 
3131 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3132 {
3133 	struct xhci_hcd *xhci;
3134 	struct xhci_virt_device	*virt_dev;
3135 	int i, ret;
3136 
3137 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3138 	if (ret <= 0)
3139 		return;
3140 	xhci = hcd_to_xhci(hcd);
3141 
3142 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3143 	virt_dev = xhci->devs[udev->slot_id];
3144 	/* Free any rings allocated for added endpoints */
3145 	for (i = 0; i < 31; i++) {
3146 		if (virt_dev->eps[i].new_ring) {
3147 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3148 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3149 			virt_dev->eps[i].new_ring = NULL;
3150 		}
3151 	}
3152 	xhci_zero_in_ctx(xhci, virt_dev);
3153 }
3154 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3155 
3156 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3157 		struct xhci_container_ctx *in_ctx,
3158 		struct xhci_container_ctx *out_ctx,
3159 		struct xhci_input_control_ctx *ctrl_ctx,
3160 		u32 add_flags, u32 drop_flags)
3161 {
3162 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3163 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3164 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3165 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3166 }
3167 
3168 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3169 				  struct usb_host_endpoint *host_ep)
3170 {
3171 	struct xhci_hcd		*xhci;
3172 	struct xhci_virt_device	*vdev;
3173 	struct xhci_virt_ep	*ep;
3174 	struct usb_device	*udev;
3175 	unsigned long		flags;
3176 	unsigned int		ep_index;
3177 
3178 	xhci = hcd_to_xhci(hcd);
3179 rescan:
3180 	spin_lock_irqsave(&xhci->lock, flags);
3181 
3182 	udev = (struct usb_device *)host_ep->hcpriv;
3183 	if (!udev || !udev->slot_id)
3184 		goto done;
3185 
3186 	vdev = xhci->devs[udev->slot_id];
3187 	if (!vdev)
3188 		goto done;
3189 
3190 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3191 	ep = &vdev->eps[ep_index];
3192 
3193 	/* wait for hub_tt_work to finish clearing hub TT */
3194 	if (ep->ep_state & EP_CLEARING_TT) {
3195 		spin_unlock_irqrestore(&xhci->lock, flags);
3196 		schedule_timeout_uninterruptible(1);
3197 		goto rescan;
3198 	}
3199 
3200 	if (ep->ep_state)
3201 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3202 			 ep->ep_state);
3203 done:
3204 	host_ep->hcpriv = NULL;
3205 	spin_unlock_irqrestore(&xhci->lock, flags);
3206 }
3207 
3208 /*
3209  * Called after usb core issues a clear halt control message.
3210  * The host side of the halt should already be cleared by a reset endpoint
3211  * command issued when the STALL event was received.
3212  *
3213  * The reset endpoint command may only be issued to endpoints in the halted
3214  * state. For software that wishes to reset the data toggle or sequence number
3215  * of an endpoint that isn't in the halted state this function will issue a
3216  * configure endpoint command with the Drop and Add bits set for the target
3217  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3218  */
3219 
3220 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3221 		struct usb_host_endpoint *host_ep)
3222 {
3223 	struct xhci_hcd *xhci;
3224 	struct usb_device *udev;
3225 	struct xhci_virt_device *vdev;
3226 	struct xhci_virt_ep *ep;
3227 	struct xhci_input_control_ctx *ctrl_ctx;
3228 	struct xhci_command *stop_cmd, *cfg_cmd;
3229 	unsigned int ep_index;
3230 	unsigned long flags;
3231 	u32 ep_flag;
3232 	int err;
3233 
3234 	xhci = hcd_to_xhci(hcd);
3235 	if (!host_ep->hcpriv)
3236 		return;
3237 	udev = (struct usb_device *) host_ep->hcpriv;
3238 	vdev = xhci->devs[udev->slot_id];
3239 
3240 	/*
3241 	 * vdev may be lost due to xHC restore error and re-initialization
3242 	 * during S3/S4 resume. A new vdev will be allocated later by
3243 	 * xhci_discover_or_reset_device()
3244 	 */
3245 	if (!udev->slot_id || !vdev)
3246 		return;
3247 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3248 	ep = &vdev->eps[ep_index];
3249 
3250 	/* Bail out if toggle is already being cleared by a endpoint reset */
3251 	spin_lock_irqsave(&xhci->lock, flags);
3252 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3253 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		return;
3256 	}
3257 	spin_unlock_irqrestore(&xhci->lock, flags);
3258 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3259 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3260 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3261 		return;
3262 
3263 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3264 
3265 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3266 		return;
3267 
3268 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3269 	if (!stop_cmd)
3270 		return;
3271 
3272 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3273 	if (!cfg_cmd)
3274 		goto cleanup;
3275 
3276 	spin_lock_irqsave(&xhci->lock, flags);
3277 
3278 	/* block queuing new trbs and ringing ep doorbell */
3279 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3280 
3281 	/*
3282 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3283 	 * Driver is required to synchronously cancel all transfer request.
3284 	 * Stop the endpoint to force xHC to update the output context
3285 	 */
3286 
3287 	if (!list_empty(&ep->ring->td_list)) {
3288 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3289 		spin_unlock_irqrestore(&xhci->lock, flags);
3290 		xhci_free_command(xhci, cfg_cmd);
3291 		goto cleanup;
3292 	}
3293 
3294 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3295 					ep_index, 0);
3296 	if (err < 0) {
3297 		spin_unlock_irqrestore(&xhci->lock, flags);
3298 		xhci_free_command(xhci, cfg_cmd);
3299 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3300 				__func__, err);
3301 		goto cleanup;
3302 	}
3303 
3304 	xhci_ring_cmd_db(xhci);
3305 	spin_unlock_irqrestore(&xhci->lock, flags);
3306 
3307 	wait_for_completion(stop_cmd->completion);
3308 
3309 	spin_lock_irqsave(&xhci->lock, flags);
3310 
3311 	/* config ep command clears toggle if add and drop ep flags are set */
3312 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3313 	if (!ctrl_ctx) {
3314 		spin_unlock_irqrestore(&xhci->lock, flags);
3315 		xhci_free_command(xhci, cfg_cmd);
3316 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317 				__func__);
3318 		goto cleanup;
3319 	}
3320 
3321 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3322 					   ctrl_ctx, ep_flag, ep_flag);
3323 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3324 
3325 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3326 				      udev->slot_id, false);
3327 	if (err < 0) {
3328 		spin_unlock_irqrestore(&xhci->lock, flags);
3329 		xhci_free_command(xhci, cfg_cmd);
3330 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3331 				__func__, err);
3332 		goto cleanup;
3333 	}
3334 
3335 	xhci_ring_cmd_db(xhci);
3336 	spin_unlock_irqrestore(&xhci->lock, flags);
3337 
3338 	wait_for_completion(cfg_cmd->completion);
3339 
3340 	xhci_free_command(xhci, cfg_cmd);
3341 cleanup:
3342 	xhci_free_command(xhci, stop_cmd);
3343 	spin_lock_irqsave(&xhci->lock, flags);
3344 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3345 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3346 	spin_unlock_irqrestore(&xhci->lock, flags);
3347 }
3348 
3349 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3350 		struct usb_device *udev, struct usb_host_endpoint *ep,
3351 		unsigned int slot_id)
3352 {
3353 	int ret;
3354 	unsigned int ep_index;
3355 	unsigned int ep_state;
3356 
3357 	if (!ep)
3358 		return -EINVAL;
3359 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3360 	if (ret <= 0)
3361 		return ret ? ret : -EINVAL;
3362 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3363 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3364 				" descriptor for ep 0x%x does not support streams\n",
3365 				ep->desc.bEndpointAddress);
3366 		return -EINVAL;
3367 	}
3368 
3369 	ep_index = xhci_get_endpoint_index(&ep->desc);
3370 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3371 	if (ep_state & EP_HAS_STREAMS ||
3372 			ep_state & EP_GETTING_STREAMS) {
3373 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3374 				"already has streams set up.\n",
3375 				ep->desc.bEndpointAddress);
3376 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3377 				"dynamic stream context array reallocation.\n");
3378 		return -EINVAL;
3379 	}
3380 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3381 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3382 				"endpoint 0x%x; URBs are pending.\n",
3383 				ep->desc.bEndpointAddress);
3384 		return -EINVAL;
3385 	}
3386 	return 0;
3387 }
3388 
3389 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3390 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3391 {
3392 	unsigned int max_streams;
3393 
3394 	/* The stream context array size must be a power of two */
3395 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3396 	/*
3397 	 * Find out how many primary stream array entries the host controller
3398 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3399 	 * level page entries), but that's an optional feature for xHCI host
3400 	 * controllers. xHCs must support at least 4 stream IDs.
3401 	 */
3402 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3403 	if (*num_stream_ctxs > max_streams) {
3404 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3405 				max_streams);
3406 		*num_stream_ctxs = max_streams;
3407 		*num_streams = max_streams;
3408 	}
3409 }
3410 
3411 /* Returns an error code if one of the endpoint already has streams.
3412  * This does not change any data structures, it only checks and gathers
3413  * information.
3414  */
3415 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3416 		struct usb_device *udev,
3417 		struct usb_host_endpoint **eps, unsigned int num_eps,
3418 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3419 {
3420 	unsigned int max_streams;
3421 	unsigned int endpoint_flag;
3422 	int i;
3423 	int ret;
3424 
3425 	for (i = 0; i < num_eps; i++) {
3426 		ret = xhci_check_streams_endpoint(xhci, udev,
3427 				eps[i], udev->slot_id);
3428 		if (ret < 0)
3429 			return ret;
3430 
3431 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3432 		if (max_streams < (*num_streams - 1)) {
3433 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3434 					eps[i]->desc.bEndpointAddress,
3435 					max_streams);
3436 			*num_streams = max_streams+1;
3437 		}
3438 
3439 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3440 		if (*changed_ep_bitmask & endpoint_flag)
3441 			return -EINVAL;
3442 		*changed_ep_bitmask |= endpoint_flag;
3443 	}
3444 	return 0;
3445 }
3446 
3447 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3448 		struct usb_device *udev,
3449 		struct usb_host_endpoint **eps, unsigned int num_eps)
3450 {
3451 	u32 changed_ep_bitmask = 0;
3452 	unsigned int slot_id;
3453 	unsigned int ep_index;
3454 	unsigned int ep_state;
3455 	int i;
3456 
3457 	slot_id = udev->slot_id;
3458 	if (!xhci->devs[slot_id])
3459 		return 0;
3460 
3461 	for (i = 0; i < num_eps; i++) {
3462 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3463 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3464 		/* Are streams already being freed for the endpoint? */
3465 		if (ep_state & EP_GETTING_NO_STREAMS) {
3466 			xhci_warn(xhci, "WARN Can't disable streams for "
3467 					"endpoint 0x%x, "
3468 					"streams are being disabled already\n",
3469 					eps[i]->desc.bEndpointAddress);
3470 			return 0;
3471 		}
3472 		/* Are there actually any streams to free? */
3473 		if (!(ep_state & EP_HAS_STREAMS) &&
3474 				!(ep_state & EP_GETTING_STREAMS)) {
3475 			xhci_warn(xhci, "WARN Can't disable streams for "
3476 					"endpoint 0x%x, "
3477 					"streams are already disabled!\n",
3478 					eps[i]->desc.bEndpointAddress);
3479 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3480 					"with non-streams endpoint\n");
3481 			return 0;
3482 		}
3483 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3484 	}
3485 	return changed_ep_bitmask;
3486 }
3487 
3488 /*
3489  * The USB device drivers use this function (through the HCD interface in USB
3490  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3491  * coordinate mass storage command queueing across multiple endpoints (basically
3492  * a stream ID == a task ID).
3493  *
3494  * Setting up streams involves allocating the same size stream context array
3495  * for each endpoint and issuing a configure endpoint command for all endpoints.
3496  *
3497  * Don't allow the call to succeed if one endpoint only supports one stream
3498  * (which means it doesn't support streams at all).
3499  *
3500  * Drivers may get less stream IDs than they asked for, if the host controller
3501  * hardware or endpoints claim they can't support the number of requested
3502  * stream IDs.
3503  */
3504 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3505 		struct usb_host_endpoint **eps, unsigned int num_eps,
3506 		unsigned int num_streams, gfp_t mem_flags)
3507 {
3508 	int i, ret;
3509 	struct xhci_hcd *xhci;
3510 	struct xhci_virt_device *vdev;
3511 	struct xhci_command *config_cmd;
3512 	struct xhci_input_control_ctx *ctrl_ctx;
3513 	unsigned int ep_index;
3514 	unsigned int num_stream_ctxs;
3515 	unsigned int max_packet;
3516 	unsigned long flags;
3517 	u32 changed_ep_bitmask = 0;
3518 
3519 	if (!eps)
3520 		return -EINVAL;
3521 
3522 	/* Add one to the number of streams requested to account for
3523 	 * stream 0 that is reserved for xHCI usage.
3524 	 */
3525 	num_streams += 1;
3526 	xhci = hcd_to_xhci(hcd);
3527 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3528 			num_streams);
3529 
3530 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3531 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3532 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3533 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3534 		return -ENOSYS;
3535 	}
3536 
3537 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3538 	if (!config_cmd)
3539 		return -ENOMEM;
3540 
3541 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3542 	if (!ctrl_ctx) {
3543 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3544 				__func__);
3545 		xhci_free_command(xhci, config_cmd);
3546 		return -ENOMEM;
3547 	}
3548 
3549 	/* Check to make sure all endpoints are not already configured for
3550 	 * streams.  While we're at it, find the maximum number of streams that
3551 	 * all the endpoints will support and check for duplicate endpoints.
3552 	 */
3553 	spin_lock_irqsave(&xhci->lock, flags);
3554 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3555 			num_eps, &num_streams, &changed_ep_bitmask);
3556 	if (ret < 0) {
3557 		xhci_free_command(xhci, config_cmd);
3558 		spin_unlock_irqrestore(&xhci->lock, flags);
3559 		return ret;
3560 	}
3561 	if (num_streams <= 1) {
3562 		xhci_warn(xhci, "WARN: endpoints can't handle "
3563 				"more than one stream.\n");
3564 		xhci_free_command(xhci, config_cmd);
3565 		spin_unlock_irqrestore(&xhci->lock, flags);
3566 		return -EINVAL;
3567 	}
3568 	vdev = xhci->devs[udev->slot_id];
3569 	/* Mark each endpoint as being in transition, so
3570 	 * xhci_urb_enqueue() will reject all URBs.
3571 	 */
3572 	for (i = 0; i < num_eps; i++) {
3573 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3575 	}
3576 	spin_unlock_irqrestore(&xhci->lock, flags);
3577 
3578 	/* Setup internal data structures and allocate HW data structures for
3579 	 * streams (but don't install the HW structures in the input context
3580 	 * until we're sure all memory allocation succeeded).
3581 	 */
3582 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3583 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3584 			num_stream_ctxs, num_streams);
3585 
3586 	for (i = 0; i < num_eps; i++) {
3587 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3589 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3590 				num_stream_ctxs,
3591 				num_streams,
3592 				max_packet, mem_flags);
3593 		if (!vdev->eps[ep_index].stream_info)
3594 			goto cleanup;
3595 		/* Set maxPstreams in endpoint context and update deq ptr to
3596 		 * point to stream context array. FIXME
3597 		 */
3598 	}
3599 
3600 	/* Set up the input context for a configure endpoint command. */
3601 	for (i = 0; i < num_eps; i++) {
3602 		struct xhci_ep_ctx *ep_ctx;
3603 
3604 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3606 
3607 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3608 				vdev->out_ctx, ep_index);
3609 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3610 				vdev->eps[ep_index].stream_info);
3611 	}
3612 	/* Tell the HW to drop its old copy of the endpoint context info
3613 	 * and add the updated copy from the input context.
3614 	 */
3615 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3616 			vdev->out_ctx, ctrl_ctx,
3617 			changed_ep_bitmask, changed_ep_bitmask);
3618 
3619 	/* Issue and wait for the configure endpoint command */
3620 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3621 			false, false);
3622 
3623 	/* xHC rejected the configure endpoint command for some reason, so we
3624 	 * leave the old ring intact and free our internal streams data
3625 	 * structure.
3626 	 */
3627 	if (ret < 0)
3628 		goto cleanup;
3629 
3630 	spin_lock_irqsave(&xhci->lock, flags);
3631 	for (i = 0; i < num_eps; i++) {
3632 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3633 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3634 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3635 			 udev->slot_id, ep_index);
3636 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3637 	}
3638 	xhci_free_command(xhci, config_cmd);
3639 	spin_unlock_irqrestore(&xhci->lock, flags);
3640 
3641 	for (i = 0; i < num_eps; i++) {
3642 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3644 	}
3645 	/* Subtract 1 for stream 0, which drivers can't use */
3646 	return num_streams - 1;
3647 
3648 cleanup:
3649 	/* If it didn't work, free the streams! */
3650 	for (i = 0; i < num_eps; i++) {
3651 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3653 		vdev->eps[ep_index].stream_info = NULL;
3654 		/* FIXME Unset maxPstreams in endpoint context and
3655 		 * update deq ptr to point to normal string ring.
3656 		 */
3657 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3658 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3659 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3660 	}
3661 	xhci_free_command(xhci, config_cmd);
3662 	return -ENOMEM;
3663 }
3664 
3665 /* Transition the endpoint from using streams to being a "normal" endpoint
3666  * without streams.
3667  *
3668  * Modify the endpoint context state, submit a configure endpoint command,
3669  * and free all endpoint rings for streams if that completes successfully.
3670  */
3671 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3672 		struct usb_host_endpoint **eps, unsigned int num_eps,
3673 		gfp_t mem_flags)
3674 {
3675 	int i, ret;
3676 	struct xhci_hcd *xhci;
3677 	struct xhci_virt_device *vdev;
3678 	struct xhci_command *command;
3679 	struct xhci_input_control_ctx *ctrl_ctx;
3680 	unsigned int ep_index;
3681 	unsigned long flags;
3682 	u32 changed_ep_bitmask;
3683 
3684 	xhci = hcd_to_xhci(hcd);
3685 	vdev = xhci->devs[udev->slot_id];
3686 
3687 	/* Set up a configure endpoint command to remove the streams rings */
3688 	spin_lock_irqsave(&xhci->lock, flags);
3689 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3690 			udev, eps, num_eps);
3691 	if (changed_ep_bitmask == 0) {
3692 		spin_unlock_irqrestore(&xhci->lock, flags);
3693 		return -EINVAL;
3694 	}
3695 
3696 	/* Use the xhci_command structure from the first endpoint.  We may have
3697 	 * allocated too many, but the driver may call xhci_free_streams() for
3698 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3699 	 */
3700 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3701 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3702 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3703 	if (!ctrl_ctx) {
3704 		spin_unlock_irqrestore(&xhci->lock, flags);
3705 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3706 				__func__);
3707 		return -EINVAL;
3708 	}
3709 
3710 	for (i = 0; i < num_eps; i++) {
3711 		struct xhci_ep_ctx *ep_ctx;
3712 
3713 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3715 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3716 			EP_GETTING_NO_STREAMS;
3717 
3718 		xhci_endpoint_copy(xhci, command->in_ctx,
3719 				vdev->out_ctx, ep_index);
3720 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3721 				&vdev->eps[ep_index]);
3722 	}
3723 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3724 			vdev->out_ctx, ctrl_ctx,
3725 			changed_ep_bitmask, changed_ep_bitmask);
3726 	spin_unlock_irqrestore(&xhci->lock, flags);
3727 
3728 	/* Issue and wait for the configure endpoint command,
3729 	 * which must succeed.
3730 	 */
3731 	ret = xhci_configure_endpoint(xhci, udev, command,
3732 			false, true);
3733 
3734 	/* xHC rejected the configure endpoint command for some reason, so we
3735 	 * leave the streams rings intact.
3736 	 */
3737 	if (ret < 0)
3738 		return ret;
3739 
3740 	spin_lock_irqsave(&xhci->lock, flags);
3741 	for (i = 0; i < num_eps; i++) {
3742 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3743 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3744 		vdev->eps[ep_index].stream_info = NULL;
3745 		/* FIXME Unset maxPstreams in endpoint context and
3746 		 * update deq ptr to point to normal string ring.
3747 		 */
3748 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3749 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3750 	}
3751 	spin_unlock_irqrestore(&xhci->lock, flags);
3752 
3753 	return 0;
3754 }
3755 
3756 /*
3757  * Deletes endpoint resources for endpoints that were active before a Reset
3758  * Device command, or a Disable Slot command.  The Reset Device command leaves
3759  * the control endpoint intact, whereas the Disable Slot command deletes it.
3760  *
3761  * Must be called with xhci->lock held.
3762  */
3763 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3764 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3765 {
3766 	int i;
3767 	unsigned int num_dropped_eps = 0;
3768 	unsigned int drop_flags = 0;
3769 
3770 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3771 		if (virt_dev->eps[i].ring) {
3772 			drop_flags |= 1 << i;
3773 			num_dropped_eps++;
3774 		}
3775 	}
3776 	xhci->num_active_eps -= num_dropped_eps;
3777 	if (num_dropped_eps)
3778 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3779 				"Dropped %u ep ctxs, flags = 0x%x, "
3780 				"%u now active.",
3781 				num_dropped_eps, drop_flags,
3782 				xhci->num_active_eps);
3783 }
3784 
3785 /*
3786  * This submits a Reset Device Command, which will set the device state to 0,
3787  * set the device address to 0, and disable all the endpoints except the default
3788  * control endpoint.  The USB core should come back and call
3789  * xhci_address_device(), and then re-set up the configuration.  If this is
3790  * called because of a usb_reset_and_verify_device(), then the old alternate
3791  * settings will be re-installed through the normal bandwidth allocation
3792  * functions.
3793  *
3794  * Wait for the Reset Device command to finish.  Remove all structures
3795  * associated with the endpoints that were disabled.  Clear the input device
3796  * structure? Reset the control endpoint 0 max packet size?
3797  *
3798  * If the virt_dev to be reset does not exist or does not match the udev,
3799  * it means the device is lost, possibly due to the xHC restore error and
3800  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3801  * re-allocate the device.
3802  */
3803 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3804 		struct usb_device *udev)
3805 {
3806 	int ret, i;
3807 	unsigned long flags;
3808 	struct xhci_hcd *xhci;
3809 	unsigned int slot_id;
3810 	struct xhci_virt_device *virt_dev;
3811 	struct xhci_command *reset_device_cmd;
3812 	struct xhci_slot_ctx *slot_ctx;
3813 	int old_active_eps = 0;
3814 
3815 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3816 	if (ret <= 0)
3817 		return ret;
3818 	xhci = hcd_to_xhci(hcd);
3819 	slot_id = udev->slot_id;
3820 	virt_dev = xhci->devs[slot_id];
3821 	if (!virt_dev) {
3822 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3823 				"not exist. Re-allocate the device\n", slot_id);
3824 		ret = xhci_alloc_dev(hcd, udev);
3825 		if (ret == 1)
3826 			return 0;
3827 		else
3828 			return -EINVAL;
3829 	}
3830 
3831 	if (virt_dev->tt_info)
3832 		old_active_eps = virt_dev->tt_info->active_eps;
3833 
3834 	if (virt_dev->udev != udev) {
3835 		/* If the virt_dev and the udev does not match, this virt_dev
3836 		 * may belong to another udev.
3837 		 * Re-allocate the device.
3838 		 */
3839 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3840 				"not match the udev. Re-allocate the device\n",
3841 				slot_id);
3842 		ret = xhci_alloc_dev(hcd, udev);
3843 		if (ret == 1)
3844 			return 0;
3845 		else
3846 			return -EINVAL;
3847 	}
3848 
3849 	/* If device is not setup, there is no point in resetting it */
3850 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852 						SLOT_STATE_DISABLED)
3853 		return 0;
3854 
3855 	trace_xhci_discover_or_reset_device(slot_ctx);
3856 
3857 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3858 	/* Allocate the command structure that holds the struct completion.
3859 	 * Assume we're in process context, since the normal device reset
3860 	 * process has to wait for the device anyway.  Storage devices are
3861 	 * reset as part of error handling, so use GFP_NOIO instead of
3862 	 * GFP_KERNEL.
3863 	 */
3864 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3865 	if (!reset_device_cmd) {
3866 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3867 		return -ENOMEM;
3868 	}
3869 
3870 	/* Attempt to submit the Reset Device command to the command ring */
3871 	spin_lock_irqsave(&xhci->lock, flags);
3872 
3873 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3874 	if (ret) {
3875 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3876 		spin_unlock_irqrestore(&xhci->lock, flags);
3877 		goto command_cleanup;
3878 	}
3879 	xhci_ring_cmd_db(xhci);
3880 	spin_unlock_irqrestore(&xhci->lock, flags);
3881 
3882 	/* Wait for the Reset Device command to finish */
3883 	wait_for_completion(reset_device_cmd->completion);
3884 
3885 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3886 	 * unless we tried to reset a slot ID that wasn't enabled,
3887 	 * or the device wasn't in the addressed or configured state.
3888 	 */
3889 	ret = reset_device_cmd->status;
3890 	switch (ret) {
3891 	case COMP_COMMAND_ABORTED:
3892 	case COMP_COMMAND_RING_STOPPED:
3893 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3894 		ret = -ETIME;
3895 		goto command_cleanup;
3896 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3897 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3898 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3899 				slot_id,
3900 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3901 		xhci_dbg(xhci, "Not freeing device rings.\n");
3902 		/* Don't treat this as an error.  May change my mind later. */
3903 		ret = 0;
3904 		goto command_cleanup;
3905 	case COMP_SUCCESS:
3906 		xhci_dbg(xhci, "Successful reset device command.\n");
3907 		break;
3908 	default:
3909 		if (xhci_is_vendor_info_code(xhci, ret))
3910 			break;
3911 		xhci_warn(xhci, "Unknown completion code %u for "
3912 				"reset device command.\n", ret);
3913 		ret = -EINVAL;
3914 		goto command_cleanup;
3915 	}
3916 
3917 	/* Free up host controller endpoint resources */
3918 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3919 		spin_lock_irqsave(&xhci->lock, flags);
3920 		/* Don't delete the default control endpoint resources */
3921 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3922 		spin_unlock_irqrestore(&xhci->lock, flags);
3923 	}
3924 
3925 	/* Everything but endpoint 0 is disabled, so free the rings. */
3926 	for (i = 1; i < 31; i++) {
3927 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3928 
3929 		if (ep->ep_state & EP_HAS_STREAMS) {
3930 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3931 					xhci_get_endpoint_address(i));
3932 			xhci_free_stream_info(xhci, ep->stream_info);
3933 			ep->stream_info = NULL;
3934 			ep->ep_state &= ~EP_HAS_STREAMS;
3935 		}
3936 
3937 		if (ep->ring) {
3938 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3939 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3940 		}
3941 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3942 			xhci_drop_ep_from_interval_table(xhci,
3943 					&virt_dev->eps[i].bw_info,
3944 					virt_dev->bw_table,
3945 					udev,
3946 					&virt_dev->eps[i],
3947 					virt_dev->tt_info);
3948 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3949 	}
3950 	/* If necessary, update the number of active TTs on this root port */
3951 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3952 	virt_dev->flags = 0;
3953 	ret = 0;
3954 
3955 command_cleanup:
3956 	xhci_free_command(xhci, reset_device_cmd);
3957 	return ret;
3958 }
3959 
3960 /*
3961  * At this point, the struct usb_device is about to go away, the device has
3962  * disconnected, and all traffic has been stopped and the endpoints have been
3963  * disabled.  Free any HC data structures associated with that device.
3964  */
3965 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968 	struct xhci_virt_device *virt_dev;
3969 	struct xhci_slot_ctx *slot_ctx;
3970 	int i, ret;
3971 
3972 	/*
3973 	 * We called pm_runtime_get_noresume when the device was attached.
3974 	 * Decrement the counter here to allow controller to runtime suspend
3975 	 * if no devices remain.
3976 	 */
3977 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3978 		pm_runtime_put_noidle(hcd->self.controller);
3979 
3980 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3981 	/* If the host is halted due to driver unload, we still need to free the
3982 	 * device.
3983 	 */
3984 	if (ret <= 0 && ret != -ENODEV)
3985 		return;
3986 
3987 	virt_dev = xhci->devs[udev->slot_id];
3988 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3989 	trace_xhci_free_dev(slot_ctx);
3990 
3991 	/* Stop any wayward timer functions (which may grab the lock) */
3992 	for (i = 0; i < 31; i++)
3993 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3994 	virt_dev->udev = NULL;
3995 	xhci_disable_slot(xhci, udev->slot_id);
3996 	xhci_free_virt_device(xhci, udev->slot_id);
3997 }
3998 
3999 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4000 {
4001 	struct xhci_command *command;
4002 	unsigned long flags;
4003 	u32 state;
4004 	int ret;
4005 
4006 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4007 	if (!command)
4008 		return -ENOMEM;
4009 
4010 	xhci_debugfs_remove_slot(xhci, slot_id);
4011 
4012 	spin_lock_irqsave(&xhci->lock, flags);
4013 	/* Don't disable the slot if the host controller is dead. */
4014 	state = readl(&xhci->op_regs->status);
4015 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4016 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4017 		spin_unlock_irqrestore(&xhci->lock, flags);
4018 		kfree(command);
4019 		return -ENODEV;
4020 	}
4021 
4022 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4023 				slot_id);
4024 	if (ret) {
4025 		spin_unlock_irqrestore(&xhci->lock, flags);
4026 		kfree(command);
4027 		return ret;
4028 	}
4029 	xhci_ring_cmd_db(xhci);
4030 	spin_unlock_irqrestore(&xhci->lock, flags);
4031 
4032 	wait_for_completion(command->completion);
4033 
4034 	if (command->status != COMP_SUCCESS)
4035 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4036 			  slot_id, command->status);
4037 
4038 	xhci_free_command(xhci, command);
4039 
4040 	return 0;
4041 }
4042 
4043 /*
4044  * Checks if we have enough host controller resources for the default control
4045  * endpoint.
4046  *
4047  * Must be called with xhci->lock held.
4048  */
4049 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4050 {
4051 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4052 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4053 				"Not enough ep ctxs: "
4054 				"%u active, need to add 1, limit is %u.",
4055 				xhci->num_active_eps, xhci->limit_active_eps);
4056 		return -ENOMEM;
4057 	}
4058 	xhci->num_active_eps += 1;
4059 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4060 			"Adding 1 ep ctx, %u now active.",
4061 			xhci->num_active_eps);
4062 	return 0;
4063 }
4064 
4065 
4066 /*
4067  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4068  * timed out, or allocating memory failed.  Returns 1 on success.
4069  */
4070 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4071 {
4072 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4073 	struct xhci_virt_device *vdev;
4074 	struct xhci_slot_ctx *slot_ctx;
4075 	unsigned long flags;
4076 	int ret, slot_id;
4077 	struct xhci_command *command;
4078 
4079 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4080 	if (!command)
4081 		return 0;
4082 
4083 	spin_lock_irqsave(&xhci->lock, flags);
4084 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4085 	if (ret) {
4086 		spin_unlock_irqrestore(&xhci->lock, flags);
4087 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4088 		xhci_free_command(xhci, command);
4089 		return 0;
4090 	}
4091 	xhci_ring_cmd_db(xhci);
4092 	spin_unlock_irqrestore(&xhci->lock, flags);
4093 
4094 	wait_for_completion(command->completion);
4095 	slot_id = command->slot_id;
4096 
4097 	if (!slot_id || command->status != COMP_SUCCESS) {
4098 		xhci_err(xhci, "Error while assigning device slot ID\n");
4099 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4100 				HCS_MAX_SLOTS(
4101 					readl(&xhci->cap_regs->hcs_params1)));
4102 		xhci_free_command(xhci, command);
4103 		return 0;
4104 	}
4105 
4106 	xhci_free_command(xhci, command);
4107 
4108 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4109 		spin_lock_irqsave(&xhci->lock, flags);
4110 		ret = xhci_reserve_host_control_ep_resources(xhci);
4111 		if (ret) {
4112 			spin_unlock_irqrestore(&xhci->lock, flags);
4113 			xhci_warn(xhci, "Not enough host resources, "
4114 					"active endpoint contexts = %u\n",
4115 					xhci->num_active_eps);
4116 			goto disable_slot;
4117 		}
4118 		spin_unlock_irqrestore(&xhci->lock, flags);
4119 	}
4120 	/* Use GFP_NOIO, since this function can be called from
4121 	 * xhci_discover_or_reset_device(), which may be called as part of
4122 	 * mass storage driver error handling.
4123 	 */
4124 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4125 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4126 		goto disable_slot;
4127 	}
4128 	vdev = xhci->devs[slot_id];
4129 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4130 	trace_xhci_alloc_dev(slot_ctx);
4131 
4132 	udev->slot_id = slot_id;
4133 
4134 	xhci_debugfs_create_slot(xhci, slot_id);
4135 
4136 	/*
4137 	 * If resetting upon resume, we can't put the controller into runtime
4138 	 * suspend if there is a device attached.
4139 	 */
4140 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4141 		pm_runtime_get_noresume(hcd->self.controller);
4142 
4143 	/* Is this a LS or FS device under a HS hub? */
4144 	/* Hub or peripherial? */
4145 	return 1;
4146 
4147 disable_slot:
4148 	xhci_disable_slot(xhci, udev->slot_id);
4149 	xhci_free_virt_device(xhci, udev->slot_id);
4150 
4151 	return 0;
4152 }
4153 
4154 /*
4155  * Issue an Address Device command and optionally send a corresponding
4156  * SetAddress request to the device.
4157  */
4158 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4159 			     enum xhci_setup_dev setup)
4160 {
4161 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4162 	unsigned long flags;
4163 	struct xhci_virt_device *virt_dev;
4164 	int ret = 0;
4165 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166 	struct xhci_slot_ctx *slot_ctx;
4167 	struct xhci_input_control_ctx *ctrl_ctx;
4168 	u64 temp_64;
4169 	struct xhci_command *command = NULL;
4170 
4171 	mutex_lock(&xhci->mutex);
4172 
4173 	if (xhci->xhc_state) {	/* dying, removing or halted */
4174 		ret = -ESHUTDOWN;
4175 		goto out;
4176 	}
4177 
4178 	if (!udev->slot_id) {
4179 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4180 				"Bad Slot ID %d", udev->slot_id);
4181 		ret = -EINVAL;
4182 		goto out;
4183 	}
4184 
4185 	virt_dev = xhci->devs[udev->slot_id];
4186 
4187 	if (WARN_ON(!virt_dev)) {
4188 		/*
4189 		 * In plug/unplug torture test with an NEC controller,
4190 		 * a zero-dereference was observed once due to virt_dev = 0.
4191 		 * Print useful debug rather than crash if it is observed again!
4192 		 */
4193 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4194 			udev->slot_id);
4195 		ret = -EINVAL;
4196 		goto out;
4197 	}
4198 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4199 	trace_xhci_setup_device_slot(slot_ctx);
4200 
4201 	if (setup == SETUP_CONTEXT_ONLY) {
4202 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4203 		    SLOT_STATE_DEFAULT) {
4204 			xhci_dbg(xhci, "Slot already in default state\n");
4205 			goto out;
4206 		}
4207 	}
4208 
4209 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4210 	if (!command) {
4211 		ret = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	command->in_ctx = virt_dev->in_ctx;
4216 
4217 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4218 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4219 	if (!ctrl_ctx) {
4220 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4221 				__func__);
4222 		ret = -EINVAL;
4223 		goto out;
4224 	}
4225 	/*
4226 	 * If this is the first Set Address since device plug-in or
4227 	 * virt_device realloaction after a resume with an xHCI power loss,
4228 	 * then set up the slot context.
4229 	 */
4230 	if (!slot_ctx->dev_info)
4231 		xhci_setup_addressable_virt_dev(xhci, udev);
4232 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4233 	else
4234 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4235 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4236 	ctrl_ctx->drop_flags = 0;
4237 
4238 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4239 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4240 
4241 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4242 	spin_lock_irqsave(&xhci->lock, flags);
4243 	trace_xhci_setup_device(virt_dev);
4244 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4245 					udev->slot_id, setup);
4246 	if (ret) {
4247 		spin_unlock_irqrestore(&xhci->lock, flags);
4248 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4249 				"FIXME: allocate a command ring segment");
4250 		goto out;
4251 	}
4252 	xhci_ring_cmd_db(xhci);
4253 	spin_unlock_irqrestore(&xhci->lock, flags);
4254 
4255 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4256 	wait_for_completion(command->completion);
4257 
4258 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4259 	 * the SetAddress() "recovery interval" required by USB and aborting the
4260 	 * command on a timeout.
4261 	 */
4262 	switch (command->status) {
4263 	case COMP_COMMAND_ABORTED:
4264 	case COMP_COMMAND_RING_STOPPED:
4265 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4266 		ret = -ETIME;
4267 		break;
4268 	case COMP_CONTEXT_STATE_ERROR:
4269 	case COMP_SLOT_NOT_ENABLED_ERROR:
4270 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4271 			 act, udev->slot_id);
4272 		ret = -EINVAL;
4273 		break;
4274 	case COMP_USB_TRANSACTION_ERROR:
4275 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4276 
4277 		mutex_unlock(&xhci->mutex);
4278 		ret = xhci_disable_slot(xhci, udev->slot_id);
4279 		xhci_free_virt_device(xhci, udev->slot_id);
4280 		if (!ret)
4281 			xhci_alloc_dev(hcd, udev);
4282 		kfree(command->completion);
4283 		kfree(command);
4284 		return -EPROTO;
4285 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4286 		dev_warn(&udev->dev,
4287 			 "ERROR: Incompatible device for setup %s command\n", act);
4288 		ret = -ENODEV;
4289 		break;
4290 	case COMP_SUCCESS:
4291 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4292 			       "Successful setup %s command", act);
4293 		break;
4294 	default:
4295 		xhci_err(xhci,
4296 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4297 			 act, command->status);
4298 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4299 		ret = -EINVAL;
4300 		break;
4301 	}
4302 	if (ret)
4303 		goto out;
4304 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4305 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4306 			"Op regs DCBAA ptr = %#016llx", temp_64);
4307 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 		"Slot ID %d dcbaa entry @%p = %#016llx",
4309 		udev->slot_id,
4310 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4311 		(unsigned long long)
4312 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4313 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4314 			"Output Context DMA address = %#08llx",
4315 			(unsigned long long)virt_dev->out_ctx->dma);
4316 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4317 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4318 	/*
4319 	 * USB core uses address 1 for the roothubs, so we add one to the
4320 	 * address given back to us by the HC.
4321 	 */
4322 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4323 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4324 	/* Zero the input context control for later use */
4325 	ctrl_ctx->add_flags = 0;
4326 	ctrl_ctx->drop_flags = 0;
4327 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4328 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4329 
4330 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4331 		       "Internal device address = %d",
4332 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4333 out:
4334 	mutex_unlock(&xhci->mutex);
4335 	if (command) {
4336 		kfree(command->completion);
4337 		kfree(command);
4338 	}
4339 	return ret;
4340 }
4341 
4342 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4345 }
4346 
4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4350 }
4351 
4352 /*
4353  * Transfer the port index into real index in the HW port status
4354  * registers. Caculate offset between the port's PORTSC register
4355  * and port status base. Divide the number of per port register
4356  * to get the real index. The raw port number bases 1.
4357  */
4358 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4359 {
4360 	struct xhci_hub *rhub;
4361 
4362 	rhub = xhci_get_rhub(hcd);
4363 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4364 }
4365 
4366 /*
4367  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4368  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4369  */
4370 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4371 			struct usb_device *udev, u16 max_exit_latency)
4372 {
4373 	struct xhci_virt_device *virt_dev;
4374 	struct xhci_command *command;
4375 	struct xhci_input_control_ctx *ctrl_ctx;
4376 	struct xhci_slot_ctx *slot_ctx;
4377 	unsigned long flags;
4378 	int ret;
4379 
4380 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4381 	if (!command)
4382 		return -ENOMEM;
4383 
4384 	spin_lock_irqsave(&xhci->lock, flags);
4385 
4386 	virt_dev = xhci->devs[udev->slot_id];
4387 
4388 	/*
4389 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4390 	 * xHC was re-initialized. Exit latency will be set later after
4391 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4392 	 */
4393 
4394 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4395 		spin_unlock_irqrestore(&xhci->lock, flags);
4396 		return 0;
4397 	}
4398 
4399 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4400 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4401 	if (!ctrl_ctx) {
4402 		spin_unlock_irqrestore(&xhci->lock, flags);
4403 		xhci_free_command(xhci, command);
4404 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4405 				__func__);
4406 		return -ENOMEM;
4407 	}
4408 
4409 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4410 	spin_unlock_irqrestore(&xhci->lock, flags);
4411 
4412 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4413 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4414 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4415 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4416 	slot_ctx->dev_state = 0;
4417 
4418 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4419 			"Set up evaluate context for LPM MEL change.");
4420 
4421 	/* Issue and wait for the evaluate context command. */
4422 	ret = xhci_configure_endpoint(xhci, udev, command,
4423 			true, true);
4424 
4425 	if (!ret) {
4426 		spin_lock_irqsave(&xhci->lock, flags);
4427 		virt_dev->current_mel = max_exit_latency;
4428 		spin_unlock_irqrestore(&xhci->lock, flags);
4429 	}
4430 
4431 	xhci_free_command(xhci, command);
4432 
4433 	return ret;
4434 }
4435 
4436 #ifdef CONFIG_PM
4437 
4438 /* BESL to HIRD Encoding array for USB2 LPM */
4439 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4440 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4441 
4442 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4443 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4444 					struct usb_device *udev)
4445 {
4446 	int u2del, besl, besl_host;
4447 	int besl_device = 0;
4448 	u32 field;
4449 
4450 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4451 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4452 
4453 	if (field & USB_BESL_SUPPORT) {
4454 		for (besl_host = 0; besl_host < 16; besl_host++) {
4455 			if (xhci_besl_encoding[besl_host] >= u2del)
4456 				break;
4457 		}
4458 		/* Use baseline BESL value as default */
4459 		if (field & USB_BESL_BASELINE_VALID)
4460 			besl_device = USB_GET_BESL_BASELINE(field);
4461 		else if (field & USB_BESL_DEEP_VALID)
4462 			besl_device = USB_GET_BESL_DEEP(field);
4463 	} else {
4464 		if (u2del <= 50)
4465 			besl_host = 0;
4466 		else
4467 			besl_host = (u2del - 51) / 75 + 1;
4468 	}
4469 
4470 	besl = besl_host + besl_device;
4471 	if (besl > 15)
4472 		besl = 15;
4473 
4474 	return besl;
4475 }
4476 
4477 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4478 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4479 {
4480 	u32 field;
4481 	int l1;
4482 	int besld = 0;
4483 	int hirdm = 0;
4484 
4485 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4486 
4487 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4488 	l1 = udev->l1_params.timeout / 256;
4489 
4490 	/* device has preferred BESLD */
4491 	if (field & USB_BESL_DEEP_VALID) {
4492 		besld = USB_GET_BESL_DEEP(field);
4493 		hirdm = 1;
4494 	}
4495 
4496 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4497 }
4498 
4499 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4500 			struct usb_device *udev, int enable)
4501 {
4502 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4503 	struct xhci_port **ports;
4504 	__le32 __iomem	*pm_addr, *hlpm_addr;
4505 	u32		pm_val, hlpm_val, field;
4506 	unsigned int	port_num;
4507 	unsigned long	flags;
4508 	int		hird, exit_latency;
4509 	int		ret;
4510 
4511 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4512 		return -EPERM;
4513 
4514 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4515 			!udev->lpm_capable)
4516 		return -EPERM;
4517 
4518 	if (!udev->parent || udev->parent->parent ||
4519 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4520 		return -EPERM;
4521 
4522 	if (udev->usb2_hw_lpm_capable != 1)
4523 		return -EPERM;
4524 
4525 	spin_lock_irqsave(&xhci->lock, flags);
4526 
4527 	ports = xhci->usb2_rhub.ports;
4528 	port_num = udev->portnum - 1;
4529 	pm_addr = ports[port_num]->addr + PORTPMSC;
4530 	pm_val = readl(pm_addr);
4531 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4532 
4533 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4534 			enable ? "enable" : "disable", port_num + 1);
4535 
4536 	if (enable) {
4537 		/* Host supports BESL timeout instead of HIRD */
4538 		if (udev->usb2_hw_lpm_besl_capable) {
4539 			/* if device doesn't have a preferred BESL value use a
4540 			 * default one which works with mixed HIRD and BESL
4541 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4542 			 */
4543 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4544 			if ((field & USB_BESL_SUPPORT) &&
4545 			    (field & USB_BESL_BASELINE_VALID))
4546 				hird = USB_GET_BESL_BASELINE(field);
4547 			else
4548 				hird = udev->l1_params.besl;
4549 
4550 			exit_latency = xhci_besl_encoding[hird];
4551 			spin_unlock_irqrestore(&xhci->lock, flags);
4552 
4553 			ret = xhci_change_max_exit_latency(xhci, udev,
4554 							   exit_latency);
4555 			if (ret < 0)
4556 				return ret;
4557 			spin_lock_irqsave(&xhci->lock, flags);
4558 
4559 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4560 			writel(hlpm_val, hlpm_addr);
4561 			/* flush write */
4562 			readl(hlpm_addr);
4563 		} else {
4564 			hird = xhci_calculate_hird_besl(xhci, udev);
4565 		}
4566 
4567 		pm_val &= ~PORT_HIRD_MASK;
4568 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4569 		writel(pm_val, pm_addr);
4570 		pm_val = readl(pm_addr);
4571 		pm_val |= PORT_HLE;
4572 		writel(pm_val, pm_addr);
4573 		/* flush write */
4574 		readl(pm_addr);
4575 	} else {
4576 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4577 		writel(pm_val, pm_addr);
4578 		/* flush write */
4579 		readl(pm_addr);
4580 		if (udev->usb2_hw_lpm_besl_capable) {
4581 			spin_unlock_irqrestore(&xhci->lock, flags);
4582 			xhci_change_max_exit_latency(xhci, udev, 0);
4583 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4584 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4585 					   100, 10000);
4586 			return 0;
4587 		}
4588 	}
4589 
4590 	spin_unlock_irqrestore(&xhci->lock, flags);
4591 	return 0;
4592 }
4593 
4594 /* check if a usb2 port supports a given extened capability protocol
4595  * only USB2 ports extended protocol capability values are cached.
4596  * Return 1 if capability is supported
4597  */
4598 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4599 					   unsigned capability)
4600 {
4601 	u32 port_offset, port_count;
4602 	int i;
4603 
4604 	for (i = 0; i < xhci->num_ext_caps; i++) {
4605 		if (xhci->ext_caps[i] & capability) {
4606 			/* port offsets starts at 1 */
4607 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4608 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4609 			if (port >= port_offset &&
4610 			    port < port_offset + port_count)
4611 				return 1;
4612 		}
4613 	}
4614 	return 0;
4615 }
4616 
4617 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4618 {
4619 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4620 	int		portnum = udev->portnum - 1;
4621 
4622 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4623 		return 0;
4624 
4625 	/* we only support lpm for non-hub device connected to root hub yet */
4626 	if (!udev->parent || udev->parent->parent ||
4627 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4628 		return 0;
4629 
4630 	if (xhci->hw_lpm_support == 1 &&
4631 			xhci_check_usb2_port_capability(
4632 				xhci, portnum, XHCI_HLC)) {
4633 		udev->usb2_hw_lpm_capable = 1;
4634 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4635 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4636 		if (xhci_check_usb2_port_capability(xhci, portnum,
4637 					XHCI_BLC))
4638 			udev->usb2_hw_lpm_besl_capable = 1;
4639 	}
4640 
4641 	return 0;
4642 }
4643 
4644 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4645 
4646 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4647 static unsigned long long xhci_service_interval_to_ns(
4648 		struct usb_endpoint_descriptor *desc)
4649 {
4650 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4651 }
4652 
4653 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4654 		enum usb3_link_state state)
4655 {
4656 	unsigned long long sel;
4657 	unsigned long long pel;
4658 	unsigned int max_sel_pel;
4659 	char *state_name;
4660 
4661 	switch (state) {
4662 	case USB3_LPM_U1:
4663 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4664 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4665 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4666 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4667 		state_name = "U1";
4668 		break;
4669 	case USB3_LPM_U2:
4670 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4671 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4672 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4673 		state_name = "U2";
4674 		break;
4675 	default:
4676 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4677 				__func__);
4678 		return USB3_LPM_DISABLED;
4679 	}
4680 
4681 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4682 		return USB3_LPM_DEVICE_INITIATED;
4683 
4684 	if (sel > max_sel_pel)
4685 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4686 				"due to long SEL %llu ms\n",
4687 				state_name, sel);
4688 	else
4689 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4690 				"due to long PEL %llu ms\n",
4691 				state_name, pel);
4692 	return USB3_LPM_DISABLED;
4693 }
4694 
4695 /* The U1 timeout should be the maximum of the following values:
4696  *  - For control endpoints, U1 system exit latency (SEL) * 3
4697  *  - For bulk endpoints, U1 SEL * 5
4698  *  - For interrupt endpoints:
4699  *    - Notification EPs, U1 SEL * 3
4700  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4701  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4702  */
4703 static unsigned long long xhci_calculate_intel_u1_timeout(
4704 		struct usb_device *udev,
4705 		struct usb_endpoint_descriptor *desc)
4706 {
4707 	unsigned long long timeout_ns;
4708 	int ep_type;
4709 	int intr_type;
4710 
4711 	ep_type = usb_endpoint_type(desc);
4712 	switch (ep_type) {
4713 	case USB_ENDPOINT_XFER_CONTROL:
4714 		timeout_ns = udev->u1_params.sel * 3;
4715 		break;
4716 	case USB_ENDPOINT_XFER_BULK:
4717 		timeout_ns = udev->u1_params.sel * 5;
4718 		break;
4719 	case USB_ENDPOINT_XFER_INT:
4720 		intr_type = usb_endpoint_interrupt_type(desc);
4721 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4722 			timeout_ns = udev->u1_params.sel * 3;
4723 			break;
4724 		}
4725 		/* Otherwise the calculation is the same as isoc eps */
4726 		fallthrough;
4727 	case USB_ENDPOINT_XFER_ISOC:
4728 		timeout_ns = xhci_service_interval_to_ns(desc);
4729 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4730 		if (timeout_ns < udev->u1_params.sel * 2)
4731 			timeout_ns = udev->u1_params.sel * 2;
4732 		break;
4733 	default:
4734 		return 0;
4735 	}
4736 
4737 	return timeout_ns;
4738 }
4739 
4740 /* Returns the hub-encoded U1 timeout value. */
4741 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4742 		struct usb_device *udev,
4743 		struct usb_endpoint_descriptor *desc)
4744 {
4745 	unsigned long long timeout_ns;
4746 
4747 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4748 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4749 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4750 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4751 			return USB3_LPM_DISABLED;
4752 		}
4753 	}
4754 
4755 	if (xhci->quirks & XHCI_INTEL_HOST)
4756 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4757 	else
4758 		timeout_ns = udev->u1_params.sel;
4759 
4760 	/* The U1 timeout is encoded in 1us intervals.
4761 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4762 	 */
4763 	if (timeout_ns == USB3_LPM_DISABLED)
4764 		timeout_ns = 1;
4765 	else
4766 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4767 
4768 	/* If the necessary timeout value is bigger than what we can set in the
4769 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4770 	 */
4771 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4772 		return timeout_ns;
4773 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4774 			"due to long timeout %llu ms\n", timeout_ns);
4775 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4776 }
4777 
4778 /* The U2 timeout should be the maximum of:
4779  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4780  *  - largest bInterval of any active periodic endpoint (to avoid going
4781  *    into lower power link states between intervals).
4782  *  - the U2 Exit Latency of the device
4783  */
4784 static unsigned long long xhci_calculate_intel_u2_timeout(
4785 		struct usb_device *udev,
4786 		struct usb_endpoint_descriptor *desc)
4787 {
4788 	unsigned long long timeout_ns;
4789 	unsigned long long u2_del_ns;
4790 
4791 	timeout_ns = 10 * 1000 * 1000;
4792 
4793 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4794 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4795 		timeout_ns = xhci_service_interval_to_ns(desc);
4796 
4797 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4798 	if (u2_del_ns > timeout_ns)
4799 		timeout_ns = u2_del_ns;
4800 
4801 	return timeout_ns;
4802 }
4803 
4804 /* Returns the hub-encoded U2 timeout value. */
4805 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4806 		struct usb_device *udev,
4807 		struct usb_endpoint_descriptor *desc)
4808 {
4809 	unsigned long long timeout_ns;
4810 
4811 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4812 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4813 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4814 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4815 			return USB3_LPM_DISABLED;
4816 		}
4817 	}
4818 
4819 	if (xhci->quirks & XHCI_INTEL_HOST)
4820 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4821 	else
4822 		timeout_ns = udev->u2_params.sel;
4823 
4824 	/* The U2 timeout is encoded in 256us intervals */
4825 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4826 	/* If the necessary timeout value is bigger than what we can set in the
4827 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4828 	 */
4829 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4830 		return timeout_ns;
4831 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4832 			"due to long timeout %llu ms\n", timeout_ns);
4833 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4834 }
4835 
4836 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4837 		struct usb_device *udev,
4838 		struct usb_endpoint_descriptor *desc,
4839 		enum usb3_link_state state,
4840 		u16 *timeout)
4841 {
4842 	if (state == USB3_LPM_U1)
4843 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4844 	else if (state == USB3_LPM_U2)
4845 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4846 
4847 	return USB3_LPM_DISABLED;
4848 }
4849 
4850 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4851 		struct usb_device *udev,
4852 		struct usb_endpoint_descriptor *desc,
4853 		enum usb3_link_state state,
4854 		u16 *timeout)
4855 {
4856 	u16 alt_timeout;
4857 
4858 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4859 		desc, state, timeout);
4860 
4861 	/* If we found we can't enable hub-initiated LPM, and
4862 	 * the U1 or U2 exit latency was too high to allow
4863 	 * device-initiated LPM as well, then we will disable LPM
4864 	 * for this device, so stop searching any further.
4865 	 */
4866 	if (alt_timeout == USB3_LPM_DISABLED) {
4867 		*timeout = alt_timeout;
4868 		return -E2BIG;
4869 	}
4870 	if (alt_timeout > *timeout)
4871 		*timeout = alt_timeout;
4872 	return 0;
4873 }
4874 
4875 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4876 		struct usb_device *udev,
4877 		struct usb_host_interface *alt,
4878 		enum usb3_link_state state,
4879 		u16 *timeout)
4880 {
4881 	int j;
4882 
4883 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4884 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4885 					&alt->endpoint[j].desc, state, timeout))
4886 			return -E2BIG;
4887 	}
4888 	return 0;
4889 }
4890 
4891 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4892 		enum usb3_link_state state)
4893 {
4894 	struct usb_device *parent;
4895 	unsigned int num_hubs;
4896 
4897 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4898 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4899 			parent = parent->parent)
4900 		num_hubs++;
4901 
4902 	if (num_hubs < 2)
4903 		return 0;
4904 
4905 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4906 			" below second-tier hub.\n");
4907 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4908 			"to decrease power consumption.\n");
4909 	return -E2BIG;
4910 }
4911 
4912 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4913 		struct usb_device *udev,
4914 		enum usb3_link_state state)
4915 {
4916 	if (xhci->quirks & XHCI_INTEL_HOST)
4917 		return xhci_check_intel_tier_policy(udev, state);
4918 	else
4919 		return 0;
4920 }
4921 
4922 /* Returns the U1 or U2 timeout that should be enabled.
4923  * If the tier check or timeout setting functions return with a non-zero exit
4924  * code, that means the timeout value has been finalized and we shouldn't look
4925  * at any more endpoints.
4926  */
4927 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4928 			struct usb_device *udev, enum usb3_link_state state)
4929 {
4930 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4931 	struct usb_host_config *config;
4932 	char *state_name;
4933 	int i;
4934 	u16 timeout = USB3_LPM_DISABLED;
4935 
4936 	if (state == USB3_LPM_U1)
4937 		state_name = "U1";
4938 	else if (state == USB3_LPM_U2)
4939 		state_name = "U2";
4940 	else {
4941 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4942 				state);
4943 		return timeout;
4944 	}
4945 
4946 	/* Gather some information about the currently installed configuration
4947 	 * and alternate interface settings.
4948 	 */
4949 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4950 			state, &timeout))
4951 		return timeout;
4952 
4953 	config = udev->actconfig;
4954 	if (!config)
4955 		return timeout;
4956 
4957 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4958 		struct usb_driver *driver;
4959 		struct usb_interface *intf = config->interface[i];
4960 
4961 		if (!intf)
4962 			continue;
4963 
4964 		/* Check if any currently bound drivers want hub-initiated LPM
4965 		 * disabled.
4966 		 */
4967 		if (intf->dev.driver) {
4968 			driver = to_usb_driver(intf->dev.driver);
4969 			if (driver && driver->disable_hub_initiated_lpm) {
4970 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4971 					state_name, driver->name);
4972 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4973 								      state);
4974 				if (timeout == USB3_LPM_DISABLED)
4975 					return timeout;
4976 			}
4977 		}
4978 
4979 		/* Not sure how this could happen... */
4980 		if (!intf->cur_altsetting)
4981 			continue;
4982 
4983 		if (xhci_update_timeout_for_interface(xhci, udev,
4984 					intf->cur_altsetting,
4985 					state, &timeout))
4986 			return timeout;
4987 	}
4988 	return timeout;
4989 }
4990 
4991 static int calculate_max_exit_latency(struct usb_device *udev,
4992 		enum usb3_link_state state_changed,
4993 		u16 hub_encoded_timeout)
4994 {
4995 	unsigned long long u1_mel_us = 0;
4996 	unsigned long long u2_mel_us = 0;
4997 	unsigned long long mel_us = 0;
4998 	bool disabling_u1;
4999 	bool disabling_u2;
5000 	bool enabling_u1;
5001 	bool enabling_u2;
5002 
5003 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5004 			hub_encoded_timeout == USB3_LPM_DISABLED);
5005 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5006 			hub_encoded_timeout == USB3_LPM_DISABLED);
5007 
5008 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5009 			hub_encoded_timeout != USB3_LPM_DISABLED);
5010 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5011 			hub_encoded_timeout != USB3_LPM_DISABLED);
5012 
5013 	/* If U1 was already enabled and we're not disabling it,
5014 	 * or we're going to enable U1, account for the U1 max exit latency.
5015 	 */
5016 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5017 			enabling_u1)
5018 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5019 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5020 			enabling_u2)
5021 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5022 
5023 	mel_us = max(u1_mel_us, u2_mel_us);
5024 
5025 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5026 	if (mel_us > MAX_EXIT) {
5027 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5028 				"is too big.\n", mel_us);
5029 		return -E2BIG;
5030 	}
5031 	return mel_us;
5032 }
5033 
5034 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5035 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036 			struct usb_device *udev, enum usb3_link_state state)
5037 {
5038 	struct xhci_hcd	*xhci;
5039 	u16 hub_encoded_timeout;
5040 	int mel;
5041 	int ret;
5042 
5043 	xhci = hcd_to_xhci(hcd);
5044 	/* The LPM timeout values are pretty host-controller specific, so don't
5045 	 * enable hub-initiated timeouts unless the vendor has provided
5046 	 * information about their timeout algorithm.
5047 	 */
5048 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049 			!xhci->devs[udev->slot_id])
5050 		return USB3_LPM_DISABLED;
5051 
5052 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5053 		return USB3_LPM_DISABLED;
5054 
5055 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5056 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5057 	if (mel < 0) {
5058 		/* Max Exit Latency is too big, disable LPM. */
5059 		hub_encoded_timeout = USB3_LPM_DISABLED;
5060 		mel = 0;
5061 	}
5062 
5063 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5064 	if (ret)
5065 		return ret;
5066 	return hub_encoded_timeout;
5067 }
5068 
5069 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5070 			struct usb_device *udev, enum usb3_link_state state)
5071 {
5072 	struct xhci_hcd	*xhci;
5073 	u16 mel;
5074 
5075 	xhci = hcd_to_xhci(hcd);
5076 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5077 			!xhci->devs[udev->slot_id])
5078 		return 0;
5079 
5080 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5081 	return xhci_change_max_exit_latency(xhci, udev, mel);
5082 }
5083 #else /* CONFIG_PM */
5084 
5085 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5086 				struct usb_device *udev, int enable)
5087 {
5088 	return 0;
5089 }
5090 
5091 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5092 {
5093 	return 0;
5094 }
5095 
5096 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097 			struct usb_device *udev, enum usb3_link_state state)
5098 {
5099 	return USB3_LPM_DISABLED;
5100 }
5101 
5102 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5103 			struct usb_device *udev, enum usb3_link_state state)
5104 {
5105 	return 0;
5106 }
5107 #endif	/* CONFIG_PM */
5108 
5109 /*-------------------------------------------------------------------------*/
5110 
5111 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5112  * internal data structures for the device.
5113  */
5114 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5115 			struct usb_tt *tt, gfp_t mem_flags)
5116 {
5117 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5118 	struct xhci_virt_device *vdev;
5119 	struct xhci_command *config_cmd;
5120 	struct xhci_input_control_ctx *ctrl_ctx;
5121 	struct xhci_slot_ctx *slot_ctx;
5122 	unsigned long flags;
5123 	unsigned think_time;
5124 	int ret;
5125 
5126 	/* Ignore root hubs */
5127 	if (!hdev->parent)
5128 		return 0;
5129 
5130 	vdev = xhci->devs[hdev->slot_id];
5131 	if (!vdev) {
5132 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5133 		return -EINVAL;
5134 	}
5135 
5136 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5137 	if (!config_cmd)
5138 		return -ENOMEM;
5139 
5140 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5141 	if (!ctrl_ctx) {
5142 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5143 				__func__);
5144 		xhci_free_command(xhci, config_cmd);
5145 		return -ENOMEM;
5146 	}
5147 
5148 	spin_lock_irqsave(&xhci->lock, flags);
5149 	if (hdev->speed == USB_SPEED_HIGH &&
5150 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5151 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5152 		xhci_free_command(xhci, config_cmd);
5153 		spin_unlock_irqrestore(&xhci->lock, flags);
5154 		return -ENOMEM;
5155 	}
5156 
5157 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5158 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5159 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5160 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5161 	/*
5162 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5163 	 * but it may be already set to 1 when setup an xHCI virtual
5164 	 * device, so clear it anyway.
5165 	 */
5166 	if (tt->multi)
5167 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5168 	else if (hdev->speed == USB_SPEED_FULL)
5169 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5170 
5171 	if (xhci->hci_version > 0x95) {
5172 		xhci_dbg(xhci, "xHCI version %x needs hub "
5173 				"TT think time and number of ports\n",
5174 				(unsigned int) xhci->hci_version);
5175 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5176 		/* Set TT think time - convert from ns to FS bit times.
5177 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5178 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5179 		 *
5180 		 * xHCI 1.0: this field shall be 0 if the device is not a
5181 		 * High-spped hub.
5182 		 */
5183 		think_time = tt->think_time;
5184 		if (think_time != 0)
5185 			think_time = (think_time / 666) - 1;
5186 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5187 			slot_ctx->tt_info |=
5188 				cpu_to_le32(TT_THINK_TIME(think_time));
5189 	} else {
5190 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5191 				"TT think time or number of ports\n",
5192 				(unsigned int) xhci->hci_version);
5193 	}
5194 	slot_ctx->dev_state = 0;
5195 	spin_unlock_irqrestore(&xhci->lock, flags);
5196 
5197 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5198 			(xhci->hci_version > 0x95) ?
5199 			"configure endpoint" : "evaluate context");
5200 
5201 	/* Issue and wait for the configure endpoint or
5202 	 * evaluate context command.
5203 	 */
5204 	if (xhci->hci_version > 0x95)
5205 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5206 				false, false);
5207 	else
5208 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5209 				true, false);
5210 
5211 	xhci_free_command(xhci, config_cmd);
5212 	return ret;
5213 }
5214 
5215 static int xhci_get_frame(struct usb_hcd *hcd)
5216 {
5217 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5218 	/* EHCI mods by the periodic size.  Why? */
5219 	return readl(&xhci->run_regs->microframe_index) >> 3;
5220 }
5221 
5222 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5223 {
5224 	xhci->usb2_rhub.hcd = hcd;
5225 	hcd->speed = HCD_USB2;
5226 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227 	/*
5228 	 * USB 2.0 roothub under xHCI has an integrated TT,
5229 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5230 	 * companion controller.
5231 	 */
5232 	hcd->has_tt = 1;
5233 }
5234 
5235 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5236 {
5237 	unsigned int minor_rev;
5238 
5239 	/*
5240 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5241 	 * should return 0x31 for sbrn, or that the minor revision
5242 	 * is a two digit BCD containig minor and sub-minor numbers.
5243 	 * This was later clarified in xHCI 1.2.
5244 	 *
5245 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5246 	 * minor revision set to 0x1 instead of 0x10.
5247 	 */
5248 	if (xhci->usb3_rhub.min_rev == 0x1)
5249 		minor_rev = 1;
5250 	else
5251 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5252 
5253 	switch (minor_rev) {
5254 	case 2:
5255 		hcd->speed = HCD_USB32;
5256 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257 		hcd->self.root_hub->rx_lanes = 2;
5258 		hcd->self.root_hub->tx_lanes = 2;
5259 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5260 		break;
5261 	case 1:
5262 		hcd->speed = HCD_USB31;
5263 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5264 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5265 		break;
5266 	}
5267 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5268 		  minor_rev, minor_rev ? "Enhanced " : "");
5269 
5270 	xhci->usb3_rhub.hcd = hcd;
5271 }
5272 
5273 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5274 {
5275 	struct xhci_hcd		*xhci;
5276 	/*
5277 	 * TODO: Check with DWC3 clients for sysdev according to
5278 	 * quirks
5279 	 */
5280 	struct device		*dev = hcd->self.sysdev;
5281 	int			retval;
5282 
5283 	/* Accept arbitrarily long scatter-gather lists */
5284 	hcd->self.sg_tablesize = ~0;
5285 
5286 	/* support to build packet from discontinuous buffers */
5287 	hcd->self.no_sg_constraint = 1;
5288 
5289 	/* XHCI controllers don't stop the ep queue on short packets :| */
5290 	hcd->self.no_stop_on_short = 1;
5291 
5292 	xhci = hcd_to_xhci(hcd);
5293 
5294 	if (!usb_hcd_is_primary_hcd(hcd)) {
5295 		xhci_hcd_init_usb3_data(xhci, hcd);
5296 		return 0;
5297 	}
5298 
5299 	mutex_init(&xhci->mutex);
5300 	xhci->main_hcd = hcd;
5301 	xhci->cap_regs = hcd->regs;
5302 	xhci->op_regs = hcd->regs +
5303 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5304 	xhci->run_regs = hcd->regs +
5305 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5306 	/* Cache read-only capability registers */
5307 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5308 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5309 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5310 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5311 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5312 	if (xhci->hci_version > 0x100)
5313 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5314 
5315 	xhci->quirks |= quirks;
5316 
5317 	get_quirks(dev, xhci);
5318 
5319 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5320 	 * success event after a short transfer. This quirk will ignore such
5321 	 * spurious event.
5322 	 */
5323 	if (xhci->hci_version > 0x96)
5324 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5325 
5326 	/* Make sure the HC is halted. */
5327 	retval = xhci_halt(xhci);
5328 	if (retval)
5329 		return retval;
5330 
5331 	xhci_zero_64b_regs(xhci);
5332 
5333 	xhci_dbg(xhci, "Resetting HCD\n");
5334 	/* Reset the internal HC memory state and registers. */
5335 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5336 	if (retval)
5337 		return retval;
5338 	xhci_dbg(xhci, "Reset complete\n");
5339 
5340 	/*
5341 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5342 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5343 	 * address memory pointers actually. So, this driver clears the AC64
5344 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5345 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5346 	 */
5347 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5348 		xhci->hcc_params &= ~BIT(0);
5349 
5350 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5351 	 * if xHC supports 64-bit addressing */
5352 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5353 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5354 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5355 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5356 	} else {
5357 		/*
5358 		 * This is to avoid error in cases where a 32-bit USB
5359 		 * controller is used on a 64-bit capable system.
5360 		 */
5361 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5362 		if (retval)
5363 			return retval;
5364 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5365 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5366 	}
5367 
5368 	xhci_dbg(xhci, "Calling HCD init\n");
5369 	/* Initialize HCD and host controller data structures. */
5370 	retval = xhci_init(hcd);
5371 	if (retval)
5372 		return retval;
5373 	xhci_dbg(xhci, "Called HCD init\n");
5374 
5375 	if (xhci_hcd_is_usb3(hcd))
5376 		xhci_hcd_init_usb3_data(xhci, hcd);
5377 	else
5378 		xhci_hcd_init_usb2_data(xhci, hcd);
5379 
5380 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5381 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5382 
5383 	return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5386 
5387 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5388 		struct usb_host_endpoint *ep)
5389 {
5390 	struct xhci_hcd *xhci;
5391 	struct usb_device *udev;
5392 	unsigned int slot_id;
5393 	unsigned int ep_index;
5394 	unsigned long flags;
5395 
5396 	xhci = hcd_to_xhci(hcd);
5397 
5398 	spin_lock_irqsave(&xhci->lock, flags);
5399 	udev = (struct usb_device *)ep->hcpriv;
5400 	slot_id = udev->slot_id;
5401 	ep_index = xhci_get_endpoint_index(&ep->desc);
5402 
5403 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5404 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5405 	spin_unlock_irqrestore(&xhci->lock, flags);
5406 }
5407 
5408 static const struct hc_driver xhci_hc_driver = {
5409 	.description =		"xhci-hcd",
5410 	.product_desc =		"xHCI Host Controller",
5411 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5412 
5413 	/*
5414 	 * generic hardware linkage
5415 	 */
5416 	.irq =			xhci_irq,
5417 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5418 				HCD_BH,
5419 
5420 	/*
5421 	 * basic lifecycle operations
5422 	 */
5423 	.reset =		NULL, /* set in xhci_init_driver() */
5424 	.start =		xhci_run,
5425 	.stop =			xhci_stop,
5426 	.shutdown =		xhci_shutdown,
5427 
5428 	/*
5429 	 * managing i/o requests and associated device resources
5430 	 */
5431 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5432 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5433 	.urb_enqueue =		xhci_urb_enqueue,
5434 	.urb_dequeue =		xhci_urb_dequeue,
5435 	.alloc_dev =		xhci_alloc_dev,
5436 	.free_dev =		xhci_free_dev,
5437 	.alloc_streams =	xhci_alloc_streams,
5438 	.free_streams =		xhci_free_streams,
5439 	.add_endpoint =		xhci_add_endpoint,
5440 	.drop_endpoint =	xhci_drop_endpoint,
5441 	.endpoint_disable =	xhci_endpoint_disable,
5442 	.endpoint_reset =	xhci_endpoint_reset,
5443 	.check_bandwidth =	xhci_check_bandwidth,
5444 	.reset_bandwidth =	xhci_reset_bandwidth,
5445 	.address_device =	xhci_address_device,
5446 	.enable_device =	xhci_enable_device,
5447 	.update_hub_device =	xhci_update_hub_device,
5448 	.reset_device =		xhci_discover_or_reset_device,
5449 
5450 	/*
5451 	 * scheduling support
5452 	 */
5453 	.get_frame_number =	xhci_get_frame,
5454 
5455 	/*
5456 	 * root hub support
5457 	 */
5458 	.hub_control =		xhci_hub_control,
5459 	.hub_status_data =	xhci_hub_status_data,
5460 	.bus_suspend =		xhci_bus_suspend,
5461 	.bus_resume =		xhci_bus_resume,
5462 	.get_resuming_ports =	xhci_get_resuming_ports,
5463 
5464 	/*
5465 	 * call back when device connected and addressed
5466 	 */
5467 	.update_device =        xhci_update_device,
5468 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5469 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5470 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5471 	.find_raw_port_number =	xhci_find_raw_port_number,
5472 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5473 };
5474 
5475 void xhci_init_driver(struct hc_driver *drv,
5476 		      const struct xhci_driver_overrides *over)
5477 {
5478 	BUG_ON(!over);
5479 
5480 	/* Copy the generic table to drv then apply the overrides */
5481 	*drv = xhci_hc_driver;
5482 
5483 	if (over) {
5484 		drv->hcd_priv_size += over->extra_priv_size;
5485 		if (over->reset)
5486 			drv->reset = over->reset;
5487 		if (over->start)
5488 			drv->start = over->start;
5489 		if (over->add_endpoint)
5490 			drv->add_endpoint = over->add_endpoint;
5491 		if (over->drop_endpoint)
5492 			drv->drop_endpoint = over->drop_endpoint;
5493 		if (over->check_bandwidth)
5494 			drv->check_bandwidth = over->check_bandwidth;
5495 		if (over->reset_bandwidth)
5496 			drv->reset_bandwidth = over->reset_bandwidth;
5497 	}
5498 }
5499 EXPORT_SYMBOL_GPL(xhci_init_driver);
5500 
5501 MODULE_DESCRIPTION(DRIVER_DESC);
5502 MODULE_AUTHOR(DRIVER_AUTHOR);
5503 MODULE_LICENSE("GPL");
5504 
5505 static int __init xhci_hcd_init(void)
5506 {
5507 	/*
5508 	 * Check the compiler generated sizes of structures that must be laid
5509 	 * out in specific ways for hardware access.
5510 	 */
5511 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5512 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5513 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5514 	/* xhci_device_control has eight fields, and also
5515 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5516 	 */
5517 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5518 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5519 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5520 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5521 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5522 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5523 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5524 
5525 	if (usb_disabled())
5526 		return -ENODEV;
5527 
5528 	xhci_debugfs_create_root();
5529 	xhci_dbc_init();
5530 
5531 	return 0;
5532 }
5533 
5534 /*
5535  * If an init function is provided, an exit function must also be provided
5536  * to allow module unload.
5537  */
5538 static void __exit xhci_hcd_fini(void)
5539 {
5540 	xhci_debugfs_remove_root();
5541 	xhci_dbc_exit();
5542 }
5543 
5544 module_init(xhci_hcd_init);
5545 module_exit(xhci_hcd_fini);
5546