1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 } 793 EXPORT_SYMBOL_GPL(xhci_shutdown); 794 795 #ifdef CONFIG_PM 796 static void xhci_save_registers(struct xhci_hcd *xhci) 797 { 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 807 } 808 809 static void xhci_restore_registers(struct xhci_hcd *xhci) 810 { 811 writel(xhci->s3.command, &xhci->op_regs->command); 812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 820 } 821 822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 823 { 824 u64 val_64; 825 826 /* step 2: initialize command ring buffer */ 827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 830 xhci->cmd_ring->dequeue) & 831 (u64) ~CMD_RING_RSVD_BITS) | 832 xhci->cmd_ring->cycle_state; 833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 834 "// Setting command ring address to 0x%llx", 835 (long unsigned long) val_64); 836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 837 } 838 839 /* 840 * The whole command ring must be cleared to zero when we suspend the host. 841 * 842 * The host doesn't save the command ring pointer in the suspend well, so we 843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 844 * aligned, because of the reserved bits in the command ring dequeue pointer 845 * register. Therefore, we can't just set the dequeue pointer back in the 846 * middle of the ring (TRBs are 16-byte aligned). 847 */ 848 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 849 { 850 struct xhci_ring *ring; 851 struct xhci_segment *seg; 852 853 ring = xhci->cmd_ring; 854 seg = ring->deq_seg; 855 do { 856 memset(seg->trbs, 0, 857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 859 cpu_to_le32(~TRB_CYCLE); 860 seg = seg->next; 861 } while (seg != ring->deq_seg); 862 863 /* Reset the software enqueue and dequeue pointers */ 864 ring->deq_seg = ring->first_seg; 865 ring->dequeue = ring->first_seg->trbs; 866 ring->enq_seg = ring->deq_seg; 867 ring->enqueue = ring->dequeue; 868 869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 870 /* 871 * Ring is now zeroed, so the HW should look for change of ownership 872 * when the cycle bit is set to 1. 873 */ 874 ring->cycle_state = 1; 875 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 887 { 888 struct xhci_port **ports; 889 int port_index; 890 unsigned long flags; 891 u32 t1, t2, portsc; 892 893 spin_lock_irqsave(&xhci->lock, flags); 894 895 /* disable usb3 ports Wake bits */ 896 port_index = xhci->usb3_rhub.num_ports; 897 ports = xhci->usb3_rhub.ports; 898 while (port_index--) { 899 t1 = readl(ports[port_index]->addr); 900 portsc = t1; 901 t1 = xhci_port_state_to_neutral(t1); 902 t2 = t1 & ~PORT_WAKE_BITS; 903 if (t1 != t2) { 904 writel(t2, ports[port_index]->addr); 905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 906 xhci->usb3_rhub.hcd->self.busnum, 907 port_index + 1, portsc, t2); 908 } 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 portsc = t1; 917 t1 = xhci_port_state_to_neutral(t1); 918 t2 = t1 & ~PORT_WAKE_BITS; 919 if (t1 != t2) { 920 writel(t2, ports[port_index]->addr); 921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 922 xhci->usb2_rhub.hcd->self.busnum, 923 port_index + 1, portsc, t2); 924 } 925 } 926 spin_unlock_irqrestore(&xhci->lock, flags); 927 } 928 929 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 930 { 931 struct xhci_port **ports; 932 int port_index; 933 u32 status; 934 u32 portsc; 935 936 status = readl(&xhci->op_regs->status); 937 if (status & STS_EINT) 938 return true; 939 /* 940 * Checking STS_EINT is not enough as there is a lag between a change 941 * bit being set and the Port Status Change Event that it generated 942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 943 */ 944 945 port_index = xhci->usb2_rhub.num_ports; 946 ports = xhci->usb2_rhub.ports; 947 while (port_index--) { 948 portsc = readl(ports[port_index]->addr); 949 if (portsc & PORT_CHANGE_MASK || 950 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 951 return true; 952 } 953 port_index = xhci->usb3_rhub.num_ports; 954 ports = xhci->usb3_rhub.ports; 955 while (port_index--) { 956 portsc = readl(ports[port_index]->addr); 957 if (portsc & PORT_CHANGE_MASK || 958 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 959 return true; 960 } 961 return false; 962 } 963 964 /* 965 * Stop HC (not bus-specific) 966 * 967 * This is called when the machine transition into S3/S4 mode. 968 * 969 */ 970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 971 { 972 int rc = 0; 973 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 974 struct usb_hcd *hcd = xhci_to_hcd(xhci); 975 u32 command; 976 u32 res; 977 978 if (!hcd->state) 979 return 0; 980 981 if (hcd->state != HC_STATE_SUSPENDED || 982 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 983 return -EINVAL; 984 985 /* Clear root port wake on bits if wakeup not allowed. */ 986 if (!do_wakeup) 987 xhci_disable_port_wake_on_bits(xhci); 988 989 if (!HCD_HW_ACCESSIBLE(hcd)) 990 return 0; 991 992 xhci_dbc_suspend(xhci); 993 994 /* Don't poll the roothubs on bus suspend. */ 995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 997 del_timer_sync(&hcd->rh_timer); 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 del_timer_sync(&xhci->shared_hcd->rh_timer); 1000 1001 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1002 usleep_range(1000, 1500); 1003 1004 spin_lock_irq(&xhci->lock); 1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 /* step 1: stop endpoint */ 1008 /* skipped assuming that port suspend has done */ 1009 1010 /* step 2: clear Run/Stop bit */ 1011 command = readl(&xhci->op_regs->command); 1012 command &= ~CMD_RUN; 1013 writel(command, &xhci->op_regs->command); 1014 1015 /* Some chips from Fresco Logic need an extraordinary delay */ 1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1017 1018 if (xhci_handshake(&xhci->op_regs->status, 1019 STS_HALT, STS_HALT, delay)) { 1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1021 spin_unlock_irq(&xhci->lock); 1022 return -ETIMEDOUT; 1023 } 1024 xhci_clear_command_ring(xhci); 1025 1026 /* step 3: save registers */ 1027 xhci_save_registers(xhci); 1028 1029 /* step 4: set CSS flag */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_CSS; 1032 writel(command, &xhci->op_regs->command); 1033 xhci->broken_suspend = 0; 1034 if (xhci_handshake(&xhci->op_regs->status, 1035 STS_SAVE, 0, 20 * 1000)) { 1036 /* 1037 * AMD SNPS xHC 3.0 occasionally does not clear the 1038 * SSS bit of USBSTS and when driver tries to poll 1039 * to see if the xHC clears BIT(8) which never happens 1040 * and driver assumes that controller is not responding 1041 * and times out. To workaround this, its good to check 1042 * if SRE and HCE bits are not set (as per xhci 1043 * Section 5.4.2) and bypass the timeout. 1044 */ 1045 res = readl(&xhci->op_regs->status); 1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1047 (((res & STS_SRE) == 0) && 1048 ((res & STS_HCE) == 0))) { 1049 xhci->broken_suspend = 1; 1050 } else { 1051 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1052 spin_unlock_irq(&xhci->lock); 1053 return -ETIMEDOUT; 1054 } 1055 } 1056 spin_unlock_irq(&xhci->lock); 1057 1058 /* 1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1060 * is about to be suspended. 1061 */ 1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1063 (!(xhci_all_ports_seen_u0(xhci)))) { 1064 del_timer_sync(&xhci->comp_mode_recovery_timer); 1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1066 "%s: compliance mode recovery timer deleted", 1067 __func__); 1068 } 1069 1070 /* step 5: remove core well power */ 1071 /* synchronize irq when using MSI-X */ 1072 xhci_msix_sync_irqs(xhci); 1073 1074 return rc; 1075 } 1076 EXPORT_SYMBOL_GPL(xhci_suspend); 1077 1078 /* 1079 * start xHC (not bus-specific) 1080 * 1081 * This is called when the machine transition from S3/S4 mode. 1082 * 1083 */ 1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1085 { 1086 u32 command, temp = 0; 1087 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1088 struct usb_hcd *secondary_hcd; 1089 int retval = 0; 1090 bool comp_timer_running = false; 1091 1092 if (!hcd->state) 1093 return 0; 1094 1095 /* Wait a bit if either of the roothubs need to settle from the 1096 * transition into bus suspend. 1097 */ 1098 1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1101 msleep(100); 1102 1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1108 hibernated = true; 1109 1110 if (!hibernated) { 1111 /* 1112 * Some controllers might lose power during suspend, so wait 1113 * for controller not ready bit to clear, just as in xHC init. 1114 */ 1115 retval = xhci_handshake(&xhci->op_regs->status, 1116 STS_CNR, 0, 10 * 1000 * 1000); 1117 if (retval) { 1118 xhci_warn(xhci, "Controller not ready at resume %d\n", 1119 retval); 1120 spin_unlock_irq(&xhci->lock); 1121 return retval; 1122 } 1123 /* step 1: restore register */ 1124 xhci_restore_registers(xhci); 1125 /* step 2: initialize command ring buffer */ 1126 xhci_set_cmd_ring_deq(xhci); 1127 /* step 3: restore state and start state*/ 1128 /* step 3: set CRS flag */ 1129 command = readl(&xhci->op_regs->command); 1130 command |= CMD_CRS; 1131 writel(command, &xhci->op_regs->command); 1132 /* 1133 * Some controllers take up to 55+ ms to complete the controller 1134 * restore so setting the timeout to 100ms. Xhci specification 1135 * doesn't mention any timeout value. 1136 */ 1137 if (xhci_handshake(&xhci->op_regs->status, 1138 STS_RESTORE, 0, 100 * 1000)) { 1139 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1140 spin_unlock_irq(&xhci->lock); 1141 return -ETIMEDOUT; 1142 } 1143 temp = readl(&xhci->op_regs->status); 1144 } 1145 1146 /* If restore operation fails, re-initialize the HC during resume */ 1147 if ((temp & STS_SRE) || hibernated) { 1148 1149 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1150 !(xhci_all_ports_seen_u0(xhci))) { 1151 del_timer_sync(&xhci->comp_mode_recovery_timer); 1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1153 "Compliance Mode Recovery Timer deleted!"); 1154 } 1155 1156 /* Let the USB core know _both_ roothubs lost power. */ 1157 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1159 1160 xhci_dbg(xhci, "Stop HCD\n"); 1161 xhci_halt(xhci); 1162 xhci_zero_64b_regs(xhci); 1163 retval = xhci_reset(xhci); 1164 spin_unlock_irq(&xhci->lock); 1165 if (retval) 1166 return retval; 1167 xhci_cleanup_msix(xhci); 1168 1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1170 temp = readl(&xhci->op_regs->status); 1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1172 temp = readl(&xhci->ir_set->irq_pending); 1173 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1174 1175 xhci_dbg(xhci, "cleaning up memory\n"); 1176 xhci_mem_cleanup(xhci); 1177 xhci_debugfs_exit(xhci); 1178 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1179 readl(&xhci->op_regs->status)); 1180 1181 /* USB core calls the PCI reinit and start functions twice: 1182 * first with the primary HCD, and then with the secondary HCD. 1183 * If we don't do the same, the host will never be started. 1184 */ 1185 if (!usb_hcd_is_primary_hcd(hcd)) 1186 secondary_hcd = hcd; 1187 else 1188 secondary_hcd = xhci->shared_hcd; 1189 1190 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1191 retval = xhci_init(hcd->primary_hcd); 1192 if (retval) 1193 return retval; 1194 comp_timer_running = true; 1195 1196 xhci_dbg(xhci, "Start the primary HCD\n"); 1197 retval = xhci_run(hcd->primary_hcd); 1198 if (!retval) { 1199 xhci_dbg(xhci, "Start the secondary HCD\n"); 1200 retval = xhci_run(secondary_hcd); 1201 } 1202 hcd->state = HC_STATE_SUSPENDED; 1203 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1204 goto done; 1205 } 1206 1207 /* step 4: set Run/Stop bit */ 1208 command = readl(&xhci->op_regs->command); 1209 command |= CMD_RUN; 1210 writel(command, &xhci->op_regs->command); 1211 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1212 0, 250 * 1000); 1213 1214 /* step 5: walk topology and initialize portsc, 1215 * portpmsc and portli 1216 */ 1217 /* this is done in bus_resume */ 1218 1219 /* step 6: restart each of the previously 1220 * Running endpoints by ringing their doorbells 1221 */ 1222 1223 spin_unlock_irq(&xhci->lock); 1224 1225 xhci_dbc_resume(xhci); 1226 1227 done: 1228 if (retval == 0) { 1229 /* Resume root hubs only when have pending events. */ 1230 if (xhci_pending_portevent(xhci)) { 1231 usb_hcd_resume_root_hub(xhci->shared_hcd); 1232 usb_hcd_resume_root_hub(hcd); 1233 } 1234 } 1235 1236 /* 1237 * If system is subject to the Quirk, Compliance Mode Timer needs to 1238 * be re-initialized Always after a system resume. Ports are subject 1239 * to suffer the Compliance Mode issue again. It doesn't matter if 1240 * ports have entered previously to U0 before system's suspension. 1241 */ 1242 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1243 compliance_mode_recovery_timer_init(xhci); 1244 1245 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1246 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1247 1248 /* Re-enable port polling. */ 1249 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1250 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1251 usb_hcd_poll_rh_status(xhci->shared_hcd); 1252 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1253 usb_hcd_poll_rh_status(hcd); 1254 1255 return retval; 1256 } 1257 EXPORT_SYMBOL_GPL(xhci_resume); 1258 #endif /* CONFIG_PM */ 1259 1260 /*-------------------------------------------------------------------------*/ 1261 1262 /* 1263 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1264 * we'll copy the actual data into the TRB address register. This is limited to 1265 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1266 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1267 */ 1268 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1269 gfp_t mem_flags) 1270 { 1271 if (xhci_urb_suitable_for_idt(urb)) 1272 return 0; 1273 1274 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1275 } 1276 1277 /* 1278 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1279 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1280 * value to right shift 1 for the bitmask. 1281 * 1282 * Index = (epnum * 2) + direction - 1, 1283 * where direction = 0 for OUT, 1 for IN. 1284 * For control endpoints, the IN index is used (OUT index is unused), so 1285 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1286 */ 1287 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1288 { 1289 unsigned int index; 1290 if (usb_endpoint_xfer_control(desc)) 1291 index = (unsigned int) (usb_endpoint_num(desc)*2); 1292 else 1293 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1294 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1295 return index; 1296 } 1297 1298 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1299 * address from the XHCI endpoint index. 1300 */ 1301 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1302 { 1303 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1304 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1305 return direction | number; 1306 } 1307 1308 /* Find the flag for this endpoint (for use in the control context). Use the 1309 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1310 * bit 1, etc. 1311 */ 1312 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1313 { 1314 return 1 << (xhci_get_endpoint_index(desc) + 1); 1315 } 1316 1317 /* Find the flag for this endpoint (for use in the control context). Use the 1318 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1319 * bit 1, etc. 1320 */ 1321 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1322 { 1323 return 1 << (ep_index + 1); 1324 } 1325 1326 /* Compute the last valid endpoint context index. Basically, this is the 1327 * endpoint index plus one. For slot contexts with more than valid endpoint, 1328 * we find the most significant bit set in the added contexts flags. 1329 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1330 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1331 */ 1332 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1333 { 1334 return fls(added_ctxs) - 1; 1335 } 1336 1337 /* Returns 1 if the arguments are OK; 1338 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1339 */ 1340 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1341 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1342 const char *func) { 1343 struct xhci_hcd *xhci; 1344 struct xhci_virt_device *virt_dev; 1345 1346 if (!hcd || (check_ep && !ep) || !udev) { 1347 pr_debug("xHCI %s called with invalid args\n", func); 1348 return -EINVAL; 1349 } 1350 if (!udev->parent) { 1351 pr_debug("xHCI %s called for root hub\n", func); 1352 return 0; 1353 } 1354 1355 xhci = hcd_to_xhci(hcd); 1356 if (check_virt_dev) { 1357 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1358 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1359 func); 1360 return -EINVAL; 1361 } 1362 1363 virt_dev = xhci->devs[udev->slot_id]; 1364 if (virt_dev->udev != udev) { 1365 xhci_dbg(xhci, "xHCI %s called with udev and " 1366 "virt_dev does not match\n", func); 1367 return -EINVAL; 1368 } 1369 } 1370 1371 if (xhci->xhc_state & XHCI_STATE_HALTED) 1372 return -ENODEV; 1373 1374 return 1; 1375 } 1376 1377 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1378 struct usb_device *udev, struct xhci_command *command, 1379 bool ctx_change, bool must_succeed); 1380 1381 /* 1382 * Full speed devices may have a max packet size greater than 8 bytes, but the 1383 * USB core doesn't know that until it reads the first 8 bytes of the 1384 * descriptor. If the usb_device's max packet size changes after that point, 1385 * we need to issue an evaluate context command and wait on it. 1386 */ 1387 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1388 unsigned int ep_index, struct urb *urb) 1389 { 1390 struct xhci_container_ctx *out_ctx; 1391 struct xhci_input_control_ctx *ctrl_ctx; 1392 struct xhci_ep_ctx *ep_ctx; 1393 struct xhci_command *command; 1394 int max_packet_size; 1395 int hw_max_packet_size; 1396 int ret = 0; 1397 1398 out_ctx = xhci->devs[slot_id]->out_ctx; 1399 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1400 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1401 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1402 if (hw_max_packet_size != max_packet_size) { 1403 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1404 "Max Packet Size for ep 0 changed."); 1405 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1406 "Max packet size in usb_device = %d", 1407 max_packet_size); 1408 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1409 "Max packet size in xHCI HW = %d", 1410 hw_max_packet_size); 1411 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1412 "Issuing evaluate context command."); 1413 1414 /* Set up the input context flags for the command */ 1415 /* FIXME: This won't work if a non-default control endpoint 1416 * changes max packet sizes. 1417 */ 1418 1419 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1420 if (!command) 1421 return -ENOMEM; 1422 1423 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1424 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1425 if (!ctrl_ctx) { 1426 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1427 __func__); 1428 ret = -ENOMEM; 1429 goto command_cleanup; 1430 } 1431 /* Set up the modified control endpoint 0 */ 1432 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1433 xhci->devs[slot_id]->out_ctx, ep_index); 1434 1435 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1436 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1437 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1438 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1439 1440 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1441 ctrl_ctx->drop_flags = 0; 1442 1443 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1444 true, false); 1445 1446 /* Clean up the input context for later use by bandwidth 1447 * functions. 1448 */ 1449 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1450 command_cleanup: 1451 kfree(command->completion); 1452 kfree(command); 1453 } 1454 return ret; 1455 } 1456 1457 /* 1458 * non-error returns are a promise to giveback() the urb later 1459 * we drop ownership so next owner (or urb unlink) can get it 1460 */ 1461 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1462 { 1463 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1464 unsigned long flags; 1465 int ret = 0; 1466 unsigned int slot_id, ep_index; 1467 unsigned int *ep_state; 1468 struct urb_priv *urb_priv; 1469 int num_tds; 1470 1471 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1472 true, true, __func__) <= 0) 1473 return -EINVAL; 1474 1475 slot_id = urb->dev->slot_id; 1476 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1477 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1478 1479 if (!HCD_HW_ACCESSIBLE(hcd)) { 1480 if (!in_interrupt()) 1481 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1482 return -ESHUTDOWN; 1483 } 1484 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1485 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1486 return -ENODEV; 1487 } 1488 1489 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1490 num_tds = urb->number_of_packets; 1491 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1492 urb->transfer_buffer_length > 0 && 1493 urb->transfer_flags & URB_ZERO_PACKET && 1494 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1495 num_tds = 2; 1496 else 1497 num_tds = 1; 1498 1499 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1500 if (!urb_priv) 1501 return -ENOMEM; 1502 1503 urb_priv->num_tds = num_tds; 1504 urb_priv->num_tds_done = 0; 1505 urb->hcpriv = urb_priv; 1506 1507 trace_xhci_urb_enqueue(urb); 1508 1509 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1510 /* Check to see if the max packet size for the default control 1511 * endpoint changed during FS device enumeration 1512 */ 1513 if (urb->dev->speed == USB_SPEED_FULL) { 1514 ret = xhci_check_maxpacket(xhci, slot_id, 1515 ep_index, urb); 1516 if (ret < 0) { 1517 xhci_urb_free_priv(urb_priv); 1518 urb->hcpriv = NULL; 1519 return ret; 1520 } 1521 } 1522 } 1523 1524 spin_lock_irqsave(&xhci->lock, flags); 1525 1526 if (xhci->xhc_state & XHCI_STATE_DYING) { 1527 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1528 urb->ep->desc.bEndpointAddress, urb); 1529 ret = -ESHUTDOWN; 1530 goto free_priv; 1531 } 1532 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1533 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1534 *ep_state); 1535 ret = -EINVAL; 1536 goto free_priv; 1537 } 1538 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1539 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1540 ret = -EINVAL; 1541 goto free_priv; 1542 } 1543 1544 switch (usb_endpoint_type(&urb->ep->desc)) { 1545 1546 case USB_ENDPOINT_XFER_CONTROL: 1547 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1548 slot_id, ep_index); 1549 break; 1550 case USB_ENDPOINT_XFER_BULK: 1551 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1552 slot_id, ep_index); 1553 break; 1554 case USB_ENDPOINT_XFER_INT: 1555 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1556 slot_id, ep_index); 1557 break; 1558 case USB_ENDPOINT_XFER_ISOC: 1559 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1560 slot_id, ep_index); 1561 } 1562 1563 if (ret) { 1564 free_priv: 1565 xhci_urb_free_priv(urb_priv); 1566 urb->hcpriv = NULL; 1567 } 1568 spin_unlock_irqrestore(&xhci->lock, flags); 1569 return ret; 1570 } 1571 1572 /* 1573 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1574 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1575 * should pick up where it left off in the TD, unless a Set Transfer Ring 1576 * Dequeue Pointer is issued. 1577 * 1578 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1579 * the ring. Since the ring is a contiguous structure, they can't be physically 1580 * removed. Instead, there are two options: 1581 * 1582 * 1) If the HC is in the middle of processing the URB to be canceled, we 1583 * simply move the ring's dequeue pointer past those TRBs using the Set 1584 * Transfer Ring Dequeue Pointer command. This will be the common case, 1585 * when drivers timeout on the last submitted URB and attempt to cancel. 1586 * 1587 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1588 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1589 * HC will need to invalidate the any TRBs it has cached after the stop 1590 * endpoint command, as noted in the xHCI 0.95 errata. 1591 * 1592 * 3) The TD may have completed by the time the Stop Endpoint Command 1593 * completes, so software needs to handle that case too. 1594 * 1595 * This function should protect against the TD enqueueing code ringing the 1596 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1597 * It also needs to account for multiple cancellations on happening at the same 1598 * time for the same endpoint. 1599 * 1600 * Note that this function can be called in any context, or so says 1601 * usb_hcd_unlink_urb() 1602 */ 1603 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1604 { 1605 unsigned long flags; 1606 int ret, i; 1607 u32 temp; 1608 struct xhci_hcd *xhci; 1609 struct urb_priv *urb_priv; 1610 struct xhci_td *td; 1611 unsigned int ep_index; 1612 struct xhci_ring *ep_ring; 1613 struct xhci_virt_ep *ep; 1614 struct xhci_command *command; 1615 struct xhci_virt_device *vdev; 1616 1617 xhci = hcd_to_xhci(hcd); 1618 spin_lock_irqsave(&xhci->lock, flags); 1619 1620 trace_xhci_urb_dequeue(urb); 1621 1622 /* Make sure the URB hasn't completed or been unlinked already */ 1623 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1624 if (ret) 1625 goto done; 1626 1627 /* give back URB now if we can't queue it for cancel */ 1628 vdev = xhci->devs[urb->dev->slot_id]; 1629 urb_priv = urb->hcpriv; 1630 if (!vdev || !urb_priv) 1631 goto err_giveback; 1632 1633 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1634 ep = &vdev->eps[ep_index]; 1635 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1636 if (!ep || !ep_ring) 1637 goto err_giveback; 1638 1639 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1640 temp = readl(&xhci->op_regs->status); 1641 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1642 xhci_hc_died(xhci); 1643 goto done; 1644 } 1645 1646 /* 1647 * check ring is not re-allocated since URB was enqueued. If it is, then 1648 * make sure none of the ring related pointers in this URB private data 1649 * are touched, such as td_list, otherwise we overwrite freed data 1650 */ 1651 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1652 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1653 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1654 td = &urb_priv->td[i]; 1655 if (!list_empty(&td->cancelled_td_list)) 1656 list_del_init(&td->cancelled_td_list); 1657 } 1658 goto err_giveback; 1659 } 1660 1661 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1662 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1663 "HC halted, freeing TD manually."); 1664 for (i = urb_priv->num_tds_done; 1665 i < urb_priv->num_tds; 1666 i++) { 1667 td = &urb_priv->td[i]; 1668 if (!list_empty(&td->td_list)) 1669 list_del_init(&td->td_list); 1670 if (!list_empty(&td->cancelled_td_list)) 1671 list_del_init(&td->cancelled_td_list); 1672 } 1673 goto err_giveback; 1674 } 1675 1676 i = urb_priv->num_tds_done; 1677 if (i < urb_priv->num_tds) 1678 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1679 "Cancel URB %p, dev %s, ep 0x%x, " 1680 "starting at offset 0x%llx", 1681 urb, urb->dev->devpath, 1682 urb->ep->desc.bEndpointAddress, 1683 (unsigned long long) xhci_trb_virt_to_dma( 1684 urb_priv->td[i].start_seg, 1685 urb_priv->td[i].first_trb)); 1686 1687 for (; i < urb_priv->num_tds; i++) { 1688 td = &urb_priv->td[i]; 1689 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1690 } 1691 1692 /* Queue a stop endpoint command, but only if this is 1693 * the first cancellation to be handled. 1694 */ 1695 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1696 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1697 if (!command) { 1698 ret = -ENOMEM; 1699 goto done; 1700 } 1701 ep->ep_state |= EP_STOP_CMD_PENDING; 1702 ep->stop_cmd_timer.expires = jiffies + 1703 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1704 add_timer(&ep->stop_cmd_timer); 1705 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1706 ep_index, 0); 1707 xhci_ring_cmd_db(xhci); 1708 } 1709 done: 1710 spin_unlock_irqrestore(&xhci->lock, flags); 1711 return ret; 1712 1713 err_giveback: 1714 if (urb_priv) 1715 xhci_urb_free_priv(urb_priv); 1716 usb_hcd_unlink_urb_from_ep(hcd, urb); 1717 spin_unlock_irqrestore(&xhci->lock, flags); 1718 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1719 return ret; 1720 } 1721 1722 /* Drop an endpoint from a new bandwidth configuration for this device. 1723 * Only one call to this function is allowed per endpoint before 1724 * check_bandwidth() or reset_bandwidth() must be called. 1725 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1726 * add the endpoint to the schedule with possibly new parameters denoted by a 1727 * different endpoint descriptor in usb_host_endpoint. 1728 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1729 * not allowed. 1730 * 1731 * The USB core will not allow URBs to be queued to an endpoint that is being 1732 * disabled, so there's no need for mutual exclusion to protect 1733 * the xhci->devs[slot_id] structure. 1734 */ 1735 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1736 struct usb_host_endpoint *ep) 1737 { 1738 struct xhci_hcd *xhci; 1739 struct xhci_container_ctx *in_ctx, *out_ctx; 1740 struct xhci_input_control_ctx *ctrl_ctx; 1741 unsigned int ep_index; 1742 struct xhci_ep_ctx *ep_ctx; 1743 u32 drop_flag; 1744 u32 new_add_flags, new_drop_flags; 1745 int ret; 1746 1747 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1748 if (ret <= 0) 1749 return ret; 1750 xhci = hcd_to_xhci(hcd); 1751 if (xhci->xhc_state & XHCI_STATE_DYING) 1752 return -ENODEV; 1753 1754 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1755 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1756 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1757 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1758 __func__, drop_flag); 1759 return 0; 1760 } 1761 1762 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1763 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1764 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1765 if (!ctrl_ctx) { 1766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1767 __func__); 1768 return 0; 1769 } 1770 1771 ep_index = xhci_get_endpoint_index(&ep->desc); 1772 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1773 /* If the HC already knows the endpoint is disabled, 1774 * or the HCD has noted it is disabled, ignore this request 1775 */ 1776 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1777 le32_to_cpu(ctrl_ctx->drop_flags) & 1778 xhci_get_endpoint_flag(&ep->desc)) { 1779 /* Do not warn when called after a usb_device_reset */ 1780 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1781 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1782 __func__, ep); 1783 return 0; 1784 } 1785 1786 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1787 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1788 1789 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1790 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1791 1792 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1793 1794 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1795 1796 if (xhci->quirks & XHCI_MTK_HOST) 1797 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1798 1799 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1800 (unsigned int) ep->desc.bEndpointAddress, 1801 udev->slot_id, 1802 (unsigned int) new_drop_flags, 1803 (unsigned int) new_add_flags); 1804 return 0; 1805 } 1806 1807 /* Add an endpoint to a new possible bandwidth configuration for this device. 1808 * Only one call to this function is allowed per endpoint before 1809 * check_bandwidth() or reset_bandwidth() must be called. 1810 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1811 * add the endpoint to the schedule with possibly new parameters denoted by a 1812 * different endpoint descriptor in usb_host_endpoint. 1813 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1814 * not allowed. 1815 * 1816 * The USB core will not allow URBs to be queued to an endpoint until the 1817 * configuration or alt setting is installed in the device, so there's no need 1818 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1819 */ 1820 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1821 struct usb_host_endpoint *ep) 1822 { 1823 struct xhci_hcd *xhci; 1824 struct xhci_container_ctx *in_ctx; 1825 unsigned int ep_index; 1826 struct xhci_input_control_ctx *ctrl_ctx; 1827 struct xhci_ep_ctx *ep_ctx; 1828 u32 added_ctxs; 1829 u32 new_add_flags, new_drop_flags; 1830 struct xhci_virt_device *virt_dev; 1831 int ret = 0; 1832 1833 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1834 if (ret <= 0) { 1835 /* So we won't queue a reset ep command for a root hub */ 1836 ep->hcpriv = NULL; 1837 return ret; 1838 } 1839 xhci = hcd_to_xhci(hcd); 1840 if (xhci->xhc_state & XHCI_STATE_DYING) 1841 return -ENODEV; 1842 1843 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1844 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1845 /* FIXME when we have to issue an evaluate endpoint command to 1846 * deal with ep0 max packet size changing once we get the 1847 * descriptors 1848 */ 1849 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1850 __func__, added_ctxs); 1851 return 0; 1852 } 1853 1854 virt_dev = xhci->devs[udev->slot_id]; 1855 in_ctx = virt_dev->in_ctx; 1856 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1857 if (!ctrl_ctx) { 1858 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1859 __func__); 1860 return 0; 1861 } 1862 1863 ep_index = xhci_get_endpoint_index(&ep->desc); 1864 /* If this endpoint is already in use, and the upper layers are trying 1865 * to add it again without dropping it, reject the addition. 1866 */ 1867 if (virt_dev->eps[ep_index].ring && 1868 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1869 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1870 "without dropping it.\n", 1871 (unsigned int) ep->desc.bEndpointAddress); 1872 return -EINVAL; 1873 } 1874 1875 /* If the HCD has already noted the endpoint is enabled, 1876 * ignore this request. 1877 */ 1878 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1879 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1880 __func__, ep); 1881 return 0; 1882 } 1883 1884 /* 1885 * Configuration and alternate setting changes must be done in 1886 * process context, not interrupt context (or so documenation 1887 * for usb_set_interface() and usb_set_configuration() claim). 1888 */ 1889 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1890 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1891 __func__, ep->desc.bEndpointAddress); 1892 return -ENOMEM; 1893 } 1894 1895 if (xhci->quirks & XHCI_MTK_HOST) { 1896 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1897 if (ret < 0) { 1898 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1899 virt_dev->eps[ep_index].new_ring = NULL; 1900 return ret; 1901 } 1902 } 1903 1904 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1905 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1906 1907 /* If xhci_endpoint_disable() was called for this endpoint, but the 1908 * xHC hasn't been notified yet through the check_bandwidth() call, 1909 * this re-adds a new state for the endpoint from the new endpoint 1910 * descriptors. We must drop and re-add this endpoint, so we leave the 1911 * drop flags alone. 1912 */ 1913 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1914 1915 /* Store the usb_device pointer for later use */ 1916 ep->hcpriv = udev; 1917 1918 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1919 trace_xhci_add_endpoint(ep_ctx); 1920 1921 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1922 (unsigned int) ep->desc.bEndpointAddress, 1923 udev->slot_id, 1924 (unsigned int) new_drop_flags, 1925 (unsigned int) new_add_flags); 1926 return 0; 1927 } 1928 1929 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1930 { 1931 struct xhci_input_control_ctx *ctrl_ctx; 1932 struct xhci_ep_ctx *ep_ctx; 1933 struct xhci_slot_ctx *slot_ctx; 1934 int i; 1935 1936 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1937 if (!ctrl_ctx) { 1938 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1939 __func__); 1940 return; 1941 } 1942 1943 /* When a device's add flag and drop flag are zero, any subsequent 1944 * configure endpoint command will leave that endpoint's state 1945 * untouched. Make sure we don't leave any old state in the input 1946 * endpoint contexts. 1947 */ 1948 ctrl_ctx->drop_flags = 0; 1949 ctrl_ctx->add_flags = 0; 1950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1951 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1952 /* Endpoint 0 is always valid */ 1953 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1954 for (i = 1; i < 31; i++) { 1955 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1956 ep_ctx->ep_info = 0; 1957 ep_ctx->ep_info2 = 0; 1958 ep_ctx->deq = 0; 1959 ep_ctx->tx_info = 0; 1960 } 1961 } 1962 1963 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1964 struct usb_device *udev, u32 *cmd_status) 1965 { 1966 int ret; 1967 1968 switch (*cmd_status) { 1969 case COMP_COMMAND_ABORTED: 1970 case COMP_COMMAND_RING_STOPPED: 1971 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1972 ret = -ETIME; 1973 break; 1974 case COMP_RESOURCE_ERROR: 1975 dev_warn(&udev->dev, 1976 "Not enough host controller resources for new device state.\n"); 1977 ret = -ENOMEM; 1978 /* FIXME: can we allocate more resources for the HC? */ 1979 break; 1980 case COMP_BANDWIDTH_ERROR: 1981 case COMP_SECONDARY_BANDWIDTH_ERROR: 1982 dev_warn(&udev->dev, 1983 "Not enough bandwidth for new device state.\n"); 1984 ret = -ENOSPC; 1985 /* FIXME: can we go back to the old state? */ 1986 break; 1987 case COMP_TRB_ERROR: 1988 /* the HCD set up something wrong */ 1989 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1990 "add flag = 1, " 1991 "and endpoint is not disabled.\n"); 1992 ret = -EINVAL; 1993 break; 1994 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1995 dev_warn(&udev->dev, 1996 "ERROR: Incompatible device for endpoint configure command.\n"); 1997 ret = -ENODEV; 1998 break; 1999 case COMP_SUCCESS: 2000 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2001 "Successful Endpoint Configure command"); 2002 ret = 0; 2003 break; 2004 default: 2005 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2006 *cmd_status); 2007 ret = -EINVAL; 2008 break; 2009 } 2010 return ret; 2011 } 2012 2013 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2014 struct usb_device *udev, u32 *cmd_status) 2015 { 2016 int ret; 2017 2018 switch (*cmd_status) { 2019 case COMP_COMMAND_ABORTED: 2020 case COMP_COMMAND_RING_STOPPED: 2021 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2022 ret = -ETIME; 2023 break; 2024 case COMP_PARAMETER_ERROR: 2025 dev_warn(&udev->dev, 2026 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2027 ret = -EINVAL; 2028 break; 2029 case COMP_SLOT_NOT_ENABLED_ERROR: 2030 dev_warn(&udev->dev, 2031 "WARN: slot not enabled for evaluate context command.\n"); 2032 ret = -EINVAL; 2033 break; 2034 case COMP_CONTEXT_STATE_ERROR: 2035 dev_warn(&udev->dev, 2036 "WARN: invalid context state for evaluate context command.\n"); 2037 ret = -EINVAL; 2038 break; 2039 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2040 dev_warn(&udev->dev, 2041 "ERROR: Incompatible device for evaluate context command.\n"); 2042 ret = -ENODEV; 2043 break; 2044 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2045 /* Max Exit Latency too large error */ 2046 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2047 ret = -EINVAL; 2048 break; 2049 case COMP_SUCCESS: 2050 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2051 "Successful evaluate context command"); 2052 ret = 0; 2053 break; 2054 default: 2055 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2056 *cmd_status); 2057 ret = -EINVAL; 2058 break; 2059 } 2060 return ret; 2061 } 2062 2063 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2064 struct xhci_input_control_ctx *ctrl_ctx) 2065 { 2066 u32 valid_add_flags; 2067 u32 valid_drop_flags; 2068 2069 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2070 * (bit 1). The default control endpoint is added during the Address 2071 * Device command and is never removed until the slot is disabled. 2072 */ 2073 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2074 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2075 2076 /* Use hweight32 to count the number of ones in the add flags, or 2077 * number of endpoints added. Don't count endpoints that are changed 2078 * (both added and dropped). 2079 */ 2080 return hweight32(valid_add_flags) - 2081 hweight32(valid_add_flags & valid_drop_flags); 2082 } 2083 2084 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2085 struct xhci_input_control_ctx *ctrl_ctx) 2086 { 2087 u32 valid_add_flags; 2088 u32 valid_drop_flags; 2089 2090 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2091 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2092 2093 return hweight32(valid_drop_flags) - 2094 hweight32(valid_add_flags & valid_drop_flags); 2095 } 2096 2097 /* 2098 * We need to reserve the new number of endpoints before the configure endpoint 2099 * command completes. We can't subtract the dropped endpoints from the number 2100 * of active endpoints until the command completes because we can oversubscribe 2101 * the host in this case: 2102 * 2103 * - the first configure endpoint command drops more endpoints than it adds 2104 * - a second configure endpoint command that adds more endpoints is queued 2105 * - the first configure endpoint command fails, so the config is unchanged 2106 * - the second command may succeed, even though there isn't enough resources 2107 * 2108 * Must be called with xhci->lock held. 2109 */ 2110 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2111 struct xhci_input_control_ctx *ctrl_ctx) 2112 { 2113 u32 added_eps; 2114 2115 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2116 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2117 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2118 "Not enough ep ctxs: " 2119 "%u active, need to add %u, limit is %u.", 2120 xhci->num_active_eps, added_eps, 2121 xhci->limit_active_eps); 2122 return -ENOMEM; 2123 } 2124 xhci->num_active_eps += added_eps; 2125 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2126 "Adding %u ep ctxs, %u now active.", added_eps, 2127 xhci->num_active_eps); 2128 return 0; 2129 } 2130 2131 /* 2132 * The configure endpoint was failed by the xHC for some other reason, so we 2133 * need to revert the resources that failed configuration would have used. 2134 * 2135 * Must be called with xhci->lock held. 2136 */ 2137 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2138 struct xhci_input_control_ctx *ctrl_ctx) 2139 { 2140 u32 num_failed_eps; 2141 2142 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2143 xhci->num_active_eps -= num_failed_eps; 2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2145 "Removing %u failed ep ctxs, %u now active.", 2146 num_failed_eps, 2147 xhci->num_active_eps); 2148 } 2149 2150 /* 2151 * Now that the command has completed, clean up the active endpoint count by 2152 * subtracting out the endpoints that were dropped (but not changed). 2153 * 2154 * Must be called with xhci->lock held. 2155 */ 2156 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2157 struct xhci_input_control_ctx *ctrl_ctx) 2158 { 2159 u32 num_dropped_eps; 2160 2161 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2162 xhci->num_active_eps -= num_dropped_eps; 2163 if (num_dropped_eps) 2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2165 "Removing %u dropped ep ctxs, %u now active.", 2166 num_dropped_eps, 2167 xhci->num_active_eps); 2168 } 2169 2170 static unsigned int xhci_get_block_size(struct usb_device *udev) 2171 { 2172 switch (udev->speed) { 2173 case USB_SPEED_LOW: 2174 case USB_SPEED_FULL: 2175 return FS_BLOCK; 2176 case USB_SPEED_HIGH: 2177 return HS_BLOCK; 2178 case USB_SPEED_SUPER: 2179 case USB_SPEED_SUPER_PLUS: 2180 return SS_BLOCK; 2181 case USB_SPEED_UNKNOWN: 2182 case USB_SPEED_WIRELESS: 2183 default: 2184 /* Should never happen */ 2185 return 1; 2186 } 2187 } 2188 2189 static unsigned int 2190 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2191 { 2192 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2193 return LS_OVERHEAD; 2194 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2195 return FS_OVERHEAD; 2196 return HS_OVERHEAD; 2197 } 2198 2199 /* If we are changing a LS/FS device under a HS hub, 2200 * make sure (if we are activating a new TT) that the HS bus has enough 2201 * bandwidth for this new TT. 2202 */ 2203 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2204 struct xhci_virt_device *virt_dev, 2205 int old_active_eps) 2206 { 2207 struct xhci_interval_bw_table *bw_table; 2208 struct xhci_tt_bw_info *tt_info; 2209 2210 /* Find the bandwidth table for the root port this TT is attached to. */ 2211 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2212 tt_info = virt_dev->tt_info; 2213 /* If this TT already had active endpoints, the bandwidth for this TT 2214 * has already been added. Removing all periodic endpoints (and thus 2215 * making the TT enactive) will only decrease the bandwidth used. 2216 */ 2217 if (old_active_eps) 2218 return 0; 2219 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2220 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2221 return -ENOMEM; 2222 return 0; 2223 } 2224 /* Not sure why we would have no new active endpoints... 2225 * 2226 * Maybe because of an Evaluate Context change for a hub update or a 2227 * control endpoint 0 max packet size change? 2228 * FIXME: skip the bandwidth calculation in that case. 2229 */ 2230 return 0; 2231 } 2232 2233 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2234 struct xhci_virt_device *virt_dev) 2235 { 2236 unsigned int bw_reserved; 2237 2238 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2239 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2240 return -ENOMEM; 2241 2242 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2243 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2244 return -ENOMEM; 2245 2246 return 0; 2247 } 2248 2249 /* 2250 * This algorithm is a very conservative estimate of the worst-case scheduling 2251 * scenario for any one interval. The hardware dynamically schedules the 2252 * packets, so we can't tell which microframe could be the limiting factor in 2253 * the bandwidth scheduling. This only takes into account periodic endpoints. 2254 * 2255 * Obviously, we can't solve an NP complete problem to find the minimum worst 2256 * case scenario. Instead, we come up with an estimate that is no less than 2257 * the worst case bandwidth used for any one microframe, but may be an 2258 * over-estimate. 2259 * 2260 * We walk the requirements for each endpoint by interval, starting with the 2261 * smallest interval, and place packets in the schedule where there is only one 2262 * possible way to schedule packets for that interval. In order to simplify 2263 * this algorithm, we record the largest max packet size for each interval, and 2264 * assume all packets will be that size. 2265 * 2266 * For interval 0, we obviously must schedule all packets for each interval. 2267 * The bandwidth for interval 0 is just the amount of data to be transmitted 2268 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2269 * the number of packets). 2270 * 2271 * For interval 1, we have two possible microframes to schedule those packets 2272 * in. For this algorithm, if we can schedule the same number of packets for 2273 * each possible scheduling opportunity (each microframe), we will do so. The 2274 * remaining number of packets will be saved to be transmitted in the gaps in 2275 * the next interval's scheduling sequence. 2276 * 2277 * As we move those remaining packets to be scheduled with interval 2 packets, 2278 * we have to double the number of remaining packets to transmit. This is 2279 * because the intervals are actually powers of 2, and we would be transmitting 2280 * the previous interval's packets twice in this interval. We also have to be 2281 * sure that when we look at the largest max packet size for this interval, we 2282 * also look at the largest max packet size for the remaining packets and take 2283 * the greater of the two. 2284 * 2285 * The algorithm continues to evenly distribute packets in each scheduling 2286 * opportunity, and push the remaining packets out, until we get to the last 2287 * interval. Then those packets and their associated overhead are just added 2288 * to the bandwidth used. 2289 */ 2290 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2291 struct xhci_virt_device *virt_dev, 2292 int old_active_eps) 2293 { 2294 unsigned int bw_reserved; 2295 unsigned int max_bandwidth; 2296 unsigned int bw_used; 2297 unsigned int block_size; 2298 struct xhci_interval_bw_table *bw_table; 2299 unsigned int packet_size = 0; 2300 unsigned int overhead = 0; 2301 unsigned int packets_transmitted = 0; 2302 unsigned int packets_remaining = 0; 2303 unsigned int i; 2304 2305 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2306 return xhci_check_ss_bw(xhci, virt_dev); 2307 2308 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2309 max_bandwidth = HS_BW_LIMIT; 2310 /* Convert percent of bus BW reserved to blocks reserved */ 2311 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2312 } else { 2313 max_bandwidth = FS_BW_LIMIT; 2314 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2315 } 2316 2317 bw_table = virt_dev->bw_table; 2318 /* We need to translate the max packet size and max ESIT payloads into 2319 * the units the hardware uses. 2320 */ 2321 block_size = xhci_get_block_size(virt_dev->udev); 2322 2323 /* If we are manipulating a LS/FS device under a HS hub, double check 2324 * that the HS bus has enough bandwidth if we are activing a new TT. 2325 */ 2326 if (virt_dev->tt_info) { 2327 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2328 "Recalculating BW for rootport %u", 2329 virt_dev->real_port); 2330 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2331 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2332 "newly activated TT.\n"); 2333 return -ENOMEM; 2334 } 2335 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2336 "Recalculating BW for TT slot %u port %u", 2337 virt_dev->tt_info->slot_id, 2338 virt_dev->tt_info->ttport); 2339 } else { 2340 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2341 "Recalculating BW for rootport %u", 2342 virt_dev->real_port); 2343 } 2344 2345 /* Add in how much bandwidth will be used for interval zero, or the 2346 * rounded max ESIT payload + number of packets * largest overhead. 2347 */ 2348 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2349 bw_table->interval_bw[0].num_packets * 2350 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2351 2352 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2353 unsigned int bw_added; 2354 unsigned int largest_mps; 2355 unsigned int interval_overhead; 2356 2357 /* 2358 * How many packets could we transmit in this interval? 2359 * If packets didn't fit in the previous interval, we will need 2360 * to transmit that many packets twice within this interval. 2361 */ 2362 packets_remaining = 2 * packets_remaining + 2363 bw_table->interval_bw[i].num_packets; 2364 2365 /* Find the largest max packet size of this or the previous 2366 * interval. 2367 */ 2368 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2369 largest_mps = 0; 2370 else { 2371 struct xhci_virt_ep *virt_ep; 2372 struct list_head *ep_entry; 2373 2374 ep_entry = bw_table->interval_bw[i].endpoints.next; 2375 virt_ep = list_entry(ep_entry, 2376 struct xhci_virt_ep, bw_endpoint_list); 2377 /* Convert to blocks, rounding up */ 2378 largest_mps = DIV_ROUND_UP( 2379 virt_ep->bw_info.max_packet_size, 2380 block_size); 2381 } 2382 if (largest_mps > packet_size) 2383 packet_size = largest_mps; 2384 2385 /* Use the larger overhead of this or the previous interval. */ 2386 interval_overhead = xhci_get_largest_overhead( 2387 &bw_table->interval_bw[i]); 2388 if (interval_overhead > overhead) 2389 overhead = interval_overhead; 2390 2391 /* How many packets can we evenly distribute across 2392 * (1 << (i + 1)) possible scheduling opportunities? 2393 */ 2394 packets_transmitted = packets_remaining >> (i + 1); 2395 2396 /* Add in the bandwidth used for those scheduled packets */ 2397 bw_added = packets_transmitted * (overhead + packet_size); 2398 2399 /* How many packets do we have remaining to transmit? */ 2400 packets_remaining = packets_remaining % (1 << (i + 1)); 2401 2402 /* What largest max packet size should those packets have? */ 2403 /* If we've transmitted all packets, don't carry over the 2404 * largest packet size. 2405 */ 2406 if (packets_remaining == 0) { 2407 packet_size = 0; 2408 overhead = 0; 2409 } else if (packets_transmitted > 0) { 2410 /* Otherwise if we do have remaining packets, and we've 2411 * scheduled some packets in this interval, take the 2412 * largest max packet size from endpoints with this 2413 * interval. 2414 */ 2415 packet_size = largest_mps; 2416 overhead = interval_overhead; 2417 } 2418 /* Otherwise carry over packet_size and overhead from the last 2419 * time we had a remainder. 2420 */ 2421 bw_used += bw_added; 2422 if (bw_used > max_bandwidth) { 2423 xhci_warn(xhci, "Not enough bandwidth. " 2424 "Proposed: %u, Max: %u\n", 2425 bw_used, max_bandwidth); 2426 return -ENOMEM; 2427 } 2428 } 2429 /* 2430 * Ok, we know we have some packets left over after even-handedly 2431 * scheduling interval 15. We don't know which microframes they will 2432 * fit into, so we over-schedule and say they will be scheduled every 2433 * microframe. 2434 */ 2435 if (packets_remaining > 0) 2436 bw_used += overhead + packet_size; 2437 2438 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2439 unsigned int port_index = virt_dev->real_port - 1; 2440 2441 /* OK, we're manipulating a HS device attached to a 2442 * root port bandwidth domain. Include the number of active TTs 2443 * in the bandwidth used. 2444 */ 2445 bw_used += TT_HS_OVERHEAD * 2446 xhci->rh_bw[port_index].num_active_tts; 2447 } 2448 2449 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2450 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2451 "Available: %u " "percent", 2452 bw_used, max_bandwidth, bw_reserved, 2453 (max_bandwidth - bw_used - bw_reserved) * 100 / 2454 max_bandwidth); 2455 2456 bw_used += bw_reserved; 2457 if (bw_used > max_bandwidth) { 2458 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2459 bw_used, max_bandwidth); 2460 return -ENOMEM; 2461 } 2462 2463 bw_table->bw_used = bw_used; 2464 return 0; 2465 } 2466 2467 static bool xhci_is_async_ep(unsigned int ep_type) 2468 { 2469 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2470 ep_type != ISOC_IN_EP && 2471 ep_type != INT_IN_EP); 2472 } 2473 2474 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2475 { 2476 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2477 } 2478 2479 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2480 { 2481 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2482 2483 if (ep_bw->ep_interval == 0) 2484 return SS_OVERHEAD_BURST + 2485 (ep_bw->mult * ep_bw->num_packets * 2486 (SS_OVERHEAD + mps)); 2487 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2488 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2489 1 << ep_bw->ep_interval); 2490 2491 } 2492 2493 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2494 struct xhci_bw_info *ep_bw, 2495 struct xhci_interval_bw_table *bw_table, 2496 struct usb_device *udev, 2497 struct xhci_virt_ep *virt_ep, 2498 struct xhci_tt_bw_info *tt_info) 2499 { 2500 struct xhci_interval_bw *interval_bw; 2501 int normalized_interval; 2502 2503 if (xhci_is_async_ep(ep_bw->type)) 2504 return; 2505 2506 if (udev->speed >= USB_SPEED_SUPER) { 2507 if (xhci_is_sync_in_ep(ep_bw->type)) 2508 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2509 xhci_get_ss_bw_consumed(ep_bw); 2510 else 2511 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2512 xhci_get_ss_bw_consumed(ep_bw); 2513 return; 2514 } 2515 2516 /* SuperSpeed endpoints never get added to intervals in the table, so 2517 * this check is only valid for HS/FS/LS devices. 2518 */ 2519 if (list_empty(&virt_ep->bw_endpoint_list)) 2520 return; 2521 /* For LS/FS devices, we need to translate the interval expressed in 2522 * microframes to frames. 2523 */ 2524 if (udev->speed == USB_SPEED_HIGH) 2525 normalized_interval = ep_bw->ep_interval; 2526 else 2527 normalized_interval = ep_bw->ep_interval - 3; 2528 2529 if (normalized_interval == 0) 2530 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2531 interval_bw = &bw_table->interval_bw[normalized_interval]; 2532 interval_bw->num_packets -= ep_bw->num_packets; 2533 switch (udev->speed) { 2534 case USB_SPEED_LOW: 2535 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2536 break; 2537 case USB_SPEED_FULL: 2538 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2539 break; 2540 case USB_SPEED_HIGH: 2541 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2542 break; 2543 case USB_SPEED_SUPER: 2544 case USB_SPEED_SUPER_PLUS: 2545 case USB_SPEED_UNKNOWN: 2546 case USB_SPEED_WIRELESS: 2547 /* Should never happen because only LS/FS/HS endpoints will get 2548 * added to the endpoint list. 2549 */ 2550 return; 2551 } 2552 if (tt_info) 2553 tt_info->active_eps -= 1; 2554 list_del_init(&virt_ep->bw_endpoint_list); 2555 } 2556 2557 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2558 struct xhci_bw_info *ep_bw, 2559 struct xhci_interval_bw_table *bw_table, 2560 struct usb_device *udev, 2561 struct xhci_virt_ep *virt_ep, 2562 struct xhci_tt_bw_info *tt_info) 2563 { 2564 struct xhci_interval_bw *interval_bw; 2565 struct xhci_virt_ep *smaller_ep; 2566 int normalized_interval; 2567 2568 if (xhci_is_async_ep(ep_bw->type)) 2569 return; 2570 2571 if (udev->speed == USB_SPEED_SUPER) { 2572 if (xhci_is_sync_in_ep(ep_bw->type)) 2573 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2574 xhci_get_ss_bw_consumed(ep_bw); 2575 else 2576 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2577 xhci_get_ss_bw_consumed(ep_bw); 2578 return; 2579 } 2580 2581 /* For LS/FS devices, we need to translate the interval expressed in 2582 * microframes to frames. 2583 */ 2584 if (udev->speed == USB_SPEED_HIGH) 2585 normalized_interval = ep_bw->ep_interval; 2586 else 2587 normalized_interval = ep_bw->ep_interval - 3; 2588 2589 if (normalized_interval == 0) 2590 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2591 interval_bw = &bw_table->interval_bw[normalized_interval]; 2592 interval_bw->num_packets += ep_bw->num_packets; 2593 switch (udev->speed) { 2594 case USB_SPEED_LOW: 2595 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2596 break; 2597 case USB_SPEED_FULL: 2598 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2599 break; 2600 case USB_SPEED_HIGH: 2601 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2602 break; 2603 case USB_SPEED_SUPER: 2604 case USB_SPEED_SUPER_PLUS: 2605 case USB_SPEED_UNKNOWN: 2606 case USB_SPEED_WIRELESS: 2607 /* Should never happen because only LS/FS/HS endpoints will get 2608 * added to the endpoint list. 2609 */ 2610 return; 2611 } 2612 2613 if (tt_info) 2614 tt_info->active_eps += 1; 2615 /* Insert the endpoint into the list, largest max packet size first. */ 2616 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2617 bw_endpoint_list) { 2618 if (ep_bw->max_packet_size >= 2619 smaller_ep->bw_info.max_packet_size) { 2620 /* Add the new ep before the smaller endpoint */ 2621 list_add_tail(&virt_ep->bw_endpoint_list, 2622 &smaller_ep->bw_endpoint_list); 2623 return; 2624 } 2625 } 2626 /* Add the new endpoint at the end of the list. */ 2627 list_add_tail(&virt_ep->bw_endpoint_list, 2628 &interval_bw->endpoints); 2629 } 2630 2631 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2632 struct xhci_virt_device *virt_dev, 2633 int old_active_eps) 2634 { 2635 struct xhci_root_port_bw_info *rh_bw_info; 2636 if (!virt_dev->tt_info) 2637 return; 2638 2639 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2640 if (old_active_eps == 0 && 2641 virt_dev->tt_info->active_eps != 0) { 2642 rh_bw_info->num_active_tts += 1; 2643 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2644 } else if (old_active_eps != 0 && 2645 virt_dev->tt_info->active_eps == 0) { 2646 rh_bw_info->num_active_tts -= 1; 2647 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2648 } 2649 } 2650 2651 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2652 struct xhci_virt_device *virt_dev, 2653 struct xhci_container_ctx *in_ctx) 2654 { 2655 struct xhci_bw_info ep_bw_info[31]; 2656 int i; 2657 struct xhci_input_control_ctx *ctrl_ctx; 2658 int old_active_eps = 0; 2659 2660 if (virt_dev->tt_info) 2661 old_active_eps = virt_dev->tt_info->active_eps; 2662 2663 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2664 if (!ctrl_ctx) { 2665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2666 __func__); 2667 return -ENOMEM; 2668 } 2669 2670 for (i = 0; i < 31; i++) { 2671 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2672 continue; 2673 2674 /* Make a copy of the BW info in case we need to revert this */ 2675 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2676 sizeof(ep_bw_info[i])); 2677 /* Drop the endpoint from the interval table if the endpoint is 2678 * being dropped or changed. 2679 */ 2680 if (EP_IS_DROPPED(ctrl_ctx, i)) 2681 xhci_drop_ep_from_interval_table(xhci, 2682 &virt_dev->eps[i].bw_info, 2683 virt_dev->bw_table, 2684 virt_dev->udev, 2685 &virt_dev->eps[i], 2686 virt_dev->tt_info); 2687 } 2688 /* Overwrite the information stored in the endpoints' bw_info */ 2689 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2690 for (i = 0; i < 31; i++) { 2691 /* Add any changed or added endpoints to the interval table */ 2692 if (EP_IS_ADDED(ctrl_ctx, i)) 2693 xhci_add_ep_to_interval_table(xhci, 2694 &virt_dev->eps[i].bw_info, 2695 virt_dev->bw_table, 2696 virt_dev->udev, 2697 &virt_dev->eps[i], 2698 virt_dev->tt_info); 2699 } 2700 2701 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2702 /* Ok, this fits in the bandwidth we have. 2703 * Update the number of active TTs. 2704 */ 2705 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2706 return 0; 2707 } 2708 2709 /* We don't have enough bandwidth for this, revert the stored info. */ 2710 for (i = 0; i < 31; i++) { 2711 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2712 continue; 2713 2714 /* Drop the new copies of any added or changed endpoints from 2715 * the interval table. 2716 */ 2717 if (EP_IS_ADDED(ctrl_ctx, i)) { 2718 xhci_drop_ep_from_interval_table(xhci, 2719 &virt_dev->eps[i].bw_info, 2720 virt_dev->bw_table, 2721 virt_dev->udev, 2722 &virt_dev->eps[i], 2723 virt_dev->tt_info); 2724 } 2725 /* Revert the endpoint back to its old information */ 2726 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2727 sizeof(ep_bw_info[i])); 2728 /* Add any changed or dropped endpoints back into the table */ 2729 if (EP_IS_DROPPED(ctrl_ctx, i)) 2730 xhci_add_ep_to_interval_table(xhci, 2731 &virt_dev->eps[i].bw_info, 2732 virt_dev->bw_table, 2733 virt_dev->udev, 2734 &virt_dev->eps[i], 2735 virt_dev->tt_info); 2736 } 2737 return -ENOMEM; 2738 } 2739 2740 2741 /* Issue a configure endpoint command or evaluate context command 2742 * and wait for it to finish. 2743 */ 2744 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2745 struct usb_device *udev, 2746 struct xhci_command *command, 2747 bool ctx_change, bool must_succeed) 2748 { 2749 int ret; 2750 unsigned long flags; 2751 struct xhci_input_control_ctx *ctrl_ctx; 2752 struct xhci_virt_device *virt_dev; 2753 struct xhci_slot_ctx *slot_ctx; 2754 2755 if (!command) 2756 return -EINVAL; 2757 2758 spin_lock_irqsave(&xhci->lock, flags); 2759 2760 if (xhci->xhc_state & XHCI_STATE_DYING) { 2761 spin_unlock_irqrestore(&xhci->lock, flags); 2762 return -ESHUTDOWN; 2763 } 2764 2765 virt_dev = xhci->devs[udev->slot_id]; 2766 2767 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2768 if (!ctrl_ctx) { 2769 spin_unlock_irqrestore(&xhci->lock, flags); 2770 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2771 __func__); 2772 return -ENOMEM; 2773 } 2774 2775 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2776 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2777 spin_unlock_irqrestore(&xhci->lock, flags); 2778 xhci_warn(xhci, "Not enough host resources, " 2779 "active endpoint contexts = %u\n", 2780 xhci->num_active_eps); 2781 return -ENOMEM; 2782 } 2783 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2784 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2785 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2786 xhci_free_host_resources(xhci, ctrl_ctx); 2787 spin_unlock_irqrestore(&xhci->lock, flags); 2788 xhci_warn(xhci, "Not enough bandwidth\n"); 2789 return -ENOMEM; 2790 } 2791 2792 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2793 2794 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2795 trace_xhci_configure_endpoint(slot_ctx); 2796 2797 if (!ctx_change) 2798 ret = xhci_queue_configure_endpoint(xhci, command, 2799 command->in_ctx->dma, 2800 udev->slot_id, must_succeed); 2801 else 2802 ret = xhci_queue_evaluate_context(xhci, command, 2803 command->in_ctx->dma, 2804 udev->slot_id, must_succeed); 2805 if (ret < 0) { 2806 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2807 xhci_free_host_resources(xhci, ctrl_ctx); 2808 spin_unlock_irqrestore(&xhci->lock, flags); 2809 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2810 "FIXME allocate a new ring segment"); 2811 return -ENOMEM; 2812 } 2813 xhci_ring_cmd_db(xhci); 2814 spin_unlock_irqrestore(&xhci->lock, flags); 2815 2816 /* Wait for the configure endpoint command to complete */ 2817 wait_for_completion(command->completion); 2818 2819 if (!ctx_change) 2820 ret = xhci_configure_endpoint_result(xhci, udev, 2821 &command->status); 2822 else 2823 ret = xhci_evaluate_context_result(xhci, udev, 2824 &command->status); 2825 2826 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2827 spin_lock_irqsave(&xhci->lock, flags); 2828 /* If the command failed, remove the reserved resources. 2829 * Otherwise, clean up the estimate to include dropped eps. 2830 */ 2831 if (ret) 2832 xhci_free_host_resources(xhci, ctrl_ctx); 2833 else 2834 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2835 spin_unlock_irqrestore(&xhci->lock, flags); 2836 } 2837 return ret; 2838 } 2839 2840 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2841 struct xhci_virt_device *vdev, int i) 2842 { 2843 struct xhci_virt_ep *ep = &vdev->eps[i]; 2844 2845 if (ep->ep_state & EP_HAS_STREAMS) { 2846 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2847 xhci_get_endpoint_address(i)); 2848 xhci_free_stream_info(xhci, ep->stream_info); 2849 ep->stream_info = NULL; 2850 ep->ep_state &= ~EP_HAS_STREAMS; 2851 } 2852 } 2853 2854 /* Called after one or more calls to xhci_add_endpoint() or 2855 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2856 * to call xhci_reset_bandwidth(). 2857 * 2858 * Since we are in the middle of changing either configuration or 2859 * installing a new alt setting, the USB core won't allow URBs to be 2860 * enqueued for any endpoint on the old config or interface. Nothing 2861 * else should be touching the xhci->devs[slot_id] structure, so we 2862 * don't need to take the xhci->lock for manipulating that. 2863 */ 2864 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2865 { 2866 int i; 2867 int ret = 0; 2868 struct xhci_hcd *xhci; 2869 struct xhci_virt_device *virt_dev; 2870 struct xhci_input_control_ctx *ctrl_ctx; 2871 struct xhci_slot_ctx *slot_ctx; 2872 struct xhci_command *command; 2873 2874 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2875 if (ret <= 0) 2876 return ret; 2877 xhci = hcd_to_xhci(hcd); 2878 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2879 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2880 return -ENODEV; 2881 2882 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2883 virt_dev = xhci->devs[udev->slot_id]; 2884 2885 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2886 if (!command) 2887 return -ENOMEM; 2888 2889 command->in_ctx = virt_dev->in_ctx; 2890 2891 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2892 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2893 if (!ctrl_ctx) { 2894 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2895 __func__); 2896 ret = -ENOMEM; 2897 goto command_cleanup; 2898 } 2899 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2900 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2901 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2902 2903 /* Don't issue the command if there's no endpoints to update. */ 2904 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2905 ctrl_ctx->drop_flags == 0) { 2906 ret = 0; 2907 goto command_cleanup; 2908 } 2909 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2910 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2911 for (i = 31; i >= 1; i--) { 2912 __le32 le32 = cpu_to_le32(BIT(i)); 2913 2914 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2915 || (ctrl_ctx->add_flags & le32) || i == 1) { 2916 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2917 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2918 break; 2919 } 2920 } 2921 2922 ret = xhci_configure_endpoint(xhci, udev, command, 2923 false, false); 2924 if (ret) 2925 /* Callee should call reset_bandwidth() */ 2926 goto command_cleanup; 2927 2928 /* Free any rings that were dropped, but not changed. */ 2929 for (i = 1; i < 31; i++) { 2930 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2931 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2932 xhci_free_endpoint_ring(xhci, virt_dev, i); 2933 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2934 } 2935 } 2936 xhci_zero_in_ctx(xhci, virt_dev); 2937 /* 2938 * Install any rings for completely new endpoints or changed endpoints, 2939 * and free any old rings from changed endpoints. 2940 */ 2941 for (i = 1; i < 31; i++) { 2942 if (!virt_dev->eps[i].new_ring) 2943 continue; 2944 /* Only free the old ring if it exists. 2945 * It may not if this is the first add of an endpoint. 2946 */ 2947 if (virt_dev->eps[i].ring) { 2948 xhci_free_endpoint_ring(xhci, virt_dev, i); 2949 } 2950 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2951 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2952 virt_dev->eps[i].new_ring = NULL; 2953 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2954 } 2955 command_cleanup: 2956 kfree(command->completion); 2957 kfree(command); 2958 2959 return ret; 2960 } 2961 2962 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2963 { 2964 struct xhci_hcd *xhci; 2965 struct xhci_virt_device *virt_dev; 2966 int i, ret; 2967 2968 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2969 if (ret <= 0) 2970 return; 2971 xhci = hcd_to_xhci(hcd); 2972 2973 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2974 virt_dev = xhci->devs[udev->slot_id]; 2975 /* Free any rings allocated for added endpoints */ 2976 for (i = 0; i < 31; i++) { 2977 if (virt_dev->eps[i].new_ring) { 2978 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2979 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2980 virt_dev->eps[i].new_ring = NULL; 2981 } 2982 } 2983 xhci_zero_in_ctx(xhci, virt_dev); 2984 } 2985 2986 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2987 struct xhci_container_ctx *in_ctx, 2988 struct xhci_container_ctx *out_ctx, 2989 struct xhci_input_control_ctx *ctrl_ctx, 2990 u32 add_flags, u32 drop_flags) 2991 { 2992 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2993 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2994 xhci_slot_copy(xhci, in_ctx, out_ctx); 2995 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2996 } 2997 2998 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2999 unsigned int slot_id, unsigned int ep_index, 3000 struct xhci_dequeue_state *deq_state) 3001 { 3002 struct xhci_input_control_ctx *ctrl_ctx; 3003 struct xhci_container_ctx *in_ctx; 3004 struct xhci_ep_ctx *ep_ctx; 3005 u32 added_ctxs; 3006 dma_addr_t addr; 3007 3008 in_ctx = xhci->devs[slot_id]->in_ctx; 3009 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 3010 if (!ctrl_ctx) { 3011 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3012 __func__); 3013 return; 3014 } 3015 3016 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3017 xhci->devs[slot_id]->out_ctx, ep_index); 3018 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3019 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3020 deq_state->new_deq_ptr); 3021 if (addr == 0) { 3022 xhci_warn(xhci, "WARN Cannot submit config ep after " 3023 "reset ep command\n"); 3024 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3025 deq_state->new_deq_seg, 3026 deq_state->new_deq_ptr); 3027 return; 3028 } 3029 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3030 3031 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3032 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3033 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3034 added_ctxs, added_ctxs); 3035 } 3036 3037 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id, 3038 unsigned int ep_index, unsigned int stream_id, 3039 struct xhci_td *td) 3040 { 3041 struct xhci_dequeue_state deq_state; 3042 3043 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3044 "Cleaning up stalled endpoint ring"); 3045 /* We need to move the HW's dequeue pointer past this TD, 3046 * or it will attempt to resend it on the next doorbell ring. 3047 */ 3048 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td, 3049 &deq_state); 3050 3051 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3052 return; 3053 3054 /* HW with the reset endpoint quirk will use the saved dequeue state to 3055 * issue a configure endpoint command later. 3056 */ 3057 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3058 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3059 "Queueing new dequeue state"); 3060 xhci_queue_new_dequeue_state(xhci, slot_id, 3061 ep_index, &deq_state); 3062 } else { 3063 /* Better hope no one uses the input context between now and the 3064 * reset endpoint completion! 3065 * XXX: No idea how this hardware will react when stream rings 3066 * are enabled. 3067 */ 3068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3069 "Setting up input context for " 3070 "configure endpoint command"); 3071 xhci_setup_input_ctx_for_quirk(xhci, slot_id, 3072 ep_index, &deq_state); 3073 } 3074 } 3075 3076 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3077 struct usb_host_endpoint *host_ep) 3078 { 3079 struct xhci_hcd *xhci; 3080 struct xhci_virt_device *vdev; 3081 struct xhci_virt_ep *ep; 3082 struct usb_device *udev; 3083 unsigned long flags; 3084 unsigned int ep_index; 3085 3086 xhci = hcd_to_xhci(hcd); 3087 rescan: 3088 spin_lock_irqsave(&xhci->lock, flags); 3089 3090 udev = (struct usb_device *)host_ep->hcpriv; 3091 if (!udev || !udev->slot_id) 3092 goto done; 3093 3094 vdev = xhci->devs[udev->slot_id]; 3095 if (!vdev) 3096 goto done; 3097 3098 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3099 ep = &vdev->eps[ep_index]; 3100 if (!ep) 3101 goto done; 3102 3103 /* wait for hub_tt_work to finish clearing hub TT */ 3104 if (ep->ep_state & EP_CLEARING_TT) { 3105 spin_unlock_irqrestore(&xhci->lock, flags); 3106 schedule_timeout_uninterruptible(1); 3107 goto rescan; 3108 } 3109 3110 if (ep->ep_state) 3111 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3112 ep->ep_state); 3113 done: 3114 host_ep->hcpriv = NULL; 3115 spin_unlock_irqrestore(&xhci->lock, flags); 3116 } 3117 3118 /* 3119 * Called after usb core issues a clear halt control message. 3120 * The host side of the halt should already be cleared by a reset endpoint 3121 * command issued when the STALL event was received. 3122 * 3123 * The reset endpoint command may only be issued to endpoints in the halted 3124 * state. For software that wishes to reset the data toggle or sequence number 3125 * of an endpoint that isn't in the halted state this function will issue a 3126 * configure endpoint command with the Drop and Add bits set for the target 3127 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3128 */ 3129 3130 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3131 struct usb_host_endpoint *host_ep) 3132 { 3133 struct xhci_hcd *xhci; 3134 struct usb_device *udev; 3135 struct xhci_virt_device *vdev; 3136 struct xhci_virt_ep *ep; 3137 struct xhci_input_control_ctx *ctrl_ctx; 3138 struct xhci_command *stop_cmd, *cfg_cmd; 3139 unsigned int ep_index; 3140 unsigned long flags; 3141 u32 ep_flag; 3142 int err; 3143 3144 xhci = hcd_to_xhci(hcd); 3145 if (!host_ep->hcpriv) 3146 return; 3147 udev = (struct usb_device *) host_ep->hcpriv; 3148 vdev = xhci->devs[udev->slot_id]; 3149 3150 /* 3151 * vdev may be lost due to xHC restore error and re-initialization 3152 * during S3/S4 resume. A new vdev will be allocated later by 3153 * xhci_discover_or_reset_device() 3154 */ 3155 if (!udev->slot_id || !vdev) 3156 return; 3157 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3158 ep = &vdev->eps[ep_index]; 3159 if (!ep) 3160 return; 3161 3162 /* Bail out if toggle is already being cleared by a endpoint reset */ 3163 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3164 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3165 return; 3166 } 3167 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3168 if (usb_endpoint_xfer_control(&host_ep->desc) || 3169 usb_endpoint_xfer_isoc(&host_ep->desc)) 3170 return; 3171 3172 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3173 3174 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3175 return; 3176 3177 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3178 if (!stop_cmd) 3179 return; 3180 3181 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3182 if (!cfg_cmd) 3183 goto cleanup; 3184 3185 spin_lock_irqsave(&xhci->lock, flags); 3186 3187 /* block queuing new trbs and ringing ep doorbell */ 3188 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3189 3190 /* 3191 * Make sure endpoint ring is empty before resetting the toggle/seq. 3192 * Driver is required to synchronously cancel all transfer request. 3193 * Stop the endpoint to force xHC to update the output context 3194 */ 3195 3196 if (!list_empty(&ep->ring->td_list)) { 3197 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3198 spin_unlock_irqrestore(&xhci->lock, flags); 3199 xhci_free_command(xhci, cfg_cmd); 3200 goto cleanup; 3201 } 3202 3203 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3204 ep_index, 0); 3205 if (err < 0) { 3206 spin_unlock_irqrestore(&xhci->lock, flags); 3207 xhci_free_command(xhci, cfg_cmd); 3208 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3209 __func__, err); 3210 goto cleanup; 3211 } 3212 3213 xhci_ring_cmd_db(xhci); 3214 spin_unlock_irqrestore(&xhci->lock, flags); 3215 3216 wait_for_completion(stop_cmd->completion); 3217 3218 spin_lock_irqsave(&xhci->lock, flags); 3219 3220 /* config ep command clears toggle if add and drop ep flags are set */ 3221 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3222 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3223 ctrl_ctx, ep_flag, ep_flag); 3224 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3225 3226 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3227 udev->slot_id, false); 3228 if (err < 0) { 3229 spin_unlock_irqrestore(&xhci->lock, flags); 3230 xhci_free_command(xhci, cfg_cmd); 3231 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3232 __func__, err); 3233 goto cleanup; 3234 } 3235 3236 xhci_ring_cmd_db(xhci); 3237 spin_unlock_irqrestore(&xhci->lock, flags); 3238 3239 wait_for_completion(cfg_cmd->completion); 3240 3241 xhci_free_command(xhci, cfg_cmd); 3242 cleanup: 3243 xhci_free_command(xhci, stop_cmd); 3244 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3245 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3246 } 3247 3248 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3249 struct usb_device *udev, struct usb_host_endpoint *ep, 3250 unsigned int slot_id) 3251 { 3252 int ret; 3253 unsigned int ep_index; 3254 unsigned int ep_state; 3255 3256 if (!ep) 3257 return -EINVAL; 3258 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3259 if (ret <= 0) 3260 return -EINVAL; 3261 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3262 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3263 " descriptor for ep 0x%x does not support streams\n", 3264 ep->desc.bEndpointAddress); 3265 return -EINVAL; 3266 } 3267 3268 ep_index = xhci_get_endpoint_index(&ep->desc); 3269 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3270 if (ep_state & EP_HAS_STREAMS || 3271 ep_state & EP_GETTING_STREAMS) { 3272 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3273 "already has streams set up.\n", 3274 ep->desc.bEndpointAddress); 3275 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3276 "dynamic stream context array reallocation.\n"); 3277 return -EINVAL; 3278 } 3279 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3280 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3281 "endpoint 0x%x; URBs are pending.\n", 3282 ep->desc.bEndpointAddress); 3283 return -EINVAL; 3284 } 3285 return 0; 3286 } 3287 3288 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3289 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3290 { 3291 unsigned int max_streams; 3292 3293 /* The stream context array size must be a power of two */ 3294 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3295 /* 3296 * Find out how many primary stream array entries the host controller 3297 * supports. Later we may use secondary stream arrays (similar to 2nd 3298 * level page entries), but that's an optional feature for xHCI host 3299 * controllers. xHCs must support at least 4 stream IDs. 3300 */ 3301 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3302 if (*num_stream_ctxs > max_streams) { 3303 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3304 max_streams); 3305 *num_stream_ctxs = max_streams; 3306 *num_streams = max_streams; 3307 } 3308 } 3309 3310 /* Returns an error code if one of the endpoint already has streams. 3311 * This does not change any data structures, it only checks and gathers 3312 * information. 3313 */ 3314 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3315 struct usb_device *udev, 3316 struct usb_host_endpoint **eps, unsigned int num_eps, 3317 unsigned int *num_streams, u32 *changed_ep_bitmask) 3318 { 3319 unsigned int max_streams; 3320 unsigned int endpoint_flag; 3321 int i; 3322 int ret; 3323 3324 for (i = 0; i < num_eps; i++) { 3325 ret = xhci_check_streams_endpoint(xhci, udev, 3326 eps[i], udev->slot_id); 3327 if (ret < 0) 3328 return ret; 3329 3330 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3331 if (max_streams < (*num_streams - 1)) { 3332 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3333 eps[i]->desc.bEndpointAddress, 3334 max_streams); 3335 *num_streams = max_streams+1; 3336 } 3337 3338 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3339 if (*changed_ep_bitmask & endpoint_flag) 3340 return -EINVAL; 3341 *changed_ep_bitmask |= endpoint_flag; 3342 } 3343 return 0; 3344 } 3345 3346 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3347 struct usb_device *udev, 3348 struct usb_host_endpoint **eps, unsigned int num_eps) 3349 { 3350 u32 changed_ep_bitmask = 0; 3351 unsigned int slot_id; 3352 unsigned int ep_index; 3353 unsigned int ep_state; 3354 int i; 3355 3356 slot_id = udev->slot_id; 3357 if (!xhci->devs[slot_id]) 3358 return 0; 3359 3360 for (i = 0; i < num_eps; i++) { 3361 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3362 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3363 /* Are streams already being freed for the endpoint? */ 3364 if (ep_state & EP_GETTING_NO_STREAMS) { 3365 xhci_warn(xhci, "WARN Can't disable streams for " 3366 "endpoint 0x%x, " 3367 "streams are being disabled already\n", 3368 eps[i]->desc.bEndpointAddress); 3369 return 0; 3370 } 3371 /* Are there actually any streams to free? */ 3372 if (!(ep_state & EP_HAS_STREAMS) && 3373 !(ep_state & EP_GETTING_STREAMS)) { 3374 xhci_warn(xhci, "WARN Can't disable streams for " 3375 "endpoint 0x%x, " 3376 "streams are already disabled!\n", 3377 eps[i]->desc.bEndpointAddress); 3378 xhci_warn(xhci, "WARN xhci_free_streams() called " 3379 "with non-streams endpoint\n"); 3380 return 0; 3381 } 3382 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3383 } 3384 return changed_ep_bitmask; 3385 } 3386 3387 /* 3388 * The USB device drivers use this function (through the HCD interface in USB 3389 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3390 * coordinate mass storage command queueing across multiple endpoints (basically 3391 * a stream ID == a task ID). 3392 * 3393 * Setting up streams involves allocating the same size stream context array 3394 * for each endpoint and issuing a configure endpoint command for all endpoints. 3395 * 3396 * Don't allow the call to succeed if one endpoint only supports one stream 3397 * (which means it doesn't support streams at all). 3398 * 3399 * Drivers may get less stream IDs than they asked for, if the host controller 3400 * hardware or endpoints claim they can't support the number of requested 3401 * stream IDs. 3402 */ 3403 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3404 struct usb_host_endpoint **eps, unsigned int num_eps, 3405 unsigned int num_streams, gfp_t mem_flags) 3406 { 3407 int i, ret; 3408 struct xhci_hcd *xhci; 3409 struct xhci_virt_device *vdev; 3410 struct xhci_command *config_cmd; 3411 struct xhci_input_control_ctx *ctrl_ctx; 3412 unsigned int ep_index; 3413 unsigned int num_stream_ctxs; 3414 unsigned int max_packet; 3415 unsigned long flags; 3416 u32 changed_ep_bitmask = 0; 3417 3418 if (!eps) 3419 return -EINVAL; 3420 3421 /* Add one to the number of streams requested to account for 3422 * stream 0 that is reserved for xHCI usage. 3423 */ 3424 num_streams += 1; 3425 xhci = hcd_to_xhci(hcd); 3426 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3427 num_streams); 3428 3429 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3430 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3431 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3432 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3433 return -ENOSYS; 3434 } 3435 3436 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3437 if (!config_cmd) 3438 return -ENOMEM; 3439 3440 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3441 if (!ctrl_ctx) { 3442 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3443 __func__); 3444 xhci_free_command(xhci, config_cmd); 3445 return -ENOMEM; 3446 } 3447 3448 /* Check to make sure all endpoints are not already configured for 3449 * streams. While we're at it, find the maximum number of streams that 3450 * all the endpoints will support and check for duplicate endpoints. 3451 */ 3452 spin_lock_irqsave(&xhci->lock, flags); 3453 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3454 num_eps, &num_streams, &changed_ep_bitmask); 3455 if (ret < 0) { 3456 xhci_free_command(xhci, config_cmd); 3457 spin_unlock_irqrestore(&xhci->lock, flags); 3458 return ret; 3459 } 3460 if (num_streams <= 1) { 3461 xhci_warn(xhci, "WARN: endpoints can't handle " 3462 "more than one stream.\n"); 3463 xhci_free_command(xhci, config_cmd); 3464 spin_unlock_irqrestore(&xhci->lock, flags); 3465 return -EINVAL; 3466 } 3467 vdev = xhci->devs[udev->slot_id]; 3468 /* Mark each endpoint as being in transition, so 3469 * xhci_urb_enqueue() will reject all URBs. 3470 */ 3471 for (i = 0; i < num_eps; i++) { 3472 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3473 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3474 } 3475 spin_unlock_irqrestore(&xhci->lock, flags); 3476 3477 /* Setup internal data structures and allocate HW data structures for 3478 * streams (but don't install the HW structures in the input context 3479 * until we're sure all memory allocation succeeded). 3480 */ 3481 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3482 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3483 num_stream_ctxs, num_streams); 3484 3485 for (i = 0; i < num_eps; i++) { 3486 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3487 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3488 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3489 num_stream_ctxs, 3490 num_streams, 3491 max_packet, mem_flags); 3492 if (!vdev->eps[ep_index].stream_info) 3493 goto cleanup; 3494 /* Set maxPstreams in endpoint context and update deq ptr to 3495 * point to stream context array. FIXME 3496 */ 3497 } 3498 3499 /* Set up the input context for a configure endpoint command. */ 3500 for (i = 0; i < num_eps; i++) { 3501 struct xhci_ep_ctx *ep_ctx; 3502 3503 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3504 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3505 3506 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3507 vdev->out_ctx, ep_index); 3508 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3509 vdev->eps[ep_index].stream_info); 3510 } 3511 /* Tell the HW to drop its old copy of the endpoint context info 3512 * and add the updated copy from the input context. 3513 */ 3514 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3515 vdev->out_ctx, ctrl_ctx, 3516 changed_ep_bitmask, changed_ep_bitmask); 3517 3518 /* Issue and wait for the configure endpoint command */ 3519 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3520 false, false); 3521 3522 /* xHC rejected the configure endpoint command for some reason, so we 3523 * leave the old ring intact and free our internal streams data 3524 * structure. 3525 */ 3526 if (ret < 0) 3527 goto cleanup; 3528 3529 spin_lock_irqsave(&xhci->lock, flags); 3530 for (i = 0; i < num_eps; i++) { 3531 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3532 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3533 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3534 udev->slot_id, ep_index); 3535 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3536 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3537 } 3538 xhci_free_command(xhci, config_cmd); 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 3541 /* Subtract 1 for stream 0, which drivers can't use */ 3542 return num_streams - 1; 3543 3544 cleanup: 3545 /* If it didn't work, free the streams! */ 3546 for (i = 0; i < num_eps; i++) { 3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3548 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3549 vdev->eps[ep_index].stream_info = NULL; 3550 /* FIXME Unset maxPstreams in endpoint context and 3551 * update deq ptr to point to normal string ring. 3552 */ 3553 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3554 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3555 xhci_endpoint_zero(xhci, vdev, eps[i]); 3556 } 3557 xhci_free_command(xhci, config_cmd); 3558 return -ENOMEM; 3559 } 3560 3561 /* Transition the endpoint from using streams to being a "normal" endpoint 3562 * without streams. 3563 * 3564 * Modify the endpoint context state, submit a configure endpoint command, 3565 * and free all endpoint rings for streams if that completes successfully. 3566 */ 3567 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3568 struct usb_host_endpoint **eps, unsigned int num_eps, 3569 gfp_t mem_flags) 3570 { 3571 int i, ret; 3572 struct xhci_hcd *xhci; 3573 struct xhci_virt_device *vdev; 3574 struct xhci_command *command; 3575 struct xhci_input_control_ctx *ctrl_ctx; 3576 unsigned int ep_index; 3577 unsigned long flags; 3578 u32 changed_ep_bitmask; 3579 3580 xhci = hcd_to_xhci(hcd); 3581 vdev = xhci->devs[udev->slot_id]; 3582 3583 /* Set up a configure endpoint command to remove the streams rings */ 3584 spin_lock_irqsave(&xhci->lock, flags); 3585 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3586 udev, eps, num_eps); 3587 if (changed_ep_bitmask == 0) { 3588 spin_unlock_irqrestore(&xhci->lock, flags); 3589 return -EINVAL; 3590 } 3591 3592 /* Use the xhci_command structure from the first endpoint. We may have 3593 * allocated too many, but the driver may call xhci_free_streams() for 3594 * each endpoint it grouped into one call to xhci_alloc_streams(). 3595 */ 3596 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3597 command = vdev->eps[ep_index].stream_info->free_streams_command; 3598 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3599 if (!ctrl_ctx) { 3600 spin_unlock_irqrestore(&xhci->lock, flags); 3601 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3602 __func__); 3603 return -EINVAL; 3604 } 3605 3606 for (i = 0; i < num_eps; i++) { 3607 struct xhci_ep_ctx *ep_ctx; 3608 3609 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3610 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3611 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3612 EP_GETTING_NO_STREAMS; 3613 3614 xhci_endpoint_copy(xhci, command->in_ctx, 3615 vdev->out_ctx, ep_index); 3616 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3617 &vdev->eps[ep_index]); 3618 } 3619 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3620 vdev->out_ctx, ctrl_ctx, 3621 changed_ep_bitmask, changed_ep_bitmask); 3622 spin_unlock_irqrestore(&xhci->lock, flags); 3623 3624 /* Issue and wait for the configure endpoint command, 3625 * which must succeed. 3626 */ 3627 ret = xhci_configure_endpoint(xhci, udev, command, 3628 false, true); 3629 3630 /* xHC rejected the configure endpoint command for some reason, so we 3631 * leave the streams rings intact. 3632 */ 3633 if (ret < 0) 3634 return ret; 3635 3636 spin_lock_irqsave(&xhci->lock, flags); 3637 for (i = 0; i < num_eps; i++) { 3638 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3639 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3640 vdev->eps[ep_index].stream_info = NULL; 3641 /* FIXME Unset maxPstreams in endpoint context and 3642 * update deq ptr to point to normal string ring. 3643 */ 3644 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3645 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3646 } 3647 spin_unlock_irqrestore(&xhci->lock, flags); 3648 3649 return 0; 3650 } 3651 3652 /* 3653 * Deletes endpoint resources for endpoints that were active before a Reset 3654 * Device command, or a Disable Slot command. The Reset Device command leaves 3655 * the control endpoint intact, whereas the Disable Slot command deletes it. 3656 * 3657 * Must be called with xhci->lock held. 3658 */ 3659 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3660 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3661 { 3662 int i; 3663 unsigned int num_dropped_eps = 0; 3664 unsigned int drop_flags = 0; 3665 3666 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3667 if (virt_dev->eps[i].ring) { 3668 drop_flags |= 1 << i; 3669 num_dropped_eps++; 3670 } 3671 } 3672 xhci->num_active_eps -= num_dropped_eps; 3673 if (num_dropped_eps) 3674 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3675 "Dropped %u ep ctxs, flags = 0x%x, " 3676 "%u now active.", 3677 num_dropped_eps, drop_flags, 3678 xhci->num_active_eps); 3679 } 3680 3681 /* 3682 * This submits a Reset Device Command, which will set the device state to 0, 3683 * set the device address to 0, and disable all the endpoints except the default 3684 * control endpoint. The USB core should come back and call 3685 * xhci_address_device(), and then re-set up the configuration. If this is 3686 * called because of a usb_reset_and_verify_device(), then the old alternate 3687 * settings will be re-installed through the normal bandwidth allocation 3688 * functions. 3689 * 3690 * Wait for the Reset Device command to finish. Remove all structures 3691 * associated with the endpoints that were disabled. Clear the input device 3692 * structure? Reset the control endpoint 0 max packet size? 3693 * 3694 * If the virt_dev to be reset does not exist or does not match the udev, 3695 * it means the device is lost, possibly due to the xHC restore error and 3696 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3697 * re-allocate the device. 3698 */ 3699 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3700 struct usb_device *udev) 3701 { 3702 int ret, i; 3703 unsigned long flags; 3704 struct xhci_hcd *xhci; 3705 unsigned int slot_id; 3706 struct xhci_virt_device *virt_dev; 3707 struct xhci_command *reset_device_cmd; 3708 struct xhci_slot_ctx *slot_ctx; 3709 int old_active_eps = 0; 3710 3711 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3712 if (ret <= 0) 3713 return ret; 3714 xhci = hcd_to_xhci(hcd); 3715 slot_id = udev->slot_id; 3716 virt_dev = xhci->devs[slot_id]; 3717 if (!virt_dev) { 3718 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3719 "not exist. Re-allocate the device\n", slot_id); 3720 ret = xhci_alloc_dev(hcd, udev); 3721 if (ret == 1) 3722 return 0; 3723 else 3724 return -EINVAL; 3725 } 3726 3727 if (virt_dev->tt_info) 3728 old_active_eps = virt_dev->tt_info->active_eps; 3729 3730 if (virt_dev->udev != udev) { 3731 /* If the virt_dev and the udev does not match, this virt_dev 3732 * may belong to another udev. 3733 * Re-allocate the device. 3734 */ 3735 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3736 "not match the udev. Re-allocate the device\n", 3737 slot_id); 3738 ret = xhci_alloc_dev(hcd, udev); 3739 if (ret == 1) 3740 return 0; 3741 else 3742 return -EINVAL; 3743 } 3744 3745 /* If device is not setup, there is no point in resetting it */ 3746 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3747 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3748 SLOT_STATE_DISABLED) 3749 return 0; 3750 3751 trace_xhci_discover_or_reset_device(slot_ctx); 3752 3753 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3754 /* Allocate the command structure that holds the struct completion. 3755 * Assume we're in process context, since the normal device reset 3756 * process has to wait for the device anyway. Storage devices are 3757 * reset as part of error handling, so use GFP_NOIO instead of 3758 * GFP_KERNEL. 3759 */ 3760 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3761 if (!reset_device_cmd) { 3762 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3763 return -ENOMEM; 3764 } 3765 3766 /* Attempt to submit the Reset Device command to the command ring */ 3767 spin_lock_irqsave(&xhci->lock, flags); 3768 3769 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3770 if (ret) { 3771 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3772 spin_unlock_irqrestore(&xhci->lock, flags); 3773 goto command_cleanup; 3774 } 3775 xhci_ring_cmd_db(xhci); 3776 spin_unlock_irqrestore(&xhci->lock, flags); 3777 3778 /* Wait for the Reset Device command to finish */ 3779 wait_for_completion(reset_device_cmd->completion); 3780 3781 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3782 * unless we tried to reset a slot ID that wasn't enabled, 3783 * or the device wasn't in the addressed or configured state. 3784 */ 3785 ret = reset_device_cmd->status; 3786 switch (ret) { 3787 case COMP_COMMAND_ABORTED: 3788 case COMP_COMMAND_RING_STOPPED: 3789 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3790 ret = -ETIME; 3791 goto command_cleanup; 3792 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3793 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3794 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3795 slot_id, 3796 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3797 xhci_dbg(xhci, "Not freeing device rings.\n"); 3798 /* Don't treat this as an error. May change my mind later. */ 3799 ret = 0; 3800 goto command_cleanup; 3801 case COMP_SUCCESS: 3802 xhci_dbg(xhci, "Successful reset device command.\n"); 3803 break; 3804 default: 3805 if (xhci_is_vendor_info_code(xhci, ret)) 3806 break; 3807 xhci_warn(xhci, "Unknown completion code %u for " 3808 "reset device command.\n", ret); 3809 ret = -EINVAL; 3810 goto command_cleanup; 3811 } 3812 3813 /* Free up host controller endpoint resources */ 3814 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3815 spin_lock_irqsave(&xhci->lock, flags); 3816 /* Don't delete the default control endpoint resources */ 3817 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3818 spin_unlock_irqrestore(&xhci->lock, flags); 3819 } 3820 3821 /* Everything but endpoint 0 is disabled, so free the rings. */ 3822 for (i = 1; i < 31; i++) { 3823 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3824 3825 if (ep->ep_state & EP_HAS_STREAMS) { 3826 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3827 xhci_get_endpoint_address(i)); 3828 xhci_free_stream_info(xhci, ep->stream_info); 3829 ep->stream_info = NULL; 3830 ep->ep_state &= ~EP_HAS_STREAMS; 3831 } 3832 3833 if (ep->ring) { 3834 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3835 xhci_free_endpoint_ring(xhci, virt_dev, i); 3836 } 3837 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3838 xhci_drop_ep_from_interval_table(xhci, 3839 &virt_dev->eps[i].bw_info, 3840 virt_dev->bw_table, 3841 udev, 3842 &virt_dev->eps[i], 3843 virt_dev->tt_info); 3844 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3845 } 3846 /* If necessary, update the number of active TTs on this root port */ 3847 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3848 virt_dev->flags = 0; 3849 ret = 0; 3850 3851 command_cleanup: 3852 xhci_free_command(xhci, reset_device_cmd); 3853 return ret; 3854 } 3855 3856 /* 3857 * At this point, the struct usb_device is about to go away, the device has 3858 * disconnected, and all traffic has been stopped and the endpoints have been 3859 * disabled. Free any HC data structures associated with that device. 3860 */ 3861 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3862 { 3863 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3864 struct xhci_virt_device *virt_dev; 3865 struct xhci_slot_ctx *slot_ctx; 3866 int i, ret; 3867 3868 #ifndef CONFIG_USB_DEFAULT_PERSIST 3869 /* 3870 * We called pm_runtime_get_noresume when the device was attached. 3871 * Decrement the counter here to allow controller to runtime suspend 3872 * if no devices remain. 3873 */ 3874 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3875 pm_runtime_put_noidle(hcd->self.controller); 3876 #endif 3877 3878 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3879 /* If the host is halted due to driver unload, we still need to free the 3880 * device. 3881 */ 3882 if (ret <= 0 && ret != -ENODEV) 3883 return; 3884 3885 virt_dev = xhci->devs[udev->slot_id]; 3886 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3887 trace_xhci_free_dev(slot_ctx); 3888 3889 /* Stop any wayward timer functions (which may grab the lock) */ 3890 for (i = 0; i < 31; i++) { 3891 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3892 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3893 } 3894 virt_dev->udev = NULL; 3895 ret = xhci_disable_slot(xhci, udev->slot_id); 3896 if (ret) 3897 xhci_free_virt_device(xhci, udev->slot_id); 3898 } 3899 3900 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3901 { 3902 struct xhci_command *command; 3903 unsigned long flags; 3904 u32 state; 3905 int ret = 0; 3906 3907 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3908 if (!command) 3909 return -ENOMEM; 3910 3911 xhci_debugfs_remove_slot(xhci, slot_id); 3912 3913 spin_lock_irqsave(&xhci->lock, flags); 3914 /* Don't disable the slot if the host controller is dead. */ 3915 state = readl(&xhci->op_regs->status); 3916 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3917 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3918 spin_unlock_irqrestore(&xhci->lock, flags); 3919 kfree(command); 3920 return -ENODEV; 3921 } 3922 3923 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3924 slot_id); 3925 if (ret) { 3926 spin_unlock_irqrestore(&xhci->lock, flags); 3927 kfree(command); 3928 return ret; 3929 } 3930 xhci_ring_cmd_db(xhci); 3931 spin_unlock_irqrestore(&xhci->lock, flags); 3932 return ret; 3933 } 3934 3935 /* 3936 * Checks if we have enough host controller resources for the default control 3937 * endpoint. 3938 * 3939 * Must be called with xhci->lock held. 3940 */ 3941 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3942 { 3943 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3944 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3945 "Not enough ep ctxs: " 3946 "%u active, need to add 1, limit is %u.", 3947 xhci->num_active_eps, xhci->limit_active_eps); 3948 return -ENOMEM; 3949 } 3950 xhci->num_active_eps += 1; 3951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3952 "Adding 1 ep ctx, %u now active.", 3953 xhci->num_active_eps); 3954 return 0; 3955 } 3956 3957 3958 /* 3959 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3960 * timed out, or allocating memory failed. Returns 1 on success. 3961 */ 3962 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3963 { 3964 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3965 struct xhci_virt_device *vdev; 3966 struct xhci_slot_ctx *slot_ctx; 3967 unsigned long flags; 3968 int ret, slot_id; 3969 struct xhci_command *command; 3970 3971 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3972 if (!command) 3973 return 0; 3974 3975 spin_lock_irqsave(&xhci->lock, flags); 3976 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3977 if (ret) { 3978 spin_unlock_irqrestore(&xhci->lock, flags); 3979 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3980 xhci_free_command(xhci, command); 3981 return 0; 3982 } 3983 xhci_ring_cmd_db(xhci); 3984 spin_unlock_irqrestore(&xhci->lock, flags); 3985 3986 wait_for_completion(command->completion); 3987 slot_id = command->slot_id; 3988 3989 if (!slot_id || command->status != COMP_SUCCESS) { 3990 xhci_err(xhci, "Error while assigning device slot ID\n"); 3991 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3992 HCS_MAX_SLOTS( 3993 readl(&xhci->cap_regs->hcs_params1))); 3994 xhci_free_command(xhci, command); 3995 return 0; 3996 } 3997 3998 xhci_free_command(xhci, command); 3999 4000 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4001 spin_lock_irqsave(&xhci->lock, flags); 4002 ret = xhci_reserve_host_control_ep_resources(xhci); 4003 if (ret) { 4004 spin_unlock_irqrestore(&xhci->lock, flags); 4005 xhci_warn(xhci, "Not enough host resources, " 4006 "active endpoint contexts = %u\n", 4007 xhci->num_active_eps); 4008 goto disable_slot; 4009 } 4010 spin_unlock_irqrestore(&xhci->lock, flags); 4011 } 4012 /* Use GFP_NOIO, since this function can be called from 4013 * xhci_discover_or_reset_device(), which may be called as part of 4014 * mass storage driver error handling. 4015 */ 4016 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4017 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4018 goto disable_slot; 4019 } 4020 vdev = xhci->devs[slot_id]; 4021 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4022 trace_xhci_alloc_dev(slot_ctx); 4023 4024 udev->slot_id = slot_id; 4025 4026 xhci_debugfs_create_slot(xhci, slot_id); 4027 4028 #ifndef CONFIG_USB_DEFAULT_PERSIST 4029 /* 4030 * If resetting upon resume, we can't put the controller into runtime 4031 * suspend if there is a device attached. 4032 */ 4033 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4034 pm_runtime_get_noresume(hcd->self.controller); 4035 #endif 4036 4037 /* Is this a LS or FS device under a HS hub? */ 4038 /* Hub or peripherial? */ 4039 return 1; 4040 4041 disable_slot: 4042 ret = xhci_disable_slot(xhci, udev->slot_id); 4043 if (ret) 4044 xhci_free_virt_device(xhci, udev->slot_id); 4045 4046 return 0; 4047 } 4048 4049 /* 4050 * Issue an Address Device command and optionally send a corresponding 4051 * SetAddress request to the device. 4052 */ 4053 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4054 enum xhci_setup_dev setup) 4055 { 4056 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4057 unsigned long flags; 4058 struct xhci_virt_device *virt_dev; 4059 int ret = 0; 4060 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4061 struct xhci_slot_ctx *slot_ctx; 4062 struct xhci_input_control_ctx *ctrl_ctx; 4063 u64 temp_64; 4064 struct xhci_command *command = NULL; 4065 4066 mutex_lock(&xhci->mutex); 4067 4068 if (xhci->xhc_state) { /* dying, removing or halted */ 4069 ret = -ESHUTDOWN; 4070 goto out; 4071 } 4072 4073 if (!udev->slot_id) { 4074 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4075 "Bad Slot ID %d", udev->slot_id); 4076 ret = -EINVAL; 4077 goto out; 4078 } 4079 4080 virt_dev = xhci->devs[udev->slot_id]; 4081 4082 if (WARN_ON(!virt_dev)) { 4083 /* 4084 * In plug/unplug torture test with an NEC controller, 4085 * a zero-dereference was observed once due to virt_dev = 0. 4086 * Print useful debug rather than crash if it is observed again! 4087 */ 4088 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4089 udev->slot_id); 4090 ret = -EINVAL; 4091 goto out; 4092 } 4093 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4094 trace_xhci_setup_device_slot(slot_ctx); 4095 4096 if (setup == SETUP_CONTEXT_ONLY) { 4097 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4098 SLOT_STATE_DEFAULT) { 4099 xhci_dbg(xhci, "Slot already in default state\n"); 4100 goto out; 4101 } 4102 } 4103 4104 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4105 if (!command) { 4106 ret = -ENOMEM; 4107 goto out; 4108 } 4109 4110 command->in_ctx = virt_dev->in_ctx; 4111 4112 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4113 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4114 if (!ctrl_ctx) { 4115 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4116 __func__); 4117 ret = -EINVAL; 4118 goto out; 4119 } 4120 /* 4121 * If this is the first Set Address since device plug-in or 4122 * virt_device realloaction after a resume with an xHCI power loss, 4123 * then set up the slot context. 4124 */ 4125 if (!slot_ctx->dev_info) 4126 xhci_setup_addressable_virt_dev(xhci, udev); 4127 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4128 else 4129 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4130 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4131 ctrl_ctx->drop_flags = 0; 4132 4133 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4134 le32_to_cpu(slot_ctx->dev_info) >> 27); 4135 4136 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4137 spin_lock_irqsave(&xhci->lock, flags); 4138 trace_xhci_setup_device(virt_dev); 4139 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4140 udev->slot_id, setup); 4141 if (ret) { 4142 spin_unlock_irqrestore(&xhci->lock, flags); 4143 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4144 "FIXME: allocate a command ring segment"); 4145 goto out; 4146 } 4147 xhci_ring_cmd_db(xhci); 4148 spin_unlock_irqrestore(&xhci->lock, flags); 4149 4150 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4151 wait_for_completion(command->completion); 4152 4153 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4154 * the SetAddress() "recovery interval" required by USB and aborting the 4155 * command on a timeout. 4156 */ 4157 switch (command->status) { 4158 case COMP_COMMAND_ABORTED: 4159 case COMP_COMMAND_RING_STOPPED: 4160 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4161 ret = -ETIME; 4162 break; 4163 case COMP_CONTEXT_STATE_ERROR: 4164 case COMP_SLOT_NOT_ENABLED_ERROR: 4165 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4166 act, udev->slot_id); 4167 ret = -EINVAL; 4168 break; 4169 case COMP_USB_TRANSACTION_ERROR: 4170 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4171 4172 mutex_unlock(&xhci->mutex); 4173 ret = xhci_disable_slot(xhci, udev->slot_id); 4174 if (!ret) 4175 xhci_alloc_dev(hcd, udev); 4176 kfree(command->completion); 4177 kfree(command); 4178 return -EPROTO; 4179 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4180 dev_warn(&udev->dev, 4181 "ERROR: Incompatible device for setup %s command\n", act); 4182 ret = -ENODEV; 4183 break; 4184 case COMP_SUCCESS: 4185 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4186 "Successful setup %s command", act); 4187 break; 4188 default: 4189 xhci_err(xhci, 4190 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4191 act, command->status); 4192 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4193 ret = -EINVAL; 4194 break; 4195 } 4196 if (ret) 4197 goto out; 4198 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4199 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4200 "Op regs DCBAA ptr = %#016llx", temp_64); 4201 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4202 "Slot ID %d dcbaa entry @%p = %#016llx", 4203 udev->slot_id, 4204 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4205 (unsigned long long) 4206 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4207 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4208 "Output Context DMA address = %#08llx", 4209 (unsigned long long)virt_dev->out_ctx->dma); 4210 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4211 le32_to_cpu(slot_ctx->dev_info) >> 27); 4212 /* 4213 * USB core uses address 1 for the roothubs, so we add one to the 4214 * address given back to us by the HC. 4215 */ 4216 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4217 le32_to_cpu(slot_ctx->dev_info) >> 27); 4218 /* Zero the input context control for later use */ 4219 ctrl_ctx->add_flags = 0; 4220 ctrl_ctx->drop_flags = 0; 4221 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4222 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4223 4224 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4225 "Internal device address = %d", 4226 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4227 out: 4228 mutex_unlock(&xhci->mutex); 4229 if (command) { 4230 kfree(command->completion); 4231 kfree(command); 4232 } 4233 return ret; 4234 } 4235 4236 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4237 { 4238 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4239 } 4240 4241 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4242 { 4243 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4244 } 4245 4246 /* 4247 * Transfer the port index into real index in the HW port status 4248 * registers. Caculate offset between the port's PORTSC register 4249 * and port status base. Divide the number of per port register 4250 * to get the real index. The raw port number bases 1. 4251 */ 4252 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4253 { 4254 struct xhci_hub *rhub; 4255 4256 rhub = xhci_get_rhub(hcd); 4257 return rhub->ports[port1 - 1]->hw_portnum + 1; 4258 } 4259 4260 /* 4261 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4262 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4263 */ 4264 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4265 struct usb_device *udev, u16 max_exit_latency) 4266 { 4267 struct xhci_virt_device *virt_dev; 4268 struct xhci_command *command; 4269 struct xhci_input_control_ctx *ctrl_ctx; 4270 struct xhci_slot_ctx *slot_ctx; 4271 unsigned long flags; 4272 int ret; 4273 4274 spin_lock_irqsave(&xhci->lock, flags); 4275 4276 virt_dev = xhci->devs[udev->slot_id]; 4277 4278 /* 4279 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4280 * xHC was re-initialized. Exit latency will be set later after 4281 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4282 */ 4283 4284 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4285 spin_unlock_irqrestore(&xhci->lock, flags); 4286 return 0; 4287 } 4288 4289 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4290 command = xhci->lpm_command; 4291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4292 if (!ctrl_ctx) { 4293 spin_unlock_irqrestore(&xhci->lock, flags); 4294 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4295 __func__); 4296 return -ENOMEM; 4297 } 4298 4299 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4300 spin_unlock_irqrestore(&xhci->lock, flags); 4301 4302 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4303 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4304 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4305 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4306 slot_ctx->dev_state = 0; 4307 4308 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4309 "Set up evaluate context for LPM MEL change."); 4310 4311 /* Issue and wait for the evaluate context command. */ 4312 ret = xhci_configure_endpoint(xhci, udev, command, 4313 true, true); 4314 4315 if (!ret) { 4316 spin_lock_irqsave(&xhci->lock, flags); 4317 virt_dev->current_mel = max_exit_latency; 4318 spin_unlock_irqrestore(&xhci->lock, flags); 4319 } 4320 return ret; 4321 } 4322 4323 #ifdef CONFIG_PM 4324 4325 /* BESL to HIRD Encoding array for USB2 LPM */ 4326 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4327 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4328 4329 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4330 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4331 struct usb_device *udev) 4332 { 4333 int u2del, besl, besl_host; 4334 int besl_device = 0; 4335 u32 field; 4336 4337 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4338 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4339 4340 if (field & USB_BESL_SUPPORT) { 4341 for (besl_host = 0; besl_host < 16; besl_host++) { 4342 if (xhci_besl_encoding[besl_host] >= u2del) 4343 break; 4344 } 4345 /* Use baseline BESL value as default */ 4346 if (field & USB_BESL_BASELINE_VALID) 4347 besl_device = USB_GET_BESL_BASELINE(field); 4348 else if (field & USB_BESL_DEEP_VALID) 4349 besl_device = USB_GET_BESL_DEEP(field); 4350 } else { 4351 if (u2del <= 50) 4352 besl_host = 0; 4353 else 4354 besl_host = (u2del - 51) / 75 + 1; 4355 } 4356 4357 besl = besl_host + besl_device; 4358 if (besl > 15) 4359 besl = 15; 4360 4361 return besl; 4362 } 4363 4364 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4365 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4366 { 4367 u32 field; 4368 int l1; 4369 int besld = 0; 4370 int hirdm = 0; 4371 4372 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4373 4374 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4375 l1 = udev->l1_params.timeout / 256; 4376 4377 /* device has preferred BESLD */ 4378 if (field & USB_BESL_DEEP_VALID) { 4379 besld = USB_GET_BESL_DEEP(field); 4380 hirdm = 1; 4381 } 4382 4383 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4384 } 4385 4386 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4387 struct usb_device *udev, int enable) 4388 { 4389 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4390 struct xhci_port **ports; 4391 __le32 __iomem *pm_addr, *hlpm_addr; 4392 u32 pm_val, hlpm_val, field; 4393 unsigned int port_num; 4394 unsigned long flags; 4395 int hird, exit_latency; 4396 int ret; 4397 4398 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4399 return -EPERM; 4400 4401 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4402 !udev->lpm_capable) 4403 return -EPERM; 4404 4405 if (!udev->parent || udev->parent->parent || 4406 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4407 return -EPERM; 4408 4409 if (udev->usb2_hw_lpm_capable != 1) 4410 return -EPERM; 4411 4412 spin_lock_irqsave(&xhci->lock, flags); 4413 4414 ports = xhci->usb2_rhub.ports; 4415 port_num = udev->portnum - 1; 4416 pm_addr = ports[port_num]->addr + PORTPMSC; 4417 pm_val = readl(pm_addr); 4418 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4419 4420 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4421 enable ? "enable" : "disable", port_num + 1); 4422 4423 if (enable) { 4424 /* Host supports BESL timeout instead of HIRD */ 4425 if (udev->usb2_hw_lpm_besl_capable) { 4426 /* if device doesn't have a preferred BESL value use a 4427 * default one which works with mixed HIRD and BESL 4428 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4429 */ 4430 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4431 if ((field & USB_BESL_SUPPORT) && 4432 (field & USB_BESL_BASELINE_VALID)) 4433 hird = USB_GET_BESL_BASELINE(field); 4434 else 4435 hird = udev->l1_params.besl; 4436 4437 exit_latency = xhci_besl_encoding[hird]; 4438 spin_unlock_irqrestore(&xhci->lock, flags); 4439 4440 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4441 * input context for link powermanagement evaluate 4442 * context commands. It is protected by hcd->bandwidth 4443 * mutex and is shared by all devices. We need to set 4444 * the max ext latency in USB 2 BESL LPM as well, so 4445 * use the same mutex and xhci_change_max_exit_latency() 4446 */ 4447 mutex_lock(hcd->bandwidth_mutex); 4448 ret = xhci_change_max_exit_latency(xhci, udev, 4449 exit_latency); 4450 mutex_unlock(hcd->bandwidth_mutex); 4451 4452 if (ret < 0) 4453 return ret; 4454 spin_lock_irqsave(&xhci->lock, flags); 4455 4456 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4457 writel(hlpm_val, hlpm_addr); 4458 /* flush write */ 4459 readl(hlpm_addr); 4460 } else { 4461 hird = xhci_calculate_hird_besl(xhci, udev); 4462 } 4463 4464 pm_val &= ~PORT_HIRD_MASK; 4465 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4466 writel(pm_val, pm_addr); 4467 pm_val = readl(pm_addr); 4468 pm_val |= PORT_HLE; 4469 writel(pm_val, pm_addr); 4470 /* flush write */ 4471 readl(pm_addr); 4472 } else { 4473 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4474 writel(pm_val, pm_addr); 4475 /* flush write */ 4476 readl(pm_addr); 4477 if (udev->usb2_hw_lpm_besl_capable) { 4478 spin_unlock_irqrestore(&xhci->lock, flags); 4479 mutex_lock(hcd->bandwidth_mutex); 4480 xhci_change_max_exit_latency(xhci, udev, 0); 4481 mutex_unlock(hcd->bandwidth_mutex); 4482 readl_poll_timeout(ports[port_num]->addr, pm_val, 4483 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4484 100, 10000); 4485 return 0; 4486 } 4487 } 4488 4489 spin_unlock_irqrestore(&xhci->lock, flags); 4490 return 0; 4491 } 4492 4493 /* check if a usb2 port supports a given extened capability protocol 4494 * only USB2 ports extended protocol capability values are cached. 4495 * Return 1 if capability is supported 4496 */ 4497 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4498 unsigned capability) 4499 { 4500 u32 port_offset, port_count; 4501 int i; 4502 4503 for (i = 0; i < xhci->num_ext_caps; i++) { 4504 if (xhci->ext_caps[i] & capability) { 4505 /* port offsets starts at 1 */ 4506 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4507 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4508 if (port >= port_offset && 4509 port < port_offset + port_count) 4510 return 1; 4511 } 4512 } 4513 return 0; 4514 } 4515 4516 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4517 { 4518 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4519 int portnum = udev->portnum - 1; 4520 4521 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4522 return 0; 4523 4524 /* we only support lpm for non-hub device connected to root hub yet */ 4525 if (!udev->parent || udev->parent->parent || 4526 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4527 return 0; 4528 4529 if (xhci->hw_lpm_support == 1 && 4530 xhci_check_usb2_port_capability( 4531 xhci, portnum, XHCI_HLC)) { 4532 udev->usb2_hw_lpm_capable = 1; 4533 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4534 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4535 if (xhci_check_usb2_port_capability(xhci, portnum, 4536 XHCI_BLC)) 4537 udev->usb2_hw_lpm_besl_capable = 1; 4538 } 4539 4540 return 0; 4541 } 4542 4543 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4544 4545 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4546 static unsigned long long xhci_service_interval_to_ns( 4547 struct usb_endpoint_descriptor *desc) 4548 { 4549 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4550 } 4551 4552 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4553 enum usb3_link_state state) 4554 { 4555 unsigned long long sel; 4556 unsigned long long pel; 4557 unsigned int max_sel_pel; 4558 char *state_name; 4559 4560 switch (state) { 4561 case USB3_LPM_U1: 4562 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4563 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4564 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4565 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4566 state_name = "U1"; 4567 break; 4568 case USB3_LPM_U2: 4569 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4570 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4571 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4572 state_name = "U2"; 4573 break; 4574 default: 4575 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4576 __func__); 4577 return USB3_LPM_DISABLED; 4578 } 4579 4580 if (sel <= max_sel_pel && pel <= max_sel_pel) 4581 return USB3_LPM_DEVICE_INITIATED; 4582 4583 if (sel > max_sel_pel) 4584 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4585 "due to long SEL %llu ms\n", 4586 state_name, sel); 4587 else 4588 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4589 "due to long PEL %llu ms\n", 4590 state_name, pel); 4591 return USB3_LPM_DISABLED; 4592 } 4593 4594 /* The U1 timeout should be the maximum of the following values: 4595 * - For control endpoints, U1 system exit latency (SEL) * 3 4596 * - For bulk endpoints, U1 SEL * 5 4597 * - For interrupt endpoints: 4598 * - Notification EPs, U1 SEL * 3 4599 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4600 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4601 */ 4602 static unsigned long long xhci_calculate_intel_u1_timeout( 4603 struct usb_device *udev, 4604 struct usb_endpoint_descriptor *desc) 4605 { 4606 unsigned long long timeout_ns; 4607 int ep_type; 4608 int intr_type; 4609 4610 ep_type = usb_endpoint_type(desc); 4611 switch (ep_type) { 4612 case USB_ENDPOINT_XFER_CONTROL: 4613 timeout_ns = udev->u1_params.sel * 3; 4614 break; 4615 case USB_ENDPOINT_XFER_BULK: 4616 timeout_ns = udev->u1_params.sel * 5; 4617 break; 4618 case USB_ENDPOINT_XFER_INT: 4619 intr_type = usb_endpoint_interrupt_type(desc); 4620 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4621 timeout_ns = udev->u1_params.sel * 3; 4622 break; 4623 } 4624 /* Otherwise the calculation is the same as isoc eps */ 4625 fallthrough; 4626 case USB_ENDPOINT_XFER_ISOC: 4627 timeout_ns = xhci_service_interval_to_ns(desc); 4628 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4629 if (timeout_ns < udev->u1_params.sel * 2) 4630 timeout_ns = udev->u1_params.sel * 2; 4631 break; 4632 default: 4633 return 0; 4634 } 4635 4636 return timeout_ns; 4637 } 4638 4639 /* Returns the hub-encoded U1 timeout value. */ 4640 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4641 struct usb_device *udev, 4642 struct usb_endpoint_descriptor *desc) 4643 { 4644 unsigned long long timeout_ns; 4645 4646 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4647 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4648 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4649 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4650 return USB3_LPM_DISABLED; 4651 } 4652 } 4653 4654 if (xhci->quirks & XHCI_INTEL_HOST) 4655 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4656 else 4657 timeout_ns = udev->u1_params.sel; 4658 4659 /* The U1 timeout is encoded in 1us intervals. 4660 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4661 */ 4662 if (timeout_ns == USB3_LPM_DISABLED) 4663 timeout_ns = 1; 4664 else 4665 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4666 4667 /* If the necessary timeout value is bigger than what we can set in the 4668 * USB 3.0 hub, we have to disable hub-initiated U1. 4669 */ 4670 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4671 return timeout_ns; 4672 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4673 "due to long timeout %llu ms\n", timeout_ns); 4674 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4675 } 4676 4677 /* The U2 timeout should be the maximum of: 4678 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4679 * - largest bInterval of any active periodic endpoint (to avoid going 4680 * into lower power link states between intervals). 4681 * - the U2 Exit Latency of the device 4682 */ 4683 static unsigned long long xhci_calculate_intel_u2_timeout( 4684 struct usb_device *udev, 4685 struct usb_endpoint_descriptor *desc) 4686 { 4687 unsigned long long timeout_ns; 4688 unsigned long long u2_del_ns; 4689 4690 timeout_ns = 10 * 1000 * 1000; 4691 4692 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4693 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4694 timeout_ns = xhci_service_interval_to_ns(desc); 4695 4696 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4697 if (u2_del_ns > timeout_ns) 4698 timeout_ns = u2_del_ns; 4699 4700 return timeout_ns; 4701 } 4702 4703 /* Returns the hub-encoded U2 timeout value. */ 4704 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4705 struct usb_device *udev, 4706 struct usb_endpoint_descriptor *desc) 4707 { 4708 unsigned long long timeout_ns; 4709 4710 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4711 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4712 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4713 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4714 return USB3_LPM_DISABLED; 4715 } 4716 } 4717 4718 if (xhci->quirks & XHCI_INTEL_HOST) 4719 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4720 else 4721 timeout_ns = udev->u2_params.sel; 4722 4723 /* The U2 timeout is encoded in 256us intervals */ 4724 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4725 /* If the necessary timeout value is bigger than what we can set in the 4726 * USB 3.0 hub, we have to disable hub-initiated U2. 4727 */ 4728 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4729 return timeout_ns; 4730 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4731 "due to long timeout %llu ms\n", timeout_ns); 4732 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4733 } 4734 4735 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4736 struct usb_device *udev, 4737 struct usb_endpoint_descriptor *desc, 4738 enum usb3_link_state state, 4739 u16 *timeout) 4740 { 4741 if (state == USB3_LPM_U1) 4742 return xhci_calculate_u1_timeout(xhci, udev, desc); 4743 else if (state == USB3_LPM_U2) 4744 return xhci_calculate_u2_timeout(xhci, udev, desc); 4745 4746 return USB3_LPM_DISABLED; 4747 } 4748 4749 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4750 struct usb_device *udev, 4751 struct usb_endpoint_descriptor *desc, 4752 enum usb3_link_state state, 4753 u16 *timeout) 4754 { 4755 u16 alt_timeout; 4756 4757 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4758 desc, state, timeout); 4759 4760 /* If we found we can't enable hub-initiated LPM, and 4761 * the U1 or U2 exit latency was too high to allow 4762 * device-initiated LPM as well, then we will disable LPM 4763 * for this device, so stop searching any further. 4764 */ 4765 if (alt_timeout == USB3_LPM_DISABLED) { 4766 *timeout = alt_timeout; 4767 return -E2BIG; 4768 } 4769 if (alt_timeout > *timeout) 4770 *timeout = alt_timeout; 4771 return 0; 4772 } 4773 4774 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4775 struct usb_device *udev, 4776 struct usb_host_interface *alt, 4777 enum usb3_link_state state, 4778 u16 *timeout) 4779 { 4780 int j; 4781 4782 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4783 if (xhci_update_timeout_for_endpoint(xhci, udev, 4784 &alt->endpoint[j].desc, state, timeout)) 4785 return -E2BIG; 4786 continue; 4787 } 4788 return 0; 4789 } 4790 4791 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4792 enum usb3_link_state state) 4793 { 4794 struct usb_device *parent; 4795 unsigned int num_hubs; 4796 4797 if (state == USB3_LPM_U2) 4798 return 0; 4799 4800 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4801 for (parent = udev->parent, num_hubs = 0; parent->parent; 4802 parent = parent->parent) 4803 num_hubs++; 4804 4805 if (num_hubs < 2) 4806 return 0; 4807 4808 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4809 " below second-tier hub.\n"); 4810 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4811 "to decrease power consumption.\n"); 4812 return -E2BIG; 4813 } 4814 4815 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4816 struct usb_device *udev, 4817 enum usb3_link_state state) 4818 { 4819 if (xhci->quirks & XHCI_INTEL_HOST) 4820 return xhci_check_intel_tier_policy(udev, state); 4821 else 4822 return 0; 4823 } 4824 4825 /* Returns the U1 or U2 timeout that should be enabled. 4826 * If the tier check or timeout setting functions return with a non-zero exit 4827 * code, that means the timeout value has been finalized and we shouldn't look 4828 * at any more endpoints. 4829 */ 4830 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4831 struct usb_device *udev, enum usb3_link_state state) 4832 { 4833 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4834 struct usb_host_config *config; 4835 char *state_name; 4836 int i; 4837 u16 timeout = USB3_LPM_DISABLED; 4838 4839 if (state == USB3_LPM_U1) 4840 state_name = "U1"; 4841 else if (state == USB3_LPM_U2) 4842 state_name = "U2"; 4843 else { 4844 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4845 state); 4846 return timeout; 4847 } 4848 4849 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4850 return timeout; 4851 4852 /* Gather some information about the currently installed configuration 4853 * and alternate interface settings. 4854 */ 4855 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4856 state, &timeout)) 4857 return timeout; 4858 4859 config = udev->actconfig; 4860 if (!config) 4861 return timeout; 4862 4863 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4864 struct usb_driver *driver; 4865 struct usb_interface *intf = config->interface[i]; 4866 4867 if (!intf) 4868 continue; 4869 4870 /* Check if any currently bound drivers want hub-initiated LPM 4871 * disabled. 4872 */ 4873 if (intf->dev.driver) { 4874 driver = to_usb_driver(intf->dev.driver); 4875 if (driver && driver->disable_hub_initiated_lpm) { 4876 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4877 state_name, driver->name); 4878 timeout = xhci_get_timeout_no_hub_lpm(udev, 4879 state); 4880 if (timeout == USB3_LPM_DISABLED) 4881 return timeout; 4882 } 4883 } 4884 4885 /* Not sure how this could happen... */ 4886 if (!intf->cur_altsetting) 4887 continue; 4888 4889 if (xhci_update_timeout_for_interface(xhci, udev, 4890 intf->cur_altsetting, 4891 state, &timeout)) 4892 return timeout; 4893 } 4894 return timeout; 4895 } 4896 4897 static int calculate_max_exit_latency(struct usb_device *udev, 4898 enum usb3_link_state state_changed, 4899 u16 hub_encoded_timeout) 4900 { 4901 unsigned long long u1_mel_us = 0; 4902 unsigned long long u2_mel_us = 0; 4903 unsigned long long mel_us = 0; 4904 bool disabling_u1; 4905 bool disabling_u2; 4906 bool enabling_u1; 4907 bool enabling_u2; 4908 4909 disabling_u1 = (state_changed == USB3_LPM_U1 && 4910 hub_encoded_timeout == USB3_LPM_DISABLED); 4911 disabling_u2 = (state_changed == USB3_LPM_U2 && 4912 hub_encoded_timeout == USB3_LPM_DISABLED); 4913 4914 enabling_u1 = (state_changed == USB3_LPM_U1 && 4915 hub_encoded_timeout != USB3_LPM_DISABLED); 4916 enabling_u2 = (state_changed == USB3_LPM_U2 && 4917 hub_encoded_timeout != USB3_LPM_DISABLED); 4918 4919 /* If U1 was already enabled and we're not disabling it, 4920 * or we're going to enable U1, account for the U1 max exit latency. 4921 */ 4922 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4923 enabling_u1) 4924 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4925 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4926 enabling_u2) 4927 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4928 4929 if (u1_mel_us > u2_mel_us) 4930 mel_us = u1_mel_us; 4931 else 4932 mel_us = u2_mel_us; 4933 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4934 if (mel_us > MAX_EXIT) { 4935 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4936 "is too big.\n", mel_us); 4937 return -E2BIG; 4938 } 4939 return mel_us; 4940 } 4941 4942 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4943 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4944 struct usb_device *udev, enum usb3_link_state state) 4945 { 4946 struct xhci_hcd *xhci; 4947 u16 hub_encoded_timeout; 4948 int mel; 4949 int ret; 4950 4951 xhci = hcd_to_xhci(hcd); 4952 /* The LPM timeout values are pretty host-controller specific, so don't 4953 * enable hub-initiated timeouts unless the vendor has provided 4954 * information about their timeout algorithm. 4955 */ 4956 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4957 !xhci->devs[udev->slot_id]) 4958 return USB3_LPM_DISABLED; 4959 4960 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4961 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4962 if (mel < 0) { 4963 /* Max Exit Latency is too big, disable LPM. */ 4964 hub_encoded_timeout = USB3_LPM_DISABLED; 4965 mel = 0; 4966 } 4967 4968 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4969 if (ret) 4970 return ret; 4971 return hub_encoded_timeout; 4972 } 4973 4974 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4975 struct usb_device *udev, enum usb3_link_state state) 4976 { 4977 struct xhci_hcd *xhci; 4978 u16 mel; 4979 4980 xhci = hcd_to_xhci(hcd); 4981 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4982 !xhci->devs[udev->slot_id]) 4983 return 0; 4984 4985 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4986 return xhci_change_max_exit_latency(xhci, udev, mel); 4987 } 4988 #else /* CONFIG_PM */ 4989 4990 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4991 struct usb_device *udev, int enable) 4992 { 4993 return 0; 4994 } 4995 4996 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4997 { 4998 return 0; 4999 } 5000 5001 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5002 struct usb_device *udev, enum usb3_link_state state) 5003 { 5004 return USB3_LPM_DISABLED; 5005 } 5006 5007 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5008 struct usb_device *udev, enum usb3_link_state state) 5009 { 5010 return 0; 5011 } 5012 #endif /* CONFIG_PM */ 5013 5014 /*-------------------------------------------------------------------------*/ 5015 5016 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5017 * internal data structures for the device. 5018 */ 5019 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5020 struct usb_tt *tt, gfp_t mem_flags) 5021 { 5022 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5023 struct xhci_virt_device *vdev; 5024 struct xhci_command *config_cmd; 5025 struct xhci_input_control_ctx *ctrl_ctx; 5026 struct xhci_slot_ctx *slot_ctx; 5027 unsigned long flags; 5028 unsigned think_time; 5029 int ret; 5030 5031 /* Ignore root hubs */ 5032 if (!hdev->parent) 5033 return 0; 5034 5035 vdev = xhci->devs[hdev->slot_id]; 5036 if (!vdev) { 5037 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5038 return -EINVAL; 5039 } 5040 5041 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5042 if (!config_cmd) 5043 return -ENOMEM; 5044 5045 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5046 if (!ctrl_ctx) { 5047 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5048 __func__); 5049 xhci_free_command(xhci, config_cmd); 5050 return -ENOMEM; 5051 } 5052 5053 spin_lock_irqsave(&xhci->lock, flags); 5054 if (hdev->speed == USB_SPEED_HIGH && 5055 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5056 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5057 xhci_free_command(xhci, config_cmd); 5058 spin_unlock_irqrestore(&xhci->lock, flags); 5059 return -ENOMEM; 5060 } 5061 5062 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5063 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5064 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5065 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5066 /* 5067 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5068 * but it may be already set to 1 when setup an xHCI virtual 5069 * device, so clear it anyway. 5070 */ 5071 if (tt->multi) 5072 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5073 else if (hdev->speed == USB_SPEED_FULL) 5074 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5075 5076 if (xhci->hci_version > 0x95) { 5077 xhci_dbg(xhci, "xHCI version %x needs hub " 5078 "TT think time and number of ports\n", 5079 (unsigned int) xhci->hci_version); 5080 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5081 /* Set TT think time - convert from ns to FS bit times. 5082 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5083 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5084 * 5085 * xHCI 1.0: this field shall be 0 if the device is not a 5086 * High-spped hub. 5087 */ 5088 think_time = tt->think_time; 5089 if (think_time != 0) 5090 think_time = (think_time / 666) - 1; 5091 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5092 slot_ctx->tt_info |= 5093 cpu_to_le32(TT_THINK_TIME(think_time)); 5094 } else { 5095 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5096 "TT think time or number of ports\n", 5097 (unsigned int) xhci->hci_version); 5098 } 5099 slot_ctx->dev_state = 0; 5100 spin_unlock_irqrestore(&xhci->lock, flags); 5101 5102 xhci_dbg(xhci, "Set up %s for hub device.\n", 5103 (xhci->hci_version > 0x95) ? 5104 "configure endpoint" : "evaluate context"); 5105 5106 /* Issue and wait for the configure endpoint or 5107 * evaluate context command. 5108 */ 5109 if (xhci->hci_version > 0x95) 5110 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5111 false, false); 5112 else 5113 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5114 true, false); 5115 5116 xhci_free_command(xhci, config_cmd); 5117 return ret; 5118 } 5119 5120 static int xhci_get_frame(struct usb_hcd *hcd) 5121 { 5122 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5123 /* EHCI mods by the periodic size. Why? */ 5124 return readl(&xhci->run_regs->microframe_index) >> 3; 5125 } 5126 5127 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5128 { 5129 struct xhci_hcd *xhci; 5130 /* 5131 * TODO: Check with DWC3 clients for sysdev according to 5132 * quirks 5133 */ 5134 struct device *dev = hcd->self.sysdev; 5135 unsigned int minor_rev; 5136 int retval; 5137 5138 /* Accept arbitrarily long scatter-gather lists */ 5139 hcd->self.sg_tablesize = ~0; 5140 5141 /* support to build packet from discontinuous buffers */ 5142 hcd->self.no_sg_constraint = 1; 5143 5144 /* XHCI controllers don't stop the ep queue on short packets :| */ 5145 hcd->self.no_stop_on_short = 1; 5146 5147 xhci = hcd_to_xhci(hcd); 5148 5149 if (usb_hcd_is_primary_hcd(hcd)) { 5150 xhci->main_hcd = hcd; 5151 xhci->usb2_rhub.hcd = hcd; 5152 /* Mark the first roothub as being USB 2.0. 5153 * The xHCI driver will register the USB 3.0 roothub. 5154 */ 5155 hcd->speed = HCD_USB2; 5156 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5157 /* 5158 * USB 2.0 roothub under xHCI has an integrated TT, 5159 * (rate matching hub) as opposed to having an OHCI/UHCI 5160 * companion controller. 5161 */ 5162 hcd->has_tt = 1; 5163 } else { 5164 /* 5165 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5166 * should return 0x31 for sbrn, or that the minor revision 5167 * is a two digit BCD containig minor and sub-minor numbers. 5168 * This was later clarified in xHCI 1.2. 5169 * 5170 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5171 * minor revision set to 0x1 instead of 0x10. 5172 */ 5173 if (xhci->usb3_rhub.min_rev == 0x1) 5174 minor_rev = 1; 5175 else 5176 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5177 5178 switch (minor_rev) { 5179 case 2: 5180 hcd->speed = HCD_USB32; 5181 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5182 hcd->self.root_hub->rx_lanes = 2; 5183 hcd->self.root_hub->tx_lanes = 2; 5184 break; 5185 case 1: 5186 hcd->speed = HCD_USB31; 5187 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5188 break; 5189 } 5190 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5191 minor_rev, 5192 minor_rev ? "Enhanced " : ""); 5193 5194 xhci->usb3_rhub.hcd = hcd; 5195 /* xHCI private pointer was set in xhci_pci_probe for the second 5196 * registered roothub. 5197 */ 5198 return 0; 5199 } 5200 5201 mutex_init(&xhci->mutex); 5202 xhci->cap_regs = hcd->regs; 5203 xhci->op_regs = hcd->regs + 5204 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5205 xhci->run_regs = hcd->regs + 5206 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5207 /* Cache read-only capability registers */ 5208 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5209 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5210 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5211 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5212 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5213 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5214 if (xhci->hci_version > 0x100) 5215 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5216 5217 xhci->quirks |= quirks; 5218 5219 get_quirks(dev, xhci); 5220 5221 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5222 * success event after a short transfer. This quirk will ignore such 5223 * spurious event. 5224 */ 5225 if (xhci->hci_version > 0x96) 5226 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5227 5228 /* Make sure the HC is halted. */ 5229 retval = xhci_halt(xhci); 5230 if (retval) 5231 return retval; 5232 5233 xhci_zero_64b_regs(xhci); 5234 5235 xhci_dbg(xhci, "Resetting HCD\n"); 5236 /* Reset the internal HC memory state and registers. */ 5237 retval = xhci_reset(xhci); 5238 if (retval) 5239 return retval; 5240 xhci_dbg(xhci, "Reset complete\n"); 5241 5242 /* 5243 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5244 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5245 * address memory pointers actually. So, this driver clears the AC64 5246 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5247 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5248 */ 5249 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5250 xhci->hcc_params &= ~BIT(0); 5251 5252 /* Set dma_mask and coherent_dma_mask to 64-bits, 5253 * if xHC supports 64-bit addressing */ 5254 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5255 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5256 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5257 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5258 } else { 5259 /* 5260 * This is to avoid error in cases where a 32-bit USB 5261 * controller is used on a 64-bit capable system. 5262 */ 5263 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5264 if (retval) 5265 return retval; 5266 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5267 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5268 } 5269 5270 xhci_dbg(xhci, "Calling HCD init\n"); 5271 /* Initialize HCD and host controller data structures. */ 5272 retval = xhci_init(hcd); 5273 if (retval) 5274 return retval; 5275 xhci_dbg(xhci, "Called HCD init\n"); 5276 5277 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5278 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5279 5280 return 0; 5281 } 5282 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5283 5284 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5285 struct usb_host_endpoint *ep) 5286 { 5287 struct xhci_hcd *xhci; 5288 struct usb_device *udev; 5289 unsigned int slot_id; 5290 unsigned int ep_index; 5291 unsigned long flags; 5292 5293 xhci = hcd_to_xhci(hcd); 5294 5295 spin_lock_irqsave(&xhci->lock, flags); 5296 udev = (struct usb_device *)ep->hcpriv; 5297 slot_id = udev->slot_id; 5298 ep_index = xhci_get_endpoint_index(&ep->desc); 5299 5300 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5301 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5302 spin_unlock_irqrestore(&xhci->lock, flags); 5303 } 5304 5305 static const struct hc_driver xhci_hc_driver = { 5306 .description = "xhci-hcd", 5307 .product_desc = "xHCI Host Controller", 5308 .hcd_priv_size = sizeof(struct xhci_hcd), 5309 5310 /* 5311 * generic hardware linkage 5312 */ 5313 .irq = xhci_irq, 5314 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5315 HCD_BH, 5316 5317 /* 5318 * basic lifecycle operations 5319 */ 5320 .reset = NULL, /* set in xhci_init_driver() */ 5321 .start = xhci_run, 5322 .stop = xhci_stop, 5323 .shutdown = xhci_shutdown, 5324 5325 /* 5326 * managing i/o requests and associated device resources 5327 */ 5328 .map_urb_for_dma = xhci_map_urb_for_dma, 5329 .urb_enqueue = xhci_urb_enqueue, 5330 .urb_dequeue = xhci_urb_dequeue, 5331 .alloc_dev = xhci_alloc_dev, 5332 .free_dev = xhci_free_dev, 5333 .alloc_streams = xhci_alloc_streams, 5334 .free_streams = xhci_free_streams, 5335 .add_endpoint = xhci_add_endpoint, 5336 .drop_endpoint = xhci_drop_endpoint, 5337 .endpoint_disable = xhci_endpoint_disable, 5338 .endpoint_reset = xhci_endpoint_reset, 5339 .check_bandwidth = xhci_check_bandwidth, 5340 .reset_bandwidth = xhci_reset_bandwidth, 5341 .address_device = xhci_address_device, 5342 .enable_device = xhci_enable_device, 5343 .update_hub_device = xhci_update_hub_device, 5344 .reset_device = xhci_discover_or_reset_device, 5345 5346 /* 5347 * scheduling support 5348 */ 5349 .get_frame_number = xhci_get_frame, 5350 5351 /* 5352 * root hub support 5353 */ 5354 .hub_control = xhci_hub_control, 5355 .hub_status_data = xhci_hub_status_data, 5356 .bus_suspend = xhci_bus_suspend, 5357 .bus_resume = xhci_bus_resume, 5358 .get_resuming_ports = xhci_get_resuming_ports, 5359 5360 /* 5361 * call back when device connected and addressed 5362 */ 5363 .update_device = xhci_update_device, 5364 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5365 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5366 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5367 .find_raw_port_number = xhci_find_raw_port_number, 5368 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5369 }; 5370 5371 void xhci_init_driver(struct hc_driver *drv, 5372 const struct xhci_driver_overrides *over) 5373 { 5374 BUG_ON(!over); 5375 5376 /* Copy the generic table to drv then apply the overrides */ 5377 *drv = xhci_hc_driver; 5378 5379 if (over) { 5380 drv->hcd_priv_size += over->extra_priv_size; 5381 if (over->reset) 5382 drv->reset = over->reset; 5383 if (over->start) 5384 drv->start = over->start; 5385 } 5386 } 5387 EXPORT_SYMBOL_GPL(xhci_init_driver); 5388 5389 MODULE_DESCRIPTION(DRIVER_DESC); 5390 MODULE_AUTHOR(DRIVER_AUTHOR); 5391 MODULE_LICENSE("GPL"); 5392 5393 static int __init xhci_hcd_init(void) 5394 { 5395 /* 5396 * Check the compiler generated sizes of structures that must be laid 5397 * out in specific ways for hardware access. 5398 */ 5399 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5400 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5401 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5402 /* xhci_device_control has eight fields, and also 5403 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5404 */ 5405 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5406 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5407 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5408 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5409 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5410 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5411 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5412 5413 if (usb_disabled()) 5414 return -ENODEV; 5415 5416 xhci_debugfs_create_root(); 5417 5418 return 0; 5419 } 5420 5421 /* 5422 * If an init function is provided, an exit function must also be provided 5423 * to allow module unload. 5424 */ 5425 static void __exit xhci_hcd_fini(void) 5426 { 5427 xhci_debugfs_remove_root(); 5428 } 5429 5430 module_init(xhci_hcd_init); 5431 module_exit(xhci_hcd_fini); 5432