xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	/* Clear root port wake on bits if wakeup not allowed. */
986 	if (!do_wakeup)
987 		xhci_disable_port_wake_on_bits(xhci);
988 
989 	if (!HCD_HW_ACCESSIBLE(hcd))
990 		return 0;
991 
992 	xhci_dbc_suspend(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 20 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/*
1112 		 * Some controllers might lose power during suspend, so wait
1113 		 * for controller not ready bit to clear, just as in xHC init.
1114 		 */
1115 		retval = xhci_handshake(&xhci->op_regs->status,
1116 					STS_CNR, 0, 10 * 1000 * 1000);
1117 		if (retval) {
1118 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 				  retval);
1120 			spin_unlock_irq(&xhci->lock);
1121 			return retval;
1122 		}
1123 		/* step 1: restore register */
1124 		xhci_restore_registers(xhci);
1125 		/* step 2: initialize command ring buffer */
1126 		xhci_set_cmd_ring_deq(xhci);
1127 		/* step 3: restore state and start state*/
1128 		/* step 3: set CRS flag */
1129 		command = readl(&xhci->op_regs->command);
1130 		command |= CMD_CRS;
1131 		writel(command, &xhci->op_regs->command);
1132 		/*
1133 		 * Some controllers take up to 55+ ms to complete the controller
1134 		 * restore so setting the timeout to 100ms. Xhci specification
1135 		 * doesn't mention any timeout value.
1136 		 */
1137 		if (xhci_handshake(&xhci->op_regs->status,
1138 			      STS_RESTORE, 0, 100 * 1000)) {
1139 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 			spin_unlock_irq(&xhci->lock);
1141 			return -ETIMEDOUT;
1142 		}
1143 		temp = readl(&xhci->op_regs->status);
1144 	}
1145 
1146 	/* If restore operation fails, re-initialize the HC during resume */
1147 	if ((temp & STS_SRE) || hibernated) {
1148 
1149 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 				!(xhci_all_ports_seen_u0(xhci))) {
1151 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 				"Compliance Mode Recovery Timer deleted!");
1154 		}
1155 
1156 		/* Let the USB core know _both_ roothubs lost power. */
1157 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159 
1160 		xhci_dbg(xhci, "Stop HCD\n");
1161 		xhci_halt(xhci);
1162 		xhci_zero_64b_regs(xhci);
1163 		retval = xhci_reset(xhci);
1164 		spin_unlock_irq(&xhci->lock);
1165 		if (retval)
1166 			return retval;
1167 		xhci_cleanup_msix(xhci);
1168 
1169 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 		temp = readl(&xhci->op_regs->status);
1171 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 		temp = readl(&xhci->ir_set->irq_pending);
1173 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174 
1175 		xhci_dbg(xhci, "cleaning up memory\n");
1176 		xhci_mem_cleanup(xhci);
1177 		xhci_debugfs_exit(xhci);
1178 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179 			    readl(&xhci->op_regs->status));
1180 
1181 		/* USB core calls the PCI reinit and start functions twice:
1182 		 * first with the primary HCD, and then with the secondary HCD.
1183 		 * If we don't do the same, the host will never be started.
1184 		 */
1185 		if (!usb_hcd_is_primary_hcd(hcd))
1186 			secondary_hcd = hcd;
1187 		else
1188 			secondary_hcd = xhci->shared_hcd;
1189 
1190 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191 		retval = xhci_init(hcd->primary_hcd);
1192 		if (retval)
1193 			return retval;
1194 		comp_timer_running = true;
1195 
1196 		xhci_dbg(xhci, "Start the primary HCD\n");
1197 		retval = xhci_run(hcd->primary_hcd);
1198 		if (!retval) {
1199 			xhci_dbg(xhci, "Start the secondary HCD\n");
1200 			retval = xhci_run(secondary_hcd);
1201 		}
1202 		hcd->state = HC_STATE_SUSPENDED;
1203 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204 		goto done;
1205 	}
1206 
1207 	/* step 4: set Run/Stop bit */
1208 	command = readl(&xhci->op_regs->command);
1209 	command |= CMD_RUN;
1210 	writel(command, &xhci->op_regs->command);
1211 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212 		  0, 250 * 1000);
1213 
1214 	/* step 5: walk topology and initialize portsc,
1215 	 * portpmsc and portli
1216 	 */
1217 	/* this is done in bus_resume */
1218 
1219 	/* step 6: restart each of the previously
1220 	 * Running endpoints by ringing their doorbells
1221 	 */
1222 
1223 	spin_unlock_irq(&xhci->lock);
1224 
1225 	xhci_dbc_resume(xhci);
1226 
1227  done:
1228 	if (retval == 0) {
1229 		/* Resume root hubs only when have pending events. */
1230 		if (xhci_pending_portevent(xhci)) {
1231 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1232 			usb_hcd_resume_root_hub(hcd);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1238 	 * be re-initialized Always after a system resume. Ports are subject
1239 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1240 	 * ports have entered previously to U0 before system's suspension.
1241 	 */
1242 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243 		compliance_mode_recovery_timer_init(xhci);
1244 
1245 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247 
1248 	/* Re-enable port polling. */
1249 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1252 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253 	usb_hcd_poll_rh_status(hcd);
1254 
1255 	return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif	/* CONFIG_PM */
1259 
1260 /*-------------------------------------------------------------------------*/
1261 
1262 /*
1263  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1264  * we'll copy the actual data into the TRB address register. This is limited to
1265  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1266  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1267  */
1268 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1269 				gfp_t mem_flags)
1270 {
1271 	if (xhci_urb_suitable_for_idt(urb))
1272 		return 0;
1273 
1274 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1275 }
1276 
1277 /*
1278  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1279  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1280  * value to right shift 1 for the bitmask.
1281  *
1282  * Index  = (epnum * 2) + direction - 1,
1283  * where direction = 0 for OUT, 1 for IN.
1284  * For control endpoints, the IN index is used (OUT index is unused), so
1285  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1286  */
1287 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1288 {
1289 	unsigned int index;
1290 	if (usb_endpoint_xfer_control(desc))
1291 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1292 	else
1293 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1294 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1295 	return index;
1296 }
1297 
1298 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1299  * address from the XHCI endpoint index.
1300  */
1301 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1302 {
1303 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1304 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1305 	return direction | number;
1306 }
1307 
1308 /* Find the flag for this endpoint (for use in the control context).  Use the
1309  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1310  * bit 1, etc.
1311  */
1312 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1313 {
1314 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1315 }
1316 
1317 /* Find the flag for this endpoint (for use in the control context).  Use the
1318  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1319  * bit 1, etc.
1320  */
1321 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1322 {
1323 	return 1 << (ep_index + 1);
1324 }
1325 
1326 /* Compute the last valid endpoint context index.  Basically, this is the
1327  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1328  * we find the most significant bit set in the added contexts flags.
1329  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1330  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1331  */
1332 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1333 {
1334 	return fls(added_ctxs) - 1;
1335 }
1336 
1337 /* Returns 1 if the arguments are OK;
1338  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1339  */
1340 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1341 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1342 		const char *func) {
1343 	struct xhci_hcd	*xhci;
1344 	struct xhci_virt_device	*virt_dev;
1345 
1346 	if (!hcd || (check_ep && !ep) || !udev) {
1347 		pr_debug("xHCI %s called with invalid args\n", func);
1348 		return -EINVAL;
1349 	}
1350 	if (!udev->parent) {
1351 		pr_debug("xHCI %s called for root hub\n", func);
1352 		return 0;
1353 	}
1354 
1355 	xhci = hcd_to_xhci(hcd);
1356 	if (check_virt_dev) {
1357 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1358 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1359 					func);
1360 			return -EINVAL;
1361 		}
1362 
1363 		virt_dev = xhci->devs[udev->slot_id];
1364 		if (virt_dev->udev != udev) {
1365 			xhci_dbg(xhci, "xHCI %s called with udev and "
1366 					  "virt_dev does not match\n", func);
1367 			return -EINVAL;
1368 		}
1369 	}
1370 
1371 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1372 		return -ENODEV;
1373 
1374 	return 1;
1375 }
1376 
1377 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1378 		struct usb_device *udev, struct xhci_command *command,
1379 		bool ctx_change, bool must_succeed);
1380 
1381 /*
1382  * Full speed devices may have a max packet size greater than 8 bytes, but the
1383  * USB core doesn't know that until it reads the first 8 bytes of the
1384  * descriptor.  If the usb_device's max packet size changes after that point,
1385  * we need to issue an evaluate context command and wait on it.
1386  */
1387 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1388 		unsigned int ep_index, struct urb *urb)
1389 {
1390 	struct xhci_container_ctx *out_ctx;
1391 	struct xhci_input_control_ctx *ctrl_ctx;
1392 	struct xhci_ep_ctx *ep_ctx;
1393 	struct xhci_command *command;
1394 	int max_packet_size;
1395 	int hw_max_packet_size;
1396 	int ret = 0;
1397 
1398 	out_ctx = xhci->devs[slot_id]->out_ctx;
1399 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1400 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1401 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1402 	if (hw_max_packet_size != max_packet_size) {
1403 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404 				"Max Packet Size for ep 0 changed.");
1405 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406 				"Max packet size in usb_device = %d",
1407 				max_packet_size);
1408 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409 				"Max packet size in xHCI HW = %d",
1410 				hw_max_packet_size);
1411 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1412 				"Issuing evaluate context command.");
1413 
1414 		/* Set up the input context flags for the command */
1415 		/* FIXME: This won't work if a non-default control endpoint
1416 		 * changes max packet sizes.
1417 		 */
1418 
1419 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1420 		if (!command)
1421 			return -ENOMEM;
1422 
1423 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1424 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1425 		if (!ctrl_ctx) {
1426 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1427 					__func__);
1428 			ret = -ENOMEM;
1429 			goto command_cleanup;
1430 		}
1431 		/* Set up the modified control endpoint 0 */
1432 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1433 				xhci->devs[slot_id]->out_ctx, ep_index);
1434 
1435 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1436 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1437 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1438 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1439 
1440 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1441 		ctrl_ctx->drop_flags = 0;
1442 
1443 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1444 				true, false);
1445 
1446 		/* Clean up the input context for later use by bandwidth
1447 		 * functions.
1448 		 */
1449 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1450 command_cleanup:
1451 		kfree(command->completion);
1452 		kfree(command);
1453 	}
1454 	return ret;
1455 }
1456 
1457 /*
1458  * non-error returns are a promise to giveback() the urb later
1459  * we drop ownership so next owner (or urb unlink) can get it
1460  */
1461 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1462 {
1463 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1464 	unsigned long flags;
1465 	int ret = 0;
1466 	unsigned int slot_id, ep_index;
1467 	unsigned int *ep_state;
1468 	struct urb_priv	*urb_priv;
1469 	int num_tds;
1470 
1471 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1472 					true, true, __func__) <= 0)
1473 		return -EINVAL;
1474 
1475 	slot_id = urb->dev->slot_id;
1476 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1477 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1478 
1479 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1480 		if (!in_interrupt())
1481 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1482 		return -ESHUTDOWN;
1483 	}
1484 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1485 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1486 		return -ENODEV;
1487 	}
1488 
1489 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1490 		num_tds = urb->number_of_packets;
1491 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1492 	    urb->transfer_buffer_length > 0 &&
1493 	    urb->transfer_flags & URB_ZERO_PACKET &&
1494 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1495 		num_tds = 2;
1496 	else
1497 		num_tds = 1;
1498 
1499 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1500 	if (!urb_priv)
1501 		return -ENOMEM;
1502 
1503 	urb_priv->num_tds = num_tds;
1504 	urb_priv->num_tds_done = 0;
1505 	urb->hcpriv = urb_priv;
1506 
1507 	trace_xhci_urb_enqueue(urb);
1508 
1509 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1510 		/* Check to see if the max packet size for the default control
1511 		 * endpoint changed during FS device enumeration
1512 		 */
1513 		if (urb->dev->speed == USB_SPEED_FULL) {
1514 			ret = xhci_check_maxpacket(xhci, slot_id,
1515 					ep_index, urb);
1516 			if (ret < 0) {
1517 				xhci_urb_free_priv(urb_priv);
1518 				urb->hcpriv = NULL;
1519 				return ret;
1520 			}
1521 		}
1522 	}
1523 
1524 	spin_lock_irqsave(&xhci->lock, flags);
1525 
1526 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1527 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1528 			 urb->ep->desc.bEndpointAddress, urb);
1529 		ret = -ESHUTDOWN;
1530 		goto free_priv;
1531 	}
1532 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1533 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1534 			  *ep_state);
1535 		ret = -EINVAL;
1536 		goto free_priv;
1537 	}
1538 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1539 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1540 		ret = -EINVAL;
1541 		goto free_priv;
1542 	}
1543 
1544 	switch (usb_endpoint_type(&urb->ep->desc)) {
1545 
1546 	case USB_ENDPOINT_XFER_CONTROL:
1547 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1548 					 slot_id, ep_index);
1549 		break;
1550 	case USB_ENDPOINT_XFER_BULK:
1551 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1552 					 slot_id, ep_index);
1553 		break;
1554 	case USB_ENDPOINT_XFER_INT:
1555 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1556 				slot_id, ep_index);
1557 		break;
1558 	case USB_ENDPOINT_XFER_ISOC:
1559 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1560 				slot_id, ep_index);
1561 	}
1562 
1563 	if (ret) {
1564 free_priv:
1565 		xhci_urb_free_priv(urb_priv);
1566 		urb->hcpriv = NULL;
1567 	}
1568 	spin_unlock_irqrestore(&xhci->lock, flags);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1574  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1575  * should pick up where it left off in the TD, unless a Set Transfer Ring
1576  * Dequeue Pointer is issued.
1577  *
1578  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1579  * the ring.  Since the ring is a contiguous structure, they can't be physically
1580  * removed.  Instead, there are two options:
1581  *
1582  *  1) If the HC is in the middle of processing the URB to be canceled, we
1583  *     simply move the ring's dequeue pointer past those TRBs using the Set
1584  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1585  *     when drivers timeout on the last submitted URB and attempt to cancel.
1586  *
1587  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1588  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1589  *     HC will need to invalidate the any TRBs it has cached after the stop
1590  *     endpoint command, as noted in the xHCI 0.95 errata.
1591  *
1592  *  3) The TD may have completed by the time the Stop Endpoint Command
1593  *     completes, so software needs to handle that case too.
1594  *
1595  * This function should protect against the TD enqueueing code ringing the
1596  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1597  * It also needs to account for multiple cancellations on happening at the same
1598  * time for the same endpoint.
1599  *
1600  * Note that this function can be called in any context, or so says
1601  * usb_hcd_unlink_urb()
1602  */
1603 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1604 {
1605 	unsigned long flags;
1606 	int ret, i;
1607 	u32 temp;
1608 	struct xhci_hcd *xhci;
1609 	struct urb_priv	*urb_priv;
1610 	struct xhci_td *td;
1611 	unsigned int ep_index;
1612 	struct xhci_ring *ep_ring;
1613 	struct xhci_virt_ep *ep;
1614 	struct xhci_command *command;
1615 	struct xhci_virt_device *vdev;
1616 
1617 	xhci = hcd_to_xhci(hcd);
1618 	spin_lock_irqsave(&xhci->lock, flags);
1619 
1620 	trace_xhci_urb_dequeue(urb);
1621 
1622 	/* Make sure the URB hasn't completed or been unlinked already */
1623 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1624 	if (ret)
1625 		goto done;
1626 
1627 	/* give back URB now if we can't queue it for cancel */
1628 	vdev = xhci->devs[urb->dev->slot_id];
1629 	urb_priv = urb->hcpriv;
1630 	if (!vdev || !urb_priv)
1631 		goto err_giveback;
1632 
1633 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1634 	ep = &vdev->eps[ep_index];
1635 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1636 	if (!ep || !ep_ring)
1637 		goto err_giveback;
1638 
1639 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1640 	temp = readl(&xhci->op_regs->status);
1641 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1642 		xhci_hc_died(xhci);
1643 		goto done;
1644 	}
1645 
1646 	/*
1647 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1648 	 * make sure none of the ring related pointers in this URB private data
1649 	 * are touched, such as td_list, otherwise we overwrite freed data
1650 	 */
1651 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1652 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1653 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1654 			td = &urb_priv->td[i];
1655 			if (!list_empty(&td->cancelled_td_list))
1656 				list_del_init(&td->cancelled_td_list);
1657 		}
1658 		goto err_giveback;
1659 	}
1660 
1661 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1662 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1663 				"HC halted, freeing TD manually.");
1664 		for (i = urb_priv->num_tds_done;
1665 		     i < urb_priv->num_tds;
1666 		     i++) {
1667 			td = &urb_priv->td[i];
1668 			if (!list_empty(&td->td_list))
1669 				list_del_init(&td->td_list);
1670 			if (!list_empty(&td->cancelled_td_list))
1671 				list_del_init(&td->cancelled_td_list);
1672 		}
1673 		goto err_giveback;
1674 	}
1675 
1676 	i = urb_priv->num_tds_done;
1677 	if (i < urb_priv->num_tds)
1678 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1679 				"Cancel URB %p, dev %s, ep 0x%x, "
1680 				"starting at offset 0x%llx",
1681 				urb, urb->dev->devpath,
1682 				urb->ep->desc.bEndpointAddress,
1683 				(unsigned long long) xhci_trb_virt_to_dma(
1684 					urb_priv->td[i].start_seg,
1685 					urb_priv->td[i].first_trb));
1686 
1687 	for (; i < urb_priv->num_tds; i++) {
1688 		td = &urb_priv->td[i];
1689 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1690 	}
1691 
1692 	/* Queue a stop endpoint command, but only if this is
1693 	 * the first cancellation to be handled.
1694 	 */
1695 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1696 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1697 		if (!command) {
1698 			ret = -ENOMEM;
1699 			goto done;
1700 		}
1701 		ep->ep_state |= EP_STOP_CMD_PENDING;
1702 		ep->stop_cmd_timer.expires = jiffies +
1703 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1704 		add_timer(&ep->stop_cmd_timer);
1705 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1706 					 ep_index, 0);
1707 		xhci_ring_cmd_db(xhci);
1708 	}
1709 done:
1710 	spin_unlock_irqrestore(&xhci->lock, flags);
1711 	return ret;
1712 
1713 err_giveback:
1714 	if (urb_priv)
1715 		xhci_urb_free_priv(urb_priv);
1716 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1717 	spin_unlock_irqrestore(&xhci->lock, flags);
1718 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1719 	return ret;
1720 }
1721 
1722 /* Drop an endpoint from a new bandwidth configuration for this device.
1723  * Only one call to this function is allowed per endpoint before
1724  * check_bandwidth() or reset_bandwidth() must be called.
1725  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726  * add the endpoint to the schedule with possibly new parameters denoted by a
1727  * different endpoint descriptor in usb_host_endpoint.
1728  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729  * not allowed.
1730  *
1731  * The USB core will not allow URBs to be queued to an endpoint that is being
1732  * disabled, so there's no need for mutual exclusion to protect
1733  * the xhci->devs[slot_id] structure.
1734  */
1735 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736 		struct usb_host_endpoint *ep)
1737 {
1738 	struct xhci_hcd *xhci;
1739 	struct xhci_container_ctx *in_ctx, *out_ctx;
1740 	struct xhci_input_control_ctx *ctrl_ctx;
1741 	unsigned int ep_index;
1742 	struct xhci_ep_ctx *ep_ctx;
1743 	u32 drop_flag;
1744 	u32 new_add_flags, new_drop_flags;
1745 	int ret;
1746 
1747 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748 	if (ret <= 0)
1749 		return ret;
1750 	xhci = hcd_to_xhci(hcd);
1751 	if (xhci->xhc_state & XHCI_STATE_DYING)
1752 		return -ENODEV;
1753 
1754 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1755 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1756 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1757 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1758 				__func__, drop_flag);
1759 		return 0;
1760 	}
1761 
1762 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1763 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1764 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1765 	if (!ctrl_ctx) {
1766 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1767 				__func__);
1768 		return 0;
1769 	}
1770 
1771 	ep_index = xhci_get_endpoint_index(&ep->desc);
1772 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1773 	/* If the HC already knows the endpoint is disabled,
1774 	 * or the HCD has noted it is disabled, ignore this request
1775 	 */
1776 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1777 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1778 	    xhci_get_endpoint_flag(&ep->desc)) {
1779 		/* Do not warn when called after a usb_device_reset */
1780 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1781 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1782 				  __func__, ep);
1783 		return 0;
1784 	}
1785 
1786 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1787 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788 
1789 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1790 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1791 
1792 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1793 
1794 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1795 
1796 	if (xhci->quirks & XHCI_MTK_HOST)
1797 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1798 
1799 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1800 			(unsigned int) ep->desc.bEndpointAddress,
1801 			udev->slot_id,
1802 			(unsigned int) new_drop_flags,
1803 			(unsigned int) new_add_flags);
1804 	return 0;
1805 }
1806 
1807 /* Add an endpoint to a new possible bandwidth configuration for this device.
1808  * Only one call to this function is allowed per endpoint before
1809  * check_bandwidth() or reset_bandwidth() must be called.
1810  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1811  * add the endpoint to the schedule with possibly new parameters denoted by a
1812  * different endpoint descriptor in usb_host_endpoint.
1813  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1814  * not allowed.
1815  *
1816  * The USB core will not allow URBs to be queued to an endpoint until the
1817  * configuration or alt setting is installed in the device, so there's no need
1818  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1819  */
1820 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1821 		struct usb_host_endpoint *ep)
1822 {
1823 	struct xhci_hcd *xhci;
1824 	struct xhci_container_ctx *in_ctx;
1825 	unsigned int ep_index;
1826 	struct xhci_input_control_ctx *ctrl_ctx;
1827 	struct xhci_ep_ctx *ep_ctx;
1828 	u32 added_ctxs;
1829 	u32 new_add_flags, new_drop_flags;
1830 	struct xhci_virt_device *virt_dev;
1831 	int ret = 0;
1832 
1833 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1834 	if (ret <= 0) {
1835 		/* So we won't queue a reset ep command for a root hub */
1836 		ep->hcpriv = NULL;
1837 		return ret;
1838 	}
1839 	xhci = hcd_to_xhci(hcd);
1840 	if (xhci->xhc_state & XHCI_STATE_DYING)
1841 		return -ENODEV;
1842 
1843 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1844 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1845 		/* FIXME when we have to issue an evaluate endpoint command to
1846 		 * deal with ep0 max packet size changing once we get the
1847 		 * descriptors
1848 		 */
1849 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1850 				__func__, added_ctxs);
1851 		return 0;
1852 	}
1853 
1854 	virt_dev = xhci->devs[udev->slot_id];
1855 	in_ctx = virt_dev->in_ctx;
1856 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1857 	if (!ctrl_ctx) {
1858 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1859 				__func__);
1860 		return 0;
1861 	}
1862 
1863 	ep_index = xhci_get_endpoint_index(&ep->desc);
1864 	/* If this endpoint is already in use, and the upper layers are trying
1865 	 * to add it again without dropping it, reject the addition.
1866 	 */
1867 	if (virt_dev->eps[ep_index].ring &&
1868 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1869 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1870 				"without dropping it.\n",
1871 				(unsigned int) ep->desc.bEndpointAddress);
1872 		return -EINVAL;
1873 	}
1874 
1875 	/* If the HCD has already noted the endpoint is enabled,
1876 	 * ignore this request.
1877 	 */
1878 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1879 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1880 				__func__, ep);
1881 		return 0;
1882 	}
1883 
1884 	/*
1885 	 * Configuration and alternate setting changes must be done in
1886 	 * process context, not interrupt context (or so documenation
1887 	 * for usb_set_interface() and usb_set_configuration() claim).
1888 	 */
1889 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1890 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1891 				__func__, ep->desc.bEndpointAddress);
1892 		return -ENOMEM;
1893 	}
1894 
1895 	if (xhci->quirks & XHCI_MTK_HOST) {
1896 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1897 		if (ret < 0) {
1898 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1899 			virt_dev->eps[ep_index].new_ring = NULL;
1900 			return ret;
1901 		}
1902 	}
1903 
1904 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1905 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1906 
1907 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1908 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1909 	 * this re-adds a new state for the endpoint from the new endpoint
1910 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1911 	 * drop flags alone.
1912 	 */
1913 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1914 
1915 	/* Store the usb_device pointer for later use */
1916 	ep->hcpriv = udev;
1917 
1918 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1919 	trace_xhci_add_endpoint(ep_ctx);
1920 
1921 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1922 			(unsigned int) ep->desc.bEndpointAddress,
1923 			udev->slot_id,
1924 			(unsigned int) new_drop_flags,
1925 			(unsigned int) new_add_flags);
1926 	return 0;
1927 }
1928 
1929 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1930 {
1931 	struct xhci_input_control_ctx *ctrl_ctx;
1932 	struct xhci_ep_ctx *ep_ctx;
1933 	struct xhci_slot_ctx *slot_ctx;
1934 	int i;
1935 
1936 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1937 	if (!ctrl_ctx) {
1938 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1939 				__func__);
1940 		return;
1941 	}
1942 
1943 	/* When a device's add flag and drop flag are zero, any subsequent
1944 	 * configure endpoint command will leave that endpoint's state
1945 	 * untouched.  Make sure we don't leave any old state in the input
1946 	 * endpoint contexts.
1947 	 */
1948 	ctrl_ctx->drop_flags = 0;
1949 	ctrl_ctx->add_flags = 0;
1950 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1951 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1952 	/* Endpoint 0 is always valid */
1953 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1954 	for (i = 1; i < 31; i++) {
1955 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1956 		ep_ctx->ep_info = 0;
1957 		ep_ctx->ep_info2 = 0;
1958 		ep_ctx->deq = 0;
1959 		ep_ctx->tx_info = 0;
1960 	}
1961 }
1962 
1963 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1964 		struct usb_device *udev, u32 *cmd_status)
1965 {
1966 	int ret;
1967 
1968 	switch (*cmd_status) {
1969 	case COMP_COMMAND_ABORTED:
1970 	case COMP_COMMAND_RING_STOPPED:
1971 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1972 		ret = -ETIME;
1973 		break;
1974 	case COMP_RESOURCE_ERROR:
1975 		dev_warn(&udev->dev,
1976 			 "Not enough host controller resources for new device state.\n");
1977 		ret = -ENOMEM;
1978 		/* FIXME: can we allocate more resources for the HC? */
1979 		break;
1980 	case COMP_BANDWIDTH_ERROR:
1981 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1982 		dev_warn(&udev->dev,
1983 			 "Not enough bandwidth for new device state.\n");
1984 		ret = -ENOSPC;
1985 		/* FIXME: can we go back to the old state? */
1986 		break;
1987 	case COMP_TRB_ERROR:
1988 		/* the HCD set up something wrong */
1989 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1990 				"add flag = 1, "
1991 				"and endpoint is not disabled.\n");
1992 		ret = -EINVAL;
1993 		break;
1994 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1995 		dev_warn(&udev->dev,
1996 			 "ERROR: Incompatible device for endpoint configure command.\n");
1997 		ret = -ENODEV;
1998 		break;
1999 	case COMP_SUCCESS:
2000 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2001 				"Successful Endpoint Configure command");
2002 		ret = 0;
2003 		break;
2004 	default:
2005 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2006 				*cmd_status);
2007 		ret = -EINVAL;
2008 		break;
2009 	}
2010 	return ret;
2011 }
2012 
2013 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2014 		struct usb_device *udev, u32 *cmd_status)
2015 {
2016 	int ret;
2017 
2018 	switch (*cmd_status) {
2019 	case COMP_COMMAND_ABORTED:
2020 	case COMP_COMMAND_RING_STOPPED:
2021 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2022 		ret = -ETIME;
2023 		break;
2024 	case COMP_PARAMETER_ERROR:
2025 		dev_warn(&udev->dev,
2026 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2027 		ret = -EINVAL;
2028 		break;
2029 	case COMP_SLOT_NOT_ENABLED_ERROR:
2030 		dev_warn(&udev->dev,
2031 			"WARN: slot not enabled for evaluate context command.\n");
2032 		ret = -EINVAL;
2033 		break;
2034 	case COMP_CONTEXT_STATE_ERROR:
2035 		dev_warn(&udev->dev,
2036 			"WARN: invalid context state for evaluate context command.\n");
2037 		ret = -EINVAL;
2038 		break;
2039 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2040 		dev_warn(&udev->dev,
2041 			"ERROR: Incompatible device for evaluate context command.\n");
2042 		ret = -ENODEV;
2043 		break;
2044 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2045 		/* Max Exit Latency too large error */
2046 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2047 		ret = -EINVAL;
2048 		break;
2049 	case COMP_SUCCESS:
2050 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2051 				"Successful evaluate context command");
2052 		ret = 0;
2053 		break;
2054 	default:
2055 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2056 			*cmd_status);
2057 		ret = -EINVAL;
2058 		break;
2059 	}
2060 	return ret;
2061 }
2062 
2063 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2064 		struct xhci_input_control_ctx *ctrl_ctx)
2065 {
2066 	u32 valid_add_flags;
2067 	u32 valid_drop_flags;
2068 
2069 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2070 	 * (bit 1).  The default control endpoint is added during the Address
2071 	 * Device command and is never removed until the slot is disabled.
2072 	 */
2073 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2074 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2075 
2076 	/* Use hweight32 to count the number of ones in the add flags, or
2077 	 * number of endpoints added.  Don't count endpoints that are changed
2078 	 * (both added and dropped).
2079 	 */
2080 	return hweight32(valid_add_flags) -
2081 		hweight32(valid_add_flags & valid_drop_flags);
2082 }
2083 
2084 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2085 		struct xhci_input_control_ctx *ctrl_ctx)
2086 {
2087 	u32 valid_add_flags;
2088 	u32 valid_drop_flags;
2089 
2090 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2091 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2092 
2093 	return hweight32(valid_drop_flags) -
2094 		hweight32(valid_add_flags & valid_drop_flags);
2095 }
2096 
2097 /*
2098  * We need to reserve the new number of endpoints before the configure endpoint
2099  * command completes.  We can't subtract the dropped endpoints from the number
2100  * of active endpoints until the command completes because we can oversubscribe
2101  * the host in this case:
2102  *
2103  *  - the first configure endpoint command drops more endpoints than it adds
2104  *  - a second configure endpoint command that adds more endpoints is queued
2105  *  - the first configure endpoint command fails, so the config is unchanged
2106  *  - the second command may succeed, even though there isn't enough resources
2107  *
2108  * Must be called with xhci->lock held.
2109  */
2110 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2111 		struct xhci_input_control_ctx *ctrl_ctx)
2112 {
2113 	u32 added_eps;
2114 
2115 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2116 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2117 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2118 				"Not enough ep ctxs: "
2119 				"%u active, need to add %u, limit is %u.",
2120 				xhci->num_active_eps, added_eps,
2121 				xhci->limit_active_eps);
2122 		return -ENOMEM;
2123 	}
2124 	xhci->num_active_eps += added_eps;
2125 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2126 			"Adding %u ep ctxs, %u now active.", added_eps,
2127 			xhci->num_active_eps);
2128 	return 0;
2129 }
2130 
2131 /*
2132  * The configure endpoint was failed by the xHC for some other reason, so we
2133  * need to revert the resources that failed configuration would have used.
2134  *
2135  * Must be called with xhci->lock held.
2136  */
2137 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2138 		struct xhci_input_control_ctx *ctrl_ctx)
2139 {
2140 	u32 num_failed_eps;
2141 
2142 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2143 	xhci->num_active_eps -= num_failed_eps;
2144 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 			"Removing %u failed ep ctxs, %u now active.",
2146 			num_failed_eps,
2147 			xhci->num_active_eps);
2148 }
2149 
2150 /*
2151  * Now that the command has completed, clean up the active endpoint count by
2152  * subtracting out the endpoints that were dropped (but not changed).
2153  *
2154  * Must be called with xhci->lock held.
2155  */
2156 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2157 		struct xhci_input_control_ctx *ctrl_ctx)
2158 {
2159 	u32 num_dropped_eps;
2160 
2161 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2162 	xhci->num_active_eps -= num_dropped_eps;
2163 	if (num_dropped_eps)
2164 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 				"Removing %u dropped ep ctxs, %u now active.",
2166 				num_dropped_eps,
2167 				xhci->num_active_eps);
2168 }
2169 
2170 static unsigned int xhci_get_block_size(struct usb_device *udev)
2171 {
2172 	switch (udev->speed) {
2173 	case USB_SPEED_LOW:
2174 	case USB_SPEED_FULL:
2175 		return FS_BLOCK;
2176 	case USB_SPEED_HIGH:
2177 		return HS_BLOCK;
2178 	case USB_SPEED_SUPER:
2179 	case USB_SPEED_SUPER_PLUS:
2180 		return SS_BLOCK;
2181 	case USB_SPEED_UNKNOWN:
2182 	case USB_SPEED_WIRELESS:
2183 	default:
2184 		/* Should never happen */
2185 		return 1;
2186 	}
2187 }
2188 
2189 static unsigned int
2190 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2191 {
2192 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2193 		return LS_OVERHEAD;
2194 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2195 		return FS_OVERHEAD;
2196 	return HS_OVERHEAD;
2197 }
2198 
2199 /* If we are changing a LS/FS device under a HS hub,
2200  * make sure (if we are activating a new TT) that the HS bus has enough
2201  * bandwidth for this new TT.
2202  */
2203 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2204 		struct xhci_virt_device *virt_dev,
2205 		int old_active_eps)
2206 {
2207 	struct xhci_interval_bw_table *bw_table;
2208 	struct xhci_tt_bw_info *tt_info;
2209 
2210 	/* Find the bandwidth table for the root port this TT is attached to. */
2211 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2212 	tt_info = virt_dev->tt_info;
2213 	/* If this TT already had active endpoints, the bandwidth for this TT
2214 	 * has already been added.  Removing all periodic endpoints (and thus
2215 	 * making the TT enactive) will only decrease the bandwidth used.
2216 	 */
2217 	if (old_active_eps)
2218 		return 0;
2219 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2220 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2221 			return -ENOMEM;
2222 		return 0;
2223 	}
2224 	/* Not sure why we would have no new active endpoints...
2225 	 *
2226 	 * Maybe because of an Evaluate Context change for a hub update or a
2227 	 * control endpoint 0 max packet size change?
2228 	 * FIXME: skip the bandwidth calculation in that case.
2229 	 */
2230 	return 0;
2231 }
2232 
2233 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2234 		struct xhci_virt_device *virt_dev)
2235 {
2236 	unsigned int bw_reserved;
2237 
2238 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2239 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2240 		return -ENOMEM;
2241 
2242 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2243 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2244 		return -ENOMEM;
2245 
2246 	return 0;
2247 }
2248 
2249 /*
2250  * This algorithm is a very conservative estimate of the worst-case scheduling
2251  * scenario for any one interval.  The hardware dynamically schedules the
2252  * packets, so we can't tell which microframe could be the limiting factor in
2253  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2254  *
2255  * Obviously, we can't solve an NP complete problem to find the minimum worst
2256  * case scenario.  Instead, we come up with an estimate that is no less than
2257  * the worst case bandwidth used for any one microframe, but may be an
2258  * over-estimate.
2259  *
2260  * We walk the requirements for each endpoint by interval, starting with the
2261  * smallest interval, and place packets in the schedule where there is only one
2262  * possible way to schedule packets for that interval.  In order to simplify
2263  * this algorithm, we record the largest max packet size for each interval, and
2264  * assume all packets will be that size.
2265  *
2266  * For interval 0, we obviously must schedule all packets for each interval.
2267  * The bandwidth for interval 0 is just the amount of data to be transmitted
2268  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2269  * the number of packets).
2270  *
2271  * For interval 1, we have two possible microframes to schedule those packets
2272  * in.  For this algorithm, if we can schedule the same number of packets for
2273  * each possible scheduling opportunity (each microframe), we will do so.  The
2274  * remaining number of packets will be saved to be transmitted in the gaps in
2275  * the next interval's scheduling sequence.
2276  *
2277  * As we move those remaining packets to be scheduled with interval 2 packets,
2278  * we have to double the number of remaining packets to transmit.  This is
2279  * because the intervals are actually powers of 2, and we would be transmitting
2280  * the previous interval's packets twice in this interval.  We also have to be
2281  * sure that when we look at the largest max packet size for this interval, we
2282  * also look at the largest max packet size for the remaining packets and take
2283  * the greater of the two.
2284  *
2285  * The algorithm continues to evenly distribute packets in each scheduling
2286  * opportunity, and push the remaining packets out, until we get to the last
2287  * interval.  Then those packets and their associated overhead are just added
2288  * to the bandwidth used.
2289  */
2290 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2291 		struct xhci_virt_device *virt_dev,
2292 		int old_active_eps)
2293 {
2294 	unsigned int bw_reserved;
2295 	unsigned int max_bandwidth;
2296 	unsigned int bw_used;
2297 	unsigned int block_size;
2298 	struct xhci_interval_bw_table *bw_table;
2299 	unsigned int packet_size = 0;
2300 	unsigned int overhead = 0;
2301 	unsigned int packets_transmitted = 0;
2302 	unsigned int packets_remaining = 0;
2303 	unsigned int i;
2304 
2305 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2306 		return xhci_check_ss_bw(xhci, virt_dev);
2307 
2308 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2309 		max_bandwidth = HS_BW_LIMIT;
2310 		/* Convert percent of bus BW reserved to blocks reserved */
2311 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2312 	} else {
2313 		max_bandwidth = FS_BW_LIMIT;
2314 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2315 	}
2316 
2317 	bw_table = virt_dev->bw_table;
2318 	/* We need to translate the max packet size and max ESIT payloads into
2319 	 * the units the hardware uses.
2320 	 */
2321 	block_size = xhci_get_block_size(virt_dev->udev);
2322 
2323 	/* If we are manipulating a LS/FS device under a HS hub, double check
2324 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2325 	 */
2326 	if (virt_dev->tt_info) {
2327 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2328 				"Recalculating BW for rootport %u",
2329 				virt_dev->real_port);
2330 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2331 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2332 					"newly activated TT.\n");
2333 			return -ENOMEM;
2334 		}
2335 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2336 				"Recalculating BW for TT slot %u port %u",
2337 				virt_dev->tt_info->slot_id,
2338 				virt_dev->tt_info->ttport);
2339 	} else {
2340 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2341 				"Recalculating BW for rootport %u",
2342 				virt_dev->real_port);
2343 	}
2344 
2345 	/* Add in how much bandwidth will be used for interval zero, or the
2346 	 * rounded max ESIT payload + number of packets * largest overhead.
2347 	 */
2348 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2349 		bw_table->interval_bw[0].num_packets *
2350 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2351 
2352 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2353 		unsigned int bw_added;
2354 		unsigned int largest_mps;
2355 		unsigned int interval_overhead;
2356 
2357 		/*
2358 		 * How many packets could we transmit in this interval?
2359 		 * If packets didn't fit in the previous interval, we will need
2360 		 * to transmit that many packets twice within this interval.
2361 		 */
2362 		packets_remaining = 2 * packets_remaining +
2363 			bw_table->interval_bw[i].num_packets;
2364 
2365 		/* Find the largest max packet size of this or the previous
2366 		 * interval.
2367 		 */
2368 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2369 			largest_mps = 0;
2370 		else {
2371 			struct xhci_virt_ep *virt_ep;
2372 			struct list_head *ep_entry;
2373 
2374 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2375 			virt_ep = list_entry(ep_entry,
2376 					struct xhci_virt_ep, bw_endpoint_list);
2377 			/* Convert to blocks, rounding up */
2378 			largest_mps = DIV_ROUND_UP(
2379 					virt_ep->bw_info.max_packet_size,
2380 					block_size);
2381 		}
2382 		if (largest_mps > packet_size)
2383 			packet_size = largest_mps;
2384 
2385 		/* Use the larger overhead of this or the previous interval. */
2386 		interval_overhead = xhci_get_largest_overhead(
2387 				&bw_table->interval_bw[i]);
2388 		if (interval_overhead > overhead)
2389 			overhead = interval_overhead;
2390 
2391 		/* How many packets can we evenly distribute across
2392 		 * (1 << (i + 1)) possible scheduling opportunities?
2393 		 */
2394 		packets_transmitted = packets_remaining >> (i + 1);
2395 
2396 		/* Add in the bandwidth used for those scheduled packets */
2397 		bw_added = packets_transmitted * (overhead + packet_size);
2398 
2399 		/* How many packets do we have remaining to transmit? */
2400 		packets_remaining = packets_remaining % (1 << (i + 1));
2401 
2402 		/* What largest max packet size should those packets have? */
2403 		/* If we've transmitted all packets, don't carry over the
2404 		 * largest packet size.
2405 		 */
2406 		if (packets_remaining == 0) {
2407 			packet_size = 0;
2408 			overhead = 0;
2409 		} else if (packets_transmitted > 0) {
2410 			/* Otherwise if we do have remaining packets, and we've
2411 			 * scheduled some packets in this interval, take the
2412 			 * largest max packet size from endpoints with this
2413 			 * interval.
2414 			 */
2415 			packet_size = largest_mps;
2416 			overhead = interval_overhead;
2417 		}
2418 		/* Otherwise carry over packet_size and overhead from the last
2419 		 * time we had a remainder.
2420 		 */
2421 		bw_used += bw_added;
2422 		if (bw_used > max_bandwidth) {
2423 			xhci_warn(xhci, "Not enough bandwidth. "
2424 					"Proposed: %u, Max: %u\n",
2425 				bw_used, max_bandwidth);
2426 			return -ENOMEM;
2427 		}
2428 	}
2429 	/*
2430 	 * Ok, we know we have some packets left over after even-handedly
2431 	 * scheduling interval 15.  We don't know which microframes they will
2432 	 * fit into, so we over-schedule and say they will be scheduled every
2433 	 * microframe.
2434 	 */
2435 	if (packets_remaining > 0)
2436 		bw_used += overhead + packet_size;
2437 
2438 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2439 		unsigned int port_index = virt_dev->real_port - 1;
2440 
2441 		/* OK, we're manipulating a HS device attached to a
2442 		 * root port bandwidth domain.  Include the number of active TTs
2443 		 * in the bandwidth used.
2444 		 */
2445 		bw_used += TT_HS_OVERHEAD *
2446 			xhci->rh_bw[port_index].num_active_tts;
2447 	}
2448 
2449 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2450 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2451 		"Available: %u " "percent",
2452 		bw_used, max_bandwidth, bw_reserved,
2453 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2454 		max_bandwidth);
2455 
2456 	bw_used += bw_reserved;
2457 	if (bw_used > max_bandwidth) {
2458 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2459 				bw_used, max_bandwidth);
2460 		return -ENOMEM;
2461 	}
2462 
2463 	bw_table->bw_used = bw_used;
2464 	return 0;
2465 }
2466 
2467 static bool xhci_is_async_ep(unsigned int ep_type)
2468 {
2469 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2470 					ep_type != ISOC_IN_EP &&
2471 					ep_type != INT_IN_EP);
2472 }
2473 
2474 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2475 {
2476 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2477 }
2478 
2479 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2480 {
2481 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2482 
2483 	if (ep_bw->ep_interval == 0)
2484 		return SS_OVERHEAD_BURST +
2485 			(ep_bw->mult * ep_bw->num_packets *
2486 					(SS_OVERHEAD + mps));
2487 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2488 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2489 				1 << ep_bw->ep_interval);
2490 
2491 }
2492 
2493 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2494 		struct xhci_bw_info *ep_bw,
2495 		struct xhci_interval_bw_table *bw_table,
2496 		struct usb_device *udev,
2497 		struct xhci_virt_ep *virt_ep,
2498 		struct xhci_tt_bw_info *tt_info)
2499 {
2500 	struct xhci_interval_bw	*interval_bw;
2501 	int normalized_interval;
2502 
2503 	if (xhci_is_async_ep(ep_bw->type))
2504 		return;
2505 
2506 	if (udev->speed >= USB_SPEED_SUPER) {
2507 		if (xhci_is_sync_in_ep(ep_bw->type))
2508 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2509 				xhci_get_ss_bw_consumed(ep_bw);
2510 		else
2511 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2512 				xhci_get_ss_bw_consumed(ep_bw);
2513 		return;
2514 	}
2515 
2516 	/* SuperSpeed endpoints never get added to intervals in the table, so
2517 	 * this check is only valid for HS/FS/LS devices.
2518 	 */
2519 	if (list_empty(&virt_ep->bw_endpoint_list))
2520 		return;
2521 	/* For LS/FS devices, we need to translate the interval expressed in
2522 	 * microframes to frames.
2523 	 */
2524 	if (udev->speed == USB_SPEED_HIGH)
2525 		normalized_interval = ep_bw->ep_interval;
2526 	else
2527 		normalized_interval = ep_bw->ep_interval - 3;
2528 
2529 	if (normalized_interval == 0)
2530 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2531 	interval_bw = &bw_table->interval_bw[normalized_interval];
2532 	interval_bw->num_packets -= ep_bw->num_packets;
2533 	switch (udev->speed) {
2534 	case USB_SPEED_LOW:
2535 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2536 		break;
2537 	case USB_SPEED_FULL:
2538 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2539 		break;
2540 	case USB_SPEED_HIGH:
2541 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2542 		break;
2543 	case USB_SPEED_SUPER:
2544 	case USB_SPEED_SUPER_PLUS:
2545 	case USB_SPEED_UNKNOWN:
2546 	case USB_SPEED_WIRELESS:
2547 		/* Should never happen because only LS/FS/HS endpoints will get
2548 		 * added to the endpoint list.
2549 		 */
2550 		return;
2551 	}
2552 	if (tt_info)
2553 		tt_info->active_eps -= 1;
2554 	list_del_init(&virt_ep->bw_endpoint_list);
2555 }
2556 
2557 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2558 		struct xhci_bw_info *ep_bw,
2559 		struct xhci_interval_bw_table *bw_table,
2560 		struct usb_device *udev,
2561 		struct xhci_virt_ep *virt_ep,
2562 		struct xhci_tt_bw_info *tt_info)
2563 {
2564 	struct xhci_interval_bw	*interval_bw;
2565 	struct xhci_virt_ep *smaller_ep;
2566 	int normalized_interval;
2567 
2568 	if (xhci_is_async_ep(ep_bw->type))
2569 		return;
2570 
2571 	if (udev->speed == USB_SPEED_SUPER) {
2572 		if (xhci_is_sync_in_ep(ep_bw->type))
2573 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2574 				xhci_get_ss_bw_consumed(ep_bw);
2575 		else
2576 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2577 				xhci_get_ss_bw_consumed(ep_bw);
2578 		return;
2579 	}
2580 
2581 	/* For LS/FS devices, we need to translate the interval expressed in
2582 	 * microframes to frames.
2583 	 */
2584 	if (udev->speed == USB_SPEED_HIGH)
2585 		normalized_interval = ep_bw->ep_interval;
2586 	else
2587 		normalized_interval = ep_bw->ep_interval - 3;
2588 
2589 	if (normalized_interval == 0)
2590 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2591 	interval_bw = &bw_table->interval_bw[normalized_interval];
2592 	interval_bw->num_packets += ep_bw->num_packets;
2593 	switch (udev->speed) {
2594 	case USB_SPEED_LOW:
2595 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2596 		break;
2597 	case USB_SPEED_FULL:
2598 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2599 		break;
2600 	case USB_SPEED_HIGH:
2601 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2602 		break;
2603 	case USB_SPEED_SUPER:
2604 	case USB_SPEED_SUPER_PLUS:
2605 	case USB_SPEED_UNKNOWN:
2606 	case USB_SPEED_WIRELESS:
2607 		/* Should never happen because only LS/FS/HS endpoints will get
2608 		 * added to the endpoint list.
2609 		 */
2610 		return;
2611 	}
2612 
2613 	if (tt_info)
2614 		tt_info->active_eps += 1;
2615 	/* Insert the endpoint into the list, largest max packet size first. */
2616 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2617 			bw_endpoint_list) {
2618 		if (ep_bw->max_packet_size >=
2619 				smaller_ep->bw_info.max_packet_size) {
2620 			/* Add the new ep before the smaller endpoint */
2621 			list_add_tail(&virt_ep->bw_endpoint_list,
2622 					&smaller_ep->bw_endpoint_list);
2623 			return;
2624 		}
2625 	}
2626 	/* Add the new endpoint at the end of the list. */
2627 	list_add_tail(&virt_ep->bw_endpoint_list,
2628 			&interval_bw->endpoints);
2629 }
2630 
2631 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2632 		struct xhci_virt_device *virt_dev,
2633 		int old_active_eps)
2634 {
2635 	struct xhci_root_port_bw_info *rh_bw_info;
2636 	if (!virt_dev->tt_info)
2637 		return;
2638 
2639 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2640 	if (old_active_eps == 0 &&
2641 				virt_dev->tt_info->active_eps != 0) {
2642 		rh_bw_info->num_active_tts += 1;
2643 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2644 	} else if (old_active_eps != 0 &&
2645 				virt_dev->tt_info->active_eps == 0) {
2646 		rh_bw_info->num_active_tts -= 1;
2647 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2648 	}
2649 }
2650 
2651 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2652 		struct xhci_virt_device *virt_dev,
2653 		struct xhci_container_ctx *in_ctx)
2654 {
2655 	struct xhci_bw_info ep_bw_info[31];
2656 	int i;
2657 	struct xhci_input_control_ctx *ctrl_ctx;
2658 	int old_active_eps = 0;
2659 
2660 	if (virt_dev->tt_info)
2661 		old_active_eps = virt_dev->tt_info->active_eps;
2662 
2663 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2664 	if (!ctrl_ctx) {
2665 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2666 				__func__);
2667 		return -ENOMEM;
2668 	}
2669 
2670 	for (i = 0; i < 31; i++) {
2671 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2672 			continue;
2673 
2674 		/* Make a copy of the BW info in case we need to revert this */
2675 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2676 				sizeof(ep_bw_info[i]));
2677 		/* Drop the endpoint from the interval table if the endpoint is
2678 		 * being dropped or changed.
2679 		 */
2680 		if (EP_IS_DROPPED(ctrl_ctx, i))
2681 			xhci_drop_ep_from_interval_table(xhci,
2682 					&virt_dev->eps[i].bw_info,
2683 					virt_dev->bw_table,
2684 					virt_dev->udev,
2685 					&virt_dev->eps[i],
2686 					virt_dev->tt_info);
2687 	}
2688 	/* Overwrite the information stored in the endpoints' bw_info */
2689 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2690 	for (i = 0; i < 31; i++) {
2691 		/* Add any changed or added endpoints to the interval table */
2692 		if (EP_IS_ADDED(ctrl_ctx, i))
2693 			xhci_add_ep_to_interval_table(xhci,
2694 					&virt_dev->eps[i].bw_info,
2695 					virt_dev->bw_table,
2696 					virt_dev->udev,
2697 					&virt_dev->eps[i],
2698 					virt_dev->tt_info);
2699 	}
2700 
2701 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2702 		/* Ok, this fits in the bandwidth we have.
2703 		 * Update the number of active TTs.
2704 		 */
2705 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2706 		return 0;
2707 	}
2708 
2709 	/* We don't have enough bandwidth for this, revert the stored info. */
2710 	for (i = 0; i < 31; i++) {
2711 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 			continue;
2713 
2714 		/* Drop the new copies of any added or changed endpoints from
2715 		 * the interval table.
2716 		 */
2717 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2718 			xhci_drop_ep_from_interval_table(xhci,
2719 					&virt_dev->eps[i].bw_info,
2720 					virt_dev->bw_table,
2721 					virt_dev->udev,
2722 					&virt_dev->eps[i],
2723 					virt_dev->tt_info);
2724 		}
2725 		/* Revert the endpoint back to its old information */
2726 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2727 				sizeof(ep_bw_info[i]));
2728 		/* Add any changed or dropped endpoints back into the table */
2729 		if (EP_IS_DROPPED(ctrl_ctx, i))
2730 			xhci_add_ep_to_interval_table(xhci,
2731 					&virt_dev->eps[i].bw_info,
2732 					virt_dev->bw_table,
2733 					virt_dev->udev,
2734 					&virt_dev->eps[i],
2735 					virt_dev->tt_info);
2736 	}
2737 	return -ENOMEM;
2738 }
2739 
2740 
2741 /* Issue a configure endpoint command or evaluate context command
2742  * and wait for it to finish.
2743  */
2744 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2745 		struct usb_device *udev,
2746 		struct xhci_command *command,
2747 		bool ctx_change, bool must_succeed)
2748 {
2749 	int ret;
2750 	unsigned long flags;
2751 	struct xhci_input_control_ctx *ctrl_ctx;
2752 	struct xhci_virt_device *virt_dev;
2753 	struct xhci_slot_ctx *slot_ctx;
2754 
2755 	if (!command)
2756 		return -EINVAL;
2757 
2758 	spin_lock_irqsave(&xhci->lock, flags);
2759 
2760 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2761 		spin_unlock_irqrestore(&xhci->lock, flags);
2762 		return -ESHUTDOWN;
2763 	}
2764 
2765 	virt_dev = xhci->devs[udev->slot_id];
2766 
2767 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768 	if (!ctrl_ctx) {
2769 		spin_unlock_irqrestore(&xhci->lock, flags);
2770 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2771 				__func__);
2772 		return -ENOMEM;
2773 	}
2774 
2775 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2776 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2777 		spin_unlock_irqrestore(&xhci->lock, flags);
2778 		xhci_warn(xhci, "Not enough host resources, "
2779 				"active endpoint contexts = %u\n",
2780 				xhci->num_active_eps);
2781 		return -ENOMEM;
2782 	}
2783 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2784 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2785 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2786 			xhci_free_host_resources(xhci, ctrl_ctx);
2787 		spin_unlock_irqrestore(&xhci->lock, flags);
2788 		xhci_warn(xhci, "Not enough bandwidth\n");
2789 		return -ENOMEM;
2790 	}
2791 
2792 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2793 
2794 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2795 	trace_xhci_configure_endpoint(slot_ctx);
2796 
2797 	if (!ctx_change)
2798 		ret = xhci_queue_configure_endpoint(xhci, command,
2799 				command->in_ctx->dma,
2800 				udev->slot_id, must_succeed);
2801 	else
2802 		ret = xhci_queue_evaluate_context(xhci, command,
2803 				command->in_ctx->dma,
2804 				udev->slot_id, must_succeed);
2805 	if (ret < 0) {
2806 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2807 			xhci_free_host_resources(xhci, ctrl_ctx);
2808 		spin_unlock_irqrestore(&xhci->lock, flags);
2809 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2810 				"FIXME allocate a new ring segment");
2811 		return -ENOMEM;
2812 	}
2813 	xhci_ring_cmd_db(xhci);
2814 	spin_unlock_irqrestore(&xhci->lock, flags);
2815 
2816 	/* Wait for the configure endpoint command to complete */
2817 	wait_for_completion(command->completion);
2818 
2819 	if (!ctx_change)
2820 		ret = xhci_configure_endpoint_result(xhci, udev,
2821 						     &command->status);
2822 	else
2823 		ret = xhci_evaluate_context_result(xhci, udev,
2824 						   &command->status);
2825 
2826 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2827 		spin_lock_irqsave(&xhci->lock, flags);
2828 		/* If the command failed, remove the reserved resources.
2829 		 * Otherwise, clean up the estimate to include dropped eps.
2830 		 */
2831 		if (ret)
2832 			xhci_free_host_resources(xhci, ctrl_ctx);
2833 		else
2834 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2835 		spin_unlock_irqrestore(&xhci->lock, flags);
2836 	}
2837 	return ret;
2838 }
2839 
2840 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2841 	struct xhci_virt_device *vdev, int i)
2842 {
2843 	struct xhci_virt_ep *ep = &vdev->eps[i];
2844 
2845 	if (ep->ep_state & EP_HAS_STREAMS) {
2846 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2847 				xhci_get_endpoint_address(i));
2848 		xhci_free_stream_info(xhci, ep->stream_info);
2849 		ep->stream_info = NULL;
2850 		ep->ep_state &= ~EP_HAS_STREAMS;
2851 	}
2852 }
2853 
2854 /* Called after one or more calls to xhci_add_endpoint() or
2855  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2856  * to call xhci_reset_bandwidth().
2857  *
2858  * Since we are in the middle of changing either configuration or
2859  * installing a new alt setting, the USB core won't allow URBs to be
2860  * enqueued for any endpoint on the old config or interface.  Nothing
2861  * else should be touching the xhci->devs[slot_id] structure, so we
2862  * don't need to take the xhci->lock for manipulating that.
2863  */
2864 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2865 {
2866 	int i;
2867 	int ret = 0;
2868 	struct xhci_hcd *xhci;
2869 	struct xhci_virt_device	*virt_dev;
2870 	struct xhci_input_control_ctx *ctrl_ctx;
2871 	struct xhci_slot_ctx *slot_ctx;
2872 	struct xhci_command *command;
2873 
2874 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2875 	if (ret <= 0)
2876 		return ret;
2877 	xhci = hcd_to_xhci(hcd);
2878 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2879 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2880 		return -ENODEV;
2881 
2882 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2883 	virt_dev = xhci->devs[udev->slot_id];
2884 
2885 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2886 	if (!command)
2887 		return -ENOMEM;
2888 
2889 	command->in_ctx = virt_dev->in_ctx;
2890 
2891 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2892 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2893 	if (!ctrl_ctx) {
2894 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895 				__func__);
2896 		ret = -ENOMEM;
2897 		goto command_cleanup;
2898 	}
2899 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2901 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2902 
2903 	/* Don't issue the command if there's no endpoints to update. */
2904 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2905 	    ctrl_ctx->drop_flags == 0) {
2906 		ret = 0;
2907 		goto command_cleanup;
2908 	}
2909 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2910 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2911 	for (i = 31; i >= 1; i--) {
2912 		__le32 le32 = cpu_to_le32(BIT(i));
2913 
2914 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2915 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2916 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2917 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2918 			break;
2919 		}
2920 	}
2921 
2922 	ret = xhci_configure_endpoint(xhci, udev, command,
2923 			false, false);
2924 	if (ret)
2925 		/* Callee should call reset_bandwidth() */
2926 		goto command_cleanup;
2927 
2928 	/* Free any rings that were dropped, but not changed. */
2929 	for (i = 1; i < 31; i++) {
2930 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2931 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2932 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2933 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2934 		}
2935 	}
2936 	xhci_zero_in_ctx(xhci, virt_dev);
2937 	/*
2938 	 * Install any rings for completely new endpoints or changed endpoints,
2939 	 * and free any old rings from changed endpoints.
2940 	 */
2941 	for (i = 1; i < 31; i++) {
2942 		if (!virt_dev->eps[i].new_ring)
2943 			continue;
2944 		/* Only free the old ring if it exists.
2945 		 * It may not if this is the first add of an endpoint.
2946 		 */
2947 		if (virt_dev->eps[i].ring) {
2948 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2949 		}
2950 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2951 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2952 		virt_dev->eps[i].new_ring = NULL;
2953 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2954 	}
2955 command_cleanup:
2956 	kfree(command->completion);
2957 	kfree(command);
2958 
2959 	return ret;
2960 }
2961 
2962 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2963 {
2964 	struct xhci_hcd *xhci;
2965 	struct xhci_virt_device	*virt_dev;
2966 	int i, ret;
2967 
2968 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2969 	if (ret <= 0)
2970 		return;
2971 	xhci = hcd_to_xhci(hcd);
2972 
2973 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2974 	virt_dev = xhci->devs[udev->slot_id];
2975 	/* Free any rings allocated for added endpoints */
2976 	for (i = 0; i < 31; i++) {
2977 		if (virt_dev->eps[i].new_ring) {
2978 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2979 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2980 			virt_dev->eps[i].new_ring = NULL;
2981 		}
2982 	}
2983 	xhci_zero_in_ctx(xhci, virt_dev);
2984 }
2985 
2986 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2987 		struct xhci_container_ctx *in_ctx,
2988 		struct xhci_container_ctx *out_ctx,
2989 		struct xhci_input_control_ctx *ctrl_ctx,
2990 		u32 add_flags, u32 drop_flags)
2991 {
2992 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2993 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2994 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2995 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2996 }
2997 
2998 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2999 		unsigned int slot_id, unsigned int ep_index,
3000 		struct xhci_dequeue_state *deq_state)
3001 {
3002 	struct xhci_input_control_ctx *ctrl_ctx;
3003 	struct xhci_container_ctx *in_ctx;
3004 	struct xhci_ep_ctx *ep_ctx;
3005 	u32 added_ctxs;
3006 	dma_addr_t addr;
3007 
3008 	in_ctx = xhci->devs[slot_id]->in_ctx;
3009 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3010 	if (!ctrl_ctx) {
3011 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3012 				__func__);
3013 		return;
3014 	}
3015 
3016 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3017 			xhci->devs[slot_id]->out_ctx, ep_index);
3018 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3019 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3020 			deq_state->new_deq_ptr);
3021 	if (addr == 0) {
3022 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3023 				"reset ep command\n");
3024 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3025 				deq_state->new_deq_seg,
3026 				deq_state->new_deq_ptr);
3027 		return;
3028 	}
3029 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3030 
3031 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3032 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3033 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3034 			added_ctxs, added_ctxs);
3035 }
3036 
3037 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3038 			       unsigned int ep_index, unsigned int stream_id,
3039 			       struct xhci_td *td)
3040 {
3041 	struct xhci_dequeue_state deq_state;
3042 
3043 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3044 			"Cleaning up stalled endpoint ring");
3045 	/* We need to move the HW's dequeue pointer past this TD,
3046 	 * or it will attempt to resend it on the next doorbell ring.
3047 	 */
3048 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3049 				    &deq_state);
3050 
3051 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3052 		return;
3053 
3054 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3055 	 * issue a configure endpoint command later.
3056 	 */
3057 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3058 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3059 				"Queueing new dequeue state");
3060 		xhci_queue_new_dequeue_state(xhci, slot_id,
3061 				ep_index, &deq_state);
3062 	} else {
3063 		/* Better hope no one uses the input context between now and the
3064 		 * reset endpoint completion!
3065 		 * XXX: No idea how this hardware will react when stream rings
3066 		 * are enabled.
3067 		 */
3068 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3069 				"Setting up input context for "
3070 				"configure endpoint command");
3071 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3072 				ep_index, &deq_state);
3073 	}
3074 }
3075 
3076 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3077 				  struct usb_host_endpoint *host_ep)
3078 {
3079 	struct xhci_hcd		*xhci;
3080 	struct xhci_virt_device	*vdev;
3081 	struct xhci_virt_ep	*ep;
3082 	struct usb_device	*udev;
3083 	unsigned long		flags;
3084 	unsigned int		ep_index;
3085 
3086 	xhci = hcd_to_xhci(hcd);
3087 rescan:
3088 	spin_lock_irqsave(&xhci->lock, flags);
3089 
3090 	udev = (struct usb_device *)host_ep->hcpriv;
3091 	if (!udev || !udev->slot_id)
3092 		goto done;
3093 
3094 	vdev = xhci->devs[udev->slot_id];
3095 	if (!vdev)
3096 		goto done;
3097 
3098 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3099 	ep = &vdev->eps[ep_index];
3100 	if (!ep)
3101 		goto done;
3102 
3103 	/* wait for hub_tt_work to finish clearing hub TT */
3104 	if (ep->ep_state & EP_CLEARING_TT) {
3105 		spin_unlock_irqrestore(&xhci->lock, flags);
3106 		schedule_timeout_uninterruptible(1);
3107 		goto rescan;
3108 	}
3109 
3110 	if (ep->ep_state)
3111 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3112 			 ep->ep_state);
3113 done:
3114 	host_ep->hcpriv = NULL;
3115 	spin_unlock_irqrestore(&xhci->lock, flags);
3116 }
3117 
3118 /*
3119  * Called after usb core issues a clear halt control message.
3120  * The host side of the halt should already be cleared by a reset endpoint
3121  * command issued when the STALL event was received.
3122  *
3123  * The reset endpoint command may only be issued to endpoints in the halted
3124  * state. For software that wishes to reset the data toggle or sequence number
3125  * of an endpoint that isn't in the halted state this function will issue a
3126  * configure endpoint command with the Drop and Add bits set for the target
3127  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3128  */
3129 
3130 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3131 		struct usb_host_endpoint *host_ep)
3132 {
3133 	struct xhci_hcd *xhci;
3134 	struct usb_device *udev;
3135 	struct xhci_virt_device *vdev;
3136 	struct xhci_virt_ep *ep;
3137 	struct xhci_input_control_ctx *ctrl_ctx;
3138 	struct xhci_command *stop_cmd, *cfg_cmd;
3139 	unsigned int ep_index;
3140 	unsigned long flags;
3141 	u32 ep_flag;
3142 	int err;
3143 
3144 	xhci = hcd_to_xhci(hcd);
3145 	if (!host_ep->hcpriv)
3146 		return;
3147 	udev = (struct usb_device *) host_ep->hcpriv;
3148 	vdev = xhci->devs[udev->slot_id];
3149 
3150 	/*
3151 	 * vdev may be lost due to xHC restore error and re-initialization
3152 	 * during S3/S4 resume. A new vdev will be allocated later by
3153 	 * xhci_discover_or_reset_device()
3154 	 */
3155 	if (!udev->slot_id || !vdev)
3156 		return;
3157 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3158 	ep = &vdev->eps[ep_index];
3159 	if (!ep)
3160 		return;
3161 
3162 	/* Bail out if toggle is already being cleared by a endpoint reset */
3163 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3164 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3165 		return;
3166 	}
3167 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3168 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3169 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3170 		return;
3171 
3172 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3173 
3174 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3175 		return;
3176 
3177 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3178 	if (!stop_cmd)
3179 		return;
3180 
3181 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3182 	if (!cfg_cmd)
3183 		goto cleanup;
3184 
3185 	spin_lock_irqsave(&xhci->lock, flags);
3186 
3187 	/* block queuing new trbs and ringing ep doorbell */
3188 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3189 
3190 	/*
3191 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3192 	 * Driver is required to synchronously cancel all transfer request.
3193 	 * Stop the endpoint to force xHC to update the output context
3194 	 */
3195 
3196 	if (!list_empty(&ep->ring->td_list)) {
3197 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3198 		spin_unlock_irqrestore(&xhci->lock, flags);
3199 		xhci_free_command(xhci, cfg_cmd);
3200 		goto cleanup;
3201 	}
3202 
3203 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3204 					ep_index, 0);
3205 	if (err < 0) {
3206 		spin_unlock_irqrestore(&xhci->lock, flags);
3207 		xhci_free_command(xhci, cfg_cmd);
3208 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3209 				__func__, err);
3210 		goto cleanup;
3211 	}
3212 
3213 	xhci_ring_cmd_db(xhci);
3214 	spin_unlock_irqrestore(&xhci->lock, flags);
3215 
3216 	wait_for_completion(stop_cmd->completion);
3217 
3218 	spin_lock_irqsave(&xhci->lock, flags);
3219 
3220 	/* config ep command clears toggle if add and drop ep flags are set */
3221 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3222 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3223 					   ctrl_ctx, ep_flag, ep_flag);
3224 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3225 
3226 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3227 				      udev->slot_id, false);
3228 	if (err < 0) {
3229 		spin_unlock_irqrestore(&xhci->lock, flags);
3230 		xhci_free_command(xhci, cfg_cmd);
3231 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3232 				__func__, err);
3233 		goto cleanup;
3234 	}
3235 
3236 	xhci_ring_cmd_db(xhci);
3237 	spin_unlock_irqrestore(&xhci->lock, flags);
3238 
3239 	wait_for_completion(cfg_cmd->completion);
3240 
3241 	xhci_free_command(xhci, cfg_cmd);
3242 cleanup:
3243 	xhci_free_command(xhci, stop_cmd);
3244 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246 }
3247 
3248 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3249 		struct usb_device *udev, struct usb_host_endpoint *ep,
3250 		unsigned int slot_id)
3251 {
3252 	int ret;
3253 	unsigned int ep_index;
3254 	unsigned int ep_state;
3255 
3256 	if (!ep)
3257 		return -EINVAL;
3258 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3259 	if (ret <= 0)
3260 		return -EINVAL;
3261 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3262 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3263 				" descriptor for ep 0x%x does not support streams\n",
3264 				ep->desc.bEndpointAddress);
3265 		return -EINVAL;
3266 	}
3267 
3268 	ep_index = xhci_get_endpoint_index(&ep->desc);
3269 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3270 	if (ep_state & EP_HAS_STREAMS ||
3271 			ep_state & EP_GETTING_STREAMS) {
3272 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3273 				"already has streams set up.\n",
3274 				ep->desc.bEndpointAddress);
3275 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3276 				"dynamic stream context array reallocation.\n");
3277 		return -EINVAL;
3278 	}
3279 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3280 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3281 				"endpoint 0x%x; URBs are pending.\n",
3282 				ep->desc.bEndpointAddress);
3283 		return -EINVAL;
3284 	}
3285 	return 0;
3286 }
3287 
3288 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3289 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3290 {
3291 	unsigned int max_streams;
3292 
3293 	/* The stream context array size must be a power of two */
3294 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3295 	/*
3296 	 * Find out how many primary stream array entries the host controller
3297 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3298 	 * level page entries), but that's an optional feature for xHCI host
3299 	 * controllers. xHCs must support at least 4 stream IDs.
3300 	 */
3301 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3302 	if (*num_stream_ctxs > max_streams) {
3303 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3304 				max_streams);
3305 		*num_stream_ctxs = max_streams;
3306 		*num_streams = max_streams;
3307 	}
3308 }
3309 
3310 /* Returns an error code if one of the endpoint already has streams.
3311  * This does not change any data structures, it only checks and gathers
3312  * information.
3313  */
3314 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3315 		struct usb_device *udev,
3316 		struct usb_host_endpoint **eps, unsigned int num_eps,
3317 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3318 {
3319 	unsigned int max_streams;
3320 	unsigned int endpoint_flag;
3321 	int i;
3322 	int ret;
3323 
3324 	for (i = 0; i < num_eps; i++) {
3325 		ret = xhci_check_streams_endpoint(xhci, udev,
3326 				eps[i], udev->slot_id);
3327 		if (ret < 0)
3328 			return ret;
3329 
3330 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3331 		if (max_streams < (*num_streams - 1)) {
3332 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3333 					eps[i]->desc.bEndpointAddress,
3334 					max_streams);
3335 			*num_streams = max_streams+1;
3336 		}
3337 
3338 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3339 		if (*changed_ep_bitmask & endpoint_flag)
3340 			return -EINVAL;
3341 		*changed_ep_bitmask |= endpoint_flag;
3342 	}
3343 	return 0;
3344 }
3345 
3346 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3347 		struct usb_device *udev,
3348 		struct usb_host_endpoint **eps, unsigned int num_eps)
3349 {
3350 	u32 changed_ep_bitmask = 0;
3351 	unsigned int slot_id;
3352 	unsigned int ep_index;
3353 	unsigned int ep_state;
3354 	int i;
3355 
3356 	slot_id = udev->slot_id;
3357 	if (!xhci->devs[slot_id])
3358 		return 0;
3359 
3360 	for (i = 0; i < num_eps; i++) {
3361 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3362 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3363 		/* Are streams already being freed for the endpoint? */
3364 		if (ep_state & EP_GETTING_NO_STREAMS) {
3365 			xhci_warn(xhci, "WARN Can't disable streams for "
3366 					"endpoint 0x%x, "
3367 					"streams are being disabled already\n",
3368 					eps[i]->desc.bEndpointAddress);
3369 			return 0;
3370 		}
3371 		/* Are there actually any streams to free? */
3372 		if (!(ep_state & EP_HAS_STREAMS) &&
3373 				!(ep_state & EP_GETTING_STREAMS)) {
3374 			xhci_warn(xhci, "WARN Can't disable streams for "
3375 					"endpoint 0x%x, "
3376 					"streams are already disabled!\n",
3377 					eps[i]->desc.bEndpointAddress);
3378 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3379 					"with non-streams endpoint\n");
3380 			return 0;
3381 		}
3382 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3383 	}
3384 	return changed_ep_bitmask;
3385 }
3386 
3387 /*
3388  * The USB device drivers use this function (through the HCD interface in USB
3389  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3390  * coordinate mass storage command queueing across multiple endpoints (basically
3391  * a stream ID == a task ID).
3392  *
3393  * Setting up streams involves allocating the same size stream context array
3394  * for each endpoint and issuing a configure endpoint command for all endpoints.
3395  *
3396  * Don't allow the call to succeed if one endpoint only supports one stream
3397  * (which means it doesn't support streams at all).
3398  *
3399  * Drivers may get less stream IDs than they asked for, if the host controller
3400  * hardware or endpoints claim they can't support the number of requested
3401  * stream IDs.
3402  */
3403 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3404 		struct usb_host_endpoint **eps, unsigned int num_eps,
3405 		unsigned int num_streams, gfp_t mem_flags)
3406 {
3407 	int i, ret;
3408 	struct xhci_hcd *xhci;
3409 	struct xhci_virt_device *vdev;
3410 	struct xhci_command *config_cmd;
3411 	struct xhci_input_control_ctx *ctrl_ctx;
3412 	unsigned int ep_index;
3413 	unsigned int num_stream_ctxs;
3414 	unsigned int max_packet;
3415 	unsigned long flags;
3416 	u32 changed_ep_bitmask = 0;
3417 
3418 	if (!eps)
3419 		return -EINVAL;
3420 
3421 	/* Add one to the number of streams requested to account for
3422 	 * stream 0 that is reserved for xHCI usage.
3423 	 */
3424 	num_streams += 1;
3425 	xhci = hcd_to_xhci(hcd);
3426 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3427 			num_streams);
3428 
3429 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3430 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3431 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3432 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3433 		return -ENOSYS;
3434 	}
3435 
3436 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3437 	if (!config_cmd)
3438 		return -ENOMEM;
3439 
3440 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3441 	if (!ctrl_ctx) {
3442 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3443 				__func__);
3444 		xhci_free_command(xhci, config_cmd);
3445 		return -ENOMEM;
3446 	}
3447 
3448 	/* Check to make sure all endpoints are not already configured for
3449 	 * streams.  While we're at it, find the maximum number of streams that
3450 	 * all the endpoints will support and check for duplicate endpoints.
3451 	 */
3452 	spin_lock_irqsave(&xhci->lock, flags);
3453 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3454 			num_eps, &num_streams, &changed_ep_bitmask);
3455 	if (ret < 0) {
3456 		xhci_free_command(xhci, config_cmd);
3457 		spin_unlock_irqrestore(&xhci->lock, flags);
3458 		return ret;
3459 	}
3460 	if (num_streams <= 1) {
3461 		xhci_warn(xhci, "WARN: endpoints can't handle "
3462 				"more than one stream.\n");
3463 		xhci_free_command(xhci, config_cmd);
3464 		spin_unlock_irqrestore(&xhci->lock, flags);
3465 		return -EINVAL;
3466 	}
3467 	vdev = xhci->devs[udev->slot_id];
3468 	/* Mark each endpoint as being in transition, so
3469 	 * xhci_urb_enqueue() will reject all URBs.
3470 	 */
3471 	for (i = 0; i < num_eps; i++) {
3472 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3474 	}
3475 	spin_unlock_irqrestore(&xhci->lock, flags);
3476 
3477 	/* Setup internal data structures and allocate HW data structures for
3478 	 * streams (but don't install the HW structures in the input context
3479 	 * until we're sure all memory allocation succeeded).
3480 	 */
3481 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3482 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3483 			num_stream_ctxs, num_streams);
3484 
3485 	for (i = 0; i < num_eps; i++) {
3486 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3487 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3488 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3489 				num_stream_ctxs,
3490 				num_streams,
3491 				max_packet, mem_flags);
3492 		if (!vdev->eps[ep_index].stream_info)
3493 			goto cleanup;
3494 		/* Set maxPstreams in endpoint context and update deq ptr to
3495 		 * point to stream context array. FIXME
3496 		 */
3497 	}
3498 
3499 	/* Set up the input context for a configure endpoint command. */
3500 	for (i = 0; i < num_eps; i++) {
3501 		struct xhci_ep_ctx *ep_ctx;
3502 
3503 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3504 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3505 
3506 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3507 				vdev->out_ctx, ep_index);
3508 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3509 				vdev->eps[ep_index].stream_info);
3510 	}
3511 	/* Tell the HW to drop its old copy of the endpoint context info
3512 	 * and add the updated copy from the input context.
3513 	 */
3514 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3515 			vdev->out_ctx, ctrl_ctx,
3516 			changed_ep_bitmask, changed_ep_bitmask);
3517 
3518 	/* Issue and wait for the configure endpoint command */
3519 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3520 			false, false);
3521 
3522 	/* xHC rejected the configure endpoint command for some reason, so we
3523 	 * leave the old ring intact and free our internal streams data
3524 	 * structure.
3525 	 */
3526 	if (ret < 0)
3527 		goto cleanup;
3528 
3529 	spin_lock_irqsave(&xhci->lock, flags);
3530 	for (i = 0; i < num_eps; i++) {
3531 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3533 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3534 			 udev->slot_id, ep_index);
3535 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3536 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3537 	}
3538 	xhci_free_command(xhci, config_cmd);
3539 	spin_unlock_irqrestore(&xhci->lock, flags);
3540 
3541 	/* Subtract 1 for stream 0, which drivers can't use */
3542 	return num_streams - 1;
3543 
3544 cleanup:
3545 	/* If it didn't work, free the streams! */
3546 	for (i = 0; i < num_eps; i++) {
3547 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3549 		vdev->eps[ep_index].stream_info = NULL;
3550 		/* FIXME Unset maxPstreams in endpoint context and
3551 		 * update deq ptr to point to normal string ring.
3552 		 */
3553 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3554 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3555 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3556 	}
3557 	xhci_free_command(xhci, config_cmd);
3558 	return -ENOMEM;
3559 }
3560 
3561 /* Transition the endpoint from using streams to being a "normal" endpoint
3562  * without streams.
3563  *
3564  * Modify the endpoint context state, submit a configure endpoint command,
3565  * and free all endpoint rings for streams if that completes successfully.
3566  */
3567 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3568 		struct usb_host_endpoint **eps, unsigned int num_eps,
3569 		gfp_t mem_flags)
3570 {
3571 	int i, ret;
3572 	struct xhci_hcd *xhci;
3573 	struct xhci_virt_device *vdev;
3574 	struct xhci_command *command;
3575 	struct xhci_input_control_ctx *ctrl_ctx;
3576 	unsigned int ep_index;
3577 	unsigned long flags;
3578 	u32 changed_ep_bitmask;
3579 
3580 	xhci = hcd_to_xhci(hcd);
3581 	vdev = xhci->devs[udev->slot_id];
3582 
3583 	/* Set up a configure endpoint command to remove the streams rings */
3584 	spin_lock_irqsave(&xhci->lock, flags);
3585 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3586 			udev, eps, num_eps);
3587 	if (changed_ep_bitmask == 0) {
3588 		spin_unlock_irqrestore(&xhci->lock, flags);
3589 		return -EINVAL;
3590 	}
3591 
3592 	/* Use the xhci_command structure from the first endpoint.  We may have
3593 	 * allocated too many, but the driver may call xhci_free_streams() for
3594 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3595 	 */
3596 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3597 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3598 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3599 	if (!ctrl_ctx) {
3600 		spin_unlock_irqrestore(&xhci->lock, flags);
3601 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3602 				__func__);
3603 		return -EINVAL;
3604 	}
3605 
3606 	for (i = 0; i < num_eps; i++) {
3607 		struct xhci_ep_ctx *ep_ctx;
3608 
3609 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3610 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3611 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3612 			EP_GETTING_NO_STREAMS;
3613 
3614 		xhci_endpoint_copy(xhci, command->in_ctx,
3615 				vdev->out_ctx, ep_index);
3616 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3617 				&vdev->eps[ep_index]);
3618 	}
3619 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3620 			vdev->out_ctx, ctrl_ctx,
3621 			changed_ep_bitmask, changed_ep_bitmask);
3622 	spin_unlock_irqrestore(&xhci->lock, flags);
3623 
3624 	/* Issue and wait for the configure endpoint command,
3625 	 * which must succeed.
3626 	 */
3627 	ret = xhci_configure_endpoint(xhci, udev, command,
3628 			false, true);
3629 
3630 	/* xHC rejected the configure endpoint command for some reason, so we
3631 	 * leave the streams rings intact.
3632 	 */
3633 	if (ret < 0)
3634 		return ret;
3635 
3636 	spin_lock_irqsave(&xhci->lock, flags);
3637 	for (i = 0; i < num_eps; i++) {
3638 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3639 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3640 		vdev->eps[ep_index].stream_info = NULL;
3641 		/* FIXME Unset maxPstreams in endpoint context and
3642 		 * update deq ptr to point to normal string ring.
3643 		 */
3644 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3645 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3646 	}
3647 	spin_unlock_irqrestore(&xhci->lock, flags);
3648 
3649 	return 0;
3650 }
3651 
3652 /*
3653  * Deletes endpoint resources for endpoints that were active before a Reset
3654  * Device command, or a Disable Slot command.  The Reset Device command leaves
3655  * the control endpoint intact, whereas the Disable Slot command deletes it.
3656  *
3657  * Must be called with xhci->lock held.
3658  */
3659 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3660 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3661 {
3662 	int i;
3663 	unsigned int num_dropped_eps = 0;
3664 	unsigned int drop_flags = 0;
3665 
3666 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3667 		if (virt_dev->eps[i].ring) {
3668 			drop_flags |= 1 << i;
3669 			num_dropped_eps++;
3670 		}
3671 	}
3672 	xhci->num_active_eps -= num_dropped_eps;
3673 	if (num_dropped_eps)
3674 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 				"Dropped %u ep ctxs, flags = 0x%x, "
3676 				"%u now active.",
3677 				num_dropped_eps, drop_flags,
3678 				xhci->num_active_eps);
3679 }
3680 
3681 /*
3682  * This submits a Reset Device Command, which will set the device state to 0,
3683  * set the device address to 0, and disable all the endpoints except the default
3684  * control endpoint.  The USB core should come back and call
3685  * xhci_address_device(), and then re-set up the configuration.  If this is
3686  * called because of a usb_reset_and_verify_device(), then the old alternate
3687  * settings will be re-installed through the normal bandwidth allocation
3688  * functions.
3689  *
3690  * Wait for the Reset Device command to finish.  Remove all structures
3691  * associated with the endpoints that were disabled.  Clear the input device
3692  * structure? Reset the control endpoint 0 max packet size?
3693  *
3694  * If the virt_dev to be reset does not exist or does not match the udev,
3695  * it means the device is lost, possibly due to the xHC restore error and
3696  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3697  * re-allocate the device.
3698  */
3699 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3700 		struct usb_device *udev)
3701 {
3702 	int ret, i;
3703 	unsigned long flags;
3704 	struct xhci_hcd *xhci;
3705 	unsigned int slot_id;
3706 	struct xhci_virt_device *virt_dev;
3707 	struct xhci_command *reset_device_cmd;
3708 	struct xhci_slot_ctx *slot_ctx;
3709 	int old_active_eps = 0;
3710 
3711 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3712 	if (ret <= 0)
3713 		return ret;
3714 	xhci = hcd_to_xhci(hcd);
3715 	slot_id = udev->slot_id;
3716 	virt_dev = xhci->devs[slot_id];
3717 	if (!virt_dev) {
3718 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3719 				"not exist. Re-allocate the device\n", slot_id);
3720 		ret = xhci_alloc_dev(hcd, udev);
3721 		if (ret == 1)
3722 			return 0;
3723 		else
3724 			return -EINVAL;
3725 	}
3726 
3727 	if (virt_dev->tt_info)
3728 		old_active_eps = virt_dev->tt_info->active_eps;
3729 
3730 	if (virt_dev->udev != udev) {
3731 		/* If the virt_dev and the udev does not match, this virt_dev
3732 		 * may belong to another udev.
3733 		 * Re-allocate the device.
3734 		 */
3735 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3736 				"not match the udev. Re-allocate the device\n",
3737 				slot_id);
3738 		ret = xhci_alloc_dev(hcd, udev);
3739 		if (ret == 1)
3740 			return 0;
3741 		else
3742 			return -EINVAL;
3743 	}
3744 
3745 	/* If device is not setup, there is no point in resetting it */
3746 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3747 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3748 						SLOT_STATE_DISABLED)
3749 		return 0;
3750 
3751 	trace_xhci_discover_or_reset_device(slot_ctx);
3752 
3753 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3754 	/* Allocate the command structure that holds the struct completion.
3755 	 * Assume we're in process context, since the normal device reset
3756 	 * process has to wait for the device anyway.  Storage devices are
3757 	 * reset as part of error handling, so use GFP_NOIO instead of
3758 	 * GFP_KERNEL.
3759 	 */
3760 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3761 	if (!reset_device_cmd) {
3762 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3763 		return -ENOMEM;
3764 	}
3765 
3766 	/* Attempt to submit the Reset Device command to the command ring */
3767 	spin_lock_irqsave(&xhci->lock, flags);
3768 
3769 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3770 	if (ret) {
3771 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3772 		spin_unlock_irqrestore(&xhci->lock, flags);
3773 		goto command_cleanup;
3774 	}
3775 	xhci_ring_cmd_db(xhci);
3776 	spin_unlock_irqrestore(&xhci->lock, flags);
3777 
3778 	/* Wait for the Reset Device command to finish */
3779 	wait_for_completion(reset_device_cmd->completion);
3780 
3781 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3782 	 * unless we tried to reset a slot ID that wasn't enabled,
3783 	 * or the device wasn't in the addressed or configured state.
3784 	 */
3785 	ret = reset_device_cmd->status;
3786 	switch (ret) {
3787 	case COMP_COMMAND_ABORTED:
3788 	case COMP_COMMAND_RING_STOPPED:
3789 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3790 		ret = -ETIME;
3791 		goto command_cleanup;
3792 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3793 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3794 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3795 				slot_id,
3796 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3797 		xhci_dbg(xhci, "Not freeing device rings.\n");
3798 		/* Don't treat this as an error.  May change my mind later. */
3799 		ret = 0;
3800 		goto command_cleanup;
3801 	case COMP_SUCCESS:
3802 		xhci_dbg(xhci, "Successful reset device command.\n");
3803 		break;
3804 	default:
3805 		if (xhci_is_vendor_info_code(xhci, ret))
3806 			break;
3807 		xhci_warn(xhci, "Unknown completion code %u for "
3808 				"reset device command.\n", ret);
3809 		ret = -EINVAL;
3810 		goto command_cleanup;
3811 	}
3812 
3813 	/* Free up host controller endpoint resources */
3814 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3815 		spin_lock_irqsave(&xhci->lock, flags);
3816 		/* Don't delete the default control endpoint resources */
3817 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3818 		spin_unlock_irqrestore(&xhci->lock, flags);
3819 	}
3820 
3821 	/* Everything but endpoint 0 is disabled, so free the rings. */
3822 	for (i = 1; i < 31; i++) {
3823 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3824 
3825 		if (ep->ep_state & EP_HAS_STREAMS) {
3826 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3827 					xhci_get_endpoint_address(i));
3828 			xhci_free_stream_info(xhci, ep->stream_info);
3829 			ep->stream_info = NULL;
3830 			ep->ep_state &= ~EP_HAS_STREAMS;
3831 		}
3832 
3833 		if (ep->ring) {
3834 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3835 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3836 		}
3837 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3838 			xhci_drop_ep_from_interval_table(xhci,
3839 					&virt_dev->eps[i].bw_info,
3840 					virt_dev->bw_table,
3841 					udev,
3842 					&virt_dev->eps[i],
3843 					virt_dev->tt_info);
3844 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3845 	}
3846 	/* If necessary, update the number of active TTs on this root port */
3847 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3848 	virt_dev->flags = 0;
3849 	ret = 0;
3850 
3851 command_cleanup:
3852 	xhci_free_command(xhci, reset_device_cmd);
3853 	return ret;
3854 }
3855 
3856 /*
3857  * At this point, the struct usb_device is about to go away, the device has
3858  * disconnected, and all traffic has been stopped and the endpoints have been
3859  * disabled.  Free any HC data structures associated with that device.
3860  */
3861 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3862 {
3863 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3864 	struct xhci_virt_device *virt_dev;
3865 	struct xhci_slot_ctx *slot_ctx;
3866 	int i, ret;
3867 
3868 #ifndef CONFIG_USB_DEFAULT_PERSIST
3869 	/*
3870 	 * We called pm_runtime_get_noresume when the device was attached.
3871 	 * Decrement the counter here to allow controller to runtime suspend
3872 	 * if no devices remain.
3873 	 */
3874 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3875 		pm_runtime_put_noidle(hcd->self.controller);
3876 #endif
3877 
3878 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3879 	/* If the host is halted due to driver unload, we still need to free the
3880 	 * device.
3881 	 */
3882 	if (ret <= 0 && ret != -ENODEV)
3883 		return;
3884 
3885 	virt_dev = xhci->devs[udev->slot_id];
3886 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3887 	trace_xhci_free_dev(slot_ctx);
3888 
3889 	/* Stop any wayward timer functions (which may grab the lock) */
3890 	for (i = 0; i < 31; i++) {
3891 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3892 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3893 	}
3894 	virt_dev->udev = NULL;
3895 	ret = xhci_disable_slot(xhci, udev->slot_id);
3896 	if (ret)
3897 		xhci_free_virt_device(xhci, udev->slot_id);
3898 }
3899 
3900 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3901 {
3902 	struct xhci_command *command;
3903 	unsigned long flags;
3904 	u32 state;
3905 	int ret = 0;
3906 
3907 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3908 	if (!command)
3909 		return -ENOMEM;
3910 
3911 	xhci_debugfs_remove_slot(xhci, slot_id);
3912 
3913 	spin_lock_irqsave(&xhci->lock, flags);
3914 	/* Don't disable the slot if the host controller is dead. */
3915 	state = readl(&xhci->op_regs->status);
3916 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3917 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3918 		spin_unlock_irqrestore(&xhci->lock, flags);
3919 		kfree(command);
3920 		return -ENODEV;
3921 	}
3922 
3923 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3924 				slot_id);
3925 	if (ret) {
3926 		spin_unlock_irqrestore(&xhci->lock, flags);
3927 		kfree(command);
3928 		return ret;
3929 	}
3930 	xhci_ring_cmd_db(xhci);
3931 	spin_unlock_irqrestore(&xhci->lock, flags);
3932 	return ret;
3933 }
3934 
3935 /*
3936  * Checks if we have enough host controller resources for the default control
3937  * endpoint.
3938  *
3939  * Must be called with xhci->lock held.
3940  */
3941 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3942 {
3943 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3944 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3945 				"Not enough ep ctxs: "
3946 				"%u active, need to add 1, limit is %u.",
3947 				xhci->num_active_eps, xhci->limit_active_eps);
3948 		return -ENOMEM;
3949 	}
3950 	xhci->num_active_eps += 1;
3951 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3952 			"Adding 1 ep ctx, %u now active.",
3953 			xhci->num_active_eps);
3954 	return 0;
3955 }
3956 
3957 
3958 /*
3959  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3960  * timed out, or allocating memory failed.  Returns 1 on success.
3961  */
3962 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3963 {
3964 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3965 	struct xhci_virt_device *vdev;
3966 	struct xhci_slot_ctx *slot_ctx;
3967 	unsigned long flags;
3968 	int ret, slot_id;
3969 	struct xhci_command *command;
3970 
3971 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3972 	if (!command)
3973 		return 0;
3974 
3975 	spin_lock_irqsave(&xhci->lock, flags);
3976 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3977 	if (ret) {
3978 		spin_unlock_irqrestore(&xhci->lock, flags);
3979 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3980 		xhci_free_command(xhci, command);
3981 		return 0;
3982 	}
3983 	xhci_ring_cmd_db(xhci);
3984 	spin_unlock_irqrestore(&xhci->lock, flags);
3985 
3986 	wait_for_completion(command->completion);
3987 	slot_id = command->slot_id;
3988 
3989 	if (!slot_id || command->status != COMP_SUCCESS) {
3990 		xhci_err(xhci, "Error while assigning device slot ID\n");
3991 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3992 				HCS_MAX_SLOTS(
3993 					readl(&xhci->cap_regs->hcs_params1)));
3994 		xhci_free_command(xhci, command);
3995 		return 0;
3996 	}
3997 
3998 	xhci_free_command(xhci, command);
3999 
4000 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4001 		spin_lock_irqsave(&xhci->lock, flags);
4002 		ret = xhci_reserve_host_control_ep_resources(xhci);
4003 		if (ret) {
4004 			spin_unlock_irqrestore(&xhci->lock, flags);
4005 			xhci_warn(xhci, "Not enough host resources, "
4006 					"active endpoint contexts = %u\n",
4007 					xhci->num_active_eps);
4008 			goto disable_slot;
4009 		}
4010 		spin_unlock_irqrestore(&xhci->lock, flags);
4011 	}
4012 	/* Use GFP_NOIO, since this function can be called from
4013 	 * xhci_discover_or_reset_device(), which may be called as part of
4014 	 * mass storage driver error handling.
4015 	 */
4016 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4017 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4018 		goto disable_slot;
4019 	}
4020 	vdev = xhci->devs[slot_id];
4021 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4022 	trace_xhci_alloc_dev(slot_ctx);
4023 
4024 	udev->slot_id = slot_id;
4025 
4026 	xhci_debugfs_create_slot(xhci, slot_id);
4027 
4028 #ifndef CONFIG_USB_DEFAULT_PERSIST
4029 	/*
4030 	 * If resetting upon resume, we can't put the controller into runtime
4031 	 * suspend if there is a device attached.
4032 	 */
4033 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4034 		pm_runtime_get_noresume(hcd->self.controller);
4035 #endif
4036 
4037 	/* Is this a LS or FS device under a HS hub? */
4038 	/* Hub or peripherial? */
4039 	return 1;
4040 
4041 disable_slot:
4042 	ret = xhci_disable_slot(xhci, udev->slot_id);
4043 	if (ret)
4044 		xhci_free_virt_device(xhci, udev->slot_id);
4045 
4046 	return 0;
4047 }
4048 
4049 /*
4050  * Issue an Address Device command and optionally send a corresponding
4051  * SetAddress request to the device.
4052  */
4053 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4054 			     enum xhci_setup_dev setup)
4055 {
4056 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4057 	unsigned long flags;
4058 	struct xhci_virt_device *virt_dev;
4059 	int ret = 0;
4060 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4061 	struct xhci_slot_ctx *slot_ctx;
4062 	struct xhci_input_control_ctx *ctrl_ctx;
4063 	u64 temp_64;
4064 	struct xhci_command *command = NULL;
4065 
4066 	mutex_lock(&xhci->mutex);
4067 
4068 	if (xhci->xhc_state) {	/* dying, removing or halted */
4069 		ret = -ESHUTDOWN;
4070 		goto out;
4071 	}
4072 
4073 	if (!udev->slot_id) {
4074 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4075 				"Bad Slot ID %d", udev->slot_id);
4076 		ret = -EINVAL;
4077 		goto out;
4078 	}
4079 
4080 	virt_dev = xhci->devs[udev->slot_id];
4081 
4082 	if (WARN_ON(!virt_dev)) {
4083 		/*
4084 		 * In plug/unplug torture test with an NEC controller,
4085 		 * a zero-dereference was observed once due to virt_dev = 0.
4086 		 * Print useful debug rather than crash if it is observed again!
4087 		 */
4088 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4089 			udev->slot_id);
4090 		ret = -EINVAL;
4091 		goto out;
4092 	}
4093 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4094 	trace_xhci_setup_device_slot(slot_ctx);
4095 
4096 	if (setup == SETUP_CONTEXT_ONLY) {
4097 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4098 		    SLOT_STATE_DEFAULT) {
4099 			xhci_dbg(xhci, "Slot already in default state\n");
4100 			goto out;
4101 		}
4102 	}
4103 
4104 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4105 	if (!command) {
4106 		ret = -ENOMEM;
4107 		goto out;
4108 	}
4109 
4110 	command->in_ctx = virt_dev->in_ctx;
4111 
4112 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4113 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4114 	if (!ctrl_ctx) {
4115 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4116 				__func__);
4117 		ret = -EINVAL;
4118 		goto out;
4119 	}
4120 	/*
4121 	 * If this is the first Set Address since device plug-in or
4122 	 * virt_device realloaction after a resume with an xHCI power loss,
4123 	 * then set up the slot context.
4124 	 */
4125 	if (!slot_ctx->dev_info)
4126 		xhci_setup_addressable_virt_dev(xhci, udev);
4127 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4128 	else
4129 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4130 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4131 	ctrl_ctx->drop_flags = 0;
4132 
4133 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4134 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4135 
4136 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4137 	spin_lock_irqsave(&xhci->lock, flags);
4138 	trace_xhci_setup_device(virt_dev);
4139 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4140 					udev->slot_id, setup);
4141 	if (ret) {
4142 		spin_unlock_irqrestore(&xhci->lock, flags);
4143 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4144 				"FIXME: allocate a command ring segment");
4145 		goto out;
4146 	}
4147 	xhci_ring_cmd_db(xhci);
4148 	spin_unlock_irqrestore(&xhci->lock, flags);
4149 
4150 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4151 	wait_for_completion(command->completion);
4152 
4153 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4154 	 * the SetAddress() "recovery interval" required by USB and aborting the
4155 	 * command on a timeout.
4156 	 */
4157 	switch (command->status) {
4158 	case COMP_COMMAND_ABORTED:
4159 	case COMP_COMMAND_RING_STOPPED:
4160 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4161 		ret = -ETIME;
4162 		break;
4163 	case COMP_CONTEXT_STATE_ERROR:
4164 	case COMP_SLOT_NOT_ENABLED_ERROR:
4165 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4166 			 act, udev->slot_id);
4167 		ret = -EINVAL;
4168 		break;
4169 	case COMP_USB_TRANSACTION_ERROR:
4170 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4171 
4172 		mutex_unlock(&xhci->mutex);
4173 		ret = xhci_disable_slot(xhci, udev->slot_id);
4174 		if (!ret)
4175 			xhci_alloc_dev(hcd, udev);
4176 		kfree(command->completion);
4177 		kfree(command);
4178 		return -EPROTO;
4179 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4180 		dev_warn(&udev->dev,
4181 			 "ERROR: Incompatible device for setup %s command\n", act);
4182 		ret = -ENODEV;
4183 		break;
4184 	case COMP_SUCCESS:
4185 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4186 			       "Successful setup %s command", act);
4187 		break;
4188 	default:
4189 		xhci_err(xhci,
4190 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4191 			 act, command->status);
4192 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4193 		ret = -EINVAL;
4194 		break;
4195 	}
4196 	if (ret)
4197 		goto out;
4198 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4199 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4200 			"Op regs DCBAA ptr = %#016llx", temp_64);
4201 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4202 		"Slot ID %d dcbaa entry @%p = %#016llx",
4203 		udev->slot_id,
4204 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4205 		(unsigned long long)
4206 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4207 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208 			"Output Context DMA address = %#08llx",
4209 			(unsigned long long)virt_dev->out_ctx->dma);
4210 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4211 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4212 	/*
4213 	 * USB core uses address 1 for the roothubs, so we add one to the
4214 	 * address given back to us by the HC.
4215 	 */
4216 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4217 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4218 	/* Zero the input context control for later use */
4219 	ctrl_ctx->add_flags = 0;
4220 	ctrl_ctx->drop_flags = 0;
4221 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4222 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223 
4224 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4225 		       "Internal device address = %d",
4226 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4227 out:
4228 	mutex_unlock(&xhci->mutex);
4229 	if (command) {
4230 		kfree(command->completion);
4231 		kfree(command);
4232 	}
4233 	return ret;
4234 }
4235 
4236 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4239 }
4240 
4241 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4242 {
4243 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4244 }
4245 
4246 /*
4247  * Transfer the port index into real index in the HW port status
4248  * registers. Caculate offset between the port's PORTSC register
4249  * and port status base. Divide the number of per port register
4250  * to get the real index. The raw port number bases 1.
4251  */
4252 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4253 {
4254 	struct xhci_hub *rhub;
4255 
4256 	rhub = xhci_get_rhub(hcd);
4257 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4258 }
4259 
4260 /*
4261  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4262  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4263  */
4264 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4265 			struct usb_device *udev, u16 max_exit_latency)
4266 {
4267 	struct xhci_virt_device *virt_dev;
4268 	struct xhci_command *command;
4269 	struct xhci_input_control_ctx *ctrl_ctx;
4270 	struct xhci_slot_ctx *slot_ctx;
4271 	unsigned long flags;
4272 	int ret;
4273 
4274 	spin_lock_irqsave(&xhci->lock, flags);
4275 
4276 	virt_dev = xhci->devs[udev->slot_id];
4277 
4278 	/*
4279 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4280 	 * xHC was re-initialized. Exit latency will be set later after
4281 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4282 	 */
4283 
4284 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4285 		spin_unlock_irqrestore(&xhci->lock, flags);
4286 		return 0;
4287 	}
4288 
4289 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4290 	command = xhci->lpm_command;
4291 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4292 	if (!ctrl_ctx) {
4293 		spin_unlock_irqrestore(&xhci->lock, flags);
4294 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4295 				__func__);
4296 		return -ENOMEM;
4297 	}
4298 
4299 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4300 	spin_unlock_irqrestore(&xhci->lock, flags);
4301 
4302 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4303 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4304 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4305 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4306 	slot_ctx->dev_state = 0;
4307 
4308 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4309 			"Set up evaluate context for LPM MEL change.");
4310 
4311 	/* Issue and wait for the evaluate context command. */
4312 	ret = xhci_configure_endpoint(xhci, udev, command,
4313 			true, true);
4314 
4315 	if (!ret) {
4316 		spin_lock_irqsave(&xhci->lock, flags);
4317 		virt_dev->current_mel = max_exit_latency;
4318 		spin_unlock_irqrestore(&xhci->lock, flags);
4319 	}
4320 	return ret;
4321 }
4322 
4323 #ifdef CONFIG_PM
4324 
4325 /* BESL to HIRD Encoding array for USB2 LPM */
4326 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4327 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4328 
4329 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4330 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4331 					struct usb_device *udev)
4332 {
4333 	int u2del, besl, besl_host;
4334 	int besl_device = 0;
4335 	u32 field;
4336 
4337 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4338 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4339 
4340 	if (field & USB_BESL_SUPPORT) {
4341 		for (besl_host = 0; besl_host < 16; besl_host++) {
4342 			if (xhci_besl_encoding[besl_host] >= u2del)
4343 				break;
4344 		}
4345 		/* Use baseline BESL value as default */
4346 		if (field & USB_BESL_BASELINE_VALID)
4347 			besl_device = USB_GET_BESL_BASELINE(field);
4348 		else if (field & USB_BESL_DEEP_VALID)
4349 			besl_device = USB_GET_BESL_DEEP(field);
4350 	} else {
4351 		if (u2del <= 50)
4352 			besl_host = 0;
4353 		else
4354 			besl_host = (u2del - 51) / 75 + 1;
4355 	}
4356 
4357 	besl = besl_host + besl_device;
4358 	if (besl > 15)
4359 		besl = 15;
4360 
4361 	return besl;
4362 }
4363 
4364 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4365 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4366 {
4367 	u32 field;
4368 	int l1;
4369 	int besld = 0;
4370 	int hirdm = 0;
4371 
4372 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4373 
4374 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4375 	l1 = udev->l1_params.timeout / 256;
4376 
4377 	/* device has preferred BESLD */
4378 	if (field & USB_BESL_DEEP_VALID) {
4379 		besld = USB_GET_BESL_DEEP(field);
4380 		hirdm = 1;
4381 	}
4382 
4383 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4384 }
4385 
4386 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4387 			struct usb_device *udev, int enable)
4388 {
4389 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4390 	struct xhci_port **ports;
4391 	__le32 __iomem	*pm_addr, *hlpm_addr;
4392 	u32		pm_val, hlpm_val, field;
4393 	unsigned int	port_num;
4394 	unsigned long	flags;
4395 	int		hird, exit_latency;
4396 	int		ret;
4397 
4398 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4399 		return -EPERM;
4400 
4401 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4402 			!udev->lpm_capable)
4403 		return -EPERM;
4404 
4405 	if (!udev->parent || udev->parent->parent ||
4406 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4407 		return -EPERM;
4408 
4409 	if (udev->usb2_hw_lpm_capable != 1)
4410 		return -EPERM;
4411 
4412 	spin_lock_irqsave(&xhci->lock, flags);
4413 
4414 	ports = xhci->usb2_rhub.ports;
4415 	port_num = udev->portnum - 1;
4416 	pm_addr = ports[port_num]->addr + PORTPMSC;
4417 	pm_val = readl(pm_addr);
4418 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4419 
4420 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4421 			enable ? "enable" : "disable", port_num + 1);
4422 
4423 	if (enable) {
4424 		/* Host supports BESL timeout instead of HIRD */
4425 		if (udev->usb2_hw_lpm_besl_capable) {
4426 			/* if device doesn't have a preferred BESL value use a
4427 			 * default one which works with mixed HIRD and BESL
4428 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4429 			 */
4430 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4431 			if ((field & USB_BESL_SUPPORT) &&
4432 			    (field & USB_BESL_BASELINE_VALID))
4433 				hird = USB_GET_BESL_BASELINE(field);
4434 			else
4435 				hird = udev->l1_params.besl;
4436 
4437 			exit_latency = xhci_besl_encoding[hird];
4438 			spin_unlock_irqrestore(&xhci->lock, flags);
4439 
4440 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4441 			 * input context for link powermanagement evaluate
4442 			 * context commands. It is protected by hcd->bandwidth
4443 			 * mutex and is shared by all devices. We need to set
4444 			 * the max ext latency in USB 2 BESL LPM as well, so
4445 			 * use the same mutex and xhci_change_max_exit_latency()
4446 			 */
4447 			mutex_lock(hcd->bandwidth_mutex);
4448 			ret = xhci_change_max_exit_latency(xhci, udev,
4449 							   exit_latency);
4450 			mutex_unlock(hcd->bandwidth_mutex);
4451 
4452 			if (ret < 0)
4453 				return ret;
4454 			spin_lock_irqsave(&xhci->lock, flags);
4455 
4456 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4457 			writel(hlpm_val, hlpm_addr);
4458 			/* flush write */
4459 			readl(hlpm_addr);
4460 		} else {
4461 			hird = xhci_calculate_hird_besl(xhci, udev);
4462 		}
4463 
4464 		pm_val &= ~PORT_HIRD_MASK;
4465 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4466 		writel(pm_val, pm_addr);
4467 		pm_val = readl(pm_addr);
4468 		pm_val |= PORT_HLE;
4469 		writel(pm_val, pm_addr);
4470 		/* flush write */
4471 		readl(pm_addr);
4472 	} else {
4473 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4474 		writel(pm_val, pm_addr);
4475 		/* flush write */
4476 		readl(pm_addr);
4477 		if (udev->usb2_hw_lpm_besl_capable) {
4478 			spin_unlock_irqrestore(&xhci->lock, flags);
4479 			mutex_lock(hcd->bandwidth_mutex);
4480 			xhci_change_max_exit_latency(xhci, udev, 0);
4481 			mutex_unlock(hcd->bandwidth_mutex);
4482 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4483 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4484 					   100, 10000);
4485 			return 0;
4486 		}
4487 	}
4488 
4489 	spin_unlock_irqrestore(&xhci->lock, flags);
4490 	return 0;
4491 }
4492 
4493 /* check if a usb2 port supports a given extened capability protocol
4494  * only USB2 ports extended protocol capability values are cached.
4495  * Return 1 if capability is supported
4496  */
4497 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4498 					   unsigned capability)
4499 {
4500 	u32 port_offset, port_count;
4501 	int i;
4502 
4503 	for (i = 0; i < xhci->num_ext_caps; i++) {
4504 		if (xhci->ext_caps[i] & capability) {
4505 			/* port offsets starts at 1 */
4506 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4507 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4508 			if (port >= port_offset &&
4509 			    port < port_offset + port_count)
4510 				return 1;
4511 		}
4512 	}
4513 	return 0;
4514 }
4515 
4516 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4517 {
4518 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4519 	int		portnum = udev->portnum - 1;
4520 
4521 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4522 		return 0;
4523 
4524 	/* we only support lpm for non-hub device connected to root hub yet */
4525 	if (!udev->parent || udev->parent->parent ||
4526 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4527 		return 0;
4528 
4529 	if (xhci->hw_lpm_support == 1 &&
4530 			xhci_check_usb2_port_capability(
4531 				xhci, portnum, XHCI_HLC)) {
4532 		udev->usb2_hw_lpm_capable = 1;
4533 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4534 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4535 		if (xhci_check_usb2_port_capability(xhci, portnum,
4536 					XHCI_BLC))
4537 			udev->usb2_hw_lpm_besl_capable = 1;
4538 	}
4539 
4540 	return 0;
4541 }
4542 
4543 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4544 
4545 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4546 static unsigned long long xhci_service_interval_to_ns(
4547 		struct usb_endpoint_descriptor *desc)
4548 {
4549 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4550 }
4551 
4552 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4553 		enum usb3_link_state state)
4554 {
4555 	unsigned long long sel;
4556 	unsigned long long pel;
4557 	unsigned int max_sel_pel;
4558 	char *state_name;
4559 
4560 	switch (state) {
4561 	case USB3_LPM_U1:
4562 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4563 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4564 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4565 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4566 		state_name = "U1";
4567 		break;
4568 	case USB3_LPM_U2:
4569 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4570 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4571 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4572 		state_name = "U2";
4573 		break;
4574 	default:
4575 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4576 				__func__);
4577 		return USB3_LPM_DISABLED;
4578 	}
4579 
4580 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4581 		return USB3_LPM_DEVICE_INITIATED;
4582 
4583 	if (sel > max_sel_pel)
4584 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4585 				"due to long SEL %llu ms\n",
4586 				state_name, sel);
4587 	else
4588 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4589 				"due to long PEL %llu ms\n",
4590 				state_name, pel);
4591 	return USB3_LPM_DISABLED;
4592 }
4593 
4594 /* The U1 timeout should be the maximum of the following values:
4595  *  - For control endpoints, U1 system exit latency (SEL) * 3
4596  *  - For bulk endpoints, U1 SEL * 5
4597  *  - For interrupt endpoints:
4598  *    - Notification EPs, U1 SEL * 3
4599  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4600  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4601  */
4602 static unsigned long long xhci_calculate_intel_u1_timeout(
4603 		struct usb_device *udev,
4604 		struct usb_endpoint_descriptor *desc)
4605 {
4606 	unsigned long long timeout_ns;
4607 	int ep_type;
4608 	int intr_type;
4609 
4610 	ep_type = usb_endpoint_type(desc);
4611 	switch (ep_type) {
4612 	case USB_ENDPOINT_XFER_CONTROL:
4613 		timeout_ns = udev->u1_params.sel * 3;
4614 		break;
4615 	case USB_ENDPOINT_XFER_BULK:
4616 		timeout_ns = udev->u1_params.sel * 5;
4617 		break;
4618 	case USB_ENDPOINT_XFER_INT:
4619 		intr_type = usb_endpoint_interrupt_type(desc);
4620 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4621 			timeout_ns = udev->u1_params.sel * 3;
4622 			break;
4623 		}
4624 		/* Otherwise the calculation is the same as isoc eps */
4625 		fallthrough;
4626 	case USB_ENDPOINT_XFER_ISOC:
4627 		timeout_ns = xhci_service_interval_to_ns(desc);
4628 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4629 		if (timeout_ns < udev->u1_params.sel * 2)
4630 			timeout_ns = udev->u1_params.sel * 2;
4631 		break;
4632 	default:
4633 		return 0;
4634 	}
4635 
4636 	return timeout_ns;
4637 }
4638 
4639 /* Returns the hub-encoded U1 timeout value. */
4640 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4641 		struct usb_device *udev,
4642 		struct usb_endpoint_descriptor *desc)
4643 {
4644 	unsigned long long timeout_ns;
4645 
4646 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4647 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4648 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4649 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4650 			return USB3_LPM_DISABLED;
4651 		}
4652 	}
4653 
4654 	if (xhci->quirks & XHCI_INTEL_HOST)
4655 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4656 	else
4657 		timeout_ns = udev->u1_params.sel;
4658 
4659 	/* The U1 timeout is encoded in 1us intervals.
4660 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4661 	 */
4662 	if (timeout_ns == USB3_LPM_DISABLED)
4663 		timeout_ns = 1;
4664 	else
4665 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4666 
4667 	/* If the necessary timeout value is bigger than what we can set in the
4668 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4669 	 */
4670 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4671 		return timeout_ns;
4672 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4673 			"due to long timeout %llu ms\n", timeout_ns);
4674 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4675 }
4676 
4677 /* The U2 timeout should be the maximum of:
4678  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4679  *  - largest bInterval of any active periodic endpoint (to avoid going
4680  *    into lower power link states between intervals).
4681  *  - the U2 Exit Latency of the device
4682  */
4683 static unsigned long long xhci_calculate_intel_u2_timeout(
4684 		struct usb_device *udev,
4685 		struct usb_endpoint_descriptor *desc)
4686 {
4687 	unsigned long long timeout_ns;
4688 	unsigned long long u2_del_ns;
4689 
4690 	timeout_ns = 10 * 1000 * 1000;
4691 
4692 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4693 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4694 		timeout_ns = xhci_service_interval_to_ns(desc);
4695 
4696 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4697 	if (u2_del_ns > timeout_ns)
4698 		timeout_ns = u2_del_ns;
4699 
4700 	return timeout_ns;
4701 }
4702 
4703 /* Returns the hub-encoded U2 timeout value. */
4704 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4705 		struct usb_device *udev,
4706 		struct usb_endpoint_descriptor *desc)
4707 {
4708 	unsigned long long timeout_ns;
4709 
4710 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4711 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4712 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4713 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4714 			return USB3_LPM_DISABLED;
4715 		}
4716 	}
4717 
4718 	if (xhci->quirks & XHCI_INTEL_HOST)
4719 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4720 	else
4721 		timeout_ns = udev->u2_params.sel;
4722 
4723 	/* The U2 timeout is encoded in 256us intervals */
4724 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4725 	/* If the necessary timeout value is bigger than what we can set in the
4726 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4727 	 */
4728 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4729 		return timeout_ns;
4730 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4731 			"due to long timeout %llu ms\n", timeout_ns);
4732 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4733 }
4734 
4735 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4736 		struct usb_device *udev,
4737 		struct usb_endpoint_descriptor *desc,
4738 		enum usb3_link_state state,
4739 		u16 *timeout)
4740 {
4741 	if (state == USB3_LPM_U1)
4742 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4743 	else if (state == USB3_LPM_U2)
4744 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4745 
4746 	return USB3_LPM_DISABLED;
4747 }
4748 
4749 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4750 		struct usb_device *udev,
4751 		struct usb_endpoint_descriptor *desc,
4752 		enum usb3_link_state state,
4753 		u16 *timeout)
4754 {
4755 	u16 alt_timeout;
4756 
4757 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4758 		desc, state, timeout);
4759 
4760 	/* If we found we can't enable hub-initiated LPM, and
4761 	 * the U1 or U2 exit latency was too high to allow
4762 	 * device-initiated LPM as well, then we will disable LPM
4763 	 * for this device, so stop searching any further.
4764 	 */
4765 	if (alt_timeout == USB3_LPM_DISABLED) {
4766 		*timeout = alt_timeout;
4767 		return -E2BIG;
4768 	}
4769 	if (alt_timeout > *timeout)
4770 		*timeout = alt_timeout;
4771 	return 0;
4772 }
4773 
4774 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4775 		struct usb_device *udev,
4776 		struct usb_host_interface *alt,
4777 		enum usb3_link_state state,
4778 		u16 *timeout)
4779 {
4780 	int j;
4781 
4782 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4783 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4784 					&alt->endpoint[j].desc, state, timeout))
4785 			return -E2BIG;
4786 		continue;
4787 	}
4788 	return 0;
4789 }
4790 
4791 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4792 		enum usb3_link_state state)
4793 {
4794 	struct usb_device *parent;
4795 	unsigned int num_hubs;
4796 
4797 	if (state == USB3_LPM_U2)
4798 		return 0;
4799 
4800 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4801 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4802 			parent = parent->parent)
4803 		num_hubs++;
4804 
4805 	if (num_hubs < 2)
4806 		return 0;
4807 
4808 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4809 			" below second-tier hub.\n");
4810 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4811 			"to decrease power consumption.\n");
4812 	return -E2BIG;
4813 }
4814 
4815 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4816 		struct usb_device *udev,
4817 		enum usb3_link_state state)
4818 {
4819 	if (xhci->quirks & XHCI_INTEL_HOST)
4820 		return xhci_check_intel_tier_policy(udev, state);
4821 	else
4822 		return 0;
4823 }
4824 
4825 /* Returns the U1 or U2 timeout that should be enabled.
4826  * If the tier check or timeout setting functions return with a non-zero exit
4827  * code, that means the timeout value has been finalized and we shouldn't look
4828  * at any more endpoints.
4829  */
4830 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4831 			struct usb_device *udev, enum usb3_link_state state)
4832 {
4833 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834 	struct usb_host_config *config;
4835 	char *state_name;
4836 	int i;
4837 	u16 timeout = USB3_LPM_DISABLED;
4838 
4839 	if (state == USB3_LPM_U1)
4840 		state_name = "U1";
4841 	else if (state == USB3_LPM_U2)
4842 		state_name = "U2";
4843 	else {
4844 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4845 				state);
4846 		return timeout;
4847 	}
4848 
4849 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4850 		return timeout;
4851 
4852 	/* Gather some information about the currently installed configuration
4853 	 * and alternate interface settings.
4854 	 */
4855 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4856 			state, &timeout))
4857 		return timeout;
4858 
4859 	config = udev->actconfig;
4860 	if (!config)
4861 		return timeout;
4862 
4863 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4864 		struct usb_driver *driver;
4865 		struct usb_interface *intf = config->interface[i];
4866 
4867 		if (!intf)
4868 			continue;
4869 
4870 		/* Check if any currently bound drivers want hub-initiated LPM
4871 		 * disabled.
4872 		 */
4873 		if (intf->dev.driver) {
4874 			driver = to_usb_driver(intf->dev.driver);
4875 			if (driver && driver->disable_hub_initiated_lpm) {
4876 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4877 					state_name, driver->name);
4878 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4879 								      state);
4880 				if (timeout == USB3_LPM_DISABLED)
4881 					return timeout;
4882 			}
4883 		}
4884 
4885 		/* Not sure how this could happen... */
4886 		if (!intf->cur_altsetting)
4887 			continue;
4888 
4889 		if (xhci_update_timeout_for_interface(xhci, udev,
4890 					intf->cur_altsetting,
4891 					state, &timeout))
4892 			return timeout;
4893 	}
4894 	return timeout;
4895 }
4896 
4897 static int calculate_max_exit_latency(struct usb_device *udev,
4898 		enum usb3_link_state state_changed,
4899 		u16 hub_encoded_timeout)
4900 {
4901 	unsigned long long u1_mel_us = 0;
4902 	unsigned long long u2_mel_us = 0;
4903 	unsigned long long mel_us = 0;
4904 	bool disabling_u1;
4905 	bool disabling_u2;
4906 	bool enabling_u1;
4907 	bool enabling_u2;
4908 
4909 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4910 			hub_encoded_timeout == USB3_LPM_DISABLED);
4911 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4912 			hub_encoded_timeout == USB3_LPM_DISABLED);
4913 
4914 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4915 			hub_encoded_timeout != USB3_LPM_DISABLED);
4916 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4917 			hub_encoded_timeout != USB3_LPM_DISABLED);
4918 
4919 	/* If U1 was already enabled and we're not disabling it,
4920 	 * or we're going to enable U1, account for the U1 max exit latency.
4921 	 */
4922 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4923 			enabling_u1)
4924 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4925 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4926 			enabling_u2)
4927 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4928 
4929 	if (u1_mel_us > u2_mel_us)
4930 		mel_us = u1_mel_us;
4931 	else
4932 		mel_us = u2_mel_us;
4933 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4934 	if (mel_us > MAX_EXIT) {
4935 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4936 				"is too big.\n", mel_us);
4937 		return -E2BIG;
4938 	}
4939 	return mel_us;
4940 }
4941 
4942 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4943 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4944 			struct usb_device *udev, enum usb3_link_state state)
4945 {
4946 	struct xhci_hcd	*xhci;
4947 	u16 hub_encoded_timeout;
4948 	int mel;
4949 	int ret;
4950 
4951 	xhci = hcd_to_xhci(hcd);
4952 	/* The LPM timeout values are pretty host-controller specific, so don't
4953 	 * enable hub-initiated timeouts unless the vendor has provided
4954 	 * information about their timeout algorithm.
4955 	 */
4956 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957 			!xhci->devs[udev->slot_id])
4958 		return USB3_LPM_DISABLED;
4959 
4960 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4961 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4962 	if (mel < 0) {
4963 		/* Max Exit Latency is too big, disable LPM. */
4964 		hub_encoded_timeout = USB3_LPM_DISABLED;
4965 		mel = 0;
4966 	}
4967 
4968 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4969 	if (ret)
4970 		return ret;
4971 	return hub_encoded_timeout;
4972 }
4973 
4974 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4975 			struct usb_device *udev, enum usb3_link_state state)
4976 {
4977 	struct xhci_hcd	*xhci;
4978 	u16 mel;
4979 
4980 	xhci = hcd_to_xhci(hcd);
4981 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4982 			!xhci->devs[udev->slot_id])
4983 		return 0;
4984 
4985 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4986 	return xhci_change_max_exit_latency(xhci, udev, mel);
4987 }
4988 #else /* CONFIG_PM */
4989 
4990 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4991 				struct usb_device *udev, int enable)
4992 {
4993 	return 0;
4994 }
4995 
4996 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4997 {
4998 	return 0;
4999 }
5000 
5001 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5002 			struct usb_device *udev, enum usb3_link_state state)
5003 {
5004 	return USB3_LPM_DISABLED;
5005 }
5006 
5007 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008 			struct usb_device *udev, enum usb3_link_state state)
5009 {
5010 	return 0;
5011 }
5012 #endif	/* CONFIG_PM */
5013 
5014 /*-------------------------------------------------------------------------*/
5015 
5016 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5017  * internal data structures for the device.
5018  */
5019 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5020 			struct usb_tt *tt, gfp_t mem_flags)
5021 {
5022 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5023 	struct xhci_virt_device *vdev;
5024 	struct xhci_command *config_cmd;
5025 	struct xhci_input_control_ctx *ctrl_ctx;
5026 	struct xhci_slot_ctx *slot_ctx;
5027 	unsigned long flags;
5028 	unsigned think_time;
5029 	int ret;
5030 
5031 	/* Ignore root hubs */
5032 	if (!hdev->parent)
5033 		return 0;
5034 
5035 	vdev = xhci->devs[hdev->slot_id];
5036 	if (!vdev) {
5037 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5038 		return -EINVAL;
5039 	}
5040 
5041 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5042 	if (!config_cmd)
5043 		return -ENOMEM;
5044 
5045 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5046 	if (!ctrl_ctx) {
5047 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5048 				__func__);
5049 		xhci_free_command(xhci, config_cmd);
5050 		return -ENOMEM;
5051 	}
5052 
5053 	spin_lock_irqsave(&xhci->lock, flags);
5054 	if (hdev->speed == USB_SPEED_HIGH &&
5055 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5056 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5057 		xhci_free_command(xhci, config_cmd);
5058 		spin_unlock_irqrestore(&xhci->lock, flags);
5059 		return -ENOMEM;
5060 	}
5061 
5062 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5063 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5064 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5065 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5066 	/*
5067 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5068 	 * but it may be already set to 1 when setup an xHCI virtual
5069 	 * device, so clear it anyway.
5070 	 */
5071 	if (tt->multi)
5072 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5073 	else if (hdev->speed == USB_SPEED_FULL)
5074 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5075 
5076 	if (xhci->hci_version > 0x95) {
5077 		xhci_dbg(xhci, "xHCI version %x needs hub "
5078 				"TT think time and number of ports\n",
5079 				(unsigned int) xhci->hci_version);
5080 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5081 		/* Set TT think time - convert from ns to FS bit times.
5082 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5083 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5084 		 *
5085 		 * xHCI 1.0: this field shall be 0 if the device is not a
5086 		 * High-spped hub.
5087 		 */
5088 		think_time = tt->think_time;
5089 		if (think_time != 0)
5090 			think_time = (think_time / 666) - 1;
5091 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5092 			slot_ctx->tt_info |=
5093 				cpu_to_le32(TT_THINK_TIME(think_time));
5094 	} else {
5095 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5096 				"TT think time or number of ports\n",
5097 				(unsigned int) xhci->hci_version);
5098 	}
5099 	slot_ctx->dev_state = 0;
5100 	spin_unlock_irqrestore(&xhci->lock, flags);
5101 
5102 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5103 			(xhci->hci_version > 0x95) ?
5104 			"configure endpoint" : "evaluate context");
5105 
5106 	/* Issue and wait for the configure endpoint or
5107 	 * evaluate context command.
5108 	 */
5109 	if (xhci->hci_version > 0x95)
5110 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5111 				false, false);
5112 	else
5113 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5114 				true, false);
5115 
5116 	xhci_free_command(xhci, config_cmd);
5117 	return ret;
5118 }
5119 
5120 static int xhci_get_frame(struct usb_hcd *hcd)
5121 {
5122 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5123 	/* EHCI mods by the periodic size.  Why? */
5124 	return readl(&xhci->run_regs->microframe_index) >> 3;
5125 }
5126 
5127 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5128 {
5129 	struct xhci_hcd		*xhci;
5130 	/*
5131 	 * TODO: Check with DWC3 clients for sysdev according to
5132 	 * quirks
5133 	 */
5134 	struct device		*dev = hcd->self.sysdev;
5135 	unsigned int		minor_rev;
5136 	int			retval;
5137 
5138 	/* Accept arbitrarily long scatter-gather lists */
5139 	hcd->self.sg_tablesize = ~0;
5140 
5141 	/* support to build packet from discontinuous buffers */
5142 	hcd->self.no_sg_constraint = 1;
5143 
5144 	/* XHCI controllers don't stop the ep queue on short packets :| */
5145 	hcd->self.no_stop_on_short = 1;
5146 
5147 	xhci = hcd_to_xhci(hcd);
5148 
5149 	if (usb_hcd_is_primary_hcd(hcd)) {
5150 		xhci->main_hcd = hcd;
5151 		xhci->usb2_rhub.hcd = hcd;
5152 		/* Mark the first roothub as being USB 2.0.
5153 		 * The xHCI driver will register the USB 3.0 roothub.
5154 		 */
5155 		hcd->speed = HCD_USB2;
5156 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5157 		/*
5158 		 * USB 2.0 roothub under xHCI has an integrated TT,
5159 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5160 		 * companion controller.
5161 		 */
5162 		hcd->has_tt = 1;
5163 	} else {
5164 		/*
5165 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5166 		 * should return 0x31 for sbrn, or that the minor revision
5167 		 * is a two digit BCD containig minor and sub-minor numbers.
5168 		 * This was later clarified in xHCI 1.2.
5169 		 *
5170 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5171 		 * minor revision set to 0x1 instead of 0x10.
5172 		 */
5173 		if (xhci->usb3_rhub.min_rev == 0x1)
5174 			minor_rev = 1;
5175 		else
5176 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5177 
5178 		switch (minor_rev) {
5179 		case 2:
5180 			hcd->speed = HCD_USB32;
5181 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182 			hcd->self.root_hub->rx_lanes = 2;
5183 			hcd->self.root_hub->tx_lanes = 2;
5184 			break;
5185 		case 1:
5186 			hcd->speed = HCD_USB31;
5187 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5188 			break;
5189 		}
5190 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5191 			  minor_rev,
5192 			  minor_rev ? "Enhanced " : "");
5193 
5194 		xhci->usb3_rhub.hcd = hcd;
5195 		/* xHCI private pointer was set in xhci_pci_probe for the second
5196 		 * registered roothub.
5197 		 */
5198 		return 0;
5199 	}
5200 
5201 	mutex_init(&xhci->mutex);
5202 	xhci->cap_regs = hcd->regs;
5203 	xhci->op_regs = hcd->regs +
5204 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5205 	xhci->run_regs = hcd->regs +
5206 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5207 	/* Cache read-only capability registers */
5208 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5209 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5210 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5211 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5212 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5213 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5214 	if (xhci->hci_version > 0x100)
5215 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5216 
5217 	xhci->quirks |= quirks;
5218 
5219 	get_quirks(dev, xhci);
5220 
5221 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5222 	 * success event after a short transfer. This quirk will ignore such
5223 	 * spurious event.
5224 	 */
5225 	if (xhci->hci_version > 0x96)
5226 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5227 
5228 	/* Make sure the HC is halted. */
5229 	retval = xhci_halt(xhci);
5230 	if (retval)
5231 		return retval;
5232 
5233 	xhci_zero_64b_regs(xhci);
5234 
5235 	xhci_dbg(xhci, "Resetting HCD\n");
5236 	/* Reset the internal HC memory state and registers. */
5237 	retval = xhci_reset(xhci);
5238 	if (retval)
5239 		return retval;
5240 	xhci_dbg(xhci, "Reset complete\n");
5241 
5242 	/*
5243 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5244 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5245 	 * address memory pointers actually. So, this driver clears the AC64
5246 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5247 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5248 	 */
5249 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5250 		xhci->hcc_params &= ~BIT(0);
5251 
5252 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5253 	 * if xHC supports 64-bit addressing */
5254 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5255 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5256 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5257 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5258 	} else {
5259 		/*
5260 		 * This is to avoid error in cases where a 32-bit USB
5261 		 * controller is used on a 64-bit capable system.
5262 		 */
5263 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5264 		if (retval)
5265 			return retval;
5266 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5267 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5268 	}
5269 
5270 	xhci_dbg(xhci, "Calling HCD init\n");
5271 	/* Initialize HCD and host controller data structures. */
5272 	retval = xhci_init(hcd);
5273 	if (retval)
5274 		return retval;
5275 	xhci_dbg(xhci, "Called HCD init\n");
5276 
5277 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5278 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5279 
5280 	return 0;
5281 }
5282 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5283 
5284 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5285 		struct usb_host_endpoint *ep)
5286 {
5287 	struct xhci_hcd *xhci;
5288 	struct usb_device *udev;
5289 	unsigned int slot_id;
5290 	unsigned int ep_index;
5291 	unsigned long flags;
5292 
5293 	xhci = hcd_to_xhci(hcd);
5294 
5295 	spin_lock_irqsave(&xhci->lock, flags);
5296 	udev = (struct usb_device *)ep->hcpriv;
5297 	slot_id = udev->slot_id;
5298 	ep_index = xhci_get_endpoint_index(&ep->desc);
5299 
5300 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5301 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5302 	spin_unlock_irqrestore(&xhci->lock, flags);
5303 }
5304 
5305 static const struct hc_driver xhci_hc_driver = {
5306 	.description =		"xhci-hcd",
5307 	.product_desc =		"xHCI Host Controller",
5308 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5309 
5310 	/*
5311 	 * generic hardware linkage
5312 	 */
5313 	.irq =			xhci_irq,
5314 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5315 				HCD_BH,
5316 
5317 	/*
5318 	 * basic lifecycle operations
5319 	 */
5320 	.reset =		NULL, /* set in xhci_init_driver() */
5321 	.start =		xhci_run,
5322 	.stop =			xhci_stop,
5323 	.shutdown =		xhci_shutdown,
5324 
5325 	/*
5326 	 * managing i/o requests and associated device resources
5327 	 */
5328 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5329 	.urb_enqueue =		xhci_urb_enqueue,
5330 	.urb_dequeue =		xhci_urb_dequeue,
5331 	.alloc_dev =		xhci_alloc_dev,
5332 	.free_dev =		xhci_free_dev,
5333 	.alloc_streams =	xhci_alloc_streams,
5334 	.free_streams =		xhci_free_streams,
5335 	.add_endpoint =		xhci_add_endpoint,
5336 	.drop_endpoint =	xhci_drop_endpoint,
5337 	.endpoint_disable =	xhci_endpoint_disable,
5338 	.endpoint_reset =	xhci_endpoint_reset,
5339 	.check_bandwidth =	xhci_check_bandwidth,
5340 	.reset_bandwidth =	xhci_reset_bandwidth,
5341 	.address_device =	xhci_address_device,
5342 	.enable_device =	xhci_enable_device,
5343 	.update_hub_device =	xhci_update_hub_device,
5344 	.reset_device =		xhci_discover_or_reset_device,
5345 
5346 	/*
5347 	 * scheduling support
5348 	 */
5349 	.get_frame_number =	xhci_get_frame,
5350 
5351 	/*
5352 	 * root hub support
5353 	 */
5354 	.hub_control =		xhci_hub_control,
5355 	.hub_status_data =	xhci_hub_status_data,
5356 	.bus_suspend =		xhci_bus_suspend,
5357 	.bus_resume =		xhci_bus_resume,
5358 	.get_resuming_ports =	xhci_get_resuming_ports,
5359 
5360 	/*
5361 	 * call back when device connected and addressed
5362 	 */
5363 	.update_device =        xhci_update_device,
5364 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5365 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5366 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5367 	.find_raw_port_number =	xhci_find_raw_port_number,
5368 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5369 };
5370 
5371 void xhci_init_driver(struct hc_driver *drv,
5372 		      const struct xhci_driver_overrides *over)
5373 {
5374 	BUG_ON(!over);
5375 
5376 	/* Copy the generic table to drv then apply the overrides */
5377 	*drv = xhci_hc_driver;
5378 
5379 	if (over) {
5380 		drv->hcd_priv_size += over->extra_priv_size;
5381 		if (over->reset)
5382 			drv->reset = over->reset;
5383 		if (over->start)
5384 			drv->start = over->start;
5385 	}
5386 }
5387 EXPORT_SYMBOL_GPL(xhci_init_driver);
5388 
5389 MODULE_DESCRIPTION(DRIVER_DESC);
5390 MODULE_AUTHOR(DRIVER_AUTHOR);
5391 MODULE_LICENSE("GPL");
5392 
5393 static int __init xhci_hcd_init(void)
5394 {
5395 	/*
5396 	 * Check the compiler generated sizes of structures that must be laid
5397 	 * out in specific ways for hardware access.
5398 	 */
5399 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5400 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5401 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5402 	/* xhci_device_control has eight fields, and also
5403 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5404 	 */
5405 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5406 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5407 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5408 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5409 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5410 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5411 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5412 
5413 	if (usb_disabled())
5414 		return -ENODEV;
5415 
5416 	xhci_debugfs_create_root();
5417 
5418 	return 0;
5419 }
5420 
5421 /*
5422  * If an init function is provided, an exit function must also be provided
5423  * to allow module unload.
5424  */
5425 static void __exit xhci_hcd_fini(void)
5426 {
5427 	xhci_debugfs_remove_root();
5428 }
5429 
5430 module_init(xhci_hcd_init);
5431 module_exit(xhci_hcd_fini);
5432