xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 110e6f26)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151 
152 	return ret;
153 }
154 
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 	u32 command;
165 	u32 state;
166 	int ret, i;
167 
168 	state = readl(&xhci->op_regs->status);
169 	if ((state & STS_HALT) == 0) {
170 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 		return 0;
172 	}
173 
174 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 	command = readl(&xhci->op_regs->command);
176 	command |= CMD_RESET;
177 	writel(command, &xhci->op_regs->command);
178 
179 	/* Existing Intel xHCI controllers require a delay of 1 mS,
180 	 * after setting the CMD_RESET bit, and before accessing any
181 	 * HC registers. This allows the HC to complete the
182 	 * reset operation and be ready for HC register access.
183 	 * Without this delay, the subsequent HC register access,
184 	 * may result in a system hang very rarely.
185 	 */
186 	if (xhci->quirks & XHCI_INTEL_HOST)
187 		udelay(1000);
188 
189 	ret = xhci_handshake(&xhci->op_regs->command,
190 			CMD_RESET, 0, 10 * 1000 * 1000);
191 	if (ret)
192 		return ret;
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; ++i) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 	int i;
216 
217 	if (!xhci->msix_entries)
218 		return -EINVAL;
219 
220 	for (i = 0; i < xhci->msix_count; i++)
221 		if (xhci->msix_entries[i].vector)
222 			free_irq(xhci->msix_entries[i].vector,
223 					xhci_to_hcd(xhci));
224 	return 0;
225 }
226 
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 	int ret;
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_enable_msi(pdev);
236 	if (ret) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_disable_msi(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 	int ret;
261 
262 	/* return if using legacy interrupt */
263 	if (xhci_to_hcd(xhci)->irq > 0)
264 		return;
265 
266 	ret = xhci_free_msi(xhci);
267 	if (!ret)
268 		return;
269 	if (pdev->irq > 0)
270 		free_irq(pdev->irq, xhci_to_hcd(xhci));
271 
272 	return;
273 }
274 
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 	int i, ret = 0;
281 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283 
284 	/*
285 	 * calculate number of msi-x vectors supported.
286 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
288 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 	 *   Add additional 1 vector to ensure always available interrupt.
290 	 */
291 	xhci->msix_count = min(num_online_cpus() + 1,
292 				HCS_MAX_INTRS(xhci->hcs_params1));
293 
294 	xhci->msix_entries =
295 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 				GFP_KERNEL);
297 	if (!xhci->msix_entries) {
298 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 		return -ENOMEM;
300 	}
301 
302 	for (i = 0; i < xhci->msix_count; i++) {
303 		xhci->msix_entries[i].entry = i;
304 		xhci->msix_entries[i].vector = 0;
305 	}
306 
307 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 	if (ret) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"Failed to enable MSI-X");
311 		goto free_entries;
312 	}
313 
314 	for (i = 0; i < xhci->msix_count; i++) {
315 		ret = request_irq(xhci->msix_entries[i].vector,
316 				xhci_msi_irq,
317 				0, "xhci_hcd", xhci_to_hcd(xhci));
318 		if (ret)
319 			goto disable_msix;
320 	}
321 
322 	hcd->msix_enabled = 1;
323 	return ret;
324 
325 disable_msix:
326 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 	xhci_free_irq(xhci);
328 	pci_disable_msix(pdev);
329 free_entries:
330 	kfree(xhci->msix_entries);
331 	xhci->msix_entries = NULL;
332 	return ret;
333 }
334 
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340 
341 	if (xhci->quirks & XHCI_PLAT)
342 		return;
343 
344 	xhci_free_irq(xhci);
345 
346 	if (xhci->msix_entries) {
347 		pci_disable_msix(pdev);
348 		kfree(xhci->msix_entries);
349 		xhci->msix_entries = NULL;
350 	} else {
351 		pci_disable_msi(pdev);
352 	}
353 
354 	hcd->msix_enabled = 0;
355 	return;
356 }
357 
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 	int i;
361 
362 	if (xhci->msix_entries) {
363 		for (i = 0; i < xhci->msix_count; i++)
364 			synchronize_irq(xhci->msix_entries[i].vector);
365 	}
366 }
367 
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 	struct pci_dev  *pdev;
372 	int ret;
373 
374 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
375 	if (xhci->quirks & XHCI_PLAT)
376 		return 0;
377 
378 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 	/*
380 	 * Some Fresco Logic host controllers advertise MSI, but fail to
381 	 * generate interrupts.  Don't even try to enable MSI.
382 	 */
383 	if (xhci->quirks & XHCI_BROKEN_MSI)
384 		goto legacy_irq;
385 
386 	/* unregister the legacy interrupt */
387 	if (hcd->irq)
388 		free_irq(hcd->irq, hcd);
389 	hcd->irq = 0;
390 
391 	ret = xhci_setup_msix(xhci);
392 	if (ret)
393 		/* fall back to msi*/
394 		ret = xhci_setup_msi(xhci);
395 
396 	if (!ret)
397 		/* hcd->irq is 0, we have MSI */
398 		return 0;
399 
400 	if (!pdev->irq) {
401 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 		return -EINVAL;
403 	}
404 
405  legacy_irq:
406 	if (!strlen(hcd->irq_descr))
407 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 			 hcd->driver->description, hcd->self.busnum);
409 
410 	/* fall back to legacy interrupt*/
411 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 			hcd->irq_descr, hcd);
413 	if (ret) {
414 		xhci_err(xhci, "request interrupt %d failed\n",
415 				pdev->irq);
416 		return ret;
417 	}
418 	hcd->irq = pdev->irq;
419 	return 0;
420 }
421 
422 #else
423 
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 	return 0;
427 }
428 
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432 
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436 
437 #endif
438 
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 	struct xhci_hcd *xhci;
442 	struct usb_hcd *hcd;
443 	u32 temp;
444 	int i;
445 
446 	xhci = (struct xhci_hcd *)arg;
447 
448 	for (i = 0; i < xhci->num_usb3_ports; i++) {
449 		temp = readl(xhci->usb3_ports[i]);
450 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 			/*
452 			 * Compliance Mode Detected. Letting USB Core
453 			 * handle the Warm Reset
454 			 */
455 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 					"Compliance mode detected->port %d",
457 					i + 1);
458 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 					"Attempting compliance mode recovery");
460 			hcd = xhci->shared_hcd;
461 
462 			if (hcd->state == HC_STATE_SUSPENDED)
463 				usb_hcd_resume_root_hub(hcd);
464 
465 			usb_hcd_poll_rh_status(hcd);
466 		}
467 	}
468 
469 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 		mod_timer(&xhci->comp_mode_recovery_timer,
471 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473 
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 	xhci->port_status_u0 = 0;
487 	setup_timer(&xhci->comp_mode_recovery_timer,
488 		    compliance_mode_recovery, (unsigned long)xhci);
489 	xhci->comp_mode_recovery_timer.expires = jiffies +
490 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491 
492 	set_timer_slack(&xhci->comp_mode_recovery_timer,
493 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 	add_timer(&xhci->comp_mode_recovery_timer);
495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 			"Compliance mode recovery timer initialized");
497 }
498 
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 	const char *dmi_product_name, *dmi_sys_vendor;
508 
509 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 	if (!dmi_product_name || !dmi_sys_vendor)
512 		return false;
513 
514 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 		return false;
516 
517 	if (strstr(dmi_product_name, "Z420") ||
518 			strstr(dmi_product_name, "Z620") ||
519 			strstr(dmi_product_name, "Z820") ||
520 			strstr(dmi_product_name, "Z1 Workstation"))
521 		return true;
522 
523 	return false;
524 }
525 
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530 
531 
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 	int retval = 0;
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 	spin_lock_init(&xhci->lock);
546 	if (xhci->hci_version == 0x95 && link_quirk) {
547 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 				"QUIRK: Not clearing Link TRB chain bits.");
549 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 	} else {
551 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 				"xHCI doesn't need link TRB QUIRK");
553 	}
554 	retval = xhci_mem_init(xhci, GFP_KERNEL);
555 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556 
557 	/* Initializing Compliance Mode Recovery Data If Needed */
558 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 		compliance_mode_recovery_timer_init(xhci);
561 	}
562 
563 	return retval;
564 }
565 
566 /*-------------------------------------------------------------------------*/
567 
568 
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 	if (xhci_start(xhci)) {
572 		xhci_halt(xhci);
573 		return -ENODEV;
574 	}
575 	xhci->shared_hcd->state = HC_STATE_RUNNING;
576 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577 
578 	if (xhci->quirks & XHCI_NEC_HOST)
579 		xhci_ring_cmd_db(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 			"Finished xhci_run for USB3 roothub");
583 	return 0;
584 }
585 
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600 	u32 temp;
601 	u64 temp_64;
602 	int ret;
603 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604 
605 	/* Start the xHCI host controller running only after the USB 2.0 roothub
606 	 * is setup.
607 	 */
608 
609 	hcd->uses_new_polling = 1;
610 	if (!usb_hcd_is_primary_hcd(hcd))
611 		return xhci_run_finished(xhci);
612 
613 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614 
615 	ret = xhci_try_enable_msi(hcd);
616 	if (ret)
617 		return ret;
618 
619 	xhci_dbg(xhci, "Command ring memory map follows:\n");
620 	xhci_debug_ring(xhci, xhci->cmd_ring);
621 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 	xhci_dbg_cmd_ptrs(xhci);
623 
624 	xhci_dbg(xhci, "ERST memory map follows:\n");
625 	xhci_dbg_erst(xhci, &xhci->erst);
626 	xhci_dbg(xhci, "Event ring:\n");
627 	xhci_debug_ring(xhci, xhci->event_ring);
628 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 	temp_64 &= ~ERST_PTR_MASK;
631 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633 
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"// Set the interrupt modulation register");
636 	temp = readl(&xhci->ir_set->irq_control);
637 	temp &= ~ER_IRQ_INTERVAL_MASK;
638 	/*
639 	 * the increment interval is 8 times as much as that defined
640 	 * in xHCI spec on MTK's controller
641 	 */
642 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 	writel(temp, &xhci->ir_set->irq_control);
644 
645 	/* Set the HCD state before we enable the irqs */
646 	temp = readl(&xhci->op_regs->command);
647 	temp |= (CMD_EIE);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"// Enable interrupts, cmd = 0x%x.", temp);
650 	writel(temp, &xhci->op_regs->command);
651 
652 	temp = readl(&xhci->ir_set->irq_pending);
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 	xhci_print_ir_set(xhci, 0);
658 
659 	if (xhci->quirks & XHCI_NEC_HOST) {
660 		struct xhci_command *command;
661 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 		if (!command)
663 			return -ENOMEM;
664 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 				TRB_TYPE(TRB_NEC_GET_FW));
666 	}
667 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 			"Finished xhci_run for USB2 roothub");
669 	return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672 
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 	u32 temp;
685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687 	if (xhci->xhc_state & XHCI_STATE_HALTED)
688 		return;
689 
690 	mutex_lock(&xhci->mutex);
691 	spin_lock_irq(&xhci->lock);
692 	xhci->xhc_state |= XHCI_STATE_HALTED;
693 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694 
695 	/* Make sure the xHC is halted for a USB3 roothub
696 	 * (xhci_stop() could be called as part of failed init).
697 	 */
698 	xhci_halt(xhci);
699 	xhci_reset(xhci);
700 	spin_unlock_irq(&xhci->lock);
701 
702 	xhci_cleanup_msix(xhci);
703 
704 	/* Deleting Compliance Mode Recovery Timer */
705 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 			(!(xhci_all_ports_seen_u0(xhci)))) {
707 		del_timer_sync(&xhci->comp_mode_recovery_timer);
708 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 				"%s: compliance mode recovery timer deleted",
710 				__func__);
711 	}
712 
713 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 		usb_amd_dev_put();
715 
716 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 			"// Disabling event ring interrupts");
718 	temp = readl(&xhci->op_regs->status);
719 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 	temp = readl(&xhci->ir_set->irq_pending);
721 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 	xhci_print_ir_set(xhci, 0);
723 
724 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 	xhci_mem_cleanup(xhci);
726 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 			"xhci_stop completed - status = %x",
728 			readl(&xhci->op_regs->status));
729 	mutex_unlock(&xhci->mutex);
730 }
731 
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744 
745 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747 
748 	spin_lock_irq(&xhci->lock);
749 	xhci_halt(xhci);
750 	/* Workaround for spurious wakeups at shutdown with HSW */
751 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 		xhci_reset(xhci);
753 	spin_unlock_irq(&xhci->lock);
754 
755 	xhci_cleanup_msix(xhci);
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 			"xhci_shutdown completed - status = %x",
759 			readl(&xhci->op_regs->status));
760 
761 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
762 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765 
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 	xhci->s3.command = readl(&xhci->op_regs->command);
770 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779 
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 	writel(xhci->s3.command, &xhci->op_regs->command);
783 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792 
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 	u64	val_64;
796 
797 	/* step 2: initialize command ring buffer */
798 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 				      xhci->cmd_ring->dequeue) &
802 		 (u64) ~CMD_RING_RSVD_BITS) |
803 		xhci->cmd_ring->cycle_state;
804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 			"// Setting command ring address to 0x%llx",
806 			(long unsigned long) val_64);
807 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809 
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 	struct xhci_ring *ring;
822 	struct xhci_segment *seg;
823 
824 	ring = xhci->cmd_ring;
825 	seg = ring->deq_seg;
826 	do {
827 		memset(seg->trbs, 0,
828 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 			cpu_to_le32(~TRB_CYCLE);
831 		seg = seg->next;
832 	} while (seg != ring->deq_seg);
833 
834 	/* Reset the software enqueue and dequeue pointers */
835 	ring->deq_seg = ring->first_seg;
836 	ring->dequeue = ring->first_seg->trbs;
837 	ring->enq_seg = ring->deq_seg;
838 	ring->enqueue = ring->dequeue;
839 
840 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 	/*
842 	 * Ring is now zeroed, so the HW should look for change of ownership
843 	 * when the cycle bit is set to 1.
844 	 */
845 	ring->cycle_state = 1;
846 
847 	/*
848 	 * Reset the hardware dequeue pointer.
849 	 * Yes, this will need to be re-written after resume, but we're paranoid
850 	 * and want to make sure the hardware doesn't access bogus memory
851 	 * because, say, the BIOS or an SMI started the host without changing
852 	 * the command ring pointers.
853 	 */
854 	xhci_set_cmd_ring_deq(xhci);
855 }
856 
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 	int port_index;
860 	__le32 __iomem **port_array;
861 	unsigned long flags;
862 	u32 t1, t2;
863 
864 	spin_lock_irqsave(&xhci->lock, flags);
865 
866 	/* disble usb3 ports Wake bits*/
867 	port_index = xhci->num_usb3_ports;
868 	port_array = xhci->usb3_ports;
869 	while (port_index--) {
870 		t1 = readl(port_array[port_index]);
871 		t1 = xhci_port_state_to_neutral(t1);
872 		t2 = t1 & ~PORT_WAKE_BITS;
873 		if (t1 != t2)
874 			writel(t2, port_array[port_index]);
875 	}
876 
877 	/* disble usb2 ports Wake bits*/
878 	port_index = xhci->num_usb2_ports;
879 	port_array = xhci->usb2_ports;
880 	while (port_index--) {
881 		t1 = readl(port_array[port_index]);
882 		t1 = xhci_port_state_to_neutral(t1);
883 		t2 = t1 & ~PORT_WAKE_BITS;
884 		if (t1 != t2)
885 			writel(t2, port_array[port_index]);
886 	}
887 
888 	spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890 
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 	int			rc = 0;
900 	unsigned int		delay = XHCI_MAX_HALT_USEC;
901 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
902 	u32			command;
903 
904 	if (!hcd->state)
905 		return 0;
906 
907 	if (hcd->state != HC_STATE_SUSPENDED ||
908 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 		return -EINVAL;
910 
911 	/* Clear root port wake on bits if wakeup not allowed. */
912 	if (!do_wakeup)
913 		xhci_disable_port_wake_on_bits(xhci);
914 
915 	/* Don't poll the roothubs on bus suspend. */
916 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 	del_timer_sync(&hcd->rh_timer);
919 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 	del_timer_sync(&xhci->shared_hcd->rh_timer);
921 
922 	spin_lock_irq(&xhci->lock);
923 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 	/* step 1: stop endpoint */
926 	/* skipped assuming that port suspend has done */
927 
928 	/* step 2: clear Run/Stop bit */
929 	command = readl(&xhci->op_regs->command);
930 	command &= ~CMD_RUN;
931 	writel(command, &xhci->op_regs->command);
932 
933 	/* Some chips from Fresco Logic need an extraordinary delay */
934 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935 
936 	if (xhci_handshake(&xhci->op_regs->status,
937 		      STS_HALT, STS_HALT, delay)) {
938 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 		spin_unlock_irq(&xhci->lock);
940 		return -ETIMEDOUT;
941 	}
942 	xhci_clear_command_ring(xhci);
943 
944 	/* step 3: save registers */
945 	xhci_save_registers(xhci);
946 
947 	/* step 4: set CSS flag */
948 	command = readl(&xhci->op_regs->command);
949 	command |= CMD_CSS;
950 	writel(command, &xhci->op_regs->command);
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 10 * 1000)) {
953 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 		spin_unlock_irq(&xhci->lock);
955 		return -ETIMEDOUT;
956 	}
957 	spin_unlock_irq(&xhci->lock);
958 
959 	/*
960 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 	 * is about to be suspended.
962 	 */
963 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 			(!(xhci_all_ports_seen_u0(xhci)))) {
965 		del_timer_sync(&xhci->comp_mode_recovery_timer);
966 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 				"%s: compliance mode recovery timer deleted",
968 				__func__);
969 	}
970 
971 	/* step 5: remove core well power */
972 	/* synchronize irq when using MSI-X */
973 	xhci_msix_sync_irqs(xhci);
974 
975 	return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978 
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 	u32			command, temp = 0, status;
988 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
989 	struct usb_hcd		*secondary_hcd;
990 	int			retval = 0;
991 	bool			comp_timer_running = false;
992 
993 	if (!hcd->state)
994 		return 0;
995 
996 	/* Wait a bit if either of the roothubs need to settle from the
997 	 * transition into bus suspend.
998 	 */
999 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 			time_before(jiffies,
1001 				xhci->bus_state[1].next_statechange))
1002 		msleep(100);
1003 
1004 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006 
1007 	spin_lock_irq(&xhci->lock);
1008 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 		hibernated = true;
1010 
1011 	if (!hibernated) {
1012 		/* step 1: restore register */
1013 		xhci_restore_registers(xhci);
1014 		/* step 2: initialize command ring buffer */
1015 		xhci_set_cmd_ring_deq(xhci);
1016 		/* step 3: restore state and start state*/
1017 		/* step 3: set CRS flag */
1018 		command = readl(&xhci->op_regs->command);
1019 		command |= CMD_CRS;
1020 		writel(command, &xhci->op_regs->command);
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 10 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 		temp = readl(&xhci->op_regs->status);
1028 	}
1029 
1030 	/* If restore operation fails, re-initialize the HC during resume */
1031 	if ((temp & STS_SRE) || hibernated) {
1032 
1033 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 				!(xhci_all_ports_seen_u0(xhci))) {
1035 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 				"Compliance Mode Recovery Timer deleted!");
1038 		}
1039 
1040 		/* Let the USB core know _both_ roothubs lost power. */
1041 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043 
1044 		xhci_dbg(xhci, "Stop HCD\n");
1045 		xhci_halt(xhci);
1046 		xhci_reset(xhci);
1047 		spin_unlock_irq(&xhci->lock);
1048 		xhci_cleanup_msix(xhci);
1049 
1050 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 		temp = readl(&xhci->op_regs->status);
1052 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 		temp = readl(&xhci->ir_set->irq_pending);
1054 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 		xhci_print_ir_set(xhci, 0);
1056 
1057 		xhci_dbg(xhci, "cleaning up memory\n");
1058 		xhci_mem_cleanup(xhci);
1059 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 			    readl(&xhci->op_regs->status));
1061 
1062 		/* USB core calls the PCI reinit and start functions twice:
1063 		 * first with the primary HCD, and then with the secondary HCD.
1064 		 * If we don't do the same, the host will never be started.
1065 		 */
1066 		if (!usb_hcd_is_primary_hcd(hcd))
1067 			secondary_hcd = hcd;
1068 		else
1069 			secondary_hcd = xhci->shared_hcd;
1070 
1071 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 		retval = xhci_init(hcd->primary_hcd);
1073 		if (retval)
1074 			return retval;
1075 		comp_timer_running = true;
1076 
1077 		xhci_dbg(xhci, "Start the primary HCD\n");
1078 		retval = xhci_run(hcd->primary_hcd);
1079 		if (!retval) {
1080 			xhci_dbg(xhci, "Start the secondary HCD\n");
1081 			retval = xhci_run(secondary_hcd);
1082 		}
1083 		hcd->state = HC_STATE_SUSPENDED;
1084 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 		goto done;
1086 	}
1087 
1088 	/* step 4: set Run/Stop bit */
1089 	command = readl(&xhci->op_regs->command);
1090 	command |= CMD_RUN;
1091 	writel(command, &xhci->op_regs->command);
1092 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 		  0, 250 * 1000);
1094 
1095 	/* step 5: walk topology and initialize portsc,
1096 	 * portpmsc and portli
1097 	 */
1098 	/* this is done in bus_resume */
1099 
1100 	/* step 6: restart each of the previously
1101 	 * Running endpoints by ringing their doorbells
1102 	 */
1103 
1104 	spin_unlock_irq(&xhci->lock);
1105 
1106  done:
1107 	if (retval == 0) {
1108 		/* Resume root hubs only when have pending events. */
1109 		status = readl(&xhci->op_regs->status);
1110 		if (status & STS_EINT) {
1111 			usb_hcd_resume_root_hub(hcd);
1112 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 	 * be re-initialized Always after a system resume. Ports are subject
1119 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 	 * ports have entered previously to U0 before system's suspension.
1121 	 */
1122 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 		compliance_mode_recovery_timer_init(xhci);
1124 
1125 	/* Re-enable port polling. */
1126 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128 	usb_hcd_poll_rh_status(hcd);
1129 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1131 
1132 	return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif	/* CONFIG_PM */
1136 
1137 /*-------------------------------------------------------------------------*/
1138 
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 	unsigned int index;
1152 	if (usb_endpoint_xfer_control(desc))
1153 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 	else
1155 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 	return index;
1158 }
1159 
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 	return direction | number;
1168 }
1169 
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178 
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 	return 1 << (ep_index + 1);
1186 }
1187 
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 	return fls(added_ctxs) - 1;
1197 }
1198 
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 		const char *func) {
1205 	struct xhci_hcd	*xhci;
1206 	struct xhci_virt_device	*virt_dev;
1207 
1208 	if (!hcd || (check_ep && !ep) || !udev) {
1209 		pr_debug("xHCI %s called with invalid args\n", func);
1210 		return -EINVAL;
1211 	}
1212 	if (!udev->parent) {
1213 		pr_debug("xHCI %s called for root hub\n", func);
1214 		return 0;
1215 	}
1216 
1217 	xhci = hcd_to_xhci(hcd);
1218 	if (check_virt_dev) {
1219 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 					func);
1222 			return -EINVAL;
1223 		}
1224 
1225 		virt_dev = xhci->devs[udev->slot_id];
1226 		if (virt_dev->udev != udev) {
1227 			xhci_dbg(xhci, "xHCI %s called with udev and "
1228 					  "virt_dev does not match\n", func);
1229 			return -EINVAL;
1230 		}
1231 	}
1232 
1233 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 		return -ENODEV;
1235 
1236 	return 1;
1237 }
1238 
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 		struct usb_device *udev, struct xhci_command *command,
1241 		bool ctx_change, bool must_succeed);
1242 
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 		unsigned int ep_index, struct urb *urb)
1251 {
1252 	struct xhci_container_ctx *out_ctx;
1253 	struct xhci_input_control_ctx *ctrl_ctx;
1254 	struct xhci_ep_ctx *ep_ctx;
1255 	struct xhci_command *command;
1256 	int max_packet_size;
1257 	int hw_max_packet_size;
1258 	int ret = 0;
1259 
1260 	out_ctx = xhci->devs[slot_id]->out_ctx;
1261 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 	if (hw_max_packet_size != max_packet_size) {
1265 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266 				"Max Packet Size for ep 0 changed.");
1267 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268 				"Max packet size in usb_device = %d",
1269 				max_packet_size);
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max packet size in xHCI HW = %d",
1272 				hw_max_packet_size);
1273 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274 				"Issuing evaluate context command.");
1275 
1276 		/* Set up the input context flags for the command */
1277 		/* FIXME: This won't work if a non-default control endpoint
1278 		 * changes max packet sizes.
1279 		 */
1280 
1281 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 		if (!command)
1283 			return -ENOMEM;
1284 
1285 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 		if (!ctrl_ctx) {
1288 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 					__func__);
1290 			ret = -ENOMEM;
1291 			goto command_cleanup;
1292 		}
1293 		/* Set up the modified control endpoint 0 */
1294 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 				xhci->devs[slot_id]->out_ctx, ep_index);
1296 
1297 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300 
1301 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 		ctrl_ctx->drop_flags = 0;
1303 
1304 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308 
1309 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 				true, false);
1311 
1312 		/* Clean up the input context for later use by bandwidth
1313 		 * functions.
1314 		 */
1315 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 		kfree(command->completion);
1318 		kfree(command);
1319 	}
1320 	return ret;
1321 }
1322 
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 	struct xhci_td *buffer;
1331 	unsigned long flags;
1332 	int ret = 0;
1333 	unsigned int slot_id, ep_index;
1334 	struct urb_priv	*urb_priv;
1335 	int size, i;
1336 
1337 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 					true, true, __func__) <= 0)
1339 		return -EINVAL;
1340 
1341 	slot_id = urb->dev->slot_id;
1342 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343 
1344 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 		if (!in_interrupt())
1346 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 		ret = -ESHUTDOWN;
1348 		goto exit;
1349 	}
1350 
1351 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 		size = urb->number_of_packets;
1353 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 	    urb->transfer_buffer_length > 0 &&
1355 	    urb->transfer_flags & URB_ZERO_PACKET &&
1356 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 		size = 2;
1358 	else
1359 		size = 1;
1360 
1361 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 				  size * sizeof(struct xhci_td *), mem_flags);
1363 	if (!urb_priv)
1364 		return -ENOMEM;
1365 
1366 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 	if (!buffer) {
1368 		kfree(urb_priv);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	for (i = 0; i < size; i++) {
1373 		urb_priv->td[i] = buffer;
1374 		buffer++;
1375 	}
1376 
1377 	urb_priv->length = size;
1378 	urb_priv->td_cnt = 0;
1379 	urb->hcpriv = urb_priv;
1380 
1381 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 		/* Check to see if the max packet size for the default control
1383 		 * endpoint changed during FS device enumeration
1384 		 */
1385 		if (urb->dev->speed == USB_SPEED_FULL) {
1386 			ret = xhci_check_maxpacket(xhci, slot_id,
1387 					ep_index, urb);
1388 			if (ret < 0) {
1389 				xhci_urb_free_priv(urb_priv);
1390 				urb->hcpriv = NULL;
1391 				return ret;
1392 			}
1393 		}
1394 
1395 		/* We have a spinlock and interrupts disabled, so we must pass
1396 		 * atomic context to this function, which may allocate memory.
1397 		 */
1398 		spin_lock_irqsave(&xhci->lock, flags);
1399 		if (xhci->xhc_state & XHCI_STATE_DYING)
1400 			goto dying;
1401 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 				slot_id, ep_index);
1403 		if (ret)
1404 			goto free_priv;
1405 		spin_unlock_irqrestore(&xhci->lock, flags);
1406 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 		spin_lock_irqsave(&xhci->lock, flags);
1408 		if (xhci->xhc_state & XHCI_STATE_DYING)
1409 			goto dying;
1410 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 				EP_GETTING_STREAMS) {
1412 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 					"is transitioning to using streams.\n");
1414 			ret = -EINVAL;
1415 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 				EP_GETTING_NO_STREAMS) {
1417 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 					"is transitioning to "
1419 					"not having streams.\n");
1420 			ret = -EINVAL;
1421 		} else {
1422 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 					slot_id, ep_index);
1424 		}
1425 		if (ret)
1426 			goto free_priv;
1427 		spin_unlock_irqrestore(&xhci->lock, flags);
1428 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 		spin_lock_irqsave(&xhci->lock, flags);
1430 		if (xhci->xhc_state & XHCI_STATE_DYING)
1431 			goto dying;
1432 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 				slot_id, ep_index);
1434 		if (ret)
1435 			goto free_priv;
1436 		spin_unlock_irqrestore(&xhci->lock, flags);
1437 	} else {
1438 		spin_lock_irqsave(&xhci->lock, flags);
1439 		if (xhci->xhc_state & XHCI_STATE_DYING)
1440 			goto dying;
1441 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 				slot_id, ep_index);
1443 		if (ret)
1444 			goto free_priv;
1445 		spin_unlock_irqrestore(&xhci->lock, flags);
1446 	}
1447 exit:
1448 	return ret;
1449 dying:
1450 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 			"non-responsive xHCI host.\n",
1452 			urb->ep->desc.bEndpointAddress, urb);
1453 	ret = -ESHUTDOWN;
1454 free_priv:
1455 	xhci_urb_free_priv(urb_priv);
1456 	urb->hcpriv = NULL;
1457 	spin_unlock_irqrestore(&xhci->lock, flags);
1458 	return ret;
1459 }
1460 
1461 /* Get the right ring for the given URB.
1462  * If the endpoint supports streams, boundary check the URB's stream ID.
1463  * If the endpoint doesn't support streams, return the singular endpoint ring.
1464  */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466 		struct urb *urb)
1467 {
1468 	unsigned int slot_id;
1469 	unsigned int ep_index;
1470 	unsigned int stream_id;
1471 	struct xhci_virt_ep *ep;
1472 
1473 	slot_id = urb->dev->slot_id;
1474 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475 	stream_id = urb->stream_id;
1476 	ep = &xhci->devs[slot_id]->eps[ep_index];
1477 	/* Common case: no streams */
1478 	if (!(ep->ep_state & EP_HAS_STREAMS))
1479 		return ep->ring;
1480 
1481 	if (stream_id == 0) {
1482 		xhci_warn(xhci,
1483 				"WARN: Slot ID %u, ep index %u has streams, "
1484 				"but URB has no stream ID.\n",
1485 				slot_id, ep_index);
1486 		return NULL;
1487 	}
1488 
1489 	if (stream_id < ep->stream_info->num_streams)
1490 		return ep->stream_info->stream_rings[stream_id];
1491 
1492 	xhci_warn(xhci,
1493 			"WARN: Slot ID %u, ep index %u has "
1494 			"stream IDs 1 to %u allocated, "
1495 			"but stream ID %u is requested.\n",
1496 			slot_id, ep_index,
1497 			ep->stream_info->num_streams - 1,
1498 			stream_id);
1499 	return NULL;
1500 }
1501 
1502 /*
1503  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1504  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1505  * should pick up where it left off in the TD, unless a Set Transfer Ring
1506  * Dequeue Pointer is issued.
1507  *
1508  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509  * the ring.  Since the ring is a contiguous structure, they can't be physically
1510  * removed.  Instead, there are two options:
1511  *
1512  *  1) If the HC is in the middle of processing the URB to be canceled, we
1513  *     simply move the ring's dequeue pointer past those TRBs using the Set
1514  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1515  *     when drivers timeout on the last submitted URB and attempt to cancel.
1516  *
1517  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1519  *     HC will need to invalidate the any TRBs it has cached after the stop
1520  *     endpoint command, as noted in the xHCI 0.95 errata.
1521  *
1522  *  3) The TD may have completed by the time the Stop Endpoint Command
1523  *     completes, so software needs to handle that case too.
1524  *
1525  * This function should protect against the TD enqueueing code ringing the
1526  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527  * It also needs to account for multiple cancellations on happening at the same
1528  * time for the same endpoint.
1529  *
1530  * Note that this function can be called in any context, or so says
1531  * usb_hcd_unlink_urb()
1532  */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535 	unsigned long flags;
1536 	int ret, i;
1537 	u32 temp;
1538 	struct xhci_hcd *xhci;
1539 	struct urb_priv	*urb_priv;
1540 	struct xhci_td *td;
1541 	unsigned int ep_index;
1542 	struct xhci_ring *ep_ring;
1543 	struct xhci_virt_ep *ep;
1544 	struct xhci_command *command;
1545 
1546 	xhci = hcd_to_xhci(hcd);
1547 	spin_lock_irqsave(&xhci->lock, flags);
1548 	/* Make sure the URB hasn't completed or been unlinked already */
1549 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550 	if (ret || !urb->hcpriv)
1551 		goto done;
1552 	temp = readl(&xhci->op_regs->status);
1553 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555 				"HW died, freeing TD.");
1556 		urb_priv = urb->hcpriv;
1557 		for (i = urb_priv->td_cnt;
1558 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1559 		     i++) {
1560 			td = urb_priv->td[i];
1561 			if (!list_empty(&td->td_list))
1562 				list_del_init(&td->td_list);
1563 			if (!list_empty(&td->cancelled_td_list))
1564 				list_del_init(&td->cancelled_td_list);
1565 		}
1566 
1567 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1568 		spin_unlock_irqrestore(&xhci->lock, flags);
1569 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1570 		xhci_urb_free_priv(urb_priv);
1571 		return ret;
1572 	}
1573 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1574 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1575 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576 				"Ep 0x%x: URB %p to be canceled on "
1577 				"non-responsive xHCI host.",
1578 				urb->ep->desc.bEndpointAddress, urb);
1579 		/* Let the stop endpoint command watchdog timer (which set this
1580 		 * state) finish cleaning up the endpoint TD lists.  We must
1581 		 * have caught it in the middle of dropping a lock and giving
1582 		 * back an URB.
1583 		 */
1584 		goto done;
1585 	}
1586 
1587 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1588 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1589 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1590 	if (!ep_ring) {
1591 		ret = -EINVAL;
1592 		goto done;
1593 	}
1594 
1595 	urb_priv = urb->hcpriv;
1596 	i = urb_priv->td_cnt;
1597 	if (i < urb_priv->length)
1598 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1599 				"Cancel URB %p, dev %s, ep 0x%x, "
1600 				"starting at offset 0x%llx",
1601 				urb, urb->dev->devpath,
1602 				urb->ep->desc.bEndpointAddress,
1603 				(unsigned long long) xhci_trb_virt_to_dma(
1604 					urb_priv->td[i]->start_seg,
1605 					urb_priv->td[i]->first_trb));
1606 
1607 	for (; i < urb_priv->length; i++) {
1608 		td = urb_priv->td[i];
1609 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1610 	}
1611 
1612 	/* Queue a stop endpoint command, but only if this is
1613 	 * the first cancellation to be handled.
1614 	 */
1615 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1616 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1617 		if (!command) {
1618 			ret = -ENOMEM;
1619 			goto done;
1620 		}
1621 		ep->ep_state |= EP_HALT_PENDING;
1622 		ep->stop_cmds_pending++;
1623 		ep->stop_cmd_timer.expires = jiffies +
1624 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1625 		add_timer(&ep->stop_cmd_timer);
1626 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1627 					 ep_index, 0);
1628 		xhci_ring_cmd_db(xhci);
1629 	}
1630 done:
1631 	spin_unlock_irqrestore(&xhci->lock, flags);
1632 	return ret;
1633 }
1634 
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636  * Only one call to this function is allowed per endpoint before
1637  * check_bandwidth() or reset_bandwidth() must be called.
1638  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639  * add the endpoint to the schedule with possibly new parameters denoted by a
1640  * different endpoint descriptor in usb_host_endpoint.
1641  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642  * not allowed.
1643  *
1644  * The USB core will not allow URBs to be queued to an endpoint that is being
1645  * disabled, so there's no need for mutual exclusion to protect
1646  * the xhci->devs[slot_id] structure.
1647  */
1648 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649 		struct usb_host_endpoint *ep)
1650 {
1651 	struct xhci_hcd *xhci;
1652 	struct xhci_container_ctx *in_ctx, *out_ctx;
1653 	struct xhci_input_control_ctx *ctrl_ctx;
1654 	unsigned int ep_index;
1655 	struct xhci_ep_ctx *ep_ctx;
1656 	u32 drop_flag;
1657 	u32 new_add_flags, new_drop_flags;
1658 	int ret;
1659 
1660 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661 	if (ret <= 0)
1662 		return ret;
1663 	xhci = hcd_to_xhci(hcd);
1664 	if (xhci->xhc_state & XHCI_STATE_DYING)
1665 		return -ENODEV;
1666 
1667 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671 				__func__, drop_flag);
1672 		return 0;
1673 	}
1674 
1675 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678 	if (!ctrl_ctx) {
1679 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680 				__func__);
1681 		return 0;
1682 	}
1683 
1684 	ep_index = xhci_get_endpoint_index(&ep->desc);
1685 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686 	/* If the HC already knows the endpoint is disabled,
1687 	 * or the HCD has noted it is disabled, ignore this request
1688 	 */
1689 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1690 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1691 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1692 	    xhci_get_endpoint_flag(&ep->desc)) {
1693 		/* Do not warn when called after a usb_device_reset */
1694 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1695 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1696 				  __func__, ep);
1697 		return 0;
1698 	}
1699 
1700 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1701 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1702 
1703 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1704 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705 
1706 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1707 
1708 	if (xhci->quirks & XHCI_MTK_HOST)
1709 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1710 
1711 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1712 			(unsigned int) ep->desc.bEndpointAddress,
1713 			udev->slot_id,
1714 			(unsigned int) new_drop_flags,
1715 			(unsigned int) new_add_flags);
1716 	return 0;
1717 }
1718 
1719 /* Add an endpoint to a new possible bandwidth configuration for this device.
1720  * Only one call to this function is allowed per endpoint before
1721  * check_bandwidth() or reset_bandwidth() must be called.
1722  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723  * add the endpoint to the schedule with possibly new parameters denoted by a
1724  * different endpoint descriptor in usb_host_endpoint.
1725  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726  * not allowed.
1727  *
1728  * The USB core will not allow URBs to be queued to an endpoint until the
1729  * configuration or alt setting is installed in the device, so there's no need
1730  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1731  */
1732 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733 		struct usb_host_endpoint *ep)
1734 {
1735 	struct xhci_hcd *xhci;
1736 	struct xhci_container_ctx *in_ctx;
1737 	unsigned int ep_index;
1738 	struct xhci_input_control_ctx *ctrl_ctx;
1739 	u32 added_ctxs;
1740 	u32 new_add_flags, new_drop_flags;
1741 	struct xhci_virt_device *virt_dev;
1742 	int ret = 0;
1743 
1744 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745 	if (ret <= 0) {
1746 		/* So we won't queue a reset ep command for a root hub */
1747 		ep->hcpriv = NULL;
1748 		return ret;
1749 	}
1750 	xhci = hcd_to_xhci(hcd);
1751 	if (xhci->xhc_state & XHCI_STATE_DYING)
1752 		return -ENODEV;
1753 
1754 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1755 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1756 		/* FIXME when we have to issue an evaluate endpoint command to
1757 		 * deal with ep0 max packet size changing once we get the
1758 		 * descriptors
1759 		 */
1760 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1761 				__func__, added_ctxs);
1762 		return 0;
1763 	}
1764 
1765 	virt_dev = xhci->devs[udev->slot_id];
1766 	in_ctx = virt_dev->in_ctx;
1767 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1768 	if (!ctrl_ctx) {
1769 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1770 				__func__);
1771 		return 0;
1772 	}
1773 
1774 	ep_index = xhci_get_endpoint_index(&ep->desc);
1775 	/* If this endpoint is already in use, and the upper layers are trying
1776 	 * to add it again without dropping it, reject the addition.
1777 	 */
1778 	if (virt_dev->eps[ep_index].ring &&
1779 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1780 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1781 				"without dropping it.\n",
1782 				(unsigned int) ep->desc.bEndpointAddress);
1783 		return -EINVAL;
1784 	}
1785 
1786 	/* If the HCD has already noted the endpoint is enabled,
1787 	 * ignore this request.
1788 	 */
1789 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1790 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1791 				__func__, ep);
1792 		return 0;
1793 	}
1794 
1795 	/*
1796 	 * Configuration and alternate setting changes must be done in
1797 	 * process context, not interrupt context (or so documenation
1798 	 * for usb_set_interface() and usb_set_configuration() claim).
1799 	 */
1800 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1801 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1802 				__func__, ep->desc.bEndpointAddress);
1803 		return -ENOMEM;
1804 	}
1805 
1806 	if (xhci->quirks & XHCI_MTK_HOST) {
1807 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1808 		if (ret < 0) {
1809 			xhci_free_or_cache_endpoint_ring(xhci,
1810 				virt_dev, ep_index);
1811 			return ret;
1812 		}
1813 	}
1814 
1815 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1816 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1817 
1818 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1819 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1820 	 * this re-adds a new state for the endpoint from the new endpoint
1821 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1822 	 * drop flags alone.
1823 	 */
1824 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1825 
1826 	/* Store the usb_device pointer for later use */
1827 	ep->hcpriv = udev;
1828 
1829 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830 			(unsigned int) ep->desc.bEndpointAddress,
1831 			udev->slot_id,
1832 			(unsigned int) new_drop_flags,
1833 			(unsigned int) new_add_flags);
1834 	return 0;
1835 }
1836 
1837 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1838 {
1839 	struct xhci_input_control_ctx *ctrl_ctx;
1840 	struct xhci_ep_ctx *ep_ctx;
1841 	struct xhci_slot_ctx *slot_ctx;
1842 	int i;
1843 
1844 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1845 	if (!ctrl_ctx) {
1846 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1847 				__func__);
1848 		return;
1849 	}
1850 
1851 	/* When a device's add flag and drop flag are zero, any subsequent
1852 	 * configure endpoint command will leave that endpoint's state
1853 	 * untouched.  Make sure we don't leave any old state in the input
1854 	 * endpoint contexts.
1855 	 */
1856 	ctrl_ctx->drop_flags = 0;
1857 	ctrl_ctx->add_flags = 0;
1858 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1859 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1860 	/* Endpoint 0 is always valid */
1861 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1862 	for (i = 1; i < 31; ++i) {
1863 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1864 		ep_ctx->ep_info = 0;
1865 		ep_ctx->ep_info2 = 0;
1866 		ep_ctx->deq = 0;
1867 		ep_ctx->tx_info = 0;
1868 	}
1869 }
1870 
1871 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1872 		struct usb_device *udev, u32 *cmd_status)
1873 {
1874 	int ret;
1875 
1876 	switch (*cmd_status) {
1877 	case COMP_CMD_ABORT:
1878 	case COMP_CMD_STOP:
1879 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1880 		ret = -ETIME;
1881 		break;
1882 	case COMP_ENOMEM:
1883 		dev_warn(&udev->dev,
1884 			 "Not enough host controller resources for new device state.\n");
1885 		ret = -ENOMEM;
1886 		/* FIXME: can we allocate more resources for the HC? */
1887 		break;
1888 	case COMP_BW_ERR:
1889 	case COMP_2ND_BW_ERR:
1890 		dev_warn(&udev->dev,
1891 			 "Not enough bandwidth for new device state.\n");
1892 		ret = -ENOSPC;
1893 		/* FIXME: can we go back to the old state? */
1894 		break;
1895 	case COMP_TRB_ERR:
1896 		/* the HCD set up something wrong */
1897 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1898 				"add flag = 1, "
1899 				"and endpoint is not disabled.\n");
1900 		ret = -EINVAL;
1901 		break;
1902 	case COMP_DEV_ERR:
1903 		dev_warn(&udev->dev,
1904 			 "ERROR: Incompatible device for endpoint configure command.\n");
1905 		ret = -ENODEV;
1906 		break;
1907 	case COMP_SUCCESS:
1908 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1909 				"Successful Endpoint Configure command");
1910 		ret = 0;
1911 		break;
1912 	default:
1913 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1914 				*cmd_status);
1915 		ret = -EINVAL;
1916 		break;
1917 	}
1918 	return ret;
1919 }
1920 
1921 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1922 		struct usb_device *udev, u32 *cmd_status)
1923 {
1924 	int ret;
1925 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1926 
1927 	switch (*cmd_status) {
1928 	case COMP_CMD_ABORT:
1929 	case COMP_CMD_STOP:
1930 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1931 		ret = -ETIME;
1932 		break;
1933 	case COMP_EINVAL:
1934 		dev_warn(&udev->dev,
1935 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1936 		ret = -EINVAL;
1937 		break;
1938 	case COMP_EBADSLT:
1939 		dev_warn(&udev->dev,
1940 			"WARN: slot not enabled for evaluate context command.\n");
1941 		ret = -EINVAL;
1942 		break;
1943 	case COMP_CTX_STATE:
1944 		dev_warn(&udev->dev,
1945 			"WARN: invalid context state for evaluate context command.\n");
1946 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1947 		ret = -EINVAL;
1948 		break;
1949 	case COMP_DEV_ERR:
1950 		dev_warn(&udev->dev,
1951 			"ERROR: Incompatible device for evaluate context command.\n");
1952 		ret = -ENODEV;
1953 		break;
1954 	case COMP_MEL_ERR:
1955 		/* Max Exit Latency too large error */
1956 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1957 		ret = -EINVAL;
1958 		break;
1959 	case COMP_SUCCESS:
1960 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1961 				"Successful evaluate context command");
1962 		ret = 0;
1963 		break;
1964 	default:
1965 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1966 			*cmd_status);
1967 		ret = -EINVAL;
1968 		break;
1969 	}
1970 	return ret;
1971 }
1972 
1973 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1974 		struct xhci_input_control_ctx *ctrl_ctx)
1975 {
1976 	u32 valid_add_flags;
1977 	u32 valid_drop_flags;
1978 
1979 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1980 	 * (bit 1).  The default control endpoint is added during the Address
1981 	 * Device command and is never removed until the slot is disabled.
1982 	 */
1983 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1984 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1985 
1986 	/* Use hweight32 to count the number of ones in the add flags, or
1987 	 * number of endpoints added.  Don't count endpoints that are changed
1988 	 * (both added and dropped).
1989 	 */
1990 	return hweight32(valid_add_flags) -
1991 		hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993 
1994 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1995 		struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997 	u32 valid_add_flags;
1998 	u32 valid_drop_flags;
1999 
2000 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2001 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2002 
2003 	return hweight32(valid_drop_flags) -
2004 		hweight32(valid_add_flags & valid_drop_flags);
2005 }
2006 
2007 /*
2008  * We need to reserve the new number of endpoints before the configure endpoint
2009  * command completes.  We can't subtract the dropped endpoints from the number
2010  * of active endpoints until the command completes because we can oversubscribe
2011  * the host in this case:
2012  *
2013  *  - the first configure endpoint command drops more endpoints than it adds
2014  *  - a second configure endpoint command that adds more endpoints is queued
2015  *  - the first configure endpoint command fails, so the config is unchanged
2016  *  - the second command may succeed, even though there isn't enough resources
2017  *
2018  * Must be called with xhci->lock held.
2019  */
2020 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2021 		struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023 	u32 added_eps;
2024 
2025 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2026 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2027 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2028 				"Not enough ep ctxs: "
2029 				"%u active, need to add %u, limit is %u.",
2030 				xhci->num_active_eps, added_eps,
2031 				xhci->limit_active_eps);
2032 		return -ENOMEM;
2033 	}
2034 	xhci->num_active_eps += added_eps;
2035 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 			"Adding %u ep ctxs, %u now active.", added_eps,
2037 			xhci->num_active_eps);
2038 	return 0;
2039 }
2040 
2041 /*
2042  * The configure endpoint was failed by the xHC for some other reason, so we
2043  * need to revert the resources that failed configuration would have used.
2044  *
2045  * Must be called with xhci->lock held.
2046  */
2047 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2048 		struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050 	u32 num_failed_eps;
2051 
2052 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2053 	xhci->num_active_eps -= num_failed_eps;
2054 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2055 			"Removing %u failed ep ctxs, %u now active.",
2056 			num_failed_eps,
2057 			xhci->num_active_eps);
2058 }
2059 
2060 /*
2061  * Now that the command has completed, clean up the active endpoint count by
2062  * subtracting out the endpoints that were dropped (but not changed).
2063  *
2064  * Must be called with xhci->lock held.
2065  */
2066 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2067 		struct xhci_input_control_ctx *ctrl_ctx)
2068 {
2069 	u32 num_dropped_eps;
2070 
2071 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2072 	xhci->num_active_eps -= num_dropped_eps;
2073 	if (num_dropped_eps)
2074 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075 				"Removing %u dropped ep ctxs, %u now active.",
2076 				num_dropped_eps,
2077 				xhci->num_active_eps);
2078 }
2079 
2080 static unsigned int xhci_get_block_size(struct usb_device *udev)
2081 {
2082 	switch (udev->speed) {
2083 	case USB_SPEED_LOW:
2084 	case USB_SPEED_FULL:
2085 		return FS_BLOCK;
2086 	case USB_SPEED_HIGH:
2087 		return HS_BLOCK;
2088 	case USB_SPEED_SUPER:
2089 	case USB_SPEED_SUPER_PLUS:
2090 		return SS_BLOCK;
2091 	case USB_SPEED_UNKNOWN:
2092 	case USB_SPEED_WIRELESS:
2093 	default:
2094 		/* Should never happen */
2095 		return 1;
2096 	}
2097 }
2098 
2099 static unsigned int
2100 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2101 {
2102 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2103 		return LS_OVERHEAD;
2104 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2105 		return FS_OVERHEAD;
2106 	return HS_OVERHEAD;
2107 }
2108 
2109 /* If we are changing a LS/FS device under a HS hub,
2110  * make sure (if we are activating a new TT) that the HS bus has enough
2111  * bandwidth for this new TT.
2112  */
2113 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2114 		struct xhci_virt_device *virt_dev,
2115 		int old_active_eps)
2116 {
2117 	struct xhci_interval_bw_table *bw_table;
2118 	struct xhci_tt_bw_info *tt_info;
2119 
2120 	/* Find the bandwidth table for the root port this TT is attached to. */
2121 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2122 	tt_info = virt_dev->tt_info;
2123 	/* If this TT already had active endpoints, the bandwidth for this TT
2124 	 * has already been added.  Removing all periodic endpoints (and thus
2125 	 * making the TT enactive) will only decrease the bandwidth used.
2126 	 */
2127 	if (old_active_eps)
2128 		return 0;
2129 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2130 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2131 			return -ENOMEM;
2132 		return 0;
2133 	}
2134 	/* Not sure why we would have no new active endpoints...
2135 	 *
2136 	 * Maybe because of an Evaluate Context change for a hub update or a
2137 	 * control endpoint 0 max packet size change?
2138 	 * FIXME: skip the bandwidth calculation in that case.
2139 	 */
2140 	return 0;
2141 }
2142 
2143 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2144 		struct xhci_virt_device *virt_dev)
2145 {
2146 	unsigned int bw_reserved;
2147 
2148 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2149 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2150 		return -ENOMEM;
2151 
2152 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2153 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2154 		return -ENOMEM;
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * This algorithm is a very conservative estimate of the worst-case scheduling
2161  * scenario for any one interval.  The hardware dynamically schedules the
2162  * packets, so we can't tell which microframe could be the limiting factor in
2163  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2164  *
2165  * Obviously, we can't solve an NP complete problem to find the minimum worst
2166  * case scenario.  Instead, we come up with an estimate that is no less than
2167  * the worst case bandwidth used for any one microframe, but may be an
2168  * over-estimate.
2169  *
2170  * We walk the requirements for each endpoint by interval, starting with the
2171  * smallest interval, and place packets in the schedule where there is only one
2172  * possible way to schedule packets for that interval.  In order to simplify
2173  * this algorithm, we record the largest max packet size for each interval, and
2174  * assume all packets will be that size.
2175  *
2176  * For interval 0, we obviously must schedule all packets for each interval.
2177  * The bandwidth for interval 0 is just the amount of data to be transmitted
2178  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2179  * the number of packets).
2180  *
2181  * For interval 1, we have two possible microframes to schedule those packets
2182  * in.  For this algorithm, if we can schedule the same number of packets for
2183  * each possible scheduling opportunity (each microframe), we will do so.  The
2184  * remaining number of packets will be saved to be transmitted in the gaps in
2185  * the next interval's scheduling sequence.
2186  *
2187  * As we move those remaining packets to be scheduled with interval 2 packets,
2188  * we have to double the number of remaining packets to transmit.  This is
2189  * because the intervals are actually powers of 2, and we would be transmitting
2190  * the previous interval's packets twice in this interval.  We also have to be
2191  * sure that when we look at the largest max packet size for this interval, we
2192  * also look at the largest max packet size for the remaining packets and take
2193  * the greater of the two.
2194  *
2195  * The algorithm continues to evenly distribute packets in each scheduling
2196  * opportunity, and push the remaining packets out, until we get to the last
2197  * interval.  Then those packets and their associated overhead are just added
2198  * to the bandwidth used.
2199  */
2200 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2201 		struct xhci_virt_device *virt_dev,
2202 		int old_active_eps)
2203 {
2204 	unsigned int bw_reserved;
2205 	unsigned int max_bandwidth;
2206 	unsigned int bw_used;
2207 	unsigned int block_size;
2208 	struct xhci_interval_bw_table *bw_table;
2209 	unsigned int packet_size = 0;
2210 	unsigned int overhead = 0;
2211 	unsigned int packets_transmitted = 0;
2212 	unsigned int packets_remaining = 0;
2213 	unsigned int i;
2214 
2215 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2216 		return xhci_check_ss_bw(xhci, virt_dev);
2217 
2218 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2219 		max_bandwidth = HS_BW_LIMIT;
2220 		/* Convert percent of bus BW reserved to blocks reserved */
2221 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2222 	} else {
2223 		max_bandwidth = FS_BW_LIMIT;
2224 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2225 	}
2226 
2227 	bw_table = virt_dev->bw_table;
2228 	/* We need to translate the max packet size and max ESIT payloads into
2229 	 * the units the hardware uses.
2230 	 */
2231 	block_size = xhci_get_block_size(virt_dev->udev);
2232 
2233 	/* If we are manipulating a LS/FS device under a HS hub, double check
2234 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2235 	 */
2236 	if (virt_dev->tt_info) {
2237 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238 				"Recalculating BW for rootport %u",
2239 				virt_dev->real_port);
2240 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2241 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2242 					"newly activated TT.\n");
2243 			return -ENOMEM;
2244 		}
2245 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 				"Recalculating BW for TT slot %u port %u",
2247 				virt_dev->tt_info->slot_id,
2248 				virt_dev->tt_info->ttport);
2249 	} else {
2250 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251 				"Recalculating BW for rootport %u",
2252 				virt_dev->real_port);
2253 	}
2254 
2255 	/* Add in how much bandwidth will be used for interval zero, or the
2256 	 * rounded max ESIT payload + number of packets * largest overhead.
2257 	 */
2258 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2259 		bw_table->interval_bw[0].num_packets *
2260 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2261 
2262 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2263 		unsigned int bw_added;
2264 		unsigned int largest_mps;
2265 		unsigned int interval_overhead;
2266 
2267 		/*
2268 		 * How many packets could we transmit in this interval?
2269 		 * If packets didn't fit in the previous interval, we will need
2270 		 * to transmit that many packets twice within this interval.
2271 		 */
2272 		packets_remaining = 2 * packets_remaining +
2273 			bw_table->interval_bw[i].num_packets;
2274 
2275 		/* Find the largest max packet size of this or the previous
2276 		 * interval.
2277 		 */
2278 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2279 			largest_mps = 0;
2280 		else {
2281 			struct xhci_virt_ep *virt_ep;
2282 			struct list_head *ep_entry;
2283 
2284 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2285 			virt_ep = list_entry(ep_entry,
2286 					struct xhci_virt_ep, bw_endpoint_list);
2287 			/* Convert to blocks, rounding up */
2288 			largest_mps = DIV_ROUND_UP(
2289 					virt_ep->bw_info.max_packet_size,
2290 					block_size);
2291 		}
2292 		if (largest_mps > packet_size)
2293 			packet_size = largest_mps;
2294 
2295 		/* Use the larger overhead of this or the previous interval. */
2296 		interval_overhead = xhci_get_largest_overhead(
2297 				&bw_table->interval_bw[i]);
2298 		if (interval_overhead > overhead)
2299 			overhead = interval_overhead;
2300 
2301 		/* How many packets can we evenly distribute across
2302 		 * (1 << (i + 1)) possible scheduling opportunities?
2303 		 */
2304 		packets_transmitted = packets_remaining >> (i + 1);
2305 
2306 		/* Add in the bandwidth used for those scheduled packets */
2307 		bw_added = packets_transmitted * (overhead + packet_size);
2308 
2309 		/* How many packets do we have remaining to transmit? */
2310 		packets_remaining = packets_remaining % (1 << (i + 1));
2311 
2312 		/* What largest max packet size should those packets have? */
2313 		/* If we've transmitted all packets, don't carry over the
2314 		 * largest packet size.
2315 		 */
2316 		if (packets_remaining == 0) {
2317 			packet_size = 0;
2318 			overhead = 0;
2319 		} else if (packets_transmitted > 0) {
2320 			/* Otherwise if we do have remaining packets, and we've
2321 			 * scheduled some packets in this interval, take the
2322 			 * largest max packet size from endpoints with this
2323 			 * interval.
2324 			 */
2325 			packet_size = largest_mps;
2326 			overhead = interval_overhead;
2327 		}
2328 		/* Otherwise carry over packet_size and overhead from the last
2329 		 * time we had a remainder.
2330 		 */
2331 		bw_used += bw_added;
2332 		if (bw_used > max_bandwidth) {
2333 			xhci_warn(xhci, "Not enough bandwidth. "
2334 					"Proposed: %u, Max: %u\n",
2335 				bw_used, max_bandwidth);
2336 			return -ENOMEM;
2337 		}
2338 	}
2339 	/*
2340 	 * Ok, we know we have some packets left over after even-handedly
2341 	 * scheduling interval 15.  We don't know which microframes they will
2342 	 * fit into, so we over-schedule and say they will be scheduled every
2343 	 * microframe.
2344 	 */
2345 	if (packets_remaining > 0)
2346 		bw_used += overhead + packet_size;
2347 
2348 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2349 		unsigned int port_index = virt_dev->real_port - 1;
2350 
2351 		/* OK, we're manipulating a HS device attached to a
2352 		 * root port bandwidth domain.  Include the number of active TTs
2353 		 * in the bandwidth used.
2354 		 */
2355 		bw_used += TT_HS_OVERHEAD *
2356 			xhci->rh_bw[port_index].num_active_tts;
2357 	}
2358 
2359 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2360 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2361 		"Available: %u " "percent",
2362 		bw_used, max_bandwidth, bw_reserved,
2363 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2364 		max_bandwidth);
2365 
2366 	bw_used += bw_reserved;
2367 	if (bw_used > max_bandwidth) {
2368 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2369 				bw_used, max_bandwidth);
2370 		return -ENOMEM;
2371 	}
2372 
2373 	bw_table->bw_used = bw_used;
2374 	return 0;
2375 }
2376 
2377 static bool xhci_is_async_ep(unsigned int ep_type)
2378 {
2379 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2380 					ep_type != ISOC_IN_EP &&
2381 					ep_type != INT_IN_EP);
2382 }
2383 
2384 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2385 {
2386 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2387 }
2388 
2389 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2390 {
2391 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2392 
2393 	if (ep_bw->ep_interval == 0)
2394 		return SS_OVERHEAD_BURST +
2395 			(ep_bw->mult * ep_bw->num_packets *
2396 					(SS_OVERHEAD + mps));
2397 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2398 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2399 				1 << ep_bw->ep_interval);
2400 
2401 }
2402 
2403 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2404 		struct xhci_bw_info *ep_bw,
2405 		struct xhci_interval_bw_table *bw_table,
2406 		struct usb_device *udev,
2407 		struct xhci_virt_ep *virt_ep,
2408 		struct xhci_tt_bw_info *tt_info)
2409 {
2410 	struct xhci_interval_bw	*interval_bw;
2411 	int normalized_interval;
2412 
2413 	if (xhci_is_async_ep(ep_bw->type))
2414 		return;
2415 
2416 	if (udev->speed >= USB_SPEED_SUPER) {
2417 		if (xhci_is_sync_in_ep(ep_bw->type))
2418 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2419 				xhci_get_ss_bw_consumed(ep_bw);
2420 		else
2421 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2422 				xhci_get_ss_bw_consumed(ep_bw);
2423 		return;
2424 	}
2425 
2426 	/* SuperSpeed endpoints never get added to intervals in the table, so
2427 	 * this check is only valid for HS/FS/LS devices.
2428 	 */
2429 	if (list_empty(&virt_ep->bw_endpoint_list))
2430 		return;
2431 	/* For LS/FS devices, we need to translate the interval expressed in
2432 	 * microframes to frames.
2433 	 */
2434 	if (udev->speed == USB_SPEED_HIGH)
2435 		normalized_interval = ep_bw->ep_interval;
2436 	else
2437 		normalized_interval = ep_bw->ep_interval - 3;
2438 
2439 	if (normalized_interval == 0)
2440 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2441 	interval_bw = &bw_table->interval_bw[normalized_interval];
2442 	interval_bw->num_packets -= ep_bw->num_packets;
2443 	switch (udev->speed) {
2444 	case USB_SPEED_LOW:
2445 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2446 		break;
2447 	case USB_SPEED_FULL:
2448 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2449 		break;
2450 	case USB_SPEED_HIGH:
2451 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2452 		break;
2453 	case USB_SPEED_SUPER:
2454 	case USB_SPEED_SUPER_PLUS:
2455 	case USB_SPEED_UNKNOWN:
2456 	case USB_SPEED_WIRELESS:
2457 		/* Should never happen because only LS/FS/HS endpoints will get
2458 		 * added to the endpoint list.
2459 		 */
2460 		return;
2461 	}
2462 	if (tt_info)
2463 		tt_info->active_eps -= 1;
2464 	list_del_init(&virt_ep->bw_endpoint_list);
2465 }
2466 
2467 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2468 		struct xhci_bw_info *ep_bw,
2469 		struct xhci_interval_bw_table *bw_table,
2470 		struct usb_device *udev,
2471 		struct xhci_virt_ep *virt_ep,
2472 		struct xhci_tt_bw_info *tt_info)
2473 {
2474 	struct xhci_interval_bw	*interval_bw;
2475 	struct xhci_virt_ep *smaller_ep;
2476 	int normalized_interval;
2477 
2478 	if (xhci_is_async_ep(ep_bw->type))
2479 		return;
2480 
2481 	if (udev->speed == USB_SPEED_SUPER) {
2482 		if (xhci_is_sync_in_ep(ep_bw->type))
2483 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2484 				xhci_get_ss_bw_consumed(ep_bw);
2485 		else
2486 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2487 				xhci_get_ss_bw_consumed(ep_bw);
2488 		return;
2489 	}
2490 
2491 	/* For LS/FS devices, we need to translate the interval expressed in
2492 	 * microframes to frames.
2493 	 */
2494 	if (udev->speed == USB_SPEED_HIGH)
2495 		normalized_interval = ep_bw->ep_interval;
2496 	else
2497 		normalized_interval = ep_bw->ep_interval - 3;
2498 
2499 	if (normalized_interval == 0)
2500 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2501 	interval_bw = &bw_table->interval_bw[normalized_interval];
2502 	interval_bw->num_packets += ep_bw->num_packets;
2503 	switch (udev->speed) {
2504 	case USB_SPEED_LOW:
2505 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2506 		break;
2507 	case USB_SPEED_FULL:
2508 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2509 		break;
2510 	case USB_SPEED_HIGH:
2511 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2512 		break;
2513 	case USB_SPEED_SUPER:
2514 	case USB_SPEED_SUPER_PLUS:
2515 	case USB_SPEED_UNKNOWN:
2516 	case USB_SPEED_WIRELESS:
2517 		/* Should never happen because only LS/FS/HS endpoints will get
2518 		 * added to the endpoint list.
2519 		 */
2520 		return;
2521 	}
2522 
2523 	if (tt_info)
2524 		tt_info->active_eps += 1;
2525 	/* Insert the endpoint into the list, largest max packet size first. */
2526 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2527 			bw_endpoint_list) {
2528 		if (ep_bw->max_packet_size >=
2529 				smaller_ep->bw_info.max_packet_size) {
2530 			/* Add the new ep before the smaller endpoint */
2531 			list_add_tail(&virt_ep->bw_endpoint_list,
2532 					&smaller_ep->bw_endpoint_list);
2533 			return;
2534 		}
2535 	}
2536 	/* Add the new endpoint at the end of the list. */
2537 	list_add_tail(&virt_ep->bw_endpoint_list,
2538 			&interval_bw->endpoints);
2539 }
2540 
2541 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2542 		struct xhci_virt_device *virt_dev,
2543 		int old_active_eps)
2544 {
2545 	struct xhci_root_port_bw_info *rh_bw_info;
2546 	if (!virt_dev->tt_info)
2547 		return;
2548 
2549 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2550 	if (old_active_eps == 0 &&
2551 				virt_dev->tt_info->active_eps != 0) {
2552 		rh_bw_info->num_active_tts += 1;
2553 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2554 	} else if (old_active_eps != 0 &&
2555 				virt_dev->tt_info->active_eps == 0) {
2556 		rh_bw_info->num_active_tts -= 1;
2557 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2558 	}
2559 }
2560 
2561 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2562 		struct xhci_virt_device *virt_dev,
2563 		struct xhci_container_ctx *in_ctx)
2564 {
2565 	struct xhci_bw_info ep_bw_info[31];
2566 	int i;
2567 	struct xhci_input_control_ctx *ctrl_ctx;
2568 	int old_active_eps = 0;
2569 
2570 	if (virt_dev->tt_info)
2571 		old_active_eps = virt_dev->tt_info->active_eps;
2572 
2573 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2574 	if (!ctrl_ctx) {
2575 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2576 				__func__);
2577 		return -ENOMEM;
2578 	}
2579 
2580 	for (i = 0; i < 31; i++) {
2581 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2582 			continue;
2583 
2584 		/* Make a copy of the BW info in case we need to revert this */
2585 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2586 				sizeof(ep_bw_info[i]));
2587 		/* Drop the endpoint from the interval table if the endpoint is
2588 		 * being dropped or changed.
2589 		 */
2590 		if (EP_IS_DROPPED(ctrl_ctx, i))
2591 			xhci_drop_ep_from_interval_table(xhci,
2592 					&virt_dev->eps[i].bw_info,
2593 					virt_dev->bw_table,
2594 					virt_dev->udev,
2595 					&virt_dev->eps[i],
2596 					virt_dev->tt_info);
2597 	}
2598 	/* Overwrite the information stored in the endpoints' bw_info */
2599 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2600 	for (i = 0; i < 31; i++) {
2601 		/* Add any changed or added endpoints to the interval table */
2602 		if (EP_IS_ADDED(ctrl_ctx, i))
2603 			xhci_add_ep_to_interval_table(xhci,
2604 					&virt_dev->eps[i].bw_info,
2605 					virt_dev->bw_table,
2606 					virt_dev->udev,
2607 					&virt_dev->eps[i],
2608 					virt_dev->tt_info);
2609 	}
2610 
2611 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2612 		/* Ok, this fits in the bandwidth we have.
2613 		 * Update the number of active TTs.
2614 		 */
2615 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2616 		return 0;
2617 	}
2618 
2619 	/* We don't have enough bandwidth for this, revert the stored info. */
2620 	for (i = 0; i < 31; i++) {
2621 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2622 			continue;
2623 
2624 		/* Drop the new copies of any added or changed endpoints from
2625 		 * the interval table.
2626 		 */
2627 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2628 			xhci_drop_ep_from_interval_table(xhci,
2629 					&virt_dev->eps[i].bw_info,
2630 					virt_dev->bw_table,
2631 					virt_dev->udev,
2632 					&virt_dev->eps[i],
2633 					virt_dev->tt_info);
2634 		}
2635 		/* Revert the endpoint back to its old information */
2636 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2637 				sizeof(ep_bw_info[i]));
2638 		/* Add any changed or dropped endpoints back into the table */
2639 		if (EP_IS_DROPPED(ctrl_ctx, i))
2640 			xhci_add_ep_to_interval_table(xhci,
2641 					&virt_dev->eps[i].bw_info,
2642 					virt_dev->bw_table,
2643 					virt_dev->udev,
2644 					&virt_dev->eps[i],
2645 					virt_dev->tt_info);
2646 	}
2647 	return -ENOMEM;
2648 }
2649 
2650 
2651 /* Issue a configure endpoint command or evaluate context command
2652  * and wait for it to finish.
2653  */
2654 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2655 		struct usb_device *udev,
2656 		struct xhci_command *command,
2657 		bool ctx_change, bool must_succeed)
2658 {
2659 	int ret;
2660 	unsigned long flags;
2661 	struct xhci_input_control_ctx *ctrl_ctx;
2662 	struct xhci_virt_device *virt_dev;
2663 
2664 	if (!command)
2665 		return -EINVAL;
2666 
2667 	spin_lock_irqsave(&xhci->lock, flags);
2668 	virt_dev = xhci->devs[udev->slot_id];
2669 
2670 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2671 	if (!ctrl_ctx) {
2672 		spin_unlock_irqrestore(&xhci->lock, flags);
2673 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2674 				__func__);
2675 		return -ENOMEM;
2676 	}
2677 
2678 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2679 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2680 		spin_unlock_irqrestore(&xhci->lock, flags);
2681 		xhci_warn(xhci, "Not enough host resources, "
2682 				"active endpoint contexts = %u\n",
2683 				xhci->num_active_eps);
2684 		return -ENOMEM;
2685 	}
2686 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2687 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2688 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2689 			xhci_free_host_resources(xhci, ctrl_ctx);
2690 		spin_unlock_irqrestore(&xhci->lock, flags);
2691 		xhci_warn(xhci, "Not enough bandwidth\n");
2692 		return -ENOMEM;
2693 	}
2694 
2695 	if (!ctx_change)
2696 		ret = xhci_queue_configure_endpoint(xhci, command,
2697 				command->in_ctx->dma,
2698 				udev->slot_id, must_succeed);
2699 	else
2700 		ret = xhci_queue_evaluate_context(xhci, command,
2701 				command->in_ctx->dma,
2702 				udev->slot_id, must_succeed);
2703 	if (ret < 0) {
2704 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2705 			xhci_free_host_resources(xhci, ctrl_ctx);
2706 		spin_unlock_irqrestore(&xhci->lock, flags);
2707 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2708 				"FIXME allocate a new ring segment");
2709 		return -ENOMEM;
2710 	}
2711 	xhci_ring_cmd_db(xhci);
2712 	spin_unlock_irqrestore(&xhci->lock, flags);
2713 
2714 	/* Wait for the configure endpoint command to complete */
2715 	wait_for_completion(command->completion);
2716 
2717 	if (!ctx_change)
2718 		ret = xhci_configure_endpoint_result(xhci, udev,
2719 						     &command->status);
2720 	else
2721 		ret = xhci_evaluate_context_result(xhci, udev,
2722 						   &command->status);
2723 
2724 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2725 		spin_lock_irqsave(&xhci->lock, flags);
2726 		/* If the command failed, remove the reserved resources.
2727 		 * Otherwise, clean up the estimate to include dropped eps.
2728 		 */
2729 		if (ret)
2730 			xhci_free_host_resources(xhci, ctrl_ctx);
2731 		else
2732 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2733 		spin_unlock_irqrestore(&xhci->lock, flags);
2734 	}
2735 	return ret;
2736 }
2737 
2738 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2739 	struct xhci_virt_device *vdev, int i)
2740 {
2741 	struct xhci_virt_ep *ep = &vdev->eps[i];
2742 
2743 	if (ep->ep_state & EP_HAS_STREAMS) {
2744 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2745 				xhci_get_endpoint_address(i));
2746 		xhci_free_stream_info(xhci, ep->stream_info);
2747 		ep->stream_info = NULL;
2748 		ep->ep_state &= ~EP_HAS_STREAMS;
2749 	}
2750 }
2751 
2752 /* Called after one or more calls to xhci_add_endpoint() or
2753  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2754  * to call xhci_reset_bandwidth().
2755  *
2756  * Since we are in the middle of changing either configuration or
2757  * installing a new alt setting, the USB core won't allow URBs to be
2758  * enqueued for any endpoint on the old config or interface.  Nothing
2759  * else should be touching the xhci->devs[slot_id] structure, so we
2760  * don't need to take the xhci->lock for manipulating that.
2761  */
2762 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764 	int i;
2765 	int ret = 0;
2766 	struct xhci_hcd *xhci;
2767 	struct xhci_virt_device	*virt_dev;
2768 	struct xhci_input_control_ctx *ctrl_ctx;
2769 	struct xhci_slot_ctx *slot_ctx;
2770 	struct xhci_command *command;
2771 
2772 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773 	if (ret <= 0)
2774 		return ret;
2775 	xhci = hcd_to_xhci(hcd);
2776 	if (xhci->xhc_state & XHCI_STATE_DYING)
2777 		return -ENODEV;
2778 
2779 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2780 	virt_dev = xhci->devs[udev->slot_id];
2781 
2782 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2783 	if (!command)
2784 		return -ENOMEM;
2785 
2786 	command->in_ctx = virt_dev->in_ctx;
2787 
2788 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2789 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2790 	if (!ctrl_ctx) {
2791 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2792 				__func__);
2793 		ret = -ENOMEM;
2794 		goto command_cleanup;
2795 	}
2796 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2797 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2798 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2799 
2800 	/* Don't issue the command if there's no endpoints to update. */
2801 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2802 	    ctrl_ctx->drop_flags == 0) {
2803 		ret = 0;
2804 		goto command_cleanup;
2805 	}
2806 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2807 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2808 	for (i = 31; i >= 1; i--) {
2809 		__le32 le32 = cpu_to_le32(BIT(i));
2810 
2811 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2812 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2813 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2814 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2815 			break;
2816 		}
2817 	}
2818 	xhci_dbg(xhci, "New Input Control Context:\n");
2819 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2820 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2821 
2822 	ret = xhci_configure_endpoint(xhci, udev, command,
2823 			false, false);
2824 	if (ret)
2825 		/* Callee should call reset_bandwidth() */
2826 		goto command_cleanup;
2827 
2828 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2829 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2830 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2831 
2832 	/* Free any rings that were dropped, but not changed. */
2833 	for (i = 1; i < 31; ++i) {
2834 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2835 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2836 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2837 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2838 		}
2839 	}
2840 	xhci_zero_in_ctx(xhci, virt_dev);
2841 	/*
2842 	 * Install any rings for completely new endpoints or changed endpoints,
2843 	 * and free or cache any old rings from changed endpoints.
2844 	 */
2845 	for (i = 1; i < 31; ++i) {
2846 		if (!virt_dev->eps[i].new_ring)
2847 			continue;
2848 		/* Only cache or free the old ring if it exists.
2849 		 * It may not if this is the first add of an endpoint.
2850 		 */
2851 		if (virt_dev->eps[i].ring) {
2852 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2853 		}
2854 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2855 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2856 		virt_dev->eps[i].new_ring = NULL;
2857 	}
2858 command_cleanup:
2859 	kfree(command->completion);
2860 	kfree(command);
2861 
2862 	return ret;
2863 }
2864 
2865 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2866 {
2867 	struct xhci_hcd *xhci;
2868 	struct xhci_virt_device	*virt_dev;
2869 	int i, ret;
2870 
2871 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2872 	if (ret <= 0)
2873 		return;
2874 	xhci = hcd_to_xhci(hcd);
2875 
2876 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2877 	virt_dev = xhci->devs[udev->slot_id];
2878 	/* Free any rings allocated for added endpoints */
2879 	for (i = 0; i < 31; ++i) {
2880 		if (virt_dev->eps[i].new_ring) {
2881 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2882 			virt_dev->eps[i].new_ring = NULL;
2883 		}
2884 	}
2885 	xhci_zero_in_ctx(xhci, virt_dev);
2886 }
2887 
2888 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2889 		struct xhci_container_ctx *in_ctx,
2890 		struct xhci_container_ctx *out_ctx,
2891 		struct xhci_input_control_ctx *ctrl_ctx,
2892 		u32 add_flags, u32 drop_flags)
2893 {
2894 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2895 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2896 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2897 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898 
2899 	xhci_dbg(xhci, "Input Context:\n");
2900 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2901 }
2902 
2903 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2904 		unsigned int slot_id, unsigned int ep_index,
2905 		struct xhci_dequeue_state *deq_state)
2906 {
2907 	struct xhci_input_control_ctx *ctrl_ctx;
2908 	struct xhci_container_ctx *in_ctx;
2909 	struct xhci_ep_ctx *ep_ctx;
2910 	u32 added_ctxs;
2911 	dma_addr_t addr;
2912 
2913 	in_ctx = xhci->devs[slot_id]->in_ctx;
2914 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2915 	if (!ctrl_ctx) {
2916 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2917 				__func__);
2918 		return;
2919 	}
2920 
2921 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2922 			xhci->devs[slot_id]->out_ctx, ep_index);
2923 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2924 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2925 			deq_state->new_deq_ptr);
2926 	if (addr == 0) {
2927 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2928 				"reset ep command\n");
2929 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2930 				deq_state->new_deq_seg,
2931 				deq_state->new_deq_ptr);
2932 		return;
2933 	}
2934 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2935 
2936 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2937 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2938 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2939 			added_ctxs, added_ctxs);
2940 }
2941 
2942 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2943 			unsigned int ep_index, struct xhci_td *td)
2944 {
2945 	struct xhci_dequeue_state deq_state;
2946 	struct xhci_virt_ep *ep;
2947 	struct usb_device *udev = td->urb->dev;
2948 
2949 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2950 			"Cleaning up stalled endpoint ring");
2951 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2952 	/* We need to move the HW's dequeue pointer past this TD,
2953 	 * or it will attempt to resend it on the next doorbell ring.
2954 	 */
2955 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2956 			ep_index, ep->stopped_stream, td, &deq_state);
2957 
2958 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2959 		return;
2960 
2961 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2962 	 * issue a configure endpoint command later.
2963 	 */
2964 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2965 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2966 				"Queueing new dequeue state");
2967 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2968 				ep_index, ep->stopped_stream, &deq_state);
2969 	} else {
2970 		/* Better hope no one uses the input context between now and the
2971 		 * reset endpoint completion!
2972 		 * XXX: No idea how this hardware will react when stream rings
2973 		 * are enabled.
2974 		 */
2975 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2976 				"Setting up input context for "
2977 				"configure endpoint command");
2978 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2979 				ep_index, &deq_state);
2980 	}
2981 }
2982 
2983 /* Called when clearing halted device. The core should have sent the control
2984  * message to clear the device halt condition. The host side of the halt should
2985  * already be cleared with a reset endpoint command issued when the STALL tx
2986  * event was received.
2987  *
2988  * Context: in_interrupt
2989  */
2990 
2991 void xhci_endpoint_reset(struct usb_hcd *hcd,
2992 		struct usb_host_endpoint *ep)
2993 {
2994 	struct xhci_hcd *xhci;
2995 
2996 	xhci = hcd_to_xhci(hcd);
2997 
2998 	/*
2999 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3000 	 * The Reset Endpoint Command may only be issued to endpoints in the
3001 	 * Halted state. If software wishes reset the Data Toggle or Sequence
3002 	 * Number of an endpoint that isn't in the Halted state, then software
3003 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3004 	 * for the target endpoint. that is in the Stopped state.
3005 	 */
3006 
3007 	/* For now just print debug to follow the situation */
3008 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3009 		 ep->desc.bEndpointAddress);
3010 }
3011 
3012 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3013 		struct usb_device *udev, struct usb_host_endpoint *ep,
3014 		unsigned int slot_id)
3015 {
3016 	int ret;
3017 	unsigned int ep_index;
3018 	unsigned int ep_state;
3019 
3020 	if (!ep)
3021 		return -EINVAL;
3022 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3023 	if (ret <= 0)
3024 		return -EINVAL;
3025 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3026 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3027 				" descriptor for ep 0x%x does not support streams\n",
3028 				ep->desc.bEndpointAddress);
3029 		return -EINVAL;
3030 	}
3031 
3032 	ep_index = xhci_get_endpoint_index(&ep->desc);
3033 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3034 	if (ep_state & EP_HAS_STREAMS ||
3035 			ep_state & EP_GETTING_STREAMS) {
3036 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3037 				"already has streams set up.\n",
3038 				ep->desc.bEndpointAddress);
3039 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3040 				"dynamic stream context array reallocation.\n");
3041 		return -EINVAL;
3042 	}
3043 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3044 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3045 				"endpoint 0x%x; URBs are pending.\n",
3046 				ep->desc.bEndpointAddress);
3047 		return -EINVAL;
3048 	}
3049 	return 0;
3050 }
3051 
3052 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3053 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3054 {
3055 	unsigned int max_streams;
3056 
3057 	/* The stream context array size must be a power of two */
3058 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3059 	/*
3060 	 * Find out how many primary stream array entries the host controller
3061 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3062 	 * level page entries), but that's an optional feature for xHCI host
3063 	 * controllers. xHCs must support at least 4 stream IDs.
3064 	 */
3065 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3066 	if (*num_stream_ctxs > max_streams) {
3067 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3068 				max_streams);
3069 		*num_stream_ctxs = max_streams;
3070 		*num_streams = max_streams;
3071 	}
3072 }
3073 
3074 /* Returns an error code if one of the endpoint already has streams.
3075  * This does not change any data structures, it only checks and gathers
3076  * information.
3077  */
3078 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3079 		struct usb_device *udev,
3080 		struct usb_host_endpoint **eps, unsigned int num_eps,
3081 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3082 {
3083 	unsigned int max_streams;
3084 	unsigned int endpoint_flag;
3085 	int i;
3086 	int ret;
3087 
3088 	for (i = 0; i < num_eps; i++) {
3089 		ret = xhci_check_streams_endpoint(xhci, udev,
3090 				eps[i], udev->slot_id);
3091 		if (ret < 0)
3092 			return ret;
3093 
3094 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3095 		if (max_streams < (*num_streams - 1)) {
3096 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3097 					eps[i]->desc.bEndpointAddress,
3098 					max_streams);
3099 			*num_streams = max_streams+1;
3100 		}
3101 
3102 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3103 		if (*changed_ep_bitmask & endpoint_flag)
3104 			return -EINVAL;
3105 		*changed_ep_bitmask |= endpoint_flag;
3106 	}
3107 	return 0;
3108 }
3109 
3110 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3111 		struct usb_device *udev,
3112 		struct usb_host_endpoint **eps, unsigned int num_eps)
3113 {
3114 	u32 changed_ep_bitmask = 0;
3115 	unsigned int slot_id;
3116 	unsigned int ep_index;
3117 	unsigned int ep_state;
3118 	int i;
3119 
3120 	slot_id = udev->slot_id;
3121 	if (!xhci->devs[slot_id])
3122 		return 0;
3123 
3124 	for (i = 0; i < num_eps; i++) {
3125 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3126 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3127 		/* Are streams already being freed for the endpoint? */
3128 		if (ep_state & EP_GETTING_NO_STREAMS) {
3129 			xhci_warn(xhci, "WARN Can't disable streams for "
3130 					"endpoint 0x%x, "
3131 					"streams are being disabled already\n",
3132 					eps[i]->desc.bEndpointAddress);
3133 			return 0;
3134 		}
3135 		/* Are there actually any streams to free? */
3136 		if (!(ep_state & EP_HAS_STREAMS) &&
3137 				!(ep_state & EP_GETTING_STREAMS)) {
3138 			xhci_warn(xhci, "WARN Can't disable streams for "
3139 					"endpoint 0x%x, "
3140 					"streams are already disabled!\n",
3141 					eps[i]->desc.bEndpointAddress);
3142 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3143 					"with non-streams endpoint\n");
3144 			return 0;
3145 		}
3146 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3147 	}
3148 	return changed_ep_bitmask;
3149 }
3150 
3151 /*
3152  * The USB device drivers use this function (through the HCD interface in USB
3153  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3154  * coordinate mass storage command queueing across multiple endpoints (basically
3155  * a stream ID == a task ID).
3156  *
3157  * Setting up streams involves allocating the same size stream context array
3158  * for each endpoint and issuing a configure endpoint command for all endpoints.
3159  *
3160  * Don't allow the call to succeed if one endpoint only supports one stream
3161  * (which means it doesn't support streams at all).
3162  *
3163  * Drivers may get less stream IDs than they asked for, if the host controller
3164  * hardware or endpoints claim they can't support the number of requested
3165  * stream IDs.
3166  */
3167 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3168 		struct usb_host_endpoint **eps, unsigned int num_eps,
3169 		unsigned int num_streams, gfp_t mem_flags)
3170 {
3171 	int i, ret;
3172 	struct xhci_hcd *xhci;
3173 	struct xhci_virt_device *vdev;
3174 	struct xhci_command *config_cmd;
3175 	struct xhci_input_control_ctx *ctrl_ctx;
3176 	unsigned int ep_index;
3177 	unsigned int num_stream_ctxs;
3178 	unsigned long flags;
3179 	u32 changed_ep_bitmask = 0;
3180 
3181 	if (!eps)
3182 		return -EINVAL;
3183 
3184 	/* Add one to the number of streams requested to account for
3185 	 * stream 0 that is reserved for xHCI usage.
3186 	 */
3187 	num_streams += 1;
3188 	xhci = hcd_to_xhci(hcd);
3189 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3190 			num_streams);
3191 
3192 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3193 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3194 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3195 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3196 		return -ENOSYS;
3197 	}
3198 
3199 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3200 	if (!config_cmd) {
3201 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3202 		return -ENOMEM;
3203 	}
3204 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3205 	if (!ctrl_ctx) {
3206 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3207 				__func__);
3208 		xhci_free_command(xhci, config_cmd);
3209 		return -ENOMEM;
3210 	}
3211 
3212 	/* Check to make sure all endpoints are not already configured for
3213 	 * streams.  While we're at it, find the maximum number of streams that
3214 	 * all the endpoints will support and check for duplicate endpoints.
3215 	 */
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3218 			num_eps, &num_streams, &changed_ep_bitmask);
3219 	if (ret < 0) {
3220 		xhci_free_command(xhci, config_cmd);
3221 		spin_unlock_irqrestore(&xhci->lock, flags);
3222 		return ret;
3223 	}
3224 	if (num_streams <= 1) {
3225 		xhci_warn(xhci, "WARN: endpoints can't handle "
3226 				"more than one stream.\n");
3227 		xhci_free_command(xhci, config_cmd);
3228 		spin_unlock_irqrestore(&xhci->lock, flags);
3229 		return -EINVAL;
3230 	}
3231 	vdev = xhci->devs[udev->slot_id];
3232 	/* Mark each endpoint as being in transition, so
3233 	 * xhci_urb_enqueue() will reject all URBs.
3234 	 */
3235 	for (i = 0; i < num_eps; i++) {
3236 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3238 	}
3239 	spin_unlock_irqrestore(&xhci->lock, flags);
3240 
3241 	/* Setup internal data structures and allocate HW data structures for
3242 	 * streams (but don't install the HW structures in the input context
3243 	 * until we're sure all memory allocation succeeded).
3244 	 */
3245 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3246 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3247 			num_stream_ctxs, num_streams);
3248 
3249 	for (i = 0; i < num_eps; i++) {
3250 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3252 				num_stream_ctxs,
3253 				num_streams, mem_flags);
3254 		if (!vdev->eps[ep_index].stream_info)
3255 			goto cleanup;
3256 		/* Set maxPstreams in endpoint context and update deq ptr to
3257 		 * point to stream context array. FIXME
3258 		 */
3259 	}
3260 
3261 	/* Set up the input context for a configure endpoint command. */
3262 	for (i = 0; i < num_eps; i++) {
3263 		struct xhci_ep_ctx *ep_ctx;
3264 
3265 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3267 
3268 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3269 				vdev->out_ctx, ep_index);
3270 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3271 				vdev->eps[ep_index].stream_info);
3272 	}
3273 	/* Tell the HW to drop its old copy of the endpoint context info
3274 	 * and add the updated copy from the input context.
3275 	 */
3276 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3277 			vdev->out_ctx, ctrl_ctx,
3278 			changed_ep_bitmask, changed_ep_bitmask);
3279 
3280 	/* Issue and wait for the configure endpoint command */
3281 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3282 			false, false);
3283 
3284 	/* xHC rejected the configure endpoint command for some reason, so we
3285 	 * leave the old ring intact and free our internal streams data
3286 	 * structure.
3287 	 */
3288 	if (ret < 0)
3289 		goto cleanup;
3290 
3291 	spin_lock_irqsave(&xhci->lock, flags);
3292 	for (i = 0; i < num_eps; i++) {
3293 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3295 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3296 			 udev->slot_id, ep_index);
3297 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3298 	}
3299 	xhci_free_command(xhci, config_cmd);
3300 	spin_unlock_irqrestore(&xhci->lock, flags);
3301 
3302 	/* Subtract 1 for stream 0, which drivers can't use */
3303 	return num_streams - 1;
3304 
3305 cleanup:
3306 	/* If it didn't work, free the streams! */
3307 	for (i = 0; i < num_eps; i++) {
3308 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310 		vdev->eps[ep_index].stream_info = NULL;
3311 		/* FIXME Unset maxPstreams in endpoint context and
3312 		 * update deq ptr to point to normal string ring.
3313 		 */
3314 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3315 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3316 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3317 	}
3318 	xhci_free_command(xhci, config_cmd);
3319 	return -ENOMEM;
3320 }
3321 
3322 /* Transition the endpoint from using streams to being a "normal" endpoint
3323  * without streams.
3324  *
3325  * Modify the endpoint context state, submit a configure endpoint command,
3326  * and free all endpoint rings for streams if that completes successfully.
3327  */
3328 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3329 		struct usb_host_endpoint **eps, unsigned int num_eps,
3330 		gfp_t mem_flags)
3331 {
3332 	int i, ret;
3333 	struct xhci_hcd *xhci;
3334 	struct xhci_virt_device *vdev;
3335 	struct xhci_command *command;
3336 	struct xhci_input_control_ctx *ctrl_ctx;
3337 	unsigned int ep_index;
3338 	unsigned long flags;
3339 	u32 changed_ep_bitmask;
3340 
3341 	xhci = hcd_to_xhci(hcd);
3342 	vdev = xhci->devs[udev->slot_id];
3343 
3344 	/* Set up a configure endpoint command to remove the streams rings */
3345 	spin_lock_irqsave(&xhci->lock, flags);
3346 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3347 			udev, eps, num_eps);
3348 	if (changed_ep_bitmask == 0) {
3349 		spin_unlock_irqrestore(&xhci->lock, flags);
3350 		return -EINVAL;
3351 	}
3352 
3353 	/* Use the xhci_command structure from the first endpoint.  We may have
3354 	 * allocated too many, but the driver may call xhci_free_streams() for
3355 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3356 	 */
3357 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3358 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3359 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3360 	if (!ctrl_ctx) {
3361 		spin_unlock_irqrestore(&xhci->lock, flags);
3362 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3363 				__func__);
3364 		return -EINVAL;
3365 	}
3366 
3367 	for (i = 0; i < num_eps; i++) {
3368 		struct xhci_ep_ctx *ep_ctx;
3369 
3370 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3371 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3372 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3373 			EP_GETTING_NO_STREAMS;
3374 
3375 		xhci_endpoint_copy(xhci, command->in_ctx,
3376 				vdev->out_ctx, ep_index);
3377 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3378 				&vdev->eps[ep_index]);
3379 	}
3380 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3381 			vdev->out_ctx, ctrl_ctx,
3382 			changed_ep_bitmask, changed_ep_bitmask);
3383 	spin_unlock_irqrestore(&xhci->lock, flags);
3384 
3385 	/* Issue and wait for the configure endpoint command,
3386 	 * which must succeed.
3387 	 */
3388 	ret = xhci_configure_endpoint(xhci, udev, command,
3389 			false, true);
3390 
3391 	/* xHC rejected the configure endpoint command for some reason, so we
3392 	 * leave the streams rings intact.
3393 	 */
3394 	if (ret < 0)
3395 		return ret;
3396 
3397 	spin_lock_irqsave(&xhci->lock, flags);
3398 	for (i = 0; i < num_eps; i++) {
3399 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3400 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3401 		vdev->eps[ep_index].stream_info = NULL;
3402 		/* FIXME Unset maxPstreams in endpoint context and
3403 		 * update deq ptr to point to normal string ring.
3404 		 */
3405 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3406 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3407 	}
3408 	spin_unlock_irqrestore(&xhci->lock, flags);
3409 
3410 	return 0;
3411 }
3412 
3413 /*
3414  * Deletes endpoint resources for endpoints that were active before a Reset
3415  * Device command, or a Disable Slot command.  The Reset Device command leaves
3416  * the control endpoint intact, whereas the Disable Slot command deletes it.
3417  *
3418  * Must be called with xhci->lock held.
3419  */
3420 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3421 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3422 {
3423 	int i;
3424 	unsigned int num_dropped_eps = 0;
3425 	unsigned int drop_flags = 0;
3426 
3427 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3428 		if (virt_dev->eps[i].ring) {
3429 			drop_flags |= 1 << i;
3430 			num_dropped_eps++;
3431 		}
3432 	}
3433 	xhci->num_active_eps -= num_dropped_eps;
3434 	if (num_dropped_eps)
3435 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3436 				"Dropped %u ep ctxs, flags = 0x%x, "
3437 				"%u now active.",
3438 				num_dropped_eps, drop_flags,
3439 				xhci->num_active_eps);
3440 }
3441 
3442 /*
3443  * This submits a Reset Device Command, which will set the device state to 0,
3444  * set the device address to 0, and disable all the endpoints except the default
3445  * control endpoint.  The USB core should come back and call
3446  * xhci_address_device(), and then re-set up the configuration.  If this is
3447  * called because of a usb_reset_and_verify_device(), then the old alternate
3448  * settings will be re-installed through the normal bandwidth allocation
3449  * functions.
3450  *
3451  * Wait for the Reset Device command to finish.  Remove all structures
3452  * associated with the endpoints that were disabled.  Clear the input device
3453  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3454  *
3455  * If the virt_dev to be reset does not exist or does not match the udev,
3456  * it means the device is lost, possibly due to the xHC restore error and
3457  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3458  * re-allocate the device.
3459  */
3460 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3461 {
3462 	int ret, i;
3463 	unsigned long flags;
3464 	struct xhci_hcd *xhci;
3465 	unsigned int slot_id;
3466 	struct xhci_virt_device *virt_dev;
3467 	struct xhci_command *reset_device_cmd;
3468 	int last_freed_endpoint;
3469 	struct xhci_slot_ctx *slot_ctx;
3470 	int old_active_eps = 0;
3471 
3472 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3473 	if (ret <= 0)
3474 		return ret;
3475 	xhci = hcd_to_xhci(hcd);
3476 	slot_id = udev->slot_id;
3477 	virt_dev = xhci->devs[slot_id];
3478 	if (!virt_dev) {
3479 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3480 				"not exist. Re-allocate the device\n", slot_id);
3481 		ret = xhci_alloc_dev(hcd, udev);
3482 		if (ret == 1)
3483 			return 0;
3484 		else
3485 			return -EINVAL;
3486 	}
3487 
3488 	if (virt_dev->tt_info)
3489 		old_active_eps = virt_dev->tt_info->active_eps;
3490 
3491 	if (virt_dev->udev != udev) {
3492 		/* If the virt_dev and the udev does not match, this virt_dev
3493 		 * may belong to another udev.
3494 		 * Re-allocate the device.
3495 		 */
3496 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3497 				"not match the udev. Re-allocate the device\n",
3498 				slot_id);
3499 		ret = xhci_alloc_dev(hcd, udev);
3500 		if (ret == 1)
3501 			return 0;
3502 		else
3503 			return -EINVAL;
3504 	}
3505 
3506 	/* If device is not setup, there is no point in resetting it */
3507 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3508 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3509 						SLOT_STATE_DISABLED)
3510 		return 0;
3511 
3512 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3513 	/* Allocate the command structure that holds the struct completion.
3514 	 * Assume we're in process context, since the normal device reset
3515 	 * process has to wait for the device anyway.  Storage devices are
3516 	 * reset as part of error handling, so use GFP_NOIO instead of
3517 	 * GFP_KERNEL.
3518 	 */
3519 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3520 	if (!reset_device_cmd) {
3521 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3522 		return -ENOMEM;
3523 	}
3524 
3525 	/* Attempt to submit the Reset Device command to the command ring */
3526 	spin_lock_irqsave(&xhci->lock, flags);
3527 
3528 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3529 	if (ret) {
3530 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531 		spin_unlock_irqrestore(&xhci->lock, flags);
3532 		goto command_cleanup;
3533 	}
3534 	xhci_ring_cmd_db(xhci);
3535 	spin_unlock_irqrestore(&xhci->lock, flags);
3536 
3537 	/* Wait for the Reset Device command to finish */
3538 	wait_for_completion(reset_device_cmd->completion);
3539 
3540 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3541 	 * unless we tried to reset a slot ID that wasn't enabled,
3542 	 * or the device wasn't in the addressed or configured state.
3543 	 */
3544 	ret = reset_device_cmd->status;
3545 	switch (ret) {
3546 	case COMP_CMD_ABORT:
3547 	case COMP_CMD_STOP:
3548 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3549 		ret = -ETIME;
3550 		goto command_cleanup;
3551 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3552 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3553 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3554 				slot_id,
3555 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3556 		xhci_dbg(xhci, "Not freeing device rings.\n");
3557 		/* Don't treat this as an error.  May change my mind later. */
3558 		ret = 0;
3559 		goto command_cleanup;
3560 	case COMP_SUCCESS:
3561 		xhci_dbg(xhci, "Successful reset device command.\n");
3562 		break;
3563 	default:
3564 		if (xhci_is_vendor_info_code(xhci, ret))
3565 			break;
3566 		xhci_warn(xhci, "Unknown completion code %u for "
3567 				"reset device command.\n", ret);
3568 		ret = -EINVAL;
3569 		goto command_cleanup;
3570 	}
3571 
3572 	/* Free up host controller endpoint resources */
3573 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3574 		spin_lock_irqsave(&xhci->lock, flags);
3575 		/* Don't delete the default control endpoint resources */
3576 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3577 		spin_unlock_irqrestore(&xhci->lock, flags);
3578 	}
3579 
3580 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3581 	last_freed_endpoint = 1;
3582 	for (i = 1; i < 31; ++i) {
3583 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3584 
3585 		if (ep->ep_state & EP_HAS_STREAMS) {
3586 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3587 					xhci_get_endpoint_address(i));
3588 			xhci_free_stream_info(xhci, ep->stream_info);
3589 			ep->stream_info = NULL;
3590 			ep->ep_state &= ~EP_HAS_STREAMS;
3591 		}
3592 
3593 		if (ep->ring) {
3594 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3595 			last_freed_endpoint = i;
3596 		}
3597 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3598 			xhci_drop_ep_from_interval_table(xhci,
3599 					&virt_dev->eps[i].bw_info,
3600 					virt_dev->bw_table,
3601 					udev,
3602 					&virt_dev->eps[i],
3603 					virt_dev->tt_info);
3604 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3605 	}
3606 	/* If necessary, update the number of active TTs on this root port */
3607 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3608 
3609 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3610 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3611 	ret = 0;
3612 
3613 command_cleanup:
3614 	xhci_free_command(xhci, reset_device_cmd);
3615 	return ret;
3616 }
3617 
3618 /*
3619  * At this point, the struct usb_device is about to go away, the device has
3620  * disconnected, and all traffic has been stopped and the endpoints have been
3621  * disabled.  Free any HC data structures associated with that device.
3622  */
3623 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626 	struct xhci_virt_device *virt_dev;
3627 	unsigned long flags;
3628 	u32 state;
3629 	int i, ret;
3630 	struct xhci_command *command;
3631 
3632 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3633 	if (!command)
3634 		return;
3635 
3636 #ifndef CONFIG_USB_DEFAULT_PERSIST
3637 	/*
3638 	 * We called pm_runtime_get_noresume when the device was attached.
3639 	 * Decrement the counter here to allow controller to runtime suspend
3640 	 * if no devices remain.
3641 	 */
3642 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3643 		pm_runtime_put_noidle(hcd->self.controller);
3644 #endif
3645 
3646 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3647 	/* If the host is halted due to driver unload, we still need to free the
3648 	 * device.
3649 	 */
3650 	if (ret <= 0 && ret != -ENODEV) {
3651 		kfree(command);
3652 		return;
3653 	}
3654 
3655 	virt_dev = xhci->devs[udev->slot_id];
3656 
3657 	/* Stop any wayward timer functions (which may grab the lock) */
3658 	for (i = 0; i < 31; ++i) {
3659 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3660 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3661 	}
3662 
3663 	spin_lock_irqsave(&xhci->lock, flags);
3664 	/* Don't disable the slot if the host controller is dead. */
3665 	state = readl(&xhci->op_regs->status);
3666 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3667 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3668 		xhci_free_virt_device(xhci, udev->slot_id);
3669 		spin_unlock_irqrestore(&xhci->lock, flags);
3670 		kfree(command);
3671 		return;
3672 	}
3673 
3674 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3675 				    udev->slot_id)) {
3676 		spin_unlock_irqrestore(&xhci->lock, flags);
3677 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3678 		return;
3679 	}
3680 	xhci_ring_cmd_db(xhci);
3681 	spin_unlock_irqrestore(&xhci->lock, flags);
3682 
3683 	/*
3684 	 * Event command completion handler will free any data structures
3685 	 * associated with the slot.  XXX Can free sleep?
3686 	 */
3687 }
3688 
3689 /*
3690  * Checks if we have enough host controller resources for the default control
3691  * endpoint.
3692  *
3693  * Must be called with xhci->lock held.
3694  */
3695 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3696 {
3697 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3698 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3699 				"Not enough ep ctxs: "
3700 				"%u active, need to add 1, limit is %u.",
3701 				xhci->num_active_eps, xhci->limit_active_eps);
3702 		return -ENOMEM;
3703 	}
3704 	xhci->num_active_eps += 1;
3705 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3706 			"Adding 1 ep ctx, %u now active.",
3707 			xhci->num_active_eps);
3708 	return 0;
3709 }
3710 
3711 
3712 /*
3713  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3714  * timed out, or allocating memory failed.  Returns 1 on success.
3715  */
3716 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3717 {
3718 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3719 	unsigned long flags;
3720 	int ret, slot_id;
3721 	struct xhci_command *command;
3722 
3723 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3724 	if (!command)
3725 		return 0;
3726 
3727 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3728 	mutex_lock(&xhci->mutex);
3729 	spin_lock_irqsave(&xhci->lock, flags);
3730 	command->completion = &xhci->addr_dev;
3731 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3732 	if (ret) {
3733 		spin_unlock_irqrestore(&xhci->lock, flags);
3734 		mutex_unlock(&xhci->mutex);
3735 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3736 		kfree(command);
3737 		return 0;
3738 	}
3739 	xhci_ring_cmd_db(xhci);
3740 	spin_unlock_irqrestore(&xhci->lock, flags);
3741 
3742 	wait_for_completion(command->completion);
3743 	slot_id = xhci->slot_id;
3744 	mutex_unlock(&xhci->mutex);
3745 
3746 	if (!slot_id || command->status != COMP_SUCCESS) {
3747 		xhci_err(xhci, "Error while assigning device slot ID\n");
3748 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3749 				HCS_MAX_SLOTS(
3750 					readl(&xhci->cap_regs->hcs_params1)));
3751 		kfree(command);
3752 		return 0;
3753 	}
3754 
3755 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3756 		spin_lock_irqsave(&xhci->lock, flags);
3757 		ret = xhci_reserve_host_control_ep_resources(xhci);
3758 		if (ret) {
3759 			spin_unlock_irqrestore(&xhci->lock, flags);
3760 			xhci_warn(xhci, "Not enough host resources, "
3761 					"active endpoint contexts = %u\n",
3762 					xhci->num_active_eps);
3763 			goto disable_slot;
3764 		}
3765 		spin_unlock_irqrestore(&xhci->lock, flags);
3766 	}
3767 	/* Use GFP_NOIO, since this function can be called from
3768 	 * xhci_discover_or_reset_device(), which may be called as part of
3769 	 * mass storage driver error handling.
3770 	 */
3771 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3772 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3773 		goto disable_slot;
3774 	}
3775 	udev->slot_id = slot_id;
3776 
3777 #ifndef CONFIG_USB_DEFAULT_PERSIST
3778 	/*
3779 	 * If resetting upon resume, we can't put the controller into runtime
3780 	 * suspend if there is a device attached.
3781 	 */
3782 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3783 		pm_runtime_get_noresume(hcd->self.controller);
3784 #endif
3785 
3786 
3787 	kfree(command);
3788 	/* Is this a LS or FS device under a HS hub? */
3789 	/* Hub or peripherial? */
3790 	return 1;
3791 
3792 disable_slot:
3793 	/* Disable slot, if we can do it without mem alloc */
3794 	spin_lock_irqsave(&xhci->lock, flags);
3795 	command->completion = NULL;
3796 	command->status = 0;
3797 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3798 				     udev->slot_id))
3799 		xhci_ring_cmd_db(xhci);
3800 	spin_unlock_irqrestore(&xhci->lock, flags);
3801 	return 0;
3802 }
3803 
3804 /*
3805  * Issue an Address Device command and optionally send a corresponding
3806  * SetAddress request to the device.
3807  */
3808 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3809 			     enum xhci_setup_dev setup)
3810 {
3811 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3812 	unsigned long flags;
3813 	struct xhci_virt_device *virt_dev;
3814 	int ret = 0;
3815 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816 	struct xhci_slot_ctx *slot_ctx;
3817 	struct xhci_input_control_ctx *ctrl_ctx;
3818 	u64 temp_64;
3819 	struct xhci_command *command = NULL;
3820 
3821 	mutex_lock(&xhci->mutex);
3822 
3823 	if (xhci->xhc_state)	/* dying or halted */
3824 		goto out;
3825 
3826 	if (!udev->slot_id) {
3827 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3828 				"Bad Slot ID %d", udev->slot_id);
3829 		ret = -EINVAL;
3830 		goto out;
3831 	}
3832 
3833 	virt_dev = xhci->devs[udev->slot_id];
3834 
3835 	if (WARN_ON(!virt_dev)) {
3836 		/*
3837 		 * In plug/unplug torture test with an NEC controller,
3838 		 * a zero-dereference was observed once due to virt_dev = 0.
3839 		 * Print useful debug rather than crash if it is observed again!
3840 		 */
3841 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3842 			udev->slot_id);
3843 		ret = -EINVAL;
3844 		goto out;
3845 	}
3846 
3847 	if (setup == SETUP_CONTEXT_ONLY) {
3848 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3849 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3850 		    SLOT_STATE_DEFAULT) {
3851 			xhci_dbg(xhci, "Slot already in default state\n");
3852 			goto out;
3853 		}
3854 	}
3855 
3856 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3857 	if (!command) {
3858 		ret = -ENOMEM;
3859 		goto out;
3860 	}
3861 
3862 	command->in_ctx = virt_dev->in_ctx;
3863 	command->completion = &xhci->addr_dev;
3864 
3865 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3866 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3867 	if (!ctrl_ctx) {
3868 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3869 				__func__);
3870 		ret = -EINVAL;
3871 		goto out;
3872 	}
3873 	/*
3874 	 * If this is the first Set Address since device plug-in or
3875 	 * virt_device realloaction after a resume with an xHCI power loss,
3876 	 * then set up the slot context.
3877 	 */
3878 	if (!slot_ctx->dev_info)
3879 		xhci_setup_addressable_virt_dev(xhci, udev);
3880 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3881 	else
3882 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3883 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3884 	ctrl_ctx->drop_flags = 0;
3885 
3886 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3887 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3888 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3889 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3890 
3891 	spin_lock_irqsave(&xhci->lock, flags);
3892 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3893 					udev->slot_id, setup);
3894 	if (ret) {
3895 		spin_unlock_irqrestore(&xhci->lock, flags);
3896 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897 				"FIXME: allocate a command ring segment");
3898 		goto out;
3899 	}
3900 	xhci_ring_cmd_db(xhci);
3901 	spin_unlock_irqrestore(&xhci->lock, flags);
3902 
3903 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3904 	wait_for_completion(command->completion);
3905 
3906 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3907 	 * the SetAddress() "recovery interval" required by USB and aborting the
3908 	 * command on a timeout.
3909 	 */
3910 	switch (command->status) {
3911 	case COMP_CMD_ABORT:
3912 	case COMP_CMD_STOP:
3913 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3914 		ret = -ETIME;
3915 		break;
3916 	case COMP_CTX_STATE:
3917 	case COMP_EBADSLT:
3918 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3919 			 act, udev->slot_id);
3920 		ret = -EINVAL;
3921 		break;
3922 	case COMP_TX_ERR:
3923 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3924 		ret = -EPROTO;
3925 		break;
3926 	case COMP_DEV_ERR:
3927 		dev_warn(&udev->dev,
3928 			 "ERROR: Incompatible device for setup %s command\n", act);
3929 		ret = -ENODEV;
3930 		break;
3931 	case COMP_SUCCESS:
3932 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933 			       "Successful setup %s command", act);
3934 		break;
3935 	default:
3936 		xhci_err(xhci,
3937 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3938 			 act, command->status);
3939 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3940 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3941 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3942 		ret = -EINVAL;
3943 		break;
3944 	}
3945 	if (ret)
3946 		goto out;
3947 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3948 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949 			"Op regs DCBAA ptr = %#016llx", temp_64);
3950 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951 		"Slot ID %d dcbaa entry @%p = %#016llx",
3952 		udev->slot_id,
3953 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3954 		(unsigned long long)
3955 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3956 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3957 			"Output Context DMA address = %#08llx",
3958 			(unsigned long long)virt_dev->out_ctx->dma);
3959 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3960 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3961 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3962 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3963 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3964 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3965 	/*
3966 	 * USB core uses address 1 for the roothubs, so we add one to the
3967 	 * address given back to us by the HC.
3968 	 */
3969 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3970 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3971 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3972 	/* Zero the input context control for later use */
3973 	ctrl_ctx->add_flags = 0;
3974 	ctrl_ctx->drop_flags = 0;
3975 
3976 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3977 		       "Internal device address = %d",
3978 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3979 out:
3980 	mutex_unlock(&xhci->mutex);
3981 	kfree(command);
3982 	return ret;
3983 }
3984 
3985 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3988 }
3989 
3990 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3991 {
3992 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3993 }
3994 
3995 /*
3996  * Transfer the port index into real index in the HW port status
3997  * registers. Caculate offset between the port's PORTSC register
3998  * and port status base. Divide the number of per port register
3999  * to get the real index. The raw port number bases 1.
4000  */
4001 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4002 {
4003 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4004 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4005 	__le32 __iomem *addr;
4006 	int raw_port;
4007 
4008 	if (hcd->speed < HCD_USB3)
4009 		addr = xhci->usb2_ports[port1 - 1];
4010 	else
4011 		addr = xhci->usb3_ports[port1 - 1];
4012 
4013 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4014 	return raw_port;
4015 }
4016 
4017 /*
4018  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4019  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4020  */
4021 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4022 			struct usb_device *udev, u16 max_exit_latency)
4023 {
4024 	struct xhci_virt_device *virt_dev;
4025 	struct xhci_command *command;
4026 	struct xhci_input_control_ctx *ctrl_ctx;
4027 	struct xhci_slot_ctx *slot_ctx;
4028 	unsigned long flags;
4029 	int ret;
4030 
4031 	spin_lock_irqsave(&xhci->lock, flags);
4032 
4033 	virt_dev = xhci->devs[udev->slot_id];
4034 
4035 	/*
4036 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4037 	 * xHC was re-initialized. Exit latency will be set later after
4038 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4039 	 */
4040 
4041 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4042 		spin_unlock_irqrestore(&xhci->lock, flags);
4043 		return 0;
4044 	}
4045 
4046 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4047 	command = xhci->lpm_command;
4048 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4049 	if (!ctrl_ctx) {
4050 		spin_unlock_irqrestore(&xhci->lock, flags);
4051 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4052 				__func__);
4053 		return -ENOMEM;
4054 	}
4055 
4056 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4057 	spin_unlock_irqrestore(&xhci->lock, flags);
4058 
4059 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4060 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4061 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4062 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4063 	slot_ctx->dev_state = 0;
4064 
4065 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4066 			"Set up evaluate context for LPM MEL change.");
4067 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4068 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4069 
4070 	/* Issue and wait for the evaluate context command. */
4071 	ret = xhci_configure_endpoint(xhci, udev, command,
4072 			true, true);
4073 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4074 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4075 
4076 	if (!ret) {
4077 		spin_lock_irqsave(&xhci->lock, flags);
4078 		virt_dev->current_mel = max_exit_latency;
4079 		spin_unlock_irqrestore(&xhci->lock, flags);
4080 	}
4081 	return ret;
4082 }
4083 
4084 #ifdef CONFIG_PM
4085 
4086 /* BESL to HIRD Encoding array for USB2 LPM */
4087 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4088 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4089 
4090 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4091 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4092 					struct usb_device *udev)
4093 {
4094 	int u2del, besl, besl_host;
4095 	int besl_device = 0;
4096 	u32 field;
4097 
4098 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4099 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4100 
4101 	if (field & USB_BESL_SUPPORT) {
4102 		for (besl_host = 0; besl_host < 16; besl_host++) {
4103 			if (xhci_besl_encoding[besl_host] >= u2del)
4104 				break;
4105 		}
4106 		/* Use baseline BESL value as default */
4107 		if (field & USB_BESL_BASELINE_VALID)
4108 			besl_device = USB_GET_BESL_BASELINE(field);
4109 		else if (field & USB_BESL_DEEP_VALID)
4110 			besl_device = USB_GET_BESL_DEEP(field);
4111 	} else {
4112 		if (u2del <= 50)
4113 			besl_host = 0;
4114 		else
4115 			besl_host = (u2del - 51) / 75 + 1;
4116 	}
4117 
4118 	besl = besl_host + besl_device;
4119 	if (besl > 15)
4120 		besl = 15;
4121 
4122 	return besl;
4123 }
4124 
4125 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4126 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4127 {
4128 	u32 field;
4129 	int l1;
4130 	int besld = 0;
4131 	int hirdm = 0;
4132 
4133 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4134 
4135 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4136 	l1 = udev->l1_params.timeout / 256;
4137 
4138 	/* device has preferred BESLD */
4139 	if (field & USB_BESL_DEEP_VALID) {
4140 		besld = USB_GET_BESL_DEEP(field);
4141 		hirdm = 1;
4142 	}
4143 
4144 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4145 }
4146 
4147 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4148 			struct usb_device *udev, int enable)
4149 {
4150 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4151 	__le32 __iomem	**port_array;
4152 	__le32 __iomem	*pm_addr, *hlpm_addr;
4153 	u32		pm_val, hlpm_val, field;
4154 	unsigned int	port_num;
4155 	unsigned long	flags;
4156 	int		hird, exit_latency;
4157 	int		ret;
4158 
4159 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4160 			!udev->lpm_capable)
4161 		return -EPERM;
4162 
4163 	if (!udev->parent || udev->parent->parent ||
4164 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4165 		return -EPERM;
4166 
4167 	if (udev->usb2_hw_lpm_capable != 1)
4168 		return -EPERM;
4169 
4170 	spin_lock_irqsave(&xhci->lock, flags);
4171 
4172 	port_array = xhci->usb2_ports;
4173 	port_num = udev->portnum - 1;
4174 	pm_addr = port_array[port_num] + PORTPMSC;
4175 	pm_val = readl(pm_addr);
4176 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4177 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4178 
4179 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4180 			enable ? "enable" : "disable", port_num + 1);
4181 
4182 	if (enable) {
4183 		/* Host supports BESL timeout instead of HIRD */
4184 		if (udev->usb2_hw_lpm_besl_capable) {
4185 			/* if device doesn't have a preferred BESL value use a
4186 			 * default one which works with mixed HIRD and BESL
4187 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4188 			 */
4189 			if ((field & USB_BESL_SUPPORT) &&
4190 			    (field & USB_BESL_BASELINE_VALID))
4191 				hird = USB_GET_BESL_BASELINE(field);
4192 			else
4193 				hird = udev->l1_params.besl;
4194 
4195 			exit_latency = xhci_besl_encoding[hird];
4196 			spin_unlock_irqrestore(&xhci->lock, flags);
4197 
4198 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4199 			 * input context for link powermanagement evaluate
4200 			 * context commands. It is protected by hcd->bandwidth
4201 			 * mutex and is shared by all devices. We need to set
4202 			 * the max ext latency in USB 2 BESL LPM as well, so
4203 			 * use the same mutex and xhci_change_max_exit_latency()
4204 			 */
4205 			mutex_lock(hcd->bandwidth_mutex);
4206 			ret = xhci_change_max_exit_latency(xhci, udev,
4207 							   exit_latency);
4208 			mutex_unlock(hcd->bandwidth_mutex);
4209 
4210 			if (ret < 0)
4211 				return ret;
4212 			spin_lock_irqsave(&xhci->lock, flags);
4213 
4214 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4215 			writel(hlpm_val, hlpm_addr);
4216 			/* flush write */
4217 			readl(hlpm_addr);
4218 		} else {
4219 			hird = xhci_calculate_hird_besl(xhci, udev);
4220 		}
4221 
4222 		pm_val &= ~PORT_HIRD_MASK;
4223 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4224 		writel(pm_val, pm_addr);
4225 		pm_val = readl(pm_addr);
4226 		pm_val |= PORT_HLE;
4227 		writel(pm_val, pm_addr);
4228 		/* flush write */
4229 		readl(pm_addr);
4230 	} else {
4231 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4232 		writel(pm_val, pm_addr);
4233 		/* flush write */
4234 		readl(pm_addr);
4235 		if (udev->usb2_hw_lpm_besl_capable) {
4236 			spin_unlock_irqrestore(&xhci->lock, flags);
4237 			mutex_lock(hcd->bandwidth_mutex);
4238 			xhci_change_max_exit_latency(xhci, udev, 0);
4239 			mutex_unlock(hcd->bandwidth_mutex);
4240 			return 0;
4241 		}
4242 	}
4243 
4244 	spin_unlock_irqrestore(&xhci->lock, flags);
4245 	return 0;
4246 }
4247 
4248 /* check if a usb2 port supports a given extened capability protocol
4249  * only USB2 ports extended protocol capability values are cached.
4250  * Return 1 if capability is supported
4251  */
4252 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4253 					   unsigned capability)
4254 {
4255 	u32 port_offset, port_count;
4256 	int i;
4257 
4258 	for (i = 0; i < xhci->num_ext_caps; i++) {
4259 		if (xhci->ext_caps[i] & capability) {
4260 			/* port offsets starts at 1 */
4261 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4262 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4263 			if (port >= port_offset &&
4264 			    port < port_offset + port_count)
4265 				return 1;
4266 		}
4267 	}
4268 	return 0;
4269 }
4270 
4271 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4272 {
4273 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4274 	int		portnum = udev->portnum - 1;
4275 
4276 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4277 			!udev->lpm_capable)
4278 		return 0;
4279 
4280 	/* we only support lpm for non-hub device connected to root hub yet */
4281 	if (!udev->parent || udev->parent->parent ||
4282 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4283 		return 0;
4284 
4285 	if (xhci->hw_lpm_support == 1 &&
4286 			xhci_check_usb2_port_capability(
4287 				xhci, portnum, XHCI_HLC)) {
4288 		udev->usb2_hw_lpm_capable = 1;
4289 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4290 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4291 		if (xhci_check_usb2_port_capability(xhci, portnum,
4292 					XHCI_BLC))
4293 			udev->usb2_hw_lpm_besl_capable = 1;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4300 
4301 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4302 static unsigned long long xhci_service_interval_to_ns(
4303 		struct usb_endpoint_descriptor *desc)
4304 {
4305 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4306 }
4307 
4308 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4309 		enum usb3_link_state state)
4310 {
4311 	unsigned long long sel;
4312 	unsigned long long pel;
4313 	unsigned int max_sel_pel;
4314 	char *state_name;
4315 
4316 	switch (state) {
4317 	case USB3_LPM_U1:
4318 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4319 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4320 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4321 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4322 		state_name = "U1";
4323 		break;
4324 	case USB3_LPM_U2:
4325 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4326 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4327 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4328 		state_name = "U2";
4329 		break;
4330 	default:
4331 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4332 				__func__);
4333 		return USB3_LPM_DISABLED;
4334 	}
4335 
4336 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4337 		return USB3_LPM_DEVICE_INITIATED;
4338 
4339 	if (sel > max_sel_pel)
4340 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4341 				"due to long SEL %llu ms\n",
4342 				state_name, sel);
4343 	else
4344 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4345 				"due to long PEL %llu ms\n",
4346 				state_name, pel);
4347 	return USB3_LPM_DISABLED;
4348 }
4349 
4350 /* The U1 timeout should be the maximum of the following values:
4351  *  - For control endpoints, U1 system exit latency (SEL) * 3
4352  *  - For bulk endpoints, U1 SEL * 5
4353  *  - For interrupt endpoints:
4354  *    - Notification EPs, U1 SEL * 3
4355  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4356  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4357  */
4358 static unsigned long long xhci_calculate_intel_u1_timeout(
4359 		struct usb_device *udev,
4360 		struct usb_endpoint_descriptor *desc)
4361 {
4362 	unsigned long long timeout_ns;
4363 	int ep_type;
4364 	int intr_type;
4365 
4366 	ep_type = usb_endpoint_type(desc);
4367 	switch (ep_type) {
4368 	case USB_ENDPOINT_XFER_CONTROL:
4369 		timeout_ns = udev->u1_params.sel * 3;
4370 		break;
4371 	case USB_ENDPOINT_XFER_BULK:
4372 		timeout_ns = udev->u1_params.sel * 5;
4373 		break;
4374 	case USB_ENDPOINT_XFER_INT:
4375 		intr_type = usb_endpoint_interrupt_type(desc);
4376 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4377 			timeout_ns = udev->u1_params.sel * 3;
4378 			break;
4379 		}
4380 		/* Otherwise the calculation is the same as isoc eps */
4381 	case USB_ENDPOINT_XFER_ISOC:
4382 		timeout_ns = xhci_service_interval_to_ns(desc);
4383 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4384 		if (timeout_ns < udev->u1_params.sel * 2)
4385 			timeout_ns = udev->u1_params.sel * 2;
4386 		break;
4387 	default:
4388 		return 0;
4389 	}
4390 
4391 	return timeout_ns;
4392 }
4393 
4394 /* Returns the hub-encoded U1 timeout value. */
4395 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4396 		struct usb_device *udev,
4397 		struct usb_endpoint_descriptor *desc)
4398 {
4399 	unsigned long long timeout_ns;
4400 
4401 	if (xhci->quirks & XHCI_INTEL_HOST)
4402 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4403 	else
4404 		timeout_ns = udev->u1_params.sel;
4405 
4406 	/* The U1 timeout is encoded in 1us intervals.
4407 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4408 	 */
4409 	if (timeout_ns == USB3_LPM_DISABLED)
4410 		timeout_ns = 1;
4411 	else
4412 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4413 
4414 	/* If the necessary timeout value is bigger than what we can set in the
4415 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4416 	 */
4417 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4418 		return timeout_ns;
4419 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4420 			"due to long timeout %llu ms\n", timeout_ns);
4421 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4422 }
4423 
4424 /* The U2 timeout should be the maximum of:
4425  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4426  *  - largest bInterval of any active periodic endpoint (to avoid going
4427  *    into lower power link states between intervals).
4428  *  - the U2 Exit Latency of the device
4429  */
4430 static unsigned long long xhci_calculate_intel_u2_timeout(
4431 		struct usb_device *udev,
4432 		struct usb_endpoint_descriptor *desc)
4433 {
4434 	unsigned long long timeout_ns;
4435 	unsigned long long u2_del_ns;
4436 
4437 	timeout_ns = 10 * 1000 * 1000;
4438 
4439 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4440 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4441 		timeout_ns = xhci_service_interval_to_ns(desc);
4442 
4443 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4444 	if (u2_del_ns > timeout_ns)
4445 		timeout_ns = u2_del_ns;
4446 
4447 	return timeout_ns;
4448 }
4449 
4450 /* Returns the hub-encoded U2 timeout value. */
4451 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4452 		struct usb_device *udev,
4453 		struct usb_endpoint_descriptor *desc)
4454 {
4455 	unsigned long long timeout_ns;
4456 
4457 	if (xhci->quirks & XHCI_INTEL_HOST)
4458 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4459 	else
4460 		timeout_ns = udev->u2_params.sel;
4461 
4462 	/* The U2 timeout is encoded in 256us intervals */
4463 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4464 	/* If the necessary timeout value is bigger than what we can set in the
4465 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4466 	 */
4467 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4468 		return timeout_ns;
4469 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4470 			"due to long timeout %llu ms\n", timeout_ns);
4471 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4472 }
4473 
4474 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4475 		struct usb_device *udev,
4476 		struct usb_endpoint_descriptor *desc,
4477 		enum usb3_link_state state,
4478 		u16 *timeout)
4479 {
4480 	if (state == USB3_LPM_U1)
4481 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4482 	else if (state == USB3_LPM_U2)
4483 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4484 
4485 	return USB3_LPM_DISABLED;
4486 }
4487 
4488 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4489 		struct usb_device *udev,
4490 		struct usb_endpoint_descriptor *desc,
4491 		enum usb3_link_state state,
4492 		u16 *timeout)
4493 {
4494 	u16 alt_timeout;
4495 
4496 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4497 		desc, state, timeout);
4498 
4499 	/* If we found we can't enable hub-initiated LPM, or
4500 	 * the U1 or U2 exit latency was too high to allow
4501 	 * device-initiated LPM as well, just stop searching.
4502 	 */
4503 	if (alt_timeout == USB3_LPM_DISABLED ||
4504 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4505 		*timeout = alt_timeout;
4506 		return -E2BIG;
4507 	}
4508 	if (alt_timeout > *timeout)
4509 		*timeout = alt_timeout;
4510 	return 0;
4511 }
4512 
4513 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4514 		struct usb_device *udev,
4515 		struct usb_host_interface *alt,
4516 		enum usb3_link_state state,
4517 		u16 *timeout)
4518 {
4519 	int j;
4520 
4521 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4522 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4523 					&alt->endpoint[j].desc, state, timeout))
4524 			return -E2BIG;
4525 		continue;
4526 	}
4527 	return 0;
4528 }
4529 
4530 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4531 		enum usb3_link_state state)
4532 {
4533 	struct usb_device *parent;
4534 	unsigned int num_hubs;
4535 
4536 	if (state == USB3_LPM_U2)
4537 		return 0;
4538 
4539 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4540 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4541 			parent = parent->parent)
4542 		num_hubs++;
4543 
4544 	if (num_hubs < 2)
4545 		return 0;
4546 
4547 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4548 			" below second-tier hub.\n");
4549 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4550 			"to decrease power consumption.\n");
4551 	return -E2BIG;
4552 }
4553 
4554 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4555 		struct usb_device *udev,
4556 		enum usb3_link_state state)
4557 {
4558 	if (xhci->quirks & XHCI_INTEL_HOST)
4559 		return xhci_check_intel_tier_policy(udev, state);
4560 	else
4561 		return 0;
4562 }
4563 
4564 /* Returns the U1 or U2 timeout that should be enabled.
4565  * If the tier check or timeout setting functions return with a non-zero exit
4566  * code, that means the timeout value has been finalized and we shouldn't look
4567  * at any more endpoints.
4568  */
4569 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4570 			struct usb_device *udev, enum usb3_link_state state)
4571 {
4572 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4573 	struct usb_host_config *config;
4574 	char *state_name;
4575 	int i;
4576 	u16 timeout = USB3_LPM_DISABLED;
4577 
4578 	if (state == USB3_LPM_U1)
4579 		state_name = "U1";
4580 	else if (state == USB3_LPM_U2)
4581 		state_name = "U2";
4582 	else {
4583 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4584 				state);
4585 		return timeout;
4586 	}
4587 
4588 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4589 		return timeout;
4590 
4591 	/* Gather some information about the currently installed configuration
4592 	 * and alternate interface settings.
4593 	 */
4594 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4595 			state, &timeout))
4596 		return timeout;
4597 
4598 	config = udev->actconfig;
4599 	if (!config)
4600 		return timeout;
4601 
4602 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4603 		struct usb_driver *driver;
4604 		struct usb_interface *intf = config->interface[i];
4605 
4606 		if (!intf)
4607 			continue;
4608 
4609 		/* Check if any currently bound drivers want hub-initiated LPM
4610 		 * disabled.
4611 		 */
4612 		if (intf->dev.driver) {
4613 			driver = to_usb_driver(intf->dev.driver);
4614 			if (driver && driver->disable_hub_initiated_lpm) {
4615 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4616 						"at request of driver %s\n",
4617 						state_name, driver->name);
4618 				return xhci_get_timeout_no_hub_lpm(udev, state);
4619 			}
4620 		}
4621 
4622 		/* Not sure how this could happen... */
4623 		if (!intf->cur_altsetting)
4624 			continue;
4625 
4626 		if (xhci_update_timeout_for_interface(xhci, udev,
4627 					intf->cur_altsetting,
4628 					state, &timeout))
4629 			return timeout;
4630 	}
4631 	return timeout;
4632 }
4633 
4634 static int calculate_max_exit_latency(struct usb_device *udev,
4635 		enum usb3_link_state state_changed,
4636 		u16 hub_encoded_timeout)
4637 {
4638 	unsigned long long u1_mel_us = 0;
4639 	unsigned long long u2_mel_us = 0;
4640 	unsigned long long mel_us = 0;
4641 	bool disabling_u1;
4642 	bool disabling_u2;
4643 	bool enabling_u1;
4644 	bool enabling_u2;
4645 
4646 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 			hub_encoded_timeout == USB3_LPM_DISABLED);
4648 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 			hub_encoded_timeout == USB3_LPM_DISABLED);
4650 
4651 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4652 			hub_encoded_timeout != USB3_LPM_DISABLED);
4653 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4654 			hub_encoded_timeout != USB3_LPM_DISABLED);
4655 
4656 	/* If U1 was already enabled and we're not disabling it,
4657 	 * or we're going to enable U1, account for the U1 max exit latency.
4658 	 */
4659 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4660 			enabling_u1)
4661 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4662 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4663 			enabling_u2)
4664 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4665 
4666 	if (u1_mel_us > u2_mel_us)
4667 		mel_us = u1_mel_us;
4668 	else
4669 		mel_us = u2_mel_us;
4670 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4671 	if (mel_us > MAX_EXIT) {
4672 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4673 				"is too big.\n", mel_us);
4674 		return -E2BIG;
4675 	}
4676 	return mel_us;
4677 }
4678 
4679 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4680 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681 			struct usb_device *udev, enum usb3_link_state state)
4682 {
4683 	struct xhci_hcd	*xhci;
4684 	u16 hub_encoded_timeout;
4685 	int mel;
4686 	int ret;
4687 
4688 	xhci = hcd_to_xhci(hcd);
4689 	/* The LPM timeout values are pretty host-controller specific, so don't
4690 	 * enable hub-initiated timeouts unless the vendor has provided
4691 	 * information about their timeout algorithm.
4692 	 */
4693 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4694 			!xhci->devs[udev->slot_id])
4695 		return USB3_LPM_DISABLED;
4696 
4697 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4698 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4699 	if (mel < 0) {
4700 		/* Max Exit Latency is too big, disable LPM. */
4701 		hub_encoded_timeout = USB3_LPM_DISABLED;
4702 		mel = 0;
4703 	}
4704 
4705 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4706 	if (ret)
4707 		return ret;
4708 	return hub_encoded_timeout;
4709 }
4710 
4711 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712 			struct usb_device *udev, enum usb3_link_state state)
4713 {
4714 	struct xhci_hcd	*xhci;
4715 	u16 mel;
4716 
4717 	xhci = hcd_to_xhci(hcd);
4718 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4719 			!xhci->devs[udev->slot_id])
4720 		return 0;
4721 
4722 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4723 	return xhci_change_max_exit_latency(xhci, udev, mel);
4724 }
4725 #else /* CONFIG_PM */
4726 
4727 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4728 				struct usb_device *udev, int enable)
4729 {
4730 	return 0;
4731 }
4732 
4733 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4734 {
4735 	return 0;
4736 }
4737 
4738 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4739 			struct usb_device *udev, enum usb3_link_state state)
4740 {
4741 	return USB3_LPM_DISABLED;
4742 }
4743 
4744 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4745 			struct usb_device *udev, enum usb3_link_state state)
4746 {
4747 	return 0;
4748 }
4749 #endif	/* CONFIG_PM */
4750 
4751 /*-------------------------------------------------------------------------*/
4752 
4753 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4754  * internal data structures for the device.
4755  */
4756 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4757 			struct usb_tt *tt, gfp_t mem_flags)
4758 {
4759 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4760 	struct xhci_virt_device *vdev;
4761 	struct xhci_command *config_cmd;
4762 	struct xhci_input_control_ctx *ctrl_ctx;
4763 	struct xhci_slot_ctx *slot_ctx;
4764 	unsigned long flags;
4765 	unsigned think_time;
4766 	int ret;
4767 
4768 	/* Ignore root hubs */
4769 	if (!hdev->parent)
4770 		return 0;
4771 
4772 	vdev = xhci->devs[hdev->slot_id];
4773 	if (!vdev) {
4774 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4775 		return -EINVAL;
4776 	}
4777 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4778 	if (!config_cmd) {
4779 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4780 		return -ENOMEM;
4781 	}
4782 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4783 	if (!ctrl_ctx) {
4784 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4785 				__func__);
4786 		xhci_free_command(xhci, config_cmd);
4787 		return -ENOMEM;
4788 	}
4789 
4790 	spin_lock_irqsave(&xhci->lock, flags);
4791 	if (hdev->speed == USB_SPEED_HIGH &&
4792 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4793 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4794 		xhci_free_command(xhci, config_cmd);
4795 		spin_unlock_irqrestore(&xhci->lock, flags);
4796 		return -ENOMEM;
4797 	}
4798 
4799 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4800 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4801 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4802 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4803 	/*
4804 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4805 	 * but it may be already set to 1 when setup an xHCI virtual
4806 	 * device, so clear it anyway.
4807 	 */
4808 	if (tt->multi)
4809 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4810 	else if (hdev->speed == USB_SPEED_FULL)
4811 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4812 
4813 	if (xhci->hci_version > 0x95) {
4814 		xhci_dbg(xhci, "xHCI version %x needs hub "
4815 				"TT think time and number of ports\n",
4816 				(unsigned int) xhci->hci_version);
4817 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4818 		/* Set TT think time - convert from ns to FS bit times.
4819 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4820 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4821 		 *
4822 		 * xHCI 1.0: this field shall be 0 if the device is not a
4823 		 * High-spped hub.
4824 		 */
4825 		think_time = tt->think_time;
4826 		if (think_time != 0)
4827 			think_time = (think_time / 666) - 1;
4828 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4829 			slot_ctx->tt_info |=
4830 				cpu_to_le32(TT_THINK_TIME(think_time));
4831 	} else {
4832 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4833 				"TT think time or number of ports\n",
4834 				(unsigned int) xhci->hci_version);
4835 	}
4836 	slot_ctx->dev_state = 0;
4837 	spin_unlock_irqrestore(&xhci->lock, flags);
4838 
4839 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4840 			(xhci->hci_version > 0x95) ?
4841 			"configure endpoint" : "evaluate context");
4842 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4843 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4844 
4845 	/* Issue and wait for the configure endpoint or
4846 	 * evaluate context command.
4847 	 */
4848 	if (xhci->hci_version > 0x95)
4849 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4850 				false, false);
4851 	else
4852 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4853 				true, false);
4854 
4855 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4856 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4857 
4858 	xhci_free_command(xhci, config_cmd);
4859 	return ret;
4860 }
4861 
4862 int xhci_get_frame(struct usb_hcd *hcd)
4863 {
4864 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4865 	/* EHCI mods by the periodic size.  Why? */
4866 	return readl(&xhci->run_regs->microframe_index) >> 3;
4867 }
4868 
4869 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4870 {
4871 	struct xhci_hcd		*xhci;
4872 	struct device		*dev = hcd->self.controller;
4873 	int			retval;
4874 
4875 	/* Accept arbitrarily long scatter-gather lists */
4876 	hcd->self.sg_tablesize = ~0;
4877 
4878 	/* support to build packet from discontinuous buffers */
4879 	hcd->self.no_sg_constraint = 1;
4880 
4881 	/* XHCI controllers don't stop the ep queue on short packets :| */
4882 	hcd->self.no_stop_on_short = 1;
4883 
4884 	xhci = hcd_to_xhci(hcd);
4885 
4886 	if (usb_hcd_is_primary_hcd(hcd)) {
4887 		xhci->main_hcd = hcd;
4888 		/* Mark the first roothub as being USB 2.0.
4889 		 * The xHCI driver will register the USB 3.0 roothub.
4890 		 */
4891 		hcd->speed = HCD_USB2;
4892 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4893 		/*
4894 		 * USB 2.0 roothub under xHCI has an integrated TT,
4895 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4896 		 * companion controller.
4897 		 */
4898 		hcd->has_tt = 1;
4899 	} else {
4900 		if (xhci->sbrn == 0x31) {
4901 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4902 			hcd->speed = HCD_USB31;
4903 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4904 		}
4905 		/* xHCI private pointer was set in xhci_pci_probe for the second
4906 		 * registered roothub.
4907 		 */
4908 		return 0;
4909 	}
4910 
4911 	mutex_init(&xhci->mutex);
4912 	xhci->cap_regs = hcd->regs;
4913 	xhci->op_regs = hcd->regs +
4914 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4915 	xhci->run_regs = hcd->regs +
4916 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4917 	/* Cache read-only capability registers */
4918 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4919 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4920 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4921 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4922 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4923 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4924 	if (xhci->hci_version > 0x100)
4925 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4926 	xhci_print_registers(xhci);
4927 
4928 	xhci->quirks = quirks;
4929 
4930 	get_quirks(dev, xhci);
4931 
4932 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4933 	 * success event after a short transfer. This quirk will ignore such
4934 	 * spurious event.
4935 	 */
4936 	if (xhci->hci_version > 0x96)
4937 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4938 
4939 	/* Make sure the HC is halted. */
4940 	retval = xhci_halt(xhci);
4941 	if (retval)
4942 		return retval;
4943 
4944 	xhci_dbg(xhci, "Resetting HCD\n");
4945 	/* Reset the internal HC memory state and registers. */
4946 	retval = xhci_reset(xhci);
4947 	if (retval)
4948 		return retval;
4949 	xhci_dbg(xhci, "Reset complete\n");
4950 
4951 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4952 	 * if xHC supports 64-bit addressing */
4953 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4954 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4955 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4956 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4957 	} else {
4958 		/*
4959 		 * This is to avoid error in cases where a 32-bit USB
4960 		 * controller is used on a 64-bit capable system.
4961 		 */
4962 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4963 		if (retval)
4964 			return retval;
4965 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4966 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4967 	}
4968 
4969 	xhci_dbg(xhci, "Calling HCD init\n");
4970 	/* Initialize HCD and host controller data structures. */
4971 	retval = xhci_init(hcd);
4972 	if (retval)
4973 		return retval;
4974 	xhci_dbg(xhci, "Called HCD init\n");
4975 
4976 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4977 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4978 
4979 	return 0;
4980 }
4981 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4982 
4983 static const struct hc_driver xhci_hc_driver = {
4984 	.description =		"xhci-hcd",
4985 	.product_desc =		"xHCI Host Controller",
4986 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4987 
4988 	/*
4989 	 * generic hardware linkage
4990 	 */
4991 	.irq =			xhci_irq,
4992 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4993 
4994 	/*
4995 	 * basic lifecycle operations
4996 	 */
4997 	.reset =		NULL, /* set in xhci_init_driver() */
4998 	.start =		xhci_run,
4999 	.stop =			xhci_stop,
5000 	.shutdown =		xhci_shutdown,
5001 
5002 	/*
5003 	 * managing i/o requests and associated device resources
5004 	 */
5005 	.urb_enqueue =		xhci_urb_enqueue,
5006 	.urb_dequeue =		xhci_urb_dequeue,
5007 	.alloc_dev =		xhci_alloc_dev,
5008 	.free_dev =		xhci_free_dev,
5009 	.alloc_streams =	xhci_alloc_streams,
5010 	.free_streams =		xhci_free_streams,
5011 	.add_endpoint =		xhci_add_endpoint,
5012 	.drop_endpoint =	xhci_drop_endpoint,
5013 	.endpoint_reset =	xhci_endpoint_reset,
5014 	.check_bandwidth =	xhci_check_bandwidth,
5015 	.reset_bandwidth =	xhci_reset_bandwidth,
5016 	.address_device =	xhci_address_device,
5017 	.enable_device =	xhci_enable_device,
5018 	.update_hub_device =	xhci_update_hub_device,
5019 	.reset_device =		xhci_discover_or_reset_device,
5020 
5021 	/*
5022 	 * scheduling support
5023 	 */
5024 	.get_frame_number =	xhci_get_frame,
5025 
5026 	/*
5027 	 * root hub support
5028 	 */
5029 	.hub_control =		xhci_hub_control,
5030 	.hub_status_data =	xhci_hub_status_data,
5031 	.bus_suspend =		xhci_bus_suspend,
5032 	.bus_resume =		xhci_bus_resume,
5033 
5034 	/*
5035 	 * call back when device connected and addressed
5036 	 */
5037 	.update_device =        xhci_update_device,
5038 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5039 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5040 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5041 	.find_raw_port_number =	xhci_find_raw_port_number,
5042 };
5043 
5044 void xhci_init_driver(struct hc_driver *drv,
5045 		      const struct xhci_driver_overrides *over)
5046 {
5047 	BUG_ON(!over);
5048 
5049 	/* Copy the generic table to drv then apply the overrides */
5050 	*drv = xhci_hc_driver;
5051 
5052 	if (over) {
5053 		drv->hcd_priv_size += over->extra_priv_size;
5054 		if (over->reset)
5055 			drv->reset = over->reset;
5056 		if (over->start)
5057 			drv->start = over->start;
5058 	}
5059 }
5060 EXPORT_SYMBOL_GPL(xhci_init_driver);
5061 
5062 MODULE_DESCRIPTION(DRIVER_DESC);
5063 MODULE_AUTHOR(DRIVER_AUTHOR);
5064 MODULE_LICENSE("GPL");
5065 
5066 static int __init xhci_hcd_init(void)
5067 {
5068 	/*
5069 	 * Check the compiler generated sizes of structures that must be laid
5070 	 * out in specific ways for hardware access.
5071 	 */
5072 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5073 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5074 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5075 	/* xhci_device_control has eight fields, and also
5076 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5077 	 */
5078 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5079 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5080 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5081 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5082 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5083 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5084 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5085 
5086 	if (usb_disabled())
5087 		return -ENODEV;
5088 
5089 	return 0;
5090 }
5091 
5092 /*
5093  * If an init function is provided, an exit function must also be provided
5094  * to allow module unload.
5095  */
5096 static void __exit xhci_hcd_fini(void) { }
5097 
5098 module_init(xhci_hcd_init);
5099 module_exit(xhci_hcd_fini);
5100