1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 if ((state & STS_HALT) == 0) { 171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 172 return 0; 173 } 174 175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 176 command = readl(&xhci->op_regs->command); 177 command |= CMD_RESET; 178 writel(command, &xhci->op_regs->command); 179 180 /* Existing Intel xHCI controllers require a delay of 1 mS, 181 * after setting the CMD_RESET bit, and before accessing any 182 * HC registers. This allows the HC to complete the 183 * reset operation and be ready for HC register access. 184 * Without this delay, the subsequent HC register access, 185 * may result in a system hang very rarely. 186 */ 187 if (xhci->quirks & XHCI_INTEL_HOST) 188 udelay(1000); 189 190 ret = xhci_handshake(&xhci->op_regs->command, 191 CMD_RESET, 0, 10 * 1000 * 1000); 192 if (ret) 193 return ret; 194 195 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 196 "Wait for controller to be ready for doorbell rings"); 197 /* 198 * xHCI cannot write to any doorbells or operational registers other 199 * than status until the "Controller Not Ready" flag is cleared. 200 */ 201 ret = xhci_handshake(&xhci->op_regs->status, 202 STS_CNR, 0, 10 * 1000 * 1000); 203 204 for (i = 0; i < 2; ++i) { 205 xhci->bus_state[i].port_c_suspend = 0; 206 xhci->bus_state[i].suspended_ports = 0; 207 xhci->bus_state[i].resuming_ports = 0; 208 } 209 210 return ret; 211 } 212 213 #ifdef CONFIG_PCI 214 static int xhci_free_msi(struct xhci_hcd *xhci) 215 { 216 int i; 217 218 if (!xhci->msix_entries) 219 return -EINVAL; 220 221 for (i = 0; i < xhci->msix_count; i++) 222 if (xhci->msix_entries[i].vector) 223 free_irq(xhci->msix_entries[i].vector, 224 xhci_to_hcd(xhci)); 225 return 0; 226 } 227 228 /* 229 * Set up MSI 230 */ 231 static int xhci_setup_msi(struct xhci_hcd *xhci) 232 { 233 int ret; 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 236 ret = pci_enable_msi(pdev); 237 if (ret) { 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "failed to allocate MSI entry"); 240 return ret; 241 } 242 243 ret = request_irq(pdev->irq, xhci_msi_irq, 244 0, "xhci_hcd", xhci_to_hcd(xhci)); 245 if (ret) { 246 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 247 "disable MSI interrupt"); 248 pci_disable_msi(pdev); 249 } 250 251 return ret; 252 } 253 254 /* 255 * Free IRQs 256 * free all IRQs request 257 */ 258 static void xhci_free_irq(struct xhci_hcd *xhci) 259 { 260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 261 int ret; 262 263 /* return if using legacy interrupt */ 264 if (xhci_to_hcd(xhci)->irq > 0) 265 return; 266 267 ret = xhci_free_msi(xhci); 268 if (!ret) 269 return; 270 if (pdev->irq > 0) 271 free_irq(pdev->irq, xhci_to_hcd(xhci)); 272 273 return; 274 } 275 276 /* 277 * Set up MSI-X 278 */ 279 static int xhci_setup_msix(struct xhci_hcd *xhci) 280 { 281 int i, ret = 0; 282 struct usb_hcd *hcd = xhci_to_hcd(xhci); 283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 284 285 /* 286 * calculate number of msi-x vectors supported. 287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 288 * with max number of interrupters based on the xhci HCSPARAMS1. 289 * - num_online_cpus: maximum msi-x vectors per CPUs core. 290 * Add additional 1 vector to ensure always available interrupt. 291 */ 292 xhci->msix_count = min(num_online_cpus() + 1, 293 HCS_MAX_INTRS(xhci->hcs_params1)); 294 295 xhci->msix_entries = 296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 297 GFP_KERNEL); 298 if (!xhci->msix_entries) { 299 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 300 return -ENOMEM; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 xhci->msix_entries[i].entry = i; 305 xhci->msix_entries[i].vector = 0; 306 } 307 308 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 309 if (ret) { 310 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 311 "Failed to enable MSI-X"); 312 goto free_entries; 313 } 314 315 for (i = 0; i < xhci->msix_count; i++) { 316 ret = request_irq(xhci->msix_entries[i].vector, 317 xhci_msi_irq, 318 0, "xhci_hcd", xhci_to_hcd(xhci)); 319 if (ret) 320 goto disable_msix; 321 } 322 323 hcd->msix_enabled = 1; 324 return ret; 325 326 disable_msix: 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 328 xhci_free_irq(xhci); 329 pci_disable_msix(pdev); 330 free_entries: 331 kfree(xhci->msix_entries); 332 xhci->msix_entries = NULL; 333 return ret; 334 } 335 336 /* Free any IRQs and disable MSI-X */ 337 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 338 { 339 struct usb_hcd *hcd = xhci_to_hcd(xhci); 340 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 341 342 if (xhci->quirks & XHCI_PLAT) 343 return; 344 345 xhci_free_irq(xhci); 346 347 if (xhci->msix_entries) { 348 pci_disable_msix(pdev); 349 kfree(xhci->msix_entries); 350 xhci->msix_entries = NULL; 351 } else { 352 pci_disable_msi(pdev); 353 } 354 355 hcd->msix_enabled = 0; 356 return; 357 } 358 359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 360 { 361 int i; 362 363 if (xhci->msix_entries) { 364 for (i = 0; i < xhci->msix_count; i++) 365 synchronize_irq(xhci->msix_entries[i].vector); 366 } 367 } 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 372 struct pci_dev *pdev; 373 int ret; 374 375 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 376 if (xhci->quirks & XHCI_PLAT) 377 return 0; 378 379 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 380 /* 381 * Some Fresco Logic host controllers advertise MSI, but fail to 382 * generate interrupts. Don't even try to enable MSI. 383 */ 384 if (xhci->quirks & XHCI_BROKEN_MSI) 385 goto legacy_irq; 386 387 /* unregister the legacy interrupt */ 388 if (hcd->irq) 389 free_irq(hcd->irq, hcd); 390 hcd->irq = 0; 391 392 ret = xhci_setup_msix(xhci); 393 if (ret) 394 /* fall back to msi*/ 395 ret = xhci_setup_msi(xhci); 396 397 if (!ret) 398 /* hcd->irq is 0, we have MSI */ 399 return 0; 400 401 if (!pdev->irq) { 402 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 403 return -EINVAL; 404 } 405 406 legacy_irq: 407 if (!strlen(hcd->irq_descr)) 408 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 409 hcd->driver->description, hcd->self.busnum); 410 411 /* fall back to legacy interrupt*/ 412 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 413 hcd->irq_descr, hcd); 414 if (ret) { 415 xhci_err(xhci, "request interrupt %d failed\n", 416 pdev->irq); 417 return ret; 418 } 419 hcd->irq = pdev->irq; 420 return 0; 421 } 422 423 #else 424 425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 426 { 427 return 0; 428 } 429 430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 431 { 432 } 433 434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 435 { 436 } 437 438 #endif 439 440 static void compliance_mode_recovery(unsigned long arg) 441 { 442 struct xhci_hcd *xhci; 443 struct usb_hcd *hcd; 444 u32 temp; 445 int i; 446 447 xhci = (struct xhci_hcd *)arg; 448 449 for (i = 0; i < xhci->num_usb3_ports; i++) { 450 temp = readl(xhci->usb3_ports[i]); 451 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 452 /* 453 * Compliance Mode Detected. Letting USB Core 454 * handle the Warm Reset 455 */ 456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 457 "Compliance mode detected->port %d", 458 i + 1); 459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 460 "Attempting compliance mode recovery"); 461 hcd = xhci->shared_hcd; 462 463 if (hcd->state == HC_STATE_SUSPENDED) 464 usb_hcd_resume_root_hub(hcd); 465 466 usb_hcd_poll_rh_status(hcd); 467 } 468 } 469 470 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 471 mod_timer(&xhci->comp_mode_recovery_timer, 472 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 473 } 474 475 /* 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 477 * that causes ports behind that hardware to enter compliance mode sometimes. 478 * The quirk creates a timer that polls every 2 seconds the link state of 479 * each host controller's port and recovers it by issuing a Warm reset 480 * if Compliance mode is detected, otherwise the port will become "dead" (no 481 * device connections or disconnections will be detected anymore). Becasue no 482 * status event is generated when entering compliance mode (per xhci spec), 483 * this quirk is needed on systems that have the failing hardware installed. 484 */ 485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 486 { 487 xhci->port_status_u0 = 0; 488 setup_timer(&xhci->comp_mode_recovery_timer, 489 compliance_mode_recovery, (unsigned long)xhci); 490 xhci->comp_mode_recovery_timer.expires = jiffies + 491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 492 493 set_timer_slack(&xhci->comp_mode_recovery_timer, 494 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 495 add_timer(&xhci->comp_mode_recovery_timer); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode recovery timer initialized"); 498 } 499 500 /* 501 * This function identifies the systems that have installed the SN65LVPE502CP 502 * USB3.0 re-driver and that need the Compliance Mode Quirk. 503 * Systems: 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 505 */ 506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 507 { 508 const char *dmi_product_name, *dmi_sys_vendor; 509 510 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 511 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 512 if (!dmi_product_name || !dmi_sys_vendor) 513 return false; 514 515 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 516 return false; 517 518 if (strstr(dmi_product_name, "Z420") || 519 strstr(dmi_product_name, "Z620") || 520 strstr(dmi_product_name, "Z820") || 521 strstr(dmi_product_name, "Z1 Workstation")) 522 return true; 523 524 return false; 525 } 526 527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 528 { 529 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 530 } 531 532 533 /* 534 * Initialize memory for HCD and xHC (one-time init). 535 * 536 * Program the PAGESIZE register, initialize the device context array, create 537 * device contexts (?), set up a command ring segment (or two?), create event 538 * ring (one for now). 539 */ 540 int xhci_init(struct usb_hcd *hcd) 541 { 542 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 543 int retval = 0; 544 545 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 546 spin_lock_init(&xhci->lock); 547 if (xhci->hci_version == 0x95 && link_quirk) { 548 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 549 "QUIRK: Not clearing Link TRB chain bits."); 550 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 551 } else { 552 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 553 "xHCI doesn't need link TRB QUIRK"); 554 } 555 retval = xhci_mem_init(xhci, GFP_KERNEL); 556 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 557 558 /* Initializing Compliance Mode Recovery Data If Needed */ 559 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 560 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 561 compliance_mode_recovery_timer_init(xhci); 562 } 563 564 return retval; 565 } 566 567 /*-------------------------------------------------------------------------*/ 568 569 570 static int xhci_run_finished(struct xhci_hcd *xhci) 571 { 572 if (xhci_start(xhci)) { 573 xhci_halt(xhci); 574 return -ENODEV; 575 } 576 xhci->shared_hcd->state = HC_STATE_RUNNING; 577 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 578 579 if (xhci->quirks & XHCI_NEC_HOST) 580 xhci_ring_cmd_db(xhci); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "Finished xhci_run for USB3 roothub"); 584 return 0; 585 } 586 587 /* 588 * Start the HC after it was halted. 589 * 590 * This function is called by the USB core when the HC driver is added. 591 * Its opposite is xhci_stop(). 592 * 593 * xhci_init() must be called once before this function can be called. 594 * Reset the HC, enable device slot contexts, program DCBAAP, and 595 * set command ring pointer and event ring pointer. 596 * 597 * Setup MSI-X vectors and enable interrupts. 598 */ 599 int xhci_run(struct usb_hcd *hcd) 600 { 601 u32 temp; 602 u64 temp_64; 603 int ret; 604 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 605 606 /* Start the xHCI host controller running only after the USB 2.0 roothub 607 * is setup. 608 */ 609 610 hcd->uses_new_polling = 1; 611 if (!usb_hcd_is_primary_hcd(hcd)) 612 return xhci_run_finished(xhci); 613 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 615 616 ret = xhci_try_enable_msi(hcd); 617 if (ret) 618 return ret; 619 620 xhci_dbg(xhci, "Command ring memory map follows:\n"); 621 xhci_debug_ring(xhci, xhci->cmd_ring); 622 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 623 xhci_dbg_cmd_ptrs(xhci); 624 625 xhci_dbg(xhci, "ERST memory map follows:\n"); 626 xhci_dbg_erst(xhci, &xhci->erst); 627 xhci_dbg(xhci, "Event ring:\n"); 628 xhci_debug_ring(xhci, xhci->event_ring); 629 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 630 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 631 temp_64 &= ~ERST_PTR_MASK; 632 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 633 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 636 "// Set the interrupt modulation register"); 637 temp = readl(&xhci->ir_set->irq_control); 638 temp &= ~ER_IRQ_INTERVAL_MASK; 639 /* 640 * the increment interval is 8 times as much as that defined 641 * in xHCI spec on MTK's controller 642 */ 643 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 644 writel(temp, &xhci->ir_set->irq_control); 645 646 /* Set the HCD state before we enable the irqs */ 647 temp = readl(&xhci->op_regs->command); 648 temp |= (CMD_EIE); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "// Enable interrupts, cmd = 0x%x.", temp); 651 writel(temp, &xhci->op_regs->command); 652 653 temp = readl(&xhci->ir_set->irq_pending); 654 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 655 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 656 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 657 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 658 xhci_print_ir_set(xhci, 0); 659 660 if (xhci->quirks & XHCI_NEC_HOST) { 661 struct xhci_command *command; 662 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 663 if (!command) 664 return -ENOMEM; 665 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 666 TRB_TYPE(TRB_NEC_GET_FW)); 667 } 668 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 669 "Finished xhci_run for USB2 roothub"); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(xhci_run); 673 674 /* 675 * Stop xHCI driver. 676 * 677 * This function is called by the USB core when the HC driver is removed. 678 * Its opposite is xhci_run(). 679 * 680 * Disable device contexts, disable IRQs, and quiesce the HC. 681 * Reset the HC, finish any completed transactions, and cleanup memory. 682 */ 683 void xhci_stop(struct usb_hcd *hcd) 684 { 685 u32 temp; 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 mutex_lock(&xhci->mutex); 689 690 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 691 spin_lock_irq(&xhci->lock); 692 693 xhci->xhc_state |= XHCI_STATE_HALTED; 694 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 695 xhci_halt(xhci); 696 xhci_reset(xhci); 697 698 spin_unlock_irq(&xhci->lock); 699 } 700 701 if (!usb_hcd_is_primary_hcd(hcd)) { 702 mutex_unlock(&xhci->mutex); 703 return; 704 } 705 706 xhci_cleanup_msix(xhci); 707 708 /* Deleting Compliance Mode Recovery Timer */ 709 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 710 (!(xhci_all_ports_seen_u0(xhci)))) { 711 del_timer_sync(&xhci->comp_mode_recovery_timer); 712 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 713 "%s: compliance mode recovery timer deleted", 714 __func__); 715 } 716 717 if (xhci->quirks & XHCI_AMD_PLL_FIX) 718 usb_amd_dev_put(); 719 720 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 721 "// Disabling event ring interrupts"); 722 temp = readl(&xhci->op_regs->status); 723 writel(temp & ~STS_EINT, &xhci->op_regs->status); 724 temp = readl(&xhci->ir_set->irq_pending); 725 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 726 xhci_print_ir_set(xhci, 0); 727 728 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 729 xhci_mem_cleanup(xhci); 730 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 731 "xhci_stop completed - status = %x", 732 readl(&xhci->op_regs->status)); 733 mutex_unlock(&xhci->mutex); 734 } 735 736 /* 737 * Shutdown HC (not bus-specific) 738 * 739 * This is called when the machine is rebooting or halting. We assume that the 740 * machine will be powered off, and the HC's internal state will be reset. 741 * Don't bother to free memory. 742 * 743 * This will only ever be called with the main usb_hcd (the USB3 roothub). 744 */ 745 void xhci_shutdown(struct usb_hcd *hcd) 746 { 747 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 748 749 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 750 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 751 752 spin_lock_irq(&xhci->lock); 753 xhci_halt(xhci); 754 /* Workaround for spurious wakeups at shutdown with HSW */ 755 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 756 xhci_reset(xhci); 757 spin_unlock_irq(&xhci->lock); 758 759 xhci_cleanup_msix(xhci); 760 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_shutdown completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 765 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 766 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 767 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 768 } 769 770 #ifdef CONFIG_PM 771 static void xhci_save_registers(struct xhci_hcd *xhci) 772 { 773 xhci->s3.command = readl(&xhci->op_regs->command); 774 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 775 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 776 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 777 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 778 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 779 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 780 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 781 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 782 } 783 784 static void xhci_restore_registers(struct xhci_hcd *xhci) 785 { 786 writel(xhci->s3.command, &xhci->op_regs->command); 787 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 788 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 789 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 790 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 791 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 792 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 793 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 794 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 795 } 796 797 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 798 { 799 u64 val_64; 800 801 /* step 2: initialize command ring buffer */ 802 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 803 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 804 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 805 xhci->cmd_ring->dequeue) & 806 (u64) ~CMD_RING_RSVD_BITS) | 807 xhci->cmd_ring->cycle_state; 808 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 809 "// Setting command ring address to 0x%llx", 810 (long unsigned long) val_64); 811 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 812 } 813 814 /* 815 * The whole command ring must be cleared to zero when we suspend the host. 816 * 817 * The host doesn't save the command ring pointer in the suspend well, so we 818 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 819 * aligned, because of the reserved bits in the command ring dequeue pointer 820 * register. Therefore, we can't just set the dequeue pointer back in the 821 * middle of the ring (TRBs are 16-byte aligned). 822 */ 823 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 824 { 825 struct xhci_ring *ring; 826 struct xhci_segment *seg; 827 828 ring = xhci->cmd_ring; 829 seg = ring->deq_seg; 830 do { 831 memset(seg->trbs, 0, 832 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 833 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 834 cpu_to_le32(~TRB_CYCLE); 835 seg = seg->next; 836 } while (seg != ring->deq_seg); 837 838 /* Reset the software enqueue and dequeue pointers */ 839 ring->deq_seg = ring->first_seg; 840 ring->dequeue = ring->first_seg->trbs; 841 ring->enq_seg = ring->deq_seg; 842 ring->enqueue = ring->dequeue; 843 844 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 845 /* 846 * Ring is now zeroed, so the HW should look for change of ownership 847 * when the cycle bit is set to 1. 848 */ 849 ring->cycle_state = 1; 850 851 /* 852 * Reset the hardware dequeue pointer. 853 * Yes, this will need to be re-written after resume, but we're paranoid 854 * and want to make sure the hardware doesn't access bogus memory 855 * because, say, the BIOS or an SMI started the host without changing 856 * the command ring pointers. 857 */ 858 xhci_set_cmd_ring_deq(xhci); 859 } 860 861 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 862 { 863 int port_index; 864 __le32 __iomem **port_array; 865 unsigned long flags; 866 u32 t1, t2; 867 868 spin_lock_irqsave(&xhci->lock, flags); 869 870 /* disble usb3 ports Wake bits*/ 871 port_index = xhci->num_usb3_ports; 872 port_array = xhci->usb3_ports; 873 while (port_index--) { 874 t1 = readl(port_array[port_index]); 875 t1 = xhci_port_state_to_neutral(t1); 876 t2 = t1 & ~PORT_WAKE_BITS; 877 if (t1 != t2) 878 writel(t2, port_array[port_index]); 879 } 880 881 /* disble usb2 ports Wake bits*/ 882 port_index = xhci->num_usb2_ports; 883 port_array = xhci->usb2_ports; 884 while (port_index--) { 885 t1 = readl(port_array[port_index]); 886 t1 = xhci_port_state_to_neutral(t1); 887 t2 = t1 & ~PORT_WAKE_BITS; 888 if (t1 != t2) 889 writel(t2, port_array[port_index]); 890 } 891 892 spin_unlock_irqrestore(&xhci->lock, flags); 893 } 894 895 /* 896 * Stop HC (not bus-specific) 897 * 898 * This is called when the machine transition into S3/S4 mode. 899 * 900 */ 901 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 902 { 903 int rc = 0; 904 unsigned int delay = XHCI_MAX_HALT_USEC; 905 struct usb_hcd *hcd = xhci_to_hcd(xhci); 906 u32 command; 907 908 if (!hcd->state) 909 return 0; 910 911 if (hcd->state != HC_STATE_SUSPENDED || 912 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 913 return -EINVAL; 914 915 /* Clear root port wake on bits if wakeup not allowed. */ 916 if (!do_wakeup) 917 xhci_disable_port_wake_on_bits(xhci); 918 919 /* Don't poll the roothubs on bus suspend. */ 920 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 921 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 922 del_timer_sync(&hcd->rh_timer); 923 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 924 del_timer_sync(&xhci->shared_hcd->rh_timer); 925 926 spin_lock_irq(&xhci->lock); 927 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 929 /* step 1: stop endpoint */ 930 /* skipped assuming that port suspend has done */ 931 932 /* step 2: clear Run/Stop bit */ 933 command = readl(&xhci->op_regs->command); 934 command &= ~CMD_RUN; 935 writel(command, &xhci->op_regs->command); 936 937 /* Some chips from Fresco Logic need an extraordinary delay */ 938 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 939 940 if (xhci_handshake(&xhci->op_regs->status, 941 STS_HALT, STS_HALT, delay)) { 942 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 943 spin_unlock_irq(&xhci->lock); 944 return -ETIMEDOUT; 945 } 946 xhci_clear_command_ring(xhci); 947 948 /* step 3: save registers */ 949 xhci_save_registers(xhci); 950 951 /* step 4: set CSS flag */ 952 command = readl(&xhci->op_regs->command); 953 command |= CMD_CSS; 954 writel(command, &xhci->op_regs->command); 955 if (xhci_handshake(&xhci->op_regs->status, 956 STS_SAVE, 0, 10 * 1000)) { 957 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 958 spin_unlock_irq(&xhci->lock); 959 return -ETIMEDOUT; 960 } 961 spin_unlock_irq(&xhci->lock); 962 963 /* 964 * Deleting Compliance Mode Recovery Timer because the xHCI Host 965 * is about to be suspended. 966 */ 967 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 968 (!(xhci_all_ports_seen_u0(xhci)))) { 969 del_timer_sync(&xhci->comp_mode_recovery_timer); 970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 971 "%s: compliance mode recovery timer deleted", 972 __func__); 973 } 974 975 /* step 5: remove core well power */ 976 /* synchronize irq when using MSI-X */ 977 xhci_msix_sync_irqs(xhci); 978 979 return rc; 980 } 981 EXPORT_SYMBOL_GPL(xhci_suspend); 982 983 /* 984 * start xHC (not bus-specific) 985 * 986 * This is called when the machine transition from S3/S4 mode. 987 * 988 */ 989 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 990 { 991 u32 command, temp = 0, status; 992 struct usb_hcd *hcd = xhci_to_hcd(xhci); 993 struct usb_hcd *secondary_hcd; 994 int retval = 0; 995 bool comp_timer_running = false; 996 997 if (!hcd->state) 998 return 0; 999 1000 /* Wait a bit if either of the roothubs need to settle from the 1001 * transition into bus suspend. 1002 */ 1003 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1004 time_before(jiffies, 1005 xhci->bus_state[1].next_statechange)) 1006 msleep(100); 1007 1008 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1010 1011 spin_lock_irq(&xhci->lock); 1012 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1013 hibernated = true; 1014 1015 if (!hibernated) { 1016 /* step 1: restore register */ 1017 xhci_restore_registers(xhci); 1018 /* step 2: initialize command ring buffer */ 1019 xhci_set_cmd_ring_deq(xhci); 1020 /* step 3: restore state and start state*/ 1021 /* step 3: set CRS flag */ 1022 command = readl(&xhci->op_regs->command); 1023 command |= CMD_CRS; 1024 writel(command, &xhci->op_regs->command); 1025 if (xhci_handshake(&xhci->op_regs->status, 1026 STS_RESTORE, 0, 10 * 1000)) { 1027 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1028 spin_unlock_irq(&xhci->lock); 1029 return -ETIMEDOUT; 1030 } 1031 temp = readl(&xhci->op_regs->status); 1032 } 1033 1034 /* If restore operation fails, re-initialize the HC during resume */ 1035 if ((temp & STS_SRE) || hibernated) { 1036 1037 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1038 !(xhci_all_ports_seen_u0(xhci))) { 1039 del_timer_sync(&xhci->comp_mode_recovery_timer); 1040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1041 "Compliance Mode Recovery Timer deleted!"); 1042 } 1043 1044 /* Let the USB core know _both_ roothubs lost power. */ 1045 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1046 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1047 1048 xhci_dbg(xhci, "Stop HCD\n"); 1049 xhci_halt(xhci); 1050 xhci_reset(xhci); 1051 spin_unlock_irq(&xhci->lock); 1052 xhci_cleanup_msix(xhci); 1053 1054 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1055 temp = readl(&xhci->op_regs->status); 1056 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1057 temp = readl(&xhci->ir_set->irq_pending); 1058 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1059 xhci_print_ir_set(xhci, 0); 1060 1061 xhci_dbg(xhci, "cleaning up memory\n"); 1062 xhci_mem_cleanup(xhci); 1063 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1064 readl(&xhci->op_regs->status)); 1065 1066 /* USB core calls the PCI reinit and start functions twice: 1067 * first with the primary HCD, and then with the secondary HCD. 1068 * If we don't do the same, the host will never be started. 1069 */ 1070 if (!usb_hcd_is_primary_hcd(hcd)) 1071 secondary_hcd = hcd; 1072 else 1073 secondary_hcd = xhci->shared_hcd; 1074 1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1076 retval = xhci_init(hcd->primary_hcd); 1077 if (retval) 1078 return retval; 1079 comp_timer_running = true; 1080 1081 xhci_dbg(xhci, "Start the primary HCD\n"); 1082 retval = xhci_run(hcd->primary_hcd); 1083 if (!retval) { 1084 xhci_dbg(xhci, "Start the secondary HCD\n"); 1085 retval = xhci_run(secondary_hcd); 1086 } 1087 hcd->state = HC_STATE_SUSPENDED; 1088 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1089 goto done; 1090 } 1091 1092 /* step 4: set Run/Stop bit */ 1093 command = readl(&xhci->op_regs->command); 1094 command |= CMD_RUN; 1095 writel(command, &xhci->op_regs->command); 1096 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1097 0, 250 * 1000); 1098 1099 /* step 5: walk topology and initialize portsc, 1100 * portpmsc and portli 1101 */ 1102 /* this is done in bus_resume */ 1103 1104 /* step 6: restart each of the previously 1105 * Running endpoints by ringing their doorbells 1106 */ 1107 1108 spin_unlock_irq(&xhci->lock); 1109 1110 done: 1111 if (retval == 0) { 1112 /* Resume root hubs only when have pending events. */ 1113 status = readl(&xhci->op_regs->status); 1114 if (status & STS_EINT) { 1115 usb_hcd_resume_root_hub(xhci->shared_hcd); 1116 usb_hcd_resume_root_hub(hcd); 1117 } 1118 } 1119 1120 /* 1121 * If system is subject to the Quirk, Compliance Mode Timer needs to 1122 * be re-initialized Always after a system resume. Ports are subject 1123 * to suffer the Compliance Mode issue again. It doesn't matter if 1124 * ports have entered previously to U0 before system's suspension. 1125 */ 1126 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1127 compliance_mode_recovery_timer_init(xhci); 1128 1129 /* Re-enable port polling. */ 1130 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1131 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1132 usb_hcd_poll_rh_status(xhci->shared_hcd); 1133 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1134 usb_hcd_poll_rh_status(hcd); 1135 1136 return retval; 1137 } 1138 EXPORT_SYMBOL_GPL(xhci_resume); 1139 #endif /* CONFIG_PM */ 1140 1141 /*-------------------------------------------------------------------------*/ 1142 1143 /** 1144 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1145 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1146 * value to right shift 1 for the bitmask. 1147 * 1148 * Index = (epnum * 2) + direction - 1, 1149 * where direction = 0 for OUT, 1 for IN. 1150 * For control endpoints, the IN index is used (OUT index is unused), so 1151 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1152 */ 1153 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1154 { 1155 unsigned int index; 1156 if (usb_endpoint_xfer_control(desc)) 1157 index = (unsigned int) (usb_endpoint_num(desc)*2); 1158 else 1159 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1160 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1161 return index; 1162 } 1163 1164 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1165 * address from the XHCI endpoint index. 1166 */ 1167 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1168 { 1169 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1170 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1171 return direction | number; 1172 } 1173 1174 /* Find the flag for this endpoint (for use in the control context). Use the 1175 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1176 * bit 1, etc. 1177 */ 1178 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1179 { 1180 return 1 << (xhci_get_endpoint_index(desc) + 1); 1181 } 1182 1183 /* Find the flag for this endpoint (for use in the control context). Use the 1184 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1185 * bit 1, etc. 1186 */ 1187 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1188 { 1189 return 1 << (ep_index + 1); 1190 } 1191 1192 /* Compute the last valid endpoint context index. Basically, this is the 1193 * endpoint index plus one. For slot contexts with more than valid endpoint, 1194 * we find the most significant bit set in the added contexts flags. 1195 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1196 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1197 */ 1198 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1199 { 1200 return fls(added_ctxs) - 1; 1201 } 1202 1203 /* Returns 1 if the arguments are OK; 1204 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1205 */ 1206 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1207 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1208 const char *func) { 1209 struct xhci_hcd *xhci; 1210 struct xhci_virt_device *virt_dev; 1211 1212 if (!hcd || (check_ep && !ep) || !udev) { 1213 pr_debug("xHCI %s called with invalid args\n", func); 1214 return -EINVAL; 1215 } 1216 if (!udev->parent) { 1217 pr_debug("xHCI %s called for root hub\n", func); 1218 return 0; 1219 } 1220 1221 xhci = hcd_to_xhci(hcd); 1222 if (check_virt_dev) { 1223 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1224 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1225 func); 1226 return -EINVAL; 1227 } 1228 1229 virt_dev = xhci->devs[udev->slot_id]; 1230 if (virt_dev->udev != udev) { 1231 xhci_dbg(xhci, "xHCI %s called with udev and " 1232 "virt_dev does not match\n", func); 1233 return -EINVAL; 1234 } 1235 } 1236 1237 if (xhci->xhc_state & XHCI_STATE_HALTED) 1238 return -ENODEV; 1239 1240 return 1; 1241 } 1242 1243 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1244 struct usb_device *udev, struct xhci_command *command, 1245 bool ctx_change, bool must_succeed); 1246 1247 /* 1248 * Full speed devices may have a max packet size greater than 8 bytes, but the 1249 * USB core doesn't know that until it reads the first 8 bytes of the 1250 * descriptor. If the usb_device's max packet size changes after that point, 1251 * we need to issue an evaluate context command and wait on it. 1252 */ 1253 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1254 unsigned int ep_index, struct urb *urb) 1255 { 1256 struct xhci_container_ctx *out_ctx; 1257 struct xhci_input_control_ctx *ctrl_ctx; 1258 struct xhci_ep_ctx *ep_ctx; 1259 struct xhci_command *command; 1260 int max_packet_size; 1261 int hw_max_packet_size; 1262 int ret = 0; 1263 1264 out_ctx = xhci->devs[slot_id]->out_ctx; 1265 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1266 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1267 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1268 if (hw_max_packet_size != max_packet_size) { 1269 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1270 "Max Packet Size for ep 0 changed."); 1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1272 "Max packet size in usb_device = %d", 1273 max_packet_size); 1274 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1275 "Max packet size in xHCI HW = %d", 1276 hw_max_packet_size); 1277 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1278 "Issuing evaluate context command."); 1279 1280 /* Set up the input context flags for the command */ 1281 /* FIXME: This won't work if a non-default control endpoint 1282 * changes max packet sizes. 1283 */ 1284 1285 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1286 if (!command) 1287 return -ENOMEM; 1288 1289 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1290 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1291 if (!ctrl_ctx) { 1292 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1293 __func__); 1294 ret = -ENOMEM; 1295 goto command_cleanup; 1296 } 1297 /* Set up the modified control endpoint 0 */ 1298 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1299 xhci->devs[slot_id]->out_ctx, ep_index); 1300 1301 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1302 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1303 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1304 1305 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1306 ctrl_ctx->drop_flags = 0; 1307 1308 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1309 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1310 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1311 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1312 1313 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1314 true, false); 1315 1316 /* Clean up the input context for later use by bandwidth 1317 * functions. 1318 */ 1319 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1320 command_cleanup: 1321 kfree(command->completion); 1322 kfree(command); 1323 } 1324 return ret; 1325 } 1326 1327 /* 1328 * non-error returns are a promise to giveback() the urb later 1329 * we drop ownership so next owner (or urb unlink) can get it 1330 */ 1331 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1332 { 1333 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1334 struct xhci_td *buffer; 1335 unsigned long flags; 1336 int ret = 0; 1337 unsigned int slot_id, ep_index; 1338 struct urb_priv *urb_priv; 1339 int size, i; 1340 1341 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1342 true, true, __func__) <= 0) 1343 return -EINVAL; 1344 1345 slot_id = urb->dev->slot_id; 1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1347 1348 if (!HCD_HW_ACCESSIBLE(hcd)) { 1349 if (!in_interrupt()) 1350 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1351 ret = -ESHUTDOWN; 1352 goto exit; 1353 } 1354 1355 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1356 size = urb->number_of_packets; 1357 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1358 urb->transfer_buffer_length > 0 && 1359 urb->transfer_flags & URB_ZERO_PACKET && 1360 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1361 size = 2; 1362 else 1363 size = 1; 1364 1365 urb_priv = kzalloc(sizeof(struct urb_priv) + 1366 size * sizeof(struct xhci_td *), mem_flags); 1367 if (!urb_priv) 1368 return -ENOMEM; 1369 1370 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1371 if (!buffer) { 1372 kfree(urb_priv); 1373 return -ENOMEM; 1374 } 1375 1376 for (i = 0; i < size; i++) { 1377 urb_priv->td[i] = buffer; 1378 buffer++; 1379 } 1380 1381 urb_priv->length = size; 1382 urb_priv->td_cnt = 0; 1383 urb->hcpriv = urb_priv; 1384 1385 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1386 /* Check to see if the max packet size for the default control 1387 * endpoint changed during FS device enumeration 1388 */ 1389 if (urb->dev->speed == USB_SPEED_FULL) { 1390 ret = xhci_check_maxpacket(xhci, slot_id, 1391 ep_index, urb); 1392 if (ret < 0) { 1393 xhci_urb_free_priv(urb_priv); 1394 urb->hcpriv = NULL; 1395 return ret; 1396 } 1397 } 1398 1399 /* We have a spinlock and interrupts disabled, so we must pass 1400 * atomic context to this function, which may allocate memory. 1401 */ 1402 spin_lock_irqsave(&xhci->lock, flags); 1403 if (xhci->xhc_state & XHCI_STATE_DYING) 1404 goto dying; 1405 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1406 slot_id, ep_index); 1407 if (ret) 1408 goto free_priv; 1409 spin_unlock_irqrestore(&xhci->lock, flags); 1410 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1411 spin_lock_irqsave(&xhci->lock, flags); 1412 if (xhci->xhc_state & XHCI_STATE_DYING) 1413 goto dying; 1414 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1415 EP_GETTING_STREAMS) { 1416 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1417 "is transitioning to using streams.\n"); 1418 ret = -EINVAL; 1419 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1420 EP_GETTING_NO_STREAMS) { 1421 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1422 "is transitioning to " 1423 "not having streams.\n"); 1424 ret = -EINVAL; 1425 } else { 1426 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1427 slot_id, ep_index); 1428 } 1429 if (ret) 1430 goto free_priv; 1431 spin_unlock_irqrestore(&xhci->lock, flags); 1432 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1433 spin_lock_irqsave(&xhci->lock, flags); 1434 if (xhci->xhc_state & XHCI_STATE_DYING) 1435 goto dying; 1436 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1437 slot_id, ep_index); 1438 if (ret) 1439 goto free_priv; 1440 spin_unlock_irqrestore(&xhci->lock, flags); 1441 } else { 1442 spin_lock_irqsave(&xhci->lock, flags); 1443 if (xhci->xhc_state & XHCI_STATE_DYING) 1444 goto dying; 1445 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1446 slot_id, ep_index); 1447 if (ret) 1448 goto free_priv; 1449 spin_unlock_irqrestore(&xhci->lock, flags); 1450 } 1451 exit: 1452 return ret; 1453 dying: 1454 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1455 "non-responsive xHCI host.\n", 1456 urb->ep->desc.bEndpointAddress, urb); 1457 ret = -ESHUTDOWN; 1458 free_priv: 1459 xhci_urb_free_priv(urb_priv); 1460 urb->hcpriv = NULL; 1461 spin_unlock_irqrestore(&xhci->lock, flags); 1462 return ret; 1463 } 1464 1465 /* 1466 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1467 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1468 * should pick up where it left off in the TD, unless a Set Transfer Ring 1469 * Dequeue Pointer is issued. 1470 * 1471 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1472 * the ring. Since the ring is a contiguous structure, they can't be physically 1473 * removed. Instead, there are two options: 1474 * 1475 * 1) If the HC is in the middle of processing the URB to be canceled, we 1476 * simply move the ring's dequeue pointer past those TRBs using the Set 1477 * Transfer Ring Dequeue Pointer command. This will be the common case, 1478 * when drivers timeout on the last submitted URB and attempt to cancel. 1479 * 1480 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1481 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1482 * HC will need to invalidate the any TRBs it has cached after the stop 1483 * endpoint command, as noted in the xHCI 0.95 errata. 1484 * 1485 * 3) The TD may have completed by the time the Stop Endpoint Command 1486 * completes, so software needs to handle that case too. 1487 * 1488 * This function should protect against the TD enqueueing code ringing the 1489 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1490 * It also needs to account for multiple cancellations on happening at the same 1491 * time for the same endpoint. 1492 * 1493 * Note that this function can be called in any context, or so says 1494 * usb_hcd_unlink_urb() 1495 */ 1496 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1497 { 1498 unsigned long flags; 1499 int ret, i; 1500 u32 temp; 1501 struct xhci_hcd *xhci; 1502 struct urb_priv *urb_priv; 1503 struct xhci_td *td; 1504 unsigned int ep_index; 1505 struct xhci_ring *ep_ring; 1506 struct xhci_virt_ep *ep; 1507 struct xhci_command *command; 1508 1509 xhci = hcd_to_xhci(hcd); 1510 spin_lock_irqsave(&xhci->lock, flags); 1511 /* Make sure the URB hasn't completed or been unlinked already */ 1512 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1513 if (ret || !urb->hcpriv) 1514 goto done; 1515 temp = readl(&xhci->op_regs->status); 1516 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1517 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1518 "HW died, freeing TD."); 1519 urb_priv = urb->hcpriv; 1520 for (i = urb_priv->td_cnt; 1521 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1522 i++) { 1523 td = urb_priv->td[i]; 1524 if (!list_empty(&td->td_list)) 1525 list_del_init(&td->td_list); 1526 if (!list_empty(&td->cancelled_td_list)) 1527 list_del_init(&td->cancelled_td_list); 1528 } 1529 1530 usb_hcd_unlink_urb_from_ep(hcd, urb); 1531 spin_unlock_irqrestore(&xhci->lock, flags); 1532 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1533 xhci_urb_free_priv(urb_priv); 1534 return ret; 1535 } 1536 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1537 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1539 "Ep 0x%x: URB %p to be canceled on " 1540 "non-responsive xHCI host.", 1541 urb->ep->desc.bEndpointAddress, urb); 1542 /* Let the stop endpoint command watchdog timer (which set this 1543 * state) finish cleaning up the endpoint TD lists. We must 1544 * have caught it in the middle of dropping a lock and giving 1545 * back an URB. 1546 */ 1547 goto done; 1548 } 1549 1550 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1551 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1552 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1553 if (!ep_ring) { 1554 ret = -EINVAL; 1555 goto done; 1556 } 1557 1558 urb_priv = urb->hcpriv; 1559 i = urb_priv->td_cnt; 1560 if (i < urb_priv->length) 1561 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1562 "Cancel URB %p, dev %s, ep 0x%x, " 1563 "starting at offset 0x%llx", 1564 urb, urb->dev->devpath, 1565 urb->ep->desc.bEndpointAddress, 1566 (unsigned long long) xhci_trb_virt_to_dma( 1567 urb_priv->td[i]->start_seg, 1568 urb_priv->td[i]->first_trb)); 1569 1570 for (; i < urb_priv->length; i++) { 1571 td = urb_priv->td[i]; 1572 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1573 } 1574 1575 /* Queue a stop endpoint command, but only if this is 1576 * the first cancellation to be handled. 1577 */ 1578 if (!(ep->ep_state & EP_HALT_PENDING)) { 1579 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1580 if (!command) { 1581 ret = -ENOMEM; 1582 goto done; 1583 } 1584 ep->ep_state |= EP_HALT_PENDING; 1585 ep->stop_cmds_pending++; 1586 ep->stop_cmd_timer.expires = jiffies + 1587 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1588 add_timer(&ep->stop_cmd_timer); 1589 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1590 ep_index, 0); 1591 xhci_ring_cmd_db(xhci); 1592 } 1593 done: 1594 spin_unlock_irqrestore(&xhci->lock, flags); 1595 return ret; 1596 } 1597 1598 /* Drop an endpoint from a new bandwidth configuration for this device. 1599 * Only one call to this function is allowed per endpoint before 1600 * check_bandwidth() or reset_bandwidth() must be called. 1601 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1602 * add the endpoint to the schedule with possibly new parameters denoted by a 1603 * different endpoint descriptor in usb_host_endpoint. 1604 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1605 * not allowed. 1606 * 1607 * The USB core will not allow URBs to be queued to an endpoint that is being 1608 * disabled, so there's no need for mutual exclusion to protect 1609 * the xhci->devs[slot_id] structure. 1610 */ 1611 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1612 struct usb_host_endpoint *ep) 1613 { 1614 struct xhci_hcd *xhci; 1615 struct xhci_container_ctx *in_ctx, *out_ctx; 1616 struct xhci_input_control_ctx *ctrl_ctx; 1617 unsigned int ep_index; 1618 struct xhci_ep_ctx *ep_ctx; 1619 u32 drop_flag; 1620 u32 new_add_flags, new_drop_flags; 1621 int ret; 1622 1623 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1624 if (ret <= 0) 1625 return ret; 1626 xhci = hcd_to_xhci(hcd); 1627 if (xhci->xhc_state & XHCI_STATE_DYING) 1628 return -ENODEV; 1629 1630 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1631 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1632 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1633 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1634 __func__, drop_flag); 1635 return 0; 1636 } 1637 1638 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1639 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1640 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1641 if (!ctrl_ctx) { 1642 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1643 __func__); 1644 return 0; 1645 } 1646 1647 ep_index = xhci_get_endpoint_index(&ep->desc); 1648 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1649 /* If the HC already knows the endpoint is disabled, 1650 * or the HCD has noted it is disabled, ignore this request 1651 */ 1652 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1653 cpu_to_le32(EP_STATE_DISABLED)) || 1654 le32_to_cpu(ctrl_ctx->drop_flags) & 1655 xhci_get_endpoint_flag(&ep->desc)) { 1656 /* Do not warn when called after a usb_device_reset */ 1657 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1658 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1659 __func__, ep); 1660 return 0; 1661 } 1662 1663 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1664 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1665 1666 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1667 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1668 1669 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1670 1671 if (xhci->quirks & XHCI_MTK_HOST) 1672 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1673 1674 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1675 (unsigned int) ep->desc.bEndpointAddress, 1676 udev->slot_id, 1677 (unsigned int) new_drop_flags, 1678 (unsigned int) new_add_flags); 1679 return 0; 1680 } 1681 1682 /* Add an endpoint to a new possible bandwidth configuration for this device. 1683 * Only one call to this function is allowed per endpoint before 1684 * check_bandwidth() or reset_bandwidth() must be called. 1685 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1686 * add the endpoint to the schedule with possibly new parameters denoted by a 1687 * different endpoint descriptor in usb_host_endpoint. 1688 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1689 * not allowed. 1690 * 1691 * The USB core will not allow URBs to be queued to an endpoint until the 1692 * configuration or alt setting is installed in the device, so there's no need 1693 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1694 */ 1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1696 struct usb_host_endpoint *ep) 1697 { 1698 struct xhci_hcd *xhci; 1699 struct xhci_container_ctx *in_ctx; 1700 unsigned int ep_index; 1701 struct xhci_input_control_ctx *ctrl_ctx; 1702 u32 added_ctxs; 1703 u32 new_add_flags, new_drop_flags; 1704 struct xhci_virt_device *virt_dev; 1705 int ret = 0; 1706 1707 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1708 if (ret <= 0) { 1709 /* So we won't queue a reset ep command for a root hub */ 1710 ep->hcpriv = NULL; 1711 return ret; 1712 } 1713 xhci = hcd_to_xhci(hcd); 1714 if (xhci->xhc_state & XHCI_STATE_DYING) 1715 return -ENODEV; 1716 1717 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1718 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1719 /* FIXME when we have to issue an evaluate endpoint command to 1720 * deal with ep0 max packet size changing once we get the 1721 * descriptors 1722 */ 1723 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1724 __func__, added_ctxs); 1725 return 0; 1726 } 1727 1728 virt_dev = xhci->devs[udev->slot_id]; 1729 in_ctx = virt_dev->in_ctx; 1730 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1731 if (!ctrl_ctx) { 1732 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1733 __func__); 1734 return 0; 1735 } 1736 1737 ep_index = xhci_get_endpoint_index(&ep->desc); 1738 /* If this endpoint is already in use, and the upper layers are trying 1739 * to add it again without dropping it, reject the addition. 1740 */ 1741 if (virt_dev->eps[ep_index].ring && 1742 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1743 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1744 "without dropping it.\n", 1745 (unsigned int) ep->desc.bEndpointAddress); 1746 return -EINVAL; 1747 } 1748 1749 /* If the HCD has already noted the endpoint is enabled, 1750 * ignore this request. 1751 */ 1752 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1753 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1754 __func__, ep); 1755 return 0; 1756 } 1757 1758 /* 1759 * Configuration and alternate setting changes must be done in 1760 * process context, not interrupt context (or so documenation 1761 * for usb_set_interface() and usb_set_configuration() claim). 1762 */ 1763 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1764 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1765 __func__, ep->desc.bEndpointAddress); 1766 return -ENOMEM; 1767 } 1768 1769 if (xhci->quirks & XHCI_MTK_HOST) { 1770 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1771 if (ret < 0) { 1772 xhci_free_or_cache_endpoint_ring(xhci, 1773 virt_dev, ep_index); 1774 return ret; 1775 } 1776 } 1777 1778 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1779 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1780 1781 /* If xhci_endpoint_disable() was called for this endpoint, but the 1782 * xHC hasn't been notified yet through the check_bandwidth() call, 1783 * this re-adds a new state for the endpoint from the new endpoint 1784 * descriptors. We must drop and re-add this endpoint, so we leave the 1785 * drop flags alone. 1786 */ 1787 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1788 1789 /* Store the usb_device pointer for later use */ 1790 ep->hcpriv = udev; 1791 1792 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1793 (unsigned int) ep->desc.bEndpointAddress, 1794 udev->slot_id, 1795 (unsigned int) new_drop_flags, 1796 (unsigned int) new_add_flags); 1797 return 0; 1798 } 1799 1800 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1801 { 1802 struct xhci_input_control_ctx *ctrl_ctx; 1803 struct xhci_ep_ctx *ep_ctx; 1804 struct xhci_slot_ctx *slot_ctx; 1805 int i; 1806 1807 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1808 if (!ctrl_ctx) { 1809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1810 __func__); 1811 return; 1812 } 1813 1814 /* When a device's add flag and drop flag are zero, any subsequent 1815 * configure endpoint command will leave that endpoint's state 1816 * untouched. Make sure we don't leave any old state in the input 1817 * endpoint contexts. 1818 */ 1819 ctrl_ctx->drop_flags = 0; 1820 ctrl_ctx->add_flags = 0; 1821 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1822 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1823 /* Endpoint 0 is always valid */ 1824 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1825 for (i = 1; i < 31; ++i) { 1826 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1827 ep_ctx->ep_info = 0; 1828 ep_ctx->ep_info2 = 0; 1829 ep_ctx->deq = 0; 1830 ep_ctx->tx_info = 0; 1831 } 1832 } 1833 1834 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1835 struct usb_device *udev, u32 *cmd_status) 1836 { 1837 int ret; 1838 1839 switch (*cmd_status) { 1840 case COMP_CMD_ABORT: 1841 case COMP_CMD_STOP: 1842 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1843 ret = -ETIME; 1844 break; 1845 case COMP_ENOMEM: 1846 dev_warn(&udev->dev, 1847 "Not enough host controller resources for new device state.\n"); 1848 ret = -ENOMEM; 1849 /* FIXME: can we allocate more resources for the HC? */ 1850 break; 1851 case COMP_BW_ERR: 1852 case COMP_2ND_BW_ERR: 1853 dev_warn(&udev->dev, 1854 "Not enough bandwidth for new device state.\n"); 1855 ret = -ENOSPC; 1856 /* FIXME: can we go back to the old state? */ 1857 break; 1858 case COMP_TRB_ERR: 1859 /* the HCD set up something wrong */ 1860 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1861 "add flag = 1, " 1862 "and endpoint is not disabled.\n"); 1863 ret = -EINVAL; 1864 break; 1865 case COMP_DEV_ERR: 1866 dev_warn(&udev->dev, 1867 "ERROR: Incompatible device for endpoint configure command.\n"); 1868 ret = -ENODEV; 1869 break; 1870 case COMP_SUCCESS: 1871 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1872 "Successful Endpoint Configure command"); 1873 ret = 0; 1874 break; 1875 default: 1876 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1877 *cmd_status); 1878 ret = -EINVAL; 1879 break; 1880 } 1881 return ret; 1882 } 1883 1884 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1885 struct usb_device *udev, u32 *cmd_status) 1886 { 1887 int ret; 1888 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1889 1890 switch (*cmd_status) { 1891 case COMP_CMD_ABORT: 1892 case COMP_CMD_STOP: 1893 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1894 ret = -ETIME; 1895 break; 1896 case COMP_EINVAL: 1897 dev_warn(&udev->dev, 1898 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1899 ret = -EINVAL; 1900 break; 1901 case COMP_EBADSLT: 1902 dev_warn(&udev->dev, 1903 "WARN: slot not enabled for evaluate context command.\n"); 1904 ret = -EINVAL; 1905 break; 1906 case COMP_CTX_STATE: 1907 dev_warn(&udev->dev, 1908 "WARN: invalid context state for evaluate context command.\n"); 1909 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1910 ret = -EINVAL; 1911 break; 1912 case COMP_DEV_ERR: 1913 dev_warn(&udev->dev, 1914 "ERROR: Incompatible device for evaluate context command.\n"); 1915 ret = -ENODEV; 1916 break; 1917 case COMP_MEL_ERR: 1918 /* Max Exit Latency too large error */ 1919 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1920 ret = -EINVAL; 1921 break; 1922 case COMP_SUCCESS: 1923 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1924 "Successful evaluate context command"); 1925 ret = 0; 1926 break; 1927 default: 1928 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1929 *cmd_status); 1930 ret = -EINVAL; 1931 break; 1932 } 1933 return ret; 1934 } 1935 1936 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1937 struct xhci_input_control_ctx *ctrl_ctx) 1938 { 1939 u32 valid_add_flags; 1940 u32 valid_drop_flags; 1941 1942 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1943 * (bit 1). The default control endpoint is added during the Address 1944 * Device command and is never removed until the slot is disabled. 1945 */ 1946 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1947 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1948 1949 /* Use hweight32 to count the number of ones in the add flags, or 1950 * number of endpoints added. Don't count endpoints that are changed 1951 * (both added and dropped). 1952 */ 1953 return hweight32(valid_add_flags) - 1954 hweight32(valid_add_flags & valid_drop_flags); 1955 } 1956 1957 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1958 struct xhci_input_control_ctx *ctrl_ctx) 1959 { 1960 u32 valid_add_flags; 1961 u32 valid_drop_flags; 1962 1963 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1964 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1965 1966 return hweight32(valid_drop_flags) - 1967 hweight32(valid_add_flags & valid_drop_flags); 1968 } 1969 1970 /* 1971 * We need to reserve the new number of endpoints before the configure endpoint 1972 * command completes. We can't subtract the dropped endpoints from the number 1973 * of active endpoints until the command completes because we can oversubscribe 1974 * the host in this case: 1975 * 1976 * - the first configure endpoint command drops more endpoints than it adds 1977 * - a second configure endpoint command that adds more endpoints is queued 1978 * - the first configure endpoint command fails, so the config is unchanged 1979 * - the second command may succeed, even though there isn't enough resources 1980 * 1981 * Must be called with xhci->lock held. 1982 */ 1983 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1984 struct xhci_input_control_ctx *ctrl_ctx) 1985 { 1986 u32 added_eps; 1987 1988 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1989 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1990 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1991 "Not enough ep ctxs: " 1992 "%u active, need to add %u, limit is %u.", 1993 xhci->num_active_eps, added_eps, 1994 xhci->limit_active_eps); 1995 return -ENOMEM; 1996 } 1997 xhci->num_active_eps += added_eps; 1998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1999 "Adding %u ep ctxs, %u now active.", added_eps, 2000 xhci->num_active_eps); 2001 return 0; 2002 } 2003 2004 /* 2005 * The configure endpoint was failed by the xHC for some other reason, so we 2006 * need to revert the resources that failed configuration would have used. 2007 * 2008 * Must be called with xhci->lock held. 2009 */ 2010 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2011 struct xhci_input_control_ctx *ctrl_ctx) 2012 { 2013 u32 num_failed_eps; 2014 2015 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2016 xhci->num_active_eps -= num_failed_eps; 2017 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2018 "Removing %u failed ep ctxs, %u now active.", 2019 num_failed_eps, 2020 xhci->num_active_eps); 2021 } 2022 2023 /* 2024 * Now that the command has completed, clean up the active endpoint count by 2025 * subtracting out the endpoints that were dropped (but not changed). 2026 * 2027 * Must be called with xhci->lock held. 2028 */ 2029 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2030 struct xhci_input_control_ctx *ctrl_ctx) 2031 { 2032 u32 num_dropped_eps; 2033 2034 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2035 xhci->num_active_eps -= num_dropped_eps; 2036 if (num_dropped_eps) 2037 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2038 "Removing %u dropped ep ctxs, %u now active.", 2039 num_dropped_eps, 2040 xhci->num_active_eps); 2041 } 2042 2043 static unsigned int xhci_get_block_size(struct usb_device *udev) 2044 { 2045 switch (udev->speed) { 2046 case USB_SPEED_LOW: 2047 case USB_SPEED_FULL: 2048 return FS_BLOCK; 2049 case USB_SPEED_HIGH: 2050 return HS_BLOCK; 2051 case USB_SPEED_SUPER: 2052 case USB_SPEED_SUPER_PLUS: 2053 return SS_BLOCK; 2054 case USB_SPEED_UNKNOWN: 2055 case USB_SPEED_WIRELESS: 2056 default: 2057 /* Should never happen */ 2058 return 1; 2059 } 2060 } 2061 2062 static unsigned int 2063 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2064 { 2065 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2066 return LS_OVERHEAD; 2067 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2068 return FS_OVERHEAD; 2069 return HS_OVERHEAD; 2070 } 2071 2072 /* If we are changing a LS/FS device under a HS hub, 2073 * make sure (if we are activating a new TT) that the HS bus has enough 2074 * bandwidth for this new TT. 2075 */ 2076 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2077 struct xhci_virt_device *virt_dev, 2078 int old_active_eps) 2079 { 2080 struct xhci_interval_bw_table *bw_table; 2081 struct xhci_tt_bw_info *tt_info; 2082 2083 /* Find the bandwidth table for the root port this TT is attached to. */ 2084 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2085 tt_info = virt_dev->tt_info; 2086 /* If this TT already had active endpoints, the bandwidth for this TT 2087 * has already been added. Removing all periodic endpoints (and thus 2088 * making the TT enactive) will only decrease the bandwidth used. 2089 */ 2090 if (old_active_eps) 2091 return 0; 2092 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2093 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2094 return -ENOMEM; 2095 return 0; 2096 } 2097 /* Not sure why we would have no new active endpoints... 2098 * 2099 * Maybe because of an Evaluate Context change for a hub update or a 2100 * control endpoint 0 max packet size change? 2101 * FIXME: skip the bandwidth calculation in that case. 2102 */ 2103 return 0; 2104 } 2105 2106 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2107 struct xhci_virt_device *virt_dev) 2108 { 2109 unsigned int bw_reserved; 2110 2111 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2112 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2113 return -ENOMEM; 2114 2115 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2116 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2117 return -ENOMEM; 2118 2119 return 0; 2120 } 2121 2122 /* 2123 * This algorithm is a very conservative estimate of the worst-case scheduling 2124 * scenario for any one interval. The hardware dynamically schedules the 2125 * packets, so we can't tell which microframe could be the limiting factor in 2126 * the bandwidth scheduling. This only takes into account periodic endpoints. 2127 * 2128 * Obviously, we can't solve an NP complete problem to find the minimum worst 2129 * case scenario. Instead, we come up with an estimate that is no less than 2130 * the worst case bandwidth used for any one microframe, but may be an 2131 * over-estimate. 2132 * 2133 * We walk the requirements for each endpoint by interval, starting with the 2134 * smallest interval, and place packets in the schedule where there is only one 2135 * possible way to schedule packets for that interval. In order to simplify 2136 * this algorithm, we record the largest max packet size for each interval, and 2137 * assume all packets will be that size. 2138 * 2139 * For interval 0, we obviously must schedule all packets for each interval. 2140 * The bandwidth for interval 0 is just the amount of data to be transmitted 2141 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2142 * the number of packets). 2143 * 2144 * For interval 1, we have two possible microframes to schedule those packets 2145 * in. For this algorithm, if we can schedule the same number of packets for 2146 * each possible scheduling opportunity (each microframe), we will do so. The 2147 * remaining number of packets will be saved to be transmitted in the gaps in 2148 * the next interval's scheduling sequence. 2149 * 2150 * As we move those remaining packets to be scheduled with interval 2 packets, 2151 * we have to double the number of remaining packets to transmit. This is 2152 * because the intervals are actually powers of 2, and we would be transmitting 2153 * the previous interval's packets twice in this interval. We also have to be 2154 * sure that when we look at the largest max packet size for this interval, we 2155 * also look at the largest max packet size for the remaining packets and take 2156 * the greater of the two. 2157 * 2158 * The algorithm continues to evenly distribute packets in each scheduling 2159 * opportunity, and push the remaining packets out, until we get to the last 2160 * interval. Then those packets and their associated overhead are just added 2161 * to the bandwidth used. 2162 */ 2163 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2164 struct xhci_virt_device *virt_dev, 2165 int old_active_eps) 2166 { 2167 unsigned int bw_reserved; 2168 unsigned int max_bandwidth; 2169 unsigned int bw_used; 2170 unsigned int block_size; 2171 struct xhci_interval_bw_table *bw_table; 2172 unsigned int packet_size = 0; 2173 unsigned int overhead = 0; 2174 unsigned int packets_transmitted = 0; 2175 unsigned int packets_remaining = 0; 2176 unsigned int i; 2177 2178 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2179 return xhci_check_ss_bw(xhci, virt_dev); 2180 2181 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2182 max_bandwidth = HS_BW_LIMIT; 2183 /* Convert percent of bus BW reserved to blocks reserved */ 2184 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2185 } else { 2186 max_bandwidth = FS_BW_LIMIT; 2187 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2188 } 2189 2190 bw_table = virt_dev->bw_table; 2191 /* We need to translate the max packet size and max ESIT payloads into 2192 * the units the hardware uses. 2193 */ 2194 block_size = xhci_get_block_size(virt_dev->udev); 2195 2196 /* If we are manipulating a LS/FS device under a HS hub, double check 2197 * that the HS bus has enough bandwidth if we are activing a new TT. 2198 */ 2199 if (virt_dev->tt_info) { 2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2201 "Recalculating BW for rootport %u", 2202 virt_dev->real_port); 2203 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2204 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2205 "newly activated TT.\n"); 2206 return -ENOMEM; 2207 } 2208 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2209 "Recalculating BW for TT slot %u port %u", 2210 virt_dev->tt_info->slot_id, 2211 virt_dev->tt_info->ttport); 2212 } else { 2213 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2214 "Recalculating BW for rootport %u", 2215 virt_dev->real_port); 2216 } 2217 2218 /* Add in how much bandwidth will be used for interval zero, or the 2219 * rounded max ESIT payload + number of packets * largest overhead. 2220 */ 2221 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2222 bw_table->interval_bw[0].num_packets * 2223 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2224 2225 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2226 unsigned int bw_added; 2227 unsigned int largest_mps; 2228 unsigned int interval_overhead; 2229 2230 /* 2231 * How many packets could we transmit in this interval? 2232 * If packets didn't fit in the previous interval, we will need 2233 * to transmit that many packets twice within this interval. 2234 */ 2235 packets_remaining = 2 * packets_remaining + 2236 bw_table->interval_bw[i].num_packets; 2237 2238 /* Find the largest max packet size of this or the previous 2239 * interval. 2240 */ 2241 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2242 largest_mps = 0; 2243 else { 2244 struct xhci_virt_ep *virt_ep; 2245 struct list_head *ep_entry; 2246 2247 ep_entry = bw_table->interval_bw[i].endpoints.next; 2248 virt_ep = list_entry(ep_entry, 2249 struct xhci_virt_ep, bw_endpoint_list); 2250 /* Convert to blocks, rounding up */ 2251 largest_mps = DIV_ROUND_UP( 2252 virt_ep->bw_info.max_packet_size, 2253 block_size); 2254 } 2255 if (largest_mps > packet_size) 2256 packet_size = largest_mps; 2257 2258 /* Use the larger overhead of this or the previous interval. */ 2259 interval_overhead = xhci_get_largest_overhead( 2260 &bw_table->interval_bw[i]); 2261 if (interval_overhead > overhead) 2262 overhead = interval_overhead; 2263 2264 /* How many packets can we evenly distribute across 2265 * (1 << (i + 1)) possible scheduling opportunities? 2266 */ 2267 packets_transmitted = packets_remaining >> (i + 1); 2268 2269 /* Add in the bandwidth used for those scheduled packets */ 2270 bw_added = packets_transmitted * (overhead + packet_size); 2271 2272 /* How many packets do we have remaining to transmit? */ 2273 packets_remaining = packets_remaining % (1 << (i + 1)); 2274 2275 /* What largest max packet size should those packets have? */ 2276 /* If we've transmitted all packets, don't carry over the 2277 * largest packet size. 2278 */ 2279 if (packets_remaining == 0) { 2280 packet_size = 0; 2281 overhead = 0; 2282 } else if (packets_transmitted > 0) { 2283 /* Otherwise if we do have remaining packets, and we've 2284 * scheduled some packets in this interval, take the 2285 * largest max packet size from endpoints with this 2286 * interval. 2287 */ 2288 packet_size = largest_mps; 2289 overhead = interval_overhead; 2290 } 2291 /* Otherwise carry over packet_size and overhead from the last 2292 * time we had a remainder. 2293 */ 2294 bw_used += bw_added; 2295 if (bw_used > max_bandwidth) { 2296 xhci_warn(xhci, "Not enough bandwidth. " 2297 "Proposed: %u, Max: %u\n", 2298 bw_used, max_bandwidth); 2299 return -ENOMEM; 2300 } 2301 } 2302 /* 2303 * Ok, we know we have some packets left over after even-handedly 2304 * scheduling interval 15. We don't know which microframes they will 2305 * fit into, so we over-schedule and say they will be scheduled every 2306 * microframe. 2307 */ 2308 if (packets_remaining > 0) 2309 bw_used += overhead + packet_size; 2310 2311 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2312 unsigned int port_index = virt_dev->real_port - 1; 2313 2314 /* OK, we're manipulating a HS device attached to a 2315 * root port bandwidth domain. Include the number of active TTs 2316 * in the bandwidth used. 2317 */ 2318 bw_used += TT_HS_OVERHEAD * 2319 xhci->rh_bw[port_index].num_active_tts; 2320 } 2321 2322 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2323 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2324 "Available: %u " "percent", 2325 bw_used, max_bandwidth, bw_reserved, 2326 (max_bandwidth - bw_used - bw_reserved) * 100 / 2327 max_bandwidth); 2328 2329 bw_used += bw_reserved; 2330 if (bw_used > max_bandwidth) { 2331 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2332 bw_used, max_bandwidth); 2333 return -ENOMEM; 2334 } 2335 2336 bw_table->bw_used = bw_used; 2337 return 0; 2338 } 2339 2340 static bool xhci_is_async_ep(unsigned int ep_type) 2341 { 2342 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2343 ep_type != ISOC_IN_EP && 2344 ep_type != INT_IN_EP); 2345 } 2346 2347 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2348 { 2349 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2350 } 2351 2352 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2353 { 2354 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2355 2356 if (ep_bw->ep_interval == 0) 2357 return SS_OVERHEAD_BURST + 2358 (ep_bw->mult * ep_bw->num_packets * 2359 (SS_OVERHEAD + mps)); 2360 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2361 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2362 1 << ep_bw->ep_interval); 2363 2364 } 2365 2366 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2367 struct xhci_bw_info *ep_bw, 2368 struct xhci_interval_bw_table *bw_table, 2369 struct usb_device *udev, 2370 struct xhci_virt_ep *virt_ep, 2371 struct xhci_tt_bw_info *tt_info) 2372 { 2373 struct xhci_interval_bw *interval_bw; 2374 int normalized_interval; 2375 2376 if (xhci_is_async_ep(ep_bw->type)) 2377 return; 2378 2379 if (udev->speed >= USB_SPEED_SUPER) { 2380 if (xhci_is_sync_in_ep(ep_bw->type)) 2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2382 xhci_get_ss_bw_consumed(ep_bw); 2383 else 2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2385 xhci_get_ss_bw_consumed(ep_bw); 2386 return; 2387 } 2388 2389 /* SuperSpeed endpoints never get added to intervals in the table, so 2390 * this check is only valid for HS/FS/LS devices. 2391 */ 2392 if (list_empty(&virt_ep->bw_endpoint_list)) 2393 return; 2394 /* For LS/FS devices, we need to translate the interval expressed in 2395 * microframes to frames. 2396 */ 2397 if (udev->speed == USB_SPEED_HIGH) 2398 normalized_interval = ep_bw->ep_interval; 2399 else 2400 normalized_interval = ep_bw->ep_interval - 3; 2401 2402 if (normalized_interval == 0) 2403 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2404 interval_bw = &bw_table->interval_bw[normalized_interval]; 2405 interval_bw->num_packets -= ep_bw->num_packets; 2406 switch (udev->speed) { 2407 case USB_SPEED_LOW: 2408 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2409 break; 2410 case USB_SPEED_FULL: 2411 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2412 break; 2413 case USB_SPEED_HIGH: 2414 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2415 break; 2416 case USB_SPEED_SUPER: 2417 case USB_SPEED_SUPER_PLUS: 2418 case USB_SPEED_UNKNOWN: 2419 case USB_SPEED_WIRELESS: 2420 /* Should never happen because only LS/FS/HS endpoints will get 2421 * added to the endpoint list. 2422 */ 2423 return; 2424 } 2425 if (tt_info) 2426 tt_info->active_eps -= 1; 2427 list_del_init(&virt_ep->bw_endpoint_list); 2428 } 2429 2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2431 struct xhci_bw_info *ep_bw, 2432 struct xhci_interval_bw_table *bw_table, 2433 struct usb_device *udev, 2434 struct xhci_virt_ep *virt_ep, 2435 struct xhci_tt_bw_info *tt_info) 2436 { 2437 struct xhci_interval_bw *interval_bw; 2438 struct xhci_virt_ep *smaller_ep; 2439 int normalized_interval; 2440 2441 if (xhci_is_async_ep(ep_bw->type)) 2442 return; 2443 2444 if (udev->speed == USB_SPEED_SUPER) { 2445 if (xhci_is_sync_in_ep(ep_bw->type)) 2446 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2447 xhci_get_ss_bw_consumed(ep_bw); 2448 else 2449 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2450 xhci_get_ss_bw_consumed(ep_bw); 2451 return; 2452 } 2453 2454 /* For LS/FS devices, we need to translate the interval expressed in 2455 * microframes to frames. 2456 */ 2457 if (udev->speed == USB_SPEED_HIGH) 2458 normalized_interval = ep_bw->ep_interval; 2459 else 2460 normalized_interval = ep_bw->ep_interval - 3; 2461 2462 if (normalized_interval == 0) 2463 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2464 interval_bw = &bw_table->interval_bw[normalized_interval]; 2465 interval_bw->num_packets += ep_bw->num_packets; 2466 switch (udev->speed) { 2467 case USB_SPEED_LOW: 2468 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2469 break; 2470 case USB_SPEED_FULL: 2471 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2472 break; 2473 case USB_SPEED_HIGH: 2474 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2475 break; 2476 case USB_SPEED_SUPER: 2477 case USB_SPEED_SUPER_PLUS: 2478 case USB_SPEED_UNKNOWN: 2479 case USB_SPEED_WIRELESS: 2480 /* Should never happen because only LS/FS/HS endpoints will get 2481 * added to the endpoint list. 2482 */ 2483 return; 2484 } 2485 2486 if (tt_info) 2487 tt_info->active_eps += 1; 2488 /* Insert the endpoint into the list, largest max packet size first. */ 2489 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2490 bw_endpoint_list) { 2491 if (ep_bw->max_packet_size >= 2492 smaller_ep->bw_info.max_packet_size) { 2493 /* Add the new ep before the smaller endpoint */ 2494 list_add_tail(&virt_ep->bw_endpoint_list, 2495 &smaller_ep->bw_endpoint_list); 2496 return; 2497 } 2498 } 2499 /* Add the new endpoint at the end of the list. */ 2500 list_add_tail(&virt_ep->bw_endpoint_list, 2501 &interval_bw->endpoints); 2502 } 2503 2504 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2505 struct xhci_virt_device *virt_dev, 2506 int old_active_eps) 2507 { 2508 struct xhci_root_port_bw_info *rh_bw_info; 2509 if (!virt_dev->tt_info) 2510 return; 2511 2512 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2513 if (old_active_eps == 0 && 2514 virt_dev->tt_info->active_eps != 0) { 2515 rh_bw_info->num_active_tts += 1; 2516 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2517 } else if (old_active_eps != 0 && 2518 virt_dev->tt_info->active_eps == 0) { 2519 rh_bw_info->num_active_tts -= 1; 2520 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2521 } 2522 } 2523 2524 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2525 struct xhci_virt_device *virt_dev, 2526 struct xhci_container_ctx *in_ctx) 2527 { 2528 struct xhci_bw_info ep_bw_info[31]; 2529 int i; 2530 struct xhci_input_control_ctx *ctrl_ctx; 2531 int old_active_eps = 0; 2532 2533 if (virt_dev->tt_info) 2534 old_active_eps = virt_dev->tt_info->active_eps; 2535 2536 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2537 if (!ctrl_ctx) { 2538 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2539 __func__); 2540 return -ENOMEM; 2541 } 2542 2543 for (i = 0; i < 31; i++) { 2544 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2545 continue; 2546 2547 /* Make a copy of the BW info in case we need to revert this */ 2548 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2549 sizeof(ep_bw_info[i])); 2550 /* Drop the endpoint from the interval table if the endpoint is 2551 * being dropped or changed. 2552 */ 2553 if (EP_IS_DROPPED(ctrl_ctx, i)) 2554 xhci_drop_ep_from_interval_table(xhci, 2555 &virt_dev->eps[i].bw_info, 2556 virt_dev->bw_table, 2557 virt_dev->udev, 2558 &virt_dev->eps[i], 2559 virt_dev->tt_info); 2560 } 2561 /* Overwrite the information stored in the endpoints' bw_info */ 2562 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2563 for (i = 0; i < 31; i++) { 2564 /* Add any changed or added endpoints to the interval table */ 2565 if (EP_IS_ADDED(ctrl_ctx, i)) 2566 xhci_add_ep_to_interval_table(xhci, 2567 &virt_dev->eps[i].bw_info, 2568 virt_dev->bw_table, 2569 virt_dev->udev, 2570 &virt_dev->eps[i], 2571 virt_dev->tt_info); 2572 } 2573 2574 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2575 /* Ok, this fits in the bandwidth we have. 2576 * Update the number of active TTs. 2577 */ 2578 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2579 return 0; 2580 } 2581 2582 /* We don't have enough bandwidth for this, revert the stored info. */ 2583 for (i = 0; i < 31; i++) { 2584 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2585 continue; 2586 2587 /* Drop the new copies of any added or changed endpoints from 2588 * the interval table. 2589 */ 2590 if (EP_IS_ADDED(ctrl_ctx, i)) { 2591 xhci_drop_ep_from_interval_table(xhci, 2592 &virt_dev->eps[i].bw_info, 2593 virt_dev->bw_table, 2594 virt_dev->udev, 2595 &virt_dev->eps[i], 2596 virt_dev->tt_info); 2597 } 2598 /* Revert the endpoint back to its old information */ 2599 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2600 sizeof(ep_bw_info[i])); 2601 /* Add any changed or dropped endpoints back into the table */ 2602 if (EP_IS_DROPPED(ctrl_ctx, i)) 2603 xhci_add_ep_to_interval_table(xhci, 2604 &virt_dev->eps[i].bw_info, 2605 virt_dev->bw_table, 2606 virt_dev->udev, 2607 &virt_dev->eps[i], 2608 virt_dev->tt_info); 2609 } 2610 return -ENOMEM; 2611 } 2612 2613 2614 /* Issue a configure endpoint command or evaluate context command 2615 * and wait for it to finish. 2616 */ 2617 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2618 struct usb_device *udev, 2619 struct xhci_command *command, 2620 bool ctx_change, bool must_succeed) 2621 { 2622 int ret; 2623 unsigned long flags; 2624 struct xhci_input_control_ctx *ctrl_ctx; 2625 struct xhci_virt_device *virt_dev; 2626 2627 if (!command) 2628 return -EINVAL; 2629 2630 spin_lock_irqsave(&xhci->lock, flags); 2631 virt_dev = xhci->devs[udev->slot_id]; 2632 2633 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2634 if (!ctrl_ctx) { 2635 spin_unlock_irqrestore(&xhci->lock, flags); 2636 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2637 __func__); 2638 return -ENOMEM; 2639 } 2640 2641 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2642 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2643 spin_unlock_irqrestore(&xhci->lock, flags); 2644 xhci_warn(xhci, "Not enough host resources, " 2645 "active endpoint contexts = %u\n", 2646 xhci->num_active_eps); 2647 return -ENOMEM; 2648 } 2649 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2650 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2652 xhci_free_host_resources(xhci, ctrl_ctx); 2653 spin_unlock_irqrestore(&xhci->lock, flags); 2654 xhci_warn(xhci, "Not enough bandwidth\n"); 2655 return -ENOMEM; 2656 } 2657 2658 if (!ctx_change) 2659 ret = xhci_queue_configure_endpoint(xhci, command, 2660 command->in_ctx->dma, 2661 udev->slot_id, must_succeed); 2662 else 2663 ret = xhci_queue_evaluate_context(xhci, command, 2664 command->in_ctx->dma, 2665 udev->slot_id, must_succeed); 2666 if (ret < 0) { 2667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2668 xhci_free_host_resources(xhci, ctrl_ctx); 2669 spin_unlock_irqrestore(&xhci->lock, flags); 2670 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2671 "FIXME allocate a new ring segment"); 2672 return -ENOMEM; 2673 } 2674 xhci_ring_cmd_db(xhci); 2675 spin_unlock_irqrestore(&xhci->lock, flags); 2676 2677 /* Wait for the configure endpoint command to complete */ 2678 wait_for_completion(command->completion); 2679 2680 if (!ctx_change) 2681 ret = xhci_configure_endpoint_result(xhci, udev, 2682 &command->status); 2683 else 2684 ret = xhci_evaluate_context_result(xhci, udev, 2685 &command->status); 2686 2687 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2688 spin_lock_irqsave(&xhci->lock, flags); 2689 /* If the command failed, remove the reserved resources. 2690 * Otherwise, clean up the estimate to include dropped eps. 2691 */ 2692 if (ret) 2693 xhci_free_host_resources(xhci, ctrl_ctx); 2694 else 2695 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2696 spin_unlock_irqrestore(&xhci->lock, flags); 2697 } 2698 return ret; 2699 } 2700 2701 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2702 struct xhci_virt_device *vdev, int i) 2703 { 2704 struct xhci_virt_ep *ep = &vdev->eps[i]; 2705 2706 if (ep->ep_state & EP_HAS_STREAMS) { 2707 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2708 xhci_get_endpoint_address(i)); 2709 xhci_free_stream_info(xhci, ep->stream_info); 2710 ep->stream_info = NULL; 2711 ep->ep_state &= ~EP_HAS_STREAMS; 2712 } 2713 } 2714 2715 /* Called after one or more calls to xhci_add_endpoint() or 2716 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2717 * to call xhci_reset_bandwidth(). 2718 * 2719 * Since we are in the middle of changing either configuration or 2720 * installing a new alt setting, the USB core won't allow URBs to be 2721 * enqueued for any endpoint on the old config or interface. Nothing 2722 * else should be touching the xhci->devs[slot_id] structure, so we 2723 * don't need to take the xhci->lock for manipulating that. 2724 */ 2725 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2726 { 2727 int i; 2728 int ret = 0; 2729 struct xhci_hcd *xhci; 2730 struct xhci_virt_device *virt_dev; 2731 struct xhci_input_control_ctx *ctrl_ctx; 2732 struct xhci_slot_ctx *slot_ctx; 2733 struct xhci_command *command; 2734 2735 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2736 if (ret <= 0) 2737 return ret; 2738 xhci = hcd_to_xhci(hcd); 2739 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2740 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2741 return -ENODEV; 2742 2743 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2744 virt_dev = xhci->devs[udev->slot_id]; 2745 2746 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2747 if (!command) 2748 return -ENOMEM; 2749 2750 command->in_ctx = virt_dev->in_ctx; 2751 2752 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2753 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2754 if (!ctrl_ctx) { 2755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2756 __func__); 2757 ret = -ENOMEM; 2758 goto command_cleanup; 2759 } 2760 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2761 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2762 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2763 2764 /* Don't issue the command if there's no endpoints to update. */ 2765 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2766 ctrl_ctx->drop_flags == 0) { 2767 ret = 0; 2768 goto command_cleanup; 2769 } 2770 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2771 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2772 for (i = 31; i >= 1; i--) { 2773 __le32 le32 = cpu_to_le32(BIT(i)); 2774 2775 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2776 || (ctrl_ctx->add_flags & le32) || i == 1) { 2777 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2778 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2779 break; 2780 } 2781 } 2782 xhci_dbg(xhci, "New Input Control Context:\n"); 2783 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2784 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2785 2786 ret = xhci_configure_endpoint(xhci, udev, command, 2787 false, false); 2788 if (ret) 2789 /* Callee should call reset_bandwidth() */ 2790 goto command_cleanup; 2791 2792 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2793 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2794 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2795 2796 /* Free any rings that were dropped, but not changed. */ 2797 for (i = 1; i < 31; ++i) { 2798 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2799 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2800 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2801 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2802 } 2803 } 2804 xhci_zero_in_ctx(xhci, virt_dev); 2805 /* 2806 * Install any rings for completely new endpoints or changed endpoints, 2807 * and free or cache any old rings from changed endpoints. 2808 */ 2809 for (i = 1; i < 31; ++i) { 2810 if (!virt_dev->eps[i].new_ring) 2811 continue; 2812 /* Only cache or free the old ring if it exists. 2813 * It may not if this is the first add of an endpoint. 2814 */ 2815 if (virt_dev->eps[i].ring) { 2816 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2817 } 2818 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2819 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2820 virt_dev->eps[i].new_ring = NULL; 2821 } 2822 command_cleanup: 2823 kfree(command->completion); 2824 kfree(command); 2825 2826 return ret; 2827 } 2828 2829 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2830 { 2831 struct xhci_hcd *xhci; 2832 struct xhci_virt_device *virt_dev; 2833 int i, ret; 2834 2835 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2836 if (ret <= 0) 2837 return; 2838 xhci = hcd_to_xhci(hcd); 2839 2840 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2841 virt_dev = xhci->devs[udev->slot_id]; 2842 /* Free any rings allocated for added endpoints */ 2843 for (i = 0; i < 31; ++i) { 2844 if (virt_dev->eps[i].new_ring) { 2845 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2846 virt_dev->eps[i].new_ring = NULL; 2847 } 2848 } 2849 xhci_zero_in_ctx(xhci, virt_dev); 2850 } 2851 2852 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2853 struct xhci_container_ctx *in_ctx, 2854 struct xhci_container_ctx *out_ctx, 2855 struct xhci_input_control_ctx *ctrl_ctx, 2856 u32 add_flags, u32 drop_flags) 2857 { 2858 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2859 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2860 xhci_slot_copy(xhci, in_ctx, out_ctx); 2861 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2862 2863 xhci_dbg(xhci, "Input Context:\n"); 2864 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2865 } 2866 2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2868 unsigned int slot_id, unsigned int ep_index, 2869 struct xhci_dequeue_state *deq_state) 2870 { 2871 struct xhci_input_control_ctx *ctrl_ctx; 2872 struct xhci_container_ctx *in_ctx; 2873 struct xhci_ep_ctx *ep_ctx; 2874 u32 added_ctxs; 2875 dma_addr_t addr; 2876 2877 in_ctx = xhci->devs[slot_id]->in_ctx; 2878 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2879 if (!ctrl_ctx) { 2880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2881 __func__); 2882 return; 2883 } 2884 2885 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2886 xhci->devs[slot_id]->out_ctx, ep_index); 2887 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2888 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2889 deq_state->new_deq_ptr); 2890 if (addr == 0) { 2891 xhci_warn(xhci, "WARN Cannot submit config ep after " 2892 "reset ep command\n"); 2893 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2894 deq_state->new_deq_seg, 2895 deq_state->new_deq_ptr); 2896 return; 2897 } 2898 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2899 2900 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2901 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2902 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2903 added_ctxs, added_ctxs); 2904 } 2905 2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2907 unsigned int ep_index, struct xhci_td *td) 2908 { 2909 struct xhci_dequeue_state deq_state; 2910 struct xhci_virt_ep *ep; 2911 struct usb_device *udev = td->urb->dev; 2912 2913 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2914 "Cleaning up stalled endpoint ring"); 2915 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2916 /* We need to move the HW's dequeue pointer past this TD, 2917 * or it will attempt to resend it on the next doorbell ring. 2918 */ 2919 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2920 ep_index, ep->stopped_stream, td, &deq_state); 2921 2922 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2923 return; 2924 2925 /* HW with the reset endpoint quirk will use the saved dequeue state to 2926 * issue a configure endpoint command later. 2927 */ 2928 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2929 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2930 "Queueing new dequeue state"); 2931 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2932 ep_index, ep->stopped_stream, &deq_state); 2933 } else { 2934 /* Better hope no one uses the input context between now and the 2935 * reset endpoint completion! 2936 * XXX: No idea how this hardware will react when stream rings 2937 * are enabled. 2938 */ 2939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2940 "Setting up input context for " 2941 "configure endpoint command"); 2942 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2943 ep_index, &deq_state); 2944 } 2945 } 2946 2947 /* Called when clearing halted device. The core should have sent the control 2948 * message to clear the device halt condition. The host side of the halt should 2949 * already be cleared with a reset endpoint command issued when the STALL tx 2950 * event was received. 2951 * 2952 * Context: in_interrupt 2953 */ 2954 2955 void xhci_endpoint_reset(struct usb_hcd *hcd, 2956 struct usb_host_endpoint *ep) 2957 { 2958 struct xhci_hcd *xhci; 2959 2960 xhci = hcd_to_xhci(hcd); 2961 2962 /* 2963 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2964 * The Reset Endpoint Command may only be issued to endpoints in the 2965 * Halted state. If software wishes reset the Data Toggle or Sequence 2966 * Number of an endpoint that isn't in the Halted state, then software 2967 * may issue a Configure Endpoint Command with the Drop and Add bits set 2968 * for the target endpoint. that is in the Stopped state. 2969 */ 2970 2971 /* For now just print debug to follow the situation */ 2972 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2973 ep->desc.bEndpointAddress); 2974 } 2975 2976 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2977 struct usb_device *udev, struct usb_host_endpoint *ep, 2978 unsigned int slot_id) 2979 { 2980 int ret; 2981 unsigned int ep_index; 2982 unsigned int ep_state; 2983 2984 if (!ep) 2985 return -EINVAL; 2986 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2987 if (ret <= 0) 2988 return -EINVAL; 2989 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2990 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2991 " descriptor for ep 0x%x does not support streams\n", 2992 ep->desc.bEndpointAddress); 2993 return -EINVAL; 2994 } 2995 2996 ep_index = xhci_get_endpoint_index(&ep->desc); 2997 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2998 if (ep_state & EP_HAS_STREAMS || 2999 ep_state & EP_GETTING_STREAMS) { 3000 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3001 "already has streams set up.\n", 3002 ep->desc.bEndpointAddress); 3003 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3004 "dynamic stream context array reallocation.\n"); 3005 return -EINVAL; 3006 } 3007 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3008 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3009 "endpoint 0x%x; URBs are pending.\n", 3010 ep->desc.bEndpointAddress); 3011 return -EINVAL; 3012 } 3013 return 0; 3014 } 3015 3016 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3017 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3018 { 3019 unsigned int max_streams; 3020 3021 /* The stream context array size must be a power of two */ 3022 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3023 /* 3024 * Find out how many primary stream array entries the host controller 3025 * supports. Later we may use secondary stream arrays (similar to 2nd 3026 * level page entries), but that's an optional feature for xHCI host 3027 * controllers. xHCs must support at least 4 stream IDs. 3028 */ 3029 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3030 if (*num_stream_ctxs > max_streams) { 3031 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3032 max_streams); 3033 *num_stream_ctxs = max_streams; 3034 *num_streams = max_streams; 3035 } 3036 } 3037 3038 /* Returns an error code if one of the endpoint already has streams. 3039 * This does not change any data structures, it only checks and gathers 3040 * information. 3041 */ 3042 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3043 struct usb_device *udev, 3044 struct usb_host_endpoint **eps, unsigned int num_eps, 3045 unsigned int *num_streams, u32 *changed_ep_bitmask) 3046 { 3047 unsigned int max_streams; 3048 unsigned int endpoint_flag; 3049 int i; 3050 int ret; 3051 3052 for (i = 0; i < num_eps; i++) { 3053 ret = xhci_check_streams_endpoint(xhci, udev, 3054 eps[i], udev->slot_id); 3055 if (ret < 0) 3056 return ret; 3057 3058 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3059 if (max_streams < (*num_streams - 1)) { 3060 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3061 eps[i]->desc.bEndpointAddress, 3062 max_streams); 3063 *num_streams = max_streams+1; 3064 } 3065 3066 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3067 if (*changed_ep_bitmask & endpoint_flag) 3068 return -EINVAL; 3069 *changed_ep_bitmask |= endpoint_flag; 3070 } 3071 return 0; 3072 } 3073 3074 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3075 struct usb_device *udev, 3076 struct usb_host_endpoint **eps, unsigned int num_eps) 3077 { 3078 u32 changed_ep_bitmask = 0; 3079 unsigned int slot_id; 3080 unsigned int ep_index; 3081 unsigned int ep_state; 3082 int i; 3083 3084 slot_id = udev->slot_id; 3085 if (!xhci->devs[slot_id]) 3086 return 0; 3087 3088 for (i = 0; i < num_eps; i++) { 3089 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3090 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3091 /* Are streams already being freed for the endpoint? */ 3092 if (ep_state & EP_GETTING_NO_STREAMS) { 3093 xhci_warn(xhci, "WARN Can't disable streams for " 3094 "endpoint 0x%x, " 3095 "streams are being disabled already\n", 3096 eps[i]->desc.bEndpointAddress); 3097 return 0; 3098 } 3099 /* Are there actually any streams to free? */ 3100 if (!(ep_state & EP_HAS_STREAMS) && 3101 !(ep_state & EP_GETTING_STREAMS)) { 3102 xhci_warn(xhci, "WARN Can't disable streams for " 3103 "endpoint 0x%x, " 3104 "streams are already disabled!\n", 3105 eps[i]->desc.bEndpointAddress); 3106 xhci_warn(xhci, "WARN xhci_free_streams() called " 3107 "with non-streams endpoint\n"); 3108 return 0; 3109 } 3110 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3111 } 3112 return changed_ep_bitmask; 3113 } 3114 3115 /* 3116 * The USB device drivers use this function (through the HCD interface in USB 3117 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3118 * coordinate mass storage command queueing across multiple endpoints (basically 3119 * a stream ID == a task ID). 3120 * 3121 * Setting up streams involves allocating the same size stream context array 3122 * for each endpoint and issuing a configure endpoint command for all endpoints. 3123 * 3124 * Don't allow the call to succeed if one endpoint only supports one stream 3125 * (which means it doesn't support streams at all). 3126 * 3127 * Drivers may get less stream IDs than they asked for, if the host controller 3128 * hardware or endpoints claim they can't support the number of requested 3129 * stream IDs. 3130 */ 3131 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3132 struct usb_host_endpoint **eps, unsigned int num_eps, 3133 unsigned int num_streams, gfp_t mem_flags) 3134 { 3135 int i, ret; 3136 struct xhci_hcd *xhci; 3137 struct xhci_virt_device *vdev; 3138 struct xhci_command *config_cmd; 3139 struct xhci_input_control_ctx *ctrl_ctx; 3140 unsigned int ep_index; 3141 unsigned int num_stream_ctxs; 3142 unsigned long flags; 3143 u32 changed_ep_bitmask = 0; 3144 3145 if (!eps) 3146 return -EINVAL; 3147 3148 /* Add one to the number of streams requested to account for 3149 * stream 0 that is reserved for xHCI usage. 3150 */ 3151 num_streams += 1; 3152 xhci = hcd_to_xhci(hcd); 3153 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3154 num_streams); 3155 3156 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3157 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3158 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3159 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3160 return -ENOSYS; 3161 } 3162 3163 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3164 if (!config_cmd) { 3165 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3166 return -ENOMEM; 3167 } 3168 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3169 if (!ctrl_ctx) { 3170 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3171 __func__); 3172 xhci_free_command(xhci, config_cmd); 3173 return -ENOMEM; 3174 } 3175 3176 /* Check to make sure all endpoints are not already configured for 3177 * streams. While we're at it, find the maximum number of streams that 3178 * all the endpoints will support and check for duplicate endpoints. 3179 */ 3180 spin_lock_irqsave(&xhci->lock, flags); 3181 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3182 num_eps, &num_streams, &changed_ep_bitmask); 3183 if (ret < 0) { 3184 xhci_free_command(xhci, config_cmd); 3185 spin_unlock_irqrestore(&xhci->lock, flags); 3186 return ret; 3187 } 3188 if (num_streams <= 1) { 3189 xhci_warn(xhci, "WARN: endpoints can't handle " 3190 "more than one stream.\n"); 3191 xhci_free_command(xhci, config_cmd); 3192 spin_unlock_irqrestore(&xhci->lock, flags); 3193 return -EINVAL; 3194 } 3195 vdev = xhci->devs[udev->slot_id]; 3196 /* Mark each endpoint as being in transition, so 3197 * xhci_urb_enqueue() will reject all URBs. 3198 */ 3199 for (i = 0; i < num_eps; i++) { 3200 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3201 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3202 } 3203 spin_unlock_irqrestore(&xhci->lock, flags); 3204 3205 /* Setup internal data structures and allocate HW data structures for 3206 * streams (but don't install the HW structures in the input context 3207 * until we're sure all memory allocation succeeded). 3208 */ 3209 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3210 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3211 num_stream_ctxs, num_streams); 3212 3213 for (i = 0; i < num_eps; i++) { 3214 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3215 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3216 num_stream_ctxs, 3217 num_streams, mem_flags); 3218 if (!vdev->eps[ep_index].stream_info) 3219 goto cleanup; 3220 /* Set maxPstreams in endpoint context and update deq ptr to 3221 * point to stream context array. FIXME 3222 */ 3223 } 3224 3225 /* Set up the input context for a configure endpoint command. */ 3226 for (i = 0; i < num_eps; i++) { 3227 struct xhci_ep_ctx *ep_ctx; 3228 3229 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3230 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3231 3232 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3233 vdev->out_ctx, ep_index); 3234 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3235 vdev->eps[ep_index].stream_info); 3236 } 3237 /* Tell the HW to drop its old copy of the endpoint context info 3238 * and add the updated copy from the input context. 3239 */ 3240 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3241 vdev->out_ctx, ctrl_ctx, 3242 changed_ep_bitmask, changed_ep_bitmask); 3243 3244 /* Issue and wait for the configure endpoint command */ 3245 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3246 false, false); 3247 3248 /* xHC rejected the configure endpoint command for some reason, so we 3249 * leave the old ring intact and free our internal streams data 3250 * structure. 3251 */ 3252 if (ret < 0) 3253 goto cleanup; 3254 3255 spin_lock_irqsave(&xhci->lock, flags); 3256 for (i = 0; i < num_eps; i++) { 3257 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3258 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3259 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3260 udev->slot_id, ep_index); 3261 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3262 } 3263 xhci_free_command(xhci, config_cmd); 3264 spin_unlock_irqrestore(&xhci->lock, flags); 3265 3266 /* Subtract 1 for stream 0, which drivers can't use */ 3267 return num_streams - 1; 3268 3269 cleanup: 3270 /* If it didn't work, free the streams! */ 3271 for (i = 0; i < num_eps; i++) { 3272 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3273 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3274 vdev->eps[ep_index].stream_info = NULL; 3275 /* FIXME Unset maxPstreams in endpoint context and 3276 * update deq ptr to point to normal string ring. 3277 */ 3278 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3279 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3280 xhci_endpoint_zero(xhci, vdev, eps[i]); 3281 } 3282 xhci_free_command(xhci, config_cmd); 3283 return -ENOMEM; 3284 } 3285 3286 /* Transition the endpoint from using streams to being a "normal" endpoint 3287 * without streams. 3288 * 3289 * Modify the endpoint context state, submit a configure endpoint command, 3290 * and free all endpoint rings for streams if that completes successfully. 3291 */ 3292 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3293 struct usb_host_endpoint **eps, unsigned int num_eps, 3294 gfp_t mem_flags) 3295 { 3296 int i, ret; 3297 struct xhci_hcd *xhci; 3298 struct xhci_virt_device *vdev; 3299 struct xhci_command *command; 3300 struct xhci_input_control_ctx *ctrl_ctx; 3301 unsigned int ep_index; 3302 unsigned long flags; 3303 u32 changed_ep_bitmask; 3304 3305 xhci = hcd_to_xhci(hcd); 3306 vdev = xhci->devs[udev->slot_id]; 3307 3308 /* Set up a configure endpoint command to remove the streams rings */ 3309 spin_lock_irqsave(&xhci->lock, flags); 3310 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3311 udev, eps, num_eps); 3312 if (changed_ep_bitmask == 0) { 3313 spin_unlock_irqrestore(&xhci->lock, flags); 3314 return -EINVAL; 3315 } 3316 3317 /* Use the xhci_command structure from the first endpoint. We may have 3318 * allocated too many, but the driver may call xhci_free_streams() for 3319 * each endpoint it grouped into one call to xhci_alloc_streams(). 3320 */ 3321 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3322 command = vdev->eps[ep_index].stream_info->free_streams_command; 3323 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3324 if (!ctrl_ctx) { 3325 spin_unlock_irqrestore(&xhci->lock, flags); 3326 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3327 __func__); 3328 return -EINVAL; 3329 } 3330 3331 for (i = 0; i < num_eps; i++) { 3332 struct xhci_ep_ctx *ep_ctx; 3333 3334 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3335 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3336 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3337 EP_GETTING_NO_STREAMS; 3338 3339 xhci_endpoint_copy(xhci, command->in_ctx, 3340 vdev->out_ctx, ep_index); 3341 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3342 &vdev->eps[ep_index]); 3343 } 3344 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3345 vdev->out_ctx, ctrl_ctx, 3346 changed_ep_bitmask, changed_ep_bitmask); 3347 spin_unlock_irqrestore(&xhci->lock, flags); 3348 3349 /* Issue and wait for the configure endpoint command, 3350 * which must succeed. 3351 */ 3352 ret = xhci_configure_endpoint(xhci, udev, command, 3353 false, true); 3354 3355 /* xHC rejected the configure endpoint command for some reason, so we 3356 * leave the streams rings intact. 3357 */ 3358 if (ret < 0) 3359 return ret; 3360 3361 spin_lock_irqsave(&xhci->lock, flags); 3362 for (i = 0; i < num_eps; i++) { 3363 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3364 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3365 vdev->eps[ep_index].stream_info = NULL; 3366 /* FIXME Unset maxPstreams in endpoint context and 3367 * update deq ptr to point to normal string ring. 3368 */ 3369 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3370 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3371 } 3372 spin_unlock_irqrestore(&xhci->lock, flags); 3373 3374 return 0; 3375 } 3376 3377 /* 3378 * Deletes endpoint resources for endpoints that were active before a Reset 3379 * Device command, or a Disable Slot command. The Reset Device command leaves 3380 * the control endpoint intact, whereas the Disable Slot command deletes it. 3381 * 3382 * Must be called with xhci->lock held. 3383 */ 3384 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3385 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3386 { 3387 int i; 3388 unsigned int num_dropped_eps = 0; 3389 unsigned int drop_flags = 0; 3390 3391 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3392 if (virt_dev->eps[i].ring) { 3393 drop_flags |= 1 << i; 3394 num_dropped_eps++; 3395 } 3396 } 3397 xhci->num_active_eps -= num_dropped_eps; 3398 if (num_dropped_eps) 3399 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3400 "Dropped %u ep ctxs, flags = 0x%x, " 3401 "%u now active.", 3402 num_dropped_eps, drop_flags, 3403 xhci->num_active_eps); 3404 } 3405 3406 /* 3407 * This submits a Reset Device Command, which will set the device state to 0, 3408 * set the device address to 0, and disable all the endpoints except the default 3409 * control endpoint. The USB core should come back and call 3410 * xhci_address_device(), and then re-set up the configuration. If this is 3411 * called because of a usb_reset_and_verify_device(), then the old alternate 3412 * settings will be re-installed through the normal bandwidth allocation 3413 * functions. 3414 * 3415 * Wait for the Reset Device command to finish. Remove all structures 3416 * associated with the endpoints that were disabled. Clear the input device 3417 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3418 * 3419 * If the virt_dev to be reset does not exist or does not match the udev, 3420 * it means the device is lost, possibly due to the xHC restore error and 3421 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3422 * re-allocate the device. 3423 */ 3424 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3425 { 3426 int ret, i; 3427 unsigned long flags; 3428 struct xhci_hcd *xhci; 3429 unsigned int slot_id; 3430 struct xhci_virt_device *virt_dev; 3431 struct xhci_command *reset_device_cmd; 3432 int last_freed_endpoint; 3433 struct xhci_slot_ctx *slot_ctx; 3434 int old_active_eps = 0; 3435 3436 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3437 if (ret <= 0) 3438 return ret; 3439 xhci = hcd_to_xhci(hcd); 3440 slot_id = udev->slot_id; 3441 virt_dev = xhci->devs[slot_id]; 3442 if (!virt_dev) { 3443 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3444 "not exist. Re-allocate the device\n", slot_id); 3445 ret = xhci_alloc_dev(hcd, udev); 3446 if (ret == 1) 3447 return 0; 3448 else 3449 return -EINVAL; 3450 } 3451 3452 if (virt_dev->tt_info) 3453 old_active_eps = virt_dev->tt_info->active_eps; 3454 3455 if (virt_dev->udev != udev) { 3456 /* If the virt_dev and the udev does not match, this virt_dev 3457 * may belong to another udev. 3458 * Re-allocate the device. 3459 */ 3460 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3461 "not match the udev. Re-allocate the device\n", 3462 slot_id); 3463 ret = xhci_alloc_dev(hcd, udev); 3464 if (ret == 1) 3465 return 0; 3466 else 3467 return -EINVAL; 3468 } 3469 3470 /* If device is not setup, there is no point in resetting it */ 3471 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3472 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3473 SLOT_STATE_DISABLED) 3474 return 0; 3475 3476 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3477 /* Allocate the command structure that holds the struct completion. 3478 * Assume we're in process context, since the normal device reset 3479 * process has to wait for the device anyway. Storage devices are 3480 * reset as part of error handling, so use GFP_NOIO instead of 3481 * GFP_KERNEL. 3482 */ 3483 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3484 if (!reset_device_cmd) { 3485 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3486 return -ENOMEM; 3487 } 3488 3489 /* Attempt to submit the Reset Device command to the command ring */ 3490 spin_lock_irqsave(&xhci->lock, flags); 3491 3492 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3493 if (ret) { 3494 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3495 spin_unlock_irqrestore(&xhci->lock, flags); 3496 goto command_cleanup; 3497 } 3498 xhci_ring_cmd_db(xhci); 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 3501 /* Wait for the Reset Device command to finish */ 3502 wait_for_completion(reset_device_cmd->completion); 3503 3504 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3505 * unless we tried to reset a slot ID that wasn't enabled, 3506 * or the device wasn't in the addressed or configured state. 3507 */ 3508 ret = reset_device_cmd->status; 3509 switch (ret) { 3510 case COMP_CMD_ABORT: 3511 case COMP_CMD_STOP: 3512 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3513 ret = -ETIME; 3514 goto command_cleanup; 3515 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3516 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3517 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3518 slot_id, 3519 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3520 xhci_dbg(xhci, "Not freeing device rings.\n"); 3521 /* Don't treat this as an error. May change my mind later. */ 3522 ret = 0; 3523 goto command_cleanup; 3524 case COMP_SUCCESS: 3525 xhci_dbg(xhci, "Successful reset device command.\n"); 3526 break; 3527 default: 3528 if (xhci_is_vendor_info_code(xhci, ret)) 3529 break; 3530 xhci_warn(xhci, "Unknown completion code %u for " 3531 "reset device command.\n", ret); 3532 ret = -EINVAL; 3533 goto command_cleanup; 3534 } 3535 3536 /* Free up host controller endpoint resources */ 3537 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3538 spin_lock_irqsave(&xhci->lock, flags); 3539 /* Don't delete the default control endpoint resources */ 3540 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3541 spin_unlock_irqrestore(&xhci->lock, flags); 3542 } 3543 3544 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3545 last_freed_endpoint = 1; 3546 for (i = 1; i < 31; ++i) { 3547 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3548 3549 if (ep->ep_state & EP_HAS_STREAMS) { 3550 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3551 xhci_get_endpoint_address(i)); 3552 xhci_free_stream_info(xhci, ep->stream_info); 3553 ep->stream_info = NULL; 3554 ep->ep_state &= ~EP_HAS_STREAMS; 3555 } 3556 3557 if (ep->ring) { 3558 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3559 last_freed_endpoint = i; 3560 } 3561 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3562 xhci_drop_ep_from_interval_table(xhci, 3563 &virt_dev->eps[i].bw_info, 3564 virt_dev->bw_table, 3565 udev, 3566 &virt_dev->eps[i], 3567 virt_dev->tt_info); 3568 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3569 } 3570 /* If necessary, update the number of active TTs on this root port */ 3571 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3572 3573 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3574 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3575 ret = 0; 3576 3577 command_cleanup: 3578 xhci_free_command(xhci, reset_device_cmd); 3579 return ret; 3580 } 3581 3582 /* 3583 * At this point, the struct usb_device is about to go away, the device has 3584 * disconnected, and all traffic has been stopped and the endpoints have been 3585 * disabled. Free any HC data structures associated with that device. 3586 */ 3587 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3588 { 3589 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3590 struct xhci_virt_device *virt_dev; 3591 unsigned long flags; 3592 u32 state; 3593 int i, ret; 3594 struct xhci_command *command; 3595 3596 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3597 if (!command) 3598 return; 3599 3600 #ifndef CONFIG_USB_DEFAULT_PERSIST 3601 /* 3602 * We called pm_runtime_get_noresume when the device was attached. 3603 * Decrement the counter here to allow controller to runtime suspend 3604 * if no devices remain. 3605 */ 3606 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3607 pm_runtime_put_noidle(hcd->self.controller); 3608 #endif 3609 3610 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3611 /* If the host is halted due to driver unload, we still need to free the 3612 * device. 3613 */ 3614 if (ret <= 0 && ret != -ENODEV) { 3615 kfree(command); 3616 return; 3617 } 3618 3619 virt_dev = xhci->devs[udev->slot_id]; 3620 3621 /* Stop any wayward timer functions (which may grab the lock) */ 3622 for (i = 0; i < 31; ++i) { 3623 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3624 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3625 } 3626 3627 spin_lock_irqsave(&xhci->lock, flags); 3628 /* Don't disable the slot if the host controller is dead. */ 3629 state = readl(&xhci->op_regs->status); 3630 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3631 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3632 xhci_free_virt_device(xhci, udev->slot_id); 3633 spin_unlock_irqrestore(&xhci->lock, flags); 3634 kfree(command); 3635 return; 3636 } 3637 3638 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3639 udev->slot_id)) { 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3642 return; 3643 } 3644 xhci_ring_cmd_db(xhci); 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 3647 /* 3648 * Event command completion handler will free any data structures 3649 * associated with the slot. XXX Can free sleep? 3650 */ 3651 } 3652 3653 /* 3654 * Checks if we have enough host controller resources for the default control 3655 * endpoint. 3656 * 3657 * Must be called with xhci->lock held. 3658 */ 3659 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3660 { 3661 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3662 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3663 "Not enough ep ctxs: " 3664 "%u active, need to add 1, limit is %u.", 3665 xhci->num_active_eps, xhci->limit_active_eps); 3666 return -ENOMEM; 3667 } 3668 xhci->num_active_eps += 1; 3669 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3670 "Adding 1 ep ctx, %u now active.", 3671 xhci->num_active_eps); 3672 return 0; 3673 } 3674 3675 3676 /* 3677 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3678 * timed out, or allocating memory failed. Returns 1 on success. 3679 */ 3680 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3681 { 3682 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3683 unsigned long flags; 3684 int ret, slot_id; 3685 struct xhci_command *command; 3686 3687 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3688 if (!command) 3689 return 0; 3690 3691 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3692 mutex_lock(&xhci->mutex); 3693 spin_lock_irqsave(&xhci->lock, flags); 3694 command->completion = &xhci->addr_dev; 3695 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3696 if (ret) { 3697 spin_unlock_irqrestore(&xhci->lock, flags); 3698 mutex_unlock(&xhci->mutex); 3699 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3700 kfree(command); 3701 return 0; 3702 } 3703 xhci_ring_cmd_db(xhci); 3704 spin_unlock_irqrestore(&xhci->lock, flags); 3705 3706 wait_for_completion(command->completion); 3707 slot_id = xhci->slot_id; 3708 mutex_unlock(&xhci->mutex); 3709 3710 if (!slot_id || command->status != COMP_SUCCESS) { 3711 xhci_err(xhci, "Error while assigning device slot ID\n"); 3712 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3713 HCS_MAX_SLOTS( 3714 readl(&xhci->cap_regs->hcs_params1))); 3715 kfree(command); 3716 return 0; 3717 } 3718 3719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3720 spin_lock_irqsave(&xhci->lock, flags); 3721 ret = xhci_reserve_host_control_ep_resources(xhci); 3722 if (ret) { 3723 spin_unlock_irqrestore(&xhci->lock, flags); 3724 xhci_warn(xhci, "Not enough host resources, " 3725 "active endpoint contexts = %u\n", 3726 xhci->num_active_eps); 3727 goto disable_slot; 3728 } 3729 spin_unlock_irqrestore(&xhci->lock, flags); 3730 } 3731 /* Use GFP_NOIO, since this function can be called from 3732 * xhci_discover_or_reset_device(), which may be called as part of 3733 * mass storage driver error handling. 3734 */ 3735 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3736 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3737 goto disable_slot; 3738 } 3739 udev->slot_id = slot_id; 3740 3741 #ifndef CONFIG_USB_DEFAULT_PERSIST 3742 /* 3743 * If resetting upon resume, we can't put the controller into runtime 3744 * suspend if there is a device attached. 3745 */ 3746 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3747 pm_runtime_get_noresume(hcd->self.controller); 3748 #endif 3749 3750 3751 kfree(command); 3752 /* Is this a LS or FS device under a HS hub? */ 3753 /* Hub or peripherial? */ 3754 return 1; 3755 3756 disable_slot: 3757 /* Disable slot, if we can do it without mem alloc */ 3758 spin_lock_irqsave(&xhci->lock, flags); 3759 command->completion = NULL; 3760 command->status = 0; 3761 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3762 udev->slot_id)) 3763 xhci_ring_cmd_db(xhci); 3764 spin_unlock_irqrestore(&xhci->lock, flags); 3765 return 0; 3766 } 3767 3768 /* 3769 * Issue an Address Device command and optionally send a corresponding 3770 * SetAddress request to the device. 3771 */ 3772 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3773 enum xhci_setup_dev setup) 3774 { 3775 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3776 unsigned long flags; 3777 struct xhci_virt_device *virt_dev; 3778 int ret = 0; 3779 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3780 struct xhci_slot_ctx *slot_ctx; 3781 struct xhci_input_control_ctx *ctrl_ctx; 3782 u64 temp_64; 3783 struct xhci_command *command = NULL; 3784 3785 mutex_lock(&xhci->mutex); 3786 3787 if (xhci->xhc_state) /* dying, removing or halted */ 3788 goto out; 3789 3790 if (!udev->slot_id) { 3791 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3792 "Bad Slot ID %d", udev->slot_id); 3793 ret = -EINVAL; 3794 goto out; 3795 } 3796 3797 virt_dev = xhci->devs[udev->slot_id]; 3798 3799 if (WARN_ON(!virt_dev)) { 3800 /* 3801 * In plug/unplug torture test with an NEC controller, 3802 * a zero-dereference was observed once due to virt_dev = 0. 3803 * Print useful debug rather than crash if it is observed again! 3804 */ 3805 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3806 udev->slot_id); 3807 ret = -EINVAL; 3808 goto out; 3809 } 3810 3811 if (setup == SETUP_CONTEXT_ONLY) { 3812 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3813 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3814 SLOT_STATE_DEFAULT) { 3815 xhci_dbg(xhci, "Slot already in default state\n"); 3816 goto out; 3817 } 3818 } 3819 3820 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3821 if (!command) { 3822 ret = -ENOMEM; 3823 goto out; 3824 } 3825 3826 command->in_ctx = virt_dev->in_ctx; 3827 command->completion = &xhci->addr_dev; 3828 3829 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3830 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3831 if (!ctrl_ctx) { 3832 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3833 __func__); 3834 ret = -EINVAL; 3835 goto out; 3836 } 3837 /* 3838 * If this is the first Set Address since device plug-in or 3839 * virt_device realloaction after a resume with an xHCI power loss, 3840 * then set up the slot context. 3841 */ 3842 if (!slot_ctx->dev_info) 3843 xhci_setup_addressable_virt_dev(xhci, udev); 3844 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3845 else 3846 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3847 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3848 ctrl_ctx->drop_flags = 0; 3849 3850 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3851 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3852 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3853 le32_to_cpu(slot_ctx->dev_info) >> 27); 3854 3855 spin_lock_irqsave(&xhci->lock, flags); 3856 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3857 udev->slot_id, setup); 3858 if (ret) { 3859 spin_unlock_irqrestore(&xhci->lock, flags); 3860 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3861 "FIXME: allocate a command ring segment"); 3862 goto out; 3863 } 3864 xhci_ring_cmd_db(xhci); 3865 spin_unlock_irqrestore(&xhci->lock, flags); 3866 3867 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3868 wait_for_completion(command->completion); 3869 3870 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3871 * the SetAddress() "recovery interval" required by USB and aborting the 3872 * command on a timeout. 3873 */ 3874 switch (command->status) { 3875 case COMP_CMD_ABORT: 3876 case COMP_CMD_STOP: 3877 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3878 ret = -ETIME; 3879 break; 3880 case COMP_CTX_STATE: 3881 case COMP_EBADSLT: 3882 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3883 act, udev->slot_id); 3884 ret = -EINVAL; 3885 break; 3886 case COMP_TX_ERR: 3887 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3888 ret = -EPROTO; 3889 break; 3890 case COMP_DEV_ERR: 3891 dev_warn(&udev->dev, 3892 "ERROR: Incompatible device for setup %s command\n", act); 3893 ret = -ENODEV; 3894 break; 3895 case COMP_SUCCESS: 3896 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3897 "Successful setup %s command", act); 3898 break; 3899 default: 3900 xhci_err(xhci, 3901 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3902 act, command->status); 3903 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3904 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3905 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3906 ret = -EINVAL; 3907 break; 3908 } 3909 if (ret) 3910 goto out; 3911 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3912 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3913 "Op regs DCBAA ptr = %#016llx", temp_64); 3914 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3915 "Slot ID %d dcbaa entry @%p = %#016llx", 3916 udev->slot_id, 3917 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3918 (unsigned long long) 3919 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3920 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3921 "Output Context DMA address = %#08llx", 3922 (unsigned long long)virt_dev->out_ctx->dma); 3923 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3924 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3925 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3926 le32_to_cpu(slot_ctx->dev_info) >> 27); 3927 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3928 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3929 /* 3930 * USB core uses address 1 for the roothubs, so we add one to the 3931 * address given back to us by the HC. 3932 */ 3933 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3934 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3935 le32_to_cpu(slot_ctx->dev_info) >> 27); 3936 /* Zero the input context control for later use */ 3937 ctrl_ctx->add_flags = 0; 3938 ctrl_ctx->drop_flags = 0; 3939 3940 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3941 "Internal device address = %d", 3942 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3943 out: 3944 mutex_unlock(&xhci->mutex); 3945 kfree(command); 3946 return ret; 3947 } 3948 3949 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3950 { 3951 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3952 } 3953 3954 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3955 { 3956 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3957 } 3958 3959 /* 3960 * Transfer the port index into real index in the HW port status 3961 * registers. Caculate offset between the port's PORTSC register 3962 * and port status base. Divide the number of per port register 3963 * to get the real index. The raw port number bases 1. 3964 */ 3965 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3966 { 3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3968 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3969 __le32 __iomem *addr; 3970 int raw_port; 3971 3972 if (hcd->speed < HCD_USB3) 3973 addr = xhci->usb2_ports[port1 - 1]; 3974 else 3975 addr = xhci->usb3_ports[port1 - 1]; 3976 3977 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3978 return raw_port; 3979 } 3980 3981 /* 3982 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3983 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3984 */ 3985 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3986 struct usb_device *udev, u16 max_exit_latency) 3987 { 3988 struct xhci_virt_device *virt_dev; 3989 struct xhci_command *command; 3990 struct xhci_input_control_ctx *ctrl_ctx; 3991 struct xhci_slot_ctx *slot_ctx; 3992 unsigned long flags; 3993 int ret; 3994 3995 spin_lock_irqsave(&xhci->lock, flags); 3996 3997 virt_dev = xhci->devs[udev->slot_id]; 3998 3999 /* 4000 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4001 * xHC was re-initialized. Exit latency will be set later after 4002 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4003 */ 4004 4005 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4006 spin_unlock_irqrestore(&xhci->lock, flags); 4007 return 0; 4008 } 4009 4010 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4011 command = xhci->lpm_command; 4012 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4013 if (!ctrl_ctx) { 4014 spin_unlock_irqrestore(&xhci->lock, flags); 4015 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4016 __func__); 4017 return -ENOMEM; 4018 } 4019 4020 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4021 spin_unlock_irqrestore(&xhci->lock, flags); 4022 4023 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4024 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4025 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4026 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4027 slot_ctx->dev_state = 0; 4028 4029 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4030 "Set up evaluate context for LPM MEL change."); 4031 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4032 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4033 4034 /* Issue and wait for the evaluate context command. */ 4035 ret = xhci_configure_endpoint(xhci, udev, command, 4036 true, true); 4037 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4038 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4039 4040 if (!ret) { 4041 spin_lock_irqsave(&xhci->lock, flags); 4042 virt_dev->current_mel = max_exit_latency; 4043 spin_unlock_irqrestore(&xhci->lock, flags); 4044 } 4045 return ret; 4046 } 4047 4048 #ifdef CONFIG_PM 4049 4050 /* BESL to HIRD Encoding array for USB2 LPM */ 4051 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4052 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4053 4054 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4055 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4056 struct usb_device *udev) 4057 { 4058 int u2del, besl, besl_host; 4059 int besl_device = 0; 4060 u32 field; 4061 4062 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4063 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4064 4065 if (field & USB_BESL_SUPPORT) { 4066 for (besl_host = 0; besl_host < 16; besl_host++) { 4067 if (xhci_besl_encoding[besl_host] >= u2del) 4068 break; 4069 } 4070 /* Use baseline BESL value as default */ 4071 if (field & USB_BESL_BASELINE_VALID) 4072 besl_device = USB_GET_BESL_BASELINE(field); 4073 else if (field & USB_BESL_DEEP_VALID) 4074 besl_device = USB_GET_BESL_DEEP(field); 4075 } else { 4076 if (u2del <= 50) 4077 besl_host = 0; 4078 else 4079 besl_host = (u2del - 51) / 75 + 1; 4080 } 4081 4082 besl = besl_host + besl_device; 4083 if (besl > 15) 4084 besl = 15; 4085 4086 return besl; 4087 } 4088 4089 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4090 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4091 { 4092 u32 field; 4093 int l1; 4094 int besld = 0; 4095 int hirdm = 0; 4096 4097 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4098 4099 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4100 l1 = udev->l1_params.timeout / 256; 4101 4102 /* device has preferred BESLD */ 4103 if (field & USB_BESL_DEEP_VALID) { 4104 besld = USB_GET_BESL_DEEP(field); 4105 hirdm = 1; 4106 } 4107 4108 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4109 } 4110 4111 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4112 struct usb_device *udev, int enable) 4113 { 4114 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4115 __le32 __iomem **port_array; 4116 __le32 __iomem *pm_addr, *hlpm_addr; 4117 u32 pm_val, hlpm_val, field; 4118 unsigned int port_num; 4119 unsigned long flags; 4120 int hird, exit_latency; 4121 int ret; 4122 4123 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4124 !udev->lpm_capable) 4125 return -EPERM; 4126 4127 if (!udev->parent || udev->parent->parent || 4128 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4129 return -EPERM; 4130 4131 if (udev->usb2_hw_lpm_capable != 1) 4132 return -EPERM; 4133 4134 spin_lock_irqsave(&xhci->lock, flags); 4135 4136 port_array = xhci->usb2_ports; 4137 port_num = udev->portnum - 1; 4138 pm_addr = port_array[port_num] + PORTPMSC; 4139 pm_val = readl(pm_addr); 4140 hlpm_addr = port_array[port_num] + PORTHLPMC; 4141 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4142 4143 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4144 enable ? "enable" : "disable", port_num + 1); 4145 4146 if (enable) { 4147 /* Host supports BESL timeout instead of HIRD */ 4148 if (udev->usb2_hw_lpm_besl_capable) { 4149 /* if device doesn't have a preferred BESL value use a 4150 * default one which works with mixed HIRD and BESL 4151 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4152 */ 4153 if ((field & USB_BESL_SUPPORT) && 4154 (field & USB_BESL_BASELINE_VALID)) 4155 hird = USB_GET_BESL_BASELINE(field); 4156 else 4157 hird = udev->l1_params.besl; 4158 4159 exit_latency = xhci_besl_encoding[hird]; 4160 spin_unlock_irqrestore(&xhci->lock, flags); 4161 4162 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4163 * input context for link powermanagement evaluate 4164 * context commands. It is protected by hcd->bandwidth 4165 * mutex and is shared by all devices. We need to set 4166 * the max ext latency in USB 2 BESL LPM as well, so 4167 * use the same mutex and xhci_change_max_exit_latency() 4168 */ 4169 mutex_lock(hcd->bandwidth_mutex); 4170 ret = xhci_change_max_exit_latency(xhci, udev, 4171 exit_latency); 4172 mutex_unlock(hcd->bandwidth_mutex); 4173 4174 if (ret < 0) 4175 return ret; 4176 spin_lock_irqsave(&xhci->lock, flags); 4177 4178 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4179 writel(hlpm_val, hlpm_addr); 4180 /* flush write */ 4181 readl(hlpm_addr); 4182 } else { 4183 hird = xhci_calculate_hird_besl(xhci, udev); 4184 } 4185 4186 pm_val &= ~PORT_HIRD_MASK; 4187 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4188 writel(pm_val, pm_addr); 4189 pm_val = readl(pm_addr); 4190 pm_val |= PORT_HLE; 4191 writel(pm_val, pm_addr); 4192 /* flush write */ 4193 readl(pm_addr); 4194 } else { 4195 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4196 writel(pm_val, pm_addr); 4197 /* flush write */ 4198 readl(pm_addr); 4199 if (udev->usb2_hw_lpm_besl_capable) { 4200 spin_unlock_irqrestore(&xhci->lock, flags); 4201 mutex_lock(hcd->bandwidth_mutex); 4202 xhci_change_max_exit_latency(xhci, udev, 0); 4203 mutex_unlock(hcd->bandwidth_mutex); 4204 return 0; 4205 } 4206 } 4207 4208 spin_unlock_irqrestore(&xhci->lock, flags); 4209 return 0; 4210 } 4211 4212 /* check if a usb2 port supports a given extened capability protocol 4213 * only USB2 ports extended protocol capability values are cached. 4214 * Return 1 if capability is supported 4215 */ 4216 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4217 unsigned capability) 4218 { 4219 u32 port_offset, port_count; 4220 int i; 4221 4222 for (i = 0; i < xhci->num_ext_caps; i++) { 4223 if (xhci->ext_caps[i] & capability) { 4224 /* port offsets starts at 1 */ 4225 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4226 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4227 if (port >= port_offset && 4228 port < port_offset + port_count) 4229 return 1; 4230 } 4231 } 4232 return 0; 4233 } 4234 4235 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4236 { 4237 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4238 int portnum = udev->portnum - 1; 4239 4240 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4241 !udev->lpm_capable) 4242 return 0; 4243 4244 /* we only support lpm for non-hub device connected to root hub yet */ 4245 if (!udev->parent || udev->parent->parent || 4246 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4247 return 0; 4248 4249 if (xhci->hw_lpm_support == 1 && 4250 xhci_check_usb2_port_capability( 4251 xhci, portnum, XHCI_HLC)) { 4252 udev->usb2_hw_lpm_capable = 1; 4253 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4254 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4255 if (xhci_check_usb2_port_capability(xhci, portnum, 4256 XHCI_BLC)) 4257 udev->usb2_hw_lpm_besl_capable = 1; 4258 } 4259 4260 return 0; 4261 } 4262 4263 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4264 4265 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4266 static unsigned long long xhci_service_interval_to_ns( 4267 struct usb_endpoint_descriptor *desc) 4268 { 4269 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4270 } 4271 4272 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4273 enum usb3_link_state state) 4274 { 4275 unsigned long long sel; 4276 unsigned long long pel; 4277 unsigned int max_sel_pel; 4278 char *state_name; 4279 4280 switch (state) { 4281 case USB3_LPM_U1: 4282 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4283 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4284 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4285 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4286 state_name = "U1"; 4287 break; 4288 case USB3_LPM_U2: 4289 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4290 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4291 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4292 state_name = "U2"; 4293 break; 4294 default: 4295 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4296 __func__); 4297 return USB3_LPM_DISABLED; 4298 } 4299 4300 if (sel <= max_sel_pel && pel <= max_sel_pel) 4301 return USB3_LPM_DEVICE_INITIATED; 4302 4303 if (sel > max_sel_pel) 4304 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4305 "due to long SEL %llu ms\n", 4306 state_name, sel); 4307 else 4308 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4309 "due to long PEL %llu ms\n", 4310 state_name, pel); 4311 return USB3_LPM_DISABLED; 4312 } 4313 4314 /* The U1 timeout should be the maximum of the following values: 4315 * - For control endpoints, U1 system exit latency (SEL) * 3 4316 * - For bulk endpoints, U1 SEL * 5 4317 * - For interrupt endpoints: 4318 * - Notification EPs, U1 SEL * 3 4319 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4320 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4321 */ 4322 static unsigned long long xhci_calculate_intel_u1_timeout( 4323 struct usb_device *udev, 4324 struct usb_endpoint_descriptor *desc) 4325 { 4326 unsigned long long timeout_ns; 4327 int ep_type; 4328 int intr_type; 4329 4330 ep_type = usb_endpoint_type(desc); 4331 switch (ep_type) { 4332 case USB_ENDPOINT_XFER_CONTROL: 4333 timeout_ns = udev->u1_params.sel * 3; 4334 break; 4335 case USB_ENDPOINT_XFER_BULK: 4336 timeout_ns = udev->u1_params.sel * 5; 4337 break; 4338 case USB_ENDPOINT_XFER_INT: 4339 intr_type = usb_endpoint_interrupt_type(desc); 4340 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4341 timeout_ns = udev->u1_params.sel * 3; 4342 break; 4343 } 4344 /* Otherwise the calculation is the same as isoc eps */ 4345 case USB_ENDPOINT_XFER_ISOC: 4346 timeout_ns = xhci_service_interval_to_ns(desc); 4347 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4348 if (timeout_ns < udev->u1_params.sel * 2) 4349 timeout_ns = udev->u1_params.sel * 2; 4350 break; 4351 default: 4352 return 0; 4353 } 4354 4355 return timeout_ns; 4356 } 4357 4358 /* Returns the hub-encoded U1 timeout value. */ 4359 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4360 struct usb_device *udev, 4361 struct usb_endpoint_descriptor *desc) 4362 { 4363 unsigned long long timeout_ns; 4364 4365 if (xhci->quirks & XHCI_INTEL_HOST) 4366 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4367 else 4368 timeout_ns = udev->u1_params.sel; 4369 4370 /* The U1 timeout is encoded in 1us intervals. 4371 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4372 */ 4373 if (timeout_ns == USB3_LPM_DISABLED) 4374 timeout_ns = 1; 4375 else 4376 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4377 4378 /* If the necessary timeout value is bigger than what we can set in the 4379 * USB 3.0 hub, we have to disable hub-initiated U1. 4380 */ 4381 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4382 return timeout_ns; 4383 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4384 "due to long timeout %llu ms\n", timeout_ns); 4385 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4386 } 4387 4388 /* The U2 timeout should be the maximum of: 4389 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4390 * - largest bInterval of any active periodic endpoint (to avoid going 4391 * into lower power link states between intervals). 4392 * - the U2 Exit Latency of the device 4393 */ 4394 static unsigned long long xhci_calculate_intel_u2_timeout( 4395 struct usb_device *udev, 4396 struct usb_endpoint_descriptor *desc) 4397 { 4398 unsigned long long timeout_ns; 4399 unsigned long long u2_del_ns; 4400 4401 timeout_ns = 10 * 1000 * 1000; 4402 4403 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4404 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4405 timeout_ns = xhci_service_interval_to_ns(desc); 4406 4407 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4408 if (u2_del_ns > timeout_ns) 4409 timeout_ns = u2_del_ns; 4410 4411 return timeout_ns; 4412 } 4413 4414 /* Returns the hub-encoded U2 timeout value. */ 4415 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4416 struct usb_device *udev, 4417 struct usb_endpoint_descriptor *desc) 4418 { 4419 unsigned long long timeout_ns; 4420 4421 if (xhci->quirks & XHCI_INTEL_HOST) 4422 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4423 else 4424 timeout_ns = udev->u2_params.sel; 4425 4426 /* The U2 timeout is encoded in 256us intervals */ 4427 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4428 /* If the necessary timeout value is bigger than what we can set in the 4429 * USB 3.0 hub, we have to disable hub-initiated U2. 4430 */ 4431 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4432 return timeout_ns; 4433 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4434 "due to long timeout %llu ms\n", timeout_ns); 4435 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4436 } 4437 4438 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4439 struct usb_device *udev, 4440 struct usb_endpoint_descriptor *desc, 4441 enum usb3_link_state state, 4442 u16 *timeout) 4443 { 4444 if (state == USB3_LPM_U1) 4445 return xhci_calculate_u1_timeout(xhci, udev, desc); 4446 else if (state == USB3_LPM_U2) 4447 return xhci_calculate_u2_timeout(xhci, udev, desc); 4448 4449 return USB3_LPM_DISABLED; 4450 } 4451 4452 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4453 struct usb_device *udev, 4454 struct usb_endpoint_descriptor *desc, 4455 enum usb3_link_state state, 4456 u16 *timeout) 4457 { 4458 u16 alt_timeout; 4459 4460 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4461 desc, state, timeout); 4462 4463 /* If we found we can't enable hub-initiated LPM, or 4464 * the U1 or U2 exit latency was too high to allow 4465 * device-initiated LPM as well, just stop searching. 4466 */ 4467 if (alt_timeout == USB3_LPM_DISABLED || 4468 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4469 *timeout = alt_timeout; 4470 return -E2BIG; 4471 } 4472 if (alt_timeout > *timeout) 4473 *timeout = alt_timeout; 4474 return 0; 4475 } 4476 4477 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4478 struct usb_device *udev, 4479 struct usb_host_interface *alt, 4480 enum usb3_link_state state, 4481 u16 *timeout) 4482 { 4483 int j; 4484 4485 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4486 if (xhci_update_timeout_for_endpoint(xhci, udev, 4487 &alt->endpoint[j].desc, state, timeout)) 4488 return -E2BIG; 4489 continue; 4490 } 4491 return 0; 4492 } 4493 4494 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4495 enum usb3_link_state state) 4496 { 4497 struct usb_device *parent; 4498 unsigned int num_hubs; 4499 4500 if (state == USB3_LPM_U2) 4501 return 0; 4502 4503 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4504 for (parent = udev->parent, num_hubs = 0; parent->parent; 4505 parent = parent->parent) 4506 num_hubs++; 4507 4508 if (num_hubs < 2) 4509 return 0; 4510 4511 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4512 " below second-tier hub.\n"); 4513 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4514 "to decrease power consumption.\n"); 4515 return -E2BIG; 4516 } 4517 4518 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4519 struct usb_device *udev, 4520 enum usb3_link_state state) 4521 { 4522 if (xhci->quirks & XHCI_INTEL_HOST) 4523 return xhci_check_intel_tier_policy(udev, state); 4524 else 4525 return 0; 4526 } 4527 4528 /* Returns the U1 or U2 timeout that should be enabled. 4529 * If the tier check or timeout setting functions return with a non-zero exit 4530 * code, that means the timeout value has been finalized and we shouldn't look 4531 * at any more endpoints. 4532 */ 4533 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4534 struct usb_device *udev, enum usb3_link_state state) 4535 { 4536 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4537 struct usb_host_config *config; 4538 char *state_name; 4539 int i; 4540 u16 timeout = USB3_LPM_DISABLED; 4541 4542 if (state == USB3_LPM_U1) 4543 state_name = "U1"; 4544 else if (state == USB3_LPM_U2) 4545 state_name = "U2"; 4546 else { 4547 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4548 state); 4549 return timeout; 4550 } 4551 4552 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4553 return timeout; 4554 4555 /* Gather some information about the currently installed configuration 4556 * and alternate interface settings. 4557 */ 4558 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4559 state, &timeout)) 4560 return timeout; 4561 4562 config = udev->actconfig; 4563 if (!config) 4564 return timeout; 4565 4566 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4567 struct usb_driver *driver; 4568 struct usb_interface *intf = config->interface[i]; 4569 4570 if (!intf) 4571 continue; 4572 4573 /* Check if any currently bound drivers want hub-initiated LPM 4574 * disabled. 4575 */ 4576 if (intf->dev.driver) { 4577 driver = to_usb_driver(intf->dev.driver); 4578 if (driver && driver->disable_hub_initiated_lpm) { 4579 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4580 "at request of driver %s\n", 4581 state_name, driver->name); 4582 return xhci_get_timeout_no_hub_lpm(udev, state); 4583 } 4584 } 4585 4586 /* Not sure how this could happen... */ 4587 if (!intf->cur_altsetting) 4588 continue; 4589 4590 if (xhci_update_timeout_for_interface(xhci, udev, 4591 intf->cur_altsetting, 4592 state, &timeout)) 4593 return timeout; 4594 } 4595 return timeout; 4596 } 4597 4598 static int calculate_max_exit_latency(struct usb_device *udev, 4599 enum usb3_link_state state_changed, 4600 u16 hub_encoded_timeout) 4601 { 4602 unsigned long long u1_mel_us = 0; 4603 unsigned long long u2_mel_us = 0; 4604 unsigned long long mel_us = 0; 4605 bool disabling_u1; 4606 bool disabling_u2; 4607 bool enabling_u1; 4608 bool enabling_u2; 4609 4610 disabling_u1 = (state_changed == USB3_LPM_U1 && 4611 hub_encoded_timeout == USB3_LPM_DISABLED); 4612 disabling_u2 = (state_changed == USB3_LPM_U2 && 4613 hub_encoded_timeout == USB3_LPM_DISABLED); 4614 4615 enabling_u1 = (state_changed == USB3_LPM_U1 && 4616 hub_encoded_timeout != USB3_LPM_DISABLED); 4617 enabling_u2 = (state_changed == USB3_LPM_U2 && 4618 hub_encoded_timeout != USB3_LPM_DISABLED); 4619 4620 /* If U1 was already enabled and we're not disabling it, 4621 * or we're going to enable U1, account for the U1 max exit latency. 4622 */ 4623 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4624 enabling_u1) 4625 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4626 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4627 enabling_u2) 4628 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4629 4630 if (u1_mel_us > u2_mel_us) 4631 mel_us = u1_mel_us; 4632 else 4633 mel_us = u2_mel_us; 4634 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4635 if (mel_us > MAX_EXIT) { 4636 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4637 "is too big.\n", mel_us); 4638 return -E2BIG; 4639 } 4640 return mel_us; 4641 } 4642 4643 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4644 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4645 struct usb_device *udev, enum usb3_link_state state) 4646 { 4647 struct xhci_hcd *xhci; 4648 u16 hub_encoded_timeout; 4649 int mel; 4650 int ret; 4651 4652 xhci = hcd_to_xhci(hcd); 4653 /* The LPM timeout values are pretty host-controller specific, so don't 4654 * enable hub-initiated timeouts unless the vendor has provided 4655 * information about their timeout algorithm. 4656 */ 4657 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4658 !xhci->devs[udev->slot_id]) 4659 return USB3_LPM_DISABLED; 4660 4661 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4662 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4663 if (mel < 0) { 4664 /* Max Exit Latency is too big, disable LPM. */ 4665 hub_encoded_timeout = USB3_LPM_DISABLED; 4666 mel = 0; 4667 } 4668 4669 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4670 if (ret) 4671 return ret; 4672 return hub_encoded_timeout; 4673 } 4674 4675 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4676 struct usb_device *udev, enum usb3_link_state state) 4677 { 4678 struct xhci_hcd *xhci; 4679 u16 mel; 4680 4681 xhci = hcd_to_xhci(hcd); 4682 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4683 !xhci->devs[udev->slot_id]) 4684 return 0; 4685 4686 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4687 return xhci_change_max_exit_latency(xhci, udev, mel); 4688 } 4689 #else /* CONFIG_PM */ 4690 4691 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4692 struct usb_device *udev, int enable) 4693 { 4694 return 0; 4695 } 4696 4697 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4698 { 4699 return 0; 4700 } 4701 4702 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4703 struct usb_device *udev, enum usb3_link_state state) 4704 { 4705 return USB3_LPM_DISABLED; 4706 } 4707 4708 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4709 struct usb_device *udev, enum usb3_link_state state) 4710 { 4711 return 0; 4712 } 4713 #endif /* CONFIG_PM */ 4714 4715 /*-------------------------------------------------------------------------*/ 4716 4717 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4718 * internal data structures for the device. 4719 */ 4720 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4721 struct usb_tt *tt, gfp_t mem_flags) 4722 { 4723 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4724 struct xhci_virt_device *vdev; 4725 struct xhci_command *config_cmd; 4726 struct xhci_input_control_ctx *ctrl_ctx; 4727 struct xhci_slot_ctx *slot_ctx; 4728 unsigned long flags; 4729 unsigned think_time; 4730 int ret; 4731 4732 /* Ignore root hubs */ 4733 if (!hdev->parent) 4734 return 0; 4735 4736 vdev = xhci->devs[hdev->slot_id]; 4737 if (!vdev) { 4738 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4739 return -EINVAL; 4740 } 4741 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4742 if (!config_cmd) { 4743 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4744 return -ENOMEM; 4745 } 4746 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4747 if (!ctrl_ctx) { 4748 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4749 __func__); 4750 xhci_free_command(xhci, config_cmd); 4751 return -ENOMEM; 4752 } 4753 4754 spin_lock_irqsave(&xhci->lock, flags); 4755 if (hdev->speed == USB_SPEED_HIGH && 4756 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4757 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4758 xhci_free_command(xhci, config_cmd); 4759 spin_unlock_irqrestore(&xhci->lock, flags); 4760 return -ENOMEM; 4761 } 4762 4763 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4764 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4765 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4766 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4767 /* 4768 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4769 * but it may be already set to 1 when setup an xHCI virtual 4770 * device, so clear it anyway. 4771 */ 4772 if (tt->multi) 4773 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4774 else if (hdev->speed == USB_SPEED_FULL) 4775 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4776 4777 if (xhci->hci_version > 0x95) { 4778 xhci_dbg(xhci, "xHCI version %x needs hub " 4779 "TT think time and number of ports\n", 4780 (unsigned int) xhci->hci_version); 4781 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4782 /* Set TT think time - convert from ns to FS bit times. 4783 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4784 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4785 * 4786 * xHCI 1.0: this field shall be 0 if the device is not a 4787 * High-spped hub. 4788 */ 4789 think_time = tt->think_time; 4790 if (think_time != 0) 4791 think_time = (think_time / 666) - 1; 4792 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4793 slot_ctx->tt_info |= 4794 cpu_to_le32(TT_THINK_TIME(think_time)); 4795 } else { 4796 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4797 "TT think time or number of ports\n", 4798 (unsigned int) xhci->hci_version); 4799 } 4800 slot_ctx->dev_state = 0; 4801 spin_unlock_irqrestore(&xhci->lock, flags); 4802 4803 xhci_dbg(xhci, "Set up %s for hub device.\n", 4804 (xhci->hci_version > 0x95) ? 4805 "configure endpoint" : "evaluate context"); 4806 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4807 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4808 4809 /* Issue and wait for the configure endpoint or 4810 * evaluate context command. 4811 */ 4812 if (xhci->hci_version > 0x95) 4813 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4814 false, false); 4815 else 4816 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4817 true, false); 4818 4819 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4820 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4821 4822 xhci_free_command(xhci, config_cmd); 4823 return ret; 4824 } 4825 4826 int xhci_get_frame(struct usb_hcd *hcd) 4827 { 4828 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4829 /* EHCI mods by the periodic size. Why? */ 4830 return readl(&xhci->run_regs->microframe_index) >> 3; 4831 } 4832 4833 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4834 { 4835 struct xhci_hcd *xhci; 4836 struct device *dev = hcd->self.controller; 4837 int retval; 4838 4839 /* Accept arbitrarily long scatter-gather lists */ 4840 hcd->self.sg_tablesize = ~0; 4841 4842 /* support to build packet from discontinuous buffers */ 4843 hcd->self.no_sg_constraint = 1; 4844 4845 /* XHCI controllers don't stop the ep queue on short packets :| */ 4846 hcd->self.no_stop_on_short = 1; 4847 4848 xhci = hcd_to_xhci(hcd); 4849 4850 if (usb_hcd_is_primary_hcd(hcd)) { 4851 xhci->main_hcd = hcd; 4852 /* Mark the first roothub as being USB 2.0. 4853 * The xHCI driver will register the USB 3.0 roothub. 4854 */ 4855 hcd->speed = HCD_USB2; 4856 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4857 /* 4858 * USB 2.0 roothub under xHCI has an integrated TT, 4859 * (rate matching hub) as opposed to having an OHCI/UHCI 4860 * companion controller. 4861 */ 4862 hcd->has_tt = 1; 4863 } else { 4864 if (xhci->sbrn == 0x31) { 4865 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4866 hcd->speed = HCD_USB31; 4867 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4868 } 4869 /* xHCI private pointer was set in xhci_pci_probe for the second 4870 * registered roothub. 4871 */ 4872 return 0; 4873 } 4874 4875 mutex_init(&xhci->mutex); 4876 xhci->cap_regs = hcd->regs; 4877 xhci->op_regs = hcd->regs + 4878 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4879 xhci->run_regs = hcd->regs + 4880 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4881 /* Cache read-only capability registers */ 4882 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4883 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4884 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4885 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4886 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4887 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4888 if (xhci->hci_version > 0x100) 4889 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4890 xhci_print_registers(xhci); 4891 4892 xhci->quirks |= quirks; 4893 4894 get_quirks(dev, xhci); 4895 4896 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4897 * success event after a short transfer. This quirk will ignore such 4898 * spurious event. 4899 */ 4900 if (xhci->hci_version > 0x96) 4901 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4902 4903 /* Make sure the HC is halted. */ 4904 retval = xhci_halt(xhci); 4905 if (retval) 4906 return retval; 4907 4908 xhci_dbg(xhci, "Resetting HCD\n"); 4909 /* Reset the internal HC memory state and registers. */ 4910 retval = xhci_reset(xhci); 4911 if (retval) 4912 return retval; 4913 xhci_dbg(xhci, "Reset complete\n"); 4914 4915 /* 4916 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4917 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4918 * address memory pointers actually. So, this driver clears the AC64 4919 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4920 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4921 */ 4922 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4923 xhci->hcc_params &= ~BIT(0); 4924 4925 /* Set dma_mask and coherent_dma_mask to 64-bits, 4926 * if xHC supports 64-bit addressing */ 4927 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4928 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4929 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4930 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4931 } else { 4932 /* 4933 * This is to avoid error in cases where a 32-bit USB 4934 * controller is used on a 64-bit capable system. 4935 */ 4936 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4937 if (retval) 4938 return retval; 4939 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4940 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4941 } 4942 4943 xhci_dbg(xhci, "Calling HCD init\n"); 4944 /* Initialize HCD and host controller data structures. */ 4945 retval = xhci_init(hcd); 4946 if (retval) 4947 return retval; 4948 xhci_dbg(xhci, "Called HCD init\n"); 4949 4950 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4951 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4952 4953 return 0; 4954 } 4955 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4956 4957 static const struct hc_driver xhci_hc_driver = { 4958 .description = "xhci-hcd", 4959 .product_desc = "xHCI Host Controller", 4960 .hcd_priv_size = sizeof(struct xhci_hcd), 4961 4962 /* 4963 * generic hardware linkage 4964 */ 4965 .irq = xhci_irq, 4966 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4967 4968 /* 4969 * basic lifecycle operations 4970 */ 4971 .reset = NULL, /* set in xhci_init_driver() */ 4972 .start = xhci_run, 4973 .stop = xhci_stop, 4974 .shutdown = xhci_shutdown, 4975 4976 /* 4977 * managing i/o requests and associated device resources 4978 */ 4979 .urb_enqueue = xhci_urb_enqueue, 4980 .urb_dequeue = xhci_urb_dequeue, 4981 .alloc_dev = xhci_alloc_dev, 4982 .free_dev = xhci_free_dev, 4983 .alloc_streams = xhci_alloc_streams, 4984 .free_streams = xhci_free_streams, 4985 .add_endpoint = xhci_add_endpoint, 4986 .drop_endpoint = xhci_drop_endpoint, 4987 .endpoint_reset = xhci_endpoint_reset, 4988 .check_bandwidth = xhci_check_bandwidth, 4989 .reset_bandwidth = xhci_reset_bandwidth, 4990 .address_device = xhci_address_device, 4991 .enable_device = xhci_enable_device, 4992 .update_hub_device = xhci_update_hub_device, 4993 .reset_device = xhci_discover_or_reset_device, 4994 4995 /* 4996 * scheduling support 4997 */ 4998 .get_frame_number = xhci_get_frame, 4999 5000 /* 5001 * root hub support 5002 */ 5003 .hub_control = xhci_hub_control, 5004 .hub_status_data = xhci_hub_status_data, 5005 .bus_suspend = xhci_bus_suspend, 5006 .bus_resume = xhci_bus_resume, 5007 5008 /* 5009 * call back when device connected and addressed 5010 */ 5011 .update_device = xhci_update_device, 5012 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5013 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5014 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5015 .find_raw_port_number = xhci_find_raw_port_number, 5016 }; 5017 5018 void xhci_init_driver(struct hc_driver *drv, 5019 const struct xhci_driver_overrides *over) 5020 { 5021 BUG_ON(!over); 5022 5023 /* Copy the generic table to drv then apply the overrides */ 5024 *drv = xhci_hc_driver; 5025 5026 if (over) { 5027 drv->hcd_priv_size += over->extra_priv_size; 5028 if (over->reset) 5029 drv->reset = over->reset; 5030 if (over->start) 5031 drv->start = over->start; 5032 } 5033 } 5034 EXPORT_SYMBOL_GPL(xhci_init_driver); 5035 5036 MODULE_DESCRIPTION(DRIVER_DESC); 5037 MODULE_AUTHOR(DRIVER_AUTHOR); 5038 MODULE_LICENSE("GPL"); 5039 5040 static int __init xhci_hcd_init(void) 5041 { 5042 /* 5043 * Check the compiler generated sizes of structures that must be laid 5044 * out in specific ways for hardware access. 5045 */ 5046 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5047 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5048 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5049 /* xhci_device_control has eight fields, and also 5050 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5051 */ 5052 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5053 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5054 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5055 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5056 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5057 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5058 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5059 5060 if (usb_disabled()) 5061 return -ENODEV; 5062 5063 return 0; 5064 } 5065 5066 /* 5067 * If an init function is provided, an exit function must also be provided 5068 * to allow module unload. 5069 */ 5070 static void __exit xhci_hcd_fini(void) { } 5071 5072 module_init(xhci_hcd_init); 5073 module_exit(xhci_hcd_fini); 5074