1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 ms of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 */ 99 int xhci_halt(struct xhci_hcd *xhci) 100 { 101 int ret; 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 ret = handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 if (!ret) 108 xhci->xhc_state |= XHCI_STATE_HALTED; 109 else 110 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 111 XHCI_MAX_HALT_USEC); 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 static int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = xhci_readl(xhci, &xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 126 temp); 127 xhci_writel(xhci, temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = handshake(xhci, &xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 xhci->xhc_state &= ~XHCI_STATE_HALTED; 141 return ret; 142 } 143 144 /* 145 * Reset a halted HC. 146 * 147 * This resets pipelines, timers, counters, state machines, etc. 148 * Transactions will be terminated immediately, and operational registers 149 * will be set to their defaults. 150 */ 151 int xhci_reset(struct xhci_hcd *xhci) 152 { 153 u32 command; 154 u32 state; 155 int ret; 156 157 state = xhci_readl(xhci, &xhci->op_regs->status); 158 if ((state & STS_HALT) == 0) { 159 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 160 return 0; 161 } 162 163 xhci_dbg(xhci, "// Reset the HC\n"); 164 command = xhci_readl(xhci, &xhci->op_regs->command); 165 command |= CMD_RESET; 166 xhci_writel(xhci, command, &xhci->op_regs->command); 167 168 ret = handshake(xhci, &xhci->op_regs->command, 169 CMD_RESET, 0, 250 * 1000); 170 if (ret) 171 return ret; 172 173 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 174 /* 175 * xHCI cannot write to any doorbells or operational registers other 176 * than status until the "Controller Not Ready" flag is cleared. 177 */ 178 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 179 } 180 181 #ifdef CONFIG_PCI 182 static int xhci_free_msi(struct xhci_hcd *xhci) 183 { 184 int i; 185 186 if (!xhci->msix_entries) 187 return -EINVAL; 188 189 for (i = 0; i < xhci->msix_count; i++) 190 if (xhci->msix_entries[i].vector) 191 free_irq(xhci->msix_entries[i].vector, 192 xhci_to_hcd(xhci)); 193 return 0; 194 } 195 196 /* 197 * Set up MSI 198 */ 199 static int xhci_setup_msi(struct xhci_hcd *xhci) 200 { 201 int ret; 202 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 203 204 ret = pci_enable_msi(pdev); 205 if (ret) { 206 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 207 return ret; 208 } 209 210 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 211 0, "xhci_hcd", xhci_to_hcd(xhci)); 212 if (ret) { 213 xhci_dbg(xhci, "disable MSI interrupt\n"); 214 pci_disable_msi(pdev); 215 } 216 217 return ret; 218 } 219 220 /* 221 * Free IRQs 222 * free all IRQs request 223 */ 224 static void xhci_free_irq(struct xhci_hcd *xhci) 225 { 226 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 227 int ret; 228 229 /* return if using legacy interrupt */ 230 if (xhci_to_hcd(xhci)->irq > 0) 231 return; 232 233 ret = xhci_free_msi(xhci); 234 if (!ret) 235 return; 236 if (pdev->irq > 0) 237 free_irq(pdev->irq, xhci_to_hcd(xhci)); 238 239 return; 240 } 241 242 /* 243 * Set up MSI-X 244 */ 245 static int xhci_setup_msix(struct xhci_hcd *xhci) 246 { 247 int i, ret = 0; 248 struct usb_hcd *hcd = xhci_to_hcd(xhci); 249 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 250 251 /* 252 * calculate number of msi-x vectors supported. 253 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 254 * with max number of interrupters based on the xhci HCSPARAMS1. 255 * - num_online_cpus: maximum msi-x vectors per CPUs core. 256 * Add additional 1 vector to ensure always available interrupt. 257 */ 258 xhci->msix_count = min(num_online_cpus() + 1, 259 HCS_MAX_INTRS(xhci->hcs_params1)); 260 261 xhci->msix_entries = 262 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 263 GFP_KERNEL); 264 if (!xhci->msix_entries) { 265 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 266 return -ENOMEM; 267 } 268 269 for (i = 0; i < xhci->msix_count; i++) { 270 xhci->msix_entries[i].entry = i; 271 xhci->msix_entries[i].vector = 0; 272 } 273 274 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 275 if (ret) { 276 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 277 goto free_entries; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 ret = request_irq(xhci->msix_entries[i].vector, 282 (irq_handler_t)xhci_msi_irq, 283 0, "xhci_hcd", xhci_to_hcd(xhci)); 284 if (ret) 285 goto disable_msix; 286 } 287 288 hcd->msix_enabled = 1; 289 return ret; 290 291 disable_msix: 292 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 293 xhci_free_irq(xhci); 294 pci_disable_msix(pdev); 295 free_entries: 296 kfree(xhci->msix_entries); 297 xhci->msix_entries = NULL; 298 return ret; 299 } 300 301 /* Free any IRQs and disable MSI-X */ 302 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 303 { 304 struct usb_hcd *hcd = xhci_to_hcd(xhci); 305 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 306 307 xhci_free_irq(xhci); 308 309 if (xhci->msix_entries) { 310 pci_disable_msix(pdev); 311 kfree(xhci->msix_entries); 312 xhci->msix_entries = NULL; 313 } else { 314 pci_disable_msi(pdev); 315 } 316 317 hcd->msix_enabled = 0; 318 return; 319 } 320 321 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 322 { 323 int i; 324 325 if (xhci->msix_entries) { 326 for (i = 0; i < xhci->msix_count; i++) 327 synchronize_irq(xhci->msix_entries[i].vector); 328 } 329 } 330 331 static int xhci_try_enable_msi(struct usb_hcd *hcd) 332 { 333 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 334 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 335 int ret; 336 337 /* 338 * Some Fresco Logic host controllers advertise MSI, but fail to 339 * generate interrupts. Don't even try to enable MSI. 340 */ 341 if (xhci->quirks & XHCI_BROKEN_MSI) 342 return 0; 343 344 /* unregister the legacy interrupt */ 345 if (hcd->irq) 346 free_irq(hcd->irq, hcd); 347 hcd->irq = 0; 348 349 ret = xhci_setup_msix(xhci); 350 if (ret) 351 /* fall back to msi*/ 352 ret = xhci_setup_msi(xhci); 353 354 if (!ret) 355 /* hcd->irq is 0, we have MSI */ 356 return 0; 357 358 if (!pdev->irq) { 359 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 360 return -EINVAL; 361 } 362 363 /* fall back to legacy interrupt*/ 364 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 365 hcd->irq_descr, hcd); 366 if (ret) { 367 xhci_err(xhci, "request interrupt %d failed\n", 368 pdev->irq); 369 return ret; 370 } 371 hcd->irq = pdev->irq; 372 return 0; 373 } 374 375 #else 376 377 static int xhci_try_enable_msi(struct usb_hcd *hcd) 378 { 379 return 0; 380 } 381 382 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 383 { 384 } 385 386 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 387 { 388 } 389 390 #endif 391 392 /* 393 * Initialize memory for HCD and xHC (one-time init). 394 * 395 * Program the PAGESIZE register, initialize the device context array, create 396 * device contexts (?), set up a command ring segment (or two?), create event 397 * ring (one for now). 398 */ 399 int xhci_init(struct usb_hcd *hcd) 400 { 401 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 402 int retval = 0; 403 404 xhci_dbg(xhci, "xhci_init\n"); 405 spin_lock_init(&xhci->lock); 406 if (xhci->hci_version == 0x95 && link_quirk) { 407 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 408 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 409 } else { 410 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 411 } 412 retval = xhci_mem_init(xhci, GFP_KERNEL); 413 xhci_dbg(xhci, "Finished xhci_init\n"); 414 415 return retval; 416 } 417 418 /*-------------------------------------------------------------------------*/ 419 420 421 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 422 static void xhci_event_ring_work(unsigned long arg) 423 { 424 unsigned long flags; 425 int temp; 426 u64 temp_64; 427 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 428 int i, j; 429 430 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 431 432 spin_lock_irqsave(&xhci->lock, flags); 433 temp = xhci_readl(xhci, &xhci->op_regs->status); 434 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 435 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 436 (xhci->xhc_state & XHCI_STATE_HALTED)) { 437 xhci_dbg(xhci, "HW died, polling stopped.\n"); 438 spin_unlock_irqrestore(&xhci->lock, flags); 439 return; 440 } 441 442 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 443 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 444 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 445 xhci->error_bitmask = 0; 446 xhci_dbg(xhci, "Event ring:\n"); 447 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 448 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 449 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 450 temp_64 &= ~ERST_PTR_MASK; 451 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 452 xhci_dbg(xhci, "Command ring:\n"); 453 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 454 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 455 xhci_dbg_cmd_ptrs(xhci); 456 for (i = 0; i < MAX_HC_SLOTS; ++i) { 457 if (!xhci->devs[i]) 458 continue; 459 for (j = 0; j < 31; ++j) { 460 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 461 } 462 } 463 spin_unlock_irqrestore(&xhci->lock, flags); 464 465 if (!xhci->zombie) 466 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 467 else 468 xhci_dbg(xhci, "Quit polling the event ring.\n"); 469 } 470 #endif 471 472 static int xhci_run_finished(struct xhci_hcd *xhci) 473 { 474 if (xhci_start(xhci)) { 475 xhci_halt(xhci); 476 return -ENODEV; 477 } 478 xhci->shared_hcd->state = HC_STATE_RUNNING; 479 480 if (xhci->quirks & XHCI_NEC_HOST) 481 xhci_ring_cmd_db(xhci); 482 483 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 484 return 0; 485 } 486 487 /* 488 * Start the HC after it was halted. 489 * 490 * This function is called by the USB core when the HC driver is added. 491 * Its opposite is xhci_stop(). 492 * 493 * xhci_init() must be called once before this function can be called. 494 * Reset the HC, enable device slot contexts, program DCBAAP, and 495 * set command ring pointer and event ring pointer. 496 * 497 * Setup MSI-X vectors and enable interrupts. 498 */ 499 int xhci_run(struct usb_hcd *hcd) 500 { 501 u32 temp; 502 u64 temp_64; 503 int ret; 504 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 505 506 /* Start the xHCI host controller running only after the USB 2.0 roothub 507 * is setup. 508 */ 509 510 hcd->uses_new_polling = 1; 511 if (!usb_hcd_is_primary_hcd(hcd)) 512 return xhci_run_finished(xhci); 513 514 xhci_dbg(xhci, "xhci_run\n"); 515 516 ret = xhci_try_enable_msi(hcd); 517 if (ret) 518 return ret; 519 520 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 521 init_timer(&xhci->event_ring_timer); 522 xhci->event_ring_timer.data = (unsigned long) xhci; 523 xhci->event_ring_timer.function = xhci_event_ring_work; 524 /* Poll the event ring */ 525 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 526 xhci->zombie = 0; 527 xhci_dbg(xhci, "Setting event ring polling timer\n"); 528 add_timer(&xhci->event_ring_timer); 529 #endif 530 531 xhci_dbg(xhci, "Command ring memory map follows:\n"); 532 xhci_debug_ring(xhci, xhci->cmd_ring); 533 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 534 xhci_dbg_cmd_ptrs(xhci); 535 536 xhci_dbg(xhci, "ERST memory map follows:\n"); 537 xhci_dbg_erst(xhci, &xhci->erst); 538 xhci_dbg(xhci, "Event ring:\n"); 539 xhci_debug_ring(xhci, xhci->event_ring); 540 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 541 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 542 temp_64 &= ~ERST_PTR_MASK; 543 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 544 545 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 546 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 547 temp &= ~ER_IRQ_INTERVAL_MASK; 548 temp |= (u32) 160; 549 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 550 551 /* Set the HCD state before we enable the irqs */ 552 temp = xhci_readl(xhci, &xhci->op_regs->command); 553 temp |= (CMD_EIE); 554 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 555 temp); 556 xhci_writel(xhci, temp, &xhci->op_regs->command); 557 558 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 559 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 560 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 561 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 562 &xhci->ir_set->irq_pending); 563 xhci_print_ir_set(xhci, 0); 564 565 if (xhci->quirks & XHCI_NEC_HOST) 566 xhci_queue_vendor_command(xhci, 0, 0, 0, 567 TRB_TYPE(TRB_NEC_GET_FW)); 568 569 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 570 return 0; 571 } 572 573 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 574 { 575 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 576 577 spin_lock_irq(&xhci->lock); 578 xhci_halt(xhci); 579 580 /* The shared_hcd is going to be deallocated shortly (the USB core only 581 * calls this function when allocation fails in usb_add_hcd(), or 582 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 583 */ 584 xhci->shared_hcd = NULL; 585 spin_unlock_irq(&xhci->lock); 586 } 587 588 /* 589 * Stop xHCI driver. 590 * 591 * This function is called by the USB core when the HC driver is removed. 592 * Its opposite is xhci_run(). 593 * 594 * Disable device contexts, disable IRQs, and quiesce the HC. 595 * Reset the HC, finish any completed transactions, and cleanup memory. 596 */ 597 void xhci_stop(struct usb_hcd *hcd) 598 { 599 u32 temp; 600 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 601 602 if (!usb_hcd_is_primary_hcd(hcd)) { 603 xhci_only_stop_hcd(xhci->shared_hcd); 604 return; 605 } 606 607 spin_lock_irq(&xhci->lock); 608 /* Make sure the xHC is halted for a USB3 roothub 609 * (xhci_stop() could be called as part of failed init). 610 */ 611 xhci_halt(xhci); 612 xhci_reset(xhci); 613 spin_unlock_irq(&xhci->lock); 614 615 xhci_cleanup_msix(xhci); 616 617 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 618 /* Tell the event ring poll function not to reschedule */ 619 xhci->zombie = 1; 620 del_timer_sync(&xhci->event_ring_timer); 621 #endif 622 623 if (xhci->quirks & XHCI_AMD_PLL_FIX) 624 usb_amd_dev_put(); 625 626 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 627 temp = xhci_readl(xhci, &xhci->op_regs->status); 628 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 629 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 630 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 631 &xhci->ir_set->irq_pending); 632 xhci_print_ir_set(xhci, 0); 633 634 xhci_dbg(xhci, "cleaning up memory\n"); 635 xhci_mem_cleanup(xhci); 636 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 637 xhci_readl(xhci, &xhci->op_regs->status)); 638 } 639 640 /* 641 * Shutdown HC (not bus-specific) 642 * 643 * This is called when the machine is rebooting or halting. We assume that the 644 * machine will be powered off, and the HC's internal state will be reset. 645 * Don't bother to free memory. 646 * 647 * This will only ever be called with the main usb_hcd (the USB3 roothub). 648 */ 649 void xhci_shutdown(struct usb_hcd *hcd) 650 { 651 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 652 653 spin_lock_irq(&xhci->lock); 654 xhci_halt(xhci); 655 spin_unlock_irq(&xhci->lock); 656 657 xhci_cleanup_msix(xhci); 658 659 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 660 xhci_readl(xhci, &xhci->op_regs->status)); 661 } 662 663 #ifdef CONFIG_PM 664 static void xhci_save_registers(struct xhci_hcd *xhci) 665 { 666 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 667 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 668 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 669 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 670 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 671 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 672 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 673 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 674 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 675 } 676 677 static void xhci_restore_registers(struct xhci_hcd *xhci) 678 { 679 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 680 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 681 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 682 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 683 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 684 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 685 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 686 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 687 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 688 } 689 690 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 691 { 692 u64 val_64; 693 694 /* step 2: initialize command ring buffer */ 695 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 696 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 697 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 698 xhci->cmd_ring->dequeue) & 699 (u64) ~CMD_RING_RSVD_BITS) | 700 xhci->cmd_ring->cycle_state; 701 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 702 (long unsigned long) val_64); 703 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 704 } 705 706 /* 707 * The whole command ring must be cleared to zero when we suspend the host. 708 * 709 * The host doesn't save the command ring pointer in the suspend well, so we 710 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 711 * aligned, because of the reserved bits in the command ring dequeue pointer 712 * register. Therefore, we can't just set the dequeue pointer back in the 713 * middle of the ring (TRBs are 16-byte aligned). 714 */ 715 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 716 { 717 struct xhci_ring *ring; 718 struct xhci_segment *seg; 719 720 ring = xhci->cmd_ring; 721 seg = ring->deq_seg; 722 do { 723 memset(seg->trbs, 0, 724 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 725 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 726 cpu_to_le32(~TRB_CYCLE); 727 seg = seg->next; 728 } while (seg != ring->deq_seg); 729 730 /* Reset the software enqueue and dequeue pointers */ 731 ring->deq_seg = ring->first_seg; 732 ring->dequeue = ring->first_seg->trbs; 733 ring->enq_seg = ring->deq_seg; 734 ring->enqueue = ring->dequeue; 735 736 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 737 /* 738 * Ring is now zeroed, so the HW should look for change of ownership 739 * when the cycle bit is set to 1. 740 */ 741 ring->cycle_state = 1; 742 743 /* 744 * Reset the hardware dequeue pointer. 745 * Yes, this will need to be re-written after resume, but we're paranoid 746 * and want to make sure the hardware doesn't access bogus memory 747 * because, say, the BIOS or an SMI started the host without changing 748 * the command ring pointers. 749 */ 750 xhci_set_cmd_ring_deq(xhci); 751 } 752 753 /* 754 * Stop HC (not bus-specific) 755 * 756 * This is called when the machine transition into S3/S4 mode. 757 * 758 */ 759 int xhci_suspend(struct xhci_hcd *xhci) 760 { 761 int rc = 0; 762 struct usb_hcd *hcd = xhci_to_hcd(xhci); 763 u32 command; 764 765 spin_lock_irq(&xhci->lock); 766 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 767 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 768 /* step 1: stop endpoint */ 769 /* skipped assuming that port suspend has done */ 770 771 /* step 2: clear Run/Stop bit */ 772 command = xhci_readl(xhci, &xhci->op_regs->command); 773 command &= ~CMD_RUN; 774 xhci_writel(xhci, command, &xhci->op_regs->command); 775 if (handshake(xhci, &xhci->op_regs->status, 776 STS_HALT, STS_HALT, 100*100)) { 777 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 778 spin_unlock_irq(&xhci->lock); 779 return -ETIMEDOUT; 780 } 781 xhci_clear_command_ring(xhci); 782 783 /* step 3: save registers */ 784 xhci_save_registers(xhci); 785 786 /* step 4: set CSS flag */ 787 command = xhci_readl(xhci, &xhci->op_regs->command); 788 command |= CMD_CSS; 789 xhci_writel(xhci, command, &xhci->op_regs->command); 790 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { 791 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); 792 spin_unlock_irq(&xhci->lock); 793 return -ETIMEDOUT; 794 } 795 spin_unlock_irq(&xhci->lock); 796 797 /* step 5: remove core well power */ 798 /* synchronize irq when using MSI-X */ 799 xhci_msix_sync_irqs(xhci); 800 801 return rc; 802 } 803 804 /* 805 * start xHC (not bus-specific) 806 * 807 * This is called when the machine transition from S3/S4 mode. 808 * 809 */ 810 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 811 { 812 u32 command, temp = 0; 813 struct usb_hcd *hcd = xhci_to_hcd(xhci); 814 struct usb_hcd *secondary_hcd; 815 int retval = 0; 816 817 /* Wait a bit if either of the roothubs need to settle from the 818 * transition into bus suspend. 819 */ 820 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 821 time_before(jiffies, 822 xhci->bus_state[1].next_statechange)) 823 msleep(100); 824 825 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 826 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 827 828 spin_lock_irq(&xhci->lock); 829 if (xhci->quirks & XHCI_RESET_ON_RESUME) 830 hibernated = true; 831 832 if (!hibernated) { 833 /* step 1: restore register */ 834 xhci_restore_registers(xhci); 835 /* step 2: initialize command ring buffer */ 836 xhci_set_cmd_ring_deq(xhci); 837 /* step 3: restore state and start state*/ 838 /* step 3: set CRS flag */ 839 command = xhci_readl(xhci, &xhci->op_regs->command); 840 command |= CMD_CRS; 841 xhci_writel(xhci, command, &xhci->op_regs->command); 842 if (handshake(xhci, &xhci->op_regs->status, 843 STS_RESTORE, 0, 10*100)) { 844 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); 845 spin_unlock_irq(&xhci->lock); 846 return -ETIMEDOUT; 847 } 848 temp = xhci_readl(xhci, &xhci->op_regs->status); 849 } 850 851 /* If restore operation fails, re-initialize the HC during resume */ 852 if ((temp & STS_SRE) || hibernated) { 853 /* Let the USB core know _both_ roothubs lost power. */ 854 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 855 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 856 857 xhci_dbg(xhci, "Stop HCD\n"); 858 xhci_halt(xhci); 859 xhci_reset(xhci); 860 spin_unlock_irq(&xhci->lock); 861 xhci_cleanup_msix(xhci); 862 863 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 864 /* Tell the event ring poll function not to reschedule */ 865 xhci->zombie = 1; 866 del_timer_sync(&xhci->event_ring_timer); 867 #endif 868 869 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 870 temp = xhci_readl(xhci, &xhci->op_regs->status); 871 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 872 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 873 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 874 &xhci->ir_set->irq_pending); 875 xhci_print_ir_set(xhci, 0); 876 877 xhci_dbg(xhci, "cleaning up memory\n"); 878 xhci_mem_cleanup(xhci); 879 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 880 xhci_readl(xhci, &xhci->op_regs->status)); 881 882 /* USB core calls the PCI reinit and start functions twice: 883 * first with the primary HCD, and then with the secondary HCD. 884 * If we don't do the same, the host will never be started. 885 */ 886 if (!usb_hcd_is_primary_hcd(hcd)) 887 secondary_hcd = hcd; 888 else 889 secondary_hcd = xhci->shared_hcd; 890 891 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 892 retval = xhci_init(hcd->primary_hcd); 893 if (retval) 894 return retval; 895 xhci_dbg(xhci, "Start the primary HCD\n"); 896 retval = xhci_run(hcd->primary_hcd); 897 if (!retval) { 898 xhci_dbg(xhci, "Start the secondary HCD\n"); 899 retval = xhci_run(secondary_hcd); 900 } 901 hcd->state = HC_STATE_SUSPENDED; 902 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 903 goto done; 904 } 905 906 /* step 4: set Run/Stop bit */ 907 command = xhci_readl(xhci, &xhci->op_regs->command); 908 command |= CMD_RUN; 909 xhci_writel(xhci, command, &xhci->op_regs->command); 910 handshake(xhci, &xhci->op_regs->status, STS_HALT, 911 0, 250 * 1000); 912 913 /* step 5: walk topology and initialize portsc, 914 * portpmsc and portli 915 */ 916 /* this is done in bus_resume */ 917 918 /* step 6: restart each of the previously 919 * Running endpoints by ringing their doorbells 920 */ 921 922 spin_unlock_irq(&xhci->lock); 923 924 done: 925 if (retval == 0) { 926 usb_hcd_resume_root_hub(hcd); 927 usb_hcd_resume_root_hub(xhci->shared_hcd); 928 } 929 return retval; 930 } 931 #endif /* CONFIG_PM */ 932 933 /*-------------------------------------------------------------------------*/ 934 935 /** 936 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 937 * HCDs. Find the index for an endpoint given its descriptor. Use the return 938 * value to right shift 1 for the bitmask. 939 * 940 * Index = (epnum * 2) + direction - 1, 941 * where direction = 0 for OUT, 1 for IN. 942 * For control endpoints, the IN index is used (OUT index is unused), so 943 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 944 */ 945 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 946 { 947 unsigned int index; 948 if (usb_endpoint_xfer_control(desc)) 949 index = (unsigned int) (usb_endpoint_num(desc)*2); 950 else 951 index = (unsigned int) (usb_endpoint_num(desc)*2) + 952 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 953 return index; 954 } 955 956 /* Find the flag for this endpoint (for use in the control context). Use the 957 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 958 * bit 1, etc. 959 */ 960 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 961 { 962 return 1 << (xhci_get_endpoint_index(desc) + 1); 963 } 964 965 /* Find the flag for this endpoint (for use in the control context). Use the 966 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 967 * bit 1, etc. 968 */ 969 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 970 { 971 return 1 << (ep_index + 1); 972 } 973 974 /* Compute the last valid endpoint context index. Basically, this is the 975 * endpoint index plus one. For slot contexts with more than valid endpoint, 976 * we find the most significant bit set in the added contexts flags. 977 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 978 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 979 */ 980 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 981 { 982 return fls(added_ctxs) - 1; 983 } 984 985 /* Returns 1 if the arguments are OK; 986 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 987 */ 988 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 989 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 990 const char *func) { 991 struct xhci_hcd *xhci; 992 struct xhci_virt_device *virt_dev; 993 994 if (!hcd || (check_ep && !ep) || !udev) { 995 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 996 func); 997 return -EINVAL; 998 } 999 if (!udev->parent) { 1000 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1001 func); 1002 return 0; 1003 } 1004 1005 xhci = hcd_to_xhci(hcd); 1006 if (xhci->xhc_state & XHCI_STATE_HALTED) 1007 return -ENODEV; 1008 1009 if (check_virt_dev) { 1010 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1011 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1012 "device\n", func); 1013 return -EINVAL; 1014 } 1015 1016 virt_dev = xhci->devs[udev->slot_id]; 1017 if (virt_dev->udev != udev) { 1018 printk(KERN_DEBUG "xHCI %s called with udev and " 1019 "virt_dev does not match\n", func); 1020 return -EINVAL; 1021 } 1022 } 1023 1024 return 1; 1025 } 1026 1027 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1028 struct usb_device *udev, struct xhci_command *command, 1029 bool ctx_change, bool must_succeed); 1030 1031 /* 1032 * Full speed devices may have a max packet size greater than 8 bytes, but the 1033 * USB core doesn't know that until it reads the first 8 bytes of the 1034 * descriptor. If the usb_device's max packet size changes after that point, 1035 * we need to issue an evaluate context command and wait on it. 1036 */ 1037 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1038 unsigned int ep_index, struct urb *urb) 1039 { 1040 struct xhci_container_ctx *in_ctx; 1041 struct xhci_container_ctx *out_ctx; 1042 struct xhci_input_control_ctx *ctrl_ctx; 1043 struct xhci_ep_ctx *ep_ctx; 1044 int max_packet_size; 1045 int hw_max_packet_size; 1046 int ret = 0; 1047 1048 out_ctx = xhci->devs[slot_id]->out_ctx; 1049 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1050 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1051 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1052 if (hw_max_packet_size != max_packet_size) { 1053 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1054 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1055 max_packet_size); 1056 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1057 hw_max_packet_size); 1058 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1059 1060 /* Set up the modified control endpoint 0 */ 1061 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1062 xhci->devs[slot_id]->out_ctx, ep_index); 1063 in_ctx = xhci->devs[slot_id]->in_ctx; 1064 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1065 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1066 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1067 1068 /* Set up the input context flags for the command */ 1069 /* FIXME: This won't work if a non-default control endpoint 1070 * changes max packet sizes. 1071 */ 1072 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1073 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1074 ctrl_ctx->drop_flags = 0; 1075 1076 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1077 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1078 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1079 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1080 1081 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1082 true, false); 1083 1084 /* Clean up the input context for later use by bandwidth 1085 * functions. 1086 */ 1087 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1088 } 1089 return ret; 1090 } 1091 1092 /* 1093 * non-error returns are a promise to giveback() the urb later 1094 * we drop ownership so next owner (or urb unlink) can get it 1095 */ 1096 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1097 { 1098 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1099 struct xhci_td *buffer; 1100 unsigned long flags; 1101 int ret = 0; 1102 unsigned int slot_id, ep_index; 1103 struct urb_priv *urb_priv; 1104 int size, i; 1105 1106 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1107 true, true, __func__) <= 0) 1108 return -EINVAL; 1109 1110 slot_id = urb->dev->slot_id; 1111 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1112 1113 if (!HCD_HW_ACCESSIBLE(hcd)) { 1114 if (!in_interrupt()) 1115 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1116 ret = -ESHUTDOWN; 1117 goto exit; 1118 } 1119 1120 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1121 size = urb->number_of_packets; 1122 else 1123 size = 1; 1124 1125 urb_priv = kzalloc(sizeof(struct urb_priv) + 1126 size * sizeof(struct xhci_td *), mem_flags); 1127 if (!urb_priv) 1128 return -ENOMEM; 1129 1130 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1131 if (!buffer) { 1132 kfree(urb_priv); 1133 return -ENOMEM; 1134 } 1135 1136 for (i = 0; i < size; i++) { 1137 urb_priv->td[i] = buffer; 1138 buffer++; 1139 } 1140 1141 urb_priv->length = size; 1142 urb_priv->td_cnt = 0; 1143 urb->hcpriv = urb_priv; 1144 1145 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1146 /* Check to see if the max packet size for the default control 1147 * endpoint changed during FS device enumeration 1148 */ 1149 if (urb->dev->speed == USB_SPEED_FULL) { 1150 ret = xhci_check_maxpacket(xhci, slot_id, 1151 ep_index, urb); 1152 if (ret < 0) { 1153 xhci_urb_free_priv(xhci, urb_priv); 1154 urb->hcpriv = NULL; 1155 return ret; 1156 } 1157 } 1158 1159 /* We have a spinlock and interrupts disabled, so we must pass 1160 * atomic context to this function, which may allocate memory. 1161 */ 1162 spin_lock_irqsave(&xhci->lock, flags); 1163 if (xhci->xhc_state & XHCI_STATE_DYING) 1164 goto dying; 1165 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1166 slot_id, ep_index); 1167 if (ret) 1168 goto free_priv; 1169 spin_unlock_irqrestore(&xhci->lock, flags); 1170 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1171 spin_lock_irqsave(&xhci->lock, flags); 1172 if (xhci->xhc_state & XHCI_STATE_DYING) 1173 goto dying; 1174 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1175 EP_GETTING_STREAMS) { 1176 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1177 "is transitioning to using streams.\n"); 1178 ret = -EINVAL; 1179 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1180 EP_GETTING_NO_STREAMS) { 1181 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1182 "is transitioning to " 1183 "not having streams.\n"); 1184 ret = -EINVAL; 1185 } else { 1186 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1187 slot_id, ep_index); 1188 } 1189 if (ret) 1190 goto free_priv; 1191 spin_unlock_irqrestore(&xhci->lock, flags); 1192 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1193 spin_lock_irqsave(&xhci->lock, flags); 1194 if (xhci->xhc_state & XHCI_STATE_DYING) 1195 goto dying; 1196 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1197 slot_id, ep_index); 1198 if (ret) 1199 goto free_priv; 1200 spin_unlock_irqrestore(&xhci->lock, flags); 1201 } else { 1202 spin_lock_irqsave(&xhci->lock, flags); 1203 if (xhci->xhc_state & XHCI_STATE_DYING) 1204 goto dying; 1205 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1206 slot_id, ep_index); 1207 if (ret) 1208 goto free_priv; 1209 spin_unlock_irqrestore(&xhci->lock, flags); 1210 } 1211 exit: 1212 return ret; 1213 dying: 1214 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1215 "non-responsive xHCI host.\n", 1216 urb->ep->desc.bEndpointAddress, urb); 1217 ret = -ESHUTDOWN; 1218 free_priv: 1219 xhci_urb_free_priv(xhci, urb_priv); 1220 urb->hcpriv = NULL; 1221 spin_unlock_irqrestore(&xhci->lock, flags); 1222 return ret; 1223 } 1224 1225 /* Get the right ring for the given URB. 1226 * If the endpoint supports streams, boundary check the URB's stream ID. 1227 * If the endpoint doesn't support streams, return the singular endpoint ring. 1228 */ 1229 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1230 struct urb *urb) 1231 { 1232 unsigned int slot_id; 1233 unsigned int ep_index; 1234 unsigned int stream_id; 1235 struct xhci_virt_ep *ep; 1236 1237 slot_id = urb->dev->slot_id; 1238 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1239 stream_id = urb->stream_id; 1240 ep = &xhci->devs[slot_id]->eps[ep_index]; 1241 /* Common case: no streams */ 1242 if (!(ep->ep_state & EP_HAS_STREAMS)) 1243 return ep->ring; 1244 1245 if (stream_id == 0) { 1246 xhci_warn(xhci, 1247 "WARN: Slot ID %u, ep index %u has streams, " 1248 "but URB has no stream ID.\n", 1249 slot_id, ep_index); 1250 return NULL; 1251 } 1252 1253 if (stream_id < ep->stream_info->num_streams) 1254 return ep->stream_info->stream_rings[stream_id]; 1255 1256 xhci_warn(xhci, 1257 "WARN: Slot ID %u, ep index %u has " 1258 "stream IDs 1 to %u allocated, " 1259 "but stream ID %u is requested.\n", 1260 slot_id, ep_index, 1261 ep->stream_info->num_streams - 1, 1262 stream_id); 1263 return NULL; 1264 } 1265 1266 /* 1267 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1268 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1269 * should pick up where it left off in the TD, unless a Set Transfer Ring 1270 * Dequeue Pointer is issued. 1271 * 1272 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1273 * the ring. Since the ring is a contiguous structure, they can't be physically 1274 * removed. Instead, there are two options: 1275 * 1276 * 1) If the HC is in the middle of processing the URB to be canceled, we 1277 * simply move the ring's dequeue pointer past those TRBs using the Set 1278 * Transfer Ring Dequeue Pointer command. This will be the common case, 1279 * when drivers timeout on the last submitted URB and attempt to cancel. 1280 * 1281 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1282 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1283 * HC will need to invalidate the any TRBs it has cached after the stop 1284 * endpoint command, as noted in the xHCI 0.95 errata. 1285 * 1286 * 3) The TD may have completed by the time the Stop Endpoint Command 1287 * completes, so software needs to handle that case too. 1288 * 1289 * This function should protect against the TD enqueueing code ringing the 1290 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1291 * It also needs to account for multiple cancellations on happening at the same 1292 * time for the same endpoint. 1293 * 1294 * Note that this function can be called in any context, or so says 1295 * usb_hcd_unlink_urb() 1296 */ 1297 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1298 { 1299 unsigned long flags; 1300 int ret, i; 1301 u32 temp; 1302 struct xhci_hcd *xhci; 1303 struct urb_priv *urb_priv; 1304 struct xhci_td *td; 1305 unsigned int ep_index; 1306 struct xhci_ring *ep_ring; 1307 struct xhci_virt_ep *ep; 1308 1309 xhci = hcd_to_xhci(hcd); 1310 spin_lock_irqsave(&xhci->lock, flags); 1311 /* Make sure the URB hasn't completed or been unlinked already */ 1312 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1313 if (ret || !urb->hcpriv) 1314 goto done; 1315 temp = xhci_readl(xhci, &xhci->op_regs->status); 1316 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1317 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1318 urb_priv = urb->hcpriv; 1319 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1320 td = urb_priv->td[i]; 1321 if (!list_empty(&td->td_list)) 1322 list_del_init(&td->td_list); 1323 if (!list_empty(&td->cancelled_td_list)) 1324 list_del_init(&td->cancelled_td_list); 1325 } 1326 1327 usb_hcd_unlink_urb_from_ep(hcd, urb); 1328 spin_unlock_irqrestore(&xhci->lock, flags); 1329 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1330 xhci_urb_free_priv(xhci, urb_priv); 1331 return ret; 1332 } 1333 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1334 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1335 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1336 "non-responsive xHCI host.\n", 1337 urb->ep->desc.bEndpointAddress, urb); 1338 /* Let the stop endpoint command watchdog timer (which set this 1339 * state) finish cleaning up the endpoint TD lists. We must 1340 * have caught it in the middle of dropping a lock and giving 1341 * back an URB. 1342 */ 1343 goto done; 1344 } 1345 1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1347 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1348 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1349 if (!ep_ring) { 1350 ret = -EINVAL; 1351 goto done; 1352 } 1353 1354 urb_priv = urb->hcpriv; 1355 i = urb_priv->td_cnt; 1356 if (i < urb_priv->length) 1357 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1358 "starting at offset 0x%llx\n", 1359 urb, urb->dev->devpath, 1360 urb->ep->desc.bEndpointAddress, 1361 (unsigned long long) xhci_trb_virt_to_dma( 1362 urb_priv->td[i]->start_seg, 1363 urb_priv->td[i]->first_trb)); 1364 1365 for (; i < urb_priv->length; i++) { 1366 td = urb_priv->td[i]; 1367 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1368 } 1369 1370 /* Queue a stop endpoint command, but only if this is 1371 * the first cancellation to be handled. 1372 */ 1373 if (!(ep->ep_state & EP_HALT_PENDING)) { 1374 ep->ep_state |= EP_HALT_PENDING; 1375 ep->stop_cmds_pending++; 1376 ep->stop_cmd_timer.expires = jiffies + 1377 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1378 add_timer(&ep->stop_cmd_timer); 1379 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1380 xhci_ring_cmd_db(xhci); 1381 } 1382 done: 1383 spin_unlock_irqrestore(&xhci->lock, flags); 1384 return ret; 1385 } 1386 1387 /* Drop an endpoint from a new bandwidth configuration for this device. 1388 * Only one call to this function is allowed per endpoint before 1389 * check_bandwidth() or reset_bandwidth() must be called. 1390 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1391 * add the endpoint to the schedule with possibly new parameters denoted by a 1392 * different endpoint descriptor in usb_host_endpoint. 1393 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1394 * not allowed. 1395 * 1396 * The USB core will not allow URBs to be queued to an endpoint that is being 1397 * disabled, so there's no need for mutual exclusion to protect 1398 * the xhci->devs[slot_id] structure. 1399 */ 1400 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1401 struct usb_host_endpoint *ep) 1402 { 1403 struct xhci_hcd *xhci; 1404 struct xhci_container_ctx *in_ctx, *out_ctx; 1405 struct xhci_input_control_ctx *ctrl_ctx; 1406 struct xhci_slot_ctx *slot_ctx; 1407 unsigned int last_ctx; 1408 unsigned int ep_index; 1409 struct xhci_ep_ctx *ep_ctx; 1410 u32 drop_flag; 1411 u32 new_add_flags, new_drop_flags, new_slot_info; 1412 int ret; 1413 1414 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1415 if (ret <= 0) 1416 return ret; 1417 xhci = hcd_to_xhci(hcd); 1418 if (xhci->xhc_state & XHCI_STATE_DYING) 1419 return -ENODEV; 1420 1421 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1422 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1423 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1424 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1425 __func__, drop_flag); 1426 return 0; 1427 } 1428 1429 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1430 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1431 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1432 ep_index = xhci_get_endpoint_index(&ep->desc); 1433 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1434 /* If the HC already knows the endpoint is disabled, 1435 * or the HCD has noted it is disabled, ignore this request 1436 */ 1437 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1438 cpu_to_le32(EP_STATE_DISABLED)) || 1439 le32_to_cpu(ctrl_ctx->drop_flags) & 1440 xhci_get_endpoint_flag(&ep->desc)) { 1441 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1442 __func__, ep); 1443 return 0; 1444 } 1445 1446 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1447 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1448 1449 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1450 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1451 1452 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1453 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1454 /* Update the last valid endpoint context, if we deleted the last one */ 1455 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1456 LAST_CTX(last_ctx)) { 1457 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1458 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1459 } 1460 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1461 1462 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1463 1464 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1465 (unsigned int) ep->desc.bEndpointAddress, 1466 udev->slot_id, 1467 (unsigned int) new_drop_flags, 1468 (unsigned int) new_add_flags, 1469 (unsigned int) new_slot_info); 1470 return 0; 1471 } 1472 1473 /* Add an endpoint to a new possible bandwidth configuration for this device. 1474 * Only one call to this function is allowed per endpoint before 1475 * check_bandwidth() or reset_bandwidth() must be called. 1476 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1477 * add the endpoint to the schedule with possibly new parameters denoted by a 1478 * different endpoint descriptor in usb_host_endpoint. 1479 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1480 * not allowed. 1481 * 1482 * The USB core will not allow URBs to be queued to an endpoint until the 1483 * configuration or alt setting is installed in the device, so there's no need 1484 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1485 */ 1486 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1487 struct usb_host_endpoint *ep) 1488 { 1489 struct xhci_hcd *xhci; 1490 struct xhci_container_ctx *in_ctx, *out_ctx; 1491 unsigned int ep_index; 1492 struct xhci_ep_ctx *ep_ctx; 1493 struct xhci_slot_ctx *slot_ctx; 1494 struct xhci_input_control_ctx *ctrl_ctx; 1495 u32 added_ctxs; 1496 unsigned int last_ctx; 1497 u32 new_add_flags, new_drop_flags, new_slot_info; 1498 struct xhci_virt_device *virt_dev; 1499 int ret = 0; 1500 1501 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1502 if (ret <= 0) { 1503 /* So we won't queue a reset ep command for a root hub */ 1504 ep->hcpriv = NULL; 1505 return ret; 1506 } 1507 xhci = hcd_to_xhci(hcd); 1508 if (xhci->xhc_state & XHCI_STATE_DYING) 1509 return -ENODEV; 1510 1511 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1512 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1513 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1514 /* FIXME when we have to issue an evaluate endpoint command to 1515 * deal with ep0 max packet size changing once we get the 1516 * descriptors 1517 */ 1518 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1519 __func__, added_ctxs); 1520 return 0; 1521 } 1522 1523 virt_dev = xhci->devs[udev->slot_id]; 1524 in_ctx = virt_dev->in_ctx; 1525 out_ctx = virt_dev->out_ctx; 1526 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1527 ep_index = xhci_get_endpoint_index(&ep->desc); 1528 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1529 1530 /* If this endpoint is already in use, and the upper layers are trying 1531 * to add it again without dropping it, reject the addition. 1532 */ 1533 if (virt_dev->eps[ep_index].ring && 1534 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1535 xhci_get_endpoint_flag(&ep->desc))) { 1536 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1537 "without dropping it.\n", 1538 (unsigned int) ep->desc.bEndpointAddress); 1539 return -EINVAL; 1540 } 1541 1542 /* If the HCD has already noted the endpoint is enabled, 1543 * ignore this request. 1544 */ 1545 if (le32_to_cpu(ctrl_ctx->add_flags) & 1546 xhci_get_endpoint_flag(&ep->desc)) { 1547 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1548 __func__, ep); 1549 return 0; 1550 } 1551 1552 /* 1553 * Configuration and alternate setting changes must be done in 1554 * process context, not interrupt context (or so documenation 1555 * for usb_set_interface() and usb_set_configuration() claim). 1556 */ 1557 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1558 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1559 __func__, ep->desc.bEndpointAddress); 1560 return -ENOMEM; 1561 } 1562 1563 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1564 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1565 1566 /* If xhci_endpoint_disable() was called for this endpoint, but the 1567 * xHC hasn't been notified yet through the check_bandwidth() call, 1568 * this re-adds a new state for the endpoint from the new endpoint 1569 * descriptors. We must drop and re-add this endpoint, so we leave the 1570 * drop flags alone. 1571 */ 1572 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1573 1574 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1575 /* Update the last valid endpoint context, if we just added one past */ 1576 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1577 LAST_CTX(last_ctx)) { 1578 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1579 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1580 } 1581 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1582 1583 /* Store the usb_device pointer for later use */ 1584 ep->hcpriv = udev; 1585 1586 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1587 (unsigned int) ep->desc.bEndpointAddress, 1588 udev->slot_id, 1589 (unsigned int) new_drop_flags, 1590 (unsigned int) new_add_flags, 1591 (unsigned int) new_slot_info); 1592 return 0; 1593 } 1594 1595 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1596 { 1597 struct xhci_input_control_ctx *ctrl_ctx; 1598 struct xhci_ep_ctx *ep_ctx; 1599 struct xhci_slot_ctx *slot_ctx; 1600 int i; 1601 1602 /* When a device's add flag and drop flag are zero, any subsequent 1603 * configure endpoint command will leave that endpoint's state 1604 * untouched. Make sure we don't leave any old state in the input 1605 * endpoint contexts. 1606 */ 1607 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1608 ctrl_ctx->drop_flags = 0; 1609 ctrl_ctx->add_flags = 0; 1610 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1611 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1612 /* Endpoint 0 is always valid */ 1613 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1614 for (i = 1; i < 31; ++i) { 1615 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1616 ep_ctx->ep_info = 0; 1617 ep_ctx->ep_info2 = 0; 1618 ep_ctx->deq = 0; 1619 ep_ctx->tx_info = 0; 1620 } 1621 } 1622 1623 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1624 struct usb_device *udev, u32 *cmd_status) 1625 { 1626 int ret; 1627 1628 switch (*cmd_status) { 1629 case COMP_ENOMEM: 1630 dev_warn(&udev->dev, "Not enough host controller resources " 1631 "for new device state.\n"); 1632 ret = -ENOMEM; 1633 /* FIXME: can we allocate more resources for the HC? */ 1634 break; 1635 case COMP_BW_ERR: 1636 case COMP_2ND_BW_ERR: 1637 dev_warn(&udev->dev, "Not enough bandwidth " 1638 "for new device state.\n"); 1639 ret = -ENOSPC; 1640 /* FIXME: can we go back to the old state? */ 1641 break; 1642 case COMP_TRB_ERR: 1643 /* the HCD set up something wrong */ 1644 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1645 "add flag = 1, " 1646 "and endpoint is not disabled.\n"); 1647 ret = -EINVAL; 1648 break; 1649 case COMP_DEV_ERR: 1650 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1651 "configure command.\n"); 1652 ret = -ENODEV; 1653 break; 1654 case COMP_SUCCESS: 1655 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1656 ret = 0; 1657 break; 1658 default: 1659 xhci_err(xhci, "ERROR: unexpected command completion " 1660 "code 0x%x.\n", *cmd_status); 1661 ret = -EINVAL; 1662 break; 1663 } 1664 return ret; 1665 } 1666 1667 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1668 struct usb_device *udev, u32 *cmd_status) 1669 { 1670 int ret; 1671 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1672 1673 switch (*cmd_status) { 1674 case COMP_EINVAL: 1675 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1676 "context command.\n"); 1677 ret = -EINVAL; 1678 break; 1679 case COMP_EBADSLT: 1680 dev_warn(&udev->dev, "WARN: slot not enabled for" 1681 "evaluate context command.\n"); 1682 case COMP_CTX_STATE: 1683 dev_warn(&udev->dev, "WARN: invalid context state for " 1684 "evaluate context command.\n"); 1685 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1686 ret = -EINVAL; 1687 break; 1688 case COMP_DEV_ERR: 1689 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1690 "context command.\n"); 1691 ret = -ENODEV; 1692 break; 1693 case COMP_MEL_ERR: 1694 /* Max Exit Latency too large error */ 1695 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1696 ret = -EINVAL; 1697 break; 1698 case COMP_SUCCESS: 1699 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1700 ret = 0; 1701 break; 1702 default: 1703 xhci_err(xhci, "ERROR: unexpected command completion " 1704 "code 0x%x.\n", *cmd_status); 1705 ret = -EINVAL; 1706 break; 1707 } 1708 return ret; 1709 } 1710 1711 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1712 struct xhci_container_ctx *in_ctx) 1713 { 1714 struct xhci_input_control_ctx *ctrl_ctx; 1715 u32 valid_add_flags; 1716 u32 valid_drop_flags; 1717 1718 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1719 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1720 * (bit 1). The default control endpoint is added during the Address 1721 * Device command and is never removed until the slot is disabled. 1722 */ 1723 valid_add_flags = ctrl_ctx->add_flags >> 2; 1724 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1725 1726 /* Use hweight32 to count the number of ones in the add flags, or 1727 * number of endpoints added. Don't count endpoints that are changed 1728 * (both added and dropped). 1729 */ 1730 return hweight32(valid_add_flags) - 1731 hweight32(valid_add_flags & valid_drop_flags); 1732 } 1733 1734 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1735 struct xhci_container_ctx *in_ctx) 1736 { 1737 struct xhci_input_control_ctx *ctrl_ctx; 1738 u32 valid_add_flags; 1739 u32 valid_drop_flags; 1740 1741 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1742 valid_add_flags = ctrl_ctx->add_flags >> 2; 1743 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1744 1745 return hweight32(valid_drop_flags) - 1746 hweight32(valid_add_flags & valid_drop_flags); 1747 } 1748 1749 /* 1750 * We need to reserve the new number of endpoints before the configure endpoint 1751 * command completes. We can't subtract the dropped endpoints from the number 1752 * of active endpoints until the command completes because we can oversubscribe 1753 * the host in this case: 1754 * 1755 * - the first configure endpoint command drops more endpoints than it adds 1756 * - a second configure endpoint command that adds more endpoints is queued 1757 * - the first configure endpoint command fails, so the config is unchanged 1758 * - the second command may succeed, even though there isn't enough resources 1759 * 1760 * Must be called with xhci->lock held. 1761 */ 1762 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1763 struct xhci_container_ctx *in_ctx) 1764 { 1765 u32 added_eps; 1766 1767 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1768 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1769 xhci_dbg(xhci, "Not enough ep ctxs: " 1770 "%u active, need to add %u, limit is %u.\n", 1771 xhci->num_active_eps, added_eps, 1772 xhci->limit_active_eps); 1773 return -ENOMEM; 1774 } 1775 xhci->num_active_eps += added_eps; 1776 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1777 xhci->num_active_eps); 1778 return 0; 1779 } 1780 1781 /* 1782 * The configure endpoint was failed by the xHC for some other reason, so we 1783 * need to revert the resources that failed configuration would have used. 1784 * 1785 * Must be called with xhci->lock held. 1786 */ 1787 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1788 struct xhci_container_ctx *in_ctx) 1789 { 1790 u32 num_failed_eps; 1791 1792 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1793 xhci->num_active_eps -= num_failed_eps; 1794 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1795 num_failed_eps, 1796 xhci->num_active_eps); 1797 } 1798 1799 /* 1800 * Now that the command has completed, clean up the active endpoint count by 1801 * subtracting out the endpoints that were dropped (but not changed). 1802 * 1803 * Must be called with xhci->lock held. 1804 */ 1805 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1806 struct xhci_container_ctx *in_ctx) 1807 { 1808 u32 num_dropped_eps; 1809 1810 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1811 xhci->num_active_eps -= num_dropped_eps; 1812 if (num_dropped_eps) 1813 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1814 num_dropped_eps, 1815 xhci->num_active_eps); 1816 } 1817 1818 unsigned int xhci_get_block_size(struct usb_device *udev) 1819 { 1820 switch (udev->speed) { 1821 case USB_SPEED_LOW: 1822 case USB_SPEED_FULL: 1823 return FS_BLOCK; 1824 case USB_SPEED_HIGH: 1825 return HS_BLOCK; 1826 case USB_SPEED_SUPER: 1827 return SS_BLOCK; 1828 case USB_SPEED_UNKNOWN: 1829 case USB_SPEED_WIRELESS: 1830 default: 1831 /* Should never happen */ 1832 return 1; 1833 } 1834 } 1835 1836 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1837 { 1838 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1839 return LS_OVERHEAD; 1840 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1841 return FS_OVERHEAD; 1842 return HS_OVERHEAD; 1843 } 1844 1845 /* If we are changing a LS/FS device under a HS hub, 1846 * make sure (if we are activating a new TT) that the HS bus has enough 1847 * bandwidth for this new TT. 1848 */ 1849 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1850 struct xhci_virt_device *virt_dev, 1851 int old_active_eps) 1852 { 1853 struct xhci_interval_bw_table *bw_table; 1854 struct xhci_tt_bw_info *tt_info; 1855 1856 /* Find the bandwidth table for the root port this TT is attached to. */ 1857 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1858 tt_info = virt_dev->tt_info; 1859 /* If this TT already had active endpoints, the bandwidth for this TT 1860 * has already been added. Removing all periodic endpoints (and thus 1861 * making the TT enactive) will only decrease the bandwidth used. 1862 */ 1863 if (old_active_eps) 1864 return 0; 1865 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1866 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 1867 return -ENOMEM; 1868 return 0; 1869 } 1870 /* Not sure why we would have no new active endpoints... 1871 * 1872 * Maybe because of an Evaluate Context change for a hub update or a 1873 * control endpoint 0 max packet size change? 1874 * FIXME: skip the bandwidth calculation in that case. 1875 */ 1876 return 0; 1877 } 1878 1879 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 1880 struct xhci_virt_device *virt_dev) 1881 { 1882 unsigned int bw_reserved; 1883 1884 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 1885 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 1886 return -ENOMEM; 1887 1888 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 1889 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 1890 return -ENOMEM; 1891 1892 return 0; 1893 } 1894 1895 /* 1896 * This algorithm is a very conservative estimate of the worst-case scheduling 1897 * scenario for any one interval. The hardware dynamically schedules the 1898 * packets, so we can't tell which microframe could be the limiting factor in 1899 * the bandwidth scheduling. This only takes into account periodic endpoints. 1900 * 1901 * Obviously, we can't solve an NP complete problem to find the minimum worst 1902 * case scenario. Instead, we come up with an estimate that is no less than 1903 * the worst case bandwidth used for any one microframe, but may be an 1904 * over-estimate. 1905 * 1906 * We walk the requirements for each endpoint by interval, starting with the 1907 * smallest interval, and place packets in the schedule where there is only one 1908 * possible way to schedule packets for that interval. In order to simplify 1909 * this algorithm, we record the largest max packet size for each interval, and 1910 * assume all packets will be that size. 1911 * 1912 * For interval 0, we obviously must schedule all packets for each interval. 1913 * The bandwidth for interval 0 is just the amount of data to be transmitted 1914 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 1915 * the number of packets). 1916 * 1917 * For interval 1, we have two possible microframes to schedule those packets 1918 * in. For this algorithm, if we can schedule the same number of packets for 1919 * each possible scheduling opportunity (each microframe), we will do so. The 1920 * remaining number of packets will be saved to be transmitted in the gaps in 1921 * the next interval's scheduling sequence. 1922 * 1923 * As we move those remaining packets to be scheduled with interval 2 packets, 1924 * we have to double the number of remaining packets to transmit. This is 1925 * because the intervals are actually powers of 2, and we would be transmitting 1926 * the previous interval's packets twice in this interval. We also have to be 1927 * sure that when we look at the largest max packet size for this interval, we 1928 * also look at the largest max packet size for the remaining packets and take 1929 * the greater of the two. 1930 * 1931 * The algorithm continues to evenly distribute packets in each scheduling 1932 * opportunity, and push the remaining packets out, until we get to the last 1933 * interval. Then those packets and their associated overhead are just added 1934 * to the bandwidth used. 1935 */ 1936 static int xhci_check_bw_table(struct xhci_hcd *xhci, 1937 struct xhci_virt_device *virt_dev, 1938 int old_active_eps) 1939 { 1940 unsigned int bw_reserved; 1941 unsigned int max_bandwidth; 1942 unsigned int bw_used; 1943 unsigned int block_size; 1944 struct xhci_interval_bw_table *bw_table; 1945 unsigned int packet_size = 0; 1946 unsigned int overhead = 0; 1947 unsigned int packets_transmitted = 0; 1948 unsigned int packets_remaining = 0; 1949 unsigned int i; 1950 1951 if (virt_dev->udev->speed == USB_SPEED_SUPER) 1952 return xhci_check_ss_bw(xhci, virt_dev); 1953 1954 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 1955 max_bandwidth = HS_BW_LIMIT; 1956 /* Convert percent of bus BW reserved to blocks reserved */ 1957 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 1958 } else { 1959 max_bandwidth = FS_BW_LIMIT; 1960 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 1961 } 1962 1963 bw_table = virt_dev->bw_table; 1964 /* We need to translate the max packet size and max ESIT payloads into 1965 * the units the hardware uses. 1966 */ 1967 block_size = xhci_get_block_size(virt_dev->udev); 1968 1969 /* If we are manipulating a LS/FS device under a HS hub, double check 1970 * that the HS bus has enough bandwidth if we are activing a new TT. 1971 */ 1972 if (virt_dev->tt_info) { 1973 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1974 virt_dev->real_port); 1975 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 1976 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 1977 "newly activated TT.\n"); 1978 return -ENOMEM; 1979 } 1980 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 1981 virt_dev->tt_info->slot_id, 1982 virt_dev->tt_info->ttport); 1983 } else { 1984 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1985 virt_dev->real_port); 1986 } 1987 1988 /* Add in how much bandwidth will be used for interval zero, or the 1989 * rounded max ESIT payload + number of packets * largest overhead. 1990 */ 1991 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 1992 bw_table->interval_bw[0].num_packets * 1993 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 1994 1995 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 1996 unsigned int bw_added; 1997 unsigned int largest_mps; 1998 unsigned int interval_overhead; 1999 2000 /* 2001 * How many packets could we transmit in this interval? 2002 * If packets didn't fit in the previous interval, we will need 2003 * to transmit that many packets twice within this interval. 2004 */ 2005 packets_remaining = 2 * packets_remaining + 2006 bw_table->interval_bw[i].num_packets; 2007 2008 /* Find the largest max packet size of this or the previous 2009 * interval. 2010 */ 2011 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2012 largest_mps = 0; 2013 else { 2014 struct xhci_virt_ep *virt_ep; 2015 struct list_head *ep_entry; 2016 2017 ep_entry = bw_table->interval_bw[i].endpoints.next; 2018 virt_ep = list_entry(ep_entry, 2019 struct xhci_virt_ep, bw_endpoint_list); 2020 /* Convert to blocks, rounding up */ 2021 largest_mps = DIV_ROUND_UP( 2022 virt_ep->bw_info.max_packet_size, 2023 block_size); 2024 } 2025 if (largest_mps > packet_size) 2026 packet_size = largest_mps; 2027 2028 /* Use the larger overhead of this or the previous interval. */ 2029 interval_overhead = xhci_get_largest_overhead( 2030 &bw_table->interval_bw[i]); 2031 if (interval_overhead > overhead) 2032 overhead = interval_overhead; 2033 2034 /* How many packets can we evenly distribute across 2035 * (1 << (i + 1)) possible scheduling opportunities? 2036 */ 2037 packets_transmitted = packets_remaining >> (i + 1); 2038 2039 /* Add in the bandwidth used for those scheduled packets */ 2040 bw_added = packets_transmitted * (overhead + packet_size); 2041 2042 /* How many packets do we have remaining to transmit? */ 2043 packets_remaining = packets_remaining % (1 << (i + 1)); 2044 2045 /* What largest max packet size should those packets have? */ 2046 /* If we've transmitted all packets, don't carry over the 2047 * largest packet size. 2048 */ 2049 if (packets_remaining == 0) { 2050 packet_size = 0; 2051 overhead = 0; 2052 } else if (packets_transmitted > 0) { 2053 /* Otherwise if we do have remaining packets, and we've 2054 * scheduled some packets in this interval, take the 2055 * largest max packet size from endpoints with this 2056 * interval. 2057 */ 2058 packet_size = largest_mps; 2059 overhead = interval_overhead; 2060 } 2061 /* Otherwise carry over packet_size and overhead from the last 2062 * time we had a remainder. 2063 */ 2064 bw_used += bw_added; 2065 if (bw_used > max_bandwidth) { 2066 xhci_warn(xhci, "Not enough bandwidth. " 2067 "Proposed: %u, Max: %u\n", 2068 bw_used, max_bandwidth); 2069 return -ENOMEM; 2070 } 2071 } 2072 /* 2073 * Ok, we know we have some packets left over after even-handedly 2074 * scheduling interval 15. We don't know which microframes they will 2075 * fit into, so we over-schedule and say they will be scheduled every 2076 * microframe. 2077 */ 2078 if (packets_remaining > 0) 2079 bw_used += overhead + packet_size; 2080 2081 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2082 unsigned int port_index = virt_dev->real_port - 1; 2083 2084 /* OK, we're manipulating a HS device attached to a 2085 * root port bandwidth domain. Include the number of active TTs 2086 * in the bandwidth used. 2087 */ 2088 bw_used += TT_HS_OVERHEAD * 2089 xhci->rh_bw[port_index].num_active_tts; 2090 } 2091 2092 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2093 "Available: %u " "percent\n", 2094 bw_used, max_bandwidth, bw_reserved, 2095 (max_bandwidth - bw_used - bw_reserved) * 100 / 2096 max_bandwidth); 2097 2098 bw_used += bw_reserved; 2099 if (bw_used > max_bandwidth) { 2100 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2101 bw_used, max_bandwidth); 2102 return -ENOMEM; 2103 } 2104 2105 bw_table->bw_used = bw_used; 2106 return 0; 2107 } 2108 2109 static bool xhci_is_async_ep(unsigned int ep_type) 2110 { 2111 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2112 ep_type != ISOC_IN_EP && 2113 ep_type != INT_IN_EP); 2114 } 2115 2116 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2117 { 2118 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2119 } 2120 2121 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2122 { 2123 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2124 2125 if (ep_bw->ep_interval == 0) 2126 return SS_OVERHEAD_BURST + 2127 (ep_bw->mult * ep_bw->num_packets * 2128 (SS_OVERHEAD + mps)); 2129 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2130 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2131 1 << ep_bw->ep_interval); 2132 2133 } 2134 2135 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2136 struct xhci_bw_info *ep_bw, 2137 struct xhci_interval_bw_table *bw_table, 2138 struct usb_device *udev, 2139 struct xhci_virt_ep *virt_ep, 2140 struct xhci_tt_bw_info *tt_info) 2141 { 2142 struct xhci_interval_bw *interval_bw; 2143 int normalized_interval; 2144 2145 if (xhci_is_async_ep(ep_bw->type)) 2146 return; 2147 2148 if (udev->speed == USB_SPEED_SUPER) { 2149 if (xhci_is_sync_in_ep(ep_bw->type)) 2150 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2151 xhci_get_ss_bw_consumed(ep_bw); 2152 else 2153 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2154 xhci_get_ss_bw_consumed(ep_bw); 2155 return; 2156 } 2157 2158 /* SuperSpeed endpoints never get added to intervals in the table, so 2159 * this check is only valid for HS/FS/LS devices. 2160 */ 2161 if (list_empty(&virt_ep->bw_endpoint_list)) 2162 return; 2163 /* For LS/FS devices, we need to translate the interval expressed in 2164 * microframes to frames. 2165 */ 2166 if (udev->speed == USB_SPEED_HIGH) 2167 normalized_interval = ep_bw->ep_interval; 2168 else 2169 normalized_interval = ep_bw->ep_interval - 3; 2170 2171 if (normalized_interval == 0) 2172 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2173 interval_bw = &bw_table->interval_bw[normalized_interval]; 2174 interval_bw->num_packets -= ep_bw->num_packets; 2175 switch (udev->speed) { 2176 case USB_SPEED_LOW: 2177 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2178 break; 2179 case USB_SPEED_FULL: 2180 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2181 break; 2182 case USB_SPEED_HIGH: 2183 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2184 break; 2185 case USB_SPEED_SUPER: 2186 case USB_SPEED_UNKNOWN: 2187 case USB_SPEED_WIRELESS: 2188 /* Should never happen because only LS/FS/HS endpoints will get 2189 * added to the endpoint list. 2190 */ 2191 return; 2192 } 2193 if (tt_info) 2194 tt_info->active_eps -= 1; 2195 list_del_init(&virt_ep->bw_endpoint_list); 2196 } 2197 2198 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2199 struct xhci_bw_info *ep_bw, 2200 struct xhci_interval_bw_table *bw_table, 2201 struct usb_device *udev, 2202 struct xhci_virt_ep *virt_ep, 2203 struct xhci_tt_bw_info *tt_info) 2204 { 2205 struct xhci_interval_bw *interval_bw; 2206 struct xhci_virt_ep *smaller_ep; 2207 int normalized_interval; 2208 2209 if (xhci_is_async_ep(ep_bw->type)) 2210 return; 2211 2212 if (udev->speed == USB_SPEED_SUPER) { 2213 if (xhci_is_sync_in_ep(ep_bw->type)) 2214 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2215 xhci_get_ss_bw_consumed(ep_bw); 2216 else 2217 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2218 xhci_get_ss_bw_consumed(ep_bw); 2219 return; 2220 } 2221 2222 /* For LS/FS devices, we need to translate the interval expressed in 2223 * microframes to frames. 2224 */ 2225 if (udev->speed == USB_SPEED_HIGH) 2226 normalized_interval = ep_bw->ep_interval; 2227 else 2228 normalized_interval = ep_bw->ep_interval - 3; 2229 2230 if (normalized_interval == 0) 2231 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2232 interval_bw = &bw_table->interval_bw[normalized_interval]; 2233 interval_bw->num_packets += ep_bw->num_packets; 2234 switch (udev->speed) { 2235 case USB_SPEED_LOW: 2236 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2237 break; 2238 case USB_SPEED_FULL: 2239 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2240 break; 2241 case USB_SPEED_HIGH: 2242 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2243 break; 2244 case USB_SPEED_SUPER: 2245 case USB_SPEED_UNKNOWN: 2246 case USB_SPEED_WIRELESS: 2247 /* Should never happen because only LS/FS/HS endpoints will get 2248 * added to the endpoint list. 2249 */ 2250 return; 2251 } 2252 2253 if (tt_info) 2254 tt_info->active_eps += 1; 2255 /* Insert the endpoint into the list, largest max packet size first. */ 2256 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2257 bw_endpoint_list) { 2258 if (ep_bw->max_packet_size >= 2259 smaller_ep->bw_info.max_packet_size) { 2260 /* Add the new ep before the smaller endpoint */ 2261 list_add_tail(&virt_ep->bw_endpoint_list, 2262 &smaller_ep->bw_endpoint_list); 2263 return; 2264 } 2265 } 2266 /* Add the new endpoint at the end of the list. */ 2267 list_add_tail(&virt_ep->bw_endpoint_list, 2268 &interval_bw->endpoints); 2269 } 2270 2271 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2272 struct xhci_virt_device *virt_dev, 2273 int old_active_eps) 2274 { 2275 struct xhci_root_port_bw_info *rh_bw_info; 2276 if (!virt_dev->tt_info) 2277 return; 2278 2279 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2280 if (old_active_eps == 0 && 2281 virt_dev->tt_info->active_eps != 0) { 2282 rh_bw_info->num_active_tts += 1; 2283 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2284 } else if (old_active_eps != 0 && 2285 virt_dev->tt_info->active_eps == 0) { 2286 rh_bw_info->num_active_tts -= 1; 2287 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2288 } 2289 } 2290 2291 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2292 struct xhci_virt_device *virt_dev, 2293 struct xhci_container_ctx *in_ctx) 2294 { 2295 struct xhci_bw_info ep_bw_info[31]; 2296 int i; 2297 struct xhci_input_control_ctx *ctrl_ctx; 2298 int old_active_eps = 0; 2299 2300 if (virt_dev->tt_info) 2301 old_active_eps = virt_dev->tt_info->active_eps; 2302 2303 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2304 2305 for (i = 0; i < 31; i++) { 2306 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2307 continue; 2308 2309 /* Make a copy of the BW info in case we need to revert this */ 2310 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2311 sizeof(ep_bw_info[i])); 2312 /* Drop the endpoint from the interval table if the endpoint is 2313 * being dropped or changed. 2314 */ 2315 if (EP_IS_DROPPED(ctrl_ctx, i)) 2316 xhci_drop_ep_from_interval_table(xhci, 2317 &virt_dev->eps[i].bw_info, 2318 virt_dev->bw_table, 2319 virt_dev->udev, 2320 &virt_dev->eps[i], 2321 virt_dev->tt_info); 2322 } 2323 /* Overwrite the information stored in the endpoints' bw_info */ 2324 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2325 for (i = 0; i < 31; i++) { 2326 /* Add any changed or added endpoints to the interval table */ 2327 if (EP_IS_ADDED(ctrl_ctx, i)) 2328 xhci_add_ep_to_interval_table(xhci, 2329 &virt_dev->eps[i].bw_info, 2330 virt_dev->bw_table, 2331 virt_dev->udev, 2332 &virt_dev->eps[i], 2333 virt_dev->tt_info); 2334 } 2335 2336 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2337 /* Ok, this fits in the bandwidth we have. 2338 * Update the number of active TTs. 2339 */ 2340 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2341 return 0; 2342 } 2343 2344 /* We don't have enough bandwidth for this, revert the stored info. */ 2345 for (i = 0; i < 31; i++) { 2346 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2347 continue; 2348 2349 /* Drop the new copies of any added or changed endpoints from 2350 * the interval table. 2351 */ 2352 if (EP_IS_ADDED(ctrl_ctx, i)) { 2353 xhci_drop_ep_from_interval_table(xhci, 2354 &virt_dev->eps[i].bw_info, 2355 virt_dev->bw_table, 2356 virt_dev->udev, 2357 &virt_dev->eps[i], 2358 virt_dev->tt_info); 2359 } 2360 /* Revert the endpoint back to its old information */ 2361 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2362 sizeof(ep_bw_info[i])); 2363 /* Add any changed or dropped endpoints back into the table */ 2364 if (EP_IS_DROPPED(ctrl_ctx, i)) 2365 xhci_add_ep_to_interval_table(xhci, 2366 &virt_dev->eps[i].bw_info, 2367 virt_dev->bw_table, 2368 virt_dev->udev, 2369 &virt_dev->eps[i], 2370 virt_dev->tt_info); 2371 } 2372 return -ENOMEM; 2373 } 2374 2375 2376 /* Issue a configure endpoint command or evaluate context command 2377 * and wait for it to finish. 2378 */ 2379 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2380 struct usb_device *udev, 2381 struct xhci_command *command, 2382 bool ctx_change, bool must_succeed) 2383 { 2384 int ret; 2385 int timeleft; 2386 unsigned long flags; 2387 struct xhci_container_ctx *in_ctx; 2388 struct completion *cmd_completion; 2389 u32 *cmd_status; 2390 struct xhci_virt_device *virt_dev; 2391 2392 spin_lock_irqsave(&xhci->lock, flags); 2393 virt_dev = xhci->devs[udev->slot_id]; 2394 2395 if (command) 2396 in_ctx = command->in_ctx; 2397 else 2398 in_ctx = virt_dev->in_ctx; 2399 2400 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2401 xhci_reserve_host_resources(xhci, in_ctx)) { 2402 spin_unlock_irqrestore(&xhci->lock, flags); 2403 xhci_warn(xhci, "Not enough host resources, " 2404 "active endpoint contexts = %u\n", 2405 xhci->num_active_eps); 2406 return -ENOMEM; 2407 } 2408 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2409 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2410 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2411 xhci_free_host_resources(xhci, in_ctx); 2412 spin_unlock_irqrestore(&xhci->lock, flags); 2413 xhci_warn(xhci, "Not enough bandwidth\n"); 2414 return -ENOMEM; 2415 } 2416 2417 if (command) { 2418 cmd_completion = command->completion; 2419 cmd_status = &command->status; 2420 command->command_trb = xhci->cmd_ring->enqueue; 2421 2422 /* Enqueue pointer can be left pointing to the link TRB, 2423 * we must handle that 2424 */ 2425 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2426 command->command_trb = 2427 xhci->cmd_ring->enq_seg->next->trbs; 2428 2429 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2430 } else { 2431 cmd_completion = &virt_dev->cmd_completion; 2432 cmd_status = &virt_dev->cmd_status; 2433 } 2434 init_completion(cmd_completion); 2435 2436 if (!ctx_change) 2437 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2438 udev->slot_id, must_succeed); 2439 else 2440 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2441 udev->slot_id); 2442 if (ret < 0) { 2443 if (command) 2444 list_del(&command->cmd_list); 2445 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2446 xhci_free_host_resources(xhci, in_ctx); 2447 spin_unlock_irqrestore(&xhci->lock, flags); 2448 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2449 return -ENOMEM; 2450 } 2451 xhci_ring_cmd_db(xhci); 2452 spin_unlock_irqrestore(&xhci->lock, flags); 2453 2454 /* Wait for the configure endpoint command to complete */ 2455 timeleft = wait_for_completion_interruptible_timeout( 2456 cmd_completion, 2457 USB_CTRL_SET_TIMEOUT); 2458 if (timeleft <= 0) { 2459 xhci_warn(xhci, "%s while waiting for %s command\n", 2460 timeleft == 0 ? "Timeout" : "Signal", 2461 ctx_change == 0 ? 2462 "configure endpoint" : 2463 "evaluate context"); 2464 /* FIXME cancel the configure endpoint command */ 2465 return -ETIME; 2466 } 2467 2468 if (!ctx_change) 2469 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2470 else 2471 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2472 2473 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2474 spin_lock_irqsave(&xhci->lock, flags); 2475 /* If the command failed, remove the reserved resources. 2476 * Otherwise, clean up the estimate to include dropped eps. 2477 */ 2478 if (ret) 2479 xhci_free_host_resources(xhci, in_ctx); 2480 else 2481 xhci_finish_resource_reservation(xhci, in_ctx); 2482 spin_unlock_irqrestore(&xhci->lock, flags); 2483 } 2484 return ret; 2485 } 2486 2487 /* Called after one or more calls to xhci_add_endpoint() or 2488 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2489 * to call xhci_reset_bandwidth(). 2490 * 2491 * Since we are in the middle of changing either configuration or 2492 * installing a new alt setting, the USB core won't allow URBs to be 2493 * enqueued for any endpoint on the old config or interface. Nothing 2494 * else should be touching the xhci->devs[slot_id] structure, so we 2495 * don't need to take the xhci->lock for manipulating that. 2496 */ 2497 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2498 { 2499 int i; 2500 int ret = 0; 2501 struct xhci_hcd *xhci; 2502 struct xhci_virt_device *virt_dev; 2503 struct xhci_input_control_ctx *ctrl_ctx; 2504 struct xhci_slot_ctx *slot_ctx; 2505 2506 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2507 if (ret <= 0) 2508 return ret; 2509 xhci = hcd_to_xhci(hcd); 2510 if (xhci->xhc_state & XHCI_STATE_DYING) 2511 return -ENODEV; 2512 2513 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2514 virt_dev = xhci->devs[udev->slot_id]; 2515 2516 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2517 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2518 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2519 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2520 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2521 2522 /* Don't issue the command if there's no endpoints to update. */ 2523 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2524 ctrl_ctx->drop_flags == 0) 2525 return 0; 2526 2527 xhci_dbg(xhci, "New Input Control Context:\n"); 2528 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2529 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2530 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2531 2532 ret = xhci_configure_endpoint(xhci, udev, NULL, 2533 false, false); 2534 if (ret) { 2535 /* Callee should call reset_bandwidth() */ 2536 return ret; 2537 } 2538 2539 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2540 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2541 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2542 2543 /* Free any rings that were dropped, but not changed. */ 2544 for (i = 1; i < 31; ++i) { 2545 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2546 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2547 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2548 } 2549 xhci_zero_in_ctx(xhci, virt_dev); 2550 /* 2551 * Install any rings for completely new endpoints or changed endpoints, 2552 * and free or cache any old rings from changed endpoints. 2553 */ 2554 for (i = 1; i < 31; ++i) { 2555 if (!virt_dev->eps[i].new_ring) 2556 continue; 2557 /* Only cache or free the old ring if it exists. 2558 * It may not if this is the first add of an endpoint. 2559 */ 2560 if (virt_dev->eps[i].ring) { 2561 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2562 } 2563 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2564 virt_dev->eps[i].new_ring = NULL; 2565 } 2566 2567 return ret; 2568 } 2569 2570 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2571 { 2572 struct xhci_hcd *xhci; 2573 struct xhci_virt_device *virt_dev; 2574 int i, ret; 2575 2576 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2577 if (ret <= 0) 2578 return; 2579 xhci = hcd_to_xhci(hcd); 2580 2581 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2582 virt_dev = xhci->devs[udev->slot_id]; 2583 /* Free any rings allocated for added endpoints */ 2584 for (i = 0; i < 31; ++i) { 2585 if (virt_dev->eps[i].new_ring) { 2586 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2587 virt_dev->eps[i].new_ring = NULL; 2588 } 2589 } 2590 xhci_zero_in_ctx(xhci, virt_dev); 2591 } 2592 2593 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2594 struct xhci_container_ctx *in_ctx, 2595 struct xhci_container_ctx *out_ctx, 2596 u32 add_flags, u32 drop_flags) 2597 { 2598 struct xhci_input_control_ctx *ctrl_ctx; 2599 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2600 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2601 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2602 xhci_slot_copy(xhci, in_ctx, out_ctx); 2603 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2604 2605 xhci_dbg(xhci, "Input Context:\n"); 2606 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2607 } 2608 2609 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2610 unsigned int slot_id, unsigned int ep_index, 2611 struct xhci_dequeue_state *deq_state) 2612 { 2613 struct xhci_container_ctx *in_ctx; 2614 struct xhci_ep_ctx *ep_ctx; 2615 u32 added_ctxs; 2616 dma_addr_t addr; 2617 2618 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2619 xhci->devs[slot_id]->out_ctx, ep_index); 2620 in_ctx = xhci->devs[slot_id]->in_ctx; 2621 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2622 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2623 deq_state->new_deq_ptr); 2624 if (addr == 0) { 2625 xhci_warn(xhci, "WARN Cannot submit config ep after " 2626 "reset ep command\n"); 2627 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2628 deq_state->new_deq_seg, 2629 deq_state->new_deq_ptr); 2630 return; 2631 } 2632 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2633 2634 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2635 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2636 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2637 } 2638 2639 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2640 struct usb_device *udev, unsigned int ep_index) 2641 { 2642 struct xhci_dequeue_state deq_state; 2643 struct xhci_virt_ep *ep; 2644 2645 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2646 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2647 /* We need to move the HW's dequeue pointer past this TD, 2648 * or it will attempt to resend it on the next doorbell ring. 2649 */ 2650 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2651 ep_index, ep->stopped_stream, ep->stopped_td, 2652 &deq_state); 2653 2654 /* HW with the reset endpoint quirk will use the saved dequeue state to 2655 * issue a configure endpoint command later. 2656 */ 2657 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2658 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2659 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2660 ep_index, ep->stopped_stream, &deq_state); 2661 } else { 2662 /* Better hope no one uses the input context between now and the 2663 * reset endpoint completion! 2664 * XXX: No idea how this hardware will react when stream rings 2665 * are enabled. 2666 */ 2667 xhci_dbg(xhci, "Setting up input context for " 2668 "configure endpoint command\n"); 2669 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2670 ep_index, &deq_state); 2671 } 2672 } 2673 2674 /* Deal with stalled endpoints. The core should have sent the control message 2675 * to clear the halt condition. However, we need to make the xHCI hardware 2676 * reset its sequence number, since a device will expect a sequence number of 2677 * zero after the halt condition is cleared. 2678 * Context: in_interrupt 2679 */ 2680 void xhci_endpoint_reset(struct usb_hcd *hcd, 2681 struct usb_host_endpoint *ep) 2682 { 2683 struct xhci_hcd *xhci; 2684 struct usb_device *udev; 2685 unsigned int ep_index; 2686 unsigned long flags; 2687 int ret; 2688 struct xhci_virt_ep *virt_ep; 2689 2690 xhci = hcd_to_xhci(hcd); 2691 udev = (struct usb_device *) ep->hcpriv; 2692 /* Called with a root hub endpoint (or an endpoint that wasn't added 2693 * with xhci_add_endpoint() 2694 */ 2695 if (!ep->hcpriv) 2696 return; 2697 ep_index = xhci_get_endpoint_index(&ep->desc); 2698 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2699 if (!virt_ep->stopped_td) { 2700 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2701 ep->desc.bEndpointAddress); 2702 return; 2703 } 2704 if (usb_endpoint_xfer_control(&ep->desc)) { 2705 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2706 return; 2707 } 2708 2709 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2710 spin_lock_irqsave(&xhci->lock, flags); 2711 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2712 /* 2713 * Can't change the ring dequeue pointer until it's transitioned to the 2714 * stopped state, which is only upon a successful reset endpoint 2715 * command. Better hope that last command worked! 2716 */ 2717 if (!ret) { 2718 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2719 kfree(virt_ep->stopped_td); 2720 xhci_ring_cmd_db(xhci); 2721 } 2722 virt_ep->stopped_td = NULL; 2723 virt_ep->stopped_trb = NULL; 2724 virt_ep->stopped_stream = 0; 2725 spin_unlock_irqrestore(&xhci->lock, flags); 2726 2727 if (ret) 2728 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2729 } 2730 2731 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2732 struct usb_device *udev, struct usb_host_endpoint *ep, 2733 unsigned int slot_id) 2734 { 2735 int ret; 2736 unsigned int ep_index; 2737 unsigned int ep_state; 2738 2739 if (!ep) 2740 return -EINVAL; 2741 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2742 if (ret <= 0) 2743 return -EINVAL; 2744 if (ep->ss_ep_comp.bmAttributes == 0) { 2745 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2746 " descriptor for ep 0x%x does not support streams\n", 2747 ep->desc.bEndpointAddress); 2748 return -EINVAL; 2749 } 2750 2751 ep_index = xhci_get_endpoint_index(&ep->desc); 2752 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2753 if (ep_state & EP_HAS_STREAMS || 2754 ep_state & EP_GETTING_STREAMS) { 2755 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2756 "already has streams set up.\n", 2757 ep->desc.bEndpointAddress); 2758 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2759 "dynamic stream context array reallocation.\n"); 2760 return -EINVAL; 2761 } 2762 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2763 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2764 "endpoint 0x%x; URBs are pending.\n", 2765 ep->desc.bEndpointAddress); 2766 return -EINVAL; 2767 } 2768 return 0; 2769 } 2770 2771 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2772 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2773 { 2774 unsigned int max_streams; 2775 2776 /* The stream context array size must be a power of two */ 2777 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2778 /* 2779 * Find out how many primary stream array entries the host controller 2780 * supports. Later we may use secondary stream arrays (similar to 2nd 2781 * level page entries), but that's an optional feature for xHCI host 2782 * controllers. xHCs must support at least 4 stream IDs. 2783 */ 2784 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2785 if (*num_stream_ctxs > max_streams) { 2786 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2787 max_streams); 2788 *num_stream_ctxs = max_streams; 2789 *num_streams = max_streams; 2790 } 2791 } 2792 2793 /* Returns an error code if one of the endpoint already has streams. 2794 * This does not change any data structures, it only checks and gathers 2795 * information. 2796 */ 2797 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2798 struct usb_device *udev, 2799 struct usb_host_endpoint **eps, unsigned int num_eps, 2800 unsigned int *num_streams, u32 *changed_ep_bitmask) 2801 { 2802 unsigned int max_streams; 2803 unsigned int endpoint_flag; 2804 int i; 2805 int ret; 2806 2807 for (i = 0; i < num_eps; i++) { 2808 ret = xhci_check_streams_endpoint(xhci, udev, 2809 eps[i], udev->slot_id); 2810 if (ret < 0) 2811 return ret; 2812 2813 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2814 if (max_streams < (*num_streams - 1)) { 2815 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2816 eps[i]->desc.bEndpointAddress, 2817 max_streams); 2818 *num_streams = max_streams+1; 2819 } 2820 2821 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2822 if (*changed_ep_bitmask & endpoint_flag) 2823 return -EINVAL; 2824 *changed_ep_bitmask |= endpoint_flag; 2825 } 2826 return 0; 2827 } 2828 2829 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2830 struct usb_device *udev, 2831 struct usb_host_endpoint **eps, unsigned int num_eps) 2832 { 2833 u32 changed_ep_bitmask = 0; 2834 unsigned int slot_id; 2835 unsigned int ep_index; 2836 unsigned int ep_state; 2837 int i; 2838 2839 slot_id = udev->slot_id; 2840 if (!xhci->devs[slot_id]) 2841 return 0; 2842 2843 for (i = 0; i < num_eps; i++) { 2844 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2845 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2846 /* Are streams already being freed for the endpoint? */ 2847 if (ep_state & EP_GETTING_NO_STREAMS) { 2848 xhci_warn(xhci, "WARN Can't disable streams for " 2849 "endpoint 0x%x\n, " 2850 "streams are being disabled already.", 2851 eps[i]->desc.bEndpointAddress); 2852 return 0; 2853 } 2854 /* Are there actually any streams to free? */ 2855 if (!(ep_state & EP_HAS_STREAMS) && 2856 !(ep_state & EP_GETTING_STREAMS)) { 2857 xhci_warn(xhci, "WARN Can't disable streams for " 2858 "endpoint 0x%x\n, " 2859 "streams are already disabled!", 2860 eps[i]->desc.bEndpointAddress); 2861 xhci_warn(xhci, "WARN xhci_free_streams() called " 2862 "with non-streams endpoint\n"); 2863 return 0; 2864 } 2865 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2866 } 2867 return changed_ep_bitmask; 2868 } 2869 2870 /* 2871 * The USB device drivers use this function (though the HCD interface in USB 2872 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 2873 * coordinate mass storage command queueing across multiple endpoints (basically 2874 * a stream ID == a task ID). 2875 * 2876 * Setting up streams involves allocating the same size stream context array 2877 * for each endpoint and issuing a configure endpoint command for all endpoints. 2878 * 2879 * Don't allow the call to succeed if one endpoint only supports one stream 2880 * (which means it doesn't support streams at all). 2881 * 2882 * Drivers may get less stream IDs than they asked for, if the host controller 2883 * hardware or endpoints claim they can't support the number of requested 2884 * stream IDs. 2885 */ 2886 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 2887 struct usb_host_endpoint **eps, unsigned int num_eps, 2888 unsigned int num_streams, gfp_t mem_flags) 2889 { 2890 int i, ret; 2891 struct xhci_hcd *xhci; 2892 struct xhci_virt_device *vdev; 2893 struct xhci_command *config_cmd; 2894 unsigned int ep_index; 2895 unsigned int num_stream_ctxs; 2896 unsigned long flags; 2897 u32 changed_ep_bitmask = 0; 2898 2899 if (!eps) 2900 return -EINVAL; 2901 2902 /* Add one to the number of streams requested to account for 2903 * stream 0 that is reserved for xHCI usage. 2904 */ 2905 num_streams += 1; 2906 xhci = hcd_to_xhci(hcd); 2907 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2908 num_streams); 2909 2910 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2911 if (!config_cmd) { 2912 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2913 return -ENOMEM; 2914 } 2915 2916 /* Check to make sure all endpoints are not already configured for 2917 * streams. While we're at it, find the maximum number of streams that 2918 * all the endpoints will support and check for duplicate endpoints. 2919 */ 2920 spin_lock_irqsave(&xhci->lock, flags); 2921 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2922 num_eps, &num_streams, &changed_ep_bitmask); 2923 if (ret < 0) { 2924 xhci_free_command(xhci, config_cmd); 2925 spin_unlock_irqrestore(&xhci->lock, flags); 2926 return ret; 2927 } 2928 if (num_streams <= 1) { 2929 xhci_warn(xhci, "WARN: endpoints can't handle " 2930 "more than one stream.\n"); 2931 xhci_free_command(xhci, config_cmd); 2932 spin_unlock_irqrestore(&xhci->lock, flags); 2933 return -EINVAL; 2934 } 2935 vdev = xhci->devs[udev->slot_id]; 2936 /* Mark each endpoint as being in transition, so 2937 * xhci_urb_enqueue() will reject all URBs. 2938 */ 2939 for (i = 0; i < num_eps; i++) { 2940 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2941 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2942 } 2943 spin_unlock_irqrestore(&xhci->lock, flags); 2944 2945 /* Setup internal data structures and allocate HW data structures for 2946 * streams (but don't install the HW structures in the input context 2947 * until we're sure all memory allocation succeeded). 2948 */ 2949 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2950 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2951 num_stream_ctxs, num_streams); 2952 2953 for (i = 0; i < num_eps; i++) { 2954 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2955 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2956 num_stream_ctxs, 2957 num_streams, mem_flags); 2958 if (!vdev->eps[ep_index].stream_info) 2959 goto cleanup; 2960 /* Set maxPstreams in endpoint context and update deq ptr to 2961 * point to stream context array. FIXME 2962 */ 2963 } 2964 2965 /* Set up the input context for a configure endpoint command. */ 2966 for (i = 0; i < num_eps; i++) { 2967 struct xhci_ep_ctx *ep_ctx; 2968 2969 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2970 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2971 2972 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2973 vdev->out_ctx, ep_index); 2974 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2975 vdev->eps[ep_index].stream_info); 2976 } 2977 /* Tell the HW to drop its old copy of the endpoint context info 2978 * and add the updated copy from the input context. 2979 */ 2980 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2981 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2982 2983 /* Issue and wait for the configure endpoint command */ 2984 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2985 false, false); 2986 2987 /* xHC rejected the configure endpoint command for some reason, so we 2988 * leave the old ring intact and free our internal streams data 2989 * structure. 2990 */ 2991 if (ret < 0) 2992 goto cleanup; 2993 2994 spin_lock_irqsave(&xhci->lock, flags); 2995 for (i = 0; i < num_eps; i++) { 2996 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2997 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 2998 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 2999 udev->slot_id, ep_index); 3000 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3001 } 3002 xhci_free_command(xhci, config_cmd); 3003 spin_unlock_irqrestore(&xhci->lock, flags); 3004 3005 /* Subtract 1 for stream 0, which drivers can't use */ 3006 return num_streams - 1; 3007 3008 cleanup: 3009 /* If it didn't work, free the streams! */ 3010 for (i = 0; i < num_eps; i++) { 3011 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3012 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3013 vdev->eps[ep_index].stream_info = NULL; 3014 /* FIXME Unset maxPstreams in endpoint context and 3015 * update deq ptr to point to normal string ring. 3016 */ 3017 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3018 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3019 xhci_endpoint_zero(xhci, vdev, eps[i]); 3020 } 3021 xhci_free_command(xhci, config_cmd); 3022 return -ENOMEM; 3023 } 3024 3025 /* Transition the endpoint from using streams to being a "normal" endpoint 3026 * without streams. 3027 * 3028 * Modify the endpoint context state, submit a configure endpoint command, 3029 * and free all endpoint rings for streams if that completes successfully. 3030 */ 3031 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3032 struct usb_host_endpoint **eps, unsigned int num_eps, 3033 gfp_t mem_flags) 3034 { 3035 int i, ret; 3036 struct xhci_hcd *xhci; 3037 struct xhci_virt_device *vdev; 3038 struct xhci_command *command; 3039 unsigned int ep_index; 3040 unsigned long flags; 3041 u32 changed_ep_bitmask; 3042 3043 xhci = hcd_to_xhci(hcd); 3044 vdev = xhci->devs[udev->slot_id]; 3045 3046 /* Set up a configure endpoint command to remove the streams rings */ 3047 spin_lock_irqsave(&xhci->lock, flags); 3048 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3049 udev, eps, num_eps); 3050 if (changed_ep_bitmask == 0) { 3051 spin_unlock_irqrestore(&xhci->lock, flags); 3052 return -EINVAL; 3053 } 3054 3055 /* Use the xhci_command structure from the first endpoint. We may have 3056 * allocated too many, but the driver may call xhci_free_streams() for 3057 * each endpoint it grouped into one call to xhci_alloc_streams(). 3058 */ 3059 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3060 command = vdev->eps[ep_index].stream_info->free_streams_command; 3061 for (i = 0; i < num_eps; i++) { 3062 struct xhci_ep_ctx *ep_ctx; 3063 3064 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3065 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3066 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3067 EP_GETTING_NO_STREAMS; 3068 3069 xhci_endpoint_copy(xhci, command->in_ctx, 3070 vdev->out_ctx, ep_index); 3071 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3072 &vdev->eps[ep_index]); 3073 } 3074 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3075 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3076 spin_unlock_irqrestore(&xhci->lock, flags); 3077 3078 /* Issue and wait for the configure endpoint command, 3079 * which must succeed. 3080 */ 3081 ret = xhci_configure_endpoint(xhci, udev, command, 3082 false, true); 3083 3084 /* xHC rejected the configure endpoint command for some reason, so we 3085 * leave the streams rings intact. 3086 */ 3087 if (ret < 0) 3088 return ret; 3089 3090 spin_lock_irqsave(&xhci->lock, flags); 3091 for (i = 0; i < num_eps; i++) { 3092 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3093 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3094 vdev->eps[ep_index].stream_info = NULL; 3095 /* FIXME Unset maxPstreams in endpoint context and 3096 * update deq ptr to point to normal string ring. 3097 */ 3098 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3099 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3100 } 3101 spin_unlock_irqrestore(&xhci->lock, flags); 3102 3103 return 0; 3104 } 3105 3106 /* 3107 * Deletes endpoint resources for endpoints that were active before a Reset 3108 * Device command, or a Disable Slot command. The Reset Device command leaves 3109 * the control endpoint intact, whereas the Disable Slot command deletes it. 3110 * 3111 * Must be called with xhci->lock held. 3112 */ 3113 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3114 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3115 { 3116 int i; 3117 unsigned int num_dropped_eps = 0; 3118 unsigned int drop_flags = 0; 3119 3120 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3121 if (virt_dev->eps[i].ring) { 3122 drop_flags |= 1 << i; 3123 num_dropped_eps++; 3124 } 3125 } 3126 xhci->num_active_eps -= num_dropped_eps; 3127 if (num_dropped_eps) 3128 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3129 "%u now active.\n", 3130 num_dropped_eps, drop_flags, 3131 xhci->num_active_eps); 3132 } 3133 3134 /* 3135 * This submits a Reset Device Command, which will set the device state to 0, 3136 * set the device address to 0, and disable all the endpoints except the default 3137 * control endpoint. The USB core should come back and call 3138 * xhci_address_device(), and then re-set up the configuration. If this is 3139 * called because of a usb_reset_and_verify_device(), then the old alternate 3140 * settings will be re-installed through the normal bandwidth allocation 3141 * functions. 3142 * 3143 * Wait for the Reset Device command to finish. Remove all structures 3144 * associated with the endpoints that were disabled. Clear the input device 3145 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3146 * 3147 * If the virt_dev to be reset does not exist or does not match the udev, 3148 * it means the device is lost, possibly due to the xHC restore error and 3149 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3150 * re-allocate the device. 3151 */ 3152 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3153 { 3154 int ret, i; 3155 unsigned long flags; 3156 struct xhci_hcd *xhci; 3157 unsigned int slot_id; 3158 struct xhci_virt_device *virt_dev; 3159 struct xhci_command *reset_device_cmd; 3160 int timeleft; 3161 int last_freed_endpoint; 3162 struct xhci_slot_ctx *slot_ctx; 3163 int old_active_eps = 0; 3164 3165 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3166 if (ret <= 0) 3167 return ret; 3168 xhci = hcd_to_xhci(hcd); 3169 slot_id = udev->slot_id; 3170 virt_dev = xhci->devs[slot_id]; 3171 if (!virt_dev) { 3172 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3173 "not exist. Re-allocate the device\n", slot_id); 3174 ret = xhci_alloc_dev(hcd, udev); 3175 if (ret == 1) 3176 return 0; 3177 else 3178 return -EINVAL; 3179 } 3180 3181 if (virt_dev->udev != udev) { 3182 /* If the virt_dev and the udev does not match, this virt_dev 3183 * may belong to another udev. 3184 * Re-allocate the device. 3185 */ 3186 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3187 "not match the udev. Re-allocate the device\n", 3188 slot_id); 3189 ret = xhci_alloc_dev(hcd, udev); 3190 if (ret == 1) 3191 return 0; 3192 else 3193 return -EINVAL; 3194 } 3195 3196 /* If device is not setup, there is no point in resetting it */ 3197 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3198 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3199 SLOT_STATE_DISABLED) 3200 return 0; 3201 3202 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3203 /* Allocate the command structure that holds the struct completion. 3204 * Assume we're in process context, since the normal device reset 3205 * process has to wait for the device anyway. Storage devices are 3206 * reset as part of error handling, so use GFP_NOIO instead of 3207 * GFP_KERNEL. 3208 */ 3209 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3210 if (!reset_device_cmd) { 3211 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3212 return -ENOMEM; 3213 } 3214 3215 /* Attempt to submit the Reset Device command to the command ring */ 3216 spin_lock_irqsave(&xhci->lock, flags); 3217 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3218 3219 /* Enqueue pointer can be left pointing to the link TRB, 3220 * we must handle that 3221 */ 3222 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3223 reset_device_cmd->command_trb = 3224 xhci->cmd_ring->enq_seg->next->trbs; 3225 3226 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3227 ret = xhci_queue_reset_device(xhci, slot_id); 3228 if (ret) { 3229 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3230 list_del(&reset_device_cmd->cmd_list); 3231 spin_unlock_irqrestore(&xhci->lock, flags); 3232 goto command_cleanup; 3233 } 3234 xhci_ring_cmd_db(xhci); 3235 spin_unlock_irqrestore(&xhci->lock, flags); 3236 3237 /* Wait for the Reset Device command to finish */ 3238 timeleft = wait_for_completion_interruptible_timeout( 3239 reset_device_cmd->completion, 3240 USB_CTRL_SET_TIMEOUT); 3241 if (timeleft <= 0) { 3242 xhci_warn(xhci, "%s while waiting for reset device command\n", 3243 timeleft == 0 ? "Timeout" : "Signal"); 3244 spin_lock_irqsave(&xhci->lock, flags); 3245 /* The timeout might have raced with the event ring handler, so 3246 * only delete from the list if the item isn't poisoned. 3247 */ 3248 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3249 list_del(&reset_device_cmd->cmd_list); 3250 spin_unlock_irqrestore(&xhci->lock, flags); 3251 ret = -ETIME; 3252 goto command_cleanup; 3253 } 3254 3255 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3256 * unless we tried to reset a slot ID that wasn't enabled, 3257 * or the device wasn't in the addressed or configured state. 3258 */ 3259 ret = reset_device_cmd->status; 3260 switch (ret) { 3261 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3262 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3263 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3264 slot_id, 3265 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3266 xhci_info(xhci, "Not freeing device rings.\n"); 3267 /* Don't treat this as an error. May change my mind later. */ 3268 ret = 0; 3269 goto command_cleanup; 3270 case COMP_SUCCESS: 3271 xhci_dbg(xhci, "Successful reset device command.\n"); 3272 break; 3273 default: 3274 if (xhci_is_vendor_info_code(xhci, ret)) 3275 break; 3276 xhci_warn(xhci, "Unknown completion code %u for " 3277 "reset device command.\n", ret); 3278 ret = -EINVAL; 3279 goto command_cleanup; 3280 } 3281 3282 /* Free up host controller endpoint resources */ 3283 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3284 spin_lock_irqsave(&xhci->lock, flags); 3285 /* Don't delete the default control endpoint resources */ 3286 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3287 spin_unlock_irqrestore(&xhci->lock, flags); 3288 } 3289 3290 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3291 last_freed_endpoint = 1; 3292 for (i = 1; i < 31; ++i) { 3293 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3294 3295 if (ep->ep_state & EP_HAS_STREAMS) { 3296 xhci_free_stream_info(xhci, ep->stream_info); 3297 ep->stream_info = NULL; 3298 ep->ep_state &= ~EP_HAS_STREAMS; 3299 } 3300 3301 if (ep->ring) { 3302 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3303 last_freed_endpoint = i; 3304 } 3305 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3306 xhci_drop_ep_from_interval_table(xhci, 3307 &virt_dev->eps[i].bw_info, 3308 virt_dev->bw_table, 3309 udev, 3310 &virt_dev->eps[i], 3311 virt_dev->tt_info); 3312 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3313 } 3314 /* If necessary, update the number of active TTs on this root port */ 3315 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3316 3317 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3318 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3319 ret = 0; 3320 3321 command_cleanup: 3322 xhci_free_command(xhci, reset_device_cmd); 3323 return ret; 3324 } 3325 3326 /* 3327 * At this point, the struct usb_device is about to go away, the device has 3328 * disconnected, and all traffic has been stopped and the endpoints have been 3329 * disabled. Free any HC data structures associated with that device. 3330 */ 3331 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3332 { 3333 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3334 struct xhci_virt_device *virt_dev; 3335 unsigned long flags; 3336 u32 state; 3337 int i, ret; 3338 3339 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3340 /* If the host is halted due to driver unload, we still need to free the 3341 * device. 3342 */ 3343 if (ret <= 0 && ret != -ENODEV) 3344 return; 3345 3346 virt_dev = xhci->devs[udev->slot_id]; 3347 3348 /* Stop any wayward timer functions (which may grab the lock) */ 3349 for (i = 0; i < 31; ++i) { 3350 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3351 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3352 } 3353 3354 if (udev->usb2_hw_lpm_enabled) { 3355 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3356 udev->usb2_hw_lpm_enabled = 0; 3357 } 3358 3359 spin_lock_irqsave(&xhci->lock, flags); 3360 /* Don't disable the slot if the host controller is dead. */ 3361 state = xhci_readl(xhci, &xhci->op_regs->status); 3362 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3363 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3364 xhci_free_virt_device(xhci, udev->slot_id); 3365 spin_unlock_irqrestore(&xhci->lock, flags); 3366 return; 3367 } 3368 3369 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3370 spin_unlock_irqrestore(&xhci->lock, flags); 3371 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3372 return; 3373 } 3374 xhci_ring_cmd_db(xhci); 3375 spin_unlock_irqrestore(&xhci->lock, flags); 3376 /* 3377 * Event command completion handler will free any data structures 3378 * associated with the slot. XXX Can free sleep? 3379 */ 3380 } 3381 3382 /* 3383 * Checks if we have enough host controller resources for the default control 3384 * endpoint. 3385 * 3386 * Must be called with xhci->lock held. 3387 */ 3388 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3389 { 3390 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3391 xhci_dbg(xhci, "Not enough ep ctxs: " 3392 "%u active, need to add 1, limit is %u.\n", 3393 xhci->num_active_eps, xhci->limit_active_eps); 3394 return -ENOMEM; 3395 } 3396 xhci->num_active_eps += 1; 3397 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3398 xhci->num_active_eps); 3399 return 0; 3400 } 3401 3402 3403 /* 3404 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3405 * timed out, or allocating memory failed. Returns 1 on success. 3406 */ 3407 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3408 { 3409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3410 unsigned long flags; 3411 int timeleft; 3412 int ret; 3413 3414 spin_lock_irqsave(&xhci->lock, flags); 3415 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3416 if (ret) { 3417 spin_unlock_irqrestore(&xhci->lock, flags); 3418 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3419 return 0; 3420 } 3421 xhci_ring_cmd_db(xhci); 3422 spin_unlock_irqrestore(&xhci->lock, flags); 3423 3424 /* XXX: how much time for xHC slot assignment? */ 3425 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3426 USB_CTRL_SET_TIMEOUT); 3427 if (timeleft <= 0) { 3428 xhci_warn(xhci, "%s while waiting for a slot\n", 3429 timeleft == 0 ? "Timeout" : "Signal"); 3430 /* FIXME cancel the enable slot request */ 3431 return 0; 3432 } 3433 3434 if (!xhci->slot_id) { 3435 xhci_err(xhci, "Error while assigning device slot ID\n"); 3436 return 0; 3437 } 3438 3439 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3440 spin_lock_irqsave(&xhci->lock, flags); 3441 ret = xhci_reserve_host_control_ep_resources(xhci); 3442 if (ret) { 3443 spin_unlock_irqrestore(&xhci->lock, flags); 3444 xhci_warn(xhci, "Not enough host resources, " 3445 "active endpoint contexts = %u\n", 3446 xhci->num_active_eps); 3447 goto disable_slot; 3448 } 3449 spin_unlock_irqrestore(&xhci->lock, flags); 3450 } 3451 /* Use GFP_NOIO, since this function can be called from 3452 * xhci_discover_or_reset_device(), which may be called as part of 3453 * mass storage driver error handling. 3454 */ 3455 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3456 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3457 goto disable_slot; 3458 } 3459 udev->slot_id = xhci->slot_id; 3460 /* Is this a LS or FS device under a HS hub? */ 3461 /* Hub or peripherial? */ 3462 return 1; 3463 3464 disable_slot: 3465 /* Disable slot, if we can do it without mem alloc */ 3466 spin_lock_irqsave(&xhci->lock, flags); 3467 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3468 xhci_ring_cmd_db(xhci); 3469 spin_unlock_irqrestore(&xhci->lock, flags); 3470 return 0; 3471 } 3472 3473 /* 3474 * Issue an Address Device command (which will issue a SetAddress request to 3475 * the device). 3476 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3477 * we should only issue and wait on one address command at the same time. 3478 * 3479 * We add one to the device address issued by the hardware because the USB core 3480 * uses address 1 for the root hubs (even though they're not really devices). 3481 */ 3482 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3483 { 3484 unsigned long flags; 3485 int timeleft; 3486 struct xhci_virt_device *virt_dev; 3487 int ret = 0; 3488 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3489 struct xhci_slot_ctx *slot_ctx; 3490 struct xhci_input_control_ctx *ctrl_ctx; 3491 u64 temp_64; 3492 3493 if (!udev->slot_id) { 3494 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3495 return -EINVAL; 3496 } 3497 3498 virt_dev = xhci->devs[udev->slot_id]; 3499 3500 if (WARN_ON(!virt_dev)) { 3501 /* 3502 * In plug/unplug torture test with an NEC controller, 3503 * a zero-dereference was observed once due to virt_dev = 0. 3504 * Print useful debug rather than crash if it is observed again! 3505 */ 3506 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3507 udev->slot_id); 3508 return -EINVAL; 3509 } 3510 3511 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3512 /* 3513 * If this is the first Set Address since device plug-in or 3514 * virt_device realloaction after a resume with an xHCI power loss, 3515 * then set up the slot context. 3516 */ 3517 if (!slot_ctx->dev_info) 3518 xhci_setup_addressable_virt_dev(xhci, udev); 3519 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3520 else 3521 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3522 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3523 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3524 ctrl_ctx->drop_flags = 0; 3525 3526 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3527 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3528 3529 spin_lock_irqsave(&xhci->lock, flags); 3530 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3531 udev->slot_id); 3532 if (ret) { 3533 spin_unlock_irqrestore(&xhci->lock, flags); 3534 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3535 return ret; 3536 } 3537 xhci_ring_cmd_db(xhci); 3538 spin_unlock_irqrestore(&xhci->lock, flags); 3539 3540 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3541 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3542 USB_CTRL_SET_TIMEOUT); 3543 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3544 * the SetAddress() "recovery interval" required by USB and aborting the 3545 * command on a timeout. 3546 */ 3547 if (timeleft <= 0) { 3548 xhci_warn(xhci, "%s while waiting for address device command\n", 3549 timeleft == 0 ? "Timeout" : "Signal"); 3550 /* FIXME cancel the address device command */ 3551 return -ETIME; 3552 } 3553 3554 switch (virt_dev->cmd_status) { 3555 case COMP_CTX_STATE: 3556 case COMP_EBADSLT: 3557 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3558 udev->slot_id); 3559 ret = -EINVAL; 3560 break; 3561 case COMP_TX_ERR: 3562 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3563 ret = -EPROTO; 3564 break; 3565 case COMP_DEV_ERR: 3566 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3567 "device command.\n"); 3568 ret = -ENODEV; 3569 break; 3570 case COMP_SUCCESS: 3571 xhci_dbg(xhci, "Successful Address Device command\n"); 3572 break; 3573 default: 3574 xhci_err(xhci, "ERROR: unexpected command completion " 3575 "code 0x%x.\n", virt_dev->cmd_status); 3576 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3577 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3578 ret = -EINVAL; 3579 break; 3580 } 3581 if (ret) { 3582 return ret; 3583 } 3584 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3585 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3586 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3587 udev->slot_id, 3588 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3589 (unsigned long long) 3590 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3591 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3592 (unsigned long long)virt_dev->out_ctx->dma); 3593 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3594 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3595 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3596 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3597 /* 3598 * USB core uses address 1 for the roothubs, so we add one to the 3599 * address given back to us by the HC. 3600 */ 3601 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3602 /* Use kernel assigned address for devices; store xHC assigned 3603 * address locally. */ 3604 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3605 + 1; 3606 /* Zero the input context control for later use */ 3607 ctrl_ctx->add_flags = 0; 3608 ctrl_ctx->drop_flags = 0; 3609 3610 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3611 3612 return 0; 3613 } 3614 3615 #ifdef CONFIG_USB_SUSPEND 3616 3617 /* BESL to HIRD Encoding array for USB2 LPM */ 3618 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3619 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3620 3621 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3622 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3623 struct usb_device *udev) 3624 { 3625 int u2del, besl, besl_host; 3626 int besl_device = 0; 3627 u32 field; 3628 3629 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3630 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3631 3632 if (field & USB_BESL_SUPPORT) { 3633 for (besl_host = 0; besl_host < 16; besl_host++) { 3634 if (xhci_besl_encoding[besl_host] >= u2del) 3635 break; 3636 } 3637 /* Use baseline BESL value as default */ 3638 if (field & USB_BESL_BASELINE_VALID) 3639 besl_device = USB_GET_BESL_BASELINE(field); 3640 else if (field & USB_BESL_DEEP_VALID) 3641 besl_device = USB_GET_BESL_DEEP(field); 3642 } else { 3643 if (u2del <= 50) 3644 besl_host = 0; 3645 else 3646 besl_host = (u2del - 51) / 75 + 1; 3647 } 3648 3649 besl = besl_host + besl_device; 3650 if (besl > 15) 3651 besl = 15; 3652 3653 return besl; 3654 } 3655 3656 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3657 struct usb_device *udev) 3658 { 3659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3660 struct dev_info *dev_info; 3661 __le32 __iomem **port_array; 3662 __le32 __iomem *addr, *pm_addr; 3663 u32 temp, dev_id; 3664 unsigned int port_num; 3665 unsigned long flags; 3666 int hird; 3667 int ret; 3668 3669 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3670 !udev->lpm_capable) 3671 return -EINVAL; 3672 3673 /* we only support lpm for non-hub device connected to root hub yet */ 3674 if (!udev->parent || udev->parent->parent || 3675 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3676 return -EINVAL; 3677 3678 spin_lock_irqsave(&xhci->lock, flags); 3679 3680 /* Look for devices in lpm_failed_devs list */ 3681 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3682 le16_to_cpu(udev->descriptor.idProduct); 3683 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3684 if (dev_info->dev_id == dev_id) { 3685 ret = -EINVAL; 3686 goto finish; 3687 } 3688 } 3689 3690 port_array = xhci->usb2_ports; 3691 port_num = udev->portnum - 1; 3692 3693 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3694 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3695 ret = -EINVAL; 3696 goto finish; 3697 } 3698 3699 /* 3700 * Test USB 2.0 software LPM. 3701 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3702 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3703 * in the June 2011 errata release. 3704 */ 3705 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3706 /* 3707 * Set L1 Device Slot and HIRD/BESL. 3708 * Check device's USB 2.0 extension descriptor to determine whether 3709 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3710 */ 3711 pm_addr = port_array[port_num] + 1; 3712 hird = xhci_calculate_hird_besl(xhci, udev); 3713 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3714 xhci_writel(xhci, temp, pm_addr); 3715 3716 /* Set port link state to U2(L1) */ 3717 addr = port_array[port_num]; 3718 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3719 3720 /* wait for ACK */ 3721 spin_unlock_irqrestore(&xhci->lock, flags); 3722 msleep(10); 3723 spin_lock_irqsave(&xhci->lock, flags); 3724 3725 /* Check L1 Status */ 3726 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3727 if (ret != -ETIMEDOUT) { 3728 /* enter L1 successfully */ 3729 temp = xhci_readl(xhci, addr); 3730 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3731 port_num, temp); 3732 ret = 0; 3733 } else { 3734 temp = xhci_readl(xhci, pm_addr); 3735 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3736 port_num, temp & PORT_L1S_MASK); 3737 ret = -EINVAL; 3738 } 3739 3740 /* Resume the port */ 3741 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3742 3743 spin_unlock_irqrestore(&xhci->lock, flags); 3744 msleep(10); 3745 spin_lock_irqsave(&xhci->lock, flags); 3746 3747 /* Clear PLC */ 3748 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3749 3750 /* Check PORTSC to make sure the device is in the right state */ 3751 if (!ret) { 3752 temp = xhci_readl(xhci, addr); 3753 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3754 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3755 (temp & PORT_PLS_MASK) != XDEV_U0) { 3756 xhci_dbg(xhci, "port L1 resume fail\n"); 3757 ret = -EINVAL; 3758 } 3759 } 3760 3761 if (ret) { 3762 /* Insert dev to lpm_failed_devs list */ 3763 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3764 "re-enumerate\n"); 3765 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3766 if (!dev_info) { 3767 ret = -ENOMEM; 3768 goto finish; 3769 } 3770 dev_info->dev_id = dev_id; 3771 INIT_LIST_HEAD(&dev_info->list); 3772 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3773 } else { 3774 xhci_ring_device(xhci, udev->slot_id); 3775 } 3776 3777 finish: 3778 spin_unlock_irqrestore(&xhci->lock, flags); 3779 return ret; 3780 } 3781 3782 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3783 struct usb_device *udev, int enable) 3784 { 3785 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3786 __le32 __iomem **port_array; 3787 __le32 __iomem *pm_addr; 3788 u32 temp; 3789 unsigned int port_num; 3790 unsigned long flags; 3791 int hird; 3792 3793 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3794 !udev->lpm_capable) 3795 return -EPERM; 3796 3797 if (!udev->parent || udev->parent->parent || 3798 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3799 return -EPERM; 3800 3801 if (udev->usb2_hw_lpm_capable != 1) 3802 return -EPERM; 3803 3804 spin_lock_irqsave(&xhci->lock, flags); 3805 3806 port_array = xhci->usb2_ports; 3807 port_num = udev->portnum - 1; 3808 pm_addr = port_array[port_num] + 1; 3809 temp = xhci_readl(xhci, pm_addr); 3810 3811 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3812 enable ? "enable" : "disable", port_num); 3813 3814 hird = xhci_calculate_hird_besl(xhci, udev); 3815 3816 if (enable) { 3817 temp &= ~PORT_HIRD_MASK; 3818 temp |= PORT_HIRD(hird) | PORT_RWE; 3819 xhci_writel(xhci, temp, pm_addr); 3820 temp = xhci_readl(xhci, pm_addr); 3821 temp |= PORT_HLE; 3822 xhci_writel(xhci, temp, pm_addr); 3823 } else { 3824 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3825 xhci_writel(xhci, temp, pm_addr); 3826 } 3827 3828 spin_unlock_irqrestore(&xhci->lock, flags); 3829 return 0; 3830 } 3831 3832 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3833 { 3834 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3835 int ret; 3836 3837 ret = xhci_usb2_software_lpm_test(hcd, udev); 3838 if (!ret) { 3839 xhci_dbg(xhci, "software LPM test succeed\n"); 3840 if (xhci->hw_lpm_support == 1) { 3841 udev->usb2_hw_lpm_capable = 1; 3842 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3843 if (!ret) 3844 udev->usb2_hw_lpm_enabled = 1; 3845 } 3846 } 3847 3848 return 0; 3849 } 3850 3851 #else 3852 3853 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3854 struct usb_device *udev, int enable) 3855 { 3856 return 0; 3857 } 3858 3859 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3860 { 3861 return 0; 3862 } 3863 3864 #endif /* CONFIG_USB_SUSPEND */ 3865 3866 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 3867 * internal data structures for the device. 3868 */ 3869 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 3870 struct usb_tt *tt, gfp_t mem_flags) 3871 { 3872 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3873 struct xhci_virt_device *vdev; 3874 struct xhci_command *config_cmd; 3875 struct xhci_input_control_ctx *ctrl_ctx; 3876 struct xhci_slot_ctx *slot_ctx; 3877 unsigned long flags; 3878 unsigned think_time; 3879 int ret; 3880 3881 /* Ignore root hubs */ 3882 if (!hdev->parent) 3883 return 0; 3884 3885 vdev = xhci->devs[hdev->slot_id]; 3886 if (!vdev) { 3887 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 3888 return -EINVAL; 3889 } 3890 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3891 if (!config_cmd) { 3892 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3893 return -ENOMEM; 3894 } 3895 3896 spin_lock_irqsave(&xhci->lock, flags); 3897 if (hdev->speed == USB_SPEED_HIGH && 3898 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 3899 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 3900 xhci_free_command(xhci, config_cmd); 3901 spin_unlock_irqrestore(&xhci->lock, flags); 3902 return -ENOMEM; 3903 } 3904 3905 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 3906 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3907 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3908 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 3909 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 3910 if (tt->multi) 3911 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 3912 if (xhci->hci_version > 0x95) { 3913 xhci_dbg(xhci, "xHCI version %x needs hub " 3914 "TT think time and number of ports\n", 3915 (unsigned int) xhci->hci_version); 3916 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 3917 /* Set TT think time - convert from ns to FS bit times. 3918 * 0 = 8 FS bit times, 1 = 16 FS bit times, 3919 * 2 = 24 FS bit times, 3 = 32 FS bit times. 3920 * 3921 * xHCI 1.0: this field shall be 0 if the device is not a 3922 * High-spped hub. 3923 */ 3924 think_time = tt->think_time; 3925 if (think_time != 0) 3926 think_time = (think_time / 666) - 1; 3927 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 3928 slot_ctx->tt_info |= 3929 cpu_to_le32(TT_THINK_TIME(think_time)); 3930 } else { 3931 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 3932 "TT think time or number of ports\n", 3933 (unsigned int) xhci->hci_version); 3934 } 3935 slot_ctx->dev_state = 0; 3936 spin_unlock_irqrestore(&xhci->lock, flags); 3937 3938 xhci_dbg(xhci, "Set up %s for hub device.\n", 3939 (xhci->hci_version > 0x95) ? 3940 "configure endpoint" : "evaluate context"); 3941 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 3942 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 3943 3944 /* Issue and wait for the configure endpoint or 3945 * evaluate context command. 3946 */ 3947 if (xhci->hci_version > 0x95) 3948 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3949 false, false); 3950 else 3951 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3952 true, false); 3953 3954 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 3955 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 3956 3957 xhci_free_command(xhci, config_cmd); 3958 return ret; 3959 } 3960 3961 int xhci_get_frame(struct usb_hcd *hcd) 3962 { 3963 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3964 /* EHCI mods by the periodic size. Why? */ 3965 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 3966 } 3967 3968 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 3969 { 3970 struct xhci_hcd *xhci; 3971 struct device *dev = hcd->self.controller; 3972 int retval; 3973 u32 temp; 3974 3975 /* Accept arbitrarily long scatter-gather lists */ 3976 hcd->self.sg_tablesize = ~0; 3977 3978 if (usb_hcd_is_primary_hcd(hcd)) { 3979 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 3980 if (!xhci) 3981 return -ENOMEM; 3982 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 3983 xhci->main_hcd = hcd; 3984 /* Mark the first roothub as being USB 2.0. 3985 * The xHCI driver will register the USB 3.0 roothub. 3986 */ 3987 hcd->speed = HCD_USB2; 3988 hcd->self.root_hub->speed = USB_SPEED_HIGH; 3989 /* 3990 * USB 2.0 roothub under xHCI has an integrated TT, 3991 * (rate matching hub) as opposed to having an OHCI/UHCI 3992 * companion controller. 3993 */ 3994 hcd->has_tt = 1; 3995 } else { 3996 /* xHCI private pointer was set in xhci_pci_probe for the second 3997 * registered roothub. 3998 */ 3999 xhci = hcd_to_xhci(hcd); 4000 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4001 if (HCC_64BIT_ADDR(temp)) { 4002 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4003 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4004 } else { 4005 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4006 } 4007 return 0; 4008 } 4009 4010 xhci->cap_regs = hcd->regs; 4011 xhci->op_regs = hcd->regs + 4012 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4013 xhci->run_regs = hcd->regs + 4014 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4015 /* Cache read-only capability registers */ 4016 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4017 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4018 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4019 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4020 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4021 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4022 xhci_print_registers(xhci); 4023 4024 get_quirks(dev, xhci); 4025 4026 /* Make sure the HC is halted. */ 4027 retval = xhci_halt(xhci); 4028 if (retval) 4029 goto error; 4030 4031 xhci_dbg(xhci, "Resetting HCD\n"); 4032 /* Reset the internal HC memory state and registers. */ 4033 retval = xhci_reset(xhci); 4034 if (retval) 4035 goto error; 4036 xhci_dbg(xhci, "Reset complete\n"); 4037 4038 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4039 if (HCC_64BIT_ADDR(temp)) { 4040 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4041 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4042 } else { 4043 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4044 } 4045 4046 xhci_dbg(xhci, "Calling HCD init\n"); 4047 /* Initialize HCD and host controller data structures. */ 4048 retval = xhci_init(hcd); 4049 if (retval) 4050 goto error; 4051 xhci_dbg(xhci, "Called HCD init\n"); 4052 return 0; 4053 error: 4054 kfree(xhci); 4055 return retval; 4056 } 4057 4058 MODULE_DESCRIPTION(DRIVER_DESC); 4059 MODULE_AUTHOR(DRIVER_AUTHOR); 4060 MODULE_LICENSE("GPL"); 4061 4062 static int __init xhci_hcd_init(void) 4063 { 4064 int retval; 4065 4066 retval = xhci_register_pci(); 4067 if (retval < 0) { 4068 printk(KERN_DEBUG "Problem registering PCI driver."); 4069 return retval; 4070 } 4071 retval = xhci_register_plat(); 4072 if (retval < 0) { 4073 printk(KERN_DEBUG "Problem registering platform driver."); 4074 goto unreg_pci; 4075 } 4076 /* 4077 * Check the compiler generated sizes of structures that must be laid 4078 * out in specific ways for hardware access. 4079 */ 4080 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4081 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4082 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4083 /* xhci_device_control has eight fields, and also 4084 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4085 */ 4086 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4087 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4088 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4089 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4090 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4091 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4092 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4093 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4094 return 0; 4095 unreg_pci: 4096 xhci_unregister_pci(); 4097 return retval; 4098 } 4099 module_init(xhci_hcd_init); 4100 4101 static void __exit xhci_hcd_cleanup(void) 4102 { 4103 xhci_unregister_pci(); 4104 xhci_unregister_plat(); 4105 } 4106 module_exit(xhci_hcd_cleanup); 4107