xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 08157984)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	else
110 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111 				XHCI_MAX_HALT_USEC);
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = xhci_readl(xhci, &xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126 			temp);
127 	xhci_writel(xhci, temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = handshake(xhci, &xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
141 	return ret;
142 }
143 
144 /*
145  * Reset a halted HC.
146  *
147  * This resets pipelines, timers, counters, state machines, etc.
148  * Transactions will be terminated immediately, and operational registers
149  * will be set to their defaults.
150  */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153 	u32 command;
154 	u32 state;
155 	int ret;
156 
157 	state = xhci_readl(xhci, &xhci->op_regs->status);
158 	if ((state & STS_HALT) == 0) {
159 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160 		return 0;
161 	}
162 
163 	xhci_dbg(xhci, "// Reset the HC\n");
164 	command = xhci_readl(xhci, &xhci->op_regs->command);
165 	command |= CMD_RESET;
166 	xhci_writel(xhci, command, &xhci->op_regs->command);
167 
168 	ret = handshake(xhci, &xhci->op_regs->command,
169 			CMD_RESET, 0, 250 * 1000);
170 	if (ret)
171 		return ret;
172 
173 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174 	/*
175 	 * xHCI cannot write to any doorbells or operational registers other
176 	 * than status until the "Controller Not Ready" flag is cleared.
177 	 */
178 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 }
180 
181 #ifdef CONFIG_PCI
182 static int xhci_free_msi(struct xhci_hcd *xhci)
183 {
184 	int i;
185 
186 	if (!xhci->msix_entries)
187 		return -EINVAL;
188 
189 	for (i = 0; i < xhci->msix_count; i++)
190 		if (xhci->msix_entries[i].vector)
191 			free_irq(xhci->msix_entries[i].vector,
192 					xhci_to_hcd(xhci));
193 	return 0;
194 }
195 
196 /*
197  * Set up MSI
198  */
199 static int xhci_setup_msi(struct xhci_hcd *xhci)
200 {
201 	int ret;
202 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
203 
204 	ret = pci_enable_msi(pdev);
205 	if (ret) {
206 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
207 		return ret;
208 	}
209 
210 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
211 				0, "xhci_hcd", xhci_to_hcd(xhci));
212 	if (ret) {
213 		xhci_dbg(xhci, "disable MSI interrupt\n");
214 		pci_disable_msi(pdev);
215 	}
216 
217 	return ret;
218 }
219 
220 /*
221  * Free IRQs
222  * free all IRQs request
223  */
224 static void xhci_free_irq(struct xhci_hcd *xhci)
225 {
226 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
227 	int ret;
228 
229 	/* return if using legacy interrupt */
230 	if (xhci_to_hcd(xhci)->irq > 0)
231 		return;
232 
233 	ret = xhci_free_msi(xhci);
234 	if (!ret)
235 		return;
236 	if (pdev->irq > 0)
237 		free_irq(pdev->irq, xhci_to_hcd(xhci));
238 
239 	return;
240 }
241 
242 /*
243  * Set up MSI-X
244  */
245 static int xhci_setup_msix(struct xhci_hcd *xhci)
246 {
247 	int i, ret = 0;
248 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
249 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
250 
251 	/*
252 	 * calculate number of msi-x vectors supported.
253 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
254 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
255 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
256 	 *   Add additional 1 vector to ensure always available interrupt.
257 	 */
258 	xhci->msix_count = min(num_online_cpus() + 1,
259 				HCS_MAX_INTRS(xhci->hcs_params1));
260 
261 	xhci->msix_entries =
262 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
263 				GFP_KERNEL);
264 	if (!xhci->msix_entries) {
265 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
266 		return -ENOMEM;
267 	}
268 
269 	for (i = 0; i < xhci->msix_count; i++) {
270 		xhci->msix_entries[i].entry = i;
271 		xhci->msix_entries[i].vector = 0;
272 	}
273 
274 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
275 	if (ret) {
276 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
277 		goto free_entries;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		ret = request_irq(xhci->msix_entries[i].vector,
282 				(irq_handler_t)xhci_msi_irq,
283 				0, "xhci_hcd", xhci_to_hcd(xhci));
284 		if (ret)
285 			goto disable_msix;
286 	}
287 
288 	hcd->msix_enabled = 1;
289 	return ret;
290 
291 disable_msix:
292 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
293 	xhci_free_irq(xhci);
294 	pci_disable_msix(pdev);
295 free_entries:
296 	kfree(xhci->msix_entries);
297 	xhci->msix_entries = NULL;
298 	return ret;
299 }
300 
301 /* Free any IRQs and disable MSI-X */
302 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
303 {
304 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
305 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
306 
307 	xhci_free_irq(xhci);
308 
309 	if (xhci->msix_entries) {
310 		pci_disable_msix(pdev);
311 		kfree(xhci->msix_entries);
312 		xhci->msix_entries = NULL;
313 	} else {
314 		pci_disable_msi(pdev);
315 	}
316 
317 	hcd->msix_enabled = 0;
318 	return;
319 }
320 
321 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323 	int i;
324 
325 	if (xhci->msix_entries) {
326 		for (i = 0; i < xhci->msix_count; i++)
327 			synchronize_irq(xhci->msix_entries[i].vector);
328 	}
329 }
330 
331 static int xhci_try_enable_msi(struct usb_hcd *hcd)
332 {
333 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
334 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
335 	int ret;
336 
337 	/*
338 	 * Some Fresco Logic host controllers advertise MSI, but fail to
339 	 * generate interrupts.  Don't even try to enable MSI.
340 	 */
341 	if (xhci->quirks & XHCI_BROKEN_MSI)
342 		return 0;
343 
344 	/* unregister the legacy interrupt */
345 	if (hcd->irq)
346 		free_irq(hcd->irq, hcd);
347 	hcd->irq = 0;
348 
349 	ret = xhci_setup_msix(xhci);
350 	if (ret)
351 		/* fall back to msi*/
352 		ret = xhci_setup_msi(xhci);
353 
354 	if (!ret)
355 		/* hcd->irq is 0, we have MSI */
356 		return 0;
357 
358 	if (!pdev->irq) {
359 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
360 		return -EINVAL;
361 	}
362 
363 	/* fall back to legacy interrupt*/
364 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
365 			hcd->irq_descr, hcd);
366 	if (ret) {
367 		xhci_err(xhci, "request interrupt %d failed\n",
368 				pdev->irq);
369 		return ret;
370 	}
371 	hcd->irq = pdev->irq;
372 	return 0;
373 }
374 
375 #else
376 
377 static int xhci_try_enable_msi(struct usb_hcd *hcd)
378 {
379 	return 0;
380 }
381 
382 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
383 {
384 }
385 
386 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
387 {
388 }
389 
390 #endif
391 
392 /*
393  * Initialize memory for HCD and xHC (one-time init).
394  *
395  * Program the PAGESIZE register, initialize the device context array, create
396  * device contexts (?), set up a command ring segment (or two?), create event
397  * ring (one for now).
398  */
399 int xhci_init(struct usb_hcd *hcd)
400 {
401 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
402 	int retval = 0;
403 
404 	xhci_dbg(xhci, "xhci_init\n");
405 	spin_lock_init(&xhci->lock);
406 	if (xhci->hci_version == 0x95 && link_quirk) {
407 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
408 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
409 	} else {
410 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
411 	}
412 	retval = xhci_mem_init(xhci, GFP_KERNEL);
413 	xhci_dbg(xhci, "Finished xhci_init\n");
414 
415 	return retval;
416 }
417 
418 /*-------------------------------------------------------------------------*/
419 
420 
421 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
422 static void xhci_event_ring_work(unsigned long arg)
423 {
424 	unsigned long flags;
425 	int temp;
426 	u64 temp_64;
427 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
428 	int i, j;
429 
430 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
431 
432 	spin_lock_irqsave(&xhci->lock, flags);
433 	temp = xhci_readl(xhci, &xhci->op_regs->status);
434 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
435 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
436 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
437 		xhci_dbg(xhci, "HW died, polling stopped.\n");
438 		spin_unlock_irqrestore(&xhci->lock, flags);
439 		return;
440 	}
441 
442 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
443 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
444 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
445 	xhci->error_bitmask = 0;
446 	xhci_dbg(xhci, "Event ring:\n");
447 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
448 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
449 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
450 	temp_64 &= ~ERST_PTR_MASK;
451 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
452 	xhci_dbg(xhci, "Command ring:\n");
453 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
454 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
455 	xhci_dbg_cmd_ptrs(xhci);
456 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
457 		if (!xhci->devs[i])
458 			continue;
459 		for (j = 0; j < 31; ++j) {
460 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
461 		}
462 	}
463 	spin_unlock_irqrestore(&xhci->lock, flags);
464 
465 	if (!xhci->zombie)
466 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
467 	else
468 		xhci_dbg(xhci, "Quit polling the event ring.\n");
469 }
470 #endif
471 
472 static int xhci_run_finished(struct xhci_hcd *xhci)
473 {
474 	if (xhci_start(xhci)) {
475 		xhci_halt(xhci);
476 		return -ENODEV;
477 	}
478 	xhci->shared_hcd->state = HC_STATE_RUNNING;
479 
480 	if (xhci->quirks & XHCI_NEC_HOST)
481 		xhci_ring_cmd_db(xhci);
482 
483 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
484 	return 0;
485 }
486 
487 /*
488  * Start the HC after it was halted.
489  *
490  * This function is called by the USB core when the HC driver is added.
491  * Its opposite is xhci_stop().
492  *
493  * xhci_init() must be called once before this function can be called.
494  * Reset the HC, enable device slot contexts, program DCBAAP, and
495  * set command ring pointer and event ring pointer.
496  *
497  * Setup MSI-X vectors and enable interrupts.
498  */
499 int xhci_run(struct usb_hcd *hcd)
500 {
501 	u32 temp;
502 	u64 temp_64;
503 	int ret;
504 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505 
506 	/* Start the xHCI host controller running only after the USB 2.0 roothub
507 	 * is setup.
508 	 */
509 
510 	hcd->uses_new_polling = 1;
511 	if (!usb_hcd_is_primary_hcd(hcd))
512 		return xhci_run_finished(xhci);
513 
514 	xhci_dbg(xhci, "xhci_run\n");
515 
516 	ret = xhci_try_enable_msi(hcd);
517 	if (ret)
518 		return ret;
519 
520 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
521 	init_timer(&xhci->event_ring_timer);
522 	xhci->event_ring_timer.data = (unsigned long) xhci;
523 	xhci->event_ring_timer.function = xhci_event_ring_work;
524 	/* Poll the event ring */
525 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
526 	xhci->zombie = 0;
527 	xhci_dbg(xhci, "Setting event ring polling timer\n");
528 	add_timer(&xhci->event_ring_timer);
529 #endif
530 
531 	xhci_dbg(xhci, "Command ring memory map follows:\n");
532 	xhci_debug_ring(xhci, xhci->cmd_ring);
533 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
534 	xhci_dbg_cmd_ptrs(xhci);
535 
536 	xhci_dbg(xhci, "ERST memory map follows:\n");
537 	xhci_dbg_erst(xhci, &xhci->erst);
538 	xhci_dbg(xhci, "Event ring:\n");
539 	xhci_debug_ring(xhci, xhci->event_ring);
540 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
541 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
542 	temp_64 &= ~ERST_PTR_MASK;
543 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
544 
545 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
546 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
547 	temp &= ~ER_IRQ_INTERVAL_MASK;
548 	temp |= (u32) 160;
549 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
550 
551 	/* Set the HCD state before we enable the irqs */
552 	temp = xhci_readl(xhci, &xhci->op_regs->command);
553 	temp |= (CMD_EIE);
554 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
555 			temp);
556 	xhci_writel(xhci, temp, &xhci->op_regs->command);
557 
558 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
559 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
560 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
561 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
562 			&xhci->ir_set->irq_pending);
563 	xhci_print_ir_set(xhci, 0);
564 
565 	if (xhci->quirks & XHCI_NEC_HOST)
566 		xhci_queue_vendor_command(xhci, 0, 0, 0,
567 				TRB_TYPE(TRB_NEC_GET_FW));
568 
569 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
570 	return 0;
571 }
572 
573 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
574 {
575 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576 
577 	spin_lock_irq(&xhci->lock);
578 	xhci_halt(xhci);
579 
580 	/* The shared_hcd is going to be deallocated shortly (the USB core only
581 	 * calls this function when allocation fails in usb_add_hcd(), or
582 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
583 	 */
584 	xhci->shared_hcd = NULL;
585 	spin_unlock_irq(&xhci->lock);
586 }
587 
588 /*
589  * Stop xHCI driver.
590  *
591  * This function is called by the USB core when the HC driver is removed.
592  * Its opposite is xhci_run().
593  *
594  * Disable device contexts, disable IRQs, and quiesce the HC.
595  * Reset the HC, finish any completed transactions, and cleanup memory.
596  */
597 void xhci_stop(struct usb_hcd *hcd)
598 {
599 	u32 temp;
600 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
601 
602 	if (!usb_hcd_is_primary_hcd(hcd)) {
603 		xhci_only_stop_hcd(xhci->shared_hcd);
604 		return;
605 	}
606 
607 	spin_lock_irq(&xhci->lock);
608 	/* Make sure the xHC is halted for a USB3 roothub
609 	 * (xhci_stop() could be called as part of failed init).
610 	 */
611 	xhci_halt(xhci);
612 	xhci_reset(xhci);
613 	spin_unlock_irq(&xhci->lock);
614 
615 	xhci_cleanup_msix(xhci);
616 
617 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
618 	/* Tell the event ring poll function not to reschedule */
619 	xhci->zombie = 1;
620 	del_timer_sync(&xhci->event_ring_timer);
621 #endif
622 
623 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
624 		usb_amd_dev_put();
625 
626 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
627 	temp = xhci_readl(xhci, &xhci->op_regs->status);
628 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
629 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
630 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
631 			&xhci->ir_set->irq_pending);
632 	xhci_print_ir_set(xhci, 0);
633 
634 	xhci_dbg(xhci, "cleaning up memory\n");
635 	xhci_mem_cleanup(xhci);
636 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
637 		    xhci_readl(xhci, &xhci->op_regs->status));
638 }
639 
640 /*
641  * Shutdown HC (not bus-specific)
642  *
643  * This is called when the machine is rebooting or halting.  We assume that the
644  * machine will be powered off, and the HC's internal state will be reset.
645  * Don't bother to free memory.
646  *
647  * This will only ever be called with the main usb_hcd (the USB3 roothub).
648  */
649 void xhci_shutdown(struct usb_hcd *hcd)
650 {
651 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652 
653 	spin_lock_irq(&xhci->lock);
654 	xhci_halt(xhci);
655 	spin_unlock_irq(&xhci->lock);
656 
657 	xhci_cleanup_msix(xhci);
658 
659 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
660 		    xhci_readl(xhci, &xhci->op_regs->status));
661 }
662 
663 #ifdef CONFIG_PM
664 static void xhci_save_registers(struct xhci_hcd *xhci)
665 {
666 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
667 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
668 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
669 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
670 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
671 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
672 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
673 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
674 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
675 }
676 
677 static void xhci_restore_registers(struct xhci_hcd *xhci)
678 {
679 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
680 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
681 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
682 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
683 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
684 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
685 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
686 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
687 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
688 }
689 
690 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
691 {
692 	u64	val_64;
693 
694 	/* step 2: initialize command ring buffer */
695 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
696 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
697 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
698 				      xhci->cmd_ring->dequeue) &
699 		 (u64) ~CMD_RING_RSVD_BITS) |
700 		xhci->cmd_ring->cycle_state;
701 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
702 			(long unsigned long) val_64);
703 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
704 }
705 
706 /*
707  * The whole command ring must be cleared to zero when we suspend the host.
708  *
709  * The host doesn't save the command ring pointer in the suspend well, so we
710  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
711  * aligned, because of the reserved bits in the command ring dequeue pointer
712  * register.  Therefore, we can't just set the dequeue pointer back in the
713  * middle of the ring (TRBs are 16-byte aligned).
714  */
715 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
716 {
717 	struct xhci_ring *ring;
718 	struct xhci_segment *seg;
719 
720 	ring = xhci->cmd_ring;
721 	seg = ring->deq_seg;
722 	do {
723 		memset(seg->trbs, 0,
724 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
725 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
726 			cpu_to_le32(~TRB_CYCLE);
727 		seg = seg->next;
728 	} while (seg != ring->deq_seg);
729 
730 	/* Reset the software enqueue and dequeue pointers */
731 	ring->deq_seg = ring->first_seg;
732 	ring->dequeue = ring->first_seg->trbs;
733 	ring->enq_seg = ring->deq_seg;
734 	ring->enqueue = ring->dequeue;
735 
736 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
737 	/*
738 	 * Ring is now zeroed, so the HW should look for change of ownership
739 	 * when the cycle bit is set to 1.
740 	 */
741 	ring->cycle_state = 1;
742 
743 	/*
744 	 * Reset the hardware dequeue pointer.
745 	 * Yes, this will need to be re-written after resume, but we're paranoid
746 	 * and want to make sure the hardware doesn't access bogus memory
747 	 * because, say, the BIOS or an SMI started the host without changing
748 	 * the command ring pointers.
749 	 */
750 	xhci_set_cmd_ring_deq(xhci);
751 }
752 
753 /*
754  * Stop HC (not bus-specific)
755  *
756  * This is called when the machine transition into S3/S4 mode.
757  *
758  */
759 int xhci_suspend(struct xhci_hcd *xhci)
760 {
761 	int			rc = 0;
762 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
763 	u32			command;
764 
765 	spin_lock_irq(&xhci->lock);
766 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
767 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
768 	/* step 1: stop endpoint */
769 	/* skipped assuming that port suspend has done */
770 
771 	/* step 2: clear Run/Stop bit */
772 	command = xhci_readl(xhci, &xhci->op_regs->command);
773 	command &= ~CMD_RUN;
774 	xhci_writel(xhci, command, &xhci->op_regs->command);
775 	if (handshake(xhci, &xhci->op_regs->status,
776 		      STS_HALT, STS_HALT, 100*100)) {
777 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
778 		spin_unlock_irq(&xhci->lock);
779 		return -ETIMEDOUT;
780 	}
781 	xhci_clear_command_ring(xhci);
782 
783 	/* step 3: save registers */
784 	xhci_save_registers(xhci);
785 
786 	/* step 4: set CSS flag */
787 	command = xhci_readl(xhci, &xhci->op_regs->command);
788 	command |= CMD_CSS;
789 	xhci_writel(xhci, command, &xhci->op_regs->command);
790 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
791 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
792 		spin_unlock_irq(&xhci->lock);
793 		return -ETIMEDOUT;
794 	}
795 	spin_unlock_irq(&xhci->lock);
796 
797 	/* step 5: remove core well power */
798 	/* synchronize irq when using MSI-X */
799 	xhci_msix_sync_irqs(xhci);
800 
801 	return rc;
802 }
803 
804 /*
805  * start xHC (not bus-specific)
806  *
807  * This is called when the machine transition from S3/S4 mode.
808  *
809  */
810 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
811 {
812 	u32			command, temp = 0;
813 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
814 	struct usb_hcd		*secondary_hcd;
815 	int			retval = 0;
816 
817 	/* Wait a bit if either of the roothubs need to settle from the
818 	 * transition into bus suspend.
819 	 */
820 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
821 			time_before(jiffies,
822 				xhci->bus_state[1].next_statechange))
823 		msleep(100);
824 
825 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
826 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
827 
828 	spin_lock_irq(&xhci->lock);
829 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
830 		hibernated = true;
831 
832 	if (!hibernated) {
833 		/* step 1: restore register */
834 		xhci_restore_registers(xhci);
835 		/* step 2: initialize command ring buffer */
836 		xhci_set_cmd_ring_deq(xhci);
837 		/* step 3: restore state and start state*/
838 		/* step 3: set CRS flag */
839 		command = xhci_readl(xhci, &xhci->op_regs->command);
840 		command |= CMD_CRS;
841 		xhci_writel(xhci, command, &xhci->op_regs->command);
842 		if (handshake(xhci, &xhci->op_regs->status,
843 			      STS_RESTORE, 0, 10*100)) {
844 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
845 			spin_unlock_irq(&xhci->lock);
846 			return -ETIMEDOUT;
847 		}
848 		temp = xhci_readl(xhci, &xhci->op_regs->status);
849 	}
850 
851 	/* If restore operation fails, re-initialize the HC during resume */
852 	if ((temp & STS_SRE) || hibernated) {
853 		/* Let the USB core know _both_ roothubs lost power. */
854 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
855 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
856 
857 		xhci_dbg(xhci, "Stop HCD\n");
858 		xhci_halt(xhci);
859 		xhci_reset(xhci);
860 		spin_unlock_irq(&xhci->lock);
861 		xhci_cleanup_msix(xhci);
862 
863 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
864 		/* Tell the event ring poll function not to reschedule */
865 		xhci->zombie = 1;
866 		del_timer_sync(&xhci->event_ring_timer);
867 #endif
868 
869 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
870 		temp = xhci_readl(xhci, &xhci->op_regs->status);
871 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
872 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
873 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
874 				&xhci->ir_set->irq_pending);
875 		xhci_print_ir_set(xhci, 0);
876 
877 		xhci_dbg(xhci, "cleaning up memory\n");
878 		xhci_mem_cleanup(xhci);
879 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
880 			    xhci_readl(xhci, &xhci->op_regs->status));
881 
882 		/* USB core calls the PCI reinit and start functions twice:
883 		 * first with the primary HCD, and then with the secondary HCD.
884 		 * If we don't do the same, the host will never be started.
885 		 */
886 		if (!usb_hcd_is_primary_hcd(hcd))
887 			secondary_hcd = hcd;
888 		else
889 			secondary_hcd = xhci->shared_hcd;
890 
891 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
892 		retval = xhci_init(hcd->primary_hcd);
893 		if (retval)
894 			return retval;
895 		xhci_dbg(xhci, "Start the primary HCD\n");
896 		retval = xhci_run(hcd->primary_hcd);
897 		if (!retval) {
898 			xhci_dbg(xhci, "Start the secondary HCD\n");
899 			retval = xhci_run(secondary_hcd);
900 		}
901 		hcd->state = HC_STATE_SUSPENDED;
902 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
903 		goto done;
904 	}
905 
906 	/* step 4: set Run/Stop bit */
907 	command = xhci_readl(xhci, &xhci->op_regs->command);
908 	command |= CMD_RUN;
909 	xhci_writel(xhci, command, &xhci->op_regs->command);
910 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
911 		  0, 250 * 1000);
912 
913 	/* step 5: walk topology and initialize portsc,
914 	 * portpmsc and portli
915 	 */
916 	/* this is done in bus_resume */
917 
918 	/* step 6: restart each of the previously
919 	 * Running endpoints by ringing their doorbells
920 	 */
921 
922 	spin_unlock_irq(&xhci->lock);
923 
924  done:
925 	if (retval == 0) {
926 		usb_hcd_resume_root_hub(hcd);
927 		usb_hcd_resume_root_hub(xhci->shared_hcd);
928 	}
929 	return retval;
930 }
931 #endif	/* CONFIG_PM */
932 
933 /*-------------------------------------------------------------------------*/
934 
935 /**
936  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
937  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
938  * value to right shift 1 for the bitmask.
939  *
940  * Index  = (epnum * 2) + direction - 1,
941  * where direction = 0 for OUT, 1 for IN.
942  * For control endpoints, the IN index is used (OUT index is unused), so
943  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
944  */
945 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
946 {
947 	unsigned int index;
948 	if (usb_endpoint_xfer_control(desc))
949 		index = (unsigned int) (usb_endpoint_num(desc)*2);
950 	else
951 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
952 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
953 	return index;
954 }
955 
956 /* Find the flag for this endpoint (for use in the control context).  Use the
957  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
958  * bit 1, etc.
959  */
960 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
961 {
962 	return 1 << (xhci_get_endpoint_index(desc) + 1);
963 }
964 
965 /* Find the flag for this endpoint (for use in the control context).  Use the
966  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
967  * bit 1, etc.
968  */
969 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
970 {
971 	return 1 << (ep_index + 1);
972 }
973 
974 /* Compute the last valid endpoint context index.  Basically, this is the
975  * endpoint index plus one.  For slot contexts with more than valid endpoint,
976  * we find the most significant bit set in the added contexts flags.
977  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
978  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
979  */
980 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
981 {
982 	return fls(added_ctxs) - 1;
983 }
984 
985 /* Returns 1 if the arguments are OK;
986  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
987  */
988 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
989 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
990 		const char *func) {
991 	struct xhci_hcd	*xhci;
992 	struct xhci_virt_device	*virt_dev;
993 
994 	if (!hcd || (check_ep && !ep) || !udev) {
995 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
996 				func);
997 		return -EINVAL;
998 	}
999 	if (!udev->parent) {
1000 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1001 				func);
1002 		return 0;
1003 	}
1004 
1005 	xhci = hcd_to_xhci(hcd);
1006 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1007 		return -ENODEV;
1008 
1009 	if (check_virt_dev) {
1010 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1011 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1012 						"device\n", func);
1013 			return -EINVAL;
1014 		}
1015 
1016 		virt_dev = xhci->devs[udev->slot_id];
1017 		if (virt_dev->udev != udev) {
1018 			printk(KERN_DEBUG "xHCI %s called with udev and "
1019 					  "virt_dev does not match\n", func);
1020 			return -EINVAL;
1021 		}
1022 	}
1023 
1024 	return 1;
1025 }
1026 
1027 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1028 		struct usb_device *udev, struct xhci_command *command,
1029 		bool ctx_change, bool must_succeed);
1030 
1031 /*
1032  * Full speed devices may have a max packet size greater than 8 bytes, but the
1033  * USB core doesn't know that until it reads the first 8 bytes of the
1034  * descriptor.  If the usb_device's max packet size changes after that point,
1035  * we need to issue an evaluate context command and wait on it.
1036  */
1037 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1038 		unsigned int ep_index, struct urb *urb)
1039 {
1040 	struct xhci_container_ctx *in_ctx;
1041 	struct xhci_container_ctx *out_ctx;
1042 	struct xhci_input_control_ctx *ctrl_ctx;
1043 	struct xhci_ep_ctx *ep_ctx;
1044 	int max_packet_size;
1045 	int hw_max_packet_size;
1046 	int ret = 0;
1047 
1048 	out_ctx = xhci->devs[slot_id]->out_ctx;
1049 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1050 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1051 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1052 	if (hw_max_packet_size != max_packet_size) {
1053 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1054 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1055 				max_packet_size);
1056 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1057 				hw_max_packet_size);
1058 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1059 
1060 		/* Set up the modified control endpoint 0 */
1061 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1062 				xhci->devs[slot_id]->out_ctx, ep_index);
1063 		in_ctx = xhci->devs[slot_id]->in_ctx;
1064 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1065 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1066 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1067 
1068 		/* Set up the input context flags for the command */
1069 		/* FIXME: This won't work if a non-default control endpoint
1070 		 * changes max packet sizes.
1071 		 */
1072 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1073 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1074 		ctrl_ctx->drop_flags = 0;
1075 
1076 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1077 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1078 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1079 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1080 
1081 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1082 				true, false);
1083 
1084 		/* Clean up the input context for later use by bandwidth
1085 		 * functions.
1086 		 */
1087 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1088 	}
1089 	return ret;
1090 }
1091 
1092 /*
1093  * non-error returns are a promise to giveback() the urb later
1094  * we drop ownership so next owner (or urb unlink) can get it
1095  */
1096 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1097 {
1098 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1099 	struct xhci_td *buffer;
1100 	unsigned long flags;
1101 	int ret = 0;
1102 	unsigned int slot_id, ep_index;
1103 	struct urb_priv	*urb_priv;
1104 	int size, i;
1105 
1106 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1107 					true, true, __func__) <= 0)
1108 		return -EINVAL;
1109 
1110 	slot_id = urb->dev->slot_id;
1111 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1112 
1113 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1114 		if (!in_interrupt())
1115 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1116 		ret = -ESHUTDOWN;
1117 		goto exit;
1118 	}
1119 
1120 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1121 		size = urb->number_of_packets;
1122 	else
1123 		size = 1;
1124 
1125 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1126 				  size * sizeof(struct xhci_td *), mem_flags);
1127 	if (!urb_priv)
1128 		return -ENOMEM;
1129 
1130 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1131 	if (!buffer) {
1132 		kfree(urb_priv);
1133 		return -ENOMEM;
1134 	}
1135 
1136 	for (i = 0; i < size; i++) {
1137 		urb_priv->td[i] = buffer;
1138 		buffer++;
1139 	}
1140 
1141 	urb_priv->length = size;
1142 	urb_priv->td_cnt = 0;
1143 	urb->hcpriv = urb_priv;
1144 
1145 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1146 		/* Check to see if the max packet size for the default control
1147 		 * endpoint changed during FS device enumeration
1148 		 */
1149 		if (urb->dev->speed == USB_SPEED_FULL) {
1150 			ret = xhci_check_maxpacket(xhci, slot_id,
1151 					ep_index, urb);
1152 			if (ret < 0) {
1153 				xhci_urb_free_priv(xhci, urb_priv);
1154 				urb->hcpriv = NULL;
1155 				return ret;
1156 			}
1157 		}
1158 
1159 		/* We have a spinlock and interrupts disabled, so we must pass
1160 		 * atomic context to this function, which may allocate memory.
1161 		 */
1162 		spin_lock_irqsave(&xhci->lock, flags);
1163 		if (xhci->xhc_state & XHCI_STATE_DYING)
1164 			goto dying;
1165 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1166 				slot_id, ep_index);
1167 		if (ret)
1168 			goto free_priv;
1169 		spin_unlock_irqrestore(&xhci->lock, flags);
1170 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1171 		spin_lock_irqsave(&xhci->lock, flags);
1172 		if (xhci->xhc_state & XHCI_STATE_DYING)
1173 			goto dying;
1174 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1175 				EP_GETTING_STREAMS) {
1176 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1177 					"is transitioning to using streams.\n");
1178 			ret = -EINVAL;
1179 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1180 				EP_GETTING_NO_STREAMS) {
1181 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1182 					"is transitioning to "
1183 					"not having streams.\n");
1184 			ret = -EINVAL;
1185 		} else {
1186 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1187 					slot_id, ep_index);
1188 		}
1189 		if (ret)
1190 			goto free_priv;
1191 		spin_unlock_irqrestore(&xhci->lock, flags);
1192 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1193 		spin_lock_irqsave(&xhci->lock, flags);
1194 		if (xhci->xhc_state & XHCI_STATE_DYING)
1195 			goto dying;
1196 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1197 				slot_id, ep_index);
1198 		if (ret)
1199 			goto free_priv;
1200 		spin_unlock_irqrestore(&xhci->lock, flags);
1201 	} else {
1202 		spin_lock_irqsave(&xhci->lock, flags);
1203 		if (xhci->xhc_state & XHCI_STATE_DYING)
1204 			goto dying;
1205 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1206 				slot_id, ep_index);
1207 		if (ret)
1208 			goto free_priv;
1209 		spin_unlock_irqrestore(&xhci->lock, flags);
1210 	}
1211 exit:
1212 	return ret;
1213 dying:
1214 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1215 			"non-responsive xHCI host.\n",
1216 			urb->ep->desc.bEndpointAddress, urb);
1217 	ret = -ESHUTDOWN;
1218 free_priv:
1219 	xhci_urb_free_priv(xhci, urb_priv);
1220 	urb->hcpriv = NULL;
1221 	spin_unlock_irqrestore(&xhci->lock, flags);
1222 	return ret;
1223 }
1224 
1225 /* Get the right ring for the given URB.
1226  * If the endpoint supports streams, boundary check the URB's stream ID.
1227  * If the endpoint doesn't support streams, return the singular endpoint ring.
1228  */
1229 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1230 		struct urb *urb)
1231 {
1232 	unsigned int slot_id;
1233 	unsigned int ep_index;
1234 	unsigned int stream_id;
1235 	struct xhci_virt_ep *ep;
1236 
1237 	slot_id = urb->dev->slot_id;
1238 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1239 	stream_id = urb->stream_id;
1240 	ep = &xhci->devs[slot_id]->eps[ep_index];
1241 	/* Common case: no streams */
1242 	if (!(ep->ep_state & EP_HAS_STREAMS))
1243 		return ep->ring;
1244 
1245 	if (stream_id == 0) {
1246 		xhci_warn(xhci,
1247 				"WARN: Slot ID %u, ep index %u has streams, "
1248 				"but URB has no stream ID.\n",
1249 				slot_id, ep_index);
1250 		return NULL;
1251 	}
1252 
1253 	if (stream_id < ep->stream_info->num_streams)
1254 		return ep->stream_info->stream_rings[stream_id];
1255 
1256 	xhci_warn(xhci,
1257 			"WARN: Slot ID %u, ep index %u has "
1258 			"stream IDs 1 to %u allocated, "
1259 			"but stream ID %u is requested.\n",
1260 			slot_id, ep_index,
1261 			ep->stream_info->num_streams - 1,
1262 			stream_id);
1263 	return NULL;
1264 }
1265 
1266 /*
1267  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1268  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1269  * should pick up where it left off in the TD, unless a Set Transfer Ring
1270  * Dequeue Pointer is issued.
1271  *
1272  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1273  * the ring.  Since the ring is a contiguous structure, they can't be physically
1274  * removed.  Instead, there are two options:
1275  *
1276  *  1) If the HC is in the middle of processing the URB to be canceled, we
1277  *     simply move the ring's dequeue pointer past those TRBs using the Set
1278  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1279  *     when drivers timeout on the last submitted URB and attempt to cancel.
1280  *
1281  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1282  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1283  *     HC will need to invalidate the any TRBs it has cached after the stop
1284  *     endpoint command, as noted in the xHCI 0.95 errata.
1285  *
1286  *  3) The TD may have completed by the time the Stop Endpoint Command
1287  *     completes, so software needs to handle that case too.
1288  *
1289  * This function should protect against the TD enqueueing code ringing the
1290  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1291  * It also needs to account for multiple cancellations on happening at the same
1292  * time for the same endpoint.
1293  *
1294  * Note that this function can be called in any context, or so says
1295  * usb_hcd_unlink_urb()
1296  */
1297 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1298 {
1299 	unsigned long flags;
1300 	int ret, i;
1301 	u32 temp;
1302 	struct xhci_hcd *xhci;
1303 	struct urb_priv	*urb_priv;
1304 	struct xhci_td *td;
1305 	unsigned int ep_index;
1306 	struct xhci_ring *ep_ring;
1307 	struct xhci_virt_ep *ep;
1308 
1309 	xhci = hcd_to_xhci(hcd);
1310 	spin_lock_irqsave(&xhci->lock, flags);
1311 	/* Make sure the URB hasn't completed or been unlinked already */
1312 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1313 	if (ret || !urb->hcpriv)
1314 		goto done;
1315 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1316 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1317 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1318 		urb_priv = urb->hcpriv;
1319 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1320 			td = urb_priv->td[i];
1321 			if (!list_empty(&td->td_list))
1322 				list_del_init(&td->td_list);
1323 			if (!list_empty(&td->cancelled_td_list))
1324 				list_del_init(&td->cancelled_td_list);
1325 		}
1326 
1327 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1328 		spin_unlock_irqrestore(&xhci->lock, flags);
1329 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1330 		xhci_urb_free_priv(xhci, urb_priv);
1331 		return ret;
1332 	}
1333 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1334 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1335 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1336 				"non-responsive xHCI host.\n",
1337 				urb->ep->desc.bEndpointAddress, urb);
1338 		/* Let the stop endpoint command watchdog timer (which set this
1339 		 * state) finish cleaning up the endpoint TD lists.  We must
1340 		 * have caught it in the middle of dropping a lock and giving
1341 		 * back an URB.
1342 		 */
1343 		goto done;
1344 	}
1345 
1346 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1348 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1349 	if (!ep_ring) {
1350 		ret = -EINVAL;
1351 		goto done;
1352 	}
1353 
1354 	urb_priv = urb->hcpriv;
1355 	i = urb_priv->td_cnt;
1356 	if (i < urb_priv->length)
1357 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1358 				"starting at offset 0x%llx\n",
1359 				urb, urb->dev->devpath,
1360 				urb->ep->desc.bEndpointAddress,
1361 				(unsigned long long) xhci_trb_virt_to_dma(
1362 					urb_priv->td[i]->start_seg,
1363 					urb_priv->td[i]->first_trb));
1364 
1365 	for (; i < urb_priv->length; i++) {
1366 		td = urb_priv->td[i];
1367 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1368 	}
1369 
1370 	/* Queue a stop endpoint command, but only if this is
1371 	 * the first cancellation to be handled.
1372 	 */
1373 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1374 		ep->ep_state |= EP_HALT_PENDING;
1375 		ep->stop_cmds_pending++;
1376 		ep->stop_cmd_timer.expires = jiffies +
1377 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1378 		add_timer(&ep->stop_cmd_timer);
1379 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1380 		xhci_ring_cmd_db(xhci);
1381 	}
1382 done:
1383 	spin_unlock_irqrestore(&xhci->lock, flags);
1384 	return ret;
1385 }
1386 
1387 /* Drop an endpoint from a new bandwidth configuration for this device.
1388  * Only one call to this function is allowed per endpoint before
1389  * check_bandwidth() or reset_bandwidth() must be called.
1390  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1391  * add the endpoint to the schedule with possibly new parameters denoted by a
1392  * different endpoint descriptor in usb_host_endpoint.
1393  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1394  * not allowed.
1395  *
1396  * The USB core will not allow URBs to be queued to an endpoint that is being
1397  * disabled, so there's no need for mutual exclusion to protect
1398  * the xhci->devs[slot_id] structure.
1399  */
1400 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1401 		struct usb_host_endpoint *ep)
1402 {
1403 	struct xhci_hcd *xhci;
1404 	struct xhci_container_ctx *in_ctx, *out_ctx;
1405 	struct xhci_input_control_ctx *ctrl_ctx;
1406 	struct xhci_slot_ctx *slot_ctx;
1407 	unsigned int last_ctx;
1408 	unsigned int ep_index;
1409 	struct xhci_ep_ctx *ep_ctx;
1410 	u32 drop_flag;
1411 	u32 new_add_flags, new_drop_flags, new_slot_info;
1412 	int ret;
1413 
1414 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1415 	if (ret <= 0)
1416 		return ret;
1417 	xhci = hcd_to_xhci(hcd);
1418 	if (xhci->xhc_state & XHCI_STATE_DYING)
1419 		return -ENODEV;
1420 
1421 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1422 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1423 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1424 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1425 				__func__, drop_flag);
1426 		return 0;
1427 	}
1428 
1429 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1430 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1431 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1432 	ep_index = xhci_get_endpoint_index(&ep->desc);
1433 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1434 	/* If the HC already knows the endpoint is disabled,
1435 	 * or the HCD has noted it is disabled, ignore this request
1436 	 */
1437 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1438 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1439 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1440 	    xhci_get_endpoint_flag(&ep->desc)) {
1441 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1442 				__func__, ep);
1443 		return 0;
1444 	}
1445 
1446 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1447 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1448 
1449 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1450 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1451 
1452 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1453 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1454 	/* Update the last valid endpoint context, if we deleted the last one */
1455 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1456 	    LAST_CTX(last_ctx)) {
1457 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1458 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1459 	}
1460 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1461 
1462 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1463 
1464 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1465 			(unsigned int) ep->desc.bEndpointAddress,
1466 			udev->slot_id,
1467 			(unsigned int) new_drop_flags,
1468 			(unsigned int) new_add_flags,
1469 			(unsigned int) new_slot_info);
1470 	return 0;
1471 }
1472 
1473 /* Add an endpoint to a new possible bandwidth configuration for this device.
1474  * Only one call to this function is allowed per endpoint before
1475  * check_bandwidth() or reset_bandwidth() must be called.
1476  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1477  * add the endpoint to the schedule with possibly new parameters denoted by a
1478  * different endpoint descriptor in usb_host_endpoint.
1479  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1480  * not allowed.
1481  *
1482  * The USB core will not allow URBs to be queued to an endpoint until the
1483  * configuration or alt setting is installed in the device, so there's no need
1484  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1485  */
1486 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1487 		struct usb_host_endpoint *ep)
1488 {
1489 	struct xhci_hcd *xhci;
1490 	struct xhci_container_ctx *in_ctx, *out_ctx;
1491 	unsigned int ep_index;
1492 	struct xhci_ep_ctx *ep_ctx;
1493 	struct xhci_slot_ctx *slot_ctx;
1494 	struct xhci_input_control_ctx *ctrl_ctx;
1495 	u32 added_ctxs;
1496 	unsigned int last_ctx;
1497 	u32 new_add_flags, new_drop_flags, new_slot_info;
1498 	struct xhci_virt_device *virt_dev;
1499 	int ret = 0;
1500 
1501 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1502 	if (ret <= 0) {
1503 		/* So we won't queue a reset ep command for a root hub */
1504 		ep->hcpriv = NULL;
1505 		return ret;
1506 	}
1507 	xhci = hcd_to_xhci(hcd);
1508 	if (xhci->xhc_state & XHCI_STATE_DYING)
1509 		return -ENODEV;
1510 
1511 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1512 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1513 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1514 		/* FIXME when we have to issue an evaluate endpoint command to
1515 		 * deal with ep0 max packet size changing once we get the
1516 		 * descriptors
1517 		 */
1518 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1519 				__func__, added_ctxs);
1520 		return 0;
1521 	}
1522 
1523 	virt_dev = xhci->devs[udev->slot_id];
1524 	in_ctx = virt_dev->in_ctx;
1525 	out_ctx = virt_dev->out_ctx;
1526 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1527 	ep_index = xhci_get_endpoint_index(&ep->desc);
1528 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1529 
1530 	/* If this endpoint is already in use, and the upper layers are trying
1531 	 * to add it again without dropping it, reject the addition.
1532 	 */
1533 	if (virt_dev->eps[ep_index].ring &&
1534 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1535 				xhci_get_endpoint_flag(&ep->desc))) {
1536 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1537 				"without dropping it.\n",
1538 				(unsigned int) ep->desc.bEndpointAddress);
1539 		return -EINVAL;
1540 	}
1541 
1542 	/* If the HCD has already noted the endpoint is enabled,
1543 	 * ignore this request.
1544 	 */
1545 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1546 	    xhci_get_endpoint_flag(&ep->desc)) {
1547 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1548 				__func__, ep);
1549 		return 0;
1550 	}
1551 
1552 	/*
1553 	 * Configuration and alternate setting changes must be done in
1554 	 * process context, not interrupt context (or so documenation
1555 	 * for usb_set_interface() and usb_set_configuration() claim).
1556 	 */
1557 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1558 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1559 				__func__, ep->desc.bEndpointAddress);
1560 		return -ENOMEM;
1561 	}
1562 
1563 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1564 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1565 
1566 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1567 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1568 	 * this re-adds a new state for the endpoint from the new endpoint
1569 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1570 	 * drop flags alone.
1571 	 */
1572 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1573 
1574 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1575 	/* Update the last valid endpoint context, if we just added one past */
1576 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1577 	    LAST_CTX(last_ctx)) {
1578 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1579 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1580 	}
1581 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1582 
1583 	/* Store the usb_device pointer for later use */
1584 	ep->hcpriv = udev;
1585 
1586 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1587 			(unsigned int) ep->desc.bEndpointAddress,
1588 			udev->slot_id,
1589 			(unsigned int) new_drop_flags,
1590 			(unsigned int) new_add_flags,
1591 			(unsigned int) new_slot_info);
1592 	return 0;
1593 }
1594 
1595 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1596 {
1597 	struct xhci_input_control_ctx *ctrl_ctx;
1598 	struct xhci_ep_ctx *ep_ctx;
1599 	struct xhci_slot_ctx *slot_ctx;
1600 	int i;
1601 
1602 	/* When a device's add flag and drop flag are zero, any subsequent
1603 	 * configure endpoint command will leave that endpoint's state
1604 	 * untouched.  Make sure we don't leave any old state in the input
1605 	 * endpoint contexts.
1606 	 */
1607 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1608 	ctrl_ctx->drop_flags = 0;
1609 	ctrl_ctx->add_flags = 0;
1610 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1611 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1612 	/* Endpoint 0 is always valid */
1613 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1614 	for (i = 1; i < 31; ++i) {
1615 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1616 		ep_ctx->ep_info = 0;
1617 		ep_ctx->ep_info2 = 0;
1618 		ep_ctx->deq = 0;
1619 		ep_ctx->tx_info = 0;
1620 	}
1621 }
1622 
1623 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1624 		struct usb_device *udev, u32 *cmd_status)
1625 {
1626 	int ret;
1627 
1628 	switch (*cmd_status) {
1629 	case COMP_ENOMEM:
1630 		dev_warn(&udev->dev, "Not enough host controller resources "
1631 				"for new device state.\n");
1632 		ret = -ENOMEM;
1633 		/* FIXME: can we allocate more resources for the HC? */
1634 		break;
1635 	case COMP_BW_ERR:
1636 	case COMP_2ND_BW_ERR:
1637 		dev_warn(&udev->dev, "Not enough bandwidth "
1638 				"for new device state.\n");
1639 		ret = -ENOSPC;
1640 		/* FIXME: can we go back to the old state? */
1641 		break;
1642 	case COMP_TRB_ERR:
1643 		/* the HCD set up something wrong */
1644 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1645 				"add flag = 1, "
1646 				"and endpoint is not disabled.\n");
1647 		ret = -EINVAL;
1648 		break;
1649 	case COMP_DEV_ERR:
1650 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1651 				"configure command.\n");
1652 		ret = -ENODEV;
1653 		break;
1654 	case COMP_SUCCESS:
1655 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1656 		ret = 0;
1657 		break;
1658 	default:
1659 		xhci_err(xhci, "ERROR: unexpected command completion "
1660 				"code 0x%x.\n", *cmd_status);
1661 		ret = -EINVAL;
1662 		break;
1663 	}
1664 	return ret;
1665 }
1666 
1667 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1668 		struct usb_device *udev, u32 *cmd_status)
1669 {
1670 	int ret;
1671 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1672 
1673 	switch (*cmd_status) {
1674 	case COMP_EINVAL:
1675 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1676 				"context command.\n");
1677 		ret = -EINVAL;
1678 		break;
1679 	case COMP_EBADSLT:
1680 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1681 				"evaluate context command.\n");
1682 	case COMP_CTX_STATE:
1683 		dev_warn(&udev->dev, "WARN: invalid context state for "
1684 				"evaluate context command.\n");
1685 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1686 		ret = -EINVAL;
1687 		break;
1688 	case COMP_DEV_ERR:
1689 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1690 				"context command.\n");
1691 		ret = -ENODEV;
1692 		break;
1693 	case COMP_MEL_ERR:
1694 		/* Max Exit Latency too large error */
1695 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1696 		ret = -EINVAL;
1697 		break;
1698 	case COMP_SUCCESS:
1699 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1700 		ret = 0;
1701 		break;
1702 	default:
1703 		xhci_err(xhci, "ERROR: unexpected command completion "
1704 				"code 0x%x.\n", *cmd_status);
1705 		ret = -EINVAL;
1706 		break;
1707 	}
1708 	return ret;
1709 }
1710 
1711 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1712 		struct xhci_container_ctx *in_ctx)
1713 {
1714 	struct xhci_input_control_ctx *ctrl_ctx;
1715 	u32 valid_add_flags;
1716 	u32 valid_drop_flags;
1717 
1718 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1719 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1720 	 * (bit 1).  The default control endpoint is added during the Address
1721 	 * Device command and is never removed until the slot is disabled.
1722 	 */
1723 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1724 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1725 
1726 	/* Use hweight32 to count the number of ones in the add flags, or
1727 	 * number of endpoints added.  Don't count endpoints that are changed
1728 	 * (both added and dropped).
1729 	 */
1730 	return hweight32(valid_add_flags) -
1731 		hweight32(valid_add_flags & valid_drop_flags);
1732 }
1733 
1734 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1735 		struct xhci_container_ctx *in_ctx)
1736 {
1737 	struct xhci_input_control_ctx *ctrl_ctx;
1738 	u32 valid_add_flags;
1739 	u32 valid_drop_flags;
1740 
1741 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1742 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1743 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1744 
1745 	return hweight32(valid_drop_flags) -
1746 		hweight32(valid_add_flags & valid_drop_flags);
1747 }
1748 
1749 /*
1750  * We need to reserve the new number of endpoints before the configure endpoint
1751  * command completes.  We can't subtract the dropped endpoints from the number
1752  * of active endpoints until the command completes because we can oversubscribe
1753  * the host in this case:
1754  *
1755  *  - the first configure endpoint command drops more endpoints than it adds
1756  *  - a second configure endpoint command that adds more endpoints is queued
1757  *  - the first configure endpoint command fails, so the config is unchanged
1758  *  - the second command may succeed, even though there isn't enough resources
1759  *
1760  * Must be called with xhci->lock held.
1761  */
1762 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1763 		struct xhci_container_ctx *in_ctx)
1764 {
1765 	u32 added_eps;
1766 
1767 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1768 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1769 		xhci_dbg(xhci, "Not enough ep ctxs: "
1770 				"%u active, need to add %u, limit is %u.\n",
1771 				xhci->num_active_eps, added_eps,
1772 				xhci->limit_active_eps);
1773 		return -ENOMEM;
1774 	}
1775 	xhci->num_active_eps += added_eps;
1776 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1777 			xhci->num_active_eps);
1778 	return 0;
1779 }
1780 
1781 /*
1782  * The configure endpoint was failed by the xHC for some other reason, so we
1783  * need to revert the resources that failed configuration would have used.
1784  *
1785  * Must be called with xhci->lock held.
1786  */
1787 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1788 		struct xhci_container_ctx *in_ctx)
1789 {
1790 	u32 num_failed_eps;
1791 
1792 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1793 	xhci->num_active_eps -= num_failed_eps;
1794 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1795 			num_failed_eps,
1796 			xhci->num_active_eps);
1797 }
1798 
1799 /*
1800  * Now that the command has completed, clean up the active endpoint count by
1801  * subtracting out the endpoints that were dropped (but not changed).
1802  *
1803  * Must be called with xhci->lock held.
1804  */
1805 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1806 		struct xhci_container_ctx *in_ctx)
1807 {
1808 	u32 num_dropped_eps;
1809 
1810 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1811 	xhci->num_active_eps -= num_dropped_eps;
1812 	if (num_dropped_eps)
1813 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1814 				num_dropped_eps,
1815 				xhci->num_active_eps);
1816 }
1817 
1818 unsigned int xhci_get_block_size(struct usb_device *udev)
1819 {
1820 	switch (udev->speed) {
1821 	case USB_SPEED_LOW:
1822 	case USB_SPEED_FULL:
1823 		return FS_BLOCK;
1824 	case USB_SPEED_HIGH:
1825 		return HS_BLOCK;
1826 	case USB_SPEED_SUPER:
1827 		return SS_BLOCK;
1828 	case USB_SPEED_UNKNOWN:
1829 	case USB_SPEED_WIRELESS:
1830 	default:
1831 		/* Should never happen */
1832 		return 1;
1833 	}
1834 }
1835 
1836 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1837 {
1838 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1839 		return LS_OVERHEAD;
1840 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1841 		return FS_OVERHEAD;
1842 	return HS_OVERHEAD;
1843 }
1844 
1845 /* If we are changing a LS/FS device under a HS hub,
1846  * make sure (if we are activating a new TT) that the HS bus has enough
1847  * bandwidth for this new TT.
1848  */
1849 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1850 		struct xhci_virt_device *virt_dev,
1851 		int old_active_eps)
1852 {
1853 	struct xhci_interval_bw_table *bw_table;
1854 	struct xhci_tt_bw_info *tt_info;
1855 
1856 	/* Find the bandwidth table for the root port this TT is attached to. */
1857 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1858 	tt_info = virt_dev->tt_info;
1859 	/* If this TT already had active endpoints, the bandwidth for this TT
1860 	 * has already been added.  Removing all periodic endpoints (and thus
1861 	 * making the TT enactive) will only decrease the bandwidth used.
1862 	 */
1863 	if (old_active_eps)
1864 		return 0;
1865 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1866 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1867 			return -ENOMEM;
1868 		return 0;
1869 	}
1870 	/* Not sure why we would have no new active endpoints...
1871 	 *
1872 	 * Maybe because of an Evaluate Context change for a hub update or a
1873 	 * control endpoint 0 max packet size change?
1874 	 * FIXME: skip the bandwidth calculation in that case.
1875 	 */
1876 	return 0;
1877 }
1878 
1879 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1880 		struct xhci_virt_device *virt_dev)
1881 {
1882 	unsigned int bw_reserved;
1883 
1884 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1885 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1886 		return -ENOMEM;
1887 
1888 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1889 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1890 		return -ENOMEM;
1891 
1892 	return 0;
1893 }
1894 
1895 /*
1896  * This algorithm is a very conservative estimate of the worst-case scheduling
1897  * scenario for any one interval.  The hardware dynamically schedules the
1898  * packets, so we can't tell which microframe could be the limiting factor in
1899  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1900  *
1901  * Obviously, we can't solve an NP complete problem to find the minimum worst
1902  * case scenario.  Instead, we come up with an estimate that is no less than
1903  * the worst case bandwidth used for any one microframe, but may be an
1904  * over-estimate.
1905  *
1906  * We walk the requirements for each endpoint by interval, starting with the
1907  * smallest interval, and place packets in the schedule where there is only one
1908  * possible way to schedule packets for that interval.  In order to simplify
1909  * this algorithm, we record the largest max packet size for each interval, and
1910  * assume all packets will be that size.
1911  *
1912  * For interval 0, we obviously must schedule all packets for each interval.
1913  * The bandwidth for interval 0 is just the amount of data to be transmitted
1914  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1915  * the number of packets).
1916  *
1917  * For interval 1, we have two possible microframes to schedule those packets
1918  * in.  For this algorithm, if we can schedule the same number of packets for
1919  * each possible scheduling opportunity (each microframe), we will do so.  The
1920  * remaining number of packets will be saved to be transmitted in the gaps in
1921  * the next interval's scheduling sequence.
1922  *
1923  * As we move those remaining packets to be scheduled with interval 2 packets,
1924  * we have to double the number of remaining packets to transmit.  This is
1925  * because the intervals are actually powers of 2, and we would be transmitting
1926  * the previous interval's packets twice in this interval.  We also have to be
1927  * sure that when we look at the largest max packet size for this interval, we
1928  * also look at the largest max packet size for the remaining packets and take
1929  * the greater of the two.
1930  *
1931  * The algorithm continues to evenly distribute packets in each scheduling
1932  * opportunity, and push the remaining packets out, until we get to the last
1933  * interval.  Then those packets and their associated overhead are just added
1934  * to the bandwidth used.
1935  */
1936 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1937 		struct xhci_virt_device *virt_dev,
1938 		int old_active_eps)
1939 {
1940 	unsigned int bw_reserved;
1941 	unsigned int max_bandwidth;
1942 	unsigned int bw_used;
1943 	unsigned int block_size;
1944 	struct xhci_interval_bw_table *bw_table;
1945 	unsigned int packet_size = 0;
1946 	unsigned int overhead = 0;
1947 	unsigned int packets_transmitted = 0;
1948 	unsigned int packets_remaining = 0;
1949 	unsigned int i;
1950 
1951 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1952 		return xhci_check_ss_bw(xhci, virt_dev);
1953 
1954 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1955 		max_bandwidth = HS_BW_LIMIT;
1956 		/* Convert percent of bus BW reserved to blocks reserved */
1957 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1958 	} else {
1959 		max_bandwidth = FS_BW_LIMIT;
1960 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1961 	}
1962 
1963 	bw_table = virt_dev->bw_table;
1964 	/* We need to translate the max packet size and max ESIT payloads into
1965 	 * the units the hardware uses.
1966 	 */
1967 	block_size = xhci_get_block_size(virt_dev->udev);
1968 
1969 	/* If we are manipulating a LS/FS device under a HS hub, double check
1970 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1971 	 */
1972 	if (virt_dev->tt_info) {
1973 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1974 				virt_dev->real_port);
1975 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1976 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1977 					"newly activated TT.\n");
1978 			return -ENOMEM;
1979 		}
1980 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1981 				virt_dev->tt_info->slot_id,
1982 				virt_dev->tt_info->ttport);
1983 	} else {
1984 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1985 				virt_dev->real_port);
1986 	}
1987 
1988 	/* Add in how much bandwidth will be used for interval zero, or the
1989 	 * rounded max ESIT payload + number of packets * largest overhead.
1990 	 */
1991 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1992 		bw_table->interval_bw[0].num_packets *
1993 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1994 
1995 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1996 		unsigned int bw_added;
1997 		unsigned int largest_mps;
1998 		unsigned int interval_overhead;
1999 
2000 		/*
2001 		 * How many packets could we transmit in this interval?
2002 		 * If packets didn't fit in the previous interval, we will need
2003 		 * to transmit that many packets twice within this interval.
2004 		 */
2005 		packets_remaining = 2 * packets_remaining +
2006 			bw_table->interval_bw[i].num_packets;
2007 
2008 		/* Find the largest max packet size of this or the previous
2009 		 * interval.
2010 		 */
2011 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2012 			largest_mps = 0;
2013 		else {
2014 			struct xhci_virt_ep *virt_ep;
2015 			struct list_head *ep_entry;
2016 
2017 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2018 			virt_ep = list_entry(ep_entry,
2019 					struct xhci_virt_ep, bw_endpoint_list);
2020 			/* Convert to blocks, rounding up */
2021 			largest_mps = DIV_ROUND_UP(
2022 					virt_ep->bw_info.max_packet_size,
2023 					block_size);
2024 		}
2025 		if (largest_mps > packet_size)
2026 			packet_size = largest_mps;
2027 
2028 		/* Use the larger overhead of this or the previous interval. */
2029 		interval_overhead = xhci_get_largest_overhead(
2030 				&bw_table->interval_bw[i]);
2031 		if (interval_overhead > overhead)
2032 			overhead = interval_overhead;
2033 
2034 		/* How many packets can we evenly distribute across
2035 		 * (1 << (i + 1)) possible scheduling opportunities?
2036 		 */
2037 		packets_transmitted = packets_remaining >> (i + 1);
2038 
2039 		/* Add in the bandwidth used for those scheduled packets */
2040 		bw_added = packets_transmitted * (overhead + packet_size);
2041 
2042 		/* How many packets do we have remaining to transmit? */
2043 		packets_remaining = packets_remaining % (1 << (i + 1));
2044 
2045 		/* What largest max packet size should those packets have? */
2046 		/* If we've transmitted all packets, don't carry over the
2047 		 * largest packet size.
2048 		 */
2049 		if (packets_remaining == 0) {
2050 			packet_size = 0;
2051 			overhead = 0;
2052 		} else if (packets_transmitted > 0) {
2053 			/* Otherwise if we do have remaining packets, and we've
2054 			 * scheduled some packets in this interval, take the
2055 			 * largest max packet size from endpoints with this
2056 			 * interval.
2057 			 */
2058 			packet_size = largest_mps;
2059 			overhead = interval_overhead;
2060 		}
2061 		/* Otherwise carry over packet_size and overhead from the last
2062 		 * time we had a remainder.
2063 		 */
2064 		bw_used += bw_added;
2065 		if (bw_used > max_bandwidth) {
2066 			xhci_warn(xhci, "Not enough bandwidth. "
2067 					"Proposed: %u, Max: %u\n",
2068 				bw_used, max_bandwidth);
2069 			return -ENOMEM;
2070 		}
2071 	}
2072 	/*
2073 	 * Ok, we know we have some packets left over after even-handedly
2074 	 * scheduling interval 15.  We don't know which microframes they will
2075 	 * fit into, so we over-schedule and say they will be scheduled every
2076 	 * microframe.
2077 	 */
2078 	if (packets_remaining > 0)
2079 		bw_used += overhead + packet_size;
2080 
2081 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2082 		unsigned int port_index = virt_dev->real_port - 1;
2083 
2084 		/* OK, we're manipulating a HS device attached to a
2085 		 * root port bandwidth domain.  Include the number of active TTs
2086 		 * in the bandwidth used.
2087 		 */
2088 		bw_used += TT_HS_OVERHEAD *
2089 			xhci->rh_bw[port_index].num_active_tts;
2090 	}
2091 
2092 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2093 		"Available: %u " "percent\n",
2094 		bw_used, max_bandwidth, bw_reserved,
2095 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2096 		max_bandwidth);
2097 
2098 	bw_used += bw_reserved;
2099 	if (bw_used > max_bandwidth) {
2100 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2101 				bw_used, max_bandwidth);
2102 		return -ENOMEM;
2103 	}
2104 
2105 	bw_table->bw_used = bw_used;
2106 	return 0;
2107 }
2108 
2109 static bool xhci_is_async_ep(unsigned int ep_type)
2110 {
2111 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2112 					ep_type != ISOC_IN_EP &&
2113 					ep_type != INT_IN_EP);
2114 }
2115 
2116 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2117 {
2118 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2119 }
2120 
2121 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2122 {
2123 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2124 
2125 	if (ep_bw->ep_interval == 0)
2126 		return SS_OVERHEAD_BURST +
2127 			(ep_bw->mult * ep_bw->num_packets *
2128 					(SS_OVERHEAD + mps));
2129 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2130 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2131 				1 << ep_bw->ep_interval);
2132 
2133 }
2134 
2135 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2136 		struct xhci_bw_info *ep_bw,
2137 		struct xhci_interval_bw_table *bw_table,
2138 		struct usb_device *udev,
2139 		struct xhci_virt_ep *virt_ep,
2140 		struct xhci_tt_bw_info *tt_info)
2141 {
2142 	struct xhci_interval_bw	*interval_bw;
2143 	int normalized_interval;
2144 
2145 	if (xhci_is_async_ep(ep_bw->type))
2146 		return;
2147 
2148 	if (udev->speed == USB_SPEED_SUPER) {
2149 		if (xhci_is_sync_in_ep(ep_bw->type))
2150 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2151 				xhci_get_ss_bw_consumed(ep_bw);
2152 		else
2153 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2154 				xhci_get_ss_bw_consumed(ep_bw);
2155 		return;
2156 	}
2157 
2158 	/* SuperSpeed endpoints never get added to intervals in the table, so
2159 	 * this check is only valid for HS/FS/LS devices.
2160 	 */
2161 	if (list_empty(&virt_ep->bw_endpoint_list))
2162 		return;
2163 	/* For LS/FS devices, we need to translate the interval expressed in
2164 	 * microframes to frames.
2165 	 */
2166 	if (udev->speed == USB_SPEED_HIGH)
2167 		normalized_interval = ep_bw->ep_interval;
2168 	else
2169 		normalized_interval = ep_bw->ep_interval - 3;
2170 
2171 	if (normalized_interval == 0)
2172 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2173 	interval_bw = &bw_table->interval_bw[normalized_interval];
2174 	interval_bw->num_packets -= ep_bw->num_packets;
2175 	switch (udev->speed) {
2176 	case USB_SPEED_LOW:
2177 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2178 		break;
2179 	case USB_SPEED_FULL:
2180 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2181 		break;
2182 	case USB_SPEED_HIGH:
2183 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2184 		break;
2185 	case USB_SPEED_SUPER:
2186 	case USB_SPEED_UNKNOWN:
2187 	case USB_SPEED_WIRELESS:
2188 		/* Should never happen because only LS/FS/HS endpoints will get
2189 		 * added to the endpoint list.
2190 		 */
2191 		return;
2192 	}
2193 	if (tt_info)
2194 		tt_info->active_eps -= 1;
2195 	list_del_init(&virt_ep->bw_endpoint_list);
2196 }
2197 
2198 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2199 		struct xhci_bw_info *ep_bw,
2200 		struct xhci_interval_bw_table *bw_table,
2201 		struct usb_device *udev,
2202 		struct xhci_virt_ep *virt_ep,
2203 		struct xhci_tt_bw_info *tt_info)
2204 {
2205 	struct xhci_interval_bw	*interval_bw;
2206 	struct xhci_virt_ep *smaller_ep;
2207 	int normalized_interval;
2208 
2209 	if (xhci_is_async_ep(ep_bw->type))
2210 		return;
2211 
2212 	if (udev->speed == USB_SPEED_SUPER) {
2213 		if (xhci_is_sync_in_ep(ep_bw->type))
2214 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2215 				xhci_get_ss_bw_consumed(ep_bw);
2216 		else
2217 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2218 				xhci_get_ss_bw_consumed(ep_bw);
2219 		return;
2220 	}
2221 
2222 	/* For LS/FS devices, we need to translate the interval expressed in
2223 	 * microframes to frames.
2224 	 */
2225 	if (udev->speed == USB_SPEED_HIGH)
2226 		normalized_interval = ep_bw->ep_interval;
2227 	else
2228 		normalized_interval = ep_bw->ep_interval - 3;
2229 
2230 	if (normalized_interval == 0)
2231 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2232 	interval_bw = &bw_table->interval_bw[normalized_interval];
2233 	interval_bw->num_packets += ep_bw->num_packets;
2234 	switch (udev->speed) {
2235 	case USB_SPEED_LOW:
2236 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2237 		break;
2238 	case USB_SPEED_FULL:
2239 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2240 		break;
2241 	case USB_SPEED_HIGH:
2242 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2243 		break;
2244 	case USB_SPEED_SUPER:
2245 	case USB_SPEED_UNKNOWN:
2246 	case USB_SPEED_WIRELESS:
2247 		/* Should never happen because only LS/FS/HS endpoints will get
2248 		 * added to the endpoint list.
2249 		 */
2250 		return;
2251 	}
2252 
2253 	if (tt_info)
2254 		tt_info->active_eps += 1;
2255 	/* Insert the endpoint into the list, largest max packet size first. */
2256 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2257 			bw_endpoint_list) {
2258 		if (ep_bw->max_packet_size >=
2259 				smaller_ep->bw_info.max_packet_size) {
2260 			/* Add the new ep before the smaller endpoint */
2261 			list_add_tail(&virt_ep->bw_endpoint_list,
2262 					&smaller_ep->bw_endpoint_list);
2263 			return;
2264 		}
2265 	}
2266 	/* Add the new endpoint at the end of the list. */
2267 	list_add_tail(&virt_ep->bw_endpoint_list,
2268 			&interval_bw->endpoints);
2269 }
2270 
2271 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2272 		struct xhci_virt_device *virt_dev,
2273 		int old_active_eps)
2274 {
2275 	struct xhci_root_port_bw_info *rh_bw_info;
2276 	if (!virt_dev->tt_info)
2277 		return;
2278 
2279 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2280 	if (old_active_eps == 0 &&
2281 				virt_dev->tt_info->active_eps != 0) {
2282 		rh_bw_info->num_active_tts += 1;
2283 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2284 	} else if (old_active_eps != 0 &&
2285 				virt_dev->tt_info->active_eps == 0) {
2286 		rh_bw_info->num_active_tts -= 1;
2287 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2288 	}
2289 }
2290 
2291 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2292 		struct xhci_virt_device *virt_dev,
2293 		struct xhci_container_ctx *in_ctx)
2294 {
2295 	struct xhci_bw_info ep_bw_info[31];
2296 	int i;
2297 	struct xhci_input_control_ctx *ctrl_ctx;
2298 	int old_active_eps = 0;
2299 
2300 	if (virt_dev->tt_info)
2301 		old_active_eps = virt_dev->tt_info->active_eps;
2302 
2303 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2304 
2305 	for (i = 0; i < 31; i++) {
2306 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2307 			continue;
2308 
2309 		/* Make a copy of the BW info in case we need to revert this */
2310 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2311 				sizeof(ep_bw_info[i]));
2312 		/* Drop the endpoint from the interval table if the endpoint is
2313 		 * being dropped or changed.
2314 		 */
2315 		if (EP_IS_DROPPED(ctrl_ctx, i))
2316 			xhci_drop_ep_from_interval_table(xhci,
2317 					&virt_dev->eps[i].bw_info,
2318 					virt_dev->bw_table,
2319 					virt_dev->udev,
2320 					&virt_dev->eps[i],
2321 					virt_dev->tt_info);
2322 	}
2323 	/* Overwrite the information stored in the endpoints' bw_info */
2324 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2325 	for (i = 0; i < 31; i++) {
2326 		/* Add any changed or added endpoints to the interval table */
2327 		if (EP_IS_ADDED(ctrl_ctx, i))
2328 			xhci_add_ep_to_interval_table(xhci,
2329 					&virt_dev->eps[i].bw_info,
2330 					virt_dev->bw_table,
2331 					virt_dev->udev,
2332 					&virt_dev->eps[i],
2333 					virt_dev->tt_info);
2334 	}
2335 
2336 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2337 		/* Ok, this fits in the bandwidth we have.
2338 		 * Update the number of active TTs.
2339 		 */
2340 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2341 		return 0;
2342 	}
2343 
2344 	/* We don't have enough bandwidth for this, revert the stored info. */
2345 	for (i = 0; i < 31; i++) {
2346 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2347 			continue;
2348 
2349 		/* Drop the new copies of any added or changed endpoints from
2350 		 * the interval table.
2351 		 */
2352 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2353 			xhci_drop_ep_from_interval_table(xhci,
2354 					&virt_dev->eps[i].bw_info,
2355 					virt_dev->bw_table,
2356 					virt_dev->udev,
2357 					&virt_dev->eps[i],
2358 					virt_dev->tt_info);
2359 		}
2360 		/* Revert the endpoint back to its old information */
2361 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2362 				sizeof(ep_bw_info[i]));
2363 		/* Add any changed or dropped endpoints back into the table */
2364 		if (EP_IS_DROPPED(ctrl_ctx, i))
2365 			xhci_add_ep_to_interval_table(xhci,
2366 					&virt_dev->eps[i].bw_info,
2367 					virt_dev->bw_table,
2368 					virt_dev->udev,
2369 					&virt_dev->eps[i],
2370 					virt_dev->tt_info);
2371 	}
2372 	return -ENOMEM;
2373 }
2374 
2375 
2376 /* Issue a configure endpoint command or evaluate context command
2377  * and wait for it to finish.
2378  */
2379 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2380 		struct usb_device *udev,
2381 		struct xhci_command *command,
2382 		bool ctx_change, bool must_succeed)
2383 {
2384 	int ret;
2385 	int timeleft;
2386 	unsigned long flags;
2387 	struct xhci_container_ctx *in_ctx;
2388 	struct completion *cmd_completion;
2389 	u32 *cmd_status;
2390 	struct xhci_virt_device *virt_dev;
2391 
2392 	spin_lock_irqsave(&xhci->lock, flags);
2393 	virt_dev = xhci->devs[udev->slot_id];
2394 
2395 	if (command)
2396 		in_ctx = command->in_ctx;
2397 	else
2398 		in_ctx = virt_dev->in_ctx;
2399 
2400 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2401 			xhci_reserve_host_resources(xhci, in_ctx)) {
2402 		spin_unlock_irqrestore(&xhci->lock, flags);
2403 		xhci_warn(xhci, "Not enough host resources, "
2404 				"active endpoint contexts = %u\n",
2405 				xhci->num_active_eps);
2406 		return -ENOMEM;
2407 	}
2408 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2409 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2410 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2411 			xhci_free_host_resources(xhci, in_ctx);
2412 		spin_unlock_irqrestore(&xhci->lock, flags);
2413 		xhci_warn(xhci, "Not enough bandwidth\n");
2414 		return -ENOMEM;
2415 	}
2416 
2417 	if (command) {
2418 		cmd_completion = command->completion;
2419 		cmd_status = &command->status;
2420 		command->command_trb = xhci->cmd_ring->enqueue;
2421 
2422 		/* Enqueue pointer can be left pointing to the link TRB,
2423 		 * we must handle that
2424 		 */
2425 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2426 			command->command_trb =
2427 				xhci->cmd_ring->enq_seg->next->trbs;
2428 
2429 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2430 	} else {
2431 		cmd_completion = &virt_dev->cmd_completion;
2432 		cmd_status = &virt_dev->cmd_status;
2433 	}
2434 	init_completion(cmd_completion);
2435 
2436 	if (!ctx_change)
2437 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2438 				udev->slot_id, must_succeed);
2439 	else
2440 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2441 				udev->slot_id);
2442 	if (ret < 0) {
2443 		if (command)
2444 			list_del(&command->cmd_list);
2445 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2446 			xhci_free_host_resources(xhci, in_ctx);
2447 		spin_unlock_irqrestore(&xhci->lock, flags);
2448 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2449 		return -ENOMEM;
2450 	}
2451 	xhci_ring_cmd_db(xhci);
2452 	spin_unlock_irqrestore(&xhci->lock, flags);
2453 
2454 	/* Wait for the configure endpoint command to complete */
2455 	timeleft = wait_for_completion_interruptible_timeout(
2456 			cmd_completion,
2457 			USB_CTRL_SET_TIMEOUT);
2458 	if (timeleft <= 0) {
2459 		xhci_warn(xhci, "%s while waiting for %s command\n",
2460 				timeleft == 0 ? "Timeout" : "Signal",
2461 				ctx_change == 0 ?
2462 					"configure endpoint" :
2463 					"evaluate context");
2464 		/* FIXME cancel the configure endpoint command */
2465 		return -ETIME;
2466 	}
2467 
2468 	if (!ctx_change)
2469 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2470 	else
2471 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2472 
2473 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2474 		spin_lock_irqsave(&xhci->lock, flags);
2475 		/* If the command failed, remove the reserved resources.
2476 		 * Otherwise, clean up the estimate to include dropped eps.
2477 		 */
2478 		if (ret)
2479 			xhci_free_host_resources(xhci, in_ctx);
2480 		else
2481 			xhci_finish_resource_reservation(xhci, in_ctx);
2482 		spin_unlock_irqrestore(&xhci->lock, flags);
2483 	}
2484 	return ret;
2485 }
2486 
2487 /* Called after one or more calls to xhci_add_endpoint() or
2488  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2489  * to call xhci_reset_bandwidth().
2490  *
2491  * Since we are in the middle of changing either configuration or
2492  * installing a new alt setting, the USB core won't allow URBs to be
2493  * enqueued for any endpoint on the old config or interface.  Nothing
2494  * else should be touching the xhci->devs[slot_id] structure, so we
2495  * don't need to take the xhci->lock for manipulating that.
2496  */
2497 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2498 {
2499 	int i;
2500 	int ret = 0;
2501 	struct xhci_hcd *xhci;
2502 	struct xhci_virt_device	*virt_dev;
2503 	struct xhci_input_control_ctx *ctrl_ctx;
2504 	struct xhci_slot_ctx *slot_ctx;
2505 
2506 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2507 	if (ret <= 0)
2508 		return ret;
2509 	xhci = hcd_to_xhci(hcd);
2510 	if (xhci->xhc_state & XHCI_STATE_DYING)
2511 		return -ENODEV;
2512 
2513 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2514 	virt_dev = xhci->devs[udev->slot_id];
2515 
2516 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2517 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2518 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2519 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2520 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2521 
2522 	/* Don't issue the command if there's no endpoints to update. */
2523 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2524 			ctrl_ctx->drop_flags == 0)
2525 		return 0;
2526 
2527 	xhci_dbg(xhci, "New Input Control Context:\n");
2528 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2529 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2530 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2531 
2532 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2533 			false, false);
2534 	if (ret) {
2535 		/* Callee should call reset_bandwidth() */
2536 		return ret;
2537 	}
2538 
2539 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2540 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2541 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2542 
2543 	/* Free any rings that were dropped, but not changed. */
2544 	for (i = 1; i < 31; ++i) {
2545 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2546 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2547 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2548 	}
2549 	xhci_zero_in_ctx(xhci, virt_dev);
2550 	/*
2551 	 * Install any rings for completely new endpoints or changed endpoints,
2552 	 * and free or cache any old rings from changed endpoints.
2553 	 */
2554 	for (i = 1; i < 31; ++i) {
2555 		if (!virt_dev->eps[i].new_ring)
2556 			continue;
2557 		/* Only cache or free the old ring if it exists.
2558 		 * It may not if this is the first add of an endpoint.
2559 		 */
2560 		if (virt_dev->eps[i].ring) {
2561 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2562 		}
2563 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2564 		virt_dev->eps[i].new_ring = NULL;
2565 	}
2566 
2567 	return ret;
2568 }
2569 
2570 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2571 {
2572 	struct xhci_hcd *xhci;
2573 	struct xhci_virt_device	*virt_dev;
2574 	int i, ret;
2575 
2576 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2577 	if (ret <= 0)
2578 		return;
2579 	xhci = hcd_to_xhci(hcd);
2580 
2581 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2582 	virt_dev = xhci->devs[udev->slot_id];
2583 	/* Free any rings allocated for added endpoints */
2584 	for (i = 0; i < 31; ++i) {
2585 		if (virt_dev->eps[i].new_ring) {
2586 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2587 			virt_dev->eps[i].new_ring = NULL;
2588 		}
2589 	}
2590 	xhci_zero_in_ctx(xhci, virt_dev);
2591 }
2592 
2593 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2594 		struct xhci_container_ctx *in_ctx,
2595 		struct xhci_container_ctx *out_ctx,
2596 		u32 add_flags, u32 drop_flags)
2597 {
2598 	struct xhci_input_control_ctx *ctrl_ctx;
2599 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2600 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2601 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2602 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2603 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2604 
2605 	xhci_dbg(xhci, "Input Context:\n");
2606 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2607 }
2608 
2609 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2610 		unsigned int slot_id, unsigned int ep_index,
2611 		struct xhci_dequeue_state *deq_state)
2612 {
2613 	struct xhci_container_ctx *in_ctx;
2614 	struct xhci_ep_ctx *ep_ctx;
2615 	u32 added_ctxs;
2616 	dma_addr_t addr;
2617 
2618 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2619 			xhci->devs[slot_id]->out_ctx, ep_index);
2620 	in_ctx = xhci->devs[slot_id]->in_ctx;
2621 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2622 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2623 			deq_state->new_deq_ptr);
2624 	if (addr == 0) {
2625 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2626 				"reset ep command\n");
2627 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2628 				deq_state->new_deq_seg,
2629 				deq_state->new_deq_ptr);
2630 		return;
2631 	}
2632 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2633 
2634 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2635 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2636 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2637 }
2638 
2639 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2640 		struct usb_device *udev, unsigned int ep_index)
2641 {
2642 	struct xhci_dequeue_state deq_state;
2643 	struct xhci_virt_ep *ep;
2644 
2645 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2646 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2647 	/* We need to move the HW's dequeue pointer past this TD,
2648 	 * or it will attempt to resend it on the next doorbell ring.
2649 	 */
2650 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2651 			ep_index, ep->stopped_stream, ep->stopped_td,
2652 			&deq_state);
2653 
2654 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2655 	 * issue a configure endpoint command later.
2656 	 */
2657 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2658 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2659 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2660 				ep_index, ep->stopped_stream, &deq_state);
2661 	} else {
2662 		/* Better hope no one uses the input context between now and the
2663 		 * reset endpoint completion!
2664 		 * XXX: No idea how this hardware will react when stream rings
2665 		 * are enabled.
2666 		 */
2667 		xhci_dbg(xhci, "Setting up input context for "
2668 				"configure endpoint command\n");
2669 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2670 				ep_index, &deq_state);
2671 	}
2672 }
2673 
2674 /* Deal with stalled endpoints.  The core should have sent the control message
2675  * to clear the halt condition.  However, we need to make the xHCI hardware
2676  * reset its sequence number, since a device will expect a sequence number of
2677  * zero after the halt condition is cleared.
2678  * Context: in_interrupt
2679  */
2680 void xhci_endpoint_reset(struct usb_hcd *hcd,
2681 		struct usb_host_endpoint *ep)
2682 {
2683 	struct xhci_hcd *xhci;
2684 	struct usb_device *udev;
2685 	unsigned int ep_index;
2686 	unsigned long flags;
2687 	int ret;
2688 	struct xhci_virt_ep *virt_ep;
2689 
2690 	xhci = hcd_to_xhci(hcd);
2691 	udev = (struct usb_device *) ep->hcpriv;
2692 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2693 	 * with xhci_add_endpoint()
2694 	 */
2695 	if (!ep->hcpriv)
2696 		return;
2697 	ep_index = xhci_get_endpoint_index(&ep->desc);
2698 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2699 	if (!virt_ep->stopped_td) {
2700 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2701 				ep->desc.bEndpointAddress);
2702 		return;
2703 	}
2704 	if (usb_endpoint_xfer_control(&ep->desc)) {
2705 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2706 		return;
2707 	}
2708 
2709 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2710 	spin_lock_irqsave(&xhci->lock, flags);
2711 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2712 	/*
2713 	 * Can't change the ring dequeue pointer until it's transitioned to the
2714 	 * stopped state, which is only upon a successful reset endpoint
2715 	 * command.  Better hope that last command worked!
2716 	 */
2717 	if (!ret) {
2718 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2719 		kfree(virt_ep->stopped_td);
2720 		xhci_ring_cmd_db(xhci);
2721 	}
2722 	virt_ep->stopped_td = NULL;
2723 	virt_ep->stopped_trb = NULL;
2724 	virt_ep->stopped_stream = 0;
2725 	spin_unlock_irqrestore(&xhci->lock, flags);
2726 
2727 	if (ret)
2728 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2729 }
2730 
2731 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2732 		struct usb_device *udev, struct usb_host_endpoint *ep,
2733 		unsigned int slot_id)
2734 {
2735 	int ret;
2736 	unsigned int ep_index;
2737 	unsigned int ep_state;
2738 
2739 	if (!ep)
2740 		return -EINVAL;
2741 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2742 	if (ret <= 0)
2743 		return -EINVAL;
2744 	if (ep->ss_ep_comp.bmAttributes == 0) {
2745 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2746 				" descriptor for ep 0x%x does not support streams\n",
2747 				ep->desc.bEndpointAddress);
2748 		return -EINVAL;
2749 	}
2750 
2751 	ep_index = xhci_get_endpoint_index(&ep->desc);
2752 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2753 	if (ep_state & EP_HAS_STREAMS ||
2754 			ep_state & EP_GETTING_STREAMS) {
2755 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2756 				"already has streams set up.\n",
2757 				ep->desc.bEndpointAddress);
2758 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2759 				"dynamic stream context array reallocation.\n");
2760 		return -EINVAL;
2761 	}
2762 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2763 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2764 				"endpoint 0x%x; URBs are pending.\n",
2765 				ep->desc.bEndpointAddress);
2766 		return -EINVAL;
2767 	}
2768 	return 0;
2769 }
2770 
2771 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2772 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2773 {
2774 	unsigned int max_streams;
2775 
2776 	/* The stream context array size must be a power of two */
2777 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2778 	/*
2779 	 * Find out how many primary stream array entries the host controller
2780 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2781 	 * level page entries), but that's an optional feature for xHCI host
2782 	 * controllers. xHCs must support at least 4 stream IDs.
2783 	 */
2784 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2785 	if (*num_stream_ctxs > max_streams) {
2786 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2787 				max_streams);
2788 		*num_stream_ctxs = max_streams;
2789 		*num_streams = max_streams;
2790 	}
2791 }
2792 
2793 /* Returns an error code if one of the endpoint already has streams.
2794  * This does not change any data structures, it only checks and gathers
2795  * information.
2796  */
2797 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2798 		struct usb_device *udev,
2799 		struct usb_host_endpoint **eps, unsigned int num_eps,
2800 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2801 {
2802 	unsigned int max_streams;
2803 	unsigned int endpoint_flag;
2804 	int i;
2805 	int ret;
2806 
2807 	for (i = 0; i < num_eps; i++) {
2808 		ret = xhci_check_streams_endpoint(xhci, udev,
2809 				eps[i], udev->slot_id);
2810 		if (ret < 0)
2811 			return ret;
2812 
2813 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2814 		if (max_streams < (*num_streams - 1)) {
2815 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2816 					eps[i]->desc.bEndpointAddress,
2817 					max_streams);
2818 			*num_streams = max_streams+1;
2819 		}
2820 
2821 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2822 		if (*changed_ep_bitmask & endpoint_flag)
2823 			return -EINVAL;
2824 		*changed_ep_bitmask |= endpoint_flag;
2825 	}
2826 	return 0;
2827 }
2828 
2829 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2830 		struct usb_device *udev,
2831 		struct usb_host_endpoint **eps, unsigned int num_eps)
2832 {
2833 	u32 changed_ep_bitmask = 0;
2834 	unsigned int slot_id;
2835 	unsigned int ep_index;
2836 	unsigned int ep_state;
2837 	int i;
2838 
2839 	slot_id = udev->slot_id;
2840 	if (!xhci->devs[slot_id])
2841 		return 0;
2842 
2843 	for (i = 0; i < num_eps; i++) {
2844 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2845 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2846 		/* Are streams already being freed for the endpoint? */
2847 		if (ep_state & EP_GETTING_NO_STREAMS) {
2848 			xhci_warn(xhci, "WARN Can't disable streams for "
2849 					"endpoint 0x%x\n, "
2850 					"streams are being disabled already.",
2851 					eps[i]->desc.bEndpointAddress);
2852 			return 0;
2853 		}
2854 		/* Are there actually any streams to free? */
2855 		if (!(ep_state & EP_HAS_STREAMS) &&
2856 				!(ep_state & EP_GETTING_STREAMS)) {
2857 			xhci_warn(xhci, "WARN Can't disable streams for "
2858 					"endpoint 0x%x\n, "
2859 					"streams are already disabled!",
2860 					eps[i]->desc.bEndpointAddress);
2861 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2862 					"with non-streams endpoint\n");
2863 			return 0;
2864 		}
2865 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2866 	}
2867 	return changed_ep_bitmask;
2868 }
2869 
2870 /*
2871  * The USB device drivers use this function (though the HCD interface in USB
2872  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2873  * coordinate mass storage command queueing across multiple endpoints (basically
2874  * a stream ID == a task ID).
2875  *
2876  * Setting up streams involves allocating the same size stream context array
2877  * for each endpoint and issuing a configure endpoint command for all endpoints.
2878  *
2879  * Don't allow the call to succeed if one endpoint only supports one stream
2880  * (which means it doesn't support streams at all).
2881  *
2882  * Drivers may get less stream IDs than they asked for, if the host controller
2883  * hardware or endpoints claim they can't support the number of requested
2884  * stream IDs.
2885  */
2886 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2887 		struct usb_host_endpoint **eps, unsigned int num_eps,
2888 		unsigned int num_streams, gfp_t mem_flags)
2889 {
2890 	int i, ret;
2891 	struct xhci_hcd *xhci;
2892 	struct xhci_virt_device *vdev;
2893 	struct xhci_command *config_cmd;
2894 	unsigned int ep_index;
2895 	unsigned int num_stream_ctxs;
2896 	unsigned long flags;
2897 	u32 changed_ep_bitmask = 0;
2898 
2899 	if (!eps)
2900 		return -EINVAL;
2901 
2902 	/* Add one to the number of streams requested to account for
2903 	 * stream 0 that is reserved for xHCI usage.
2904 	 */
2905 	num_streams += 1;
2906 	xhci = hcd_to_xhci(hcd);
2907 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2908 			num_streams);
2909 
2910 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2911 	if (!config_cmd) {
2912 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2913 		return -ENOMEM;
2914 	}
2915 
2916 	/* Check to make sure all endpoints are not already configured for
2917 	 * streams.  While we're at it, find the maximum number of streams that
2918 	 * all the endpoints will support and check for duplicate endpoints.
2919 	 */
2920 	spin_lock_irqsave(&xhci->lock, flags);
2921 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2922 			num_eps, &num_streams, &changed_ep_bitmask);
2923 	if (ret < 0) {
2924 		xhci_free_command(xhci, config_cmd);
2925 		spin_unlock_irqrestore(&xhci->lock, flags);
2926 		return ret;
2927 	}
2928 	if (num_streams <= 1) {
2929 		xhci_warn(xhci, "WARN: endpoints can't handle "
2930 				"more than one stream.\n");
2931 		xhci_free_command(xhci, config_cmd);
2932 		spin_unlock_irqrestore(&xhci->lock, flags);
2933 		return -EINVAL;
2934 	}
2935 	vdev = xhci->devs[udev->slot_id];
2936 	/* Mark each endpoint as being in transition, so
2937 	 * xhci_urb_enqueue() will reject all URBs.
2938 	 */
2939 	for (i = 0; i < num_eps; i++) {
2940 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2941 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2942 	}
2943 	spin_unlock_irqrestore(&xhci->lock, flags);
2944 
2945 	/* Setup internal data structures and allocate HW data structures for
2946 	 * streams (but don't install the HW structures in the input context
2947 	 * until we're sure all memory allocation succeeded).
2948 	 */
2949 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2950 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2951 			num_stream_ctxs, num_streams);
2952 
2953 	for (i = 0; i < num_eps; i++) {
2954 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2955 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2956 				num_stream_ctxs,
2957 				num_streams, mem_flags);
2958 		if (!vdev->eps[ep_index].stream_info)
2959 			goto cleanup;
2960 		/* Set maxPstreams in endpoint context and update deq ptr to
2961 		 * point to stream context array. FIXME
2962 		 */
2963 	}
2964 
2965 	/* Set up the input context for a configure endpoint command. */
2966 	for (i = 0; i < num_eps; i++) {
2967 		struct xhci_ep_ctx *ep_ctx;
2968 
2969 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2970 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2971 
2972 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2973 				vdev->out_ctx, ep_index);
2974 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2975 				vdev->eps[ep_index].stream_info);
2976 	}
2977 	/* Tell the HW to drop its old copy of the endpoint context info
2978 	 * and add the updated copy from the input context.
2979 	 */
2980 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2981 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2982 
2983 	/* Issue and wait for the configure endpoint command */
2984 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2985 			false, false);
2986 
2987 	/* xHC rejected the configure endpoint command for some reason, so we
2988 	 * leave the old ring intact and free our internal streams data
2989 	 * structure.
2990 	 */
2991 	if (ret < 0)
2992 		goto cleanup;
2993 
2994 	spin_lock_irqsave(&xhci->lock, flags);
2995 	for (i = 0; i < num_eps; i++) {
2996 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2997 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2998 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2999 			 udev->slot_id, ep_index);
3000 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3001 	}
3002 	xhci_free_command(xhci, config_cmd);
3003 	spin_unlock_irqrestore(&xhci->lock, flags);
3004 
3005 	/* Subtract 1 for stream 0, which drivers can't use */
3006 	return num_streams - 1;
3007 
3008 cleanup:
3009 	/* If it didn't work, free the streams! */
3010 	for (i = 0; i < num_eps; i++) {
3011 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3012 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3013 		vdev->eps[ep_index].stream_info = NULL;
3014 		/* FIXME Unset maxPstreams in endpoint context and
3015 		 * update deq ptr to point to normal string ring.
3016 		 */
3017 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3018 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3019 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3020 	}
3021 	xhci_free_command(xhci, config_cmd);
3022 	return -ENOMEM;
3023 }
3024 
3025 /* Transition the endpoint from using streams to being a "normal" endpoint
3026  * without streams.
3027  *
3028  * Modify the endpoint context state, submit a configure endpoint command,
3029  * and free all endpoint rings for streams if that completes successfully.
3030  */
3031 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3032 		struct usb_host_endpoint **eps, unsigned int num_eps,
3033 		gfp_t mem_flags)
3034 {
3035 	int i, ret;
3036 	struct xhci_hcd *xhci;
3037 	struct xhci_virt_device *vdev;
3038 	struct xhci_command *command;
3039 	unsigned int ep_index;
3040 	unsigned long flags;
3041 	u32 changed_ep_bitmask;
3042 
3043 	xhci = hcd_to_xhci(hcd);
3044 	vdev = xhci->devs[udev->slot_id];
3045 
3046 	/* Set up a configure endpoint command to remove the streams rings */
3047 	spin_lock_irqsave(&xhci->lock, flags);
3048 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3049 			udev, eps, num_eps);
3050 	if (changed_ep_bitmask == 0) {
3051 		spin_unlock_irqrestore(&xhci->lock, flags);
3052 		return -EINVAL;
3053 	}
3054 
3055 	/* Use the xhci_command structure from the first endpoint.  We may have
3056 	 * allocated too many, but the driver may call xhci_free_streams() for
3057 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3058 	 */
3059 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3060 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3061 	for (i = 0; i < num_eps; i++) {
3062 		struct xhci_ep_ctx *ep_ctx;
3063 
3064 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3065 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3066 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3067 			EP_GETTING_NO_STREAMS;
3068 
3069 		xhci_endpoint_copy(xhci, command->in_ctx,
3070 				vdev->out_ctx, ep_index);
3071 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3072 				&vdev->eps[ep_index]);
3073 	}
3074 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3075 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3076 	spin_unlock_irqrestore(&xhci->lock, flags);
3077 
3078 	/* Issue and wait for the configure endpoint command,
3079 	 * which must succeed.
3080 	 */
3081 	ret = xhci_configure_endpoint(xhci, udev, command,
3082 			false, true);
3083 
3084 	/* xHC rejected the configure endpoint command for some reason, so we
3085 	 * leave the streams rings intact.
3086 	 */
3087 	if (ret < 0)
3088 		return ret;
3089 
3090 	spin_lock_irqsave(&xhci->lock, flags);
3091 	for (i = 0; i < num_eps; i++) {
3092 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3094 		vdev->eps[ep_index].stream_info = NULL;
3095 		/* FIXME Unset maxPstreams in endpoint context and
3096 		 * update deq ptr to point to normal string ring.
3097 		 */
3098 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3099 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3100 	}
3101 	spin_unlock_irqrestore(&xhci->lock, flags);
3102 
3103 	return 0;
3104 }
3105 
3106 /*
3107  * Deletes endpoint resources for endpoints that were active before a Reset
3108  * Device command, or a Disable Slot command.  The Reset Device command leaves
3109  * the control endpoint intact, whereas the Disable Slot command deletes it.
3110  *
3111  * Must be called with xhci->lock held.
3112  */
3113 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3114 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3115 {
3116 	int i;
3117 	unsigned int num_dropped_eps = 0;
3118 	unsigned int drop_flags = 0;
3119 
3120 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3121 		if (virt_dev->eps[i].ring) {
3122 			drop_flags |= 1 << i;
3123 			num_dropped_eps++;
3124 		}
3125 	}
3126 	xhci->num_active_eps -= num_dropped_eps;
3127 	if (num_dropped_eps)
3128 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3129 				"%u now active.\n",
3130 				num_dropped_eps, drop_flags,
3131 				xhci->num_active_eps);
3132 }
3133 
3134 /*
3135  * This submits a Reset Device Command, which will set the device state to 0,
3136  * set the device address to 0, and disable all the endpoints except the default
3137  * control endpoint.  The USB core should come back and call
3138  * xhci_address_device(), and then re-set up the configuration.  If this is
3139  * called because of a usb_reset_and_verify_device(), then the old alternate
3140  * settings will be re-installed through the normal bandwidth allocation
3141  * functions.
3142  *
3143  * Wait for the Reset Device command to finish.  Remove all structures
3144  * associated with the endpoints that were disabled.  Clear the input device
3145  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3146  *
3147  * If the virt_dev to be reset does not exist or does not match the udev,
3148  * it means the device is lost, possibly due to the xHC restore error and
3149  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3150  * re-allocate the device.
3151  */
3152 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3153 {
3154 	int ret, i;
3155 	unsigned long flags;
3156 	struct xhci_hcd *xhci;
3157 	unsigned int slot_id;
3158 	struct xhci_virt_device *virt_dev;
3159 	struct xhci_command *reset_device_cmd;
3160 	int timeleft;
3161 	int last_freed_endpoint;
3162 	struct xhci_slot_ctx *slot_ctx;
3163 	int old_active_eps = 0;
3164 
3165 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3166 	if (ret <= 0)
3167 		return ret;
3168 	xhci = hcd_to_xhci(hcd);
3169 	slot_id = udev->slot_id;
3170 	virt_dev = xhci->devs[slot_id];
3171 	if (!virt_dev) {
3172 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3173 				"not exist. Re-allocate the device\n", slot_id);
3174 		ret = xhci_alloc_dev(hcd, udev);
3175 		if (ret == 1)
3176 			return 0;
3177 		else
3178 			return -EINVAL;
3179 	}
3180 
3181 	if (virt_dev->udev != udev) {
3182 		/* If the virt_dev and the udev does not match, this virt_dev
3183 		 * may belong to another udev.
3184 		 * Re-allocate the device.
3185 		 */
3186 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3187 				"not match the udev. Re-allocate the device\n",
3188 				slot_id);
3189 		ret = xhci_alloc_dev(hcd, udev);
3190 		if (ret == 1)
3191 			return 0;
3192 		else
3193 			return -EINVAL;
3194 	}
3195 
3196 	/* If device is not setup, there is no point in resetting it */
3197 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3198 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3199 						SLOT_STATE_DISABLED)
3200 		return 0;
3201 
3202 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3203 	/* Allocate the command structure that holds the struct completion.
3204 	 * Assume we're in process context, since the normal device reset
3205 	 * process has to wait for the device anyway.  Storage devices are
3206 	 * reset as part of error handling, so use GFP_NOIO instead of
3207 	 * GFP_KERNEL.
3208 	 */
3209 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3210 	if (!reset_device_cmd) {
3211 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3212 		return -ENOMEM;
3213 	}
3214 
3215 	/* Attempt to submit the Reset Device command to the command ring */
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3218 
3219 	/* Enqueue pointer can be left pointing to the link TRB,
3220 	 * we must handle that
3221 	 */
3222 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3223 		reset_device_cmd->command_trb =
3224 			xhci->cmd_ring->enq_seg->next->trbs;
3225 
3226 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3227 	ret = xhci_queue_reset_device(xhci, slot_id);
3228 	if (ret) {
3229 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3230 		list_del(&reset_device_cmd->cmd_list);
3231 		spin_unlock_irqrestore(&xhci->lock, flags);
3232 		goto command_cleanup;
3233 	}
3234 	xhci_ring_cmd_db(xhci);
3235 	spin_unlock_irqrestore(&xhci->lock, flags);
3236 
3237 	/* Wait for the Reset Device command to finish */
3238 	timeleft = wait_for_completion_interruptible_timeout(
3239 			reset_device_cmd->completion,
3240 			USB_CTRL_SET_TIMEOUT);
3241 	if (timeleft <= 0) {
3242 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3243 				timeleft == 0 ? "Timeout" : "Signal");
3244 		spin_lock_irqsave(&xhci->lock, flags);
3245 		/* The timeout might have raced with the event ring handler, so
3246 		 * only delete from the list if the item isn't poisoned.
3247 		 */
3248 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3249 			list_del(&reset_device_cmd->cmd_list);
3250 		spin_unlock_irqrestore(&xhci->lock, flags);
3251 		ret = -ETIME;
3252 		goto command_cleanup;
3253 	}
3254 
3255 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3256 	 * unless we tried to reset a slot ID that wasn't enabled,
3257 	 * or the device wasn't in the addressed or configured state.
3258 	 */
3259 	ret = reset_device_cmd->status;
3260 	switch (ret) {
3261 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3262 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3263 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3264 				slot_id,
3265 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3266 		xhci_info(xhci, "Not freeing device rings.\n");
3267 		/* Don't treat this as an error.  May change my mind later. */
3268 		ret = 0;
3269 		goto command_cleanup;
3270 	case COMP_SUCCESS:
3271 		xhci_dbg(xhci, "Successful reset device command.\n");
3272 		break;
3273 	default:
3274 		if (xhci_is_vendor_info_code(xhci, ret))
3275 			break;
3276 		xhci_warn(xhci, "Unknown completion code %u for "
3277 				"reset device command.\n", ret);
3278 		ret = -EINVAL;
3279 		goto command_cleanup;
3280 	}
3281 
3282 	/* Free up host controller endpoint resources */
3283 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3284 		spin_lock_irqsave(&xhci->lock, flags);
3285 		/* Don't delete the default control endpoint resources */
3286 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3287 		spin_unlock_irqrestore(&xhci->lock, flags);
3288 	}
3289 
3290 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3291 	last_freed_endpoint = 1;
3292 	for (i = 1; i < 31; ++i) {
3293 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3294 
3295 		if (ep->ep_state & EP_HAS_STREAMS) {
3296 			xhci_free_stream_info(xhci, ep->stream_info);
3297 			ep->stream_info = NULL;
3298 			ep->ep_state &= ~EP_HAS_STREAMS;
3299 		}
3300 
3301 		if (ep->ring) {
3302 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3303 			last_freed_endpoint = i;
3304 		}
3305 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3306 			xhci_drop_ep_from_interval_table(xhci,
3307 					&virt_dev->eps[i].bw_info,
3308 					virt_dev->bw_table,
3309 					udev,
3310 					&virt_dev->eps[i],
3311 					virt_dev->tt_info);
3312 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3313 	}
3314 	/* If necessary, update the number of active TTs on this root port */
3315 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3316 
3317 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3318 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3319 	ret = 0;
3320 
3321 command_cleanup:
3322 	xhci_free_command(xhci, reset_device_cmd);
3323 	return ret;
3324 }
3325 
3326 /*
3327  * At this point, the struct usb_device is about to go away, the device has
3328  * disconnected, and all traffic has been stopped and the endpoints have been
3329  * disabled.  Free any HC data structures associated with that device.
3330  */
3331 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3332 {
3333 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3334 	struct xhci_virt_device *virt_dev;
3335 	unsigned long flags;
3336 	u32 state;
3337 	int i, ret;
3338 
3339 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3340 	/* If the host is halted due to driver unload, we still need to free the
3341 	 * device.
3342 	 */
3343 	if (ret <= 0 && ret != -ENODEV)
3344 		return;
3345 
3346 	virt_dev = xhci->devs[udev->slot_id];
3347 
3348 	/* Stop any wayward timer functions (which may grab the lock) */
3349 	for (i = 0; i < 31; ++i) {
3350 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3351 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3352 	}
3353 
3354 	if (udev->usb2_hw_lpm_enabled) {
3355 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3356 		udev->usb2_hw_lpm_enabled = 0;
3357 	}
3358 
3359 	spin_lock_irqsave(&xhci->lock, flags);
3360 	/* Don't disable the slot if the host controller is dead. */
3361 	state = xhci_readl(xhci, &xhci->op_regs->status);
3362 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3363 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3364 		xhci_free_virt_device(xhci, udev->slot_id);
3365 		spin_unlock_irqrestore(&xhci->lock, flags);
3366 		return;
3367 	}
3368 
3369 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3370 		spin_unlock_irqrestore(&xhci->lock, flags);
3371 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372 		return;
3373 	}
3374 	xhci_ring_cmd_db(xhci);
3375 	spin_unlock_irqrestore(&xhci->lock, flags);
3376 	/*
3377 	 * Event command completion handler will free any data structures
3378 	 * associated with the slot.  XXX Can free sleep?
3379 	 */
3380 }
3381 
3382 /*
3383  * Checks if we have enough host controller resources for the default control
3384  * endpoint.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3389 {
3390 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3391 		xhci_dbg(xhci, "Not enough ep ctxs: "
3392 				"%u active, need to add 1, limit is %u.\n",
3393 				xhci->num_active_eps, xhci->limit_active_eps);
3394 		return -ENOMEM;
3395 	}
3396 	xhci->num_active_eps += 1;
3397 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3398 			xhci->num_active_eps);
3399 	return 0;
3400 }
3401 
3402 
3403 /*
3404  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3405  * timed out, or allocating memory failed.  Returns 1 on success.
3406  */
3407 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3408 {
3409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3410 	unsigned long flags;
3411 	int timeleft;
3412 	int ret;
3413 
3414 	spin_lock_irqsave(&xhci->lock, flags);
3415 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3416 	if (ret) {
3417 		spin_unlock_irqrestore(&xhci->lock, flags);
3418 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3419 		return 0;
3420 	}
3421 	xhci_ring_cmd_db(xhci);
3422 	spin_unlock_irqrestore(&xhci->lock, flags);
3423 
3424 	/* XXX: how much time for xHC slot assignment? */
3425 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3426 			USB_CTRL_SET_TIMEOUT);
3427 	if (timeleft <= 0) {
3428 		xhci_warn(xhci, "%s while waiting for a slot\n",
3429 				timeleft == 0 ? "Timeout" : "Signal");
3430 		/* FIXME cancel the enable slot request */
3431 		return 0;
3432 	}
3433 
3434 	if (!xhci->slot_id) {
3435 		xhci_err(xhci, "Error while assigning device slot ID\n");
3436 		return 0;
3437 	}
3438 
3439 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3440 		spin_lock_irqsave(&xhci->lock, flags);
3441 		ret = xhci_reserve_host_control_ep_resources(xhci);
3442 		if (ret) {
3443 			spin_unlock_irqrestore(&xhci->lock, flags);
3444 			xhci_warn(xhci, "Not enough host resources, "
3445 					"active endpoint contexts = %u\n",
3446 					xhci->num_active_eps);
3447 			goto disable_slot;
3448 		}
3449 		spin_unlock_irqrestore(&xhci->lock, flags);
3450 	}
3451 	/* Use GFP_NOIO, since this function can be called from
3452 	 * xhci_discover_or_reset_device(), which may be called as part of
3453 	 * mass storage driver error handling.
3454 	 */
3455 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3456 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3457 		goto disable_slot;
3458 	}
3459 	udev->slot_id = xhci->slot_id;
3460 	/* Is this a LS or FS device under a HS hub? */
3461 	/* Hub or peripherial? */
3462 	return 1;
3463 
3464 disable_slot:
3465 	/* Disable slot, if we can do it without mem alloc */
3466 	spin_lock_irqsave(&xhci->lock, flags);
3467 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3468 		xhci_ring_cmd_db(xhci);
3469 	spin_unlock_irqrestore(&xhci->lock, flags);
3470 	return 0;
3471 }
3472 
3473 /*
3474  * Issue an Address Device command (which will issue a SetAddress request to
3475  * the device).
3476  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3477  * we should only issue and wait on one address command at the same time.
3478  *
3479  * We add one to the device address issued by the hardware because the USB core
3480  * uses address 1 for the root hubs (even though they're not really devices).
3481  */
3482 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3483 {
3484 	unsigned long flags;
3485 	int timeleft;
3486 	struct xhci_virt_device *virt_dev;
3487 	int ret = 0;
3488 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3489 	struct xhci_slot_ctx *slot_ctx;
3490 	struct xhci_input_control_ctx *ctrl_ctx;
3491 	u64 temp_64;
3492 
3493 	if (!udev->slot_id) {
3494 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3495 		return -EINVAL;
3496 	}
3497 
3498 	virt_dev = xhci->devs[udev->slot_id];
3499 
3500 	if (WARN_ON(!virt_dev)) {
3501 		/*
3502 		 * In plug/unplug torture test with an NEC controller,
3503 		 * a zero-dereference was observed once due to virt_dev = 0.
3504 		 * Print useful debug rather than crash if it is observed again!
3505 		 */
3506 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3507 			udev->slot_id);
3508 		return -EINVAL;
3509 	}
3510 
3511 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3512 	/*
3513 	 * If this is the first Set Address since device plug-in or
3514 	 * virt_device realloaction after a resume with an xHCI power loss,
3515 	 * then set up the slot context.
3516 	 */
3517 	if (!slot_ctx->dev_info)
3518 		xhci_setup_addressable_virt_dev(xhci, udev);
3519 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3520 	else
3521 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3522 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3523 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3524 	ctrl_ctx->drop_flags = 0;
3525 
3526 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3527 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3528 
3529 	spin_lock_irqsave(&xhci->lock, flags);
3530 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3531 					udev->slot_id);
3532 	if (ret) {
3533 		spin_unlock_irqrestore(&xhci->lock, flags);
3534 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3535 		return ret;
3536 	}
3537 	xhci_ring_cmd_db(xhci);
3538 	spin_unlock_irqrestore(&xhci->lock, flags);
3539 
3540 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3541 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3542 			USB_CTRL_SET_TIMEOUT);
3543 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3544 	 * the SetAddress() "recovery interval" required by USB and aborting the
3545 	 * command on a timeout.
3546 	 */
3547 	if (timeleft <= 0) {
3548 		xhci_warn(xhci, "%s while waiting for address device command\n",
3549 				timeleft == 0 ? "Timeout" : "Signal");
3550 		/* FIXME cancel the address device command */
3551 		return -ETIME;
3552 	}
3553 
3554 	switch (virt_dev->cmd_status) {
3555 	case COMP_CTX_STATE:
3556 	case COMP_EBADSLT:
3557 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3558 				udev->slot_id);
3559 		ret = -EINVAL;
3560 		break;
3561 	case COMP_TX_ERR:
3562 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3563 		ret = -EPROTO;
3564 		break;
3565 	case COMP_DEV_ERR:
3566 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3567 				"device command.\n");
3568 		ret = -ENODEV;
3569 		break;
3570 	case COMP_SUCCESS:
3571 		xhci_dbg(xhci, "Successful Address Device command\n");
3572 		break;
3573 	default:
3574 		xhci_err(xhci, "ERROR: unexpected command completion "
3575 				"code 0x%x.\n", virt_dev->cmd_status);
3576 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3577 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3578 		ret = -EINVAL;
3579 		break;
3580 	}
3581 	if (ret) {
3582 		return ret;
3583 	}
3584 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3585 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3586 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3587 		 udev->slot_id,
3588 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3589 		 (unsigned long long)
3590 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3591 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3592 			(unsigned long long)virt_dev->out_ctx->dma);
3593 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3594 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3595 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3596 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3597 	/*
3598 	 * USB core uses address 1 for the roothubs, so we add one to the
3599 	 * address given back to us by the HC.
3600 	 */
3601 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3602 	/* Use kernel assigned address for devices; store xHC assigned
3603 	 * address locally. */
3604 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3605 		+ 1;
3606 	/* Zero the input context control for later use */
3607 	ctrl_ctx->add_flags = 0;
3608 	ctrl_ctx->drop_flags = 0;
3609 
3610 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3611 
3612 	return 0;
3613 }
3614 
3615 #ifdef CONFIG_USB_SUSPEND
3616 
3617 /* BESL to HIRD Encoding array for USB2 LPM */
3618 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3619 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3620 
3621 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3622 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3623 					struct usb_device *udev)
3624 {
3625 	int u2del, besl, besl_host;
3626 	int besl_device = 0;
3627 	u32 field;
3628 
3629 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3630 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3631 
3632 	if (field & USB_BESL_SUPPORT) {
3633 		for (besl_host = 0; besl_host < 16; besl_host++) {
3634 			if (xhci_besl_encoding[besl_host] >= u2del)
3635 				break;
3636 		}
3637 		/* Use baseline BESL value as default */
3638 		if (field & USB_BESL_BASELINE_VALID)
3639 			besl_device = USB_GET_BESL_BASELINE(field);
3640 		else if (field & USB_BESL_DEEP_VALID)
3641 			besl_device = USB_GET_BESL_DEEP(field);
3642 	} else {
3643 		if (u2del <= 50)
3644 			besl_host = 0;
3645 		else
3646 			besl_host = (u2del - 51) / 75 + 1;
3647 	}
3648 
3649 	besl = besl_host + besl_device;
3650 	if (besl > 15)
3651 		besl = 15;
3652 
3653 	return besl;
3654 }
3655 
3656 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3657 					struct usb_device *udev)
3658 {
3659 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3660 	struct dev_info	*dev_info;
3661 	__le32 __iomem	**port_array;
3662 	__le32 __iomem	*addr, *pm_addr;
3663 	u32		temp, dev_id;
3664 	unsigned int	port_num;
3665 	unsigned long	flags;
3666 	int		hird;
3667 	int		ret;
3668 
3669 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3670 			!udev->lpm_capable)
3671 		return -EINVAL;
3672 
3673 	/* we only support lpm for non-hub device connected to root hub yet */
3674 	if (!udev->parent || udev->parent->parent ||
3675 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3676 		return -EINVAL;
3677 
3678 	spin_lock_irqsave(&xhci->lock, flags);
3679 
3680 	/* Look for devices in lpm_failed_devs list */
3681 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3682 			le16_to_cpu(udev->descriptor.idProduct);
3683 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3684 		if (dev_info->dev_id == dev_id) {
3685 			ret = -EINVAL;
3686 			goto finish;
3687 		}
3688 	}
3689 
3690 	port_array = xhci->usb2_ports;
3691 	port_num = udev->portnum - 1;
3692 
3693 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3694 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3695 		ret = -EINVAL;
3696 		goto finish;
3697 	}
3698 
3699 	/*
3700 	 * Test USB 2.0 software LPM.
3701 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3702 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3703 	 * in the June 2011 errata release.
3704 	 */
3705 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3706 	/*
3707 	 * Set L1 Device Slot and HIRD/BESL.
3708 	 * Check device's USB 2.0 extension descriptor to determine whether
3709 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3710 	 */
3711 	pm_addr = port_array[port_num] + 1;
3712 	hird = xhci_calculate_hird_besl(xhci, udev);
3713 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3714 	xhci_writel(xhci, temp, pm_addr);
3715 
3716 	/* Set port link state to U2(L1) */
3717 	addr = port_array[port_num];
3718 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3719 
3720 	/* wait for ACK */
3721 	spin_unlock_irqrestore(&xhci->lock, flags);
3722 	msleep(10);
3723 	spin_lock_irqsave(&xhci->lock, flags);
3724 
3725 	/* Check L1 Status */
3726 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3727 	if (ret != -ETIMEDOUT) {
3728 		/* enter L1 successfully */
3729 		temp = xhci_readl(xhci, addr);
3730 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3731 				port_num, temp);
3732 		ret = 0;
3733 	} else {
3734 		temp = xhci_readl(xhci, pm_addr);
3735 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3736 				port_num, temp & PORT_L1S_MASK);
3737 		ret = -EINVAL;
3738 	}
3739 
3740 	/* Resume the port */
3741 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3742 
3743 	spin_unlock_irqrestore(&xhci->lock, flags);
3744 	msleep(10);
3745 	spin_lock_irqsave(&xhci->lock, flags);
3746 
3747 	/* Clear PLC */
3748 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3749 
3750 	/* Check PORTSC to make sure the device is in the right state */
3751 	if (!ret) {
3752 		temp = xhci_readl(xhci, addr);
3753 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3754 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3755 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3756 			xhci_dbg(xhci, "port L1 resume fail\n");
3757 			ret = -EINVAL;
3758 		}
3759 	}
3760 
3761 	if (ret) {
3762 		/* Insert dev to lpm_failed_devs list */
3763 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3764 				"re-enumerate\n");
3765 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3766 		if (!dev_info) {
3767 			ret = -ENOMEM;
3768 			goto finish;
3769 		}
3770 		dev_info->dev_id = dev_id;
3771 		INIT_LIST_HEAD(&dev_info->list);
3772 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3773 	} else {
3774 		xhci_ring_device(xhci, udev->slot_id);
3775 	}
3776 
3777 finish:
3778 	spin_unlock_irqrestore(&xhci->lock, flags);
3779 	return ret;
3780 }
3781 
3782 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3783 			struct usb_device *udev, int enable)
3784 {
3785 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3786 	__le32 __iomem	**port_array;
3787 	__le32 __iomem	*pm_addr;
3788 	u32		temp;
3789 	unsigned int	port_num;
3790 	unsigned long	flags;
3791 	int		hird;
3792 
3793 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3794 			!udev->lpm_capable)
3795 		return -EPERM;
3796 
3797 	if (!udev->parent || udev->parent->parent ||
3798 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3799 		return -EPERM;
3800 
3801 	if (udev->usb2_hw_lpm_capable != 1)
3802 		return -EPERM;
3803 
3804 	spin_lock_irqsave(&xhci->lock, flags);
3805 
3806 	port_array = xhci->usb2_ports;
3807 	port_num = udev->portnum - 1;
3808 	pm_addr = port_array[port_num] + 1;
3809 	temp = xhci_readl(xhci, pm_addr);
3810 
3811 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3812 			enable ? "enable" : "disable", port_num);
3813 
3814 	hird = xhci_calculate_hird_besl(xhci, udev);
3815 
3816 	if (enable) {
3817 		temp &= ~PORT_HIRD_MASK;
3818 		temp |= PORT_HIRD(hird) | PORT_RWE;
3819 		xhci_writel(xhci, temp, pm_addr);
3820 		temp = xhci_readl(xhci, pm_addr);
3821 		temp |= PORT_HLE;
3822 		xhci_writel(xhci, temp, pm_addr);
3823 	} else {
3824 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3825 		xhci_writel(xhci, temp, pm_addr);
3826 	}
3827 
3828 	spin_unlock_irqrestore(&xhci->lock, flags);
3829 	return 0;
3830 }
3831 
3832 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3833 {
3834 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3835 	int		ret;
3836 
3837 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3838 	if (!ret) {
3839 		xhci_dbg(xhci, "software LPM test succeed\n");
3840 		if (xhci->hw_lpm_support == 1) {
3841 			udev->usb2_hw_lpm_capable = 1;
3842 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3843 			if (!ret)
3844 				udev->usb2_hw_lpm_enabled = 1;
3845 		}
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 #else
3852 
3853 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3854 				struct usb_device *udev, int enable)
3855 {
3856 	return 0;
3857 }
3858 
3859 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3860 {
3861 	return 0;
3862 }
3863 
3864 #endif /* CONFIG_USB_SUSPEND */
3865 
3866 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3867  * internal data structures for the device.
3868  */
3869 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3870 			struct usb_tt *tt, gfp_t mem_flags)
3871 {
3872 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3873 	struct xhci_virt_device *vdev;
3874 	struct xhci_command *config_cmd;
3875 	struct xhci_input_control_ctx *ctrl_ctx;
3876 	struct xhci_slot_ctx *slot_ctx;
3877 	unsigned long flags;
3878 	unsigned think_time;
3879 	int ret;
3880 
3881 	/* Ignore root hubs */
3882 	if (!hdev->parent)
3883 		return 0;
3884 
3885 	vdev = xhci->devs[hdev->slot_id];
3886 	if (!vdev) {
3887 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3888 		return -EINVAL;
3889 	}
3890 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3891 	if (!config_cmd) {
3892 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3893 		return -ENOMEM;
3894 	}
3895 
3896 	spin_lock_irqsave(&xhci->lock, flags);
3897 	if (hdev->speed == USB_SPEED_HIGH &&
3898 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3899 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3900 		xhci_free_command(xhci, config_cmd);
3901 		spin_unlock_irqrestore(&xhci->lock, flags);
3902 		return -ENOMEM;
3903 	}
3904 
3905 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3906 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3907 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3908 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3909 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3910 	if (tt->multi)
3911 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3912 	if (xhci->hci_version > 0x95) {
3913 		xhci_dbg(xhci, "xHCI version %x needs hub "
3914 				"TT think time and number of ports\n",
3915 				(unsigned int) xhci->hci_version);
3916 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3917 		/* Set TT think time - convert from ns to FS bit times.
3918 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3919 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3920 		 *
3921 		 * xHCI 1.0: this field shall be 0 if the device is not a
3922 		 * High-spped hub.
3923 		 */
3924 		think_time = tt->think_time;
3925 		if (think_time != 0)
3926 			think_time = (think_time / 666) - 1;
3927 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3928 			slot_ctx->tt_info |=
3929 				cpu_to_le32(TT_THINK_TIME(think_time));
3930 	} else {
3931 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3932 				"TT think time or number of ports\n",
3933 				(unsigned int) xhci->hci_version);
3934 	}
3935 	slot_ctx->dev_state = 0;
3936 	spin_unlock_irqrestore(&xhci->lock, flags);
3937 
3938 	xhci_dbg(xhci, "Set up %s for hub device.\n",
3939 			(xhci->hci_version > 0x95) ?
3940 			"configure endpoint" : "evaluate context");
3941 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3942 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3943 
3944 	/* Issue and wait for the configure endpoint or
3945 	 * evaluate context command.
3946 	 */
3947 	if (xhci->hci_version > 0x95)
3948 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3949 				false, false);
3950 	else
3951 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3952 				true, false);
3953 
3954 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3955 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3956 
3957 	xhci_free_command(xhci, config_cmd);
3958 	return ret;
3959 }
3960 
3961 int xhci_get_frame(struct usb_hcd *hcd)
3962 {
3963 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3964 	/* EHCI mods by the periodic size.  Why? */
3965 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3966 }
3967 
3968 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3969 {
3970 	struct xhci_hcd		*xhci;
3971 	struct device		*dev = hcd->self.controller;
3972 	int			retval;
3973 	u32			temp;
3974 
3975 	/* Accept arbitrarily long scatter-gather lists */
3976 	hcd->self.sg_tablesize = ~0;
3977 
3978 	if (usb_hcd_is_primary_hcd(hcd)) {
3979 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3980 		if (!xhci)
3981 			return -ENOMEM;
3982 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3983 		xhci->main_hcd = hcd;
3984 		/* Mark the first roothub as being USB 2.0.
3985 		 * The xHCI driver will register the USB 3.0 roothub.
3986 		 */
3987 		hcd->speed = HCD_USB2;
3988 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
3989 		/*
3990 		 * USB 2.0 roothub under xHCI has an integrated TT,
3991 		 * (rate matching hub) as opposed to having an OHCI/UHCI
3992 		 * companion controller.
3993 		 */
3994 		hcd->has_tt = 1;
3995 	} else {
3996 		/* xHCI private pointer was set in xhci_pci_probe for the second
3997 		 * registered roothub.
3998 		 */
3999 		xhci = hcd_to_xhci(hcd);
4000 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4001 		if (HCC_64BIT_ADDR(temp)) {
4002 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4003 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4004 		} else {
4005 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4006 		}
4007 		return 0;
4008 	}
4009 
4010 	xhci->cap_regs = hcd->regs;
4011 	xhci->op_regs = hcd->regs +
4012 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4013 	xhci->run_regs = hcd->regs +
4014 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4015 	/* Cache read-only capability registers */
4016 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4017 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4018 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4019 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4020 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4021 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4022 	xhci_print_registers(xhci);
4023 
4024 	get_quirks(dev, xhci);
4025 
4026 	/* Make sure the HC is halted. */
4027 	retval = xhci_halt(xhci);
4028 	if (retval)
4029 		goto error;
4030 
4031 	xhci_dbg(xhci, "Resetting HCD\n");
4032 	/* Reset the internal HC memory state and registers. */
4033 	retval = xhci_reset(xhci);
4034 	if (retval)
4035 		goto error;
4036 	xhci_dbg(xhci, "Reset complete\n");
4037 
4038 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4039 	if (HCC_64BIT_ADDR(temp)) {
4040 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4041 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4042 	} else {
4043 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4044 	}
4045 
4046 	xhci_dbg(xhci, "Calling HCD init\n");
4047 	/* Initialize HCD and host controller data structures. */
4048 	retval = xhci_init(hcd);
4049 	if (retval)
4050 		goto error;
4051 	xhci_dbg(xhci, "Called HCD init\n");
4052 	return 0;
4053 error:
4054 	kfree(xhci);
4055 	return retval;
4056 }
4057 
4058 MODULE_DESCRIPTION(DRIVER_DESC);
4059 MODULE_AUTHOR(DRIVER_AUTHOR);
4060 MODULE_LICENSE("GPL");
4061 
4062 static int __init xhci_hcd_init(void)
4063 {
4064 	int retval;
4065 
4066 	retval = xhci_register_pci();
4067 	if (retval < 0) {
4068 		printk(KERN_DEBUG "Problem registering PCI driver.");
4069 		return retval;
4070 	}
4071 	retval = xhci_register_plat();
4072 	if (retval < 0) {
4073 		printk(KERN_DEBUG "Problem registering platform driver.");
4074 		goto unreg_pci;
4075 	}
4076 	/*
4077 	 * Check the compiler generated sizes of structures that must be laid
4078 	 * out in specific ways for hardware access.
4079 	 */
4080 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4081 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4082 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4083 	/* xhci_device_control has eight fields, and also
4084 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4085 	 */
4086 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4087 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4088 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4089 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4090 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4091 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4092 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4093 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4094 	return 0;
4095 unreg_pci:
4096 	xhci_unregister_pci();
4097 	return retval;
4098 }
4099 module_init(xhci_hcd_init);
4100 
4101 static void __exit xhci_hcd_cleanup(void)
4102 {
4103 	xhci_unregister_pci();
4104 	xhci_unregister_plat();
4105 }
4106 module_exit(xhci_hcd_cleanup);
4107