xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 
73 	do {
74 		result = readl(ptr);
75 		if (result == ~(u32)0)		/* card removed */
76 			return -ENODEV;
77 		result &= mask;
78 		if (result == done)
79 			return 0;
80 		udelay(1);
81 		usec--;
82 	} while (usec > 0);
83 	return -ETIMEDOUT;
84 }
85 
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 	u32 halted;
92 	u32 cmd;
93 	u32 mask;
94 
95 	mask = ~(XHCI_IRQS);
96 	halted = readl(&xhci->op_regs->status) & STS_HALT;
97 	if (!halted)
98 		mask &= ~CMD_RUN;
99 
100 	cmd = readl(&xhci->op_regs->command);
101 	cmd &= mask;
102 	writel(cmd, &xhci->op_regs->command);
103 }
104 
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 	int ret;
116 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 	xhci_quiesce(xhci);
118 
119 	ret = xhci_handshake(&xhci->op_regs->status,
120 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 	if (ret) {
122 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 		return ret;
124 	}
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret, i;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command,
202 			CMD_RESET, 0, 10 * 1000 * 1000);
203 	if (ret)
204 		return ret;
205 
206 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208 
209 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 			 "Wait for controller to be ready for doorbell rings");
211 	/*
212 	 * xHCI cannot write to any doorbells or operational registers other
213 	 * than status until the "Controller Not Ready" flag is cleared.
214 	 */
215 	ret = xhci_handshake(&xhci->op_regs->status,
216 			STS_CNR, 0, 10 * 1000 * 1000);
217 
218 	for (i = 0; i < 2; i++) {
219 		xhci->bus_state[i].port_c_suspend = 0;
220 		xhci->bus_state[i].suspended_ports = 0;
221 		xhci->bus_state[i].resuming_ports = 0;
222 	}
223 
224 	return ret;
225 }
226 
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230 	int err, i;
231 	u64 val;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
271 		struct xhci_intr_reg __iomem *ir;
272 
273 		ir = &xhci->run_regs->ir_set[i];
274 		val = xhci_read_64(xhci, &ir->erst_base);
275 		if (upper_32_bits(val))
276 			xhci_write_64(xhci, 0, &ir->erst_base);
277 		val= xhci_read_64(xhci, &ir->erst_dequeue);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
280 	}
281 
282 	/* Wait for the fault to appear. It will be cleared on reset */
283 	err = xhci_handshake(&xhci->op_regs->status,
284 			     STS_FATAL, STS_FATAL,
285 			     XHCI_MAX_HALT_USEC);
286 	if (!err)
287 		xhci_info(xhci, "Fault detected\n");
288 }
289 
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296 	int ret;
297 	/*
298 	 * TODO:Check with MSI Soc for sysdev
299 	 */
300 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301 
302 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303 	if (ret < 0) {
304 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305 				"failed to allocate MSI entry");
306 		return ret;
307 	}
308 
309 	ret = request_irq(pdev->irq, xhci_msi_irq,
310 				0, "xhci_hcd", xhci_to_hcd(xhci));
311 	if (ret) {
312 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 				"disable MSI interrupt");
314 		pci_free_irq_vectors(pdev);
315 	}
316 
317 	return ret;
318 }
319 
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325 	int i, ret = 0;
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328 
329 	/*
330 	 * calculate number of msi-x vectors supported.
331 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
333 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
334 	 *   Add additional 1 vector to ensure always available interrupt.
335 	 */
336 	xhci->msix_count = min(num_online_cpus() + 1,
337 				HCS_MAX_INTRS(xhci->hcs_params1));
338 
339 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340 			PCI_IRQ_MSIX);
341 	if (ret < 0) {
342 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343 				"Failed to enable MSI-X");
344 		return ret;
345 	}
346 
347 	for (i = 0; i < xhci->msix_count; i++) {
348 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349 				"xhci_hcd", xhci_to_hcd(xhci));
350 		if (ret)
351 			goto disable_msix;
352 	}
353 
354 	hcd->msix_enabled = 1;
355 	return ret;
356 
357 disable_msix:
358 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359 	while (--i >= 0)
360 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361 	pci_free_irq_vectors(pdev);
362 	return ret;
363 }
364 
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
369 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370 
371 	if (xhci->quirks & XHCI_PLAT)
372 		return;
373 
374 	/* return if using legacy interrupt */
375 	if (hcd->irq > 0)
376 		return;
377 
378 	if (hcd->msix_enabled) {
379 		int i;
380 
381 		for (i = 0; i < xhci->msix_count; i++)
382 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383 	} else {
384 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385 	}
386 
387 	pci_free_irq_vectors(pdev);
388 	hcd->msix_enabled = 0;
389 }
390 
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
394 
395 	if (hcd->msix_enabled) {
396 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397 		int i;
398 
399 		for (i = 0; i < xhci->msix_count; i++)
400 			synchronize_irq(pci_irq_vector(pdev, i));
401 	}
402 }
403 
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407 	struct pci_dev  *pdev;
408 	int ret;
409 
410 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
411 	if (xhci->quirks & XHCI_PLAT)
412 		return 0;
413 
414 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415 	/*
416 	 * Some Fresco Logic host controllers advertise MSI, but fail to
417 	 * generate interrupts.  Don't even try to enable MSI.
418 	 */
419 	if (xhci->quirks & XHCI_BROKEN_MSI)
420 		goto legacy_irq;
421 
422 	/* unregister the legacy interrupt */
423 	if (hcd->irq)
424 		free_irq(hcd->irq, hcd);
425 	hcd->irq = 0;
426 
427 	ret = xhci_setup_msix(xhci);
428 	if (ret)
429 		/* fall back to msi*/
430 		ret = xhci_setup_msi(xhci);
431 
432 	if (!ret) {
433 		hcd->msi_enabled = 1;
434 		return 0;
435 	}
436 
437 	if (!pdev->irq) {
438 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439 		return -EINVAL;
440 	}
441 
442  legacy_irq:
443 	if (!strlen(hcd->irq_descr))
444 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445 			 hcd->driver->description, hcd->self.busnum);
446 
447 	/* fall back to legacy interrupt*/
448 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 			hcd->irq_descr, hcd);
450 	if (ret) {
451 		xhci_err(xhci, "request interrupt %d failed\n",
452 				pdev->irq);
453 		return ret;
454 	}
455 	hcd->irq = pdev->irq;
456 	return 0;
457 }
458 
459 #else
460 
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463 	return 0;
464 }
465 
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469 
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473 
474 #endif
475 
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478 	struct xhci_hcd *xhci;
479 	struct usb_hcd *hcd;
480 	struct xhci_hub *rhub;
481 	u32 temp;
482 	int i;
483 
484 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485 	rhub = &xhci->usb3_rhub;
486 
487 	for (i = 0; i < rhub->num_ports; i++) {
488 		temp = readl(rhub->ports[i]->addr);
489 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490 			/*
491 			 * Compliance Mode Detected. Letting USB Core
492 			 * handle the Warm Reset
493 			 */
494 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 					"Compliance mode detected->port %d",
496 					i + 1);
497 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 					"Attempting compliance mode recovery");
499 			hcd = xhci->shared_hcd;
500 
501 			if (hcd->state == HC_STATE_SUSPENDED)
502 				usb_hcd_resume_root_hub(hcd);
503 
504 			usb_hcd_poll_rh_status(hcd);
505 		}
506 	}
507 
508 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509 		mod_timer(&xhci->comp_mode_recovery_timer,
510 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512 
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525 	xhci->port_status_u0 = 0;
526 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527 		    0);
528 	xhci->comp_mode_recovery_timer.expires = jiffies +
529 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530 
531 	add_timer(&xhci->comp_mode_recovery_timer);
532 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 			"Compliance mode recovery timer initialized");
534 }
535 
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544 	const char *dmi_product_name, *dmi_sys_vendor;
545 
546 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548 	if (!dmi_product_name || !dmi_sys_vendor)
549 		return false;
550 
551 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552 		return false;
553 
554 	if (strstr(dmi_product_name, "Z420") ||
555 			strstr(dmi_product_name, "Z620") ||
556 			strstr(dmi_product_name, "Z820") ||
557 			strstr(dmi_product_name, "Z1 Workstation"))
558 		return true;
559 
560 	return false;
561 }
562 
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567 
568 
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579 	int retval = 0;
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582 	spin_lock_init(&xhci->lock);
583 	if (xhci->hci_version == 0x95 && link_quirk) {
584 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585 				"QUIRK: Not clearing Link TRB chain bits.");
586 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587 	} else {
588 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589 				"xHCI doesn't need link TRB QUIRK");
590 	}
591 	retval = xhci_mem_init(xhci, GFP_KERNEL);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593 
594 	/* Initializing Compliance Mode Recovery Data If Needed */
595 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597 		compliance_mode_recovery_timer_init(xhci);
598 	}
599 
600 	return retval;
601 }
602 
603 /*-------------------------------------------------------------------------*/
604 
605 
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608 	if (xhci_start(xhci)) {
609 		xhci_halt(xhci);
610 		return -ENODEV;
611 	}
612 	xhci->shared_hcd->state = HC_STATE_RUNNING;
613 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614 
615 	if (xhci->quirks & XHCI_NEC_HOST)
616 		xhci_ring_cmd_db(xhci);
617 
618 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619 			"Finished xhci_run for USB3 roothub");
620 	return 0;
621 }
622 
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637 	u32 temp;
638 	u64 temp_64;
639 	int ret;
640 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641 
642 	/* Start the xHCI host controller running only after the USB 2.0 roothub
643 	 * is setup.
644 	 */
645 
646 	hcd->uses_new_polling = 1;
647 	if (!usb_hcd_is_primary_hcd(hcd))
648 		return xhci_run_finished(xhci);
649 
650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651 
652 	ret = xhci_try_enable_msi(hcd);
653 	if (ret)
654 		return ret;
655 
656 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657 	temp_64 &= ~ERST_PTR_MASK;
658 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660 
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"// Set the interrupt modulation register");
663 	temp = readl(&xhci->ir_set->irq_control);
664 	temp &= ~ER_IRQ_INTERVAL_MASK;
665 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666 	writel(temp, &xhci->ir_set->irq_control);
667 
668 	/* Set the HCD state before we enable the irqs */
669 	temp = readl(&xhci->op_regs->command);
670 	temp |= (CMD_EIE);
671 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672 			"// Enable interrupts, cmd = 0x%x.", temp);
673 	writel(temp, &xhci->op_regs->command);
674 
675 	temp = readl(&xhci->ir_set->irq_pending);
676 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680 
681 	if (xhci->quirks & XHCI_NEC_HOST) {
682 		struct xhci_command *command;
683 
684 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685 		if (!command)
686 			return -ENOMEM;
687 
688 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689 				TRB_TYPE(TRB_NEC_GET_FW));
690 		if (ret)
691 			xhci_free_command(xhci, command);
692 	}
693 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694 			"Finished xhci_run for USB2 roothub");
695 
696 	xhci_dbc_init(xhci);
697 
698 	xhci_debugfs_init(xhci);
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703 
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715 	u32 temp;
716 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717 
718 	mutex_lock(&xhci->mutex);
719 
720 	/* Only halt host and free memory after both hcds are removed */
721 	if (!usb_hcd_is_primary_hcd(hcd)) {
722 		mutex_unlock(&xhci->mutex);
723 		return;
724 	}
725 
726 	xhci_dbc_exit(xhci);
727 
728 	spin_lock_irq(&xhci->lock);
729 	xhci->xhc_state |= XHCI_STATE_HALTED;
730 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731 	xhci_halt(xhci);
732 	xhci_reset(xhci);
733 	spin_unlock_irq(&xhci->lock);
734 
735 	xhci_cleanup_msix(xhci);
736 
737 	/* Deleting Compliance Mode Recovery Timer */
738 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739 			(!(xhci_all_ports_seen_u0(xhci)))) {
740 		del_timer_sync(&xhci->comp_mode_recovery_timer);
741 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742 				"%s: compliance mode recovery timer deleted",
743 				__func__);
744 	}
745 
746 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
747 		usb_amd_dev_put();
748 
749 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 			"// Disabling event ring interrupts");
751 	temp = readl(&xhci->op_regs->status);
752 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753 	temp = readl(&xhci->ir_set->irq_pending);
754 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755 
756 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757 	xhci_mem_cleanup(xhci);
758 	xhci_debugfs_exit(xhci);
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 			"xhci_stop completed - status = %x",
761 			readl(&xhci->op_regs->status));
762 	mutex_unlock(&xhci->mutex);
763 }
764 
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
774 static void xhci_shutdown(struct usb_hcd *hcd)
775 {
776 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777 
778 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
779 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780 
781 	spin_lock_irq(&xhci->lock);
782 	xhci_halt(xhci);
783 	/* Workaround for spurious wakeups at shutdown with HSW */
784 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
785 		xhci_reset(xhci);
786 	spin_unlock_irq(&xhci->lock);
787 
788 	xhci_cleanup_msix(xhci);
789 
790 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
791 			"xhci_shutdown completed - status = %x",
792 			readl(&xhci->op_regs->status));
793 
794 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
795 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
796 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
797 }
798 
799 #ifdef CONFIG_PM
800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802 	xhci->s3.command = readl(&xhci->op_regs->command);
803 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812 
813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815 	writel(xhci->s3.command, &xhci->op_regs->command);
816 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825 
826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828 	u64	val_64;
829 
830 	/* step 2: initialize command ring buffer */
831 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 				      xhci->cmd_ring->dequeue) &
835 		 (u64) ~CMD_RING_RSVD_BITS) |
836 		xhci->cmd_ring->cycle_state;
837 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 			"// Setting command ring address to 0x%llx",
839 			(long unsigned long) val_64);
840 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842 
843 /*
844  * The whole command ring must be cleared to zero when we suspend the host.
845  *
846  * The host doesn't save the command ring pointer in the suspend well, so we
847  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
848  * aligned, because of the reserved bits in the command ring dequeue pointer
849  * register.  Therefore, we can't just set the dequeue pointer back in the
850  * middle of the ring (TRBs are 16-byte aligned).
851  */
852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854 	struct xhci_ring *ring;
855 	struct xhci_segment *seg;
856 
857 	ring = xhci->cmd_ring;
858 	seg = ring->deq_seg;
859 	do {
860 		memset(seg->trbs, 0,
861 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 			cpu_to_le32(~TRB_CYCLE);
864 		seg = seg->next;
865 	} while (seg != ring->deq_seg);
866 
867 	/* Reset the software enqueue and dequeue pointers */
868 	ring->deq_seg = ring->first_seg;
869 	ring->dequeue = ring->first_seg->trbs;
870 	ring->enq_seg = ring->deq_seg;
871 	ring->enqueue = ring->dequeue;
872 
873 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 	/*
875 	 * Ring is now zeroed, so the HW should look for change of ownership
876 	 * when the cycle bit is set to 1.
877 	 */
878 	ring->cycle_state = 1;
879 
880 	/*
881 	 * Reset the hardware dequeue pointer.
882 	 * Yes, this will need to be re-written after resume, but we're paranoid
883 	 * and want to make sure the hardware doesn't access bogus memory
884 	 * because, say, the BIOS or an SMI started the host without changing
885 	 * the command ring pointers.
886 	 */
887 	xhci_set_cmd_ring_deq(xhci);
888 }
889 
890 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
891 {
892 	struct xhci_port **ports;
893 	int port_index;
894 	unsigned long flags;
895 	u32 t1, t2;
896 
897 	spin_lock_irqsave(&xhci->lock, flags);
898 
899 	/* disable usb3 ports Wake bits */
900 	port_index = xhci->usb3_rhub.num_ports;
901 	ports = xhci->usb3_rhub.ports;
902 	while (port_index--) {
903 		t1 = readl(ports[port_index]->addr);
904 		t1 = xhci_port_state_to_neutral(t1);
905 		t2 = t1 & ~PORT_WAKE_BITS;
906 		if (t1 != t2)
907 			writel(t2, ports[port_index]->addr);
908 	}
909 
910 	/* disable usb2 ports Wake bits */
911 	port_index = xhci->usb2_rhub.num_ports;
912 	ports = xhci->usb2_rhub.ports;
913 	while (port_index--) {
914 		t1 = readl(ports[port_index]->addr);
915 		t1 = xhci_port_state_to_neutral(t1);
916 		t2 = t1 & ~PORT_WAKE_BITS;
917 		if (t1 != t2)
918 			writel(t2, ports[port_index]->addr);
919 	}
920 
921 	spin_unlock_irqrestore(&xhci->lock, flags);
922 }
923 
924 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
925 {
926 	struct xhci_port	**ports;
927 	int			port_index;
928 	u32			status;
929 	u32			portsc;
930 
931 	status = readl(&xhci->op_regs->status);
932 	if (status & STS_EINT)
933 		return true;
934 	/*
935 	 * Checking STS_EINT is not enough as there is a lag between a change
936 	 * bit being set and the Port Status Change Event that it generated
937 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
938 	 */
939 
940 	port_index = xhci->usb2_rhub.num_ports;
941 	ports = xhci->usb2_rhub.ports;
942 	while (port_index--) {
943 		portsc = readl(ports[port_index]->addr);
944 		if (portsc & PORT_CHANGE_MASK ||
945 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
946 			return true;
947 	}
948 	port_index = xhci->usb3_rhub.num_ports;
949 	ports = xhci->usb3_rhub.ports;
950 	while (port_index--) {
951 		portsc = readl(ports[port_index]->addr);
952 		if (portsc & PORT_CHANGE_MASK ||
953 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 			return true;
955 	}
956 	return false;
957 }
958 
959 /*
960  * Stop HC (not bus-specific)
961  *
962  * This is called when the machine transition into S3/S4 mode.
963  *
964  */
965 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
966 {
967 	int			rc = 0;
968 	unsigned int		delay = XHCI_MAX_HALT_USEC;
969 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
970 	u32			command;
971 	u32			res;
972 
973 	if (!hcd->state)
974 		return 0;
975 
976 	if (hcd->state != HC_STATE_SUSPENDED ||
977 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
978 		return -EINVAL;
979 
980 	xhci_dbc_suspend(xhci);
981 
982 	/* Clear root port wake on bits if wakeup not allowed. */
983 	if (!do_wakeup)
984 		xhci_disable_port_wake_on_bits(xhci);
985 
986 	/* Don't poll the roothubs on bus suspend. */
987 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
988 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
989 	del_timer_sync(&hcd->rh_timer);
990 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
991 	del_timer_sync(&xhci->shared_hcd->rh_timer);
992 
993 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
994 		usleep_range(1000, 1500);
995 
996 	spin_lock_irq(&xhci->lock);
997 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
998 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
999 	/* step 1: stop endpoint */
1000 	/* skipped assuming that port suspend has done */
1001 
1002 	/* step 2: clear Run/Stop bit */
1003 	command = readl(&xhci->op_regs->command);
1004 	command &= ~CMD_RUN;
1005 	writel(command, &xhci->op_regs->command);
1006 
1007 	/* Some chips from Fresco Logic need an extraordinary delay */
1008 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1009 
1010 	if (xhci_handshake(&xhci->op_regs->status,
1011 		      STS_HALT, STS_HALT, delay)) {
1012 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1013 		spin_unlock_irq(&xhci->lock);
1014 		return -ETIMEDOUT;
1015 	}
1016 	xhci_clear_command_ring(xhci);
1017 
1018 	/* step 3: save registers */
1019 	xhci_save_registers(xhci);
1020 
1021 	/* step 4: set CSS flag */
1022 	command = readl(&xhci->op_regs->command);
1023 	command |= CMD_CSS;
1024 	writel(command, &xhci->op_regs->command);
1025 	xhci->broken_suspend = 0;
1026 	if (xhci_handshake(&xhci->op_regs->status,
1027 				STS_SAVE, 0, 10 * 1000)) {
1028 	/*
1029 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1030 	 * SSS bit of USBSTS and when driver tries to poll
1031 	 * to see if the xHC clears BIT(8) which never happens
1032 	 * and driver assumes that controller is not responding
1033 	 * and times out. To workaround this, its good to check
1034 	 * if SRE and HCE bits are not set (as per xhci
1035 	 * Section 5.4.2) and bypass the timeout.
1036 	 */
1037 		res = readl(&xhci->op_regs->status);
1038 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1039 		    (((res & STS_SRE) == 0) &&
1040 				((res & STS_HCE) == 0))) {
1041 			xhci->broken_suspend = 1;
1042 		} else {
1043 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1044 			spin_unlock_irq(&xhci->lock);
1045 			return -ETIMEDOUT;
1046 		}
1047 	}
1048 	spin_unlock_irq(&xhci->lock);
1049 
1050 	/*
1051 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1052 	 * is about to be suspended.
1053 	 */
1054 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1055 			(!(xhci_all_ports_seen_u0(xhci)))) {
1056 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1057 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1058 				"%s: compliance mode recovery timer deleted",
1059 				__func__);
1060 	}
1061 
1062 	/* step 5: remove core well power */
1063 	/* synchronize irq when using MSI-X */
1064 	xhci_msix_sync_irqs(xhci);
1065 
1066 	return rc;
1067 }
1068 EXPORT_SYMBOL_GPL(xhci_suspend);
1069 
1070 /*
1071  * start xHC (not bus-specific)
1072  *
1073  * This is called when the machine transition from S3/S4 mode.
1074  *
1075  */
1076 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1077 {
1078 	u32			command, temp = 0;
1079 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1080 	struct usb_hcd		*secondary_hcd;
1081 	int			retval = 0;
1082 	bool			comp_timer_running = false;
1083 
1084 	if (!hcd->state)
1085 		return 0;
1086 
1087 	/* Wait a bit if either of the roothubs need to settle from the
1088 	 * transition into bus suspend.
1089 	 */
1090 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1091 			time_before(jiffies,
1092 				xhci->bus_state[1].next_statechange))
1093 		msleep(100);
1094 
1095 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1096 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1097 
1098 	spin_lock_irq(&xhci->lock);
1099 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1100 		hibernated = true;
1101 
1102 	if (!hibernated) {
1103 		/* step 1: restore register */
1104 		xhci_restore_registers(xhci);
1105 		/* step 2: initialize command ring buffer */
1106 		xhci_set_cmd_ring_deq(xhci);
1107 		/* step 3: restore state and start state*/
1108 		/* step 3: set CRS flag */
1109 		command = readl(&xhci->op_regs->command);
1110 		command |= CMD_CRS;
1111 		writel(command, &xhci->op_regs->command);
1112 		/*
1113 		 * Some controllers take up to 55+ ms to complete the controller
1114 		 * restore so setting the timeout to 100ms. Xhci specification
1115 		 * doesn't mention any timeout value.
1116 		 */
1117 		if (xhci_handshake(&xhci->op_regs->status,
1118 			      STS_RESTORE, 0, 100 * 1000)) {
1119 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1120 			spin_unlock_irq(&xhci->lock);
1121 			return -ETIMEDOUT;
1122 		}
1123 		temp = readl(&xhci->op_regs->status);
1124 	}
1125 
1126 	/* If restore operation fails, re-initialize the HC during resume */
1127 	if ((temp & STS_SRE) || hibernated) {
1128 
1129 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1130 				!(xhci_all_ports_seen_u0(xhci))) {
1131 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1132 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1133 				"Compliance Mode Recovery Timer deleted!");
1134 		}
1135 
1136 		/* Let the USB core know _both_ roothubs lost power. */
1137 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1138 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1139 
1140 		xhci_dbg(xhci, "Stop HCD\n");
1141 		xhci_halt(xhci);
1142 		xhci_zero_64b_regs(xhci);
1143 		xhci_reset(xhci);
1144 		spin_unlock_irq(&xhci->lock);
1145 		xhci_cleanup_msix(xhci);
1146 
1147 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1148 		temp = readl(&xhci->op_regs->status);
1149 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1150 		temp = readl(&xhci->ir_set->irq_pending);
1151 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1152 
1153 		xhci_dbg(xhci, "cleaning up memory\n");
1154 		xhci_mem_cleanup(xhci);
1155 		xhci_debugfs_exit(xhci);
1156 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1157 			    readl(&xhci->op_regs->status));
1158 
1159 		/* USB core calls the PCI reinit and start functions twice:
1160 		 * first with the primary HCD, and then with the secondary HCD.
1161 		 * If we don't do the same, the host will never be started.
1162 		 */
1163 		if (!usb_hcd_is_primary_hcd(hcd))
1164 			secondary_hcd = hcd;
1165 		else
1166 			secondary_hcd = xhci->shared_hcd;
1167 
1168 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1169 		retval = xhci_init(hcd->primary_hcd);
1170 		if (retval)
1171 			return retval;
1172 		comp_timer_running = true;
1173 
1174 		xhci_dbg(xhci, "Start the primary HCD\n");
1175 		retval = xhci_run(hcd->primary_hcd);
1176 		if (!retval) {
1177 			xhci_dbg(xhci, "Start the secondary HCD\n");
1178 			retval = xhci_run(secondary_hcd);
1179 		}
1180 		hcd->state = HC_STATE_SUSPENDED;
1181 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1182 		goto done;
1183 	}
1184 
1185 	/* step 4: set Run/Stop bit */
1186 	command = readl(&xhci->op_regs->command);
1187 	command |= CMD_RUN;
1188 	writel(command, &xhci->op_regs->command);
1189 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1190 		  0, 250 * 1000);
1191 
1192 	/* step 5: walk topology and initialize portsc,
1193 	 * portpmsc and portli
1194 	 */
1195 	/* this is done in bus_resume */
1196 
1197 	/* step 6: restart each of the previously
1198 	 * Running endpoints by ringing their doorbells
1199 	 */
1200 
1201 	spin_unlock_irq(&xhci->lock);
1202 
1203 	xhci_dbc_resume(xhci);
1204 
1205  done:
1206 	if (retval == 0) {
1207 		/* Resume root hubs only when have pending events. */
1208 		if (xhci_pending_portevent(xhci)) {
1209 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1210 			usb_hcd_resume_root_hub(hcd);
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1216 	 * be re-initialized Always after a system resume. Ports are subject
1217 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1218 	 * ports have entered previously to U0 before system's suspension.
1219 	 */
1220 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1221 		compliance_mode_recovery_timer_init(xhci);
1222 
1223 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1224 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1225 
1226 	/* Re-enable port polling. */
1227 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1228 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1229 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1230 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1231 	usb_hcd_poll_rh_status(hcd);
1232 
1233 	return retval;
1234 }
1235 EXPORT_SYMBOL_GPL(xhci_resume);
1236 #endif	/* CONFIG_PM */
1237 
1238 /*-------------------------------------------------------------------------*/
1239 
1240 /**
1241  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1242  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1243  * value to right shift 1 for the bitmask.
1244  *
1245  * Index  = (epnum * 2) + direction - 1,
1246  * where direction = 0 for OUT, 1 for IN.
1247  * For control endpoints, the IN index is used (OUT index is unused), so
1248  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1249  */
1250 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1251 {
1252 	unsigned int index;
1253 	if (usb_endpoint_xfer_control(desc))
1254 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1255 	else
1256 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1257 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1258 	return index;
1259 }
1260 
1261 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1262  * address from the XHCI endpoint index.
1263  */
1264 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1265 {
1266 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1267 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1268 	return direction | number;
1269 }
1270 
1271 /* Find the flag for this endpoint (for use in the control context).  Use the
1272  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1273  * bit 1, etc.
1274  */
1275 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1276 {
1277 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1278 }
1279 
1280 /* Find the flag for this endpoint (for use in the control context).  Use the
1281  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1282  * bit 1, etc.
1283  */
1284 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1285 {
1286 	return 1 << (ep_index + 1);
1287 }
1288 
1289 /* Compute the last valid endpoint context index.  Basically, this is the
1290  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1291  * we find the most significant bit set in the added contexts flags.
1292  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1293  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1294  */
1295 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1296 {
1297 	return fls(added_ctxs) - 1;
1298 }
1299 
1300 /* Returns 1 if the arguments are OK;
1301  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1302  */
1303 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1304 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1305 		const char *func) {
1306 	struct xhci_hcd	*xhci;
1307 	struct xhci_virt_device	*virt_dev;
1308 
1309 	if (!hcd || (check_ep && !ep) || !udev) {
1310 		pr_debug("xHCI %s called with invalid args\n", func);
1311 		return -EINVAL;
1312 	}
1313 	if (!udev->parent) {
1314 		pr_debug("xHCI %s called for root hub\n", func);
1315 		return 0;
1316 	}
1317 
1318 	xhci = hcd_to_xhci(hcd);
1319 	if (check_virt_dev) {
1320 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1321 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1322 					func);
1323 			return -EINVAL;
1324 		}
1325 
1326 		virt_dev = xhci->devs[udev->slot_id];
1327 		if (virt_dev->udev != udev) {
1328 			xhci_dbg(xhci, "xHCI %s called with udev and "
1329 					  "virt_dev does not match\n", func);
1330 			return -EINVAL;
1331 		}
1332 	}
1333 
1334 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1335 		return -ENODEV;
1336 
1337 	return 1;
1338 }
1339 
1340 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1341 		struct usb_device *udev, struct xhci_command *command,
1342 		bool ctx_change, bool must_succeed);
1343 
1344 /*
1345  * Full speed devices may have a max packet size greater than 8 bytes, but the
1346  * USB core doesn't know that until it reads the first 8 bytes of the
1347  * descriptor.  If the usb_device's max packet size changes after that point,
1348  * we need to issue an evaluate context command and wait on it.
1349  */
1350 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1351 		unsigned int ep_index, struct urb *urb)
1352 {
1353 	struct xhci_container_ctx *out_ctx;
1354 	struct xhci_input_control_ctx *ctrl_ctx;
1355 	struct xhci_ep_ctx *ep_ctx;
1356 	struct xhci_command *command;
1357 	int max_packet_size;
1358 	int hw_max_packet_size;
1359 	int ret = 0;
1360 
1361 	out_ctx = xhci->devs[slot_id]->out_ctx;
1362 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1363 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1364 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1365 	if (hw_max_packet_size != max_packet_size) {
1366 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1367 				"Max Packet Size for ep 0 changed.");
1368 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1369 				"Max packet size in usb_device = %d",
1370 				max_packet_size);
1371 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1372 				"Max packet size in xHCI HW = %d",
1373 				hw_max_packet_size);
1374 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1375 				"Issuing evaluate context command.");
1376 
1377 		/* Set up the input context flags for the command */
1378 		/* FIXME: This won't work if a non-default control endpoint
1379 		 * changes max packet sizes.
1380 		 */
1381 
1382 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1383 		if (!command)
1384 			return -ENOMEM;
1385 
1386 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1387 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1388 		if (!ctrl_ctx) {
1389 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1390 					__func__);
1391 			ret = -ENOMEM;
1392 			goto command_cleanup;
1393 		}
1394 		/* Set up the modified control endpoint 0 */
1395 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1396 				xhci->devs[slot_id]->out_ctx, ep_index);
1397 
1398 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1399 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1400 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1401 
1402 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1403 		ctrl_ctx->drop_flags = 0;
1404 
1405 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1406 				true, false);
1407 
1408 		/* Clean up the input context for later use by bandwidth
1409 		 * functions.
1410 		 */
1411 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1412 command_cleanup:
1413 		kfree(command->completion);
1414 		kfree(command);
1415 	}
1416 	return ret;
1417 }
1418 
1419 /*
1420  * non-error returns are a promise to giveback() the urb later
1421  * we drop ownership so next owner (or urb unlink) can get it
1422  */
1423 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1424 {
1425 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1426 	unsigned long flags;
1427 	int ret = 0;
1428 	unsigned int slot_id, ep_index;
1429 	unsigned int *ep_state;
1430 	struct urb_priv	*urb_priv;
1431 	int num_tds;
1432 
1433 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1434 					true, true, __func__) <= 0)
1435 		return -EINVAL;
1436 
1437 	slot_id = urb->dev->slot_id;
1438 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1439 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1440 
1441 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1442 		if (!in_interrupt())
1443 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1444 		return -ESHUTDOWN;
1445 	}
1446 
1447 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1448 		num_tds = urb->number_of_packets;
1449 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1450 	    urb->transfer_buffer_length > 0 &&
1451 	    urb->transfer_flags & URB_ZERO_PACKET &&
1452 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1453 		num_tds = 2;
1454 	else
1455 		num_tds = 1;
1456 
1457 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1458 			   num_tds * sizeof(struct xhci_td), mem_flags);
1459 	if (!urb_priv)
1460 		return -ENOMEM;
1461 
1462 	urb_priv->num_tds = num_tds;
1463 	urb_priv->num_tds_done = 0;
1464 	urb->hcpriv = urb_priv;
1465 
1466 	trace_xhci_urb_enqueue(urb);
1467 
1468 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1469 		/* Check to see if the max packet size for the default control
1470 		 * endpoint changed during FS device enumeration
1471 		 */
1472 		if (urb->dev->speed == USB_SPEED_FULL) {
1473 			ret = xhci_check_maxpacket(xhci, slot_id,
1474 					ep_index, urb);
1475 			if (ret < 0) {
1476 				xhci_urb_free_priv(urb_priv);
1477 				urb->hcpriv = NULL;
1478 				return ret;
1479 			}
1480 		}
1481 	}
1482 
1483 	spin_lock_irqsave(&xhci->lock, flags);
1484 
1485 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1486 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1487 			 urb->ep->desc.bEndpointAddress, urb);
1488 		ret = -ESHUTDOWN;
1489 		goto free_priv;
1490 	}
1491 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1492 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1493 			  *ep_state);
1494 		ret = -EINVAL;
1495 		goto free_priv;
1496 	}
1497 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1498 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1499 		ret = -EINVAL;
1500 		goto free_priv;
1501 	}
1502 
1503 	switch (usb_endpoint_type(&urb->ep->desc)) {
1504 
1505 	case USB_ENDPOINT_XFER_CONTROL:
1506 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1507 					 slot_id, ep_index);
1508 		break;
1509 	case USB_ENDPOINT_XFER_BULK:
1510 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1511 					 slot_id, ep_index);
1512 		break;
1513 	case USB_ENDPOINT_XFER_INT:
1514 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1515 				slot_id, ep_index);
1516 		break;
1517 	case USB_ENDPOINT_XFER_ISOC:
1518 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1519 				slot_id, ep_index);
1520 	}
1521 
1522 	if (ret) {
1523 free_priv:
1524 		xhci_urb_free_priv(urb_priv);
1525 		urb->hcpriv = NULL;
1526 	}
1527 	spin_unlock_irqrestore(&xhci->lock, flags);
1528 	return ret;
1529 }
1530 
1531 /*
1532  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1533  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1534  * should pick up where it left off in the TD, unless a Set Transfer Ring
1535  * Dequeue Pointer is issued.
1536  *
1537  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1538  * the ring.  Since the ring is a contiguous structure, they can't be physically
1539  * removed.  Instead, there are two options:
1540  *
1541  *  1) If the HC is in the middle of processing the URB to be canceled, we
1542  *     simply move the ring's dequeue pointer past those TRBs using the Set
1543  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1544  *     when drivers timeout on the last submitted URB and attempt to cancel.
1545  *
1546  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1547  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1548  *     HC will need to invalidate the any TRBs it has cached after the stop
1549  *     endpoint command, as noted in the xHCI 0.95 errata.
1550  *
1551  *  3) The TD may have completed by the time the Stop Endpoint Command
1552  *     completes, so software needs to handle that case too.
1553  *
1554  * This function should protect against the TD enqueueing code ringing the
1555  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1556  * It also needs to account for multiple cancellations on happening at the same
1557  * time for the same endpoint.
1558  *
1559  * Note that this function can be called in any context, or so says
1560  * usb_hcd_unlink_urb()
1561  */
1562 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1563 {
1564 	unsigned long flags;
1565 	int ret, i;
1566 	u32 temp;
1567 	struct xhci_hcd *xhci;
1568 	struct urb_priv	*urb_priv;
1569 	struct xhci_td *td;
1570 	unsigned int ep_index;
1571 	struct xhci_ring *ep_ring;
1572 	struct xhci_virt_ep *ep;
1573 	struct xhci_command *command;
1574 	struct xhci_virt_device *vdev;
1575 
1576 	xhci = hcd_to_xhci(hcd);
1577 	spin_lock_irqsave(&xhci->lock, flags);
1578 
1579 	trace_xhci_urb_dequeue(urb);
1580 
1581 	/* Make sure the URB hasn't completed or been unlinked already */
1582 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1583 	if (ret)
1584 		goto done;
1585 
1586 	/* give back URB now if we can't queue it for cancel */
1587 	vdev = xhci->devs[urb->dev->slot_id];
1588 	urb_priv = urb->hcpriv;
1589 	if (!vdev || !urb_priv)
1590 		goto err_giveback;
1591 
1592 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1593 	ep = &vdev->eps[ep_index];
1594 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1595 	if (!ep || !ep_ring)
1596 		goto err_giveback;
1597 
1598 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1599 	temp = readl(&xhci->op_regs->status);
1600 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1601 		xhci_hc_died(xhci);
1602 		goto done;
1603 	}
1604 
1605 	/*
1606 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1607 	 * make sure none of the ring related pointers in this URB private data
1608 	 * are touched, such as td_list, otherwise we overwrite freed data
1609 	 */
1610 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1611 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1612 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1613 			td = &urb_priv->td[i];
1614 			if (!list_empty(&td->cancelled_td_list))
1615 				list_del_init(&td->cancelled_td_list);
1616 		}
1617 		goto err_giveback;
1618 	}
1619 
1620 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1621 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622 				"HC halted, freeing TD manually.");
1623 		for (i = urb_priv->num_tds_done;
1624 		     i < urb_priv->num_tds;
1625 		     i++) {
1626 			td = &urb_priv->td[i];
1627 			if (!list_empty(&td->td_list))
1628 				list_del_init(&td->td_list);
1629 			if (!list_empty(&td->cancelled_td_list))
1630 				list_del_init(&td->cancelled_td_list);
1631 		}
1632 		goto err_giveback;
1633 	}
1634 
1635 	i = urb_priv->num_tds_done;
1636 	if (i < urb_priv->num_tds)
1637 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1638 				"Cancel URB %p, dev %s, ep 0x%x, "
1639 				"starting at offset 0x%llx",
1640 				urb, urb->dev->devpath,
1641 				urb->ep->desc.bEndpointAddress,
1642 				(unsigned long long) xhci_trb_virt_to_dma(
1643 					urb_priv->td[i].start_seg,
1644 					urb_priv->td[i].first_trb));
1645 
1646 	for (; i < urb_priv->num_tds; i++) {
1647 		td = &urb_priv->td[i];
1648 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1649 	}
1650 
1651 	/* Queue a stop endpoint command, but only if this is
1652 	 * the first cancellation to be handled.
1653 	 */
1654 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1655 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1656 		if (!command) {
1657 			ret = -ENOMEM;
1658 			goto done;
1659 		}
1660 		ep->ep_state |= EP_STOP_CMD_PENDING;
1661 		ep->stop_cmd_timer.expires = jiffies +
1662 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1663 		add_timer(&ep->stop_cmd_timer);
1664 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1665 					 ep_index, 0);
1666 		xhci_ring_cmd_db(xhci);
1667 	}
1668 done:
1669 	spin_unlock_irqrestore(&xhci->lock, flags);
1670 	return ret;
1671 
1672 err_giveback:
1673 	if (urb_priv)
1674 		xhci_urb_free_priv(urb_priv);
1675 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1676 	spin_unlock_irqrestore(&xhci->lock, flags);
1677 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1678 	return ret;
1679 }
1680 
1681 /* Drop an endpoint from a new bandwidth configuration for this device.
1682  * Only one call to this function is allowed per endpoint before
1683  * check_bandwidth() or reset_bandwidth() must be called.
1684  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1685  * add the endpoint to the schedule with possibly new parameters denoted by a
1686  * different endpoint descriptor in usb_host_endpoint.
1687  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1688  * not allowed.
1689  *
1690  * The USB core will not allow URBs to be queued to an endpoint that is being
1691  * disabled, so there's no need for mutual exclusion to protect
1692  * the xhci->devs[slot_id] structure.
1693  */
1694 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1695 		struct usb_host_endpoint *ep)
1696 {
1697 	struct xhci_hcd *xhci;
1698 	struct xhci_container_ctx *in_ctx, *out_ctx;
1699 	struct xhci_input_control_ctx *ctrl_ctx;
1700 	unsigned int ep_index;
1701 	struct xhci_ep_ctx *ep_ctx;
1702 	u32 drop_flag;
1703 	u32 new_add_flags, new_drop_flags;
1704 	int ret;
1705 
1706 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1707 	if (ret <= 0)
1708 		return ret;
1709 	xhci = hcd_to_xhci(hcd);
1710 	if (xhci->xhc_state & XHCI_STATE_DYING)
1711 		return -ENODEV;
1712 
1713 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1714 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1715 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1716 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1717 				__func__, drop_flag);
1718 		return 0;
1719 	}
1720 
1721 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1722 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1723 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1724 	if (!ctrl_ctx) {
1725 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1726 				__func__);
1727 		return 0;
1728 	}
1729 
1730 	ep_index = xhci_get_endpoint_index(&ep->desc);
1731 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1732 	/* If the HC already knows the endpoint is disabled,
1733 	 * or the HCD has noted it is disabled, ignore this request
1734 	 */
1735 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1736 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1737 	    xhci_get_endpoint_flag(&ep->desc)) {
1738 		/* Do not warn when called after a usb_device_reset */
1739 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1740 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1741 				  __func__, ep);
1742 		return 0;
1743 	}
1744 
1745 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1746 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1747 
1748 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1749 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1750 
1751 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1752 
1753 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1754 
1755 	if (xhci->quirks & XHCI_MTK_HOST)
1756 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1757 
1758 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1759 			(unsigned int) ep->desc.bEndpointAddress,
1760 			udev->slot_id,
1761 			(unsigned int) new_drop_flags,
1762 			(unsigned int) new_add_flags);
1763 	return 0;
1764 }
1765 
1766 /* Add an endpoint to a new possible bandwidth configuration for this device.
1767  * Only one call to this function is allowed per endpoint before
1768  * check_bandwidth() or reset_bandwidth() must be called.
1769  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1770  * add the endpoint to the schedule with possibly new parameters denoted by a
1771  * different endpoint descriptor in usb_host_endpoint.
1772  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1773  * not allowed.
1774  *
1775  * The USB core will not allow URBs to be queued to an endpoint until the
1776  * configuration or alt setting is installed in the device, so there's no need
1777  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1778  */
1779 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1780 		struct usb_host_endpoint *ep)
1781 {
1782 	struct xhci_hcd *xhci;
1783 	struct xhci_container_ctx *in_ctx;
1784 	unsigned int ep_index;
1785 	struct xhci_input_control_ctx *ctrl_ctx;
1786 	u32 added_ctxs;
1787 	u32 new_add_flags, new_drop_flags;
1788 	struct xhci_virt_device *virt_dev;
1789 	int ret = 0;
1790 
1791 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1792 	if (ret <= 0) {
1793 		/* So we won't queue a reset ep command for a root hub */
1794 		ep->hcpriv = NULL;
1795 		return ret;
1796 	}
1797 	xhci = hcd_to_xhci(hcd);
1798 	if (xhci->xhc_state & XHCI_STATE_DYING)
1799 		return -ENODEV;
1800 
1801 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1802 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1803 		/* FIXME when we have to issue an evaluate endpoint command to
1804 		 * deal with ep0 max packet size changing once we get the
1805 		 * descriptors
1806 		 */
1807 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1808 				__func__, added_ctxs);
1809 		return 0;
1810 	}
1811 
1812 	virt_dev = xhci->devs[udev->slot_id];
1813 	in_ctx = virt_dev->in_ctx;
1814 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1815 	if (!ctrl_ctx) {
1816 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1817 				__func__);
1818 		return 0;
1819 	}
1820 
1821 	ep_index = xhci_get_endpoint_index(&ep->desc);
1822 	/* If this endpoint is already in use, and the upper layers are trying
1823 	 * to add it again without dropping it, reject the addition.
1824 	 */
1825 	if (virt_dev->eps[ep_index].ring &&
1826 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1827 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1828 				"without dropping it.\n",
1829 				(unsigned int) ep->desc.bEndpointAddress);
1830 		return -EINVAL;
1831 	}
1832 
1833 	/* If the HCD has already noted the endpoint is enabled,
1834 	 * ignore this request.
1835 	 */
1836 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1837 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1838 				__func__, ep);
1839 		return 0;
1840 	}
1841 
1842 	/*
1843 	 * Configuration and alternate setting changes must be done in
1844 	 * process context, not interrupt context (or so documenation
1845 	 * for usb_set_interface() and usb_set_configuration() claim).
1846 	 */
1847 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1848 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1849 				__func__, ep->desc.bEndpointAddress);
1850 		return -ENOMEM;
1851 	}
1852 
1853 	if (xhci->quirks & XHCI_MTK_HOST) {
1854 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1855 		if (ret < 0) {
1856 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1857 			virt_dev->eps[ep_index].new_ring = NULL;
1858 			return ret;
1859 		}
1860 	}
1861 
1862 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1863 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1864 
1865 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1866 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1867 	 * this re-adds a new state for the endpoint from the new endpoint
1868 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1869 	 * drop flags alone.
1870 	 */
1871 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1872 
1873 	/* Store the usb_device pointer for later use */
1874 	ep->hcpriv = udev;
1875 
1876 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1877 
1878 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1879 			(unsigned int) ep->desc.bEndpointAddress,
1880 			udev->slot_id,
1881 			(unsigned int) new_drop_flags,
1882 			(unsigned int) new_add_flags);
1883 	return 0;
1884 }
1885 
1886 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1887 {
1888 	struct xhci_input_control_ctx *ctrl_ctx;
1889 	struct xhci_ep_ctx *ep_ctx;
1890 	struct xhci_slot_ctx *slot_ctx;
1891 	int i;
1892 
1893 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1894 	if (!ctrl_ctx) {
1895 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1896 				__func__);
1897 		return;
1898 	}
1899 
1900 	/* When a device's add flag and drop flag are zero, any subsequent
1901 	 * configure endpoint command will leave that endpoint's state
1902 	 * untouched.  Make sure we don't leave any old state in the input
1903 	 * endpoint contexts.
1904 	 */
1905 	ctrl_ctx->drop_flags = 0;
1906 	ctrl_ctx->add_flags = 0;
1907 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1908 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1909 	/* Endpoint 0 is always valid */
1910 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1911 	for (i = 1; i < 31; i++) {
1912 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1913 		ep_ctx->ep_info = 0;
1914 		ep_ctx->ep_info2 = 0;
1915 		ep_ctx->deq = 0;
1916 		ep_ctx->tx_info = 0;
1917 	}
1918 }
1919 
1920 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1921 		struct usb_device *udev, u32 *cmd_status)
1922 {
1923 	int ret;
1924 
1925 	switch (*cmd_status) {
1926 	case COMP_COMMAND_ABORTED:
1927 	case COMP_COMMAND_RING_STOPPED:
1928 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1929 		ret = -ETIME;
1930 		break;
1931 	case COMP_RESOURCE_ERROR:
1932 		dev_warn(&udev->dev,
1933 			 "Not enough host controller resources for new device state.\n");
1934 		ret = -ENOMEM;
1935 		/* FIXME: can we allocate more resources for the HC? */
1936 		break;
1937 	case COMP_BANDWIDTH_ERROR:
1938 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1939 		dev_warn(&udev->dev,
1940 			 "Not enough bandwidth for new device state.\n");
1941 		ret = -ENOSPC;
1942 		/* FIXME: can we go back to the old state? */
1943 		break;
1944 	case COMP_TRB_ERROR:
1945 		/* the HCD set up something wrong */
1946 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1947 				"add flag = 1, "
1948 				"and endpoint is not disabled.\n");
1949 		ret = -EINVAL;
1950 		break;
1951 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1952 		dev_warn(&udev->dev,
1953 			 "ERROR: Incompatible device for endpoint configure command.\n");
1954 		ret = -ENODEV;
1955 		break;
1956 	case COMP_SUCCESS:
1957 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1958 				"Successful Endpoint Configure command");
1959 		ret = 0;
1960 		break;
1961 	default:
1962 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1963 				*cmd_status);
1964 		ret = -EINVAL;
1965 		break;
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1971 		struct usb_device *udev, u32 *cmd_status)
1972 {
1973 	int ret;
1974 
1975 	switch (*cmd_status) {
1976 	case COMP_COMMAND_ABORTED:
1977 	case COMP_COMMAND_RING_STOPPED:
1978 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1979 		ret = -ETIME;
1980 		break;
1981 	case COMP_PARAMETER_ERROR:
1982 		dev_warn(&udev->dev,
1983 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1984 		ret = -EINVAL;
1985 		break;
1986 	case COMP_SLOT_NOT_ENABLED_ERROR:
1987 		dev_warn(&udev->dev,
1988 			"WARN: slot not enabled for evaluate context command.\n");
1989 		ret = -EINVAL;
1990 		break;
1991 	case COMP_CONTEXT_STATE_ERROR:
1992 		dev_warn(&udev->dev,
1993 			"WARN: invalid context state for evaluate context command.\n");
1994 		ret = -EINVAL;
1995 		break;
1996 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1997 		dev_warn(&udev->dev,
1998 			"ERROR: Incompatible device for evaluate context command.\n");
1999 		ret = -ENODEV;
2000 		break;
2001 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2002 		/* Max Exit Latency too large error */
2003 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2004 		ret = -EINVAL;
2005 		break;
2006 	case COMP_SUCCESS:
2007 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2008 				"Successful evaluate context command");
2009 		ret = 0;
2010 		break;
2011 	default:
2012 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2013 			*cmd_status);
2014 		ret = -EINVAL;
2015 		break;
2016 	}
2017 	return ret;
2018 }
2019 
2020 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2021 		struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023 	u32 valid_add_flags;
2024 	u32 valid_drop_flags;
2025 
2026 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2027 	 * (bit 1).  The default control endpoint is added during the Address
2028 	 * Device command and is never removed until the slot is disabled.
2029 	 */
2030 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2031 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2032 
2033 	/* Use hweight32 to count the number of ones in the add flags, or
2034 	 * number of endpoints added.  Don't count endpoints that are changed
2035 	 * (both added and dropped).
2036 	 */
2037 	return hweight32(valid_add_flags) -
2038 		hweight32(valid_add_flags & valid_drop_flags);
2039 }
2040 
2041 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2042 		struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044 	u32 valid_add_flags;
2045 	u32 valid_drop_flags;
2046 
2047 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2048 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2049 
2050 	return hweight32(valid_drop_flags) -
2051 		hweight32(valid_add_flags & valid_drop_flags);
2052 }
2053 
2054 /*
2055  * We need to reserve the new number of endpoints before the configure endpoint
2056  * command completes.  We can't subtract the dropped endpoints from the number
2057  * of active endpoints until the command completes because we can oversubscribe
2058  * the host in this case:
2059  *
2060  *  - the first configure endpoint command drops more endpoints than it adds
2061  *  - a second configure endpoint command that adds more endpoints is queued
2062  *  - the first configure endpoint command fails, so the config is unchanged
2063  *  - the second command may succeed, even though there isn't enough resources
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2068 		struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070 	u32 added_eps;
2071 
2072 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2073 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2074 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075 				"Not enough ep ctxs: "
2076 				"%u active, need to add %u, limit is %u.",
2077 				xhci->num_active_eps, added_eps,
2078 				xhci->limit_active_eps);
2079 		return -ENOMEM;
2080 	}
2081 	xhci->num_active_eps += added_eps;
2082 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2083 			"Adding %u ep ctxs, %u now active.", added_eps,
2084 			xhci->num_active_eps);
2085 	return 0;
2086 }
2087 
2088 /*
2089  * The configure endpoint was failed by the xHC for some other reason, so we
2090  * need to revert the resources that failed configuration would have used.
2091  *
2092  * Must be called with xhci->lock held.
2093  */
2094 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2095 		struct xhci_input_control_ctx *ctrl_ctx)
2096 {
2097 	u32 num_failed_eps;
2098 
2099 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2100 	xhci->num_active_eps -= num_failed_eps;
2101 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2102 			"Removing %u failed ep ctxs, %u now active.",
2103 			num_failed_eps,
2104 			xhci->num_active_eps);
2105 }
2106 
2107 /*
2108  * Now that the command has completed, clean up the active endpoint count by
2109  * subtracting out the endpoints that were dropped (but not changed).
2110  *
2111  * Must be called with xhci->lock held.
2112  */
2113 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2114 		struct xhci_input_control_ctx *ctrl_ctx)
2115 {
2116 	u32 num_dropped_eps;
2117 
2118 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2119 	xhci->num_active_eps -= num_dropped_eps;
2120 	if (num_dropped_eps)
2121 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122 				"Removing %u dropped ep ctxs, %u now active.",
2123 				num_dropped_eps,
2124 				xhci->num_active_eps);
2125 }
2126 
2127 static unsigned int xhci_get_block_size(struct usb_device *udev)
2128 {
2129 	switch (udev->speed) {
2130 	case USB_SPEED_LOW:
2131 	case USB_SPEED_FULL:
2132 		return FS_BLOCK;
2133 	case USB_SPEED_HIGH:
2134 		return HS_BLOCK;
2135 	case USB_SPEED_SUPER:
2136 	case USB_SPEED_SUPER_PLUS:
2137 		return SS_BLOCK;
2138 	case USB_SPEED_UNKNOWN:
2139 	case USB_SPEED_WIRELESS:
2140 	default:
2141 		/* Should never happen */
2142 		return 1;
2143 	}
2144 }
2145 
2146 static unsigned int
2147 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2148 {
2149 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2150 		return LS_OVERHEAD;
2151 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2152 		return FS_OVERHEAD;
2153 	return HS_OVERHEAD;
2154 }
2155 
2156 /* If we are changing a LS/FS device under a HS hub,
2157  * make sure (if we are activating a new TT) that the HS bus has enough
2158  * bandwidth for this new TT.
2159  */
2160 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2161 		struct xhci_virt_device *virt_dev,
2162 		int old_active_eps)
2163 {
2164 	struct xhci_interval_bw_table *bw_table;
2165 	struct xhci_tt_bw_info *tt_info;
2166 
2167 	/* Find the bandwidth table for the root port this TT is attached to. */
2168 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2169 	tt_info = virt_dev->tt_info;
2170 	/* If this TT already had active endpoints, the bandwidth for this TT
2171 	 * has already been added.  Removing all periodic endpoints (and thus
2172 	 * making the TT enactive) will only decrease the bandwidth used.
2173 	 */
2174 	if (old_active_eps)
2175 		return 0;
2176 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2177 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2178 			return -ENOMEM;
2179 		return 0;
2180 	}
2181 	/* Not sure why we would have no new active endpoints...
2182 	 *
2183 	 * Maybe because of an Evaluate Context change for a hub update or a
2184 	 * control endpoint 0 max packet size change?
2185 	 * FIXME: skip the bandwidth calculation in that case.
2186 	 */
2187 	return 0;
2188 }
2189 
2190 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2191 		struct xhci_virt_device *virt_dev)
2192 {
2193 	unsigned int bw_reserved;
2194 
2195 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2196 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2197 		return -ENOMEM;
2198 
2199 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2200 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2201 		return -ENOMEM;
2202 
2203 	return 0;
2204 }
2205 
2206 /*
2207  * This algorithm is a very conservative estimate of the worst-case scheduling
2208  * scenario for any one interval.  The hardware dynamically schedules the
2209  * packets, so we can't tell which microframe could be the limiting factor in
2210  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2211  *
2212  * Obviously, we can't solve an NP complete problem to find the minimum worst
2213  * case scenario.  Instead, we come up with an estimate that is no less than
2214  * the worst case bandwidth used for any one microframe, but may be an
2215  * over-estimate.
2216  *
2217  * We walk the requirements for each endpoint by interval, starting with the
2218  * smallest interval, and place packets in the schedule where there is only one
2219  * possible way to schedule packets for that interval.  In order to simplify
2220  * this algorithm, we record the largest max packet size for each interval, and
2221  * assume all packets will be that size.
2222  *
2223  * For interval 0, we obviously must schedule all packets for each interval.
2224  * The bandwidth for interval 0 is just the amount of data to be transmitted
2225  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2226  * the number of packets).
2227  *
2228  * For interval 1, we have two possible microframes to schedule those packets
2229  * in.  For this algorithm, if we can schedule the same number of packets for
2230  * each possible scheduling opportunity (each microframe), we will do so.  The
2231  * remaining number of packets will be saved to be transmitted in the gaps in
2232  * the next interval's scheduling sequence.
2233  *
2234  * As we move those remaining packets to be scheduled with interval 2 packets,
2235  * we have to double the number of remaining packets to transmit.  This is
2236  * because the intervals are actually powers of 2, and we would be transmitting
2237  * the previous interval's packets twice in this interval.  We also have to be
2238  * sure that when we look at the largest max packet size for this interval, we
2239  * also look at the largest max packet size for the remaining packets and take
2240  * the greater of the two.
2241  *
2242  * The algorithm continues to evenly distribute packets in each scheduling
2243  * opportunity, and push the remaining packets out, until we get to the last
2244  * interval.  Then those packets and their associated overhead are just added
2245  * to the bandwidth used.
2246  */
2247 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2248 		struct xhci_virt_device *virt_dev,
2249 		int old_active_eps)
2250 {
2251 	unsigned int bw_reserved;
2252 	unsigned int max_bandwidth;
2253 	unsigned int bw_used;
2254 	unsigned int block_size;
2255 	struct xhci_interval_bw_table *bw_table;
2256 	unsigned int packet_size = 0;
2257 	unsigned int overhead = 0;
2258 	unsigned int packets_transmitted = 0;
2259 	unsigned int packets_remaining = 0;
2260 	unsigned int i;
2261 
2262 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2263 		return xhci_check_ss_bw(xhci, virt_dev);
2264 
2265 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2266 		max_bandwidth = HS_BW_LIMIT;
2267 		/* Convert percent of bus BW reserved to blocks reserved */
2268 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2269 	} else {
2270 		max_bandwidth = FS_BW_LIMIT;
2271 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2272 	}
2273 
2274 	bw_table = virt_dev->bw_table;
2275 	/* We need to translate the max packet size and max ESIT payloads into
2276 	 * the units the hardware uses.
2277 	 */
2278 	block_size = xhci_get_block_size(virt_dev->udev);
2279 
2280 	/* If we are manipulating a LS/FS device under a HS hub, double check
2281 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2282 	 */
2283 	if (virt_dev->tt_info) {
2284 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285 				"Recalculating BW for rootport %u",
2286 				virt_dev->real_port);
2287 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2288 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2289 					"newly activated TT.\n");
2290 			return -ENOMEM;
2291 		}
2292 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 				"Recalculating BW for TT slot %u port %u",
2294 				virt_dev->tt_info->slot_id,
2295 				virt_dev->tt_info->ttport);
2296 	} else {
2297 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2298 				"Recalculating BW for rootport %u",
2299 				virt_dev->real_port);
2300 	}
2301 
2302 	/* Add in how much bandwidth will be used for interval zero, or the
2303 	 * rounded max ESIT payload + number of packets * largest overhead.
2304 	 */
2305 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2306 		bw_table->interval_bw[0].num_packets *
2307 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2308 
2309 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2310 		unsigned int bw_added;
2311 		unsigned int largest_mps;
2312 		unsigned int interval_overhead;
2313 
2314 		/*
2315 		 * How many packets could we transmit in this interval?
2316 		 * If packets didn't fit in the previous interval, we will need
2317 		 * to transmit that many packets twice within this interval.
2318 		 */
2319 		packets_remaining = 2 * packets_remaining +
2320 			bw_table->interval_bw[i].num_packets;
2321 
2322 		/* Find the largest max packet size of this or the previous
2323 		 * interval.
2324 		 */
2325 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2326 			largest_mps = 0;
2327 		else {
2328 			struct xhci_virt_ep *virt_ep;
2329 			struct list_head *ep_entry;
2330 
2331 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2332 			virt_ep = list_entry(ep_entry,
2333 					struct xhci_virt_ep, bw_endpoint_list);
2334 			/* Convert to blocks, rounding up */
2335 			largest_mps = DIV_ROUND_UP(
2336 					virt_ep->bw_info.max_packet_size,
2337 					block_size);
2338 		}
2339 		if (largest_mps > packet_size)
2340 			packet_size = largest_mps;
2341 
2342 		/* Use the larger overhead of this or the previous interval. */
2343 		interval_overhead = xhci_get_largest_overhead(
2344 				&bw_table->interval_bw[i]);
2345 		if (interval_overhead > overhead)
2346 			overhead = interval_overhead;
2347 
2348 		/* How many packets can we evenly distribute across
2349 		 * (1 << (i + 1)) possible scheduling opportunities?
2350 		 */
2351 		packets_transmitted = packets_remaining >> (i + 1);
2352 
2353 		/* Add in the bandwidth used for those scheduled packets */
2354 		bw_added = packets_transmitted * (overhead + packet_size);
2355 
2356 		/* How many packets do we have remaining to transmit? */
2357 		packets_remaining = packets_remaining % (1 << (i + 1));
2358 
2359 		/* What largest max packet size should those packets have? */
2360 		/* If we've transmitted all packets, don't carry over the
2361 		 * largest packet size.
2362 		 */
2363 		if (packets_remaining == 0) {
2364 			packet_size = 0;
2365 			overhead = 0;
2366 		} else if (packets_transmitted > 0) {
2367 			/* Otherwise if we do have remaining packets, and we've
2368 			 * scheduled some packets in this interval, take the
2369 			 * largest max packet size from endpoints with this
2370 			 * interval.
2371 			 */
2372 			packet_size = largest_mps;
2373 			overhead = interval_overhead;
2374 		}
2375 		/* Otherwise carry over packet_size and overhead from the last
2376 		 * time we had a remainder.
2377 		 */
2378 		bw_used += bw_added;
2379 		if (bw_used > max_bandwidth) {
2380 			xhci_warn(xhci, "Not enough bandwidth. "
2381 					"Proposed: %u, Max: %u\n",
2382 				bw_used, max_bandwidth);
2383 			return -ENOMEM;
2384 		}
2385 	}
2386 	/*
2387 	 * Ok, we know we have some packets left over after even-handedly
2388 	 * scheduling interval 15.  We don't know which microframes they will
2389 	 * fit into, so we over-schedule and say they will be scheduled every
2390 	 * microframe.
2391 	 */
2392 	if (packets_remaining > 0)
2393 		bw_used += overhead + packet_size;
2394 
2395 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2396 		unsigned int port_index = virt_dev->real_port - 1;
2397 
2398 		/* OK, we're manipulating a HS device attached to a
2399 		 * root port bandwidth domain.  Include the number of active TTs
2400 		 * in the bandwidth used.
2401 		 */
2402 		bw_used += TT_HS_OVERHEAD *
2403 			xhci->rh_bw[port_index].num_active_tts;
2404 	}
2405 
2406 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2408 		"Available: %u " "percent",
2409 		bw_used, max_bandwidth, bw_reserved,
2410 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2411 		max_bandwidth);
2412 
2413 	bw_used += bw_reserved;
2414 	if (bw_used > max_bandwidth) {
2415 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2416 				bw_used, max_bandwidth);
2417 		return -ENOMEM;
2418 	}
2419 
2420 	bw_table->bw_used = bw_used;
2421 	return 0;
2422 }
2423 
2424 static bool xhci_is_async_ep(unsigned int ep_type)
2425 {
2426 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2427 					ep_type != ISOC_IN_EP &&
2428 					ep_type != INT_IN_EP);
2429 }
2430 
2431 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2432 {
2433 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2434 }
2435 
2436 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2437 {
2438 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2439 
2440 	if (ep_bw->ep_interval == 0)
2441 		return SS_OVERHEAD_BURST +
2442 			(ep_bw->mult * ep_bw->num_packets *
2443 					(SS_OVERHEAD + mps));
2444 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2445 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2446 				1 << ep_bw->ep_interval);
2447 
2448 }
2449 
2450 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2451 		struct xhci_bw_info *ep_bw,
2452 		struct xhci_interval_bw_table *bw_table,
2453 		struct usb_device *udev,
2454 		struct xhci_virt_ep *virt_ep,
2455 		struct xhci_tt_bw_info *tt_info)
2456 {
2457 	struct xhci_interval_bw	*interval_bw;
2458 	int normalized_interval;
2459 
2460 	if (xhci_is_async_ep(ep_bw->type))
2461 		return;
2462 
2463 	if (udev->speed >= USB_SPEED_SUPER) {
2464 		if (xhci_is_sync_in_ep(ep_bw->type))
2465 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2466 				xhci_get_ss_bw_consumed(ep_bw);
2467 		else
2468 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2469 				xhci_get_ss_bw_consumed(ep_bw);
2470 		return;
2471 	}
2472 
2473 	/* SuperSpeed endpoints never get added to intervals in the table, so
2474 	 * this check is only valid for HS/FS/LS devices.
2475 	 */
2476 	if (list_empty(&virt_ep->bw_endpoint_list))
2477 		return;
2478 	/* For LS/FS devices, we need to translate the interval expressed in
2479 	 * microframes to frames.
2480 	 */
2481 	if (udev->speed == USB_SPEED_HIGH)
2482 		normalized_interval = ep_bw->ep_interval;
2483 	else
2484 		normalized_interval = ep_bw->ep_interval - 3;
2485 
2486 	if (normalized_interval == 0)
2487 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2488 	interval_bw = &bw_table->interval_bw[normalized_interval];
2489 	interval_bw->num_packets -= ep_bw->num_packets;
2490 	switch (udev->speed) {
2491 	case USB_SPEED_LOW:
2492 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2493 		break;
2494 	case USB_SPEED_FULL:
2495 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2496 		break;
2497 	case USB_SPEED_HIGH:
2498 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2499 		break;
2500 	case USB_SPEED_SUPER:
2501 	case USB_SPEED_SUPER_PLUS:
2502 	case USB_SPEED_UNKNOWN:
2503 	case USB_SPEED_WIRELESS:
2504 		/* Should never happen because only LS/FS/HS endpoints will get
2505 		 * added to the endpoint list.
2506 		 */
2507 		return;
2508 	}
2509 	if (tt_info)
2510 		tt_info->active_eps -= 1;
2511 	list_del_init(&virt_ep->bw_endpoint_list);
2512 }
2513 
2514 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2515 		struct xhci_bw_info *ep_bw,
2516 		struct xhci_interval_bw_table *bw_table,
2517 		struct usb_device *udev,
2518 		struct xhci_virt_ep *virt_ep,
2519 		struct xhci_tt_bw_info *tt_info)
2520 {
2521 	struct xhci_interval_bw	*interval_bw;
2522 	struct xhci_virt_ep *smaller_ep;
2523 	int normalized_interval;
2524 
2525 	if (xhci_is_async_ep(ep_bw->type))
2526 		return;
2527 
2528 	if (udev->speed == USB_SPEED_SUPER) {
2529 		if (xhci_is_sync_in_ep(ep_bw->type))
2530 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2531 				xhci_get_ss_bw_consumed(ep_bw);
2532 		else
2533 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2534 				xhci_get_ss_bw_consumed(ep_bw);
2535 		return;
2536 	}
2537 
2538 	/* For LS/FS devices, we need to translate the interval expressed in
2539 	 * microframes to frames.
2540 	 */
2541 	if (udev->speed == USB_SPEED_HIGH)
2542 		normalized_interval = ep_bw->ep_interval;
2543 	else
2544 		normalized_interval = ep_bw->ep_interval - 3;
2545 
2546 	if (normalized_interval == 0)
2547 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2548 	interval_bw = &bw_table->interval_bw[normalized_interval];
2549 	interval_bw->num_packets += ep_bw->num_packets;
2550 	switch (udev->speed) {
2551 	case USB_SPEED_LOW:
2552 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2553 		break;
2554 	case USB_SPEED_FULL:
2555 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2556 		break;
2557 	case USB_SPEED_HIGH:
2558 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2559 		break;
2560 	case USB_SPEED_SUPER:
2561 	case USB_SPEED_SUPER_PLUS:
2562 	case USB_SPEED_UNKNOWN:
2563 	case USB_SPEED_WIRELESS:
2564 		/* Should never happen because only LS/FS/HS endpoints will get
2565 		 * added to the endpoint list.
2566 		 */
2567 		return;
2568 	}
2569 
2570 	if (tt_info)
2571 		tt_info->active_eps += 1;
2572 	/* Insert the endpoint into the list, largest max packet size first. */
2573 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2574 			bw_endpoint_list) {
2575 		if (ep_bw->max_packet_size >=
2576 				smaller_ep->bw_info.max_packet_size) {
2577 			/* Add the new ep before the smaller endpoint */
2578 			list_add_tail(&virt_ep->bw_endpoint_list,
2579 					&smaller_ep->bw_endpoint_list);
2580 			return;
2581 		}
2582 	}
2583 	/* Add the new endpoint at the end of the list. */
2584 	list_add_tail(&virt_ep->bw_endpoint_list,
2585 			&interval_bw->endpoints);
2586 }
2587 
2588 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2589 		struct xhci_virt_device *virt_dev,
2590 		int old_active_eps)
2591 {
2592 	struct xhci_root_port_bw_info *rh_bw_info;
2593 	if (!virt_dev->tt_info)
2594 		return;
2595 
2596 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2597 	if (old_active_eps == 0 &&
2598 				virt_dev->tt_info->active_eps != 0) {
2599 		rh_bw_info->num_active_tts += 1;
2600 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2601 	} else if (old_active_eps != 0 &&
2602 				virt_dev->tt_info->active_eps == 0) {
2603 		rh_bw_info->num_active_tts -= 1;
2604 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2605 	}
2606 }
2607 
2608 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2609 		struct xhci_virt_device *virt_dev,
2610 		struct xhci_container_ctx *in_ctx)
2611 {
2612 	struct xhci_bw_info ep_bw_info[31];
2613 	int i;
2614 	struct xhci_input_control_ctx *ctrl_ctx;
2615 	int old_active_eps = 0;
2616 
2617 	if (virt_dev->tt_info)
2618 		old_active_eps = virt_dev->tt_info->active_eps;
2619 
2620 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2621 	if (!ctrl_ctx) {
2622 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2623 				__func__);
2624 		return -ENOMEM;
2625 	}
2626 
2627 	for (i = 0; i < 31; i++) {
2628 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2629 			continue;
2630 
2631 		/* Make a copy of the BW info in case we need to revert this */
2632 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2633 				sizeof(ep_bw_info[i]));
2634 		/* Drop the endpoint from the interval table if the endpoint is
2635 		 * being dropped or changed.
2636 		 */
2637 		if (EP_IS_DROPPED(ctrl_ctx, i))
2638 			xhci_drop_ep_from_interval_table(xhci,
2639 					&virt_dev->eps[i].bw_info,
2640 					virt_dev->bw_table,
2641 					virt_dev->udev,
2642 					&virt_dev->eps[i],
2643 					virt_dev->tt_info);
2644 	}
2645 	/* Overwrite the information stored in the endpoints' bw_info */
2646 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2647 	for (i = 0; i < 31; i++) {
2648 		/* Add any changed or added endpoints to the interval table */
2649 		if (EP_IS_ADDED(ctrl_ctx, i))
2650 			xhci_add_ep_to_interval_table(xhci,
2651 					&virt_dev->eps[i].bw_info,
2652 					virt_dev->bw_table,
2653 					virt_dev->udev,
2654 					&virt_dev->eps[i],
2655 					virt_dev->tt_info);
2656 	}
2657 
2658 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2659 		/* Ok, this fits in the bandwidth we have.
2660 		 * Update the number of active TTs.
2661 		 */
2662 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2663 		return 0;
2664 	}
2665 
2666 	/* We don't have enough bandwidth for this, revert the stored info. */
2667 	for (i = 0; i < 31; i++) {
2668 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2669 			continue;
2670 
2671 		/* Drop the new copies of any added or changed endpoints from
2672 		 * the interval table.
2673 		 */
2674 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2675 			xhci_drop_ep_from_interval_table(xhci,
2676 					&virt_dev->eps[i].bw_info,
2677 					virt_dev->bw_table,
2678 					virt_dev->udev,
2679 					&virt_dev->eps[i],
2680 					virt_dev->tt_info);
2681 		}
2682 		/* Revert the endpoint back to its old information */
2683 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2684 				sizeof(ep_bw_info[i]));
2685 		/* Add any changed or dropped endpoints back into the table */
2686 		if (EP_IS_DROPPED(ctrl_ctx, i))
2687 			xhci_add_ep_to_interval_table(xhci,
2688 					&virt_dev->eps[i].bw_info,
2689 					virt_dev->bw_table,
2690 					virt_dev->udev,
2691 					&virt_dev->eps[i],
2692 					virt_dev->tt_info);
2693 	}
2694 	return -ENOMEM;
2695 }
2696 
2697 
2698 /* Issue a configure endpoint command or evaluate context command
2699  * and wait for it to finish.
2700  */
2701 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2702 		struct usb_device *udev,
2703 		struct xhci_command *command,
2704 		bool ctx_change, bool must_succeed)
2705 {
2706 	int ret;
2707 	unsigned long flags;
2708 	struct xhci_input_control_ctx *ctrl_ctx;
2709 	struct xhci_virt_device *virt_dev;
2710 	struct xhci_slot_ctx *slot_ctx;
2711 
2712 	if (!command)
2713 		return -EINVAL;
2714 
2715 	spin_lock_irqsave(&xhci->lock, flags);
2716 
2717 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2718 		spin_unlock_irqrestore(&xhci->lock, flags);
2719 		return -ESHUTDOWN;
2720 	}
2721 
2722 	virt_dev = xhci->devs[udev->slot_id];
2723 
2724 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2725 	if (!ctrl_ctx) {
2726 		spin_unlock_irqrestore(&xhci->lock, flags);
2727 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2728 				__func__);
2729 		return -ENOMEM;
2730 	}
2731 
2732 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2733 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2734 		spin_unlock_irqrestore(&xhci->lock, flags);
2735 		xhci_warn(xhci, "Not enough host resources, "
2736 				"active endpoint contexts = %u\n",
2737 				xhci->num_active_eps);
2738 		return -ENOMEM;
2739 	}
2740 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2741 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2742 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2743 			xhci_free_host_resources(xhci, ctrl_ctx);
2744 		spin_unlock_irqrestore(&xhci->lock, flags);
2745 		xhci_warn(xhci, "Not enough bandwidth\n");
2746 		return -ENOMEM;
2747 	}
2748 
2749 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2750 	trace_xhci_configure_endpoint(slot_ctx);
2751 
2752 	if (!ctx_change)
2753 		ret = xhci_queue_configure_endpoint(xhci, command,
2754 				command->in_ctx->dma,
2755 				udev->slot_id, must_succeed);
2756 	else
2757 		ret = xhci_queue_evaluate_context(xhci, command,
2758 				command->in_ctx->dma,
2759 				udev->slot_id, must_succeed);
2760 	if (ret < 0) {
2761 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2762 			xhci_free_host_resources(xhci, ctrl_ctx);
2763 		spin_unlock_irqrestore(&xhci->lock, flags);
2764 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2765 				"FIXME allocate a new ring segment");
2766 		return -ENOMEM;
2767 	}
2768 	xhci_ring_cmd_db(xhci);
2769 	spin_unlock_irqrestore(&xhci->lock, flags);
2770 
2771 	/* Wait for the configure endpoint command to complete */
2772 	wait_for_completion(command->completion);
2773 
2774 	if (!ctx_change)
2775 		ret = xhci_configure_endpoint_result(xhci, udev,
2776 						     &command->status);
2777 	else
2778 		ret = xhci_evaluate_context_result(xhci, udev,
2779 						   &command->status);
2780 
2781 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2782 		spin_lock_irqsave(&xhci->lock, flags);
2783 		/* If the command failed, remove the reserved resources.
2784 		 * Otherwise, clean up the estimate to include dropped eps.
2785 		 */
2786 		if (ret)
2787 			xhci_free_host_resources(xhci, ctrl_ctx);
2788 		else
2789 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2790 		spin_unlock_irqrestore(&xhci->lock, flags);
2791 	}
2792 	return ret;
2793 }
2794 
2795 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2796 	struct xhci_virt_device *vdev, int i)
2797 {
2798 	struct xhci_virt_ep *ep = &vdev->eps[i];
2799 
2800 	if (ep->ep_state & EP_HAS_STREAMS) {
2801 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2802 				xhci_get_endpoint_address(i));
2803 		xhci_free_stream_info(xhci, ep->stream_info);
2804 		ep->stream_info = NULL;
2805 		ep->ep_state &= ~EP_HAS_STREAMS;
2806 	}
2807 }
2808 
2809 /* Called after one or more calls to xhci_add_endpoint() or
2810  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2811  * to call xhci_reset_bandwidth().
2812  *
2813  * Since we are in the middle of changing either configuration or
2814  * installing a new alt setting, the USB core won't allow URBs to be
2815  * enqueued for any endpoint on the old config or interface.  Nothing
2816  * else should be touching the xhci->devs[slot_id] structure, so we
2817  * don't need to take the xhci->lock for manipulating that.
2818  */
2819 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2820 {
2821 	int i;
2822 	int ret = 0;
2823 	struct xhci_hcd *xhci;
2824 	struct xhci_virt_device	*virt_dev;
2825 	struct xhci_input_control_ctx *ctrl_ctx;
2826 	struct xhci_slot_ctx *slot_ctx;
2827 	struct xhci_command *command;
2828 
2829 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2830 	if (ret <= 0)
2831 		return ret;
2832 	xhci = hcd_to_xhci(hcd);
2833 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2834 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2835 		return -ENODEV;
2836 
2837 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838 	virt_dev = xhci->devs[udev->slot_id];
2839 
2840 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2841 	if (!command)
2842 		return -ENOMEM;
2843 
2844 	command->in_ctx = virt_dev->in_ctx;
2845 
2846 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2847 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2848 	if (!ctrl_ctx) {
2849 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2850 				__func__);
2851 		ret = -ENOMEM;
2852 		goto command_cleanup;
2853 	}
2854 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2855 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2856 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2857 
2858 	/* Don't issue the command if there's no endpoints to update. */
2859 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2860 	    ctrl_ctx->drop_flags == 0) {
2861 		ret = 0;
2862 		goto command_cleanup;
2863 	}
2864 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2865 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2866 	for (i = 31; i >= 1; i--) {
2867 		__le32 le32 = cpu_to_le32(BIT(i));
2868 
2869 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2870 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2871 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2872 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2873 			break;
2874 		}
2875 	}
2876 
2877 	ret = xhci_configure_endpoint(xhci, udev, command,
2878 			false, false);
2879 	if (ret)
2880 		/* Callee should call reset_bandwidth() */
2881 		goto command_cleanup;
2882 
2883 	/* Free any rings that were dropped, but not changed. */
2884 	for (i = 1; i < 31; i++) {
2885 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2886 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2887 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2888 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2889 		}
2890 	}
2891 	xhci_zero_in_ctx(xhci, virt_dev);
2892 	/*
2893 	 * Install any rings for completely new endpoints or changed endpoints,
2894 	 * and free any old rings from changed endpoints.
2895 	 */
2896 	for (i = 1; i < 31; i++) {
2897 		if (!virt_dev->eps[i].new_ring)
2898 			continue;
2899 		/* Only free the old ring if it exists.
2900 		 * It may not if this is the first add of an endpoint.
2901 		 */
2902 		if (virt_dev->eps[i].ring) {
2903 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2904 		}
2905 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2906 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2907 		virt_dev->eps[i].new_ring = NULL;
2908 	}
2909 command_cleanup:
2910 	kfree(command->completion);
2911 	kfree(command);
2912 
2913 	return ret;
2914 }
2915 
2916 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2917 {
2918 	struct xhci_hcd *xhci;
2919 	struct xhci_virt_device	*virt_dev;
2920 	int i, ret;
2921 
2922 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2923 	if (ret <= 0)
2924 		return;
2925 	xhci = hcd_to_xhci(hcd);
2926 
2927 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928 	virt_dev = xhci->devs[udev->slot_id];
2929 	/* Free any rings allocated for added endpoints */
2930 	for (i = 0; i < 31; i++) {
2931 		if (virt_dev->eps[i].new_ring) {
2932 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2933 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2934 			virt_dev->eps[i].new_ring = NULL;
2935 		}
2936 	}
2937 	xhci_zero_in_ctx(xhci, virt_dev);
2938 }
2939 
2940 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2941 		struct xhci_container_ctx *in_ctx,
2942 		struct xhci_container_ctx *out_ctx,
2943 		struct xhci_input_control_ctx *ctrl_ctx,
2944 		u32 add_flags, u32 drop_flags)
2945 {
2946 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2947 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2948 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2949 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2950 }
2951 
2952 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2953 		unsigned int slot_id, unsigned int ep_index,
2954 		struct xhci_dequeue_state *deq_state)
2955 {
2956 	struct xhci_input_control_ctx *ctrl_ctx;
2957 	struct xhci_container_ctx *in_ctx;
2958 	struct xhci_ep_ctx *ep_ctx;
2959 	u32 added_ctxs;
2960 	dma_addr_t addr;
2961 
2962 	in_ctx = xhci->devs[slot_id]->in_ctx;
2963 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2964 	if (!ctrl_ctx) {
2965 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2966 				__func__);
2967 		return;
2968 	}
2969 
2970 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2971 			xhci->devs[slot_id]->out_ctx, ep_index);
2972 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2973 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2974 			deq_state->new_deq_ptr);
2975 	if (addr == 0) {
2976 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2977 				"reset ep command\n");
2978 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2979 				deq_state->new_deq_seg,
2980 				deq_state->new_deq_ptr);
2981 		return;
2982 	}
2983 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2984 
2985 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2986 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2987 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2988 			added_ctxs, added_ctxs);
2989 }
2990 
2991 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2992 			       unsigned int stream_id, struct xhci_td *td)
2993 {
2994 	struct xhci_dequeue_state deq_state;
2995 	struct usb_device *udev = td->urb->dev;
2996 
2997 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2998 			"Cleaning up stalled endpoint ring");
2999 	/* We need to move the HW's dequeue pointer past this TD,
3000 	 * or it will attempt to resend it on the next doorbell ring.
3001 	 */
3002 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3003 			ep_index, stream_id, td, &deq_state);
3004 
3005 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3006 		return;
3007 
3008 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3009 	 * issue a configure endpoint command later.
3010 	 */
3011 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3012 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3013 				"Queueing new dequeue state");
3014 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3015 				ep_index, &deq_state);
3016 	} else {
3017 		/* Better hope no one uses the input context between now and the
3018 		 * reset endpoint completion!
3019 		 * XXX: No idea how this hardware will react when stream rings
3020 		 * are enabled.
3021 		 */
3022 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3023 				"Setting up input context for "
3024 				"configure endpoint command");
3025 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3026 				ep_index, &deq_state);
3027 	}
3028 }
3029 
3030 /*
3031  * Called after usb core issues a clear halt control message.
3032  * The host side of the halt should already be cleared by a reset endpoint
3033  * command issued when the STALL event was received.
3034  *
3035  * The reset endpoint command may only be issued to endpoints in the halted
3036  * state. For software that wishes to reset the data toggle or sequence number
3037  * of an endpoint that isn't in the halted state this function will issue a
3038  * configure endpoint command with the Drop and Add bits set for the target
3039  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3040  */
3041 
3042 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3043 		struct usb_host_endpoint *host_ep)
3044 {
3045 	struct xhci_hcd *xhci;
3046 	struct usb_device *udev;
3047 	struct xhci_virt_device *vdev;
3048 	struct xhci_virt_ep *ep;
3049 	struct xhci_input_control_ctx *ctrl_ctx;
3050 	struct xhci_command *stop_cmd, *cfg_cmd;
3051 	unsigned int ep_index;
3052 	unsigned long flags;
3053 	u32 ep_flag;
3054 
3055 	xhci = hcd_to_xhci(hcd);
3056 	if (!host_ep->hcpriv)
3057 		return;
3058 	udev = (struct usb_device *) host_ep->hcpriv;
3059 	vdev = xhci->devs[udev->slot_id];
3060 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3061 	ep = &vdev->eps[ep_index];
3062 
3063 	/* Bail out if toggle is already being cleared by a endpoint reset */
3064 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3065 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3066 		return;
3067 	}
3068 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3069 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3070 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3071 		return;
3072 
3073 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3074 
3075 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3076 		return;
3077 
3078 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3079 	if (!stop_cmd)
3080 		return;
3081 
3082 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3083 	if (!cfg_cmd)
3084 		goto cleanup;
3085 
3086 	spin_lock_irqsave(&xhci->lock, flags);
3087 
3088 	/* block queuing new trbs and ringing ep doorbell */
3089 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3090 
3091 	/*
3092 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3093 	 * Driver is required to synchronously cancel all transfer request.
3094 	 * Stop the endpoint to force xHC to update the output context
3095 	 */
3096 
3097 	if (!list_empty(&ep->ring->td_list)) {
3098 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3099 		spin_unlock_irqrestore(&xhci->lock, flags);
3100 		xhci_free_command(xhci, cfg_cmd);
3101 		goto cleanup;
3102 	}
3103 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3104 	xhci_ring_cmd_db(xhci);
3105 	spin_unlock_irqrestore(&xhci->lock, flags);
3106 
3107 	wait_for_completion(stop_cmd->completion);
3108 
3109 	spin_lock_irqsave(&xhci->lock, flags);
3110 
3111 	/* config ep command clears toggle if add and drop ep flags are set */
3112 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3113 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3114 					   ctrl_ctx, ep_flag, ep_flag);
3115 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3116 
3117 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3118 				      udev->slot_id, false);
3119 	xhci_ring_cmd_db(xhci);
3120 	spin_unlock_irqrestore(&xhci->lock, flags);
3121 
3122 	wait_for_completion(cfg_cmd->completion);
3123 
3124 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3125 	xhci_free_command(xhci, cfg_cmd);
3126 cleanup:
3127 	xhci_free_command(xhci, stop_cmd);
3128 }
3129 
3130 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3131 		struct usb_device *udev, struct usb_host_endpoint *ep,
3132 		unsigned int slot_id)
3133 {
3134 	int ret;
3135 	unsigned int ep_index;
3136 	unsigned int ep_state;
3137 
3138 	if (!ep)
3139 		return -EINVAL;
3140 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3141 	if (ret <= 0)
3142 		return -EINVAL;
3143 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3144 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3145 				" descriptor for ep 0x%x does not support streams\n",
3146 				ep->desc.bEndpointAddress);
3147 		return -EINVAL;
3148 	}
3149 
3150 	ep_index = xhci_get_endpoint_index(&ep->desc);
3151 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3152 	if (ep_state & EP_HAS_STREAMS ||
3153 			ep_state & EP_GETTING_STREAMS) {
3154 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3155 				"already has streams set up.\n",
3156 				ep->desc.bEndpointAddress);
3157 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3158 				"dynamic stream context array reallocation.\n");
3159 		return -EINVAL;
3160 	}
3161 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3162 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3163 				"endpoint 0x%x; URBs are pending.\n",
3164 				ep->desc.bEndpointAddress);
3165 		return -EINVAL;
3166 	}
3167 	return 0;
3168 }
3169 
3170 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3171 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3172 {
3173 	unsigned int max_streams;
3174 
3175 	/* The stream context array size must be a power of two */
3176 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3177 	/*
3178 	 * Find out how many primary stream array entries the host controller
3179 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3180 	 * level page entries), but that's an optional feature for xHCI host
3181 	 * controllers. xHCs must support at least 4 stream IDs.
3182 	 */
3183 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3184 	if (*num_stream_ctxs > max_streams) {
3185 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3186 				max_streams);
3187 		*num_stream_ctxs = max_streams;
3188 		*num_streams = max_streams;
3189 	}
3190 }
3191 
3192 /* Returns an error code if one of the endpoint already has streams.
3193  * This does not change any data structures, it only checks and gathers
3194  * information.
3195  */
3196 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3197 		struct usb_device *udev,
3198 		struct usb_host_endpoint **eps, unsigned int num_eps,
3199 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3200 {
3201 	unsigned int max_streams;
3202 	unsigned int endpoint_flag;
3203 	int i;
3204 	int ret;
3205 
3206 	for (i = 0; i < num_eps; i++) {
3207 		ret = xhci_check_streams_endpoint(xhci, udev,
3208 				eps[i], udev->slot_id);
3209 		if (ret < 0)
3210 			return ret;
3211 
3212 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3213 		if (max_streams < (*num_streams - 1)) {
3214 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3215 					eps[i]->desc.bEndpointAddress,
3216 					max_streams);
3217 			*num_streams = max_streams+1;
3218 		}
3219 
3220 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3221 		if (*changed_ep_bitmask & endpoint_flag)
3222 			return -EINVAL;
3223 		*changed_ep_bitmask |= endpoint_flag;
3224 	}
3225 	return 0;
3226 }
3227 
3228 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3229 		struct usb_device *udev,
3230 		struct usb_host_endpoint **eps, unsigned int num_eps)
3231 {
3232 	u32 changed_ep_bitmask = 0;
3233 	unsigned int slot_id;
3234 	unsigned int ep_index;
3235 	unsigned int ep_state;
3236 	int i;
3237 
3238 	slot_id = udev->slot_id;
3239 	if (!xhci->devs[slot_id])
3240 		return 0;
3241 
3242 	for (i = 0; i < num_eps; i++) {
3243 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3245 		/* Are streams already being freed for the endpoint? */
3246 		if (ep_state & EP_GETTING_NO_STREAMS) {
3247 			xhci_warn(xhci, "WARN Can't disable streams for "
3248 					"endpoint 0x%x, "
3249 					"streams are being disabled already\n",
3250 					eps[i]->desc.bEndpointAddress);
3251 			return 0;
3252 		}
3253 		/* Are there actually any streams to free? */
3254 		if (!(ep_state & EP_HAS_STREAMS) &&
3255 				!(ep_state & EP_GETTING_STREAMS)) {
3256 			xhci_warn(xhci, "WARN Can't disable streams for "
3257 					"endpoint 0x%x, "
3258 					"streams are already disabled!\n",
3259 					eps[i]->desc.bEndpointAddress);
3260 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3261 					"with non-streams endpoint\n");
3262 			return 0;
3263 		}
3264 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3265 	}
3266 	return changed_ep_bitmask;
3267 }
3268 
3269 /*
3270  * The USB device drivers use this function (through the HCD interface in USB
3271  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3272  * coordinate mass storage command queueing across multiple endpoints (basically
3273  * a stream ID == a task ID).
3274  *
3275  * Setting up streams involves allocating the same size stream context array
3276  * for each endpoint and issuing a configure endpoint command for all endpoints.
3277  *
3278  * Don't allow the call to succeed if one endpoint only supports one stream
3279  * (which means it doesn't support streams at all).
3280  *
3281  * Drivers may get less stream IDs than they asked for, if the host controller
3282  * hardware or endpoints claim they can't support the number of requested
3283  * stream IDs.
3284  */
3285 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3286 		struct usb_host_endpoint **eps, unsigned int num_eps,
3287 		unsigned int num_streams, gfp_t mem_flags)
3288 {
3289 	int i, ret;
3290 	struct xhci_hcd *xhci;
3291 	struct xhci_virt_device *vdev;
3292 	struct xhci_command *config_cmd;
3293 	struct xhci_input_control_ctx *ctrl_ctx;
3294 	unsigned int ep_index;
3295 	unsigned int num_stream_ctxs;
3296 	unsigned int max_packet;
3297 	unsigned long flags;
3298 	u32 changed_ep_bitmask = 0;
3299 
3300 	if (!eps)
3301 		return -EINVAL;
3302 
3303 	/* Add one to the number of streams requested to account for
3304 	 * stream 0 that is reserved for xHCI usage.
3305 	 */
3306 	num_streams += 1;
3307 	xhci = hcd_to_xhci(hcd);
3308 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3309 			num_streams);
3310 
3311 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3312 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3313 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3314 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3315 		return -ENOSYS;
3316 	}
3317 
3318 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3319 	if (!config_cmd)
3320 		return -ENOMEM;
3321 
3322 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3323 	if (!ctrl_ctx) {
3324 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3325 				__func__);
3326 		xhci_free_command(xhci, config_cmd);
3327 		return -ENOMEM;
3328 	}
3329 
3330 	/* Check to make sure all endpoints are not already configured for
3331 	 * streams.  While we're at it, find the maximum number of streams that
3332 	 * all the endpoints will support and check for duplicate endpoints.
3333 	 */
3334 	spin_lock_irqsave(&xhci->lock, flags);
3335 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3336 			num_eps, &num_streams, &changed_ep_bitmask);
3337 	if (ret < 0) {
3338 		xhci_free_command(xhci, config_cmd);
3339 		spin_unlock_irqrestore(&xhci->lock, flags);
3340 		return ret;
3341 	}
3342 	if (num_streams <= 1) {
3343 		xhci_warn(xhci, "WARN: endpoints can't handle "
3344 				"more than one stream.\n");
3345 		xhci_free_command(xhci, config_cmd);
3346 		spin_unlock_irqrestore(&xhci->lock, flags);
3347 		return -EINVAL;
3348 	}
3349 	vdev = xhci->devs[udev->slot_id];
3350 	/* Mark each endpoint as being in transition, so
3351 	 * xhci_urb_enqueue() will reject all URBs.
3352 	 */
3353 	for (i = 0; i < num_eps; i++) {
3354 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3355 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3356 	}
3357 	spin_unlock_irqrestore(&xhci->lock, flags);
3358 
3359 	/* Setup internal data structures and allocate HW data structures for
3360 	 * streams (but don't install the HW structures in the input context
3361 	 * until we're sure all memory allocation succeeded).
3362 	 */
3363 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3364 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3365 			num_stream_ctxs, num_streams);
3366 
3367 	for (i = 0; i < num_eps; i++) {
3368 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3370 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3371 				num_stream_ctxs,
3372 				num_streams,
3373 				max_packet, mem_flags);
3374 		if (!vdev->eps[ep_index].stream_info)
3375 			goto cleanup;
3376 		/* Set maxPstreams in endpoint context and update deq ptr to
3377 		 * point to stream context array. FIXME
3378 		 */
3379 	}
3380 
3381 	/* Set up the input context for a configure endpoint command. */
3382 	for (i = 0; i < num_eps; i++) {
3383 		struct xhci_ep_ctx *ep_ctx;
3384 
3385 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3386 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3387 
3388 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3389 				vdev->out_ctx, ep_index);
3390 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3391 				vdev->eps[ep_index].stream_info);
3392 	}
3393 	/* Tell the HW to drop its old copy of the endpoint context info
3394 	 * and add the updated copy from the input context.
3395 	 */
3396 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3397 			vdev->out_ctx, ctrl_ctx,
3398 			changed_ep_bitmask, changed_ep_bitmask);
3399 
3400 	/* Issue and wait for the configure endpoint command */
3401 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3402 			false, false);
3403 
3404 	/* xHC rejected the configure endpoint command for some reason, so we
3405 	 * leave the old ring intact and free our internal streams data
3406 	 * structure.
3407 	 */
3408 	if (ret < 0)
3409 		goto cleanup;
3410 
3411 	spin_lock_irqsave(&xhci->lock, flags);
3412 	for (i = 0; i < num_eps; i++) {
3413 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3415 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3416 			 udev->slot_id, ep_index);
3417 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3418 	}
3419 	xhci_free_command(xhci, config_cmd);
3420 	spin_unlock_irqrestore(&xhci->lock, flags);
3421 
3422 	/* Subtract 1 for stream 0, which drivers can't use */
3423 	return num_streams - 1;
3424 
3425 cleanup:
3426 	/* If it didn't work, free the streams! */
3427 	for (i = 0; i < num_eps; i++) {
3428 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3430 		vdev->eps[ep_index].stream_info = NULL;
3431 		/* FIXME Unset maxPstreams in endpoint context and
3432 		 * update deq ptr to point to normal string ring.
3433 		 */
3434 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3435 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3436 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3437 	}
3438 	xhci_free_command(xhci, config_cmd);
3439 	return -ENOMEM;
3440 }
3441 
3442 /* Transition the endpoint from using streams to being a "normal" endpoint
3443  * without streams.
3444  *
3445  * Modify the endpoint context state, submit a configure endpoint command,
3446  * and free all endpoint rings for streams if that completes successfully.
3447  */
3448 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3449 		struct usb_host_endpoint **eps, unsigned int num_eps,
3450 		gfp_t mem_flags)
3451 {
3452 	int i, ret;
3453 	struct xhci_hcd *xhci;
3454 	struct xhci_virt_device *vdev;
3455 	struct xhci_command *command;
3456 	struct xhci_input_control_ctx *ctrl_ctx;
3457 	unsigned int ep_index;
3458 	unsigned long flags;
3459 	u32 changed_ep_bitmask;
3460 
3461 	xhci = hcd_to_xhci(hcd);
3462 	vdev = xhci->devs[udev->slot_id];
3463 
3464 	/* Set up a configure endpoint command to remove the streams rings */
3465 	spin_lock_irqsave(&xhci->lock, flags);
3466 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3467 			udev, eps, num_eps);
3468 	if (changed_ep_bitmask == 0) {
3469 		spin_unlock_irqrestore(&xhci->lock, flags);
3470 		return -EINVAL;
3471 	}
3472 
3473 	/* Use the xhci_command structure from the first endpoint.  We may have
3474 	 * allocated too many, but the driver may call xhci_free_streams() for
3475 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3476 	 */
3477 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3478 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3479 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3480 	if (!ctrl_ctx) {
3481 		spin_unlock_irqrestore(&xhci->lock, flags);
3482 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3483 				__func__);
3484 		return -EINVAL;
3485 	}
3486 
3487 	for (i = 0; i < num_eps; i++) {
3488 		struct xhci_ep_ctx *ep_ctx;
3489 
3490 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3492 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3493 			EP_GETTING_NO_STREAMS;
3494 
3495 		xhci_endpoint_copy(xhci, command->in_ctx,
3496 				vdev->out_ctx, ep_index);
3497 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3498 				&vdev->eps[ep_index]);
3499 	}
3500 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3501 			vdev->out_ctx, ctrl_ctx,
3502 			changed_ep_bitmask, changed_ep_bitmask);
3503 	spin_unlock_irqrestore(&xhci->lock, flags);
3504 
3505 	/* Issue and wait for the configure endpoint command,
3506 	 * which must succeed.
3507 	 */
3508 	ret = xhci_configure_endpoint(xhci, udev, command,
3509 			false, true);
3510 
3511 	/* xHC rejected the configure endpoint command for some reason, so we
3512 	 * leave the streams rings intact.
3513 	 */
3514 	if (ret < 0)
3515 		return ret;
3516 
3517 	spin_lock_irqsave(&xhci->lock, flags);
3518 	for (i = 0; i < num_eps; i++) {
3519 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3520 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3521 		vdev->eps[ep_index].stream_info = NULL;
3522 		/* FIXME Unset maxPstreams in endpoint context and
3523 		 * update deq ptr to point to normal string ring.
3524 		 */
3525 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3526 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3527 	}
3528 	spin_unlock_irqrestore(&xhci->lock, flags);
3529 
3530 	return 0;
3531 }
3532 
3533 /*
3534  * Deletes endpoint resources for endpoints that were active before a Reset
3535  * Device command, or a Disable Slot command.  The Reset Device command leaves
3536  * the control endpoint intact, whereas the Disable Slot command deletes it.
3537  *
3538  * Must be called with xhci->lock held.
3539  */
3540 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3541 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3542 {
3543 	int i;
3544 	unsigned int num_dropped_eps = 0;
3545 	unsigned int drop_flags = 0;
3546 
3547 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3548 		if (virt_dev->eps[i].ring) {
3549 			drop_flags |= 1 << i;
3550 			num_dropped_eps++;
3551 		}
3552 	}
3553 	xhci->num_active_eps -= num_dropped_eps;
3554 	if (num_dropped_eps)
3555 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3556 				"Dropped %u ep ctxs, flags = 0x%x, "
3557 				"%u now active.",
3558 				num_dropped_eps, drop_flags,
3559 				xhci->num_active_eps);
3560 }
3561 
3562 /*
3563  * This submits a Reset Device Command, which will set the device state to 0,
3564  * set the device address to 0, and disable all the endpoints except the default
3565  * control endpoint.  The USB core should come back and call
3566  * xhci_address_device(), and then re-set up the configuration.  If this is
3567  * called because of a usb_reset_and_verify_device(), then the old alternate
3568  * settings will be re-installed through the normal bandwidth allocation
3569  * functions.
3570  *
3571  * Wait for the Reset Device command to finish.  Remove all structures
3572  * associated with the endpoints that were disabled.  Clear the input device
3573  * structure? Reset the control endpoint 0 max packet size?
3574  *
3575  * If the virt_dev to be reset does not exist or does not match the udev,
3576  * it means the device is lost, possibly due to the xHC restore error and
3577  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3578  * re-allocate the device.
3579  */
3580 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3581 		struct usb_device *udev)
3582 {
3583 	int ret, i;
3584 	unsigned long flags;
3585 	struct xhci_hcd *xhci;
3586 	unsigned int slot_id;
3587 	struct xhci_virt_device *virt_dev;
3588 	struct xhci_command *reset_device_cmd;
3589 	struct xhci_slot_ctx *slot_ctx;
3590 	int old_active_eps = 0;
3591 
3592 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3593 	if (ret <= 0)
3594 		return ret;
3595 	xhci = hcd_to_xhci(hcd);
3596 	slot_id = udev->slot_id;
3597 	virt_dev = xhci->devs[slot_id];
3598 	if (!virt_dev) {
3599 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3600 				"not exist. Re-allocate the device\n", slot_id);
3601 		ret = xhci_alloc_dev(hcd, udev);
3602 		if (ret == 1)
3603 			return 0;
3604 		else
3605 			return -EINVAL;
3606 	}
3607 
3608 	if (virt_dev->tt_info)
3609 		old_active_eps = virt_dev->tt_info->active_eps;
3610 
3611 	if (virt_dev->udev != udev) {
3612 		/* If the virt_dev and the udev does not match, this virt_dev
3613 		 * may belong to another udev.
3614 		 * Re-allocate the device.
3615 		 */
3616 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3617 				"not match the udev. Re-allocate the device\n",
3618 				slot_id);
3619 		ret = xhci_alloc_dev(hcd, udev);
3620 		if (ret == 1)
3621 			return 0;
3622 		else
3623 			return -EINVAL;
3624 	}
3625 
3626 	/* If device is not setup, there is no point in resetting it */
3627 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3628 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3629 						SLOT_STATE_DISABLED)
3630 		return 0;
3631 
3632 	trace_xhci_discover_or_reset_device(slot_ctx);
3633 
3634 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3635 	/* Allocate the command structure that holds the struct completion.
3636 	 * Assume we're in process context, since the normal device reset
3637 	 * process has to wait for the device anyway.  Storage devices are
3638 	 * reset as part of error handling, so use GFP_NOIO instead of
3639 	 * GFP_KERNEL.
3640 	 */
3641 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3642 	if (!reset_device_cmd) {
3643 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3644 		return -ENOMEM;
3645 	}
3646 
3647 	/* Attempt to submit the Reset Device command to the command ring */
3648 	spin_lock_irqsave(&xhci->lock, flags);
3649 
3650 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3651 	if (ret) {
3652 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3653 		spin_unlock_irqrestore(&xhci->lock, flags);
3654 		goto command_cleanup;
3655 	}
3656 	xhci_ring_cmd_db(xhci);
3657 	spin_unlock_irqrestore(&xhci->lock, flags);
3658 
3659 	/* Wait for the Reset Device command to finish */
3660 	wait_for_completion(reset_device_cmd->completion);
3661 
3662 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3663 	 * unless we tried to reset a slot ID that wasn't enabled,
3664 	 * or the device wasn't in the addressed or configured state.
3665 	 */
3666 	ret = reset_device_cmd->status;
3667 	switch (ret) {
3668 	case COMP_COMMAND_ABORTED:
3669 	case COMP_COMMAND_RING_STOPPED:
3670 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3671 		ret = -ETIME;
3672 		goto command_cleanup;
3673 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3674 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3675 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3676 				slot_id,
3677 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3678 		xhci_dbg(xhci, "Not freeing device rings.\n");
3679 		/* Don't treat this as an error.  May change my mind later. */
3680 		ret = 0;
3681 		goto command_cleanup;
3682 	case COMP_SUCCESS:
3683 		xhci_dbg(xhci, "Successful reset device command.\n");
3684 		break;
3685 	default:
3686 		if (xhci_is_vendor_info_code(xhci, ret))
3687 			break;
3688 		xhci_warn(xhci, "Unknown completion code %u for "
3689 				"reset device command.\n", ret);
3690 		ret = -EINVAL;
3691 		goto command_cleanup;
3692 	}
3693 
3694 	/* Free up host controller endpoint resources */
3695 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3696 		spin_lock_irqsave(&xhci->lock, flags);
3697 		/* Don't delete the default control endpoint resources */
3698 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3699 		spin_unlock_irqrestore(&xhci->lock, flags);
3700 	}
3701 
3702 	/* Everything but endpoint 0 is disabled, so free the rings. */
3703 	for (i = 1; i < 31; i++) {
3704 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3705 
3706 		if (ep->ep_state & EP_HAS_STREAMS) {
3707 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3708 					xhci_get_endpoint_address(i));
3709 			xhci_free_stream_info(xhci, ep->stream_info);
3710 			ep->stream_info = NULL;
3711 			ep->ep_state &= ~EP_HAS_STREAMS;
3712 		}
3713 
3714 		if (ep->ring) {
3715 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3716 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3717 		}
3718 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3719 			xhci_drop_ep_from_interval_table(xhci,
3720 					&virt_dev->eps[i].bw_info,
3721 					virt_dev->bw_table,
3722 					udev,
3723 					&virt_dev->eps[i],
3724 					virt_dev->tt_info);
3725 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3726 	}
3727 	/* If necessary, update the number of active TTs on this root port */
3728 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3729 	ret = 0;
3730 
3731 command_cleanup:
3732 	xhci_free_command(xhci, reset_device_cmd);
3733 	return ret;
3734 }
3735 
3736 /*
3737  * At this point, the struct usb_device is about to go away, the device has
3738  * disconnected, and all traffic has been stopped and the endpoints have been
3739  * disabled.  Free any HC data structures associated with that device.
3740  */
3741 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3742 {
3743 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3744 	struct xhci_virt_device *virt_dev;
3745 	struct xhci_slot_ctx *slot_ctx;
3746 	int i, ret;
3747 
3748 #ifndef CONFIG_USB_DEFAULT_PERSIST
3749 	/*
3750 	 * We called pm_runtime_get_noresume when the device was attached.
3751 	 * Decrement the counter here to allow controller to runtime suspend
3752 	 * if no devices remain.
3753 	 */
3754 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3755 		pm_runtime_put_noidle(hcd->self.controller);
3756 #endif
3757 
3758 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3759 	/* If the host is halted due to driver unload, we still need to free the
3760 	 * device.
3761 	 */
3762 	if (ret <= 0 && ret != -ENODEV)
3763 		return;
3764 
3765 	virt_dev = xhci->devs[udev->slot_id];
3766 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3767 	trace_xhci_free_dev(slot_ctx);
3768 
3769 	/* Stop any wayward timer functions (which may grab the lock) */
3770 	for (i = 0; i < 31; i++) {
3771 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3772 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3773 	}
3774 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3775 	virt_dev->udev = NULL;
3776 	ret = xhci_disable_slot(xhci, udev->slot_id);
3777 	if (ret)
3778 		xhci_free_virt_device(xhci, udev->slot_id);
3779 }
3780 
3781 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3782 {
3783 	struct xhci_command *command;
3784 	unsigned long flags;
3785 	u32 state;
3786 	int ret = 0;
3787 
3788 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3789 	if (!command)
3790 		return -ENOMEM;
3791 
3792 	spin_lock_irqsave(&xhci->lock, flags);
3793 	/* Don't disable the slot if the host controller is dead. */
3794 	state = readl(&xhci->op_regs->status);
3795 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3796 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3797 		spin_unlock_irqrestore(&xhci->lock, flags);
3798 		kfree(command);
3799 		return -ENODEV;
3800 	}
3801 
3802 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3803 				slot_id);
3804 	if (ret) {
3805 		spin_unlock_irqrestore(&xhci->lock, flags);
3806 		kfree(command);
3807 		return ret;
3808 	}
3809 	xhci_ring_cmd_db(xhci);
3810 	spin_unlock_irqrestore(&xhci->lock, flags);
3811 	return ret;
3812 }
3813 
3814 /*
3815  * Checks if we have enough host controller resources for the default control
3816  * endpoint.
3817  *
3818  * Must be called with xhci->lock held.
3819  */
3820 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3821 {
3822 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3823 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3824 				"Not enough ep ctxs: "
3825 				"%u active, need to add 1, limit is %u.",
3826 				xhci->num_active_eps, xhci->limit_active_eps);
3827 		return -ENOMEM;
3828 	}
3829 	xhci->num_active_eps += 1;
3830 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3831 			"Adding 1 ep ctx, %u now active.",
3832 			xhci->num_active_eps);
3833 	return 0;
3834 }
3835 
3836 
3837 /*
3838  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3839  * timed out, or allocating memory failed.  Returns 1 on success.
3840  */
3841 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3842 {
3843 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3844 	struct xhci_virt_device *vdev;
3845 	struct xhci_slot_ctx *slot_ctx;
3846 	unsigned long flags;
3847 	int ret, slot_id;
3848 	struct xhci_command *command;
3849 
3850 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3851 	if (!command)
3852 		return 0;
3853 
3854 	spin_lock_irqsave(&xhci->lock, flags);
3855 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3856 	if (ret) {
3857 		spin_unlock_irqrestore(&xhci->lock, flags);
3858 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3859 		xhci_free_command(xhci, command);
3860 		return 0;
3861 	}
3862 	xhci_ring_cmd_db(xhci);
3863 	spin_unlock_irqrestore(&xhci->lock, flags);
3864 
3865 	wait_for_completion(command->completion);
3866 	slot_id = command->slot_id;
3867 
3868 	if (!slot_id || command->status != COMP_SUCCESS) {
3869 		xhci_err(xhci, "Error while assigning device slot ID\n");
3870 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3871 				HCS_MAX_SLOTS(
3872 					readl(&xhci->cap_regs->hcs_params1)));
3873 		xhci_free_command(xhci, command);
3874 		return 0;
3875 	}
3876 
3877 	xhci_free_command(xhci, command);
3878 
3879 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3880 		spin_lock_irqsave(&xhci->lock, flags);
3881 		ret = xhci_reserve_host_control_ep_resources(xhci);
3882 		if (ret) {
3883 			spin_unlock_irqrestore(&xhci->lock, flags);
3884 			xhci_warn(xhci, "Not enough host resources, "
3885 					"active endpoint contexts = %u\n",
3886 					xhci->num_active_eps);
3887 			goto disable_slot;
3888 		}
3889 		spin_unlock_irqrestore(&xhci->lock, flags);
3890 	}
3891 	/* Use GFP_NOIO, since this function can be called from
3892 	 * xhci_discover_or_reset_device(), which may be called as part of
3893 	 * mass storage driver error handling.
3894 	 */
3895 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3896 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3897 		goto disable_slot;
3898 	}
3899 	vdev = xhci->devs[slot_id];
3900 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3901 	trace_xhci_alloc_dev(slot_ctx);
3902 
3903 	udev->slot_id = slot_id;
3904 
3905 	xhci_debugfs_create_slot(xhci, slot_id);
3906 
3907 #ifndef CONFIG_USB_DEFAULT_PERSIST
3908 	/*
3909 	 * If resetting upon resume, we can't put the controller into runtime
3910 	 * suspend if there is a device attached.
3911 	 */
3912 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3913 		pm_runtime_get_noresume(hcd->self.controller);
3914 #endif
3915 
3916 	/* Is this a LS or FS device under a HS hub? */
3917 	/* Hub or peripherial? */
3918 	return 1;
3919 
3920 disable_slot:
3921 	ret = xhci_disable_slot(xhci, udev->slot_id);
3922 	if (ret)
3923 		xhci_free_virt_device(xhci, udev->slot_id);
3924 
3925 	return 0;
3926 }
3927 
3928 /*
3929  * Issue an Address Device command and optionally send a corresponding
3930  * SetAddress request to the device.
3931  */
3932 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3933 			     enum xhci_setup_dev setup)
3934 {
3935 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3936 	unsigned long flags;
3937 	struct xhci_virt_device *virt_dev;
3938 	int ret = 0;
3939 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3940 	struct xhci_slot_ctx *slot_ctx;
3941 	struct xhci_input_control_ctx *ctrl_ctx;
3942 	u64 temp_64;
3943 	struct xhci_command *command = NULL;
3944 
3945 	mutex_lock(&xhci->mutex);
3946 
3947 	if (xhci->xhc_state) {	/* dying, removing or halted */
3948 		ret = -ESHUTDOWN;
3949 		goto out;
3950 	}
3951 
3952 	if (!udev->slot_id) {
3953 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954 				"Bad Slot ID %d", udev->slot_id);
3955 		ret = -EINVAL;
3956 		goto out;
3957 	}
3958 
3959 	virt_dev = xhci->devs[udev->slot_id];
3960 
3961 	if (WARN_ON(!virt_dev)) {
3962 		/*
3963 		 * In plug/unplug torture test with an NEC controller,
3964 		 * a zero-dereference was observed once due to virt_dev = 0.
3965 		 * Print useful debug rather than crash if it is observed again!
3966 		 */
3967 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3968 			udev->slot_id);
3969 		ret = -EINVAL;
3970 		goto out;
3971 	}
3972 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3973 	trace_xhci_setup_device_slot(slot_ctx);
3974 
3975 	if (setup == SETUP_CONTEXT_ONLY) {
3976 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3977 		    SLOT_STATE_DEFAULT) {
3978 			xhci_dbg(xhci, "Slot already in default state\n");
3979 			goto out;
3980 		}
3981 	}
3982 
3983 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3984 	if (!command) {
3985 		ret = -ENOMEM;
3986 		goto out;
3987 	}
3988 
3989 	command->in_ctx = virt_dev->in_ctx;
3990 
3991 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3992 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3993 	if (!ctrl_ctx) {
3994 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3995 				__func__);
3996 		ret = -EINVAL;
3997 		goto out;
3998 	}
3999 	/*
4000 	 * If this is the first Set Address since device plug-in or
4001 	 * virt_device realloaction after a resume with an xHCI power loss,
4002 	 * then set up the slot context.
4003 	 */
4004 	if (!slot_ctx->dev_info)
4005 		xhci_setup_addressable_virt_dev(xhci, udev);
4006 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4007 	else
4008 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4009 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4010 	ctrl_ctx->drop_flags = 0;
4011 
4012 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4013 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4014 
4015 	spin_lock_irqsave(&xhci->lock, flags);
4016 	trace_xhci_setup_device(virt_dev);
4017 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4018 					udev->slot_id, setup);
4019 	if (ret) {
4020 		spin_unlock_irqrestore(&xhci->lock, flags);
4021 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4022 				"FIXME: allocate a command ring segment");
4023 		goto out;
4024 	}
4025 	xhci_ring_cmd_db(xhci);
4026 	spin_unlock_irqrestore(&xhci->lock, flags);
4027 
4028 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4029 	wait_for_completion(command->completion);
4030 
4031 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4032 	 * the SetAddress() "recovery interval" required by USB and aborting the
4033 	 * command on a timeout.
4034 	 */
4035 	switch (command->status) {
4036 	case COMP_COMMAND_ABORTED:
4037 	case COMP_COMMAND_RING_STOPPED:
4038 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4039 		ret = -ETIME;
4040 		break;
4041 	case COMP_CONTEXT_STATE_ERROR:
4042 	case COMP_SLOT_NOT_ENABLED_ERROR:
4043 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4044 			 act, udev->slot_id);
4045 		ret = -EINVAL;
4046 		break;
4047 	case COMP_USB_TRANSACTION_ERROR:
4048 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4049 
4050 		mutex_unlock(&xhci->mutex);
4051 		ret = xhci_disable_slot(xhci, udev->slot_id);
4052 		if (!ret)
4053 			xhci_alloc_dev(hcd, udev);
4054 		kfree(command->completion);
4055 		kfree(command);
4056 		return -EPROTO;
4057 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4058 		dev_warn(&udev->dev,
4059 			 "ERROR: Incompatible device for setup %s command\n", act);
4060 		ret = -ENODEV;
4061 		break;
4062 	case COMP_SUCCESS:
4063 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4064 			       "Successful setup %s command", act);
4065 		break;
4066 	default:
4067 		xhci_err(xhci,
4068 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4069 			 act, command->status);
4070 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4071 		ret = -EINVAL;
4072 		break;
4073 	}
4074 	if (ret)
4075 		goto out;
4076 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4077 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4078 			"Op regs DCBAA ptr = %#016llx", temp_64);
4079 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4080 		"Slot ID %d dcbaa entry @%p = %#016llx",
4081 		udev->slot_id,
4082 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4083 		(unsigned long long)
4084 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4085 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4086 			"Output Context DMA address = %#08llx",
4087 			(unsigned long long)virt_dev->out_ctx->dma);
4088 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4089 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4090 	/*
4091 	 * USB core uses address 1 for the roothubs, so we add one to the
4092 	 * address given back to us by the HC.
4093 	 */
4094 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4095 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4096 	/* Zero the input context control for later use */
4097 	ctrl_ctx->add_flags = 0;
4098 	ctrl_ctx->drop_flags = 0;
4099 
4100 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4101 		       "Internal device address = %d",
4102 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4103 out:
4104 	mutex_unlock(&xhci->mutex);
4105 	if (command) {
4106 		kfree(command->completion);
4107 		kfree(command);
4108 	}
4109 	return ret;
4110 }
4111 
4112 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4113 {
4114 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4115 }
4116 
4117 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4118 {
4119 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4120 }
4121 
4122 /*
4123  * Transfer the port index into real index in the HW port status
4124  * registers. Caculate offset between the port's PORTSC register
4125  * and port status base. Divide the number of per port register
4126  * to get the real index. The raw port number bases 1.
4127  */
4128 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4129 {
4130 	struct xhci_hub *rhub;
4131 
4132 	rhub = xhci_get_rhub(hcd);
4133 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4134 }
4135 
4136 /*
4137  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4138  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4139  */
4140 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4141 			struct usb_device *udev, u16 max_exit_latency)
4142 {
4143 	struct xhci_virt_device *virt_dev;
4144 	struct xhci_command *command;
4145 	struct xhci_input_control_ctx *ctrl_ctx;
4146 	struct xhci_slot_ctx *slot_ctx;
4147 	unsigned long flags;
4148 	int ret;
4149 
4150 	spin_lock_irqsave(&xhci->lock, flags);
4151 
4152 	virt_dev = xhci->devs[udev->slot_id];
4153 
4154 	/*
4155 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4156 	 * xHC was re-initialized. Exit latency will be set later after
4157 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4158 	 */
4159 
4160 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4161 		spin_unlock_irqrestore(&xhci->lock, flags);
4162 		return 0;
4163 	}
4164 
4165 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4166 	command = xhci->lpm_command;
4167 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4168 	if (!ctrl_ctx) {
4169 		spin_unlock_irqrestore(&xhci->lock, flags);
4170 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4171 				__func__);
4172 		return -ENOMEM;
4173 	}
4174 
4175 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4176 	spin_unlock_irqrestore(&xhci->lock, flags);
4177 
4178 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4179 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4180 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4181 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4182 	slot_ctx->dev_state = 0;
4183 
4184 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4185 			"Set up evaluate context for LPM MEL change.");
4186 
4187 	/* Issue and wait for the evaluate context command. */
4188 	ret = xhci_configure_endpoint(xhci, udev, command,
4189 			true, true);
4190 
4191 	if (!ret) {
4192 		spin_lock_irqsave(&xhci->lock, flags);
4193 		virt_dev->current_mel = max_exit_latency;
4194 		spin_unlock_irqrestore(&xhci->lock, flags);
4195 	}
4196 	return ret;
4197 }
4198 
4199 #ifdef CONFIG_PM
4200 
4201 /* BESL to HIRD Encoding array for USB2 LPM */
4202 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4203 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4204 
4205 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4206 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4207 					struct usb_device *udev)
4208 {
4209 	int u2del, besl, besl_host;
4210 	int besl_device = 0;
4211 	u32 field;
4212 
4213 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4214 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4215 
4216 	if (field & USB_BESL_SUPPORT) {
4217 		for (besl_host = 0; besl_host < 16; besl_host++) {
4218 			if (xhci_besl_encoding[besl_host] >= u2del)
4219 				break;
4220 		}
4221 		/* Use baseline BESL value as default */
4222 		if (field & USB_BESL_BASELINE_VALID)
4223 			besl_device = USB_GET_BESL_BASELINE(field);
4224 		else if (field & USB_BESL_DEEP_VALID)
4225 			besl_device = USB_GET_BESL_DEEP(field);
4226 	} else {
4227 		if (u2del <= 50)
4228 			besl_host = 0;
4229 		else
4230 			besl_host = (u2del - 51) / 75 + 1;
4231 	}
4232 
4233 	besl = besl_host + besl_device;
4234 	if (besl > 15)
4235 		besl = 15;
4236 
4237 	return besl;
4238 }
4239 
4240 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4241 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4242 {
4243 	u32 field;
4244 	int l1;
4245 	int besld = 0;
4246 	int hirdm = 0;
4247 
4248 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4249 
4250 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4251 	l1 = udev->l1_params.timeout / 256;
4252 
4253 	/* device has preferred BESLD */
4254 	if (field & USB_BESL_DEEP_VALID) {
4255 		besld = USB_GET_BESL_DEEP(field);
4256 		hirdm = 1;
4257 	}
4258 
4259 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4260 }
4261 
4262 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4263 			struct usb_device *udev, int enable)
4264 {
4265 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4266 	struct xhci_port **ports;
4267 	__le32 __iomem	*pm_addr, *hlpm_addr;
4268 	u32		pm_val, hlpm_val, field;
4269 	unsigned int	port_num;
4270 	unsigned long	flags;
4271 	int		hird, exit_latency;
4272 	int		ret;
4273 
4274 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4275 			!udev->lpm_capable)
4276 		return -EPERM;
4277 
4278 	if (!udev->parent || udev->parent->parent ||
4279 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4280 		return -EPERM;
4281 
4282 	if (udev->usb2_hw_lpm_capable != 1)
4283 		return -EPERM;
4284 
4285 	spin_lock_irqsave(&xhci->lock, flags);
4286 
4287 	ports = xhci->usb2_rhub.ports;
4288 	port_num = udev->portnum - 1;
4289 	pm_addr = ports[port_num]->addr + PORTPMSC;
4290 	pm_val = readl(pm_addr);
4291 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4292 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4293 
4294 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4295 			enable ? "enable" : "disable", port_num + 1);
4296 
4297 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4298 		/* Host supports BESL timeout instead of HIRD */
4299 		if (udev->usb2_hw_lpm_besl_capable) {
4300 			/* if device doesn't have a preferred BESL value use a
4301 			 * default one which works with mixed HIRD and BESL
4302 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4303 			 */
4304 			if ((field & USB_BESL_SUPPORT) &&
4305 			    (field & USB_BESL_BASELINE_VALID))
4306 				hird = USB_GET_BESL_BASELINE(field);
4307 			else
4308 				hird = udev->l1_params.besl;
4309 
4310 			exit_latency = xhci_besl_encoding[hird];
4311 			spin_unlock_irqrestore(&xhci->lock, flags);
4312 
4313 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4314 			 * input context for link powermanagement evaluate
4315 			 * context commands. It is protected by hcd->bandwidth
4316 			 * mutex and is shared by all devices. We need to set
4317 			 * the max ext latency in USB 2 BESL LPM as well, so
4318 			 * use the same mutex and xhci_change_max_exit_latency()
4319 			 */
4320 			mutex_lock(hcd->bandwidth_mutex);
4321 			ret = xhci_change_max_exit_latency(xhci, udev,
4322 							   exit_latency);
4323 			mutex_unlock(hcd->bandwidth_mutex);
4324 
4325 			if (ret < 0)
4326 				return ret;
4327 			spin_lock_irqsave(&xhci->lock, flags);
4328 
4329 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4330 			writel(hlpm_val, hlpm_addr);
4331 			/* flush write */
4332 			readl(hlpm_addr);
4333 		} else {
4334 			hird = xhci_calculate_hird_besl(xhci, udev);
4335 		}
4336 
4337 		pm_val &= ~PORT_HIRD_MASK;
4338 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4339 		writel(pm_val, pm_addr);
4340 		pm_val = readl(pm_addr);
4341 		pm_val |= PORT_HLE;
4342 		writel(pm_val, pm_addr);
4343 		/* flush write */
4344 		readl(pm_addr);
4345 	} else {
4346 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4347 		writel(pm_val, pm_addr);
4348 		/* flush write */
4349 		readl(pm_addr);
4350 		if (udev->usb2_hw_lpm_besl_capable) {
4351 			spin_unlock_irqrestore(&xhci->lock, flags);
4352 			mutex_lock(hcd->bandwidth_mutex);
4353 			xhci_change_max_exit_latency(xhci, udev, 0);
4354 			mutex_unlock(hcd->bandwidth_mutex);
4355 			return 0;
4356 		}
4357 	}
4358 
4359 	spin_unlock_irqrestore(&xhci->lock, flags);
4360 	return 0;
4361 }
4362 
4363 /* check if a usb2 port supports a given extened capability protocol
4364  * only USB2 ports extended protocol capability values are cached.
4365  * Return 1 if capability is supported
4366  */
4367 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4368 					   unsigned capability)
4369 {
4370 	u32 port_offset, port_count;
4371 	int i;
4372 
4373 	for (i = 0; i < xhci->num_ext_caps; i++) {
4374 		if (xhci->ext_caps[i] & capability) {
4375 			/* port offsets starts at 1 */
4376 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4377 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4378 			if (port >= port_offset &&
4379 			    port < port_offset + port_count)
4380 				return 1;
4381 		}
4382 	}
4383 	return 0;
4384 }
4385 
4386 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4387 {
4388 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4389 	int		portnum = udev->portnum - 1;
4390 
4391 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4392 			!udev->lpm_capable)
4393 		return 0;
4394 
4395 	/* we only support lpm for non-hub device connected to root hub yet */
4396 	if (!udev->parent || udev->parent->parent ||
4397 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4398 		return 0;
4399 
4400 	if (xhci->hw_lpm_support == 1 &&
4401 			xhci_check_usb2_port_capability(
4402 				xhci, portnum, XHCI_HLC)) {
4403 		udev->usb2_hw_lpm_capable = 1;
4404 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4405 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4406 		if (xhci_check_usb2_port_capability(xhci, portnum,
4407 					XHCI_BLC))
4408 			udev->usb2_hw_lpm_besl_capable = 1;
4409 	}
4410 
4411 	return 0;
4412 }
4413 
4414 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4415 
4416 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4417 static unsigned long long xhci_service_interval_to_ns(
4418 		struct usb_endpoint_descriptor *desc)
4419 {
4420 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4421 }
4422 
4423 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4424 		enum usb3_link_state state)
4425 {
4426 	unsigned long long sel;
4427 	unsigned long long pel;
4428 	unsigned int max_sel_pel;
4429 	char *state_name;
4430 
4431 	switch (state) {
4432 	case USB3_LPM_U1:
4433 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4434 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4435 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4436 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4437 		state_name = "U1";
4438 		break;
4439 	case USB3_LPM_U2:
4440 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4441 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4442 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4443 		state_name = "U2";
4444 		break;
4445 	default:
4446 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4447 				__func__);
4448 		return USB3_LPM_DISABLED;
4449 	}
4450 
4451 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4452 		return USB3_LPM_DEVICE_INITIATED;
4453 
4454 	if (sel > max_sel_pel)
4455 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4456 				"due to long SEL %llu ms\n",
4457 				state_name, sel);
4458 	else
4459 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4460 				"due to long PEL %llu ms\n",
4461 				state_name, pel);
4462 	return USB3_LPM_DISABLED;
4463 }
4464 
4465 /* The U1 timeout should be the maximum of the following values:
4466  *  - For control endpoints, U1 system exit latency (SEL) * 3
4467  *  - For bulk endpoints, U1 SEL * 5
4468  *  - For interrupt endpoints:
4469  *    - Notification EPs, U1 SEL * 3
4470  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4471  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4472  */
4473 static unsigned long long xhci_calculate_intel_u1_timeout(
4474 		struct usb_device *udev,
4475 		struct usb_endpoint_descriptor *desc)
4476 {
4477 	unsigned long long timeout_ns;
4478 	int ep_type;
4479 	int intr_type;
4480 
4481 	ep_type = usb_endpoint_type(desc);
4482 	switch (ep_type) {
4483 	case USB_ENDPOINT_XFER_CONTROL:
4484 		timeout_ns = udev->u1_params.sel * 3;
4485 		break;
4486 	case USB_ENDPOINT_XFER_BULK:
4487 		timeout_ns = udev->u1_params.sel * 5;
4488 		break;
4489 	case USB_ENDPOINT_XFER_INT:
4490 		intr_type = usb_endpoint_interrupt_type(desc);
4491 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4492 			timeout_ns = udev->u1_params.sel * 3;
4493 			break;
4494 		}
4495 		/* Otherwise the calculation is the same as isoc eps */
4496 		/* fall through */
4497 	case USB_ENDPOINT_XFER_ISOC:
4498 		timeout_ns = xhci_service_interval_to_ns(desc);
4499 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4500 		if (timeout_ns < udev->u1_params.sel * 2)
4501 			timeout_ns = udev->u1_params.sel * 2;
4502 		break;
4503 	default:
4504 		return 0;
4505 	}
4506 
4507 	return timeout_ns;
4508 }
4509 
4510 /* Returns the hub-encoded U1 timeout value. */
4511 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4512 		struct usb_device *udev,
4513 		struct usb_endpoint_descriptor *desc)
4514 {
4515 	unsigned long long timeout_ns;
4516 
4517 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4518 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4519 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4520 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4521 			return USB3_LPM_DISABLED;
4522 		}
4523 	}
4524 
4525 	if (xhci->quirks & XHCI_INTEL_HOST)
4526 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4527 	else
4528 		timeout_ns = udev->u1_params.sel;
4529 
4530 	/* The U1 timeout is encoded in 1us intervals.
4531 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4532 	 */
4533 	if (timeout_ns == USB3_LPM_DISABLED)
4534 		timeout_ns = 1;
4535 	else
4536 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4537 
4538 	/* If the necessary timeout value is bigger than what we can set in the
4539 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4540 	 */
4541 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4542 		return timeout_ns;
4543 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4544 			"due to long timeout %llu ms\n", timeout_ns);
4545 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4546 }
4547 
4548 /* The U2 timeout should be the maximum of:
4549  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4550  *  - largest bInterval of any active periodic endpoint (to avoid going
4551  *    into lower power link states between intervals).
4552  *  - the U2 Exit Latency of the device
4553  */
4554 static unsigned long long xhci_calculate_intel_u2_timeout(
4555 		struct usb_device *udev,
4556 		struct usb_endpoint_descriptor *desc)
4557 {
4558 	unsigned long long timeout_ns;
4559 	unsigned long long u2_del_ns;
4560 
4561 	timeout_ns = 10 * 1000 * 1000;
4562 
4563 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4564 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4565 		timeout_ns = xhci_service_interval_to_ns(desc);
4566 
4567 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4568 	if (u2_del_ns > timeout_ns)
4569 		timeout_ns = u2_del_ns;
4570 
4571 	return timeout_ns;
4572 }
4573 
4574 /* Returns the hub-encoded U2 timeout value. */
4575 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4576 		struct usb_device *udev,
4577 		struct usb_endpoint_descriptor *desc)
4578 {
4579 	unsigned long long timeout_ns;
4580 
4581 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4582 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4583 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4584 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4585 			return USB3_LPM_DISABLED;
4586 		}
4587 	}
4588 
4589 	if (xhci->quirks & XHCI_INTEL_HOST)
4590 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4591 	else
4592 		timeout_ns = udev->u2_params.sel;
4593 
4594 	/* The U2 timeout is encoded in 256us intervals */
4595 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4596 	/* If the necessary timeout value is bigger than what we can set in the
4597 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4598 	 */
4599 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4600 		return timeout_ns;
4601 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4602 			"due to long timeout %llu ms\n", timeout_ns);
4603 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4604 }
4605 
4606 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4607 		struct usb_device *udev,
4608 		struct usb_endpoint_descriptor *desc,
4609 		enum usb3_link_state state,
4610 		u16 *timeout)
4611 {
4612 	if (state == USB3_LPM_U1)
4613 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4614 	else if (state == USB3_LPM_U2)
4615 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4616 
4617 	return USB3_LPM_DISABLED;
4618 }
4619 
4620 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4621 		struct usb_device *udev,
4622 		struct usb_endpoint_descriptor *desc,
4623 		enum usb3_link_state state,
4624 		u16 *timeout)
4625 {
4626 	u16 alt_timeout;
4627 
4628 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4629 		desc, state, timeout);
4630 
4631 	/* If we found we can't enable hub-initiated LPM, or
4632 	 * the U1 or U2 exit latency was too high to allow
4633 	 * device-initiated LPM as well, just stop searching.
4634 	 */
4635 	if (alt_timeout == USB3_LPM_DISABLED ||
4636 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4637 		*timeout = alt_timeout;
4638 		return -E2BIG;
4639 	}
4640 	if (alt_timeout > *timeout)
4641 		*timeout = alt_timeout;
4642 	return 0;
4643 }
4644 
4645 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4646 		struct usb_device *udev,
4647 		struct usb_host_interface *alt,
4648 		enum usb3_link_state state,
4649 		u16 *timeout)
4650 {
4651 	int j;
4652 
4653 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4654 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4655 					&alt->endpoint[j].desc, state, timeout))
4656 			return -E2BIG;
4657 		continue;
4658 	}
4659 	return 0;
4660 }
4661 
4662 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4663 		enum usb3_link_state state)
4664 {
4665 	struct usb_device *parent;
4666 	unsigned int num_hubs;
4667 
4668 	if (state == USB3_LPM_U2)
4669 		return 0;
4670 
4671 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4672 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4673 			parent = parent->parent)
4674 		num_hubs++;
4675 
4676 	if (num_hubs < 2)
4677 		return 0;
4678 
4679 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4680 			" below second-tier hub.\n");
4681 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4682 			"to decrease power consumption.\n");
4683 	return -E2BIG;
4684 }
4685 
4686 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4687 		struct usb_device *udev,
4688 		enum usb3_link_state state)
4689 {
4690 	if (xhci->quirks & XHCI_INTEL_HOST)
4691 		return xhci_check_intel_tier_policy(udev, state);
4692 	else
4693 		return 0;
4694 }
4695 
4696 /* Returns the U1 or U2 timeout that should be enabled.
4697  * If the tier check or timeout setting functions return with a non-zero exit
4698  * code, that means the timeout value has been finalized and we shouldn't look
4699  * at any more endpoints.
4700  */
4701 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4702 			struct usb_device *udev, enum usb3_link_state state)
4703 {
4704 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4705 	struct usb_host_config *config;
4706 	char *state_name;
4707 	int i;
4708 	u16 timeout = USB3_LPM_DISABLED;
4709 
4710 	if (state == USB3_LPM_U1)
4711 		state_name = "U1";
4712 	else if (state == USB3_LPM_U2)
4713 		state_name = "U2";
4714 	else {
4715 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4716 				state);
4717 		return timeout;
4718 	}
4719 
4720 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4721 		return timeout;
4722 
4723 	/* Gather some information about the currently installed configuration
4724 	 * and alternate interface settings.
4725 	 */
4726 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4727 			state, &timeout))
4728 		return timeout;
4729 
4730 	config = udev->actconfig;
4731 	if (!config)
4732 		return timeout;
4733 
4734 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4735 		struct usb_driver *driver;
4736 		struct usb_interface *intf = config->interface[i];
4737 
4738 		if (!intf)
4739 			continue;
4740 
4741 		/* Check if any currently bound drivers want hub-initiated LPM
4742 		 * disabled.
4743 		 */
4744 		if (intf->dev.driver) {
4745 			driver = to_usb_driver(intf->dev.driver);
4746 			if (driver && driver->disable_hub_initiated_lpm) {
4747 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4748 						"at request of driver %s\n",
4749 						state_name, driver->name);
4750 				return xhci_get_timeout_no_hub_lpm(udev, state);
4751 			}
4752 		}
4753 
4754 		/* Not sure how this could happen... */
4755 		if (!intf->cur_altsetting)
4756 			continue;
4757 
4758 		if (xhci_update_timeout_for_interface(xhci, udev,
4759 					intf->cur_altsetting,
4760 					state, &timeout))
4761 			return timeout;
4762 	}
4763 	return timeout;
4764 }
4765 
4766 static int calculate_max_exit_latency(struct usb_device *udev,
4767 		enum usb3_link_state state_changed,
4768 		u16 hub_encoded_timeout)
4769 {
4770 	unsigned long long u1_mel_us = 0;
4771 	unsigned long long u2_mel_us = 0;
4772 	unsigned long long mel_us = 0;
4773 	bool disabling_u1;
4774 	bool disabling_u2;
4775 	bool enabling_u1;
4776 	bool enabling_u2;
4777 
4778 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4779 			hub_encoded_timeout == USB3_LPM_DISABLED);
4780 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4781 			hub_encoded_timeout == USB3_LPM_DISABLED);
4782 
4783 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4784 			hub_encoded_timeout != USB3_LPM_DISABLED);
4785 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4786 			hub_encoded_timeout != USB3_LPM_DISABLED);
4787 
4788 	/* If U1 was already enabled and we're not disabling it,
4789 	 * or we're going to enable U1, account for the U1 max exit latency.
4790 	 */
4791 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4792 			enabling_u1)
4793 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4794 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4795 			enabling_u2)
4796 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4797 
4798 	if (u1_mel_us > u2_mel_us)
4799 		mel_us = u1_mel_us;
4800 	else
4801 		mel_us = u2_mel_us;
4802 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4803 	if (mel_us > MAX_EXIT) {
4804 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4805 				"is too big.\n", mel_us);
4806 		return -E2BIG;
4807 	}
4808 	return mel_us;
4809 }
4810 
4811 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4812 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4813 			struct usb_device *udev, enum usb3_link_state state)
4814 {
4815 	struct xhci_hcd	*xhci;
4816 	u16 hub_encoded_timeout;
4817 	int mel;
4818 	int ret;
4819 
4820 	xhci = hcd_to_xhci(hcd);
4821 	/* The LPM timeout values are pretty host-controller specific, so don't
4822 	 * enable hub-initiated timeouts unless the vendor has provided
4823 	 * information about their timeout algorithm.
4824 	 */
4825 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4826 			!xhci->devs[udev->slot_id])
4827 		return USB3_LPM_DISABLED;
4828 
4829 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4830 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4831 	if (mel < 0) {
4832 		/* Max Exit Latency is too big, disable LPM. */
4833 		hub_encoded_timeout = USB3_LPM_DISABLED;
4834 		mel = 0;
4835 	}
4836 
4837 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4838 	if (ret)
4839 		return ret;
4840 	return hub_encoded_timeout;
4841 }
4842 
4843 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4844 			struct usb_device *udev, enum usb3_link_state state)
4845 {
4846 	struct xhci_hcd	*xhci;
4847 	u16 mel;
4848 
4849 	xhci = hcd_to_xhci(hcd);
4850 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4851 			!xhci->devs[udev->slot_id])
4852 		return 0;
4853 
4854 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4855 	return xhci_change_max_exit_latency(xhci, udev, mel);
4856 }
4857 #else /* CONFIG_PM */
4858 
4859 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4860 				struct usb_device *udev, int enable)
4861 {
4862 	return 0;
4863 }
4864 
4865 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4866 {
4867 	return 0;
4868 }
4869 
4870 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4871 			struct usb_device *udev, enum usb3_link_state state)
4872 {
4873 	return USB3_LPM_DISABLED;
4874 }
4875 
4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4877 			struct usb_device *udev, enum usb3_link_state state)
4878 {
4879 	return 0;
4880 }
4881 #endif	/* CONFIG_PM */
4882 
4883 /*-------------------------------------------------------------------------*/
4884 
4885 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4886  * internal data structures for the device.
4887  */
4888 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4889 			struct usb_tt *tt, gfp_t mem_flags)
4890 {
4891 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4892 	struct xhci_virt_device *vdev;
4893 	struct xhci_command *config_cmd;
4894 	struct xhci_input_control_ctx *ctrl_ctx;
4895 	struct xhci_slot_ctx *slot_ctx;
4896 	unsigned long flags;
4897 	unsigned think_time;
4898 	int ret;
4899 
4900 	/* Ignore root hubs */
4901 	if (!hdev->parent)
4902 		return 0;
4903 
4904 	vdev = xhci->devs[hdev->slot_id];
4905 	if (!vdev) {
4906 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4907 		return -EINVAL;
4908 	}
4909 
4910 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4911 	if (!config_cmd)
4912 		return -ENOMEM;
4913 
4914 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4915 	if (!ctrl_ctx) {
4916 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4917 				__func__);
4918 		xhci_free_command(xhci, config_cmd);
4919 		return -ENOMEM;
4920 	}
4921 
4922 	spin_lock_irqsave(&xhci->lock, flags);
4923 	if (hdev->speed == USB_SPEED_HIGH &&
4924 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4925 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4926 		xhci_free_command(xhci, config_cmd);
4927 		spin_unlock_irqrestore(&xhci->lock, flags);
4928 		return -ENOMEM;
4929 	}
4930 
4931 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4932 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4933 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4934 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4935 	/*
4936 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4937 	 * but it may be already set to 1 when setup an xHCI virtual
4938 	 * device, so clear it anyway.
4939 	 */
4940 	if (tt->multi)
4941 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4942 	else if (hdev->speed == USB_SPEED_FULL)
4943 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4944 
4945 	if (xhci->hci_version > 0x95) {
4946 		xhci_dbg(xhci, "xHCI version %x needs hub "
4947 				"TT think time and number of ports\n",
4948 				(unsigned int) xhci->hci_version);
4949 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4950 		/* Set TT think time - convert from ns to FS bit times.
4951 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4952 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4953 		 *
4954 		 * xHCI 1.0: this field shall be 0 if the device is not a
4955 		 * High-spped hub.
4956 		 */
4957 		think_time = tt->think_time;
4958 		if (think_time != 0)
4959 			think_time = (think_time / 666) - 1;
4960 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4961 			slot_ctx->tt_info |=
4962 				cpu_to_le32(TT_THINK_TIME(think_time));
4963 	} else {
4964 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4965 				"TT think time or number of ports\n",
4966 				(unsigned int) xhci->hci_version);
4967 	}
4968 	slot_ctx->dev_state = 0;
4969 	spin_unlock_irqrestore(&xhci->lock, flags);
4970 
4971 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4972 			(xhci->hci_version > 0x95) ?
4973 			"configure endpoint" : "evaluate context");
4974 
4975 	/* Issue and wait for the configure endpoint or
4976 	 * evaluate context command.
4977 	 */
4978 	if (xhci->hci_version > 0x95)
4979 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4980 				false, false);
4981 	else
4982 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4983 				true, false);
4984 
4985 	xhci_free_command(xhci, config_cmd);
4986 	return ret;
4987 }
4988 
4989 static int xhci_get_frame(struct usb_hcd *hcd)
4990 {
4991 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4992 	/* EHCI mods by the periodic size.  Why? */
4993 	return readl(&xhci->run_regs->microframe_index) >> 3;
4994 }
4995 
4996 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4997 {
4998 	struct xhci_hcd		*xhci;
4999 	/*
5000 	 * TODO: Check with DWC3 clients for sysdev according to
5001 	 * quirks
5002 	 */
5003 	struct device		*dev = hcd->self.sysdev;
5004 	unsigned int		minor_rev;
5005 	int			retval;
5006 
5007 	/* Accept arbitrarily long scatter-gather lists */
5008 	hcd->self.sg_tablesize = ~0;
5009 
5010 	/* support to build packet from discontinuous buffers */
5011 	hcd->self.no_sg_constraint = 1;
5012 
5013 	/* XHCI controllers don't stop the ep queue on short packets :| */
5014 	hcd->self.no_stop_on_short = 1;
5015 
5016 	xhci = hcd_to_xhci(hcd);
5017 
5018 	if (usb_hcd_is_primary_hcd(hcd)) {
5019 		xhci->main_hcd = hcd;
5020 		xhci->usb2_rhub.hcd = hcd;
5021 		/* Mark the first roothub as being USB 2.0.
5022 		 * The xHCI driver will register the USB 3.0 roothub.
5023 		 */
5024 		hcd->speed = HCD_USB2;
5025 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5026 		/*
5027 		 * USB 2.0 roothub under xHCI has an integrated TT,
5028 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5029 		 * companion controller.
5030 		 */
5031 		hcd->has_tt = 1;
5032 	} else {
5033 		/*
5034 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5035 		 * minor revision instead of sbrn
5036 		 */
5037 		minor_rev = xhci->usb3_rhub.min_rev;
5038 		if (minor_rev) {
5039 			hcd->speed = HCD_USB31;
5040 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5041 		}
5042 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5043 			  minor_rev,
5044 			  minor_rev ? "Enhanced" : "");
5045 
5046 		xhci->usb3_rhub.hcd = hcd;
5047 		/* xHCI private pointer was set in xhci_pci_probe for the second
5048 		 * registered roothub.
5049 		 */
5050 		return 0;
5051 	}
5052 
5053 	mutex_init(&xhci->mutex);
5054 	xhci->cap_regs = hcd->regs;
5055 	xhci->op_regs = hcd->regs +
5056 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5057 	xhci->run_regs = hcd->regs +
5058 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5059 	/* Cache read-only capability registers */
5060 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5061 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5062 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5063 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5064 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5065 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5066 	if (xhci->hci_version > 0x100)
5067 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5068 
5069 	xhci->quirks |= quirks;
5070 
5071 	get_quirks(dev, xhci);
5072 
5073 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5074 	 * success event after a short transfer. This quirk will ignore such
5075 	 * spurious event.
5076 	 */
5077 	if (xhci->hci_version > 0x96)
5078 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5079 
5080 	/* Make sure the HC is halted. */
5081 	retval = xhci_halt(xhci);
5082 	if (retval)
5083 		return retval;
5084 
5085 	xhci_zero_64b_regs(xhci);
5086 
5087 	xhci_dbg(xhci, "Resetting HCD\n");
5088 	/* Reset the internal HC memory state and registers. */
5089 	retval = xhci_reset(xhci);
5090 	if (retval)
5091 		return retval;
5092 	xhci_dbg(xhci, "Reset complete\n");
5093 
5094 	/*
5095 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5096 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5097 	 * address memory pointers actually. So, this driver clears the AC64
5098 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5099 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5100 	 */
5101 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5102 		xhci->hcc_params &= ~BIT(0);
5103 
5104 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5105 	 * if xHC supports 64-bit addressing */
5106 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5107 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5108 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5109 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5110 	} else {
5111 		/*
5112 		 * This is to avoid error in cases where a 32-bit USB
5113 		 * controller is used on a 64-bit capable system.
5114 		 */
5115 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5116 		if (retval)
5117 			return retval;
5118 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5119 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5120 	}
5121 
5122 	xhci_dbg(xhci, "Calling HCD init\n");
5123 	/* Initialize HCD and host controller data structures. */
5124 	retval = xhci_init(hcd);
5125 	if (retval)
5126 		return retval;
5127 	xhci_dbg(xhci, "Called HCD init\n");
5128 
5129 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5130 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5131 
5132 	return 0;
5133 }
5134 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5135 
5136 static const struct hc_driver xhci_hc_driver = {
5137 	.description =		"xhci-hcd",
5138 	.product_desc =		"xHCI Host Controller",
5139 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5140 
5141 	/*
5142 	 * generic hardware linkage
5143 	 */
5144 	.irq =			xhci_irq,
5145 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5146 
5147 	/*
5148 	 * basic lifecycle operations
5149 	 */
5150 	.reset =		NULL, /* set in xhci_init_driver() */
5151 	.start =		xhci_run,
5152 	.stop =			xhci_stop,
5153 	.shutdown =		xhci_shutdown,
5154 
5155 	/*
5156 	 * managing i/o requests and associated device resources
5157 	 */
5158 	.urb_enqueue =		xhci_urb_enqueue,
5159 	.urb_dequeue =		xhci_urb_dequeue,
5160 	.alloc_dev =		xhci_alloc_dev,
5161 	.free_dev =		xhci_free_dev,
5162 	.alloc_streams =	xhci_alloc_streams,
5163 	.free_streams =		xhci_free_streams,
5164 	.add_endpoint =		xhci_add_endpoint,
5165 	.drop_endpoint =	xhci_drop_endpoint,
5166 	.endpoint_reset =	xhci_endpoint_reset,
5167 	.check_bandwidth =	xhci_check_bandwidth,
5168 	.reset_bandwidth =	xhci_reset_bandwidth,
5169 	.address_device =	xhci_address_device,
5170 	.enable_device =	xhci_enable_device,
5171 	.update_hub_device =	xhci_update_hub_device,
5172 	.reset_device =		xhci_discover_or_reset_device,
5173 
5174 	/*
5175 	 * scheduling support
5176 	 */
5177 	.get_frame_number =	xhci_get_frame,
5178 
5179 	/*
5180 	 * root hub support
5181 	 */
5182 	.hub_control =		xhci_hub_control,
5183 	.hub_status_data =	xhci_hub_status_data,
5184 	.bus_suspend =		xhci_bus_suspend,
5185 	.bus_resume =		xhci_bus_resume,
5186 	.get_resuming_ports =	xhci_get_resuming_ports,
5187 
5188 	/*
5189 	 * call back when device connected and addressed
5190 	 */
5191 	.update_device =        xhci_update_device,
5192 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5193 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5194 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5195 	.find_raw_port_number =	xhci_find_raw_port_number,
5196 };
5197 
5198 void xhci_init_driver(struct hc_driver *drv,
5199 		      const struct xhci_driver_overrides *over)
5200 {
5201 	BUG_ON(!over);
5202 
5203 	/* Copy the generic table to drv then apply the overrides */
5204 	*drv = xhci_hc_driver;
5205 
5206 	if (over) {
5207 		drv->hcd_priv_size += over->extra_priv_size;
5208 		if (over->reset)
5209 			drv->reset = over->reset;
5210 		if (over->start)
5211 			drv->start = over->start;
5212 	}
5213 }
5214 EXPORT_SYMBOL_GPL(xhci_init_driver);
5215 
5216 MODULE_DESCRIPTION(DRIVER_DESC);
5217 MODULE_AUTHOR(DRIVER_AUTHOR);
5218 MODULE_LICENSE("GPL");
5219 
5220 static int __init xhci_hcd_init(void)
5221 {
5222 	/*
5223 	 * Check the compiler generated sizes of structures that must be laid
5224 	 * out in specific ways for hardware access.
5225 	 */
5226 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5227 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5228 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5229 	/* xhci_device_control has eight fields, and also
5230 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5231 	 */
5232 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5233 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5234 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5235 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5236 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5237 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5238 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5239 
5240 	if (usb_disabled())
5241 		return -ENODEV;
5242 
5243 	xhci_debugfs_create_root();
5244 
5245 	return 0;
5246 }
5247 
5248 /*
5249  * If an init function is provided, an exit function must also be provided
5250  * to allow module unload.
5251  */
5252 static void __exit xhci_hcd_fini(void)
5253 {
5254 	xhci_debugfs_remove_root();
5255 }
5256 
5257 module_init(xhci_hcd_init);
5258 module_exit(xhci_hcd_fini);
5259