1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 73 do { 74 result = readl(ptr); 75 if (result == ~(u32)0) /* card removed */ 76 return -ENODEV; 77 result &= mask; 78 if (result == done) 79 return 0; 80 udelay(1); 81 usec--; 82 } while (usec > 0); 83 return -ETIMEDOUT; 84 } 85 86 /* 87 * Disable interrupts and begin the xHCI halting process. 88 */ 89 void xhci_quiesce(struct xhci_hcd *xhci) 90 { 91 u32 halted; 92 u32 cmd; 93 u32 mask; 94 95 mask = ~(XHCI_IRQS); 96 halted = readl(&xhci->op_regs->status) & STS_HALT; 97 if (!halted) 98 mask &= ~CMD_RUN; 99 100 cmd = readl(&xhci->op_regs->command); 101 cmd &= mask; 102 writel(cmd, &xhci->op_regs->command); 103 } 104 105 /* 106 * Force HC into halt state. 107 * 108 * Disable any IRQs and clear the run/stop bit. 109 * HC will complete any current and actively pipelined transactions, and 110 * should halt within 16 ms of the run/stop bit being cleared. 111 * Read HC Halted bit in the status register to see when the HC is finished. 112 */ 113 int xhci_halt(struct xhci_hcd *xhci) 114 { 115 int ret; 116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 117 xhci_quiesce(xhci); 118 119 ret = xhci_handshake(&xhci->op_regs->status, 120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 121 if (ret) { 122 xhci_warn(xhci, "Host halt failed, %d\n", ret); 123 return ret; 124 } 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci) 169 { 170 u32 command; 171 u32 state; 172 int ret, i; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, 202 CMD_RESET, 0, 10 * 1000 * 1000); 203 if (ret) 204 return ret; 205 206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 208 209 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 210 "Wait for controller to be ready for doorbell rings"); 211 /* 212 * xHCI cannot write to any doorbells or operational registers other 213 * than status until the "Controller Not Ready" flag is cleared. 214 */ 215 ret = xhci_handshake(&xhci->op_regs->status, 216 STS_CNR, 0, 10 * 1000 * 1000); 217 218 for (i = 0; i < 2; i++) { 219 xhci->bus_state[i].port_c_suspend = 0; 220 xhci->bus_state[i].suspended_ports = 0; 221 xhci->bus_state[i].resuming_ports = 0; 222 } 223 224 return ret; 225 } 226 227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 228 { 229 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 230 int err, i; 231 u64 val; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 271 struct xhci_intr_reg __iomem *ir; 272 273 ir = &xhci->run_regs->ir_set[i]; 274 val = xhci_read_64(xhci, &ir->erst_base); 275 if (upper_32_bits(val)) 276 xhci_write_64(xhci, 0, &ir->erst_base); 277 val= xhci_read_64(xhci, &ir->erst_dequeue); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_dequeue); 280 } 281 282 /* Wait for the fault to appear. It will be cleared on reset */ 283 err = xhci_handshake(&xhci->op_regs->status, 284 STS_FATAL, STS_FATAL, 285 XHCI_MAX_HALT_USEC); 286 if (!err) 287 xhci_info(xhci, "Fault detected\n"); 288 } 289 290 #ifdef CONFIG_USB_PCI 291 /* 292 * Set up MSI 293 */ 294 static int xhci_setup_msi(struct xhci_hcd *xhci) 295 { 296 int ret; 297 /* 298 * TODO:Check with MSI Soc for sysdev 299 */ 300 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 301 302 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 303 if (ret < 0) { 304 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 305 "failed to allocate MSI entry"); 306 return ret; 307 } 308 309 ret = request_irq(pdev->irq, xhci_msi_irq, 310 0, "xhci_hcd", xhci_to_hcd(xhci)); 311 if (ret) { 312 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 313 "disable MSI interrupt"); 314 pci_free_irq_vectors(pdev); 315 } 316 317 return ret; 318 } 319 320 /* 321 * Set up MSI-X 322 */ 323 static int xhci_setup_msix(struct xhci_hcd *xhci) 324 { 325 int i, ret = 0; 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 328 329 /* 330 * calculate number of msi-x vectors supported. 331 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 332 * with max number of interrupters based on the xhci HCSPARAMS1. 333 * - num_online_cpus: maximum msi-x vectors per CPUs core. 334 * Add additional 1 vector to ensure always available interrupt. 335 */ 336 xhci->msix_count = min(num_online_cpus() + 1, 337 HCS_MAX_INTRS(xhci->hcs_params1)); 338 339 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 340 PCI_IRQ_MSIX); 341 if (ret < 0) { 342 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 343 "Failed to enable MSI-X"); 344 return ret; 345 } 346 347 for (i = 0; i < xhci->msix_count; i++) { 348 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 349 "xhci_hcd", xhci_to_hcd(xhci)); 350 if (ret) 351 goto disable_msix; 352 } 353 354 hcd->msix_enabled = 1; 355 return ret; 356 357 disable_msix: 358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 359 while (--i >= 0) 360 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 361 pci_free_irq_vectors(pdev); 362 return ret; 363 } 364 365 /* Free any IRQs and disable MSI-X */ 366 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 367 { 368 struct usb_hcd *hcd = xhci_to_hcd(xhci); 369 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 370 371 if (xhci->quirks & XHCI_PLAT) 372 return; 373 374 /* return if using legacy interrupt */ 375 if (hcd->irq > 0) 376 return; 377 378 if (hcd->msix_enabled) { 379 int i; 380 381 for (i = 0; i < xhci->msix_count; i++) 382 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 383 } else { 384 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 385 } 386 387 pci_free_irq_vectors(pdev); 388 hcd->msix_enabled = 0; 389 } 390 391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 392 { 393 struct usb_hcd *hcd = xhci_to_hcd(xhci); 394 395 if (hcd->msix_enabled) { 396 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 397 int i; 398 399 for (i = 0; i < xhci->msix_count; i++) 400 synchronize_irq(pci_irq_vector(pdev, i)); 401 } 402 } 403 404 static int xhci_try_enable_msi(struct usb_hcd *hcd) 405 { 406 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 407 struct pci_dev *pdev; 408 int ret; 409 410 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 411 if (xhci->quirks & XHCI_PLAT) 412 return 0; 413 414 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 415 /* 416 * Some Fresco Logic host controllers advertise MSI, but fail to 417 * generate interrupts. Don't even try to enable MSI. 418 */ 419 if (xhci->quirks & XHCI_BROKEN_MSI) 420 goto legacy_irq; 421 422 /* unregister the legacy interrupt */ 423 if (hcd->irq) 424 free_irq(hcd->irq, hcd); 425 hcd->irq = 0; 426 427 ret = xhci_setup_msix(xhci); 428 if (ret) 429 /* fall back to msi*/ 430 ret = xhci_setup_msi(xhci); 431 432 if (!ret) { 433 hcd->msi_enabled = 1; 434 return 0; 435 } 436 437 if (!pdev->irq) { 438 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 439 return -EINVAL; 440 } 441 442 legacy_irq: 443 if (!strlen(hcd->irq_descr)) 444 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 445 hcd->driver->description, hcd->self.busnum); 446 447 /* fall back to legacy interrupt*/ 448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 449 hcd->irq_descr, hcd); 450 if (ret) { 451 xhci_err(xhci, "request interrupt %d failed\n", 452 pdev->irq); 453 return ret; 454 } 455 hcd->irq = pdev->irq; 456 return 0; 457 } 458 459 #else 460 461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 462 { 463 return 0; 464 } 465 466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 467 { 468 } 469 470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 471 { 472 } 473 474 #endif 475 476 static void compliance_mode_recovery(struct timer_list *t) 477 { 478 struct xhci_hcd *xhci; 479 struct usb_hcd *hcd; 480 struct xhci_hub *rhub; 481 u32 temp; 482 int i; 483 484 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 485 rhub = &xhci->usb3_rhub; 486 487 for (i = 0; i < rhub->num_ports; i++) { 488 temp = readl(rhub->ports[i]->addr); 489 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 490 /* 491 * Compliance Mode Detected. Letting USB Core 492 * handle the Warm Reset 493 */ 494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 495 "Compliance mode detected->port %d", 496 i + 1); 497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 498 "Attempting compliance mode recovery"); 499 hcd = xhci->shared_hcd; 500 501 if (hcd->state == HC_STATE_SUSPENDED) 502 usb_hcd_resume_root_hub(hcd); 503 504 usb_hcd_poll_rh_status(hcd); 505 } 506 } 507 508 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 509 mod_timer(&xhci->comp_mode_recovery_timer, 510 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 511 } 512 513 /* 514 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 515 * that causes ports behind that hardware to enter compliance mode sometimes. 516 * The quirk creates a timer that polls every 2 seconds the link state of 517 * each host controller's port and recovers it by issuing a Warm reset 518 * if Compliance mode is detected, otherwise the port will become "dead" (no 519 * device connections or disconnections will be detected anymore). Becasue no 520 * status event is generated when entering compliance mode (per xhci spec), 521 * this quirk is needed on systems that have the failing hardware installed. 522 */ 523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 524 { 525 xhci->port_status_u0 = 0; 526 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 527 0); 528 xhci->comp_mode_recovery_timer.expires = jiffies + 529 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 530 531 add_timer(&xhci->comp_mode_recovery_timer); 532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 533 "Compliance mode recovery timer initialized"); 534 } 535 536 /* 537 * This function identifies the systems that have installed the SN65LVPE502CP 538 * USB3.0 re-driver and that need the Compliance Mode Quirk. 539 * Systems: 540 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 541 */ 542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 543 { 544 const char *dmi_product_name, *dmi_sys_vendor; 545 546 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 547 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 548 if (!dmi_product_name || !dmi_sys_vendor) 549 return false; 550 551 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 552 return false; 553 554 if (strstr(dmi_product_name, "Z420") || 555 strstr(dmi_product_name, "Z620") || 556 strstr(dmi_product_name, "Z820") || 557 strstr(dmi_product_name, "Z1 Workstation")) 558 return true; 559 560 return false; 561 } 562 563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 564 { 565 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 566 } 567 568 569 /* 570 * Initialize memory for HCD and xHC (one-time init). 571 * 572 * Program the PAGESIZE register, initialize the device context array, create 573 * device contexts (?), set up a command ring segment (or two?), create event 574 * ring (one for now). 575 */ 576 static int xhci_init(struct usb_hcd *hcd) 577 { 578 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 579 int retval = 0; 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 582 spin_lock_init(&xhci->lock); 583 if (xhci->hci_version == 0x95 && link_quirk) { 584 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 585 "QUIRK: Not clearing Link TRB chain bits."); 586 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 587 } else { 588 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 589 "xHCI doesn't need link TRB QUIRK"); 590 } 591 retval = xhci_mem_init(xhci, GFP_KERNEL); 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 593 594 /* Initializing Compliance Mode Recovery Data If Needed */ 595 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 596 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 597 compliance_mode_recovery_timer_init(xhci); 598 } 599 600 return retval; 601 } 602 603 /*-------------------------------------------------------------------------*/ 604 605 606 static int xhci_run_finished(struct xhci_hcd *xhci) 607 { 608 if (xhci_start(xhci)) { 609 xhci_halt(xhci); 610 return -ENODEV; 611 } 612 xhci->shared_hcd->state = HC_STATE_RUNNING; 613 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 614 615 if (xhci->quirks & XHCI_NEC_HOST) 616 xhci_ring_cmd_db(xhci); 617 618 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 619 "Finished xhci_run for USB3 roothub"); 620 return 0; 621 } 622 623 /* 624 * Start the HC after it was halted. 625 * 626 * This function is called by the USB core when the HC driver is added. 627 * Its opposite is xhci_stop(). 628 * 629 * xhci_init() must be called once before this function can be called. 630 * Reset the HC, enable device slot contexts, program DCBAAP, and 631 * set command ring pointer and event ring pointer. 632 * 633 * Setup MSI-X vectors and enable interrupts. 634 */ 635 int xhci_run(struct usb_hcd *hcd) 636 { 637 u32 temp; 638 u64 temp_64; 639 int ret; 640 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 641 642 /* Start the xHCI host controller running only after the USB 2.0 roothub 643 * is setup. 644 */ 645 646 hcd->uses_new_polling = 1; 647 if (!usb_hcd_is_primary_hcd(hcd)) 648 return xhci_run_finished(xhci); 649 650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 651 652 ret = xhci_try_enable_msi(hcd); 653 if (ret) 654 return ret; 655 656 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 657 temp_64 &= ~ERST_PTR_MASK; 658 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 659 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 660 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "// Set the interrupt modulation register"); 663 temp = readl(&xhci->ir_set->irq_control); 664 temp &= ~ER_IRQ_INTERVAL_MASK; 665 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 666 writel(temp, &xhci->ir_set->irq_control); 667 668 /* Set the HCD state before we enable the irqs */ 669 temp = readl(&xhci->op_regs->command); 670 temp |= (CMD_EIE); 671 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 672 "// Enable interrupts, cmd = 0x%x.", temp); 673 writel(temp, &xhci->op_regs->command); 674 675 temp = readl(&xhci->ir_set->irq_pending); 676 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 677 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 678 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 679 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 680 681 if (xhci->quirks & XHCI_NEC_HOST) { 682 struct xhci_command *command; 683 684 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 685 if (!command) 686 return -ENOMEM; 687 688 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 689 TRB_TYPE(TRB_NEC_GET_FW)); 690 if (ret) 691 xhci_free_command(xhci, command); 692 } 693 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 694 "Finished xhci_run for USB2 roothub"); 695 696 xhci_dbc_init(xhci); 697 698 xhci_debugfs_init(xhci); 699 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(xhci_run); 703 704 /* 705 * Stop xHCI driver. 706 * 707 * This function is called by the USB core when the HC driver is removed. 708 * Its opposite is xhci_run(). 709 * 710 * Disable device contexts, disable IRQs, and quiesce the HC. 711 * Reset the HC, finish any completed transactions, and cleanup memory. 712 */ 713 static void xhci_stop(struct usb_hcd *hcd) 714 { 715 u32 temp; 716 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 717 718 mutex_lock(&xhci->mutex); 719 720 /* Only halt host and free memory after both hcds are removed */ 721 if (!usb_hcd_is_primary_hcd(hcd)) { 722 mutex_unlock(&xhci->mutex); 723 return; 724 } 725 726 xhci_dbc_exit(xhci); 727 728 spin_lock_irq(&xhci->lock); 729 xhci->xhc_state |= XHCI_STATE_HALTED; 730 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 731 xhci_halt(xhci); 732 xhci_reset(xhci); 733 spin_unlock_irq(&xhci->lock); 734 735 xhci_cleanup_msix(xhci); 736 737 /* Deleting Compliance Mode Recovery Timer */ 738 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 739 (!(xhci_all_ports_seen_u0(xhci)))) { 740 del_timer_sync(&xhci->comp_mode_recovery_timer); 741 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 742 "%s: compliance mode recovery timer deleted", 743 __func__); 744 } 745 746 if (xhci->quirks & XHCI_AMD_PLL_FIX) 747 usb_amd_dev_put(); 748 749 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 750 "// Disabling event ring interrupts"); 751 temp = readl(&xhci->op_regs->status); 752 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 753 temp = readl(&xhci->ir_set->irq_pending); 754 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 755 756 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 757 xhci_mem_cleanup(xhci); 758 xhci_debugfs_exit(xhci); 759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 760 "xhci_stop completed - status = %x", 761 readl(&xhci->op_regs->status)); 762 mutex_unlock(&xhci->mutex); 763 } 764 765 /* 766 * Shutdown HC (not bus-specific) 767 * 768 * This is called when the machine is rebooting or halting. We assume that the 769 * machine will be powered off, and the HC's internal state will be reset. 770 * Don't bother to free memory. 771 * 772 * This will only ever be called with the main usb_hcd (the USB3 roothub). 773 */ 774 static void xhci_shutdown(struct usb_hcd *hcd) 775 { 776 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 777 778 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 779 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 780 781 spin_lock_irq(&xhci->lock); 782 xhci_halt(xhci); 783 /* Workaround for spurious wakeups at shutdown with HSW */ 784 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 785 xhci_reset(xhci); 786 spin_unlock_irq(&xhci->lock); 787 788 xhci_cleanup_msix(xhci); 789 790 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 791 "xhci_shutdown completed - status = %x", 792 readl(&xhci->op_regs->status)); 793 794 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 795 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 796 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 797 } 798 799 #ifdef CONFIG_PM 800 static void xhci_save_registers(struct xhci_hcd *xhci) 801 { 802 xhci->s3.command = readl(&xhci->op_regs->command); 803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 811 } 812 813 static void xhci_restore_registers(struct xhci_hcd *xhci) 814 { 815 writel(xhci->s3.command, &xhci->op_regs->command); 816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 824 } 825 826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 827 { 828 u64 val_64; 829 830 /* step 2: initialize command ring buffer */ 831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 834 xhci->cmd_ring->dequeue) & 835 (u64) ~CMD_RING_RSVD_BITS) | 836 xhci->cmd_ring->cycle_state; 837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 838 "// Setting command ring address to 0x%llx", 839 (long unsigned long) val_64); 840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 841 } 842 843 /* 844 * The whole command ring must be cleared to zero when we suspend the host. 845 * 846 * The host doesn't save the command ring pointer in the suspend well, so we 847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 848 * aligned, because of the reserved bits in the command ring dequeue pointer 849 * register. Therefore, we can't just set the dequeue pointer back in the 850 * middle of the ring (TRBs are 16-byte aligned). 851 */ 852 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 853 { 854 struct xhci_ring *ring; 855 struct xhci_segment *seg; 856 857 ring = xhci->cmd_ring; 858 seg = ring->deq_seg; 859 do { 860 memset(seg->trbs, 0, 861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 863 cpu_to_le32(~TRB_CYCLE); 864 seg = seg->next; 865 } while (seg != ring->deq_seg); 866 867 /* Reset the software enqueue and dequeue pointers */ 868 ring->deq_seg = ring->first_seg; 869 ring->dequeue = ring->first_seg->trbs; 870 ring->enq_seg = ring->deq_seg; 871 ring->enqueue = ring->dequeue; 872 873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 874 /* 875 * Ring is now zeroed, so the HW should look for change of ownership 876 * when the cycle bit is set to 1. 877 */ 878 ring->cycle_state = 1; 879 880 /* 881 * Reset the hardware dequeue pointer. 882 * Yes, this will need to be re-written after resume, but we're paranoid 883 * and want to make sure the hardware doesn't access bogus memory 884 * because, say, the BIOS or an SMI started the host without changing 885 * the command ring pointers. 886 */ 887 xhci_set_cmd_ring_deq(xhci); 888 } 889 890 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 891 { 892 struct xhci_port **ports; 893 int port_index; 894 unsigned long flags; 895 u32 t1, t2; 896 897 spin_lock_irqsave(&xhci->lock, flags); 898 899 /* disable usb3 ports Wake bits */ 900 port_index = xhci->usb3_rhub.num_ports; 901 ports = xhci->usb3_rhub.ports; 902 while (port_index--) { 903 t1 = readl(ports[port_index]->addr); 904 t1 = xhci_port_state_to_neutral(t1); 905 t2 = t1 & ~PORT_WAKE_BITS; 906 if (t1 != t2) 907 writel(t2, ports[port_index]->addr); 908 } 909 910 /* disable usb2 ports Wake bits */ 911 port_index = xhci->usb2_rhub.num_ports; 912 ports = xhci->usb2_rhub.ports; 913 while (port_index--) { 914 t1 = readl(ports[port_index]->addr); 915 t1 = xhci_port_state_to_neutral(t1); 916 t2 = t1 & ~PORT_WAKE_BITS; 917 if (t1 != t2) 918 writel(t2, ports[port_index]->addr); 919 } 920 921 spin_unlock_irqrestore(&xhci->lock, flags); 922 } 923 924 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 925 { 926 struct xhci_port **ports; 927 int port_index; 928 u32 status; 929 u32 portsc; 930 931 status = readl(&xhci->op_regs->status); 932 if (status & STS_EINT) 933 return true; 934 /* 935 * Checking STS_EINT is not enough as there is a lag between a change 936 * bit being set and the Port Status Change Event that it generated 937 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 938 */ 939 940 port_index = xhci->usb2_rhub.num_ports; 941 ports = xhci->usb2_rhub.ports; 942 while (port_index--) { 943 portsc = readl(ports[port_index]->addr); 944 if (portsc & PORT_CHANGE_MASK || 945 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 946 return true; 947 } 948 port_index = xhci->usb3_rhub.num_ports; 949 ports = xhci->usb3_rhub.ports; 950 while (port_index--) { 951 portsc = readl(ports[port_index]->addr); 952 if (portsc & PORT_CHANGE_MASK || 953 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 954 return true; 955 } 956 return false; 957 } 958 959 /* 960 * Stop HC (not bus-specific) 961 * 962 * This is called when the machine transition into S3/S4 mode. 963 * 964 */ 965 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 966 { 967 int rc = 0; 968 unsigned int delay = XHCI_MAX_HALT_USEC; 969 struct usb_hcd *hcd = xhci_to_hcd(xhci); 970 u32 command; 971 u32 res; 972 973 if (!hcd->state) 974 return 0; 975 976 if (hcd->state != HC_STATE_SUSPENDED || 977 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 978 return -EINVAL; 979 980 xhci_dbc_suspend(xhci); 981 982 /* Clear root port wake on bits if wakeup not allowed. */ 983 if (!do_wakeup) 984 xhci_disable_port_wake_on_bits(xhci); 985 986 /* Don't poll the roothubs on bus suspend. */ 987 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 988 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 989 del_timer_sync(&hcd->rh_timer); 990 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 991 del_timer_sync(&xhci->shared_hcd->rh_timer); 992 993 if (xhci->quirks & XHCI_SUSPEND_DELAY) 994 usleep_range(1000, 1500); 995 996 spin_lock_irq(&xhci->lock); 997 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 998 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 999 /* step 1: stop endpoint */ 1000 /* skipped assuming that port suspend has done */ 1001 1002 /* step 2: clear Run/Stop bit */ 1003 command = readl(&xhci->op_regs->command); 1004 command &= ~CMD_RUN; 1005 writel(command, &xhci->op_regs->command); 1006 1007 /* Some chips from Fresco Logic need an extraordinary delay */ 1008 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1009 1010 if (xhci_handshake(&xhci->op_regs->status, 1011 STS_HALT, STS_HALT, delay)) { 1012 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1013 spin_unlock_irq(&xhci->lock); 1014 return -ETIMEDOUT; 1015 } 1016 xhci_clear_command_ring(xhci); 1017 1018 /* step 3: save registers */ 1019 xhci_save_registers(xhci); 1020 1021 /* step 4: set CSS flag */ 1022 command = readl(&xhci->op_regs->command); 1023 command |= CMD_CSS; 1024 writel(command, &xhci->op_regs->command); 1025 xhci->broken_suspend = 0; 1026 if (xhci_handshake(&xhci->op_regs->status, 1027 STS_SAVE, 0, 10 * 1000)) { 1028 /* 1029 * AMD SNPS xHC 3.0 occasionally does not clear the 1030 * SSS bit of USBSTS and when driver tries to poll 1031 * to see if the xHC clears BIT(8) which never happens 1032 * and driver assumes that controller is not responding 1033 * and times out. To workaround this, its good to check 1034 * if SRE and HCE bits are not set (as per xhci 1035 * Section 5.4.2) and bypass the timeout. 1036 */ 1037 res = readl(&xhci->op_regs->status); 1038 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1039 (((res & STS_SRE) == 0) && 1040 ((res & STS_HCE) == 0))) { 1041 xhci->broken_suspend = 1; 1042 } else { 1043 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1044 spin_unlock_irq(&xhci->lock); 1045 return -ETIMEDOUT; 1046 } 1047 } 1048 spin_unlock_irq(&xhci->lock); 1049 1050 /* 1051 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1052 * is about to be suspended. 1053 */ 1054 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1055 (!(xhci_all_ports_seen_u0(xhci)))) { 1056 del_timer_sync(&xhci->comp_mode_recovery_timer); 1057 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1058 "%s: compliance mode recovery timer deleted", 1059 __func__); 1060 } 1061 1062 /* step 5: remove core well power */ 1063 /* synchronize irq when using MSI-X */ 1064 xhci_msix_sync_irqs(xhci); 1065 1066 return rc; 1067 } 1068 EXPORT_SYMBOL_GPL(xhci_suspend); 1069 1070 /* 1071 * start xHC (not bus-specific) 1072 * 1073 * This is called when the machine transition from S3/S4 mode. 1074 * 1075 */ 1076 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1077 { 1078 u32 command, temp = 0; 1079 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1080 struct usb_hcd *secondary_hcd; 1081 int retval = 0; 1082 bool comp_timer_running = false; 1083 1084 if (!hcd->state) 1085 return 0; 1086 1087 /* Wait a bit if either of the roothubs need to settle from the 1088 * transition into bus suspend. 1089 */ 1090 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1091 time_before(jiffies, 1092 xhci->bus_state[1].next_statechange)) 1093 msleep(100); 1094 1095 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1096 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1097 1098 spin_lock_irq(&xhci->lock); 1099 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1100 hibernated = true; 1101 1102 if (!hibernated) { 1103 /* step 1: restore register */ 1104 xhci_restore_registers(xhci); 1105 /* step 2: initialize command ring buffer */ 1106 xhci_set_cmd_ring_deq(xhci); 1107 /* step 3: restore state and start state*/ 1108 /* step 3: set CRS flag */ 1109 command = readl(&xhci->op_regs->command); 1110 command |= CMD_CRS; 1111 writel(command, &xhci->op_regs->command); 1112 /* 1113 * Some controllers take up to 55+ ms to complete the controller 1114 * restore so setting the timeout to 100ms. Xhci specification 1115 * doesn't mention any timeout value. 1116 */ 1117 if (xhci_handshake(&xhci->op_regs->status, 1118 STS_RESTORE, 0, 100 * 1000)) { 1119 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1120 spin_unlock_irq(&xhci->lock); 1121 return -ETIMEDOUT; 1122 } 1123 temp = readl(&xhci->op_regs->status); 1124 } 1125 1126 /* If restore operation fails, re-initialize the HC during resume */ 1127 if ((temp & STS_SRE) || hibernated) { 1128 1129 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1130 !(xhci_all_ports_seen_u0(xhci))) { 1131 del_timer_sync(&xhci->comp_mode_recovery_timer); 1132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1133 "Compliance Mode Recovery Timer deleted!"); 1134 } 1135 1136 /* Let the USB core know _both_ roothubs lost power. */ 1137 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1138 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1139 1140 xhci_dbg(xhci, "Stop HCD\n"); 1141 xhci_halt(xhci); 1142 xhci_zero_64b_regs(xhci); 1143 xhci_reset(xhci); 1144 spin_unlock_irq(&xhci->lock); 1145 xhci_cleanup_msix(xhci); 1146 1147 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1148 temp = readl(&xhci->op_regs->status); 1149 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1150 temp = readl(&xhci->ir_set->irq_pending); 1151 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1152 1153 xhci_dbg(xhci, "cleaning up memory\n"); 1154 xhci_mem_cleanup(xhci); 1155 xhci_debugfs_exit(xhci); 1156 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1157 readl(&xhci->op_regs->status)); 1158 1159 /* USB core calls the PCI reinit and start functions twice: 1160 * first with the primary HCD, and then with the secondary HCD. 1161 * If we don't do the same, the host will never be started. 1162 */ 1163 if (!usb_hcd_is_primary_hcd(hcd)) 1164 secondary_hcd = hcd; 1165 else 1166 secondary_hcd = xhci->shared_hcd; 1167 1168 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1169 retval = xhci_init(hcd->primary_hcd); 1170 if (retval) 1171 return retval; 1172 comp_timer_running = true; 1173 1174 xhci_dbg(xhci, "Start the primary HCD\n"); 1175 retval = xhci_run(hcd->primary_hcd); 1176 if (!retval) { 1177 xhci_dbg(xhci, "Start the secondary HCD\n"); 1178 retval = xhci_run(secondary_hcd); 1179 } 1180 hcd->state = HC_STATE_SUSPENDED; 1181 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1182 goto done; 1183 } 1184 1185 /* step 4: set Run/Stop bit */ 1186 command = readl(&xhci->op_regs->command); 1187 command |= CMD_RUN; 1188 writel(command, &xhci->op_regs->command); 1189 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1190 0, 250 * 1000); 1191 1192 /* step 5: walk topology and initialize portsc, 1193 * portpmsc and portli 1194 */ 1195 /* this is done in bus_resume */ 1196 1197 /* step 6: restart each of the previously 1198 * Running endpoints by ringing their doorbells 1199 */ 1200 1201 spin_unlock_irq(&xhci->lock); 1202 1203 xhci_dbc_resume(xhci); 1204 1205 done: 1206 if (retval == 0) { 1207 /* Resume root hubs only when have pending events. */ 1208 if (xhci_pending_portevent(xhci)) { 1209 usb_hcd_resume_root_hub(xhci->shared_hcd); 1210 usb_hcd_resume_root_hub(hcd); 1211 } 1212 } 1213 1214 /* 1215 * If system is subject to the Quirk, Compliance Mode Timer needs to 1216 * be re-initialized Always after a system resume. Ports are subject 1217 * to suffer the Compliance Mode issue again. It doesn't matter if 1218 * ports have entered previously to U0 before system's suspension. 1219 */ 1220 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1221 compliance_mode_recovery_timer_init(xhci); 1222 1223 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1224 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1225 1226 /* Re-enable port polling. */ 1227 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1228 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1229 usb_hcd_poll_rh_status(xhci->shared_hcd); 1230 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1231 usb_hcd_poll_rh_status(hcd); 1232 1233 return retval; 1234 } 1235 EXPORT_SYMBOL_GPL(xhci_resume); 1236 #endif /* CONFIG_PM */ 1237 1238 /*-------------------------------------------------------------------------*/ 1239 1240 /** 1241 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1242 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1243 * value to right shift 1 for the bitmask. 1244 * 1245 * Index = (epnum * 2) + direction - 1, 1246 * where direction = 0 for OUT, 1 for IN. 1247 * For control endpoints, the IN index is used (OUT index is unused), so 1248 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1249 */ 1250 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1251 { 1252 unsigned int index; 1253 if (usb_endpoint_xfer_control(desc)) 1254 index = (unsigned int) (usb_endpoint_num(desc)*2); 1255 else 1256 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1257 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1258 return index; 1259 } 1260 1261 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1262 * address from the XHCI endpoint index. 1263 */ 1264 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1265 { 1266 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1267 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1268 return direction | number; 1269 } 1270 1271 /* Find the flag for this endpoint (for use in the control context). Use the 1272 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1273 * bit 1, etc. 1274 */ 1275 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1276 { 1277 return 1 << (xhci_get_endpoint_index(desc) + 1); 1278 } 1279 1280 /* Find the flag for this endpoint (for use in the control context). Use the 1281 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1282 * bit 1, etc. 1283 */ 1284 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1285 { 1286 return 1 << (ep_index + 1); 1287 } 1288 1289 /* Compute the last valid endpoint context index. Basically, this is the 1290 * endpoint index plus one. For slot contexts with more than valid endpoint, 1291 * we find the most significant bit set in the added contexts flags. 1292 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1293 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1294 */ 1295 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1296 { 1297 return fls(added_ctxs) - 1; 1298 } 1299 1300 /* Returns 1 if the arguments are OK; 1301 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1302 */ 1303 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1304 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1305 const char *func) { 1306 struct xhci_hcd *xhci; 1307 struct xhci_virt_device *virt_dev; 1308 1309 if (!hcd || (check_ep && !ep) || !udev) { 1310 pr_debug("xHCI %s called with invalid args\n", func); 1311 return -EINVAL; 1312 } 1313 if (!udev->parent) { 1314 pr_debug("xHCI %s called for root hub\n", func); 1315 return 0; 1316 } 1317 1318 xhci = hcd_to_xhci(hcd); 1319 if (check_virt_dev) { 1320 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1321 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1322 func); 1323 return -EINVAL; 1324 } 1325 1326 virt_dev = xhci->devs[udev->slot_id]; 1327 if (virt_dev->udev != udev) { 1328 xhci_dbg(xhci, "xHCI %s called with udev and " 1329 "virt_dev does not match\n", func); 1330 return -EINVAL; 1331 } 1332 } 1333 1334 if (xhci->xhc_state & XHCI_STATE_HALTED) 1335 return -ENODEV; 1336 1337 return 1; 1338 } 1339 1340 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1341 struct usb_device *udev, struct xhci_command *command, 1342 bool ctx_change, bool must_succeed); 1343 1344 /* 1345 * Full speed devices may have a max packet size greater than 8 bytes, but the 1346 * USB core doesn't know that until it reads the first 8 bytes of the 1347 * descriptor. If the usb_device's max packet size changes after that point, 1348 * we need to issue an evaluate context command and wait on it. 1349 */ 1350 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1351 unsigned int ep_index, struct urb *urb) 1352 { 1353 struct xhci_container_ctx *out_ctx; 1354 struct xhci_input_control_ctx *ctrl_ctx; 1355 struct xhci_ep_ctx *ep_ctx; 1356 struct xhci_command *command; 1357 int max_packet_size; 1358 int hw_max_packet_size; 1359 int ret = 0; 1360 1361 out_ctx = xhci->devs[slot_id]->out_ctx; 1362 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1363 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1364 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1365 if (hw_max_packet_size != max_packet_size) { 1366 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1367 "Max Packet Size for ep 0 changed."); 1368 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1369 "Max packet size in usb_device = %d", 1370 max_packet_size); 1371 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1372 "Max packet size in xHCI HW = %d", 1373 hw_max_packet_size); 1374 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1375 "Issuing evaluate context command."); 1376 1377 /* Set up the input context flags for the command */ 1378 /* FIXME: This won't work if a non-default control endpoint 1379 * changes max packet sizes. 1380 */ 1381 1382 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1383 if (!command) 1384 return -ENOMEM; 1385 1386 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1387 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1388 if (!ctrl_ctx) { 1389 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1390 __func__); 1391 ret = -ENOMEM; 1392 goto command_cleanup; 1393 } 1394 /* Set up the modified control endpoint 0 */ 1395 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1396 xhci->devs[slot_id]->out_ctx, ep_index); 1397 1398 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1399 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1400 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1401 1402 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1403 ctrl_ctx->drop_flags = 0; 1404 1405 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1406 true, false); 1407 1408 /* Clean up the input context for later use by bandwidth 1409 * functions. 1410 */ 1411 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1412 command_cleanup: 1413 kfree(command->completion); 1414 kfree(command); 1415 } 1416 return ret; 1417 } 1418 1419 /* 1420 * non-error returns are a promise to giveback() the urb later 1421 * we drop ownership so next owner (or urb unlink) can get it 1422 */ 1423 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1424 { 1425 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1426 unsigned long flags; 1427 int ret = 0; 1428 unsigned int slot_id, ep_index; 1429 unsigned int *ep_state; 1430 struct urb_priv *urb_priv; 1431 int num_tds; 1432 1433 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1434 true, true, __func__) <= 0) 1435 return -EINVAL; 1436 1437 slot_id = urb->dev->slot_id; 1438 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1439 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1440 1441 if (!HCD_HW_ACCESSIBLE(hcd)) { 1442 if (!in_interrupt()) 1443 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1444 return -ESHUTDOWN; 1445 } 1446 1447 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1448 num_tds = urb->number_of_packets; 1449 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1450 urb->transfer_buffer_length > 0 && 1451 urb->transfer_flags & URB_ZERO_PACKET && 1452 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1453 num_tds = 2; 1454 else 1455 num_tds = 1; 1456 1457 urb_priv = kzalloc(sizeof(struct urb_priv) + 1458 num_tds * sizeof(struct xhci_td), mem_flags); 1459 if (!urb_priv) 1460 return -ENOMEM; 1461 1462 urb_priv->num_tds = num_tds; 1463 urb_priv->num_tds_done = 0; 1464 urb->hcpriv = urb_priv; 1465 1466 trace_xhci_urb_enqueue(urb); 1467 1468 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1469 /* Check to see if the max packet size for the default control 1470 * endpoint changed during FS device enumeration 1471 */ 1472 if (urb->dev->speed == USB_SPEED_FULL) { 1473 ret = xhci_check_maxpacket(xhci, slot_id, 1474 ep_index, urb); 1475 if (ret < 0) { 1476 xhci_urb_free_priv(urb_priv); 1477 urb->hcpriv = NULL; 1478 return ret; 1479 } 1480 } 1481 } 1482 1483 spin_lock_irqsave(&xhci->lock, flags); 1484 1485 if (xhci->xhc_state & XHCI_STATE_DYING) { 1486 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1487 urb->ep->desc.bEndpointAddress, urb); 1488 ret = -ESHUTDOWN; 1489 goto free_priv; 1490 } 1491 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1492 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1493 *ep_state); 1494 ret = -EINVAL; 1495 goto free_priv; 1496 } 1497 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1498 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1499 ret = -EINVAL; 1500 goto free_priv; 1501 } 1502 1503 switch (usb_endpoint_type(&urb->ep->desc)) { 1504 1505 case USB_ENDPOINT_XFER_CONTROL: 1506 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1507 slot_id, ep_index); 1508 break; 1509 case USB_ENDPOINT_XFER_BULK: 1510 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1511 slot_id, ep_index); 1512 break; 1513 case USB_ENDPOINT_XFER_INT: 1514 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1515 slot_id, ep_index); 1516 break; 1517 case USB_ENDPOINT_XFER_ISOC: 1518 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1519 slot_id, ep_index); 1520 } 1521 1522 if (ret) { 1523 free_priv: 1524 xhci_urb_free_priv(urb_priv); 1525 urb->hcpriv = NULL; 1526 } 1527 spin_unlock_irqrestore(&xhci->lock, flags); 1528 return ret; 1529 } 1530 1531 /* 1532 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1533 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1534 * should pick up where it left off in the TD, unless a Set Transfer Ring 1535 * Dequeue Pointer is issued. 1536 * 1537 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1538 * the ring. Since the ring is a contiguous structure, they can't be physically 1539 * removed. Instead, there are two options: 1540 * 1541 * 1) If the HC is in the middle of processing the URB to be canceled, we 1542 * simply move the ring's dequeue pointer past those TRBs using the Set 1543 * Transfer Ring Dequeue Pointer command. This will be the common case, 1544 * when drivers timeout on the last submitted URB and attempt to cancel. 1545 * 1546 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1547 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1548 * HC will need to invalidate the any TRBs it has cached after the stop 1549 * endpoint command, as noted in the xHCI 0.95 errata. 1550 * 1551 * 3) The TD may have completed by the time the Stop Endpoint Command 1552 * completes, so software needs to handle that case too. 1553 * 1554 * This function should protect against the TD enqueueing code ringing the 1555 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1556 * It also needs to account for multiple cancellations on happening at the same 1557 * time for the same endpoint. 1558 * 1559 * Note that this function can be called in any context, or so says 1560 * usb_hcd_unlink_urb() 1561 */ 1562 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1563 { 1564 unsigned long flags; 1565 int ret, i; 1566 u32 temp; 1567 struct xhci_hcd *xhci; 1568 struct urb_priv *urb_priv; 1569 struct xhci_td *td; 1570 unsigned int ep_index; 1571 struct xhci_ring *ep_ring; 1572 struct xhci_virt_ep *ep; 1573 struct xhci_command *command; 1574 struct xhci_virt_device *vdev; 1575 1576 xhci = hcd_to_xhci(hcd); 1577 spin_lock_irqsave(&xhci->lock, flags); 1578 1579 trace_xhci_urb_dequeue(urb); 1580 1581 /* Make sure the URB hasn't completed or been unlinked already */ 1582 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1583 if (ret) 1584 goto done; 1585 1586 /* give back URB now if we can't queue it for cancel */ 1587 vdev = xhci->devs[urb->dev->slot_id]; 1588 urb_priv = urb->hcpriv; 1589 if (!vdev || !urb_priv) 1590 goto err_giveback; 1591 1592 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1593 ep = &vdev->eps[ep_index]; 1594 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1595 if (!ep || !ep_ring) 1596 goto err_giveback; 1597 1598 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1599 temp = readl(&xhci->op_regs->status); 1600 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1601 xhci_hc_died(xhci); 1602 goto done; 1603 } 1604 1605 /* 1606 * check ring is not re-allocated since URB was enqueued. If it is, then 1607 * make sure none of the ring related pointers in this URB private data 1608 * are touched, such as td_list, otherwise we overwrite freed data 1609 */ 1610 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1611 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1612 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1613 td = &urb_priv->td[i]; 1614 if (!list_empty(&td->cancelled_td_list)) 1615 list_del_init(&td->cancelled_td_list); 1616 } 1617 goto err_giveback; 1618 } 1619 1620 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1621 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1622 "HC halted, freeing TD manually."); 1623 for (i = urb_priv->num_tds_done; 1624 i < urb_priv->num_tds; 1625 i++) { 1626 td = &urb_priv->td[i]; 1627 if (!list_empty(&td->td_list)) 1628 list_del_init(&td->td_list); 1629 if (!list_empty(&td->cancelled_td_list)) 1630 list_del_init(&td->cancelled_td_list); 1631 } 1632 goto err_giveback; 1633 } 1634 1635 i = urb_priv->num_tds_done; 1636 if (i < urb_priv->num_tds) 1637 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1638 "Cancel URB %p, dev %s, ep 0x%x, " 1639 "starting at offset 0x%llx", 1640 urb, urb->dev->devpath, 1641 urb->ep->desc.bEndpointAddress, 1642 (unsigned long long) xhci_trb_virt_to_dma( 1643 urb_priv->td[i].start_seg, 1644 urb_priv->td[i].first_trb)); 1645 1646 for (; i < urb_priv->num_tds; i++) { 1647 td = &urb_priv->td[i]; 1648 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1649 } 1650 1651 /* Queue a stop endpoint command, but only if this is 1652 * the first cancellation to be handled. 1653 */ 1654 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1655 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1656 if (!command) { 1657 ret = -ENOMEM; 1658 goto done; 1659 } 1660 ep->ep_state |= EP_STOP_CMD_PENDING; 1661 ep->stop_cmd_timer.expires = jiffies + 1662 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1663 add_timer(&ep->stop_cmd_timer); 1664 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1665 ep_index, 0); 1666 xhci_ring_cmd_db(xhci); 1667 } 1668 done: 1669 spin_unlock_irqrestore(&xhci->lock, flags); 1670 return ret; 1671 1672 err_giveback: 1673 if (urb_priv) 1674 xhci_urb_free_priv(urb_priv); 1675 usb_hcd_unlink_urb_from_ep(hcd, urb); 1676 spin_unlock_irqrestore(&xhci->lock, flags); 1677 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1678 return ret; 1679 } 1680 1681 /* Drop an endpoint from a new bandwidth configuration for this device. 1682 * Only one call to this function is allowed per endpoint before 1683 * check_bandwidth() or reset_bandwidth() must be called. 1684 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1685 * add the endpoint to the schedule with possibly new parameters denoted by a 1686 * different endpoint descriptor in usb_host_endpoint. 1687 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1688 * not allowed. 1689 * 1690 * The USB core will not allow URBs to be queued to an endpoint that is being 1691 * disabled, so there's no need for mutual exclusion to protect 1692 * the xhci->devs[slot_id] structure. 1693 */ 1694 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1695 struct usb_host_endpoint *ep) 1696 { 1697 struct xhci_hcd *xhci; 1698 struct xhci_container_ctx *in_ctx, *out_ctx; 1699 struct xhci_input_control_ctx *ctrl_ctx; 1700 unsigned int ep_index; 1701 struct xhci_ep_ctx *ep_ctx; 1702 u32 drop_flag; 1703 u32 new_add_flags, new_drop_flags; 1704 int ret; 1705 1706 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1707 if (ret <= 0) 1708 return ret; 1709 xhci = hcd_to_xhci(hcd); 1710 if (xhci->xhc_state & XHCI_STATE_DYING) 1711 return -ENODEV; 1712 1713 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1714 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1715 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1716 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1717 __func__, drop_flag); 1718 return 0; 1719 } 1720 1721 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1722 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1723 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1724 if (!ctrl_ctx) { 1725 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1726 __func__); 1727 return 0; 1728 } 1729 1730 ep_index = xhci_get_endpoint_index(&ep->desc); 1731 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1732 /* If the HC already knows the endpoint is disabled, 1733 * or the HCD has noted it is disabled, ignore this request 1734 */ 1735 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1736 le32_to_cpu(ctrl_ctx->drop_flags) & 1737 xhci_get_endpoint_flag(&ep->desc)) { 1738 /* Do not warn when called after a usb_device_reset */ 1739 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1740 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1741 __func__, ep); 1742 return 0; 1743 } 1744 1745 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1746 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1747 1748 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1749 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1750 1751 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1752 1753 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1754 1755 if (xhci->quirks & XHCI_MTK_HOST) 1756 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1757 1758 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1759 (unsigned int) ep->desc.bEndpointAddress, 1760 udev->slot_id, 1761 (unsigned int) new_drop_flags, 1762 (unsigned int) new_add_flags); 1763 return 0; 1764 } 1765 1766 /* Add an endpoint to a new possible bandwidth configuration for this device. 1767 * Only one call to this function is allowed per endpoint before 1768 * check_bandwidth() or reset_bandwidth() must be called. 1769 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1770 * add the endpoint to the schedule with possibly new parameters denoted by a 1771 * different endpoint descriptor in usb_host_endpoint. 1772 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1773 * not allowed. 1774 * 1775 * The USB core will not allow URBs to be queued to an endpoint until the 1776 * configuration or alt setting is installed in the device, so there's no need 1777 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1778 */ 1779 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1780 struct usb_host_endpoint *ep) 1781 { 1782 struct xhci_hcd *xhci; 1783 struct xhci_container_ctx *in_ctx; 1784 unsigned int ep_index; 1785 struct xhci_input_control_ctx *ctrl_ctx; 1786 u32 added_ctxs; 1787 u32 new_add_flags, new_drop_flags; 1788 struct xhci_virt_device *virt_dev; 1789 int ret = 0; 1790 1791 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1792 if (ret <= 0) { 1793 /* So we won't queue a reset ep command for a root hub */ 1794 ep->hcpriv = NULL; 1795 return ret; 1796 } 1797 xhci = hcd_to_xhci(hcd); 1798 if (xhci->xhc_state & XHCI_STATE_DYING) 1799 return -ENODEV; 1800 1801 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1802 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1803 /* FIXME when we have to issue an evaluate endpoint command to 1804 * deal with ep0 max packet size changing once we get the 1805 * descriptors 1806 */ 1807 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1808 __func__, added_ctxs); 1809 return 0; 1810 } 1811 1812 virt_dev = xhci->devs[udev->slot_id]; 1813 in_ctx = virt_dev->in_ctx; 1814 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1815 if (!ctrl_ctx) { 1816 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1817 __func__); 1818 return 0; 1819 } 1820 1821 ep_index = xhci_get_endpoint_index(&ep->desc); 1822 /* If this endpoint is already in use, and the upper layers are trying 1823 * to add it again without dropping it, reject the addition. 1824 */ 1825 if (virt_dev->eps[ep_index].ring && 1826 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1827 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1828 "without dropping it.\n", 1829 (unsigned int) ep->desc.bEndpointAddress); 1830 return -EINVAL; 1831 } 1832 1833 /* If the HCD has already noted the endpoint is enabled, 1834 * ignore this request. 1835 */ 1836 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1837 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1838 __func__, ep); 1839 return 0; 1840 } 1841 1842 /* 1843 * Configuration and alternate setting changes must be done in 1844 * process context, not interrupt context (or so documenation 1845 * for usb_set_interface() and usb_set_configuration() claim). 1846 */ 1847 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1848 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1849 __func__, ep->desc.bEndpointAddress); 1850 return -ENOMEM; 1851 } 1852 1853 if (xhci->quirks & XHCI_MTK_HOST) { 1854 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1855 if (ret < 0) { 1856 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1857 virt_dev->eps[ep_index].new_ring = NULL; 1858 return ret; 1859 } 1860 } 1861 1862 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1863 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1864 1865 /* If xhci_endpoint_disable() was called for this endpoint, but the 1866 * xHC hasn't been notified yet through the check_bandwidth() call, 1867 * this re-adds a new state for the endpoint from the new endpoint 1868 * descriptors. We must drop and re-add this endpoint, so we leave the 1869 * drop flags alone. 1870 */ 1871 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1872 1873 /* Store the usb_device pointer for later use */ 1874 ep->hcpriv = udev; 1875 1876 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1877 1878 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1879 (unsigned int) ep->desc.bEndpointAddress, 1880 udev->slot_id, 1881 (unsigned int) new_drop_flags, 1882 (unsigned int) new_add_flags); 1883 return 0; 1884 } 1885 1886 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1887 { 1888 struct xhci_input_control_ctx *ctrl_ctx; 1889 struct xhci_ep_ctx *ep_ctx; 1890 struct xhci_slot_ctx *slot_ctx; 1891 int i; 1892 1893 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1894 if (!ctrl_ctx) { 1895 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1896 __func__); 1897 return; 1898 } 1899 1900 /* When a device's add flag and drop flag are zero, any subsequent 1901 * configure endpoint command will leave that endpoint's state 1902 * untouched. Make sure we don't leave any old state in the input 1903 * endpoint contexts. 1904 */ 1905 ctrl_ctx->drop_flags = 0; 1906 ctrl_ctx->add_flags = 0; 1907 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1908 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1909 /* Endpoint 0 is always valid */ 1910 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1911 for (i = 1; i < 31; i++) { 1912 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1913 ep_ctx->ep_info = 0; 1914 ep_ctx->ep_info2 = 0; 1915 ep_ctx->deq = 0; 1916 ep_ctx->tx_info = 0; 1917 } 1918 } 1919 1920 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1921 struct usb_device *udev, u32 *cmd_status) 1922 { 1923 int ret; 1924 1925 switch (*cmd_status) { 1926 case COMP_COMMAND_ABORTED: 1927 case COMP_COMMAND_RING_STOPPED: 1928 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1929 ret = -ETIME; 1930 break; 1931 case COMP_RESOURCE_ERROR: 1932 dev_warn(&udev->dev, 1933 "Not enough host controller resources for new device state.\n"); 1934 ret = -ENOMEM; 1935 /* FIXME: can we allocate more resources for the HC? */ 1936 break; 1937 case COMP_BANDWIDTH_ERROR: 1938 case COMP_SECONDARY_BANDWIDTH_ERROR: 1939 dev_warn(&udev->dev, 1940 "Not enough bandwidth for new device state.\n"); 1941 ret = -ENOSPC; 1942 /* FIXME: can we go back to the old state? */ 1943 break; 1944 case COMP_TRB_ERROR: 1945 /* the HCD set up something wrong */ 1946 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1947 "add flag = 1, " 1948 "and endpoint is not disabled.\n"); 1949 ret = -EINVAL; 1950 break; 1951 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1952 dev_warn(&udev->dev, 1953 "ERROR: Incompatible device for endpoint configure command.\n"); 1954 ret = -ENODEV; 1955 break; 1956 case COMP_SUCCESS: 1957 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1958 "Successful Endpoint Configure command"); 1959 ret = 0; 1960 break; 1961 default: 1962 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1963 *cmd_status); 1964 ret = -EINVAL; 1965 break; 1966 } 1967 return ret; 1968 } 1969 1970 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1971 struct usb_device *udev, u32 *cmd_status) 1972 { 1973 int ret; 1974 1975 switch (*cmd_status) { 1976 case COMP_COMMAND_ABORTED: 1977 case COMP_COMMAND_RING_STOPPED: 1978 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1979 ret = -ETIME; 1980 break; 1981 case COMP_PARAMETER_ERROR: 1982 dev_warn(&udev->dev, 1983 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1984 ret = -EINVAL; 1985 break; 1986 case COMP_SLOT_NOT_ENABLED_ERROR: 1987 dev_warn(&udev->dev, 1988 "WARN: slot not enabled for evaluate context command.\n"); 1989 ret = -EINVAL; 1990 break; 1991 case COMP_CONTEXT_STATE_ERROR: 1992 dev_warn(&udev->dev, 1993 "WARN: invalid context state for evaluate context command.\n"); 1994 ret = -EINVAL; 1995 break; 1996 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1997 dev_warn(&udev->dev, 1998 "ERROR: Incompatible device for evaluate context command.\n"); 1999 ret = -ENODEV; 2000 break; 2001 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2002 /* Max Exit Latency too large error */ 2003 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2004 ret = -EINVAL; 2005 break; 2006 case COMP_SUCCESS: 2007 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2008 "Successful evaluate context command"); 2009 ret = 0; 2010 break; 2011 default: 2012 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2013 *cmd_status); 2014 ret = -EINVAL; 2015 break; 2016 } 2017 return ret; 2018 } 2019 2020 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2021 struct xhci_input_control_ctx *ctrl_ctx) 2022 { 2023 u32 valid_add_flags; 2024 u32 valid_drop_flags; 2025 2026 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2027 * (bit 1). The default control endpoint is added during the Address 2028 * Device command and is never removed until the slot is disabled. 2029 */ 2030 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2031 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2032 2033 /* Use hweight32 to count the number of ones in the add flags, or 2034 * number of endpoints added. Don't count endpoints that are changed 2035 * (both added and dropped). 2036 */ 2037 return hweight32(valid_add_flags) - 2038 hweight32(valid_add_flags & valid_drop_flags); 2039 } 2040 2041 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2042 struct xhci_input_control_ctx *ctrl_ctx) 2043 { 2044 u32 valid_add_flags; 2045 u32 valid_drop_flags; 2046 2047 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2048 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2049 2050 return hweight32(valid_drop_flags) - 2051 hweight32(valid_add_flags & valid_drop_flags); 2052 } 2053 2054 /* 2055 * We need to reserve the new number of endpoints before the configure endpoint 2056 * command completes. We can't subtract the dropped endpoints from the number 2057 * of active endpoints until the command completes because we can oversubscribe 2058 * the host in this case: 2059 * 2060 * - the first configure endpoint command drops more endpoints than it adds 2061 * - a second configure endpoint command that adds more endpoints is queued 2062 * - the first configure endpoint command fails, so the config is unchanged 2063 * - the second command may succeed, even though there isn't enough resources 2064 * 2065 * Must be called with xhci->lock held. 2066 */ 2067 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2068 struct xhci_input_control_ctx *ctrl_ctx) 2069 { 2070 u32 added_eps; 2071 2072 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2073 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2074 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2075 "Not enough ep ctxs: " 2076 "%u active, need to add %u, limit is %u.", 2077 xhci->num_active_eps, added_eps, 2078 xhci->limit_active_eps); 2079 return -ENOMEM; 2080 } 2081 xhci->num_active_eps += added_eps; 2082 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2083 "Adding %u ep ctxs, %u now active.", added_eps, 2084 xhci->num_active_eps); 2085 return 0; 2086 } 2087 2088 /* 2089 * The configure endpoint was failed by the xHC for some other reason, so we 2090 * need to revert the resources that failed configuration would have used. 2091 * 2092 * Must be called with xhci->lock held. 2093 */ 2094 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2095 struct xhci_input_control_ctx *ctrl_ctx) 2096 { 2097 u32 num_failed_eps; 2098 2099 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2100 xhci->num_active_eps -= num_failed_eps; 2101 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2102 "Removing %u failed ep ctxs, %u now active.", 2103 num_failed_eps, 2104 xhci->num_active_eps); 2105 } 2106 2107 /* 2108 * Now that the command has completed, clean up the active endpoint count by 2109 * subtracting out the endpoints that were dropped (but not changed). 2110 * 2111 * Must be called with xhci->lock held. 2112 */ 2113 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2114 struct xhci_input_control_ctx *ctrl_ctx) 2115 { 2116 u32 num_dropped_eps; 2117 2118 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2119 xhci->num_active_eps -= num_dropped_eps; 2120 if (num_dropped_eps) 2121 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2122 "Removing %u dropped ep ctxs, %u now active.", 2123 num_dropped_eps, 2124 xhci->num_active_eps); 2125 } 2126 2127 static unsigned int xhci_get_block_size(struct usb_device *udev) 2128 { 2129 switch (udev->speed) { 2130 case USB_SPEED_LOW: 2131 case USB_SPEED_FULL: 2132 return FS_BLOCK; 2133 case USB_SPEED_HIGH: 2134 return HS_BLOCK; 2135 case USB_SPEED_SUPER: 2136 case USB_SPEED_SUPER_PLUS: 2137 return SS_BLOCK; 2138 case USB_SPEED_UNKNOWN: 2139 case USB_SPEED_WIRELESS: 2140 default: 2141 /* Should never happen */ 2142 return 1; 2143 } 2144 } 2145 2146 static unsigned int 2147 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2148 { 2149 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2150 return LS_OVERHEAD; 2151 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2152 return FS_OVERHEAD; 2153 return HS_OVERHEAD; 2154 } 2155 2156 /* If we are changing a LS/FS device under a HS hub, 2157 * make sure (if we are activating a new TT) that the HS bus has enough 2158 * bandwidth for this new TT. 2159 */ 2160 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2161 struct xhci_virt_device *virt_dev, 2162 int old_active_eps) 2163 { 2164 struct xhci_interval_bw_table *bw_table; 2165 struct xhci_tt_bw_info *tt_info; 2166 2167 /* Find the bandwidth table for the root port this TT is attached to. */ 2168 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2169 tt_info = virt_dev->tt_info; 2170 /* If this TT already had active endpoints, the bandwidth for this TT 2171 * has already been added. Removing all periodic endpoints (and thus 2172 * making the TT enactive) will only decrease the bandwidth used. 2173 */ 2174 if (old_active_eps) 2175 return 0; 2176 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2177 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2178 return -ENOMEM; 2179 return 0; 2180 } 2181 /* Not sure why we would have no new active endpoints... 2182 * 2183 * Maybe because of an Evaluate Context change for a hub update or a 2184 * control endpoint 0 max packet size change? 2185 * FIXME: skip the bandwidth calculation in that case. 2186 */ 2187 return 0; 2188 } 2189 2190 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2191 struct xhci_virt_device *virt_dev) 2192 { 2193 unsigned int bw_reserved; 2194 2195 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2196 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2197 return -ENOMEM; 2198 2199 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2200 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2201 return -ENOMEM; 2202 2203 return 0; 2204 } 2205 2206 /* 2207 * This algorithm is a very conservative estimate of the worst-case scheduling 2208 * scenario for any one interval. The hardware dynamically schedules the 2209 * packets, so we can't tell which microframe could be the limiting factor in 2210 * the bandwidth scheduling. This only takes into account periodic endpoints. 2211 * 2212 * Obviously, we can't solve an NP complete problem to find the minimum worst 2213 * case scenario. Instead, we come up with an estimate that is no less than 2214 * the worst case bandwidth used for any one microframe, but may be an 2215 * over-estimate. 2216 * 2217 * We walk the requirements for each endpoint by interval, starting with the 2218 * smallest interval, and place packets in the schedule where there is only one 2219 * possible way to schedule packets for that interval. In order to simplify 2220 * this algorithm, we record the largest max packet size for each interval, and 2221 * assume all packets will be that size. 2222 * 2223 * For interval 0, we obviously must schedule all packets for each interval. 2224 * The bandwidth for interval 0 is just the amount of data to be transmitted 2225 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2226 * the number of packets). 2227 * 2228 * For interval 1, we have two possible microframes to schedule those packets 2229 * in. For this algorithm, if we can schedule the same number of packets for 2230 * each possible scheduling opportunity (each microframe), we will do so. The 2231 * remaining number of packets will be saved to be transmitted in the gaps in 2232 * the next interval's scheduling sequence. 2233 * 2234 * As we move those remaining packets to be scheduled with interval 2 packets, 2235 * we have to double the number of remaining packets to transmit. This is 2236 * because the intervals are actually powers of 2, and we would be transmitting 2237 * the previous interval's packets twice in this interval. We also have to be 2238 * sure that when we look at the largest max packet size for this interval, we 2239 * also look at the largest max packet size for the remaining packets and take 2240 * the greater of the two. 2241 * 2242 * The algorithm continues to evenly distribute packets in each scheduling 2243 * opportunity, and push the remaining packets out, until we get to the last 2244 * interval. Then those packets and their associated overhead are just added 2245 * to the bandwidth used. 2246 */ 2247 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2248 struct xhci_virt_device *virt_dev, 2249 int old_active_eps) 2250 { 2251 unsigned int bw_reserved; 2252 unsigned int max_bandwidth; 2253 unsigned int bw_used; 2254 unsigned int block_size; 2255 struct xhci_interval_bw_table *bw_table; 2256 unsigned int packet_size = 0; 2257 unsigned int overhead = 0; 2258 unsigned int packets_transmitted = 0; 2259 unsigned int packets_remaining = 0; 2260 unsigned int i; 2261 2262 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2263 return xhci_check_ss_bw(xhci, virt_dev); 2264 2265 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2266 max_bandwidth = HS_BW_LIMIT; 2267 /* Convert percent of bus BW reserved to blocks reserved */ 2268 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2269 } else { 2270 max_bandwidth = FS_BW_LIMIT; 2271 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2272 } 2273 2274 bw_table = virt_dev->bw_table; 2275 /* We need to translate the max packet size and max ESIT payloads into 2276 * the units the hardware uses. 2277 */ 2278 block_size = xhci_get_block_size(virt_dev->udev); 2279 2280 /* If we are manipulating a LS/FS device under a HS hub, double check 2281 * that the HS bus has enough bandwidth if we are activing a new TT. 2282 */ 2283 if (virt_dev->tt_info) { 2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2285 "Recalculating BW for rootport %u", 2286 virt_dev->real_port); 2287 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2288 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2289 "newly activated TT.\n"); 2290 return -ENOMEM; 2291 } 2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2293 "Recalculating BW for TT slot %u port %u", 2294 virt_dev->tt_info->slot_id, 2295 virt_dev->tt_info->ttport); 2296 } else { 2297 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2298 "Recalculating BW for rootport %u", 2299 virt_dev->real_port); 2300 } 2301 2302 /* Add in how much bandwidth will be used for interval zero, or the 2303 * rounded max ESIT payload + number of packets * largest overhead. 2304 */ 2305 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2306 bw_table->interval_bw[0].num_packets * 2307 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2308 2309 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2310 unsigned int bw_added; 2311 unsigned int largest_mps; 2312 unsigned int interval_overhead; 2313 2314 /* 2315 * How many packets could we transmit in this interval? 2316 * If packets didn't fit in the previous interval, we will need 2317 * to transmit that many packets twice within this interval. 2318 */ 2319 packets_remaining = 2 * packets_remaining + 2320 bw_table->interval_bw[i].num_packets; 2321 2322 /* Find the largest max packet size of this or the previous 2323 * interval. 2324 */ 2325 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2326 largest_mps = 0; 2327 else { 2328 struct xhci_virt_ep *virt_ep; 2329 struct list_head *ep_entry; 2330 2331 ep_entry = bw_table->interval_bw[i].endpoints.next; 2332 virt_ep = list_entry(ep_entry, 2333 struct xhci_virt_ep, bw_endpoint_list); 2334 /* Convert to blocks, rounding up */ 2335 largest_mps = DIV_ROUND_UP( 2336 virt_ep->bw_info.max_packet_size, 2337 block_size); 2338 } 2339 if (largest_mps > packet_size) 2340 packet_size = largest_mps; 2341 2342 /* Use the larger overhead of this or the previous interval. */ 2343 interval_overhead = xhci_get_largest_overhead( 2344 &bw_table->interval_bw[i]); 2345 if (interval_overhead > overhead) 2346 overhead = interval_overhead; 2347 2348 /* How many packets can we evenly distribute across 2349 * (1 << (i + 1)) possible scheduling opportunities? 2350 */ 2351 packets_transmitted = packets_remaining >> (i + 1); 2352 2353 /* Add in the bandwidth used for those scheduled packets */ 2354 bw_added = packets_transmitted * (overhead + packet_size); 2355 2356 /* How many packets do we have remaining to transmit? */ 2357 packets_remaining = packets_remaining % (1 << (i + 1)); 2358 2359 /* What largest max packet size should those packets have? */ 2360 /* If we've transmitted all packets, don't carry over the 2361 * largest packet size. 2362 */ 2363 if (packets_remaining == 0) { 2364 packet_size = 0; 2365 overhead = 0; 2366 } else if (packets_transmitted > 0) { 2367 /* Otherwise if we do have remaining packets, and we've 2368 * scheduled some packets in this interval, take the 2369 * largest max packet size from endpoints with this 2370 * interval. 2371 */ 2372 packet_size = largest_mps; 2373 overhead = interval_overhead; 2374 } 2375 /* Otherwise carry over packet_size and overhead from the last 2376 * time we had a remainder. 2377 */ 2378 bw_used += bw_added; 2379 if (bw_used > max_bandwidth) { 2380 xhci_warn(xhci, "Not enough bandwidth. " 2381 "Proposed: %u, Max: %u\n", 2382 bw_used, max_bandwidth); 2383 return -ENOMEM; 2384 } 2385 } 2386 /* 2387 * Ok, we know we have some packets left over after even-handedly 2388 * scheduling interval 15. We don't know which microframes they will 2389 * fit into, so we over-schedule and say they will be scheduled every 2390 * microframe. 2391 */ 2392 if (packets_remaining > 0) 2393 bw_used += overhead + packet_size; 2394 2395 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2396 unsigned int port_index = virt_dev->real_port - 1; 2397 2398 /* OK, we're manipulating a HS device attached to a 2399 * root port bandwidth domain. Include the number of active TTs 2400 * in the bandwidth used. 2401 */ 2402 bw_used += TT_HS_OVERHEAD * 2403 xhci->rh_bw[port_index].num_active_tts; 2404 } 2405 2406 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2407 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2408 "Available: %u " "percent", 2409 bw_used, max_bandwidth, bw_reserved, 2410 (max_bandwidth - bw_used - bw_reserved) * 100 / 2411 max_bandwidth); 2412 2413 bw_used += bw_reserved; 2414 if (bw_used > max_bandwidth) { 2415 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2416 bw_used, max_bandwidth); 2417 return -ENOMEM; 2418 } 2419 2420 bw_table->bw_used = bw_used; 2421 return 0; 2422 } 2423 2424 static bool xhci_is_async_ep(unsigned int ep_type) 2425 { 2426 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2427 ep_type != ISOC_IN_EP && 2428 ep_type != INT_IN_EP); 2429 } 2430 2431 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2432 { 2433 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2434 } 2435 2436 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2437 { 2438 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2439 2440 if (ep_bw->ep_interval == 0) 2441 return SS_OVERHEAD_BURST + 2442 (ep_bw->mult * ep_bw->num_packets * 2443 (SS_OVERHEAD + mps)); 2444 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2445 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2446 1 << ep_bw->ep_interval); 2447 2448 } 2449 2450 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2451 struct xhci_bw_info *ep_bw, 2452 struct xhci_interval_bw_table *bw_table, 2453 struct usb_device *udev, 2454 struct xhci_virt_ep *virt_ep, 2455 struct xhci_tt_bw_info *tt_info) 2456 { 2457 struct xhci_interval_bw *interval_bw; 2458 int normalized_interval; 2459 2460 if (xhci_is_async_ep(ep_bw->type)) 2461 return; 2462 2463 if (udev->speed >= USB_SPEED_SUPER) { 2464 if (xhci_is_sync_in_ep(ep_bw->type)) 2465 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2466 xhci_get_ss_bw_consumed(ep_bw); 2467 else 2468 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2469 xhci_get_ss_bw_consumed(ep_bw); 2470 return; 2471 } 2472 2473 /* SuperSpeed endpoints never get added to intervals in the table, so 2474 * this check is only valid for HS/FS/LS devices. 2475 */ 2476 if (list_empty(&virt_ep->bw_endpoint_list)) 2477 return; 2478 /* For LS/FS devices, we need to translate the interval expressed in 2479 * microframes to frames. 2480 */ 2481 if (udev->speed == USB_SPEED_HIGH) 2482 normalized_interval = ep_bw->ep_interval; 2483 else 2484 normalized_interval = ep_bw->ep_interval - 3; 2485 2486 if (normalized_interval == 0) 2487 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2488 interval_bw = &bw_table->interval_bw[normalized_interval]; 2489 interval_bw->num_packets -= ep_bw->num_packets; 2490 switch (udev->speed) { 2491 case USB_SPEED_LOW: 2492 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2493 break; 2494 case USB_SPEED_FULL: 2495 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2496 break; 2497 case USB_SPEED_HIGH: 2498 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2499 break; 2500 case USB_SPEED_SUPER: 2501 case USB_SPEED_SUPER_PLUS: 2502 case USB_SPEED_UNKNOWN: 2503 case USB_SPEED_WIRELESS: 2504 /* Should never happen because only LS/FS/HS endpoints will get 2505 * added to the endpoint list. 2506 */ 2507 return; 2508 } 2509 if (tt_info) 2510 tt_info->active_eps -= 1; 2511 list_del_init(&virt_ep->bw_endpoint_list); 2512 } 2513 2514 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2515 struct xhci_bw_info *ep_bw, 2516 struct xhci_interval_bw_table *bw_table, 2517 struct usb_device *udev, 2518 struct xhci_virt_ep *virt_ep, 2519 struct xhci_tt_bw_info *tt_info) 2520 { 2521 struct xhci_interval_bw *interval_bw; 2522 struct xhci_virt_ep *smaller_ep; 2523 int normalized_interval; 2524 2525 if (xhci_is_async_ep(ep_bw->type)) 2526 return; 2527 2528 if (udev->speed == USB_SPEED_SUPER) { 2529 if (xhci_is_sync_in_ep(ep_bw->type)) 2530 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2531 xhci_get_ss_bw_consumed(ep_bw); 2532 else 2533 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2534 xhci_get_ss_bw_consumed(ep_bw); 2535 return; 2536 } 2537 2538 /* For LS/FS devices, we need to translate the interval expressed in 2539 * microframes to frames. 2540 */ 2541 if (udev->speed == USB_SPEED_HIGH) 2542 normalized_interval = ep_bw->ep_interval; 2543 else 2544 normalized_interval = ep_bw->ep_interval - 3; 2545 2546 if (normalized_interval == 0) 2547 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2548 interval_bw = &bw_table->interval_bw[normalized_interval]; 2549 interval_bw->num_packets += ep_bw->num_packets; 2550 switch (udev->speed) { 2551 case USB_SPEED_LOW: 2552 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2553 break; 2554 case USB_SPEED_FULL: 2555 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2556 break; 2557 case USB_SPEED_HIGH: 2558 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2559 break; 2560 case USB_SPEED_SUPER: 2561 case USB_SPEED_SUPER_PLUS: 2562 case USB_SPEED_UNKNOWN: 2563 case USB_SPEED_WIRELESS: 2564 /* Should never happen because only LS/FS/HS endpoints will get 2565 * added to the endpoint list. 2566 */ 2567 return; 2568 } 2569 2570 if (tt_info) 2571 tt_info->active_eps += 1; 2572 /* Insert the endpoint into the list, largest max packet size first. */ 2573 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2574 bw_endpoint_list) { 2575 if (ep_bw->max_packet_size >= 2576 smaller_ep->bw_info.max_packet_size) { 2577 /* Add the new ep before the smaller endpoint */ 2578 list_add_tail(&virt_ep->bw_endpoint_list, 2579 &smaller_ep->bw_endpoint_list); 2580 return; 2581 } 2582 } 2583 /* Add the new endpoint at the end of the list. */ 2584 list_add_tail(&virt_ep->bw_endpoint_list, 2585 &interval_bw->endpoints); 2586 } 2587 2588 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2589 struct xhci_virt_device *virt_dev, 2590 int old_active_eps) 2591 { 2592 struct xhci_root_port_bw_info *rh_bw_info; 2593 if (!virt_dev->tt_info) 2594 return; 2595 2596 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2597 if (old_active_eps == 0 && 2598 virt_dev->tt_info->active_eps != 0) { 2599 rh_bw_info->num_active_tts += 1; 2600 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2601 } else if (old_active_eps != 0 && 2602 virt_dev->tt_info->active_eps == 0) { 2603 rh_bw_info->num_active_tts -= 1; 2604 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2605 } 2606 } 2607 2608 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2609 struct xhci_virt_device *virt_dev, 2610 struct xhci_container_ctx *in_ctx) 2611 { 2612 struct xhci_bw_info ep_bw_info[31]; 2613 int i; 2614 struct xhci_input_control_ctx *ctrl_ctx; 2615 int old_active_eps = 0; 2616 2617 if (virt_dev->tt_info) 2618 old_active_eps = virt_dev->tt_info->active_eps; 2619 2620 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2621 if (!ctrl_ctx) { 2622 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2623 __func__); 2624 return -ENOMEM; 2625 } 2626 2627 for (i = 0; i < 31; i++) { 2628 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2629 continue; 2630 2631 /* Make a copy of the BW info in case we need to revert this */ 2632 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2633 sizeof(ep_bw_info[i])); 2634 /* Drop the endpoint from the interval table if the endpoint is 2635 * being dropped or changed. 2636 */ 2637 if (EP_IS_DROPPED(ctrl_ctx, i)) 2638 xhci_drop_ep_from_interval_table(xhci, 2639 &virt_dev->eps[i].bw_info, 2640 virt_dev->bw_table, 2641 virt_dev->udev, 2642 &virt_dev->eps[i], 2643 virt_dev->tt_info); 2644 } 2645 /* Overwrite the information stored in the endpoints' bw_info */ 2646 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2647 for (i = 0; i < 31; i++) { 2648 /* Add any changed or added endpoints to the interval table */ 2649 if (EP_IS_ADDED(ctrl_ctx, i)) 2650 xhci_add_ep_to_interval_table(xhci, 2651 &virt_dev->eps[i].bw_info, 2652 virt_dev->bw_table, 2653 virt_dev->udev, 2654 &virt_dev->eps[i], 2655 virt_dev->tt_info); 2656 } 2657 2658 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2659 /* Ok, this fits in the bandwidth we have. 2660 * Update the number of active TTs. 2661 */ 2662 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2663 return 0; 2664 } 2665 2666 /* We don't have enough bandwidth for this, revert the stored info. */ 2667 for (i = 0; i < 31; i++) { 2668 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2669 continue; 2670 2671 /* Drop the new copies of any added or changed endpoints from 2672 * the interval table. 2673 */ 2674 if (EP_IS_ADDED(ctrl_ctx, i)) { 2675 xhci_drop_ep_from_interval_table(xhci, 2676 &virt_dev->eps[i].bw_info, 2677 virt_dev->bw_table, 2678 virt_dev->udev, 2679 &virt_dev->eps[i], 2680 virt_dev->tt_info); 2681 } 2682 /* Revert the endpoint back to its old information */ 2683 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2684 sizeof(ep_bw_info[i])); 2685 /* Add any changed or dropped endpoints back into the table */ 2686 if (EP_IS_DROPPED(ctrl_ctx, i)) 2687 xhci_add_ep_to_interval_table(xhci, 2688 &virt_dev->eps[i].bw_info, 2689 virt_dev->bw_table, 2690 virt_dev->udev, 2691 &virt_dev->eps[i], 2692 virt_dev->tt_info); 2693 } 2694 return -ENOMEM; 2695 } 2696 2697 2698 /* Issue a configure endpoint command or evaluate context command 2699 * and wait for it to finish. 2700 */ 2701 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2702 struct usb_device *udev, 2703 struct xhci_command *command, 2704 bool ctx_change, bool must_succeed) 2705 { 2706 int ret; 2707 unsigned long flags; 2708 struct xhci_input_control_ctx *ctrl_ctx; 2709 struct xhci_virt_device *virt_dev; 2710 struct xhci_slot_ctx *slot_ctx; 2711 2712 if (!command) 2713 return -EINVAL; 2714 2715 spin_lock_irqsave(&xhci->lock, flags); 2716 2717 if (xhci->xhc_state & XHCI_STATE_DYING) { 2718 spin_unlock_irqrestore(&xhci->lock, flags); 2719 return -ESHUTDOWN; 2720 } 2721 2722 virt_dev = xhci->devs[udev->slot_id]; 2723 2724 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2725 if (!ctrl_ctx) { 2726 spin_unlock_irqrestore(&xhci->lock, flags); 2727 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2728 __func__); 2729 return -ENOMEM; 2730 } 2731 2732 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2733 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2734 spin_unlock_irqrestore(&xhci->lock, flags); 2735 xhci_warn(xhci, "Not enough host resources, " 2736 "active endpoint contexts = %u\n", 2737 xhci->num_active_eps); 2738 return -ENOMEM; 2739 } 2740 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2741 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2742 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2743 xhci_free_host_resources(xhci, ctrl_ctx); 2744 spin_unlock_irqrestore(&xhci->lock, flags); 2745 xhci_warn(xhci, "Not enough bandwidth\n"); 2746 return -ENOMEM; 2747 } 2748 2749 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2750 trace_xhci_configure_endpoint(slot_ctx); 2751 2752 if (!ctx_change) 2753 ret = xhci_queue_configure_endpoint(xhci, command, 2754 command->in_ctx->dma, 2755 udev->slot_id, must_succeed); 2756 else 2757 ret = xhci_queue_evaluate_context(xhci, command, 2758 command->in_ctx->dma, 2759 udev->slot_id, must_succeed); 2760 if (ret < 0) { 2761 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2762 xhci_free_host_resources(xhci, ctrl_ctx); 2763 spin_unlock_irqrestore(&xhci->lock, flags); 2764 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2765 "FIXME allocate a new ring segment"); 2766 return -ENOMEM; 2767 } 2768 xhci_ring_cmd_db(xhci); 2769 spin_unlock_irqrestore(&xhci->lock, flags); 2770 2771 /* Wait for the configure endpoint command to complete */ 2772 wait_for_completion(command->completion); 2773 2774 if (!ctx_change) 2775 ret = xhci_configure_endpoint_result(xhci, udev, 2776 &command->status); 2777 else 2778 ret = xhci_evaluate_context_result(xhci, udev, 2779 &command->status); 2780 2781 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2782 spin_lock_irqsave(&xhci->lock, flags); 2783 /* If the command failed, remove the reserved resources. 2784 * Otherwise, clean up the estimate to include dropped eps. 2785 */ 2786 if (ret) 2787 xhci_free_host_resources(xhci, ctrl_ctx); 2788 else 2789 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2790 spin_unlock_irqrestore(&xhci->lock, flags); 2791 } 2792 return ret; 2793 } 2794 2795 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2796 struct xhci_virt_device *vdev, int i) 2797 { 2798 struct xhci_virt_ep *ep = &vdev->eps[i]; 2799 2800 if (ep->ep_state & EP_HAS_STREAMS) { 2801 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2802 xhci_get_endpoint_address(i)); 2803 xhci_free_stream_info(xhci, ep->stream_info); 2804 ep->stream_info = NULL; 2805 ep->ep_state &= ~EP_HAS_STREAMS; 2806 } 2807 } 2808 2809 /* Called after one or more calls to xhci_add_endpoint() or 2810 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2811 * to call xhci_reset_bandwidth(). 2812 * 2813 * Since we are in the middle of changing either configuration or 2814 * installing a new alt setting, the USB core won't allow URBs to be 2815 * enqueued for any endpoint on the old config or interface. Nothing 2816 * else should be touching the xhci->devs[slot_id] structure, so we 2817 * don't need to take the xhci->lock for manipulating that. 2818 */ 2819 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2820 { 2821 int i; 2822 int ret = 0; 2823 struct xhci_hcd *xhci; 2824 struct xhci_virt_device *virt_dev; 2825 struct xhci_input_control_ctx *ctrl_ctx; 2826 struct xhci_slot_ctx *slot_ctx; 2827 struct xhci_command *command; 2828 2829 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2830 if (ret <= 0) 2831 return ret; 2832 xhci = hcd_to_xhci(hcd); 2833 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2834 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2835 return -ENODEV; 2836 2837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2838 virt_dev = xhci->devs[udev->slot_id]; 2839 2840 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2841 if (!command) 2842 return -ENOMEM; 2843 2844 command->in_ctx = virt_dev->in_ctx; 2845 2846 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2847 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2848 if (!ctrl_ctx) { 2849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2850 __func__); 2851 ret = -ENOMEM; 2852 goto command_cleanup; 2853 } 2854 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2855 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2856 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2857 2858 /* Don't issue the command if there's no endpoints to update. */ 2859 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2860 ctrl_ctx->drop_flags == 0) { 2861 ret = 0; 2862 goto command_cleanup; 2863 } 2864 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2865 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2866 for (i = 31; i >= 1; i--) { 2867 __le32 le32 = cpu_to_le32(BIT(i)); 2868 2869 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2870 || (ctrl_ctx->add_flags & le32) || i == 1) { 2871 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2872 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2873 break; 2874 } 2875 } 2876 2877 ret = xhci_configure_endpoint(xhci, udev, command, 2878 false, false); 2879 if (ret) 2880 /* Callee should call reset_bandwidth() */ 2881 goto command_cleanup; 2882 2883 /* Free any rings that were dropped, but not changed. */ 2884 for (i = 1; i < 31; i++) { 2885 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2886 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2887 xhci_free_endpoint_ring(xhci, virt_dev, i); 2888 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2889 } 2890 } 2891 xhci_zero_in_ctx(xhci, virt_dev); 2892 /* 2893 * Install any rings for completely new endpoints or changed endpoints, 2894 * and free any old rings from changed endpoints. 2895 */ 2896 for (i = 1; i < 31; i++) { 2897 if (!virt_dev->eps[i].new_ring) 2898 continue; 2899 /* Only free the old ring if it exists. 2900 * It may not if this is the first add of an endpoint. 2901 */ 2902 if (virt_dev->eps[i].ring) { 2903 xhci_free_endpoint_ring(xhci, virt_dev, i); 2904 } 2905 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2906 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2907 virt_dev->eps[i].new_ring = NULL; 2908 } 2909 command_cleanup: 2910 kfree(command->completion); 2911 kfree(command); 2912 2913 return ret; 2914 } 2915 2916 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2917 { 2918 struct xhci_hcd *xhci; 2919 struct xhci_virt_device *virt_dev; 2920 int i, ret; 2921 2922 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2923 if (ret <= 0) 2924 return; 2925 xhci = hcd_to_xhci(hcd); 2926 2927 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2928 virt_dev = xhci->devs[udev->slot_id]; 2929 /* Free any rings allocated for added endpoints */ 2930 for (i = 0; i < 31; i++) { 2931 if (virt_dev->eps[i].new_ring) { 2932 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2933 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2934 virt_dev->eps[i].new_ring = NULL; 2935 } 2936 } 2937 xhci_zero_in_ctx(xhci, virt_dev); 2938 } 2939 2940 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2941 struct xhci_container_ctx *in_ctx, 2942 struct xhci_container_ctx *out_ctx, 2943 struct xhci_input_control_ctx *ctrl_ctx, 2944 u32 add_flags, u32 drop_flags) 2945 { 2946 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2947 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2948 xhci_slot_copy(xhci, in_ctx, out_ctx); 2949 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2950 } 2951 2952 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2953 unsigned int slot_id, unsigned int ep_index, 2954 struct xhci_dequeue_state *deq_state) 2955 { 2956 struct xhci_input_control_ctx *ctrl_ctx; 2957 struct xhci_container_ctx *in_ctx; 2958 struct xhci_ep_ctx *ep_ctx; 2959 u32 added_ctxs; 2960 dma_addr_t addr; 2961 2962 in_ctx = xhci->devs[slot_id]->in_ctx; 2963 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2964 if (!ctrl_ctx) { 2965 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2966 __func__); 2967 return; 2968 } 2969 2970 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2971 xhci->devs[slot_id]->out_ctx, ep_index); 2972 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2973 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2974 deq_state->new_deq_ptr); 2975 if (addr == 0) { 2976 xhci_warn(xhci, "WARN Cannot submit config ep after " 2977 "reset ep command\n"); 2978 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2979 deq_state->new_deq_seg, 2980 deq_state->new_deq_ptr); 2981 return; 2982 } 2983 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2984 2985 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2986 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2987 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2988 added_ctxs, added_ctxs); 2989 } 2990 2991 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2992 unsigned int stream_id, struct xhci_td *td) 2993 { 2994 struct xhci_dequeue_state deq_state; 2995 struct usb_device *udev = td->urb->dev; 2996 2997 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2998 "Cleaning up stalled endpoint ring"); 2999 /* We need to move the HW's dequeue pointer past this TD, 3000 * or it will attempt to resend it on the next doorbell ring. 3001 */ 3002 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3003 ep_index, stream_id, td, &deq_state); 3004 3005 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3006 return; 3007 3008 /* HW with the reset endpoint quirk will use the saved dequeue state to 3009 * issue a configure endpoint command later. 3010 */ 3011 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3012 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3013 "Queueing new dequeue state"); 3014 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3015 ep_index, &deq_state); 3016 } else { 3017 /* Better hope no one uses the input context between now and the 3018 * reset endpoint completion! 3019 * XXX: No idea how this hardware will react when stream rings 3020 * are enabled. 3021 */ 3022 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3023 "Setting up input context for " 3024 "configure endpoint command"); 3025 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3026 ep_index, &deq_state); 3027 } 3028 } 3029 3030 /* 3031 * Called after usb core issues a clear halt control message. 3032 * The host side of the halt should already be cleared by a reset endpoint 3033 * command issued when the STALL event was received. 3034 * 3035 * The reset endpoint command may only be issued to endpoints in the halted 3036 * state. For software that wishes to reset the data toggle or sequence number 3037 * of an endpoint that isn't in the halted state this function will issue a 3038 * configure endpoint command with the Drop and Add bits set for the target 3039 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3040 */ 3041 3042 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3043 struct usb_host_endpoint *host_ep) 3044 { 3045 struct xhci_hcd *xhci; 3046 struct usb_device *udev; 3047 struct xhci_virt_device *vdev; 3048 struct xhci_virt_ep *ep; 3049 struct xhci_input_control_ctx *ctrl_ctx; 3050 struct xhci_command *stop_cmd, *cfg_cmd; 3051 unsigned int ep_index; 3052 unsigned long flags; 3053 u32 ep_flag; 3054 3055 xhci = hcd_to_xhci(hcd); 3056 if (!host_ep->hcpriv) 3057 return; 3058 udev = (struct usb_device *) host_ep->hcpriv; 3059 vdev = xhci->devs[udev->slot_id]; 3060 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3061 ep = &vdev->eps[ep_index]; 3062 3063 /* Bail out if toggle is already being cleared by a endpoint reset */ 3064 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3065 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3066 return; 3067 } 3068 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3069 if (usb_endpoint_xfer_control(&host_ep->desc) || 3070 usb_endpoint_xfer_isoc(&host_ep->desc)) 3071 return; 3072 3073 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3074 3075 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3076 return; 3077 3078 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3079 if (!stop_cmd) 3080 return; 3081 3082 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3083 if (!cfg_cmd) 3084 goto cleanup; 3085 3086 spin_lock_irqsave(&xhci->lock, flags); 3087 3088 /* block queuing new trbs and ringing ep doorbell */ 3089 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3090 3091 /* 3092 * Make sure endpoint ring is empty before resetting the toggle/seq. 3093 * Driver is required to synchronously cancel all transfer request. 3094 * Stop the endpoint to force xHC to update the output context 3095 */ 3096 3097 if (!list_empty(&ep->ring->td_list)) { 3098 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3099 spin_unlock_irqrestore(&xhci->lock, flags); 3100 xhci_free_command(xhci, cfg_cmd); 3101 goto cleanup; 3102 } 3103 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3104 xhci_ring_cmd_db(xhci); 3105 spin_unlock_irqrestore(&xhci->lock, flags); 3106 3107 wait_for_completion(stop_cmd->completion); 3108 3109 spin_lock_irqsave(&xhci->lock, flags); 3110 3111 /* config ep command clears toggle if add and drop ep flags are set */ 3112 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3113 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3114 ctrl_ctx, ep_flag, ep_flag); 3115 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3116 3117 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3118 udev->slot_id, false); 3119 xhci_ring_cmd_db(xhci); 3120 spin_unlock_irqrestore(&xhci->lock, flags); 3121 3122 wait_for_completion(cfg_cmd->completion); 3123 3124 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3125 xhci_free_command(xhci, cfg_cmd); 3126 cleanup: 3127 xhci_free_command(xhci, stop_cmd); 3128 } 3129 3130 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3131 struct usb_device *udev, struct usb_host_endpoint *ep, 3132 unsigned int slot_id) 3133 { 3134 int ret; 3135 unsigned int ep_index; 3136 unsigned int ep_state; 3137 3138 if (!ep) 3139 return -EINVAL; 3140 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3141 if (ret <= 0) 3142 return -EINVAL; 3143 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3144 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3145 " descriptor for ep 0x%x does not support streams\n", 3146 ep->desc.bEndpointAddress); 3147 return -EINVAL; 3148 } 3149 3150 ep_index = xhci_get_endpoint_index(&ep->desc); 3151 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3152 if (ep_state & EP_HAS_STREAMS || 3153 ep_state & EP_GETTING_STREAMS) { 3154 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3155 "already has streams set up.\n", 3156 ep->desc.bEndpointAddress); 3157 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3158 "dynamic stream context array reallocation.\n"); 3159 return -EINVAL; 3160 } 3161 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3162 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3163 "endpoint 0x%x; URBs are pending.\n", 3164 ep->desc.bEndpointAddress); 3165 return -EINVAL; 3166 } 3167 return 0; 3168 } 3169 3170 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3171 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3172 { 3173 unsigned int max_streams; 3174 3175 /* The stream context array size must be a power of two */ 3176 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3177 /* 3178 * Find out how many primary stream array entries the host controller 3179 * supports. Later we may use secondary stream arrays (similar to 2nd 3180 * level page entries), but that's an optional feature for xHCI host 3181 * controllers. xHCs must support at least 4 stream IDs. 3182 */ 3183 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3184 if (*num_stream_ctxs > max_streams) { 3185 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3186 max_streams); 3187 *num_stream_ctxs = max_streams; 3188 *num_streams = max_streams; 3189 } 3190 } 3191 3192 /* Returns an error code if one of the endpoint already has streams. 3193 * This does not change any data structures, it only checks and gathers 3194 * information. 3195 */ 3196 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3197 struct usb_device *udev, 3198 struct usb_host_endpoint **eps, unsigned int num_eps, 3199 unsigned int *num_streams, u32 *changed_ep_bitmask) 3200 { 3201 unsigned int max_streams; 3202 unsigned int endpoint_flag; 3203 int i; 3204 int ret; 3205 3206 for (i = 0; i < num_eps; i++) { 3207 ret = xhci_check_streams_endpoint(xhci, udev, 3208 eps[i], udev->slot_id); 3209 if (ret < 0) 3210 return ret; 3211 3212 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3213 if (max_streams < (*num_streams - 1)) { 3214 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3215 eps[i]->desc.bEndpointAddress, 3216 max_streams); 3217 *num_streams = max_streams+1; 3218 } 3219 3220 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3221 if (*changed_ep_bitmask & endpoint_flag) 3222 return -EINVAL; 3223 *changed_ep_bitmask |= endpoint_flag; 3224 } 3225 return 0; 3226 } 3227 3228 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3229 struct usb_device *udev, 3230 struct usb_host_endpoint **eps, unsigned int num_eps) 3231 { 3232 u32 changed_ep_bitmask = 0; 3233 unsigned int slot_id; 3234 unsigned int ep_index; 3235 unsigned int ep_state; 3236 int i; 3237 3238 slot_id = udev->slot_id; 3239 if (!xhci->devs[slot_id]) 3240 return 0; 3241 3242 for (i = 0; i < num_eps; i++) { 3243 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3244 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3245 /* Are streams already being freed for the endpoint? */ 3246 if (ep_state & EP_GETTING_NO_STREAMS) { 3247 xhci_warn(xhci, "WARN Can't disable streams for " 3248 "endpoint 0x%x, " 3249 "streams are being disabled already\n", 3250 eps[i]->desc.bEndpointAddress); 3251 return 0; 3252 } 3253 /* Are there actually any streams to free? */ 3254 if (!(ep_state & EP_HAS_STREAMS) && 3255 !(ep_state & EP_GETTING_STREAMS)) { 3256 xhci_warn(xhci, "WARN Can't disable streams for " 3257 "endpoint 0x%x, " 3258 "streams are already disabled!\n", 3259 eps[i]->desc.bEndpointAddress); 3260 xhci_warn(xhci, "WARN xhci_free_streams() called " 3261 "with non-streams endpoint\n"); 3262 return 0; 3263 } 3264 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3265 } 3266 return changed_ep_bitmask; 3267 } 3268 3269 /* 3270 * The USB device drivers use this function (through the HCD interface in USB 3271 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3272 * coordinate mass storage command queueing across multiple endpoints (basically 3273 * a stream ID == a task ID). 3274 * 3275 * Setting up streams involves allocating the same size stream context array 3276 * for each endpoint and issuing a configure endpoint command for all endpoints. 3277 * 3278 * Don't allow the call to succeed if one endpoint only supports one stream 3279 * (which means it doesn't support streams at all). 3280 * 3281 * Drivers may get less stream IDs than they asked for, if the host controller 3282 * hardware or endpoints claim they can't support the number of requested 3283 * stream IDs. 3284 */ 3285 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3286 struct usb_host_endpoint **eps, unsigned int num_eps, 3287 unsigned int num_streams, gfp_t mem_flags) 3288 { 3289 int i, ret; 3290 struct xhci_hcd *xhci; 3291 struct xhci_virt_device *vdev; 3292 struct xhci_command *config_cmd; 3293 struct xhci_input_control_ctx *ctrl_ctx; 3294 unsigned int ep_index; 3295 unsigned int num_stream_ctxs; 3296 unsigned int max_packet; 3297 unsigned long flags; 3298 u32 changed_ep_bitmask = 0; 3299 3300 if (!eps) 3301 return -EINVAL; 3302 3303 /* Add one to the number of streams requested to account for 3304 * stream 0 that is reserved for xHCI usage. 3305 */ 3306 num_streams += 1; 3307 xhci = hcd_to_xhci(hcd); 3308 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3309 num_streams); 3310 3311 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3312 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3313 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3314 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3315 return -ENOSYS; 3316 } 3317 3318 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3319 if (!config_cmd) 3320 return -ENOMEM; 3321 3322 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3323 if (!ctrl_ctx) { 3324 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3325 __func__); 3326 xhci_free_command(xhci, config_cmd); 3327 return -ENOMEM; 3328 } 3329 3330 /* Check to make sure all endpoints are not already configured for 3331 * streams. While we're at it, find the maximum number of streams that 3332 * all the endpoints will support and check for duplicate endpoints. 3333 */ 3334 spin_lock_irqsave(&xhci->lock, flags); 3335 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3336 num_eps, &num_streams, &changed_ep_bitmask); 3337 if (ret < 0) { 3338 xhci_free_command(xhci, config_cmd); 3339 spin_unlock_irqrestore(&xhci->lock, flags); 3340 return ret; 3341 } 3342 if (num_streams <= 1) { 3343 xhci_warn(xhci, "WARN: endpoints can't handle " 3344 "more than one stream.\n"); 3345 xhci_free_command(xhci, config_cmd); 3346 spin_unlock_irqrestore(&xhci->lock, flags); 3347 return -EINVAL; 3348 } 3349 vdev = xhci->devs[udev->slot_id]; 3350 /* Mark each endpoint as being in transition, so 3351 * xhci_urb_enqueue() will reject all URBs. 3352 */ 3353 for (i = 0; i < num_eps; i++) { 3354 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3355 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3356 } 3357 spin_unlock_irqrestore(&xhci->lock, flags); 3358 3359 /* Setup internal data structures and allocate HW data structures for 3360 * streams (but don't install the HW structures in the input context 3361 * until we're sure all memory allocation succeeded). 3362 */ 3363 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3364 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3365 num_stream_ctxs, num_streams); 3366 3367 for (i = 0; i < num_eps; i++) { 3368 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3369 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3370 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3371 num_stream_ctxs, 3372 num_streams, 3373 max_packet, mem_flags); 3374 if (!vdev->eps[ep_index].stream_info) 3375 goto cleanup; 3376 /* Set maxPstreams in endpoint context and update deq ptr to 3377 * point to stream context array. FIXME 3378 */ 3379 } 3380 3381 /* Set up the input context for a configure endpoint command. */ 3382 for (i = 0; i < num_eps; i++) { 3383 struct xhci_ep_ctx *ep_ctx; 3384 3385 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3386 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3387 3388 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3389 vdev->out_ctx, ep_index); 3390 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3391 vdev->eps[ep_index].stream_info); 3392 } 3393 /* Tell the HW to drop its old copy of the endpoint context info 3394 * and add the updated copy from the input context. 3395 */ 3396 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3397 vdev->out_ctx, ctrl_ctx, 3398 changed_ep_bitmask, changed_ep_bitmask); 3399 3400 /* Issue and wait for the configure endpoint command */ 3401 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3402 false, false); 3403 3404 /* xHC rejected the configure endpoint command for some reason, so we 3405 * leave the old ring intact and free our internal streams data 3406 * structure. 3407 */ 3408 if (ret < 0) 3409 goto cleanup; 3410 3411 spin_lock_irqsave(&xhci->lock, flags); 3412 for (i = 0; i < num_eps; i++) { 3413 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3414 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3415 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3416 udev->slot_id, ep_index); 3417 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3418 } 3419 xhci_free_command(xhci, config_cmd); 3420 spin_unlock_irqrestore(&xhci->lock, flags); 3421 3422 /* Subtract 1 for stream 0, which drivers can't use */ 3423 return num_streams - 1; 3424 3425 cleanup: 3426 /* If it didn't work, free the streams! */ 3427 for (i = 0; i < num_eps; i++) { 3428 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3429 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3430 vdev->eps[ep_index].stream_info = NULL; 3431 /* FIXME Unset maxPstreams in endpoint context and 3432 * update deq ptr to point to normal string ring. 3433 */ 3434 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3435 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3436 xhci_endpoint_zero(xhci, vdev, eps[i]); 3437 } 3438 xhci_free_command(xhci, config_cmd); 3439 return -ENOMEM; 3440 } 3441 3442 /* Transition the endpoint from using streams to being a "normal" endpoint 3443 * without streams. 3444 * 3445 * Modify the endpoint context state, submit a configure endpoint command, 3446 * and free all endpoint rings for streams if that completes successfully. 3447 */ 3448 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3449 struct usb_host_endpoint **eps, unsigned int num_eps, 3450 gfp_t mem_flags) 3451 { 3452 int i, ret; 3453 struct xhci_hcd *xhci; 3454 struct xhci_virt_device *vdev; 3455 struct xhci_command *command; 3456 struct xhci_input_control_ctx *ctrl_ctx; 3457 unsigned int ep_index; 3458 unsigned long flags; 3459 u32 changed_ep_bitmask; 3460 3461 xhci = hcd_to_xhci(hcd); 3462 vdev = xhci->devs[udev->slot_id]; 3463 3464 /* Set up a configure endpoint command to remove the streams rings */ 3465 spin_lock_irqsave(&xhci->lock, flags); 3466 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3467 udev, eps, num_eps); 3468 if (changed_ep_bitmask == 0) { 3469 spin_unlock_irqrestore(&xhci->lock, flags); 3470 return -EINVAL; 3471 } 3472 3473 /* Use the xhci_command structure from the first endpoint. We may have 3474 * allocated too many, but the driver may call xhci_free_streams() for 3475 * each endpoint it grouped into one call to xhci_alloc_streams(). 3476 */ 3477 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3478 command = vdev->eps[ep_index].stream_info->free_streams_command; 3479 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3480 if (!ctrl_ctx) { 3481 spin_unlock_irqrestore(&xhci->lock, flags); 3482 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3483 __func__); 3484 return -EINVAL; 3485 } 3486 3487 for (i = 0; i < num_eps; i++) { 3488 struct xhci_ep_ctx *ep_ctx; 3489 3490 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3491 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3492 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3493 EP_GETTING_NO_STREAMS; 3494 3495 xhci_endpoint_copy(xhci, command->in_ctx, 3496 vdev->out_ctx, ep_index); 3497 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3498 &vdev->eps[ep_index]); 3499 } 3500 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3501 vdev->out_ctx, ctrl_ctx, 3502 changed_ep_bitmask, changed_ep_bitmask); 3503 spin_unlock_irqrestore(&xhci->lock, flags); 3504 3505 /* Issue and wait for the configure endpoint command, 3506 * which must succeed. 3507 */ 3508 ret = xhci_configure_endpoint(xhci, udev, command, 3509 false, true); 3510 3511 /* xHC rejected the configure endpoint command for some reason, so we 3512 * leave the streams rings intact. 3513 */ 3514 if (ret < 0) 3515 return ret; 3516 3517 spin_lock_irqsave(&xhci->lock, flags); 3518 for (i = 0; i < num_eps; i++) { 3519 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3520 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3521 vdev->eps[ep_index].stream_info = NULL; 3522 /* FIXME Unset maxPstreams in endpoint context and 3523 * update deq ptr to point to normal string ring. 3524 */ 3525 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3526 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3527 } 3528 spin_unlock_irqrestore(&xhci->lock, flags); 3529 3530 return 0; 3531 } 3532 3533 /* 3534 * Deletes endpoint resources for endpoints that were active before a Reset 3535 * Device command, or a Disable Slot command. The Reset Device command leaves 3536 * the control endpoint intact, whereas the Disable Slot command deletes it. 3537 * 3538 * Must be called with xhci->lock held. 3539 */ 3540 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3541 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3542 { 3543 int i; 3544 unsigned int num_dropped_eps = 0; 3545 unsigned int drop_flags = 0; 3546 3547 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3548 if (virt_dev->eps[i].ring) { 3549 drop_flags |= 1 << i; 3550 num_dropped_eps++; 3551 } 3552 } 3553 xhci->num_active_eps -= num_dropped_eps; 3554 if (num_dropped_eps) 3555 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3556 "Dropped %u ep ctxs, flags = 0x%x, " 3557 "%u now active.", 3558 num_dropped_eps, drop_flags, 3559 xhci->num_active_eps); 3560 } 3561 3562 /* 3563 * This submits a Reset Device Command, which will set the device state to 0, 3564 * set the device address to 0, and disable all the endpoints except the default 3565 * control endpoint. The USB core should come back and call 3566 * xhci_address_device(), and then re-set up the configuration. If this is 3567 * called because of a usb_reset_and_verify_device(), then the old alternate 3568 * settings will be re-installed through the normal bandwidth allocation 3569 * functions. 3570 * 3571 * Wait for the Reset Device command to finish. Remove all structures 3572 * associated with the endpoints that were disabled. Clear the input device 3573 * structure? Reset the control endpoint 0 max packet size? 3574 * 3575 * If the virt_dev to be reset does not exist or does not match the udev, 3576 * it means the device is lost, possibly due to the xHC restore error and 3577 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3578 * re-allocate the device. 3579 */ 3580 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3581 struct usb_device *udev) 3582 { 3583 int ret, i; 3584 unsigned long flags; 3585 struct xhci_hcd *xhci; 3586 unsigned int slot_id; 3587 struct xhci_virt_device *virt_dev; 3588 struct xhci_command *reset_device_cmd; 3589 struct xhci_slot_ctx *slot_ctx; 3590 int old_active_eps = 0; 3591 3592 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3593 if (ret <= 0) 3594 return ret; 3595 xhci = hcd_to_xhci(hcd); 3596 slot_id = udev->slot_id; 3597 virt_dev = xhci->devs[slot_id]; 3598 if (!virt_dev) { 3599 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3600 "not exist. Re-allocate the device\n", slot_id); 3601 ret = xhci_alloc_dev(hcd, udev); 3602 if (ret == 1) 3603 return 0; 3604 else 3605 return -EINVAL; 3606 } 3607 3608 if (virt_dev->tt_info) 3609 old_active_eps = virt_dev->tt_info->active_eps; 3610 3611 if (virt_dev->udev != udev) { 3612 /* If the virt_dev and the udev does not match, this virt_dev 3613 * may belong to another udev. 3614 * Re-allocate the device. 3615 */ 3616 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3617 "not match the udev. Re-allocate the device\n", 3618 slot_id); 3619 ret = xhci_alloc_dev(hcd, udev); 3620 if (ret == 1) 3621 return 0; 3622 else 3623 return -EINVAL; 3624 } 3625 3626 /* If device is not setup, there is no point in resetting it */ 3627 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3628 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3629 SLOT_STATE_DISABLED) 3630 return 0; 3631 3632 trace_xhci_discover_or_reset_device(slot_ctx); 3633 3634 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3635 /* Allocate the command structure that holds the struct completion. 3636 * Assume we're in process context, since the normal device reset 3637 * process has to wait for the device anyway. Storage devices are 3638 * reset as part of error handling, so use GFP_NOIO instead of 3639 * GFP_KERNEL. 3640 */ 3641 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3642 if (!reset_device_cmd) { 3643 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3644 return -ENOMEM; 3645 } 3646 3647 /* Attempt to submit the Reset Device command to the command ring */ 3648 spin_lock_irqsave(&xhci->lock, flags); 3649 3650 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3651 if (ret) { 3652 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3653 spin_unlock_irqrestore(&xhci->lock, flags); 3654 goto command_cleanup; 3655 } 3656 xhci_ring_cmd_db(xhci); 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 3659 /* Wait for the Reset Device command to finish */ 3660 wait_for_completion(reset_device_cmd->completion); 3661 3662 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3663 * unless we tried to reset a slot ID that wasn't enabled, 3664 * or the device wasn't in the addressed or configured state. 3665 */ 3666 ret = reset_device_cmd->status; 3667 switch (ret) { 3668 case COMP_COMMAND_ABORTED: 3669 case COMP_COMMAND_RING_STOPPED: 3670 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3671 ret = -ETIME; 3672 goto command_cleanup; 3673 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3674 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3675 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3676 slot_id, 3677 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3678 xhci_dbg(xhci, "Not freeing device rings.\n"); 3679 /* Don't treat this as an error. May change my mind later. */ 3680 ret = 0; 3681 goto command_cleanup; 3682 case COMP_SUCCESS: 3683 xhci_dbg(xhci, "Successful reset device command.\n"); 3684 break; 3685 default: 3686 if (xhci_is_vendor_info_code(xhci, ret)) 3687 break; 3688 xhci_warn(xhci, "Unknown completion code %u for " 3689 "reset device command.\n", ret); 3690 ret = -EINVAL; 3691 goto command_cleanup; 3692 } 3693 3694 /* Free up host controller endpoint resources */ 3695 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3696 spin_lock_irqsave(&xhci->lock, flags); 3697 /* Don't delete the default control endpoint resources */ 3698 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3699 spin_unlock_irqrestore(&xhci->lock, flags); 3700 } 3701 3702 /* Everything but endpoint 0 is disabled, so free the rings. */ 3703 for (i = 1; i < 31; i++) { 3704 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3705 3706 if (ep->ep_state & EP_HAS_STREAMS) { 3707 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3708 xhci_get_endpoint_address(i)); 3709 xhci_free_stream_info(xhci, ep->stream_info); 3710 ep->stream_info = NULL; 3711 ep->ep_state &= ~EP_HAS_STREAMS; 3712 } 3713 3714 if (ep->ring) { 3715 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3716 xhci_free_endpoint_ring(xhci, virt_dev, i); 3717 } 3718 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3719 xhci_drop_ep_from_interval_table(xhci, 3720 &virt_dev->eps[i].bw_info, 3721 virt_dev->bw_table, 3722 udev, 3723 &virt_dev->eps[i], 3724 virt_dev->tt_info); 3725 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3726 } 3727 /* If necessary, update the number of active TTs on this root port */ 3728 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3729 ret = 0; 3730 3731 command_cleanup: 3732 xhci_free_command(xhci, reset_device_cmd); 3733 return ret; 3734 } 3735 3736 /* 3737 * At this point, the struct usb_device is about to go away, the device has 3738 * disconnected, and all traffic has been stopped and the endpoints have been 3739 * disabled. Free any HC data structures associated with that device. 3740 */ 3741 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3742 { 3743 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3744 struct xhci_virt_device *virt_dev; 3745 struct xhci_slot_ctx *slot_ctx; 3746 int i, ret; 3747 3748 #ifndef CONFIG_USB_DEFAULT_PERSIST 3749 /* 3750 * We called pm_runtime_get_noresume when the device was attached. 3751 * Decrement the counter here to allow controller to runtime suspend 3752 * if no devices remain. 3753 */ 3754 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3755 pm_runtime_put_noidle(hcd->self.controller); 3756 #endif 3757 3758 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3759 /* If the host is halted due to driver unload, we still need to free the 3760 * device. 3761 */ 3762 if (ret <= 0 && ret != -ENODEV) 3763 return; 3764 3765 virt_dev = xhci->devs[udev->slot_id]; 3766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3767 trace_xhci_free_dev(slot_ctx); 3768 3769 /* Stop any wayward timer functions (which may grab the lock) */ 3770 for (i = 0; i < 31; i++) { 3771 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3772 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3773 } 3774 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3775 virt_dev->udev = NULL; 3776 ret = xhci_disable_slot(xhci, udev->slot_id); 3777 if (ret) 3778 xhci_free_virt_device(xhci, udev->slot_id); 3779 } 3780 3781 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3782 { 3783 struct xhci_command *command; 3784 unsigned long flags; 3785 u32 state; 3786 int ret = 0; 3787 3788 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3789 if (!command) 3790 return -ENOMEM; 3791 3792 spin_lock_irqsave(&xhci->lock, flags); 3793 /* Don't disable the slot if the host controller is dead. */ 3794 state = readl(&xhci->op_regs->status); 3795 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3796 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3797 spin_unlock_irqrestore(&xhci->lock, flags); 3798 kfree(command); 3799 return -ENODEV; 3800 } 3801 3802 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3803 slot_id); 3804 if (ret) { 3805 spin_unlock_irqrestore(&xhci->lock, flags); 3806 kfree(command); 3807 return ret; 3808 } 3809 xhci_ring_cmd_db(xhci); 3810 spin_unlock_irqrestore(&xhci->lock, flags); 3811 return ret; 3812 } 3813 3814 /* 3815 * Checks if we have enough host controller resources for the default control 3816 * endpoint. 3817 * 3818 * Must be called with xhci->lock held. 3819 */ 3820 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3821 { 3822 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3823 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3824 "Not enough ep ctxs: " 3825 "%u active, need to add 1, limit is %u.", 3826 xhci->num_active_eps, xhci->limit_active_eps); 3827 return -ENOMEM; 3828 } 3829 xhci->num_active_eps += 1; 3830 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3831 "Adding 1 ep ctx, %u now active.", 3832 xhci->num_active_eps); 3833 return 0; 3834 } 3835 3836 3837 /* 3838 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3839 * timed out, or allocating memory failed. Returns 1 on success. 3840 */ 3841 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3842 { 3843 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3844 struct xhci_virt_device *vdev; 3845 struct xhci_slot_ctx *slot_ctx; 3846 unsigned long flags; 3847 int ret, slot_id; 3848 struct xhci_command *command; 3849 3850 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3851 if (!command) 3852 return 0; 3853 3854 spin_lock_irqsave(&xhci->lock, flags); 3855 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3856 if (ret) { 3857 spin_unlock_irqrestore(&xhci->lock, flags); 3858 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3859 xhci_free_command(xhci, command); 3860 return 0; 3861 } 3862 xhci_ring_cmd_db(xhci); 3863 spin_unlock_irqrestore(&xhci->lock, flags); 3864 3865 wait_for_completion(command->completion); 3866 slot_id = command->slot_id; 3867 3868 if (!slot_id || command->status != COMP_SUCCESS) { 3869 xhci_err(xhci, "Error while assigning device slot ID\n"); 3870 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3871 HCS_MAX_SLOTS( 3872 readl(&xhci->cap_regs->hcs_params1))); 3873 xhci_free_command(xhci, command); 3874 return 0; 3875 } 3876 3877 xhci_free_command(xhci, command); 3878 3879 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3880 spin_lock_irqsave(&xhci->lock, flags); 3881 ret = xhci_reserve_host_control_ep_resources(xhci); 3882 if (ret) { 3883 spin_unlock_irqrestore(&xhci->lock, flags); 3884 xhci_warn(xhci, "Not enough host resources, " 3885 "active endpoint contexts = %u\n", 3886 xhci->num_active_eps); 3887 goto disable_slot; 3888 } 3889 spin_unlock_irqrestore(&xhci->lock, flags); 3890 } 3891 /* Use GFP_NOIO, since this function can be called from 3892 * xhci_discover_or_reset_device(), which may be called as part of 3893 * mass storage driver error handling. 3894 */ 3895 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3896 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3897 goto disable_slot; 3898 } 3899 vdev = xhci->devs[slot_id]; 3900 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3901 trace_xhci_alloc_dev(slot_ctx); 3902 3903 udev->slot_id = slot_id; 3904 3905 xhci_debugfs_create_slot(xhci, slot_id); 3906 3907 #ifndef CONFIG_USB_DEFAULT_PERSIST 3908 /* 3909 * If resetting upon resume, we can't put the controller into runtime 3910 * suspend if there is a device attached. 3911 */ 3912 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3913 pm_runtime_get_noresume(hcd->self.controller); 3914 #endif 3915 3916 /* Is this a LS or FS device under a HS hub? */ 3917 /* Hub or peripherial? */ 3918 return 1; 3919 3920 disable_slot: 3921 ret = xhci_disable_slot(xhci, udev->slot_id); 3922 if (ret) 3923 xhci_free_virt_device(xhci, udev->slot_id); 3924 3925 return 0; 3926 } 3927 3928 /* 3929 * Issue an Address Device command and optionally send a corresponding 3930 * SetAddress request to the device. 3931 */ 3932 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3933 enum xhci_setup_dev setup) 3934 { 3935 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3936 unsigned long flags; 3937 struct xhci_virt_device *virt_dev; 3938 int ret = 0; 3939 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3940 struct xhci_slot_ctx *slot_ctx; 3941 struct xhci_input_control_ctx *ctrl_ctx; 3942 u64 temp_64; 3943 struct xhci_command *command = NULL; 3944 3945 mutex_lock(&xhci->mutex); 3946 3947 if (xhci->xhc_state) { /* dying, removing or halted */ 3948 ret = -ESHUTDOWN; 3949 goto out; 3950 } 3951 3952 if (!udev->slot_id) { 3953 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3954 "Bad Slot ID %d", udev->slot_id); 3955 ret = -EINVAL; 3956 goto out; 3957 } 3958 3959 virt_dev = xhci->devs[udev->slot_id]; 3960 3961 if (WARN_ON(!virt_dev)) { 3962 /* 3963 * In plug/unplug torture test with an NEC controller, 3964 * a zero-dereference was observed once due to virt_dev = 0. 3965 * Print useful debug rather than crash if it is observed again! 3966 */ 3967 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3968 udev->slot_id); 3969 ret = -EINVAL; 3970 goto out; 3971 } 3972 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3973 trace_xhci_setup_device_slot(slot_ctx); 3974 3975 if (setup == SETUP_CONTEXT_ONLY) { 3976 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3977 SLOT_STATE_DEFAULT) { 3978 xhci_dbg(xhci, "Slot already in default state\n"); 3979 goto out; 3980 } 3981 } 3982 3983 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3984 if (!command) { 3985 ret = -ENOMEM; 3986 goto out; 3987 } 3988 3989 command->in_ctx = virt_dev->in_ctx; 3990 3991 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3992 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3993 if (!ctrl_ctx) { 3994 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3995 __func__); 3996 ret = -EINVAL; 3997 goto out; 3998 } 3999 /* 4000 * If this is the first Set Address since device plug-in or 4001 * virt_device realloaction after a resume with an xHCI power loss, 4002 * then set up the slot context. 4003 */ 4004 if (!slot_ctx->dev_info) 4005 xhci_setup_addressable_virt_dev(xhci, udev); 4006 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4007 else 4008 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4009 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4010 ctrl_ctx->drop_flags = 0; 4011 4012 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4013 le32_to_cpu(slot_ctx->dev_info) >> 27); 4014 4015 spin_lock_irqsave(&xhci->lock, flags); 4016 trace_xhci_setup_device(virt_dev); 4017 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4018 udev->slot_id, setup); 4019 if (ret) { 4020 spin_unlock_irqrestore(&xhci->lock, flags); 4021 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4022 "FIXME: allocate a command ring segment"); 4023 goto out; 4024 } 4025 xhci_ring_cmd_db(xhci); 4026 spin_unlock_irqrestore(&xhci->lock, flags); 4027 4028 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4029 wait_for_completion(command->completion); 4030 4031 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4032 * the SetAddress() "recovery interval" required by USB and aborting the 4033 * command on a timeout. 4034 */ 4035 switch (command->status) { 4036 case COMP_COMMAND_ABORTED: 4037 case COMP_COMMAND_RING_STOPPED: 4038 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4039 ret = -ETIME; 4040 break; 4041 case COMP_CONTEXT_STATE_ERROR: 4042 case COMP_SLOT_NOT_ENABLED_ERROR: 4043 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4044 act, udev->slot_id); 4045 ret = -EINVAL; 4046 break; 4047 case COMP_USB_TRANSACTION_ERROR: 4048 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4049 4050 mutex_unlock(&xhci->mutex); 4051 ret = xhci_disable_slot(xhci, udev->slot_id); 4052 if (!ret) 4053 xhci_alloc_dev(hcd, udev); 4054 kfree(command->completion); 4055 kfree(command); 4056 return -EPROTO; 4057 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4058 dev_warn(&udev->dev, 4059 "ERROR: Incompatible device for setup %s command\n", act); 4060 ret = -ENODEV; 4061 break; 4062 case COMP_SUCCESS: 4063 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4064 "Successful setup %s command", act); 4065 break; 4066 default: 4067 xhci_err(xhci, 4068 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4069 act, command->status); 4070 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4071 ret = -EINVAL; 4072 break; 4073 } 4074 if (ret) 4075 goto out; 4076 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4077 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4078 "Op regs DCBAA ptr = %#016llx", temp_64); 4079 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4080 "Slot ID %d dcbaa entry @%p = %#016llx", 4081 udev->slot_id, 4082 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4083 (unsigned long long) 4084 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4085 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4086 "Output Context DMA address = %#08llx", 4087 (unsigned long long)virt_dev->out_ctx->dma); 4088 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4089 le32_to_cpu(slot_ctx->dev_info) >> 27); 4090 /* 4091 * USB core uses address 1 for the roothubs, so we add one to the 4092 * address given back to us by the HC. 4093 */ 4094 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4095 le32_to_cpu(slot_ctx->dev_info) >> 27); 4096 /* Zero the input context control for later use */ 4097 ctrl_ctx->add_flags = 0; 4098 ctrl_ctx->drop_flags = 0; 4099 4100 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4101 "Internal device address = %d", 4102 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4103 out: 4104 mutex_unlock(&xhci->mutex); 4105 if (command) { 4106 kfree(command->completion); 4107 kfree(command); 4108 } 4109 return ret; 4110 } 4111 4112 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4113 { 4114 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4115 } 4116 4117 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4118 { 4119 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4120 } 4121 4122 /* 4123 * Transfer the port index into real index in the HW port status 4124 * registers. Caculate offset between the port's PORTSC register 4125 * and port status base. Divide the number of per port register 4126 * to get the real index. The raw port number bases 1. 4127 */ 4128 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4129 { 4130 struct xhci_hub *rhub; 4131 4132 rhub = xhci_get_rhub(hcd); 4133 return rhub->ports[port1 - 1]->hw_portnum + 1; 4134 } 4135 4136 /* 4137 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4138 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4139 */ 4140 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4141 struct usb_device *udev, u16 max_exit_latency) 4142 { 4143 struct xhci_virt_device *virt_dev; 4144 struct xhci_command *command; 4145 struct xhci_input_control_ctx *ctrl_ctx; 4146 struct xhci_slot_ctx *slot_ctx; 4147 unsigned long flags; 4148 int ret; 4149 4150 spin_lock_irqsave(&xhci->lock, flags); 4151 4152 virt_dev = xhci->devs[udev->slot_id]; 4153 4154 /* 4155 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4156 * xHC was re-initialized. Exit latency will be set later after 4157 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4158 */ 4159 4160 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4161 spin_unlock_irqrestore(&xhci->lock, flags); 4162 return 0; 4163 } 4164 4165 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4166 command = xhci->lpm_command; 4167 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4168 if (!ctrl_ctx) { 4169 spin_unlock_irqrestore(&xhci->lock, flags); 4170 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4171 __func__); 4172 return -ENOMEM; 4173 } 4174 4175 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4176 spin_unlock_irqrestore(&xhci->lock, flags); 4177 4178 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4179 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4180 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4181 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4182 slot_ctx->dev_state = 0; 4183 4184 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4185 "Set up evaluate context for LPM MEL change."); 4186 4187 /* Issue and wait for the evaluate context command. */ 4188 ret = xhci_configure_endpoint(xhci, udev, command, 4189 true, true); 4190 4191 if (!ret) { 4192 spin_lock_irqsave(&xhci->lock, flags); 4193 virt_dev->current_mel = max_exit_latency; 4194 spin_unlock_irqrestore(&xhci->lock, flags); 4195 } 4196 return ret; 4197 } 4198 4199 #ifdef CONFIG_PM 4200 4201 /* BESL to HIRD Encoding array for USB2 LPM */ 4202 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4203 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4204 4205 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4206 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4207 struct usb_device *udev) 4208 { 4209 int u2del, besl, besl_host; 4210 int besl_device = 0; 4211 u32 field; 4212 4213 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4214 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4215 4216 if (field & USB_BESL_SUPPORT) { 4217 for (besl_host = 0; besl_host < 16; besl_host++) { 4218 if (xhci_besl_encoding[besl_host] >= u2del) 4219 break; 4220 } 4221 /* Use baseline BESL value as default */ 4222 if (field & USB_BESL_BASELINE_VALID) 4223 besl_device = USB_GET_BESL_BASELINE(field); 4224 else if (field & USB_BESL_DEEP_VALID) 4225 besl_device = USB_GET_BESL_DEEP(field); 4226 } else { 4227 if (u2del <= 50) 4228 besl_host = 0; 4229 else 4230 besl_host = (u2del - 51) / 75 + 1; 4231 } 4232 4233 besl = besl_host + besl_device; 4234 if (besl > 15) 4235 besl = 15; 4236 4237 return besl; 4238 } 4239 4240 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4241 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4242 { 4243 u32 field; 4244 int l1; 4245 int besld = 0; 4246 int hirdm = 0; 4247 4248 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4249 4250 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4251 l1 = udev->l1_params.timeout / 256; 4252 4253 /* device has preferred BESLD */ 4254 if (field & USB_BESL_DEEP_VALID) { 4255 besld = USB_GET_BESL_DEEP(field); 4256 hirdm = 1; 4257 } 4258 4259 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4260 } 4261 4262 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4263 struct usb_device *udev, int enable) 4264 { 4265 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4266 struct xhci_port **ports; 4267 __le32 __iomem *pm_addr, *hlpm_addr; 4268 u32 pm_val, hlpm_val, field; 4269 unsigned int port_num; 4270 unsigned long flags; 4271 int hird, exit_latency; 4272 int ret; 4273 4274 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4275 !udev->lpm_capable) 4276 return -EPERM; 4277 4278 if (!udev->parent || udev->parent->parent || 4279 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4280 return -EPERM; 4281 4282 if (udev->usb2_hw_lpm_capable != 1) 4283 return -EPERM; 4284 4285 spin_lock_irqsave(&xhci->lock, flags); 4286 4287 ports = xhci->usb2_rhub.ports; 4288 port_num = udev->portnum - 1; 4289 pm_addr = ports[port_num]->addr + PORTPMSC; 4290 pm_val = readl(pm_addr); 4291 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4292 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4293 4294 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4295 enable ? "enable" : "disable", port_num + 1); 4296 4297 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4298 /* Host supports BESL timeout instead of HIRD */ 4299 if (udev->usb2_hw_lpm_besl_capable) { 4300 /* if device doesn't have a preferred BESL value use a 4301 * default one which works with mixed HIRD and BESL 4302 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4303 */ 4304 if ((field & USB_BESL_SUPPORT) && 4305 (field & USB_BESL_BASELINE_VALID)) 4306 hird = USB_GET_BESL_BASELINE(field); 4307 else 4308 hird = udev->l1_params.besl; 4309 4310 exit_latency = xhci_besl_encoding[hird]; 4311 spin_unlock_irqrestore(&xhci->lock, flags); 4312 4313 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4314 * input context for link powermanagement evaluate 4315 * context commands. It is protected by hcd->bandwidth 4316 * mutex and is shared by all devices. We need to set 4317 * the max ext latency in USB 2 BESL LPM as well, so 4318 * use the same mutex and xhci_change_max_exit_latency() 4319 */ 4320 mutex_lock(hcd->bandwidth_mutex); 4321 ret = xhci_change_max_exit_latency(xhci, udev, 4322 exit_latency); 4323 mutex_unlock(hcd->bandwidth_mutex); 4324 4325 if (ret < 0) 4326 return ret; 4327 spin_lock_irqsave(&xhci->lock, flags); 4328 4329 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4330 writel(hlpm_val, hlpm_addr); 4331 /* flush write */ 4332 readl(hlpm_addr); 4333 } else { 4334 hird = xhci_calculate_hird_besl(xhci, udev); 4335 } 4336 4337 pm_val &= ~PORT_HIRD_MASK; 4338 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4339 writel(pm_val, pm_addr); 4340 pm_val = readl(pm_addr); 4341 pm_val |= PORT_HLE; 4342 writel(pm_val, pm_addr); 4343 /* flush write */ 4344 readl(pm_addr); 4345 } else { 4346 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4347 writel(pm_val, pm_addr); 4348 /* flush write */ 4349 readl(pm_addr); 4350 if (udev->usb2_hw_lpm_besl_capable) { 4351 spin_unlock_irqrestore(&xhci->lock, flags); 4352 mutex_lock(hcd->bandwidth_mutex); 4353 xhci_change_max_exit_latency(xhci, udev, 0); 4354 mutex_unlock(hcd->bandwidth_mutex); 4355 return 0; 4356 } 4357 } 4358 4359 spin_unlock_irqrestore(&xhci->lock, flags); 4360 return 0; 4361 } 4362 4363 /* check if a usb2 port supports a given extened capability protocol 4364 * only USB2 ports extended protocol capability values are cached. 4365 * Return 1 if capability is supported 4366 */ 4367 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4368 unsigned capability) 4369 { 4370 u32 port_offset, port_count; 4371 int i; 4372 4373 for (i = 0; i < xhci->num_ext_caps; i++) { 4374 if (xhci->ext_caps[i] & capability) { 4375 /* port offsets starts at 1 */ 4376 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4377 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4378 if (port >= port_offset && 4379 port < port_offset + port_count) 4380 return 1; 4381 } 4382 } 4383 return 0; 4384 } 4385 4386 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4387 { 4388 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4389 int portnum = udev->portnum - 1; 4390 4391 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4392 !udev->lpm_capable) 4393 return 0; 4394 4395 /* we only support lpm for non-hub device connected to root hub yet */ 4396 if (!udev->parent || udev->parent->parent || 4397 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4398 return 0; 4399 4400 if (xhci->hw_lpm_support == 1 && 4401 xhci_check_usb2_port_capability( 4402 xhci, portnum, XHCI_HLC)) { 4403 udev->usb2_hw_lpm_capable = 1; 4404 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4405 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4406 if (xhci_check_usb2_port_capability(xhci, portnum, 4407 XHCI_BLC)) 4408 udev->usb2_hw_lpm_besl_capable = 1; 4409 } 4410 4411 return 0; 4412 } 4413 4414 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4415 4416 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4417 static unsigned long long xhci_service_interval_to_ns( 4418 struct usb_endpoint_descriptor *desc) 4419 { 4420 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4421 } 4422 4423 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4424 enum usb3_link_state state) 4425 { 4426 unsigned long long sel; 4427 unsigned long long pel; 4428 unsigned int max_sel_pel; 4429 char *state_name; 4430 4431 switch (state) { 4432 case USB3_LPM_U1: 4433 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4434 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4435 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4436 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4437 state_name = "U1"; 4438 break; 4439 case USB3_LPM_U2: 4440 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4441 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4442 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4443 state_name = "U2"; 4444 break; 4445 default: 4446 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4447 __func__); 4448 return USB3_LPM_DISABLED; 4449 } 4450 4451 if (sel <= max_sel_pel && pel <= max_sel_pel) 4452 return USB3_LPM_DEVICE_INITIATED; 4453 4454 if (sel > max_sel_pel) 4455 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4456 "due to long SEL %llu ms\n", 4457 state_name, sel); 4458 else 4459 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4460 "due to long PEL %llu ms\n", 4461 state_name, pel); 4462 return USB3_LPM_DISABLED; 4463 } 4464 4465 /* The U1 timeout should be the maximum of the following values: 4466 * - For control endpoints, U1 system exit latency (SEL) * 3 4467 * - For bulk endpoints, U1 SEL * 5 4468 * - For interrupt endpoints: 4469 * - Notification EPs, U1 SEL * 3 4470 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4471 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4472 */ 4473 static unsigned long long xhci_calculate_intel_u1_timeout( 4474 struct usb_device *udev, 4475 struct usb_endpoint_descriptor *desc) 4476 { 4477 unsigned long long timeout_ns; 4478 int ep_type; 4479 int intr_type; 4480 4481 ep_type = usb_endpoint_type(desc); 4482 switch (ep_type) { 4483 case USB_ENDPOINT_XFER_CONTROL: 4484 timeout_ns = udev->u1_params.sel * 3; 4485 break; 4486 case USB_ENDPOINT_XFER_BULK: 4487 timeout_ns = udev->u1_params.sel * 5; 4488 break; 4489 case USB_ENDPOINT_XFER_INT: 4490 intr_type = usb_endpoint_interrupt_type(desc); 4491 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4492 timeout_ns = udev->u1_params.sel * 3; 4493 break; 4494 } 4495 /* Otherwise the calculation is the same as isoc eps */ 4496 /* fall through */ 4497 case USB_ENDPOINT_XFER_ISOC: 4498 timeout_ns = xhci_service_interval_to_ns(desc); 4499 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4500 if (timeout_ns < udev->u1_params.sel * 2) 4501 timeout_ns = udev->u1_params.sel * 2; 4502 break; 4503 default: 4504 return 0; 4505 } 4506 4507 return timeout_ns; 4508 } 4509 4510 /* Returns the hub-encoded U1 timeout value. */ 4511 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4512 struct usb_device *udev, 4513 struct usb_endpoint_descriptor *desc) 4514 { 4515 unsigned long long timeout_ns; 4516 4517 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4518 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4519 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4520 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4521 return USB3_LPM_DISABLED; 4522 } 4523 } 4524 4525 if (xhci->quirks & XHCI_INTEL_HOST) 4526 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4527 else 4528 timeout_ns = udev->u1_params.sel; 4529 4530 /* The U1 timeout is encoded in 1us intervals. 4531 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4532 */ 4533 if (timeout_ns == USB3_LPM_DISABLED) 4534 timeout_ns = 1; 4535 else 4536 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4537 4538 /* If the necessary timeout value is bigger than what we can set in the 4539 * USB 3.0 hub, we have to disable hub-initiated U1. 4540 */ 4541 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4542 return timeout_ns; 4543 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4544 "due to long timeout %llu ms\n", timeout_ns); 4545 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4546 } 4547 4548 /* The U2 timeout should be the maximum of: 4549 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4550 * - largest bInterval of any active periodic endpoint (to avoid going 4551 * into lower power link states between intervals). 4552 * - the U2 Exit Latency of the device 4553 */ 4554 static unsigned long long xhci_calculate_intel_u2_timeout( 4555 struct usb_device *udev, 4556 struct usb_endpoint_descriptor *desc) 4557 { 4558 unsigned long long timeout_ns; 4559 unsigned long long u2_del_ns; 4560 4561 timeout_ns = 10 * 1000 * 1000; 4562 4563 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4564 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4565 timeout_ns = xhci_service_interval_to_ns(desc); 4566 4567 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4568 if (u2_del_ns > timeout_ns) 4569 timeout_ns = u2_del_ns; 4570 4571 return timeout_ns; 4572 } 4573 4574 /* Returns the hub-encoded U2 timeout value. */ 4575 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4576 struct usb_device *udev, 4577 struct usb_endpoint_descriptor *desc) 4578 { 4579 unsigned long long timeout_ns; 4580 4581 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4582 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4583 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4584 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4585 return USB3_LPM_DISABLED; 4586 } 4587 } 4588 4589 if (xhci->quirks & XHCI_INTEL_HOST) 4590 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4591 else 4592 timeout_ns = udev->u2_params.sel; 4593 4594 /* The U2 timeout is encoded in 256us intervals */ 4595 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4596 /* If the necessary timeout value is bigger than what we can set in the 4597 * USB 3.0 hub, we have to disable hub-initiated U2. 4598 */ 4599 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4600 return timeout_ns; 4601 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4602 "due to long timeout %llu ms\n", timeout_ns); 4603 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4604 } 4605 4606 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4607 struct usb_device *udev, 4608 struct usb_endpoint_descriptor *desc, 4609 enum usb3_link_state state, 4610 u16 *timeout) 4611 { 4612 if (state == USB3_LPM_U1) 4613 return xhci_calculate_u1_timeout(xhci, udev, desc); 4614 else if (state == USB3_LPM_U2) 4615 return xhci_calculate_u2_timeout(xhci, udev, desc); 4616 4617 return USB3_LPM_DISABLED; 4618 } 4619 4620 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4621 struct usb_device *udev, 4622 struct usb_endpoint_descriptor *desc, 4623 enum usb3_link_state state, 4624 u16 *timeout) 4625 { 4626 u16 alt_timeout; 4627 4628 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4629 desc, state, timeout); 4630 4631 /* If we found we can't enable hub-initiated LPM, or 4632 * the U1 or U2 exit latency was too high to allow 4633 * device-initiated LPM as well, just stop searching. 4634 */ 4635 if (alt_timeout == USB3_LPM_DISABLED || 4636 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4637 *timeout = alt_timeout; 4638 return -E2BIG; 4639 } 4640 if (alt_timeout > *timeout) 4641 *timeout = alt_timeout; 4642 return 0; 4643 } 4644 4645 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4646 struct usb_device *udev, 4647 struct usb_host_interface *alt, 4648 enum usb3_link_state state, 4649 u16 *timeout) 4650 { 4651 int j; 4652 4653 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4654 if (xhci_update_timeout_for_endpoint(xhci, udev, 4655 &alt->endpoint[j].desc, state, timeout)) 4656 return -E2BIG; 4657 continue; 4658 } 4659 return 0; 4660 } 4661 4662 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4663 enum usb3_link_state state) 4664 { 4665 struct usb_device *parent; 4666 unsigned int num_hubs; 4667 4668 if (state == USB3_LPM_U2) 4669 return 0; 4670 4671 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4672 for (parent = udev->parent, num_hubs = 0; parent->parent; 4673 parent = parent->parent) 4674 num_hubs++; 4675 4676 if (num_hubs < 2) 4677 return 0; 4678 4679 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4680 " below second-tier hub.\n"); 4681 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4682 "to decrease power consumption.\n"); 4683 return -E2BIG; 4684 } 4685 4686 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4687 struct usb_device *udev, 4688 enum usb3_link_state state) 4689 { 4690 if (xhci->quirks & XHCI_INTEL_HOST) 4691 return xhci_check_intel_tier_policy(udev, state); 4692 else 4693 return 0; 4694 } 4695 4696 /* Returns the U1 or U2 timeout that should be enabled. 4697 * If the tier check or timeout setting functions return with a non-zero exit 4698 * code, that means the timeout value has been finalized and we shouldn't look 4699 * at any more endpoints. 4700 */ 4701 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4702 struct usb_device *udev, enum usb3_link_state state) 4703 { 4704 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4705 struct usb_host_config *config; 4706 char *state_name; 4707 int i; 4708 u16 timeout = USB3_LPM_DISABLED; 4709 4710 if (state == USB3_LPM_U1) 4711 state_name = "U1"; 4712 else if (state == USB3_LPM_U2) 4713 state_name = "U2"; 4714 else { 4715 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4716 state); 4717 return timeout; 4718 } 4719 4720 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4721 return timeout; 4722 4723 /* Gather some information about the currently installed configuration 4724 * and alternate interface settings. 4725 */ 4726 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4727 state, &timeout)) 4728 return timeout; 4729 4730 config = udev->actconfig; 4731 if (!config) 4732 return timeout; 4733 4734 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4735 struct usb_driver *driver; 4736 struct usb_interface *intf = config->interface[i]; 4737 4738 if (!intf) 4739 continue; 4740 4741 /* Check if any currently bound drivers want hub-initiated LPM 4742 * disabled. 4743 */ 4744 if (intf->dev.driver) { 4745 driver = to_usb_driver(intf->dev.driver); 4746 if (driver && driver->disable_hub_initiated_lpm) { 4747 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4748 "at request of driver %s\n", 4749 state_name, driver->name); 4750 return xhci_get_timeout_no_hub_lpm(udev, state); 4751 } 4752 } 4753 4754 /* Not sure how this could happen... */ 4755 if (!intf->cur_altsetting) 4756 continue; 4757 4758 if (xhci_update_timeout_for_interface(xhci, udev, 4759 intf->cur_altsetting, 4760 state, &timeout)) 4761 return timeout; 4762 } 4763 return timeout; 4764 } 4765 4766 static int calculate_max_exit_latency(struct usb_device *udev, 4767 enum usb3_link_state state_changed, 4768 u16 hub_encoded_timeout) 4769 { 4770 unsigned long long u1_mel_us = 0; 4771 unsigned long long u2_mel_us = 0; 4772 unsigned long long mel_us = 0; 4773 bool disabling_u1; 4774 bool disabling_u2; 4775 bool enabling_u1; 4776 bool enabling_u2; 4777 4778 disabling_u1 = (state_changed == USB3_LPM_U1 && 4779 hub_encoded_timeout == USB3_LPM_DISABLED); 4780 disabling_u2 = (state_changed == USB3_LPM_U2 && 4781 hub_encoded_timeout == USB3_LPM_DISABLED); 4782 4783 enabling_u1 = (state_changed == USB3_LPM_U1 && 4784 hub_encoded_timeout != USB3_LPM_DISABLED); 4785 enabling_u2 = (state_changed == USB3_LPM_U2 && 4786 hub_encoded_timeout != USB3_LPM_DISABLED); 4787 4788 /* If U1 was already enabled and we're not disabling it, 4789 * or we're going to enable U1, account for the U1 max exit latency. 4790 */ 4791 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4792 enabling_u1) 4793 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4794 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4795 enabling_u2) 4796 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4797 4798 if (u1_mel_us > u2_mel_us) 4799 mel_us = u1_mel_us; 4800 else 4801 mel_us = u2_mel_us; 4802 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4803 if (mel_us > MAX_EXIT) { 4804 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4805 "is too big.\n", mel_us); 4806 return -E2BIG; 4807 } 4808 return mel_us; 4809 } 4810 4811 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4812 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4813 struct usb_device *udev, enum usb3_link_state state) 4814 { 4815 struct xhci_hcd *xhci; 4816 u16 hub_encoded_timeout; 4817 int mel; 4818 int ret; 4819 4820 xhci = hcd_to_xhci(hcd); 4821 /* The LPM timeout values are pretty host-controller specific, so don't 4822 * enable hub-initiated timeouts unless the vendor has provided 4823 * information about their timeout algorithm. 4824 */ 4825 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4826 !xhci->devs[udev->slot_id]) 4827 return USB3_LPM_DISABLED; 4828 4829 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4830 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4831 if (mel < 0) { 4832 /* Max Exit Latency is too big, disable LPM. */ 4833 hub_encoded_timeout = USB3_LPM_DISABLED; 4834 mel = 0; 4835 } 4836 4837 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4838 if (ret) 4839 return ret; 4840 return hub_encoded_timeout; 4841 } 4842 4843 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4844 struct usb_device *udev, enum usb3_link_state state) 4845 { 4846 struct xhci_hcd *xhci; 4847 u16 mel; 4848 4849 xhci = hcd_to_xhci(hcd); 4850 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4851 !xhci->devs[udev->slot_id]) 4852 return 0; 4853 4854 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4855 return xhci_change_max_exit_latency(xhci, udev, mel); 4856 } 4857 #else /* CONFIG_PM */ 4858 4859 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4860 struct usb_device *udev, int enable) 4861 { 4862 return 0; 4863 } 4864 4865 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4866 { 4867 return 0; 4868 } 4869 4870 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4871 struct usb_device *udev, enum usb3_link_state state) 4872 { 4873 return USB3_LPM_DISABLED; 4874 } 4875 4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4877 struct usb_device *udev, enum usb3_link_state state) 4878 { 4879 return 0; 4880 } 4881 #endif /* CONFIG_PM */ 4882 4883 /*-------------------------------------------------------------------------*/ 4884 4885 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4886 * internal data structures for the device. 4887 */ 4888 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4889 struct usb_tt *tt, gfp_t mem_flags) 4890 { 4891 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4892 struct xhci_virt_device *vdev; 4893 struct xhci_command *config_cmd; 4894 struct xhci_input_control_ctx *ctrl_ctx; 4895 struct xhci_slot_ctx *slot_ctx; 4896 unsigned long flags; 4897 unsigned think_time; 4898 int ret; 4899 4900 /* Ignore root hubs */ 4901 if (!hdev->parent) 4902 return 0; 4903 4904 vdev = xhci->devs[hdev->slot_id]; 4905 if (!vdev) { 4906 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4907 return -EINVAL; 4908 } 4909 4910 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4911 if (!config_cmd) 4912 return -ENOMEM; 4913 4914 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4915 if (!ctrl_ctx) { 4916 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4917 __func__); 4918 xhci_free_command(xhci, config_cmd); 4919 return -ENOMEM; 4920 } 4921 4922 spin_lock_irqsave(&xhci->lock, flags); 4923 if (hdev->speed == USB_SPEED_HIGH && 4924 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4925 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4926 xhci_free_command(xhci, config_cmd); 4927 spin_unlock_irqrestore(&xhci->lock, flags); 4928 return -ENOMEM; 4929 } 4930 4931 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4932 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4933 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4934 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4935 /* 4936 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4937 * but it may be already set to 1 when setup an xHCI virtual 4938 * device, so clear it anyway. 4939 */ 4940 if (tt->multi) 4941 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4942 else if (hdev->speed == USB_SPEED_FULL) 4943 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4944 4945 if (xhci->hci_version > 0x95) { 4946 xhci_dbg(xhci, "xHCI version %x needs hub " 4947 "TT think time and number of ports\n", 4948 (unsigned int) xhci->hci_version); 4949 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4950 /* Set TT think time - convert from ns to FS bit times. 4951 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4952 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4953 * 4954 * xHCI 1.0: this field shall be 0 if the device is not a 4955 * High-spped hub. 4956 */ 4957 think_time = tt->think_time; 4958 if (think_time != 0) 4959 think_time = (think_time / 666) - 1; 4960 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4961 slot_ctx->tt_info |= 4962 cpu_to_le32(TT_THINK_TIME(think_time)); 4963 } else { 4964 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4965 "TT think time or number of ports\n", 4966 (unsigned int) xhci->hci_version); 4967 } 4968 slot_ctx->dev_state = 0; 4969 spin_unlock_irqrestore(&xhci->lock, flags); 4970 4971 xhci_dbg(xhci, "Set up %s for hub device.\n", 4972 (xhci->hci_version > 0x95) ? 4973 "configure endpoint" : "evaluate context"); 4974 4975 /* Issue and wait for the configure endpoint or 4976 * evaluate context command. 4977 */ 4978 if (xhci->hci_version > 0x95) 4979 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4980 false, false); 4981 else 4982 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4983 true, false); 4984 4985 xhci_free_command(xhci, config_cmd); 4986 return ret; 4987 } 4988 4989 static int xhci_get_frame(struct usb_hcd *hcd) 4990 { 4991 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4992 /* EHCI mods by the periodic size. Why? */ 4993 return readl(&xhci->run_regs->microframe_index) >> 3; 4994 } 4995 4996 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4997 { 4998 struct xhci_hcd *xhci; 4999 /* 5000 * TODO: Check with DWC3 clients for sysdev according to 5001 * quirks 5002 */ 5003 struct device *dev = hcd->self.sysdev; 5004 unsigned int minor_rev; 5005 int retval; 5006 5007 /* Accept arbitrarily long scatter-gather lists */ 5008 hcd->self.sg_tablesize = ~0; 5009 5010 /* support to build packet from discontinuous buffers */ 5011 hcd->self.no_sg_constraint = 1; 5012 5013 /* XHCI controllers don't stop the ep queue on short packets :| */ 5014 hcd->self.no_stop_on_short = 1; 5015 5016 xhci = hcd_to_xhci(hcd); 5017 5018 if (usb_hcd_is_primary_hcd(hcd)) { 5019 xhci->main_hcd = hcd; 5020 xhci->usb2_rhub.hcd = hcd; 5021 /* Mark the first roothub as being USB 2.0. 5022 * The xHCI driver will register the USB 3.0 roothub. 5023 */ 5024 hcd->speed = HCD_USB2; 5025 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5026 /* 5027 * USB 2.0 roothub under xHCI has an integrated TT, 5028 * (rate matching hub) as opposed to having an OHCI/UHCI 5029 * companion controller. 5030 */ 5031 hcd->has_tt = 1; 5032 } else { 5033 /* 5034 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5035 * minor revision instead of sbrn 5036 */ 5037 minor_rev = xhci->usb3_rhub.min_rev; 5038 if (minor_rev) { 5039 hcd->speed = HCD_USB31; 5040 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5041 } 5042 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 5043 minor_rev, 5044 minor_rev ? "Enhanced" : ""); 5045 5046 xhci->usb3_rhub.hcd = hcd; 5047 /* xHCI private pointer was set in xhci_pci_probe for the second 5048 * registered roothub. 5049 */ 5050 return 0; 5051 } 5052 5053 mutex_init(&xhci->mutex); 5054 xhci->cap_regs = hcd->regs; 5055 xhci->op_regs = hcd->regs + 5056 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5057 xhci->run_regs = hcd->regs + 5058 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5059 /* Cache read-only capability registers */ 5060 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5061 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5062 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5063 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5064 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5065 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5066 if (xhci->hci_version > 0x100) 5067 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5068 5069 xhci->quirks |= quirks; 5070 5071 get_quirks(dev, xhci); 5072 5073 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5074 * success event after a short transfer. This quirk will ignore such 5075 * spurious event. 5076 */ 5077 if (xhci->hci_version > 0x96) 5078 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5079 5080 /* Make sure the HC is halted. */ 5081 retval = xhci_halt(xhci); 5082 if (retval) 5083 return retval; 5084 5085 xhci_zero_64b_regs(xhci); 5086 5087 xhci_dbg(xhci, "Resetting HCD\n"); 5088 /* Reset the internal HC memory state and registers. */ 5089 retval = xhci_reset(xhci); 5090 if (retval) 5091 return retval; 5092 xhci_dbg(xhci, "Reset complete\n"); 5093 5094 /* 5095 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5096 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5097 * address memory pointers actually. So, this driver clears the AC64 5098 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5099 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5100 */ 5101 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5102 xhci->hcc_params &= ~BIT(0); 5103 5104 /* Set dma_mask and coherent_dma_mask to 64-bits, 5105 * if xHC supports 64-bit addressing */ 5106 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5107 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5108 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5109 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5110 } else { 5111 /* 5112 * This is to avoid error in cases where a 32-bit USB 5113 * controller is used on a 64-bit capable system. 5114 */ 5115 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5116 if (retval) 5117 return retval; 5118 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5119 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5120 } 5121 5122 xhci_dbg(xhci, "Calling HCD init\n"); 5123 /* Initialize HCD and host controller data structures. */ 5124 retval = xhci_init(hcd); 5125 if (retval) 5126 return retval; 5127 xhci_dbg(xhci, "Called HCD init\n"); 5128 5129 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5130 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5131 5132 return 0; 5133 } 5134 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5135 5136 static const struct hc_driver xhci_hc_driver = { 5137 .description = "xhci-hcd", 5138 .product_desc = "xHCI Host Controller", 5139 .hcd_priv_size = sizeof(struct xhci_hcd), 5140 5141 /* 5142 * generic hardware linkage 5143 */ 5144 .irq = xhci_irq, 5145 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5146 5147 /* 5148 * basic lifecycle operations 5149 */ 5150 .reset = NULL, /* set in xhci_init_driver() */ 5151 .start = xhci_run, 5152 .stop = xhci_stop, 5153 .shutdown = xhci_shutdown, 5154 5155 /* 5156 * managing i/o requests and associated device resources 5157 */ 5158 .urb_enqueue = xhci_urb_enqueue, 5159 .urb_dequeue = xhci_urb_dequeue, 5160 .alloc_dev = xhci_alloc_dev, 5161 .free_dev = xhci_free_dev, 5162 .alloc_streams = xhci_alloc_streams, 5163 .free_streams = xhci_free_streams, 5164 .add_endpoint = xhci_add_endpoint, 5165 .drop_endpoint = xhci_drop_endpoint, 5166 .endpoint_reset = xhci_endpoint_reset, 5167 .check_bandwidth = xhci_check_bandwidth, 5168 .reset_bandwidth = xhci_reset_bandwidth, 5169 .address_device = xhci_address_device, 5170 .enable_device = xhci_enable_device, 5171 .update_hub_device = xhci_update_hub_device, 5172 .reset_device = xhci_discover_or_reset_device, 5173 5174 /* 5175 * scheduling support 5176 */ 5177 .get_frame_number = xhci_get_frame, 5178 5179 /* 5180 * root hub support 5181 */ 5182 .hub_control = xhci_hub_control, 5183 .hub_status_data = xhci_hub_status_data, 5184 .bus_suspend = xhci_bus_suspend, 5185 .bus_resume = xhci_bus_resume, 5186 .get_resuming_ports = xhci_get_resuming_ports, 5187 5188 /* 5189 * call back when device connected and addressed 5190 */ 5191 .update_device = xhci_update_device, 5192 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5193 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5194 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5195 .find_raw_port_number = xhci_find_raw_port_number, 5196 }; 5197 5198 void xhci_init_driver(struct hc_driver *drv, 5199 const struct xhci_driver_overrides *over) 5200 { 5201 BUG_ON(!over); 5202 5203 /* Copy the generic table to drv then apply the overrides */ 5204 *drv = xhci_hc_driver; 5205 5206 if (over) { 5207 drv->hcd_priv_size += over->extra_priv_size; 5208 if (over->reset) 5209 drv->reset = over->reset; 5210 if (over->start) 5211 drv->start = over->start; 5212 } 5213 } 5214 EXPORT_SYMBOL_GPL(xhci_init_driver); 5215 5216 MODULE_DESCRIPTION(DRIVER_DESC); 5217 MODULE_AUTHOR(DRIVER_AUTHOR); 5218 MODULE_LICENSE("GPL"); 5219 5220 static int __init xhci_hcd_init(void) 5221 { 5222 /* 5223 * Check the compiler generated sizes of structures that must be laid 5224 * out in specific ways for hardware access. 5225 */ 5226 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5227 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5228 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5229 /* xhci_device_control has eight fields, and also 5230 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5231 */ 5232 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5233 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5234 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5235 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5236 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5237 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5238 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5239 5240 if (usb_disabled()) 5241 return -ENODEV; 5242 5243 xhci_debugfs_create_root(); 5244 5245 return 0; 5246 } 5247 5248 /* 5249 * If an init function is provided, an exit function must also be provided 5250 * to allow module unload. 5251 */ 5252 static void __exit xhci_hcd_fini(void) 5253 { 5254 xhci_debugfs_remove_root(); 5255 } 5256 5257 module_init(xhci_hcd_init); 5258 module_exit(xhci_hcd_fini); 5259