xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 04301bf5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	xhci_dbc_suspend(xhci);
986 
987 	/* Clear root port wake on bits if wakeup not allowed. */
988 	if (!do_wakeup)
989 		xhci_disable_port_wake_on_bits(xhci);
990 
991 	/* Don't poll the roothubs on bus suspend. */
992 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994 	del_timer_sync(&hcd->rh_timer);
995 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996 	del_timer_sync(&xhci->shared_hcd->rh_timer);
997 
998 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
999 		usleep_range(1000, 1500);
1000 
1001 	spin_lock_irq(&xhci->lock);
1002 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004 	/* step 1: stop endpoint */
1005 	/* skipped assuming that port suspend has done */
1006 
1007 	/* step 2: clear Run/Stop bit */
1008 	command = readl(&xhci->op_regs->command);
1009 	command &= ~CMD_RUN;
1010 	writel(command, &xhci->op_regs->command);
1011 
1012 	/* Some chips from Fresco Logic need an extraordinary delay */
1013 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014 
1015 	if (xhci_handshake(&xhci->op_regs->status,
1016 		      STS_HALT, STS_HALT, delay)) {
1017 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018 		spin_unlock_irq(&xhci->lock);
1019 		return -ETIMEDOUT;
1020 	}
1021 	xhci_clear_command_ring(xhci);
1022 
1023 	/* step 3: save registers */
1024 	xhci_save_registers(xhci);
1025 
1026 	/* step 4: set CSS flag */
1027 	command = readl(&xhci->op_regs->command);
1028 	command |= CMD_CSS;
1029 	writel(command, &xhci->op_regs->command);
1030 	xhci->broken_suspend = 0;
1031 	if (xhci_handshake(&xhci->op_regs->status,
1032 				STS_SAVE, 0, 20 * 1000)) {
1033 	/*
1034 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1035 	 * SSS bit of USBSTS and when driver tries to poll
1036 	 * to see if the xHC clears BIT(8) which never happens
1037 	 * and driver assumes that controller is not responding
1038 	 * and times out. To workaround this, its good to check
1039 	 * if SRE and HCE bits are not set (as per xhci
1040 	 * Section 5.4.2) and bypass the timeout.
1041 	 */
1042 		res = readl(&xhci->op_regs->status);
1043 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044 		    (((res & STS_SRE) == 0) &&
1045 				((res & STS_HCE) == 0))) {
1046 			xhci->broken_suspend = 1;
1047 		} else {
1048 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049 			spin_unlock_irq(&xhci->lock);
1050 			return -ETIMEDOUT;
1051 		}
1052 	}
1053 	spin_unlock_irq(&xhci->lock);
1054 
1055 	/*
1056 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057 	 * is about to be suspended.
1058 	 */
1059 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060 			(!(xhci_all_ports_seen_u0(xhci)))) {
1061 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1062 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063 				"%s: compliance mode recovery timer deleted",
1064 				__func__);
1065 	}
1066 
1067 	/* step 5: remove core well power */
1068 	/* synchronize irq when using MSI-X */
1069 	xhci_msix_sync_irqs(xhci);
1070 
1071 	return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074 
1075 /*
1076  * start xHC (not bus-specific)
1077  *
1078  * This is called when the machine transition from S3/S4 mode.
1079  *
1080  */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083 	u32			command, temp = 0;
1084 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1085 	struct usb_hcd		*secondary_hcd;
1086 	int			retval = 0;
1087 	bool			comp_timer_running = false;
1088 
1089 	if (!hcd->state)
1090 		return 0;
1091 
1092 	/* Wait a bit if either of the roothubs need to settle from the
1093 	 * transition into bus suspend.
1094 	 */
1095 
1096 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098 		msleep(100);
1099 
1100 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102 
1103 	spin_lock_irq(&xhci->lock);
1104 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105 		hibernated = true;
1106 
1107 	if (!hibernated) {
1108 		/*
1109 		 * Some controllers might lose power during suspend, so wait
1110 		 * for controller not ready bit to clear, just as in xHC init.
1111 		 */
1112 		retval = xhci_handshake(&xhci->op_regs->status,
1113 					STS_CNR, 0, 10 * 1000 * 1000);
1114 		if (retval) {
1115 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1116 				  retval);
1117 			spin_unlock_irq(&xhci->lock);
1118 			return retval;
1119 		}
1120 		/* step 1: restore register */
1121 		xhci_restore_registers(xhci);
1122 		/* step 2: initialize command ring buffer */
1123 		xhci_set_cmd_ring_deq(xhci);
1124 		/* step 3: restore state and start state*/
1125 		/* step 3: set CRS flag */
1126 		command = readl(&xhci->op_regs->command);
1127 		command |= CMD_CRS;
1128 		writel(command, &xhci->op_regs->command);
1129 		/*
1130 		 * Some controllers take up to 55+ ms to complete the controller
1131 		 * restore so setting the timeout to 100ms. Xhci specification
1132 		 * doesn't mention any timeout value.
1133 		 */
1134 		if (xhci_handshake(&xhci->op_regs->status,
1135 			      STS_RESTORE, 0, 100 * 1000)) {
1136 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137 			spin_unlock_irq(&xhci->lock);
1138 			return -ETIMEDOUT;
1139 		}
1140 		temp = readl(&xhci->op_regs->status);
1141 	}
1142 
1143 	/* If restore operation fails, re-initialize the HC during resume */
1144 	if ((temp & STS_SRE) || hibernated) {
1145 
1146 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 				!(xhci_all_ports_seen_u0(xhci))) {
1148 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1149 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 				"Compliance Mode Recovery Timer deleted!");
1151 		}
1152 
1153 		/* Let the USB core know _both_ roothubs lost power. */
1154 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156 
1157 		xhci_dbg(xhci, "Stop HCD\n");
1158 		xhci_halt(xhci);
1159 		xhci_zero_64b_regs(xhci);
1160 		retval = xhci_reset(xhci);
1161 		spin_unlock_irq(&xhci->lock);
1162 		if (retval)
1163 			return retval;
1164 		xhci_cleanup_msix(xhci);
1165 
1166 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1167 		temp = readl(&xhci->op_regs->status);
1168 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1169 		temp = readl(&xhci->ir_set->irq_pending);
1170 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1171 
1172 		xhci_dbg(xhci, "cleaning up memory\n");
1173 		xhci_mem_cleanup(xhci);
1174 		xhci_debugfs_exit(xhci);
1175 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1176 			    readl(&xhci->op_regs->status));
1177 
1178 		/* USB core calls the PCI reinit and start functions twice:
1179 		 * first with the primary HCD, and then with the secondary HCD.
1180 		 * If we don't do the same, the host will never be started.
1181 		 */
1182 		if (!usb_hcd_is_primary_hcd(hcd))
1183 			secondary_hcd = hcd;
1184 		else
1185 			secondary_hcd = xhci->shared_hcd;
1186 
1187 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1188 		retval = xhci_init(hcd->primary_hcd);
1189 		if (retval)
1190 			return retval;
1191 		comp_timer_running = true;
1192 
1193 		xhci_dbg(xhci, "Start the primary HCD\n");
1194 		retval = xhci_run(hcd->primary_hcd);
1195 		if (!retval) {
1196 			xhci_dbg(xhci, "Start the secondary HCD\n");
1197 			retval = xhci_run(secondary_hcd);
1198 		}
1199 		hcd->state = HC_STATE_SUSPENDED;
1200 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1201 		goto done;
1202 	}
1203 
1204 	/* step 4: set Run/Stop bit */
1205 	command = readl(&xhci->op_regs->command);
1206 	command |= CMD_RUN;
1207 	writel(command, &xhci->op_regs->command);
1208 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1209 		  0, 250 * 1000);
1210 
1211 	/* step 5: walk topology and initialize portsc,
1212 	 * portpmsc and portli
1213 	 */
1214 	/* this is done in bus_resume */
1215 
1216 	/* step 6: restart each of the previously
1217 	 * Running endpoints by ringing their doorbells
1218 	 */
1219 
1220 	spin_unlock_irq(&xhci->lock);
1221 
1222 	xhci_dbc_resume(xhci);
1223 
1224  done:
1225 	if (retval == 0) {
1226 		/* Resume root hubs only when have pending events. */
1227 		if (xhci_pending_portevent(xhci)) {
1228 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1229 			usb_hcd_resume_root_hub(hcd);
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1235 	 * be re-initialized Always after a system resume. Ports are subject
1236 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1237 	 * ports have entered previously to U0 before system's suspension.
1238 	 */
1239 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1240 		compliance_mode_recovery_timer_init(xhci);
1241 
1242 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1243 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1244 
1245 	/* Re-enable port polling. */
1246 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1247 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1248 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1249 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1250 	usb_hcd_poll_rh_status(hcd);
1251 
1252 	return retval;
1253 }
1254 EXPORT_SYMBOL_GPL(xhci_resume);
1255 #endif	/* CONFIG_PM */
1256 
1257 /*-------------------------------------------------------------------------*/
1258 
1259 /*
1260  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1261  * we'll copy the actual data into the TRB address register. This is limited to
1262  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1263  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1264  */
1265 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1266 				gfp_t mem_flags)
1267 {
1268 	if (xhci_urb_suitable_for_idt(urb))
1269 		return 0;
1270 
1271 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1272 }
1273 
1274 /*
1275  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1276  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1277  * value to right shift 1 for the bitmask.
1278  *
1279  * Index  = (epnum * 2) + direction - 1,
1280  * where direction = 0 for OUT, 1 for IN.
1281  * For control endpoints, the IN index is used (OUT index is unused), so
1282  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1283  */
1284 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1285 {
1286 	unsigned int index;
1287 	if (usb_endpoint_xfer_control(desc))
1288 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1289 	else
1290 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1291 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1292 	return index;
1293 }
1294 
1295 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1296  * address from the XHCI endpoint index.
1297  */
1298 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1299 {
1300 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1301 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1302 	return direction | number;
1303 }
1304 
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1310 {
1311 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1312 }
1313 
1314 /* Find the flag for this endpoint (for use in the control context).  Use the
1315  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1316  * bit 1, etc.
1317  */
1318 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1319 {
1320 	return 1 << (ep_index + 1);
1321 }
1322 
1323 /* Compute the last valid endpoint context index.  Basically, this is the
1324  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1325  * we find the most significant bit set in the added contexts flags.
1326  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1327  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1328  */
1329 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1330 {
1331 	return fls(added_ctxs) - 1;
1332 }
1333 
1334 /* Returns 1 if the arguments are OK;
1335  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1336  */
1337 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1338 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1339 		const char *func) {
1340 	struct xhci_hcd	*xhci;
1341 	struct xhci_virt_device	*virt_dev;
1342 
1343 	if (!hcd || (check_ep && !ep) || !udev) {
1344 		pr_debug("xHCI %s called with invalid args\n", func);
1345 		return -EINVAL;
1346 	}
1347 	if (!udev->parent) {
1348 		pr_debug("xHCI %s called for root hub\n", func);
1349 		return 0;
1350 	}
1351 
1352 	xhci = hcd_to_xhci(hcd);
1353 	if (check_virt_dev) {
1354 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1355 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1356 					func);
1357 			return -EINVAL;
1358 		}
1359 
1360 		virt_dev = xhci->devs[udev->slot_id];
1361 		if (virt_dev->udev != udev) {
1362 			xhci_dbg(xhci, "xHCI %s called with udev and "
1363 					  "virt_dev does not match\n", func);
1364 			return -EINVAL;
1365 		}
1366 	}
1367 
1368 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1369 		return -ENODEV;
1370 
1371 	return 1;
1372 }
1373 
1374 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1375 		struct usb_device *udev, struct xhci_command *command,
1376 		bool ctx_change, bool must_succeed);
1377 
1378 /*
1379  * Full speed devices may have a max packet size greater than 8 bytes, but the
1380  * USB core doesn't know that until it reads the first 8 bytes of the
1381  * descriptor.  If the usb_device's max packet size changes after that point,
1382  * we need to issue an evaluate context command and wait on it.
1383  */
1384 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1385 		unsigned int ep_index, struct urb *urb)
1386 {
1387 	struct xhci_container_ctx *out_ctx;
1388 	struct xhci_input_control_ctx *ctrl_ctx;
1389 	struct xhci_ep_ctx *ep_ctx;
1390 	struct xhci_command *command;
1391 	int max_packet_size;
1392 	int hw_max_packet_size;
1393 	int ret = 0;
1394 
1395 	out_ctx = xhci->devs[slot_id]->out_ctx;
1396 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1397 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1398 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1399 	if (hw_max_packet_size != max_packet_size) {
1400 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1401 				"Max Packet Size for ep 0 changed.");
1402 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1403 				"Max packet size in usb_device = %d",
1404 				max_packet_size);
1405 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406 				"Max packet size in xHCI HW = %d",
1407 				hw_max_packet_size);
1408 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409 				"Issuing evaluate context command.");
1410 
1411 		/* Set up the input context flags for the command */
1412 		/* FIXME: This won't work if a non-default control endpoint
1413 		 * changes max packet sizes.
1414 		 */
1415 
1416 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1417 		if (!command)
1418 			return -ENOMEM;
1419 
1420 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1421 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1422 		if (!ctrl_ctx) {
1423 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1424 					__func__);
1425 			ret = -ENOMEM;
1426 			goto command_cleanup;
1427 		}
1428 		/* Set up the modified control endpoint 0 */
1429 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1430 				xhci->devs[slot_id]->out_ctx, ep_index);
1431 
1432 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1433 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1434 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436 
1437 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438 		ctrl_ctx->drop_flags = 0;
1439 
1440 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441 				true, false);
1442 
1443 		/* Clean up the input context for later use by bandwidth
1444 		 * functions.
1445 		 */
1446 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447 command_cleanup:
1448 		kfree(command->completion);
1449 		kfree(command);
1450 	}
1451 	return ret;
1452 }
1453 
1454 /*
1455  * non-error returns are a promise to giveback() the urb later
1456  * we drop ownership so next owner (or urb unlink) can get it
1457  */
1458 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459 {
1460 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461 	unsigned long flags;
1462 	int ret = 0;
1463 	unsigned int slot_id, ep_index;
1464 	unsigned int *ep_state;
1465 	struct urb_priv	*urb_priv;
1466 	int num_tds;
1467 
1468 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469 					true, true, __func__) <= 0)
1470 		return -EINVAL;
1471 
1472 	slot_id = urb->dev->slot_id;
1473 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475 
1476 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1477 		if (!in_interrupt())
1478 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479 		return -ESHUTDOWN;
1480 	}
1481 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483 		return -ENODEV;
1484 	}
1485 
1486 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487 		num_tds = urb->number_of_packets;
1488 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489 	    urb->transfer_buffer_length > 0 &&
1490 	    urb->transfer_flags & URB_ZERO_PACKET &&
1491 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492 		num_tds = 2;
1493 	else
1494 		num_tds = 1;
1495 
1496 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1497 	if (!urb_priv)
1498 		return -ENOMEM;
1499 
1500 	urb_priv->num_tds = num_tds;
1501 	urb_priv->num_tds_done = 0;
1502 	urb->hcpriv = urb_priv;
1503 
1504 	trace_xhci_urb_enqueue(urb);
1505 
1506 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507 		/* Check to see if the max packet size for the default control
1508 		 * endpoint changed during FS device enumeration
1509 		 */
1510 		if (urb->dev->speed == USB_SPEED_FULL) {
1511 			ret = xhci_check_maxpacket(xhci, slot_id,
1512 					ep_index, urb);
1513 			if (ret < 0) {
1514 				xhci_urb_free_priv(urb_priv);
1515 				urb->hcpriv = NULL;
1516 				return ret;
1517 			}
1518 		}
1519 	}
1520 
1521 	spin_lock_irqsave(&xhci->lock, flags);
1522 
1523 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1524 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525 			 urb->ep->desc.bEndpointAddress, urb);
1526 		ret = -ESHUTDOWN;
1527 		goto free_priv;
1528 	}
1529 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531 			  *ep_state);
1532 		ret = -EINVAL;
1533 		goto free_priv;
1534 	}
1535 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537 		ret = -EINVAL;
1538 		goto free_priv;
1539 	}
1540 
1541 	switch (usb_endpoint_type(&urb->ep->desc)) {
1542 
1543 	case USB_ENDPOINT_XFER_CONTROL:
1544 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545 					 slot_id, ep_index);
1546 		break;
1547 	case USB_ENDPOINT_XFER_BULK:
1548 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549 					 slot_id, ep_index);
1550 		break;
1551 	case USB_ENDPOINT_XFER_INT:
1552 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553 				slot_id, ep_index);
1554 		break;
1555 	case USB_ENDPOINT_XFER_ISOC:
1556 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557 				slot_id, ep_index);
1558 	}
1559 
1560 	if (ret) {
1561 free_priv:
1562 		xhci_urb_free_priv(urb_priv);
1563 		urb->hcpriv = NULL;
1564 	}
1565 	spin_unlock_irqrestore(&xhci->lock, flags);
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572  * should pick up where it left off in the TD, unless a Set Transfer Ring
1573  * Dequeue Pointer is issued.
1574  *
1575  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576  * the ring.  Since the ring is a contiguous structure, they can't be physically
1577  * removed.  Instead, there are two options:
1578  *
1579  *  1) If the HC is in the middle of processing the URB to be canceled, we
1580  *     simply move the ring's dequeue pointer past those TRBs using the Set
1581  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582  *     when drivers timeout on the last submitted URB and attempt to cancel.
1583  *
1584  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586  *     HC will need to invalidate the any TRBs it has cached after the stop
1587  *     endpoint command, as noted in the xHCI 0.95 errata.
1588  *
1589  *  3) The TD may have completed by the time the Stop Endpoint Command
1590  *     completes, so software needs to handle that case too.
1591  *
1592  * This function should protect against the TD enqueueing code ringing the
1593  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594  * It also needs to account for multiple cancellations on happening at the same
1595  * time for the same endpoint.
1596  *
1597  * Note that this function can be called in any context, or so says
1598  * usb_hcd_unlink_urb()
1599  */
1600 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601 {
1602 	unsigned long flags;
1603 	int ret, i;
1604 	u32 temp;
1605 	struct xhci_hcd *xhci;
1606 	struct urb_priv	*urb_priv;
1607 	struct xhci_td *td;
1608 	unsigned int ep_index;
1609 	struct xhci_ring *ep_ring;
1610 	struct xhci_virt_ep *ep;
1611 	struct xhci_command *command;
1612 	struct xhci_virt_device *vdev;
1613 
1614 	xhci = hcd_to_xhci(hcd);
1615 	spin_lock_irqsave(&xhci->lock, flags);
1616 
1617 	trace_xhci_urb_dequeue(urb);
1618 
1619 	/* Make sure the URB hasn't completed or been unlinked already */
1620 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621 	if (ret)
1622 		goto done;
1623 
1624 	/* give back URB now if we can't queue it for cancel */
1625 	vdev = xhci->devs[urb->dev->slot_id];
1626 	urb_priv = urb->hcpriv;
1627 	if (!vdev || !urb_priv)
1628 		goto err_giveback;
1629 
1630 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631 	ep = &vdev->eps[ep_index];
1632 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633 	if (!ep || !ep_ring)
1634 		goto err_giveback;
1635 
1636 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637 	temp = readl(&xhci->op_regs->status);
1638 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639 		xhci_hc_died(xhci);
1640 		goto done;
1641 	}
1642 
1643 	/*
1644 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1645 	 * make sure none of the ring related pointers in this URB private data
1646 	 * are touched, such as td_list, otherwise we overwrite freed data
1647 	 */
1648 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651 			td = &urb_priv->td[i];
1652 			if (!list_empty(&td->cancelled_td_list))
1653 				list_del_init(&td->cancelled_td_list);
1654 		}
1655 		goto err_giveback;
1656 	}
1657 
1658 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660 				"HC halted, freeing TD manually.");
1661 		for (i = urb_priv->num_tds_done;
1662 		     i < urb_priv->num_tds;
1663 		     i++) {
1664 			td = &urb_priv->td[i];
1665 			if (!list_empty(&td->td_list))
1666 				list_del_init(&td->td_list);
1667 			if (!list_empty(&td->cancelled_td_list))
1668 				list_del_init(&td->cancelled_td_list);
1669 		}
1670 		goto err_giveback;
1671 	}
1672 
1673 	i = urb_priv->num_tds_done;
1674 	if (i < urb_priv->num_tds)
1675 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676 				"Cancel URB %p, dev %s, ep 0x%x, "
1677 				"starting at offset 0x%llx",
1678 				urb, urb->dev->devpath,
1679 				urb->ep->desc.bEndpointAddress,
1680 				(unsigned long long) xhci_trb_virt_to_dma(
1681 					urb_priv->td[i].start_seg,
1682 					urb_priv->td[i].first_trb));
1683 
1684 	for (; i < urb_priv->num_tds; i++) {
1685 		td = &urb_priv->td[i];
1686 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1687 	}
1688 
1689 	/* Queue a stop endpoint command, but only if this is
1690 	 * the first cancellation to be handled.
1691 	 */
1692 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694 		if (!command) {
1695 			ret = -ENOMEM;
1696 			goto done;
1697 		}
1698 		ep->ep_state |= EP_STOP_CMD_PENDING;
1699 		ep->stop_cmd_timer.expires = jiffies +
1700 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701 		add_timer(&ep->stop_cmd_timer);
1702 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703 					 ep_index, 0);
1704 		xhci_ring_cmd_db(xhci);
1705 	}
1706 done:
1707 	spin_unlock_irqrestore(&xhci->lock, flags);
1708 	return ret;
1709 
1710 err_giveback:
1711 	if (urb_priv)
1712 		xhci_urb_free_priv(urb_priv);
1713 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1714 	spin_unlock_irqrestore(&xhci->lock, flags);
1715 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716 	return ret;
1717 }
1718 
1719 /* Drop an endpoint from a new bandwidth configuration for this device.
1720  * Only one call to this function is allowed per endpoint before
1721  * check_bandwidth() or reset_bandwidth() must be called.
1722  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723  * add the endpoint to the schedule with possibly new parameters denoted by a
1724  * different endpoint descriptor in usb_host_endpoint.
1725  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726  * not allowed.
1727  *
1728  * The USB core will not allow URBs to be queued to an endpoint that is being
1729  * disabled, so there's no need for mutual exclusion to protect
1730  * the xhci->devs[slot_id] structure.
1731  */
1732 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733 		struct usb_host_endpoint *ep)
1734 {
1735 	struct xhci_hcd *xhci;
1736 	struct xhci_container_ctx *in_ctx, *out_ctx;
1737 	struct xhci_input_control_ctx *ctrl_ctx;
1738 	unsigned int ep_index;
1739 	struct xhci_ep_ctx *ep_ctx;
1740 	u32 drop_flag;
1741 	u32 new_add_flags, new_drop_flags;
1742 	int ret;
1743 
1744 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745 	if (ret <= 0)
1746 		return ret;
1747 	xhci = hcd_to_xhci(hcd);
1748 	if (xhci->xhc_state & XHCI_STATE_DYING)
1749 		return -ENODEV;
1750 
1751 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755 				__func__, drop_flag);
1756 		return 0;
1757 	}
1758 
1759 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762 	if (!ctrl_ctx) {
1763 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764 				__func__);
1765 		return 0;
1766 	}
1767 
1768 	ep_index = xhci_get_endpoint_index(&ep->desc);
1769 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770 	/* If the HC already knows the endpoint is disabled,
1771 	 * or the HCD has noted it is disabled, ignore this request
1772 	 */
1773 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1775 	    xhci_get_endpoint_flag(&ep->desc)) {
1776 		/* Do not warn when called after a usb_device_reset */
1777 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779 				  __func__, ep);
1780 		return 0;
1781 	}
1782 
1783 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785 
1786 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788 
1789 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790 
1791 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792 
1793 	if (xhci->quirks & XHCI_MTK_HOST)
1794 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795 
1796 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797 			(unsigned int) ep->desc.bEndpointAddress,
1798 			udev->slot_id,
1799 			(unsigned int) new_drop_flags,
1800 			(unsigned int) new_add_flags);
1801 	return 0;
1802 }
1803 
1804 /* Add an endpoint to a new possible bandwidth configuration for this device.
1805  * Only one call to this function is allowed per endpoint before
1806  * check_bandwidth() or reset_bandwidth() must be called.
1807  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808  * add the endpoint to the schedule with possibly new parameters denoted by a
1809  * different endpoint descriptor in usb_host_endpoint.
1810  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811  * not allowed.
1812  *
1813  * The USB core will not allow URBs to be queued to an endpoint until the
1814  * configuration or alt setting is installed in the device, so there's no need
1815  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816  */
1817 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818 		struct usb_host_endpoint *ep)
1819 {
1820 	struct xhci_hcd *xhci;
1821 	struct xhci_container_ctx *in_ctx;
1822 	unsigned int ep_index;
1823 	struct xhci_input_control_ctx *ctrl_ctx;
1824 	struct xhci_ep_ctx *ep_ctx;
1825 	u32 added_ctxs;
1826 	u32 new_add_flags, new_drop_flags;
1827 	struct xhci_virt_device *virt_dev;
1828 	int ret = 0;
1829 
1830 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831 	if (ret <= 0) {
1832 		/* So we won't queue a reset ep command for a root hub */
1833 		ep->hcpriv = NULL;
1834 		return ret;
1835 	}
1836 	xhci = hcd_to_xhci(hcd);
1837 	if (xhci->xhc_state & XHCI_STATE_DYING)
1838 		return -ENODEV;
1839 
1840 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842 		/* FIXME when we have to issue an evaluate endpoint command to
1843 		 * deal with ep0 max packet size changing once we get the
1844 		 * descriptors
1845 		 */
1846 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847 				__func__, added_ctxs);
1848 		return 0;
1849 	}
1850 
1851 	virt_dev = xhci->devs[udev->slot_id];
1852 	in_ctx = virt_dev->in_ctx;
1853 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854 	if (!ctrl_ctx) {
1855 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856 				__func__);
1857 		return 0;
1858 	}
1859 
1860 	ep_index = xhci_get_endpoint_index(&ep->desc);
1861 	/* If this endpoint is already in use, and the upper layers are trying
1862 	 * to add it again without dropping it, reject the addition.
1863 	 */
1864 	if (virt_dev->eps[ep_index].ring &&
1865 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867 				"without dropping it.\n",
1868 				(unsigned int) ep->desc.bEndpointAddress);
1869 		return -EINVAL;
1870 	}
1871 
1872 	/* If the HCD has already noted the endpoint is enabled,
1873 	 * ignore this request.
1874 	 */
1875 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877 				__func__, ep);
1878 		return 0;
1879 	}
1880 
1881 	/*
1882 	 * Configuration and alternate setting changes must be done in
1883 	 * process context, not interrupt context (or so documenation
1884 	 * for usb_set_interface() and usb_set_configuration() claim).
1885 	 */
1886 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888 				__func__, ep->desc.bEndpointAddress);
1889 		return -ENOMEM;
1890 	}
1891 
1892 	if (xhci->quirks & XHCI_MTK_HOST) {
1893 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894 		if (ret < 0) {
1895 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896 			virt_dev->eps[ep_index].new_ring = NULL;
1897 			return ret;
1898 		}
1899 	}
1900 
1901 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903 
1904 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1905 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1906 	 * this re-adds a new state for the endpoint from the new endpoint
1907 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1908 	 * drop flags alone.
1909 	 */
1910 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911 
1912 	/* Store the usb_device pointer for later use */
1913 	ep->hcpriv = udev;
1914 
1915 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916 	trace_xhci_add_endpoint(ep_ctx);
1917 
1918 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919 
1920 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921 			(unsigned int) ep->desc.bEndpointAddress,
1922 			udev->slot_id,
1923 			(unsigned int) new_drop_flags,
1924 			(unsigned int) new_add_flags);
1925 	return 0;
1926 }
1927 
1928 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929 {
1930 	struct xhci_input_control_ctx *ctrl_ctx;
1931 	struct xhci_ep_ctx *ep_ctx;
1932 	struct xhci_slot_ctx *slot_ctx;
1933 	int i;
1934 
1935 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936 	if (!ctrl_ctx) {
1937 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938 				__func__);
1939 		return;
1940 	}
1941 
1942 	/* When a device's add flag and drop flag are zero, any subsequent
1943 	 * configure endpoint command will leave that endpoint's state
1944 	 * untouched.  Make sure we don't leave any old state in the input
1945 	 * endpoint contexts.
1946 	 */
1947 	ctrl_ctx->drop_flags = 0;
1948 	ctrl_ctx->add_flags = 0;
1949 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951 	/* Endpoint 0 is always valid */
1952 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953 	for (i = 1; i < 31; i++) {
1954 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955 		ep_ctx->ep_info = 0;
1956 		ep_ctx->ep_info2 = 0;
1957 		ep_ctx->deq = 0;
1958 		ep_ctx->tx_info = 0;
1959 	}
1960 }
1961 
1962 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963 		struct usb_device *udev, u32 *cmd_status)
1964 {
1965 	int ret;
1966 
1967 	switch (*cmd_status) {
1968 	case COMP_COMMAND_ABORTED:
1969 	case COMP_COMMAND_RING_STOPPED:
1970 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971 		ret = -ETIME;
1972 		break;
1973 	case COMP_RESOURCE_ERROR:
1974 		dev_warn(&udev->dev,
1975 			 "Not enough host controller resources for new device state.\n");
1976 		ret = -ENOMEM;
1977 		/* FIXME: can we allocate more resources for the HC? */
1978 		break;
1979 	case COMP_BANDWIDTH_ERROR:
1980 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1981 		dev_warn(&udev->dev,
1982 			 "Not enough bandwidth for new device state.\n");
1983 		ret = -ENOSPC;
1984 		/* FIXME: can we go back to the old state? */
1985 		break;
1986 	case COMP_TRB_ERROR:
1987 		/* the HCD set up something wrong */
1988 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989 				"add flag = 1, "
1990 				"and endpoint is not disabled.\n");
1991 		ret = -EINVAL;
1992 		break;
1993 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994 		dev_warn(&udev->dev,
1995 			 "ERROR: Incompatible device for endpoint configure command.\n");
1996 		ret = -ENODEV;
1997 		break;
1998 	case COMP_SUCCESS:
1999 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000 				"Successful Endpoint Configure command");
2001 		ret = 0;
2002 		break;
2003 	default:
2004 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005 				*cmd_status);
2006 		ret = -EINVAL;
2007 		break;
2008 	}
2009 	return ret;
2010 }
2011 
2012 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013 		struct usb_device *udev, u32 *cmd_status)
2014 {
2015 	int ret;
2016 
2017 	switch (*cmd_status) {
2018 	case COMP_COMMAND_ABORTED:
2019 	case COMP_COMMAND_RING_STOPPED:
2020 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021 		ret = -ETIME;
2022 		break;
2023 	case COMP_PARAMETER_ERROR:
2024 		dev_warn(&udev->dev,
2025 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2026 		ret = -EINVAL;
2027 		break;
2028 	case COMP_SLOT_NOT_ENABLED_ERROR:
2029 		dev_warn(&udev->dev,
2030 			"WARN: slot not enabled for evaluate context command.\n");
2031 		ret = -EINVAL;
2032 		break;
2033 	case COMP_CONTEXT_STATE_ERROR:
2034 		dev_warn(&udev->dev,
2035 			"WARN: invalid context state for evaluate context command.\n");
2036 		ret = -EINVAL;
2037 		break;
2038 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039 		dev_warn(&udev->dev,
2040 			"ERROR: Incompatible device for evaluate context command.\n");
2041 		ret = -ENODEV;
2042 		break;
2043 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044 		/* Max Exit Latency too large error */
2045 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046 		ret = -EINVAL;
2047 		break;
2048 	case COMP_SUCCESS:
2049 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050 				"Successful evaluate context command");
2051 		ret = 0;
2052 		break;
2053 	default:
2054 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055 			*cmd_status);
2056 		ret = -EINVAL;
2057 		break;
2058 	}
2059 	return ret;
2060 }
2061 
2062 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063 		struct xhci_input_control_ctx *ctrl_ctx)
2064 {
2065 	u32 valid_add_flags;
2066 	u32 valid_drop_flags;
2067 
2068 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2069 	 * (bit 1).  The default control endpoint is added during the Address
2070 	 * Device command and is never removed until the slot is disabled.
2071 	 */
2072 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074 
2075 	/* Use hweight32 to count the number of ones in the add flags, or
2076 	 * number of endpoints added.  Don't count endpoints that are changed
2077 	 * (both added and dropped).
2078 	 */
2079 	return hweight32(valid_add_flags) -
2080 		hweight32(valid_add_flags & valid_drop_flags);
2081 }
2082 
2083 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084 		struct xhci_input_control_ctx *ctrl_ctx)
2085 {
2086 	u32 valid_add_flags;
2087 	u32 valid_drop_flags;
2088 
2089 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091 
2092 	return hweight32(valid_drop_flags) -
2093 		hweight32(valid_add_flags & valid_drop_flags);
2094 }
2095 
2096 /*
2097  * We need to reserve the new number of endpoints before the configure endpoint
2098  * command completes.  We can't subtract the dropped endpoints from the number
2099  * of active endpoints until the command completes because we can oversubscribe
2100  * the host in this case:
2101  *
2102  *  - the first configure endpoint command drops more endpoints than it adds
2103  *  - a second configure endpoint command that adds more endpoints is queued
2104  *  - the first configure endpoint command fails, so the config is unchanged
2105  *  - the second command may succeed, even though there isn't enough resources
2106  *
2107  * Must be called with xhci->lock held.
2108  */
2109 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110 		struct xhci_input_control_ctx *ctrl_ctx)
2111 {
2112 	u32 added_eps;
2113 
2114 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117 				"Not enough ep ctxs: "
2118 				"%u active, need to add %u, limit is %u.",
2119 				xhci->num_active_eps, added_eps,
2120 				xhci->limit_active_eps);
2121 		return -ENOMEM;
2122 	}
2123 	xhci->num_active_eps += added_eps;
2124 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125 			"Adding %u ep ctxs, %u now active.", added_eps,
2126 			xhci->num_active_eps);
2127 	return 0;
2128 }
2129 
2130 /*
2131  * The configure endpoint was failed by the xHC for some other reason, so we
2132  * need to revert the resources that failed configuration would have used.
2133  *
2134  * Must be called with xhci->lock held.
2135  */
2136 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137 		struct xhci_input_control_ctx *ctrl_ctx)
2138 {
2139 	u32 num_failed_eps;
2140 
2141 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142 	xhci->num_active_eps -= num_failed_eps;
2143 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 			"Removing %u failed ep ctxs, %u now active.",
2145 			num_failed_eps,
2146 			xhci->num_active_eps);
2147 }
2148 
2149 /*
2150  * Now that the command has completed, clean up the active endpoint count by
2151  * subtracting out the endpoints that were dropped (but not changed).
2152  *
2153  * Must be called with xhci->lock held.
2154  */
2155 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156 		struct xhci_input_control_ctx *ctrl_ctx)
2157 {
2158 	u32 num_dropped_eps;
2159 
2160 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161 	xhci->num_active_eps -= num_dropped_eps;
2162 	if (num_dropped_eps)
2163 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164 				"Removing %u dropped ep ctxs, %u now active.",
2165 				num_dropped_eps,
2166 				xhci->num_active_eps);
2167 }
2168 
2169 static unsigned int xhci_get_block_size(struct usb_device *udev)
2170 {
2171 	switch (udev->speed) {
2172 	case USB_SPEED_LOW:
2173 	case USB_SPEED_FULL:
2174 		return FS_BLOCK;
2175 	case USB_SPEED_HIGH:
2176 		return HS_BLOCK;
2177 	case USB_SPEED_SUPER:
2178 	case USB_SPEED_SUPER_PLUS:
2179 		return SS_BLOCK;
2180 	case USB_SPEED_UNKNOWN:
2181 	case USB_SPEED_WIRELESS:
2182 	default:
2183 		/* Should never happen */
2184 		return 1;
2185 	}
2186 }
2187 
2188 static unsigned int
2189 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190 {
2191 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192 		return LS_OVERHEAD;
2193 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194 		return FS_OVERHEAD;
2195 	return HS_OVERHEAD;
2196 }
2197 
2198 /* If we are changing a LS/FS device under a HS hub,
2199  * make sure (if we are activating a new TT) that the HS bus has enough
2200  * bandwidth for this new TT.
2201  */
2202 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203 		struct xhci_virt_device *virt_dev,
2204 		int old_active_eps)
2205 {
2206 	struct xhci_interval_bw_table *bw_table;
2207 	struct xhci_tt_bw_info *tt_info;
2208 
2209 	/* Find the bandwidth table for the root port this TT is attached to. */
2210 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211 	tt_info = virt_dev->tt_info;
2212 	/* If this TT already had active endpoints, the bandwidth for this TT
2213 	 * has already been added.  Removing all periodic endpoints (and thus
2214 	 * making the TT enactive) will only decrease the bandwidth used.
2215 	 */
2216 	if (old_active_eps)
2217 		return 0;
2218 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220 			return -ENOMEM;
2221 		return 0;
2222 	}
2223 	/* Not sure why we would have no new active endpoints...
2224 	 *
2225 	 * Maybe because of an Evaluate Context change for a hub update or a
2226 	 * control endpoint 0 max packet size change?
2227 	 * FIXME: skip the bandwidth calculation in that case.
2228 	 */
2229 	return 0;
2230 }
2231 
2232 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233 		struct xhci_virt_device *virt_dev)
2234 {
2235 	unsigned int bw_reserved;
2236 
2237 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239 		return -ENOMEM;
2240 
2241 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243 		return -ENOMEM;
2244 
2245 	return 0;
2246 }
2247 
2248 /*
2249  * This algorithm is a very conservative estimate of the worst-case scheduling
2250  * scenario for any one interval.  The hardware dynamically schedules the
2251  * packets, so we can't tell which microframe could be the limiting factor in
2252  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253  *
2254  * Obviously, we can't solve an NP complete problem to find the minimum worst
2255  * case scenario.  Instead, we come up with an estimate that is no less than
2256  * the worst case bandwidth used for any one microframe, but may be an
2257  * over-estimate.
2258  *
2259  * We walk the requirements for each endpoint by interval, starting with the
2260  * smallest interval, and place packets in the schedule where there is only one
2261  * possible way to schedule packets for that interval.  In order to simplify
2262  * this algorithm, we record the largest max packet size for each interval, and
2263  * assume all packets will be that size.
2264  *
2265  * For interval 0, we obviously must schedule all packets for each interval.
2266  * The bandwidth for interval 0 is just the amount of data to be transmitted
2267  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268  * the number of packets).
2269  *
2270  * For interval 1, we have two possible microframes to schedule those packets
2271  * in.  For this algorithm, if we can schedule the same number of packets for
2272  * each possible scheduling opportunity (each microframe), we will do so.  The
2273  * remaining number of packets will be saved to be transmitted in the gaps in
2274  * the next interval's scheduling sequence.
2275  *
2276  * As we move those remaining packets to be scheduled with interval 2 packets,
2277  * we have to double the number of remaining packets to transmit.  This is
2278  * because the intervals are actually powers of 2, and we would be transmitting
2279  * the previous interval's packets twice in this interval.  We also have to be
2280  * sure that when we look at the largest max packet size for this interval, we
2281  * also look at the largest max packet size for the remaining packets and take
2282  * the greater of the two.
2283  *
2284  * The algorithm continues to evenly distribute packets in each scheduling
2285  * opportunity, and push the remaining packets out, until we get to the last
2286  * interval.  Then those packets and their associated overhead are just added
2287  * to the bandwidth used.
2288  */
2289 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290 		struct xhci_virt_device *virt_dev,
2291 		int old_active_eps)
2292 {
2293 	unsigned int bw_reserved;
2294 	unsigned int max_bandwidth;
2295 	unsigned int bw_used;
2296 	unsigned int block_size;
2297 	struct xhci_interval_bw_table *bw_table;
2298 	unsigned int packet_size = 0;
2299 	unsigned int overhead = 0;
2300 	unsigned int packets_transmitted = 0;
2301 	unsigned int packets_remaining = 0;
2302 	unsigned int i;
2303 
2304 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305 		return xhci_check_ss_bw(xhci, virt_dev);
2306 
2307 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308 		max_bandwidth = HS_BW_LIMIT;
2309 		/* Convert percent of bus BW reserved to blocks reserved */
2310 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311 	} else {
2312 		max_bandwidth = FS_BW_LIMIT;
2313 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314 	}
2315 
2316 	bw_table = virt_dev->bw_table;
2317 	/* We need to translate the max packet size and max ESIT payloads into
2318 	 * the units the hardware uses.
2319 	 */
2320 	block_size = xhci_get_block_size(virt_dev->udev);
2321 
2322 	/* If we are manipulating a LS/FS device under a HS hub, double check
2323 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2324 	 */
2325 	if (virt_dev->tt_info) {
2326 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327 				"Recalculating BW for rootport %u",
2328 				virt_dev->real_port);
2329 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331 					"newly activated TT.\n");
2332 			return -ENOMEM;
2333 		}
2334 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335 				"Recalculating BW for TT slot %u port %u",
2336 				virt_dev->tt_info->slot_id,
2337 				virt_dev->tt_info->ttport);
2338 	} else {
2339 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 				"Recalculating BW for rootport %u",
2341 				virt_dev->real_port);
2342 	}
2343 
2344 	/* Add in how much bandwidth will be used for interval zero, or the
2345 	 * rounded max ESIT payload + number of packets * largest overhead.
2346 	 */
2347 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348 		bw_table->interval_bw[0].num_packets *
2349 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350 
2351 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352 		unsigned int bw_added;
2353 		unsigned int largest_mps;
2354 		unsigned int interval_overhead;
2355 
2356 		/*
2357 		 * How many packets could we transmit in this interval?
2358 		 * If packets didn't fit in the previous interval, we will need
2359 		 * to transmit that many packets twice within this interval.
2360 		 */
2361 		packets_remaining = 2 * packets_remaining +
2362 			bw_table->interval_bw[i].num_packets;
2363 
2364 		/* Find the largest max packet size of this or the previous
2365 		 * interval.
2366 		 */
2367 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2368 			largest_mps = 0;
2369 		else {
2370 			struct xhci_virt_ep *virt_ep;
2371 			struct list_head *ep_entry;
2372 
2373 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2374 			virt_ep = list_entry(ep_entry,
2375 					struct xhci_virt_ep, bw_endpoint_list);
2376 			/* Convert to blocks, rounding up */
2377 			largest_mps = DIV_ROUND_UP(
2378 					virt_ep->bw_info.max_packet_size,
2379 					block_size);
2380 		}
2381 		if (largest_mps > packet_size)
2382 			packet_size = largest_mps;
2383 
2384 		/* Use the larger overhead of this or the previous interval. */
2385 		interval_overhead = xhci_get_largest_overhead(
2386 				&bw_table->interval_bw[i]);
2387 		if (interval_overhead > overhead)
2388 			overhead = interval_overhead;
2389 
2390 		/* How many packets can we evenly distribute across
2391 		 * (1 << (i + 1)) possible scheduling opportunities?
2392 		 */
2393 		packets_transmitted = packets_remaining >> (i + 1);
2394 
2395 		/* Add in the bandwidth used for those scheduled packets */
2396 		bw_added = packets_transmitted * (overhead + packet_size);
2397 
2398 		/* How many packets do we have remaining to transmit? */
2399 		packets_remaining = packets_remaining % (1 << (i + 1));
2400 
2401 		/* What largest max packet size should those packets have? */
2402 		/* If we've transmitted all packets, don't carry over the
2403 		 * largest packet size.
2404 		 */
2405 		if (packets_remaining == 0) {
2406 			packet_size = 0;
2407 			overhead = 0;
2408 		} else if (packets_transmitted > 0) {
2409 			/* Otherwise if we do have remaining packets, and we've
2410 			 * scheduled some packets in this interval, take the
2411 			 * largest max packet size from endpoints with this
2412 			 * interval.
2413 			 */
2414 			packet_size = largest_mps;
2415 			overhead = interval_overhead;
2416 		}
2417 		/* Otherwise carry over packet_size and overhead from the last
2418 		 * time we had a remainder.
2419 		 */
2420 		bw_used += bw_added;
2421 		if (bw_used > max_bandwidth) {
2422 			xhci_warn(xhci, "Not enough bandwidth. "
2423 					"Proposed: %u, Max: %u\n",
2424 				bw_used, max_bandwidth);
2425 			return -ENOMEM;
2426 		}
2427 	}
2428 	/*
2429 	 * Ok, we know we have some packets left over after even-handedly
2430 	 * scheduling interval 15.  We don't know which microframes they will
2431 	 * fit into, so we over-schedule and say they will be scheduled every
2432 	 * microframe.
2433 	 */
2434 	if (packets_remaining > 0)
2435 		bw_used += overhead + packet_size;
2436 
2437 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438 		unsigned int port_index = virt_dev->real_port - 1;
2439 
2440 		/* OK, we're manipulating a HS device attached to a
2441 		 * root port bandwidth domain.  Include the number of active TTs
2442 		 * in the bandwidth used.
2443 		 */
2444 		bw_used += TT_HS_OVERHEAD *
2445 			xhci->rh_bw[port_index].num_active_tts;
2446 	}
2447 
2448 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450 		"Available: %u " "percent",
2451 		bw_used, max_bandwidth, bw_reserved,
2452 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2453 		max_bandwidth);
2454 
2455 	bw_used += bw_reserved;
2456 	if (bw_used > max_bandwidth) {
2457 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458 				bw_used, max_bandwidth);
2459 		return -ENOMEM;
2460 	}
2461 
2462 	bw_table->bw_used = bw_used;
2463 	return 0;
2464 }
2465 
2466 static bool xhci_is_async_ep(unsigned int ep_type)
2467 {
2468 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469 					ep_type != ISOC_IN_EP &&
2470 					ep_type != INT_IN_EP);
2471 }
2472 
2473 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474 {
2475 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476 }
2477 
2478 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479 {
2480 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481 
2482 	if (ep_bw->ep_interval == 0)
2483 		return SS_OVERHEAD_BURST +
2484 			(ep_bw->mult * ep_bw->num_packets *
2485 					(SS_OVERHEAD + mps));
2486 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488 				1 << ep_bw->ep_interval);
2489 
2490 }
2491 
2492 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493 		struct xhci_bw_info *ep_bw,
2494 		struct xhci_interval_bw_table *bw_table,
2495 		struct usb_device *udev,
2496 		struct xhci_virt_ep *virt_ep,
2497 		struct xhci_tt_bw_info *tt_info)
2498 {
2499 	struct xhci_interval_bw	*interval_bw;
2500 	int normalized_interval;
2501 
2502 	if (xhci_is_async_ep(ep_bw->type))
2503 		return;
2504 
2505 	if (udev->speed >= USB_SPEED_SUPER) {
2506 		if (xhci_is_sync_in_ep(ep_bw->type))
2507 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508 				xhci_get_ss_bw_consumed(ep_bw);
2509 		else
2510 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511 				xhci_get_ss_bw_consumed(ep_bw);
2512 		return;
2513 	}
2514 
2515 	/* SuperSpeed endpoints never get added to intervals in the table, so
2516 	 * this check is only valid for HS/FS/LS devices.
2517 	 */
2518 	if (list_empty(&virt_ep->bw_endpoint_list))
2519 		return;
2520 	/* For LS/FS devices, we need to translate the interval expressed in
2521 	 * microframes to frames.
2522 	 */
2523 	if (udev->speed == USB_SPEED_HIGH)
2524 		normalized_interval = ep_bw->ep_interval;
2525 	else
2526 		normalized_interval = ep_bw->ep_interval - 3;
2527 
2528 	if (normalized_interval == 0)
2529 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530 	interval_bw = &bw_table->interval_bw[normalized_interval];
2531 	interval_bw->num_packets -= ep_bw->num_packets;
2532 	switch (udev->speed) {
2533 	case USB_SPEED_LOW:
2534 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535 		break;
2536 	case USB_SPEED_FULL:
2537 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538 		break;
2539 	case USB_SPEED_HIGH:
2540 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541 		break;
2542 	case USB_SPEED_SUPER:
2543 	case USB_SPEED_SUPER_PLUS:
2544 	case USB_SPEED_UNKNOWN:
2545 	case USB_SPEED_WIRELESS:
2546 		/* Should never happen because only LS/FS/HS endpoints will get
2547 		 * added to the endpoint list.
2548 		 */
2549 		return;
2550 	}
2551 	if (tt_info)
2552 		tt_info->active_eps -= 1;
2553 	list_del_init(&virt_ep->bw_endpoint_list);
2554 }
2555 
2556 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557 		struct xhci_bw_info *ep_bw,
2558 		struct xhci_interval_bw_table *bw_table,
2559 		struct usb_device *udev,
2560 		struct xhci_virt_ep *virt_ep,
2561 		struct xhci_tt_bw_info *tt_info)
2562 {
2563 	struct xhci_interval_bw	*interval_bw;
2564 	struct xhci_virt_ep *smaller_ep;
2565 	int normalized_interval;
2566 
2567 	if (xhci_is_async_ep(ep_bw->type))
2568 		return;
2569 
2570 	if (udev->speed == USB_SPEED_SUPER) {
2571 		if (xhci_is_sync_in_ep(ep_bw->type))
2572 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573 				xhci_get_ss_bw_consumed(ep_bw);
2574 		else
2575 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576 				xhci_get_ss_bw_consumed(ep_bw);
2577 		return;
2578 	}
2579 
2580 	/* For LS/FS devices, we need to translate the interval expressed in
2581 	 * microframes to frames.
2582 	 */
2583 	if (udev->speed == USB_SPEED_HIGH)
2584 		normalized_interval = ep_bw->ep_interval;
2585 	else
2586 		normalized_interval = ep_bw->ep_interval - 3;
2587 
2588 	if (normalized_interval == 0)
2589 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590 	interval_bw = &bw_table->interval_bw[normalized_interval];
2591 	interval_bw->num_packets += ep_bw->num_packets;
2592 	switch (udev->speed) {
2593 	case USB_SPEED_LOW:
2594 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595 		break;
2596 	case USB_SPEED_FULL:
2597 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598 		break;
2599 	case USB_SPEED_HIGH:
2600 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601 		break;
2602 	case USB_SPEED_SUPER:
2603 	case USB_SPEED_SUPER_PLUS:
2604 	case USB_SPEED_UNKNOWN:
2605 	case USB_SPEED_WIRELESS:
2606 		/* Should never happen because only LS/FS/HS endpoints will get
2607 		 * added to the endpoint list.
2608 		 */
2609 		return;
2610 	}
2611 
2612 	if (tt_info)
2613 		tt_info->active_eps += 1;
2614 	/* Insert the endpoint into the list, largest max packet size first. */
2615 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616 			bw_endpoint_list) {
2617 		if (ep_bw->max_packet_size >=
2618 				smaller_ep->bw_info.max_packet_size) {
2619 			/* Add the new ep before the smaller endpoint */
2620 			list_add_tail(&virt_ep->bw_endpoint_list,
2621 					&smaller_ep->bw_endpoint_list);
2622 			return;
2623 		}
2624 	}
2625 	/* Add the new endpoint at the end of the list. */
2626 	list_add_tail(&virt_ep->bw_endpoint_list,
2627 			&interval_bw->endpoints);
2628 }
2629 
2630 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631 		struct xhci_virt_device *virt_dev,
2632 		int old_active_eps)
2633 {
2634 	struct xhci_root_port_bw_info *rh_bw_info;
2635 	if (!virt_dev->tt_info)
2636 		return;
2637 
2638 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639 	if (old_active_eps == 0 &&
2640 				virt_dev->tt_info->active_eps != 0) {
2641 		rh_bw_info->num_active_tts += 1;
2642 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643 	} else if (old_active_eps != 0 &&
2644 				virt_dev->tt_info->active_eps == 0) {
2645 		rh_bw_info->num_active_tts -= 1;
2646 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647 	}
2648 }
2649 
2650 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651 		struct xhci_virt_device *virt_dev,
2652 		struct xhci_container_ctx *in_ctx)
2653 {
2654 	struct xhci_bw_info ep_bw_info[31];
2655 	int i;
2656 	struct xhci_input_control_ctx *ctrl_ctx;
2657 	int old_active_eps = 0;
2658 
2659 	if (virt_dev->tt_info)
2660 		old_active_eps = virt_dev->tt_info->active_eps;
2661 
2662 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663 	if (!ctrl_ctx) {
2664 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665 				__func__);
2666 		return -ENOMEM;
2667 	}
2668 
2669 	for (i = 0; i < 31; i++) {
2670 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671 			continue;
2672 
2673 		/* Make a copy of the BW info in case we need to revert this */
2674 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675 				sizeof(ep_bw_info[i]));
2676 		/* Drop the endpoint from the interval table if the endpoint is
2677 		 * being dropped or changed.
2678 		 */
2679 		if (EP_IS_DROPPED(ctrl_ctx, i))
2680 			xhci_drop_ep_from_interval_table(xhci,
2681 					&virt_dev->eps[i].bw_info,
2682 					virt_dev->bw_table,
2683 					virt_dev->udev,
2684 					&virt_dev->eps[i],
2685 					virt_dev->tt_info);
2686 	}
2687 	/* Overwrite the information stored in the endpoints' bw_info */
2688 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689 	for (i = 0; i < 31; i++) {
2690 		/* Add any changed or added endpoints to the interval table */
2691 		if (EP_IS_ADDED(ctrl_ctx, i))
2692 			xhci_add_ep_to_interval_table(xhci,
2693 					&virt_dev->eps[i].bw_info,
2694 					virt_dev->bw_table,
2695 					virt_dev->udev,
2696 					&virt_dev->eps[i],
2697 					virt_dev->tt_info);
2698 	}
2699 
2700 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701 		/* Ok, this fits in the bandwidth we have.
2702 		 * Update the number of active TTs.
2703 		 */
2704 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705 		return 0;
2706 	}
2707 
2708 	/* We don't have enough bandwidth for this, revert the stored info. */
2709 	for (i = 0; i < 31; i++) {
2710 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711 			continue;
2712 
2713 		/* Drop the new copies of any added or changed endpoints from
2714 		 * the interval table.
2715 		 */
2716 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2717 			xhci_drop_ep_from_interval_table(xhci,
2718 					&virt_dev->eps[i].bw_info,
2719 					virt_dev->bw_table,
2720 					virt_dev->udev,
2721 					&virt_dev->eps[i],
2722 					virt_dev->tt_info);
2723 		}
2724 		/* Revert the endpoint back to its old information */
2725 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726 				sizeof(ep_bw_info[i]));
2727 		/* Add any changed or dropped endpoints back into the table */
2728 		if (EP_IS_DROPPED(ctrl_ctx, i))
2729 			xhci_add_ep_to_interval_table(xhci,
2730 					&virt_dev->eps[i].bw_info,
2731 					virt_dev->bw_table,
2732 					virt_dev->udev,
2733 					&virt_dev->eps[i],
2734 					virt_dev->tt_info);
2735 	}
2736 	return -ENOMEM;
2737 }
2738 
2739 
2740 /* Issue a configure endpoint command or evaluate context command
2741  * and wait for it to finish.
2742  */
2743 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744 		struct usb_device *udev,
2745 		struct xhci_command *command,
2746 		bool ctx_change, bool must_succeed)
2747 {
2748 	int ret;
2749 	unsigned long flags;
2750 	struct xhci_input_control_ctx *ctrl_ctx;
2751 	struct xhci_virt_device *virt_dev;
2752 	struct xhci_slot_ctx *slot_ctx;
2753 
2754 	if (!command)
2755 		return -EINVAL;
2756 
2757 	spin_lock_irqsave(&xhci->lock, flags);
2758 
2759 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2760 		spin_unlock_irqrestore(&xhci->lock, flags);
2761 		return -ESHUTDOWN;
2762 	}
2763 
2764 	virt_dev = xhci->devs[udev->slot_id];
2765 
2766 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767 	if (!ctrl_ctx) {
2768 		spin_unlock_irqrestore(&xhci->lock, flags);
2769 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770 				__func__);
2771 		return -ENOMEM;
2772 	}
2773 
2774 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776 		spin_unlock_irqrestore(&xhci->lock, flags);
2777 		xhci_warn(xhci, "Not enough host resources, "
2778 				"active endpoint contexts = %u\n",
2779 				xhci->num_active_eps);
2780 		return -ENOMEM;
2781 	}
2782 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785 			xhci_free_host_resources(xhci, ctrl_ctx);
2786 		spin_unlock_irqrestore(&xhci->lock, flags);
2787 		xhci_warn(xhci, "Not enough bandwidth\n");
2788 		return -ENOMEM;
2789 	}
2790 
2791 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792 
2793 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794 	trace_xhci_configure_endpoint(slot_ctx);
2795 
2796 	if (!ctx_change)
2797 		ret = xhci_queue_configure_endpoint(xhci, command,
2798 				command->in_ctx->dma,
2799 				udev->slot_id, must_succeed);
2800 	else
2801 		ret = xhci_queue_evaluate_context(xhci, command,
2802 				command->in_ctx->dma,
2803 				udev->slot_id, must_succeed);
2804 	if (ret < 0) {
2805 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806 			xhci_free_host_resources(xhci, ctrl_ctx);
2807 		spin_unlock_irqrestore(&xhci->lock, flags);
2808 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809 				"FIXME allocate a new ring segment");
2810 		return -ENOMEM;
2811 	}
2812 	xhci_ring_cmd_db(xhci);
2813 	spin_unlock_irqrestore(&xhci->lock, flags);
2814 
2815 	/* Wait for the configure endpoint command to complete */
2816 	wait_for_completion(command->completion);
2817 
2818 	if (!ctx_change)
2819 		ret = xhci_configure_endpoint_result(xhci, udev,
2820 						     &command->status);
2821 	else
2822 		ret = xhci_evaluate_context_result(xhci, udev,
2823 						   &command->status);
2824 
2825 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826 		spin_lock_irqsave(&xhci->lock, flags);
2827 		/* If the command failed, remove the reserved resources.
2828 		 * Otherwise, clean up the estimate to include dropped eps.
2829 		 */
2830 		if (ret)
2831 			xhci_free_host_resources(xhci, ctrl_ctx);
2832 		else
2833 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834 		spin_unlock_irqrestore(&xhci->lock, flags);
2835 	}
2836 	return ret;
2837 }
2838 
2839 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840 	struct xhci_virt_device *vdev, int i)
2841 {
2842 	struct xhci_virt_ep *ep = &vdev->eps[i];
2843 
2844 	if (ep->ep_state & EP_HAS_STREAMS) {
2845 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846 				xhci_get_endpoint_address(i));
2847 		xhci_free_stream_info(xhci, ep->stream_info);
2848 		ep->stream_info = NULL;
2849 		ep->ep_state &= ~EP_HAS_STREAMS;
2850 	}
2851 }
2852 
2853 /* Called after one or more calls to xhci_add_endpoint() or
2854  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855  * to call xhci_reset_bandwidth().
2856  *
2857  * Since we are in the middle of changing either configuration or
2858  * installing a new alt setting, the USB core won't allow URBs to be
2859  * enqueued for any endpoint on the old config or interface.  Nothing
2860  * else should be touching the xhci->devs[slot_id] structure, so we
2861  * don't need to take the xhci->lock for manipulating that.
2862  */
2863 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864 {
2865 	int i;
2866 	int ret = 0;
2867 	struct xhci_hcd *xhci;
2868 	struct xhci_virt_device	*virt_dev;
2869 	struct xhci_input_control_ctx *ctrl_ctx;
2870 	struct xhci_slot_ctx *slot_ctx;
2871 	struct xhci_command *command;
2872 
2873 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874 	if (ret <= 0)
2875 		return ret;
2876 	xhci = hcd_to_xhci(hcd);
2877 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2879 		return -ENODEV;
2880 
2881 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882 	virt_dev = xhci->devs[udev->slot_id];
2883 
2884 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885 	if (!command)
2886 		return -ENOMEM;
2887 
2888 	command->in_ctx = virt_dev->in_ctx;
2889 
2890 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892 	if (!ctrl_ctx) {
2893 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894 				__func__);
2895 		ret = -ENOMEM;
2896 		goto command_cleanup;
2897 	}
2898 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901 
2902 	/* Don't issue the command if there's no endpoints to update. */
2903 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904 	    ctrl_ctx->drop_flags == 0) {
2905 		ret = 0;
2906 		goto command_cleanup;
2907 	}
2908 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910 	for (i = 31; i >= 1; i--) {
2911 		__le32 le32 = cpu_to_le32(BIT(i));
2912 
2913 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2915 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917 			break;
2918 		}
2919 	}
2920 
2921 	ret = xhci_configure_endpoint(xhci, udev, command,
2922 			false, false);
2923 	if (ret)
2924 		/* Callee should call reset_bandwidth() */
2925 		goto command_cleanup;
2926 
2927 	/* Free any rings that were dropped, but not changed. */
2928 	for (i = 1; i < 31; i++) {
2929 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933 		}
2934 	}
2935 	xhci_zero_in_ctx(xhci, virt_dev);
2936 	/*
2937 	 * Install any rings for completely new endpoints or changed endpoints,
2938 	 * and free any old rings from changed endpoints.
2939 	 */
2940 	for (i = 1; i < 31; i++) {
2941 		if (!virt_dev->eps[i].new_ring)
2942 			continue;
2943 		/* Only free the old ring if it exists.
2944 		 * It may not if this is the first add of an endpoint.
2945 		 */
2946 		if (virt_dev->eps[i].ring) {
2947 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948 		}
2949 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951 		virt_dev->eps[i].new_ring = NULL;
2952 	}
2953 command_cleanup:
2954 	kfree(command->completion);
2955 	kfree(command);
2956 
2957 	return ret;
2958 }
2959 
2960 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961 {
2962 	struct xhci_hcd *xhci;
2963 	struct xhci_virt_device	*virt_dev;
2964 	int i, ret;
2965 
2966 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967 	if (ret <= 0)
2968 		return;
2969 	xhci = hcd_to_xhci(hcd);
2970 
2971 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972 	virt_dev = xhci->devs[udev->slot_id];
2973 	/* Free any rings allocated for added endpoints */
2974 	for (i = 0; i < 31; i++) {
2975 		if (virt_dev->eps[i].new_ring) {
2976 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978 			virt_dev->eps[i].new_ring = NULL;
2979 		}
2980 	}
2981 	xhci_zero_in_ctx(xhci, virt_dev);
2982 }
2983 
2984 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985 		struct xhci_container_ctx *in_ctx,
2986 		struct xhci_container_ctx *out_ctx,
2987 		struct xhci_input_control_ctx *ctrl_ctx,
2988 		u32 add_flags, u32 drop_flags)
2989 {
2990 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 }
2995 
2996 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997 		unsigned int slot_id, unsigned int ep_index,
2998 		struct xhci_dequeue_state *deq_state)
2999 {
3000 	struct xhci_input_control_ctx *ctrl_ctx;
3001 	struct xhci_container_ctx *in_ctx;
3002 	struct xhci_ep_ctx *ep_ctx;
3003 	u32 added_ctxs;
3004 	dma_addr_t addr;
3005 
3006 	in_ctx = xhci->devs[slot_id]->in_ctx;
3007 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008 	if (!ctrl_ctx) {
3009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010 				__func__);
3011 		return;
3012 	}
3013 
3014 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015 			xhci->devs[slot_id]->out_ctx, ep_index);
3016 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018 			deq_state->new_deq_ptr);
3019 	if (addr == 0) {
3020 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021 				"reset ep command\n");
3022 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023 				deq_state->new_deq_seg,
3024 				deq_state->new_deq_ptr);
3025 		return;
3026 	}
3027 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028 
3029 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032 			added_ctxs, added_ctxs);
3033 }
3034 
3035 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3036 			       unsigned int ep_index, unsigned int stream_id,
3037 			       struct xhci_td *td)
3038 {
3039 	struct xhci_dequeue_state deq_state;
3040 
3041 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042 			"Cleaning up stalled endpoint ring");
3043 	/* We need to move the HW's dequeue pointer past this TD,
3044 	 * or it will attempt to resend it on the next doorbell ring.
3045 	 */
3046 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3047 				    &deq_state);
3048 
3049 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050 		return;
3051 
3052 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053 	 * issue a configure endpoint command later.
3054 	 */
3055 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057 				"Queueing new dequeue state");
3058 		xhci_queue_new_dequeue_state(xhci, slot_id,
3059 				ep_index, &deq_state);
3060 	} else {
3061 		/* Better hope no one uses the input context between now and the
3062 		 * reset endpoint completion!
3063 		 * XXX: No idea how this hardware will react when stream rings
3064 		 * are enabled.
3065 		 */
3066 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067 				"Setting up input context for "
3068 				"configure endpoint command");
3069 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3070 				ep_index, &deq_state);
3071 	}
3072 }
3073 
3074 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075 				  struct usb_host_endpoint *host_ep)
3076 {
3077 	struct xhci_hcd		*xhci;
3078 	struct xhci_virt_device	*vdev;
3079 	struct xhci_virt_ep	*ep;
3080 	struct usb_device	*udev;
3081 	unsigned long		flags;
3082 	unsigned int		ep_index;
3083 
3084 	xhci = hcd_to_xhci(hcd);
3085 rescan:
3086 	spin_lock_irqsave(&xhci->lock, flags);
3087 
3088 	udev = (struct usb_device *)host_ep->hcpriv;
3089 	if (!udev || !udev->slot_id)
3090 		goto done;
3091 
3092 	vdev = xhci->devs[udev->slot_id];
3093 	if (!vdev)
3094 		goto done;
3095 
3096 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097 	ep = &vdev->eps[ep_index];
3098 	if (!ep)
3099 		goto done;
3100 
3101 	/* wait for hub_tt_work to finish clearing hub TT */
3102 	if (ep->ep_state & EP_CLEARING_TT) {
3103 		spin_unlock_irqrestore(&xhci->lock, flags);
3104 		schedule_timeout_uninterruptible(1);
3105 		goto rescan;
3106 	}
3107 
3108 	if (ep->ep_state)
3109 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110 			 ep->ep_state);
3111 done:
3112 	host_ep->hcpriv = NULL;
3113 	spin_unlock_irqrestore(&xhci->lock, flags);
3114 }
3115 
3116 /*
3117  * Called after usb core issues a clear halt control message.
3118  * The host side of the halt should already be cleared by a reset endpoint
3119  * command issued when the STALL event was received.
3120  *
3121  * The reset endpoint command may only be issued to endpoints in the halted
3122  * state. For software that wishes to reset the data toggle or sequence number
3123  * of an endpoint that isn't in the halted state this function will issue a
3124  * configure endpoint command with the Drop and Add bits set for the target
3125  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126  */
3127 
3128 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129 		struct usb_host_endpoint *host_ep)
3130 {
3131 	struct xhci_hcd *xhci;
3132 	struct usb_device *udev;
3133 	struct xhci_virt_device *vdev;
3134 	struct xhci_virt_ep *ep;
3135 	struct xhci_input_control_ctx *ctrl_ctx;
3136 	struct xhci_command *stop_cmd, *cfg_cmd;
3137 	unsigned int ep_index;
3138 	unsigned long flags;
3139 	u32 ep_flag;
3140 	int err;
3141 
3142 	xhci = hcd_to_xhci(hcd);
3143 	if (!host_ep->hcpriv)
3144 		return;
3145 	udev = (struct usb_device *) host_ep->hcpriv;
3146 	vdev = xhci->devs[udev->slot_id];
3147 
3148 	/*
3149 	 * vdev may be lost due to xHC restore error and re-initialization
3150 	 * during S3/S4 resume. A new vdev will be allocated later by
3151 	 * xhci_discover_or_reset_device()
3152 	 */
3153 	if (!udev->slot_id || !vdev)
3154 		return;
3155 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156 	ep = &vdev->eps[ep_index];
3157 	if (!ep)
3158 		return;
3159 
3160 	/* Bail out if toggle is already being cleared by a endpoint reset */
3161 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163 		return;
3164 	}
3165 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168 		return;
3169 
3170 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171 
3172 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173 		return;
3174 
3175 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176 	if (!stop_cmd)
3177 		return;
3178 
3179 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180 	if (!cfg_cmd)
3181 		goto cleanup;
3182 
3183 	spin_lock_irqsave(&xhci->lock, flags);
3184 
3185 	/* block queuing new trbs and ringing ep doorbell */
3186 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187 
3188 	/*
3189 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190 	 * Driver is required to synchronously cancel all transfer request.
3191 	 * Stop the endpoint to force xHC to update the output context
3192 	 */
3193 
3194 	if (!list_empty(&ep->ring->td_list)) {
3195 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		xhci_free_command(xhci, cfg_cmd);
3198 		goto cleanup;
3199 	}
3200 
3201 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202 					ep_index, 0);
3203 	if (err < 0) {
3204 		spin_unlock_irqrestore(&xhci->lock, flags);
3205 		xhci_free_command(xhci, cfg_cmd);
3206 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207 				__func__, err);
3208 		goto cleanup;
3209 	}
3210 
3211 	xhci_ring_cmd_db(xhci);
3212 	spin_unlock_irqrestore(&xhci->lock, flags);
3213 
3214 	wait_for_completion(stop_cmd->completion);
3215 
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 
3218 	/* config ep command clears toggle if add and drop ep flags are set */
3219 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221 					   ctrl_ctx, ep_flag, ep_flag);
3222 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223 
3224 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225 				      udev->slot_id, false);
3226 	if (err < 0) {
3227 		spin_unlock_irqrestore(&xhci->lock, flags);
3228 		xhci_free_command(xhci, cfg_cmd);
3229 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230 				__func__, err);
3231 		goto cleanup;
3232 	}
3233 
3234 	xhci_ring_cmd_db(xhci);
3235 	spin_unlock_irqrestore(&xhci->lock, flags);
3236 
3237 	wait_for_completion(cfg_cmd->completion);
3238 
3239 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240 	xhci_free_command(xhci, cfg_cmd);
3241 cleanup:
3242 	xhci_free_command(xhci, stop_cmd);
3243 }
3244 
3245 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246 		struct usb_device *udev, struct usb_host_endpoint *ep,
3247 		unsigned int slot_id)
3248 {
3249 	int ret;
3250 	unsigned int ep_index;
3251 	unsigned int ep_state;
3252 
3253 	if (!ep)
3254 		return -EINVAL;
3255 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256 	if (ret <= 0)
3257 		return -EINVAL;
3258 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260 				" descriptor for ep 0x%x does not support streams\n",
3261 				ep->desc.bEndpointAddress);
3262 		return -EINVAL;
3263 	}
3264 
3265 	ep_index = xhci_get_endpoint_index(&ep->desc);
3266 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267 	if (ep_state & EP_HAS_STREAMS ||
3268 			ep_state & EP_GETTING_STREAMS) {
3269 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270 				"already has streams set up.\n",
3271 				ep->desc.bEndpointAddress);
3272 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273 				"dynamic stream context array reallocation.\n");
3274 		return -EINVAL;
3275 	}
3276 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278 				"endpoint 0x%x; URBs are pending.\n",
3279 				ep->desc.bEndpointAddress);
3280 		return -EINVAL;
3281 	}
3282 	return 0;
3283 }
3284 
3285 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287 {
3288 	unsigned int max_streams;
3289 
3290 	/* The stream context array size must be a power of two */
3291 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292 	/*
3293 	 * Find out how many primary stream array entries the host controller
3294 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3295 	 * level page entries), but that's an optional feature for xHCI host
3296 	 * controllers. xHCs must support at least 4 stream IDs.
3297 	 */
3298 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299 	if (*num_stream_ctxs > max_streams) {
3300 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301 				max_streams);
3302 		*num_stream_ctxs = max_streams;
3303 		*num_streams = max_streams;
3304 	}
3305 }
3306 
3307 /* Returns an error code if one of the endpoint already has streams.
3308  * This does not change any data structures, it only checks and gathers
3309  * information.
3310  */
3311 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312 		struct usb_device *udev,
3313 		struct usb_host_endpoint **eps, unsigned int num_eps,
3314 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3315 {
3316 	unsigned int max_streams;
3317 	unsigned int endpoint_flag;
3318 	int i;
3319 	int ret;
3320 
3321 	for (i = 0; i < num_eps; i++) {
3322 		ret = xhci_check_streams_endpoint(xhci, udev,
3323 				eps[i], udev->slot_id);
3324 		if (ret < 0)
3325 			return ret;
3326 
3327 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328 		if (max_streams < (*num_streams - 1)) {
3329 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330 					eps[i]->desc.bEndpointAddress,
3331 					max_streams);
3332 			*num_streams = max_streams+1;
3333 		}
3334 
3335 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336 		if (*changed_ep_bitmask & endpoint_flag)
3337 			return -EINVAL;
3338 		*changed_ep_bitmask |= endpoint_flag;
3339 	}
3340 	return 0;
3341 }
3342 
3343 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344 		struct usb_device *udev,
3345 		struct usb_host_endpoint **eps, unsigned int num_eps)
3346 {
3347 	u32 changed_ep_bitmask = 0;
3348 	unsigned int slot_id;
3349 	unsigned int ep_index;
3350 	unsigned int ep_state;
3351 	int i;
3352 
3353 	slot_id = udev->slot_id;
3354 	if (!xhci->devs[slot_id])
3355 		return 0;
3356 
3357 	for (i = 0; i < num_eps; i++) {
3358 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360 		/* Are streams already being freed for the endpoint? */
3361 		if (ep_state & EP_GETTING_NO_STREAMS) {
3362 			xhci_warn(xhci, "WARN Can't disable streams for "
3363 					"endpoint 0x%x, "
3364 					"streams are being disabled already\n",
3365 					eps[i]->desc.bEndpointAddress);
3366 			return 0;
3367 		}
3368 		/* Are there actually any streams to free? */
3369 		if (!(ep_state & EP_HAS_STREAMS) &&
3370 				!(ep_state & EP_GETTING_STREAMS)) {
3371 			xhci_warn(xhci, "WARN Can't disable streams for "
3372 					"endpoint 0x%x, "
3373 					"streams are already disabled!\n",
3374 					eps[i]->desc.bEndpointAddress);
3375 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3376 					"with non-streams endpoint\n");
3377 			return 0;
3378 		}
3379 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380 	}
3381 	return changed_ep_bitmask;
3382 }
3383 
3384 /*
3385  * The USB device drivers use this function (through the HCD interface in USB
3386  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387  * coordinate mass storage command queueing across multiple endpoints (basically
3388  * a stream ID == a task ID).
3389  *
3390  * Setting up streams involves allocating the same size stream context array
3391  * for each endpoint and issuing a configure endpoint command for all endpoints.
3392  *
3393  * Don't allow the call to succeed if one endpoint only supports one stream
3394  * (which means it doesn't support streams at all).
3395  *
3396  * Drivers may get less stream IDs than they asked for, if the host controller
3397  * hardware or endpoints claim they can't support the number of requested
3398  * stream IDs.
3399  */
3400 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401 		struct usb_host_endpoint **eps, unsigned int num_eps,
3402 		unsigned int num_streams, gfp_t mem_flags)
3403 {
3404 	int i, ret;
3405 	struct xhci_hcd *xhci;
3406 	struct xhci_virt_device *vdev;
3407 	struct xhci_command *config_cmd;
3408 	struct xhci_input_control_ctx *ctrl_ctx;
3409 	unsigned int ep_index;
3410 	unsigned int num_stream_ctxs;
3411 	unsigned int max_packet;
3412 	unsigned long flags;
3413 	u32 changed_ep_bitmask = 0;
3414 
3415 	if (!eps)
3416 		return -EINVAL;
3417 
3418 	/* Add one to the number of streams requested to account for
3419 	 * stream 0 that is reserved for xHCI usage.
3420 	 */
3421 	num_streams += 1;
3422 	xhci = hcd_to_xhci(hcd);
3423 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424 			num_streams);
3425 
3426 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3427 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430 		return -ENOSYS;
3431 	}
3432 
3433 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434 	if (!config_cmd)
3435 		return -ENOMEM;
3436 
3437 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438 	if (!ctrl_ctx) {
3439 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440 				__func__);
3441 		xhci_free_command(xhci, config_cmd);
3442 		return -ENOMEM;
3443 	}
3444 
3445 	/* Check to make sure all endpoints are not already configured for
3446 	 * streams.  While we're at it, find the maximum number of streams that
3447 	 * all the endpoints will support and check for duplicate endpoints.
3448 	 */
3449 	spin_lock_irqsave(&xhci->lock, flags);
3450 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451 			num_eps, &num_streams, &changed_ep_bitmask);
3452 	if (ret < 0) {
3453 		xhci_free_command(xhci, config_cmd);
3454 		spin_unlock_irqrestore(&xhci->lock, flags);
3455 		return ret;
3456 	}
3457 	if (num_streams <= 1) {
3458 		xhci_warn(xhci, "WARN: endpoints can't handle "
3459 				"more than one stream.\n");
3460 		xhci_free_command(xhci, config_cmd);
3461 		spin_unlock_irqrestore(&xhci->lock, flags);
3462 		return -EINVAL;
3463 	}
3464 	vdev = xhci->devs[udev->slot_id];
3465 	/* Mark each endpoint as being in transition, so
3466 	 * xhci_urb_enqueue() will reject all URBs.
3467 	 */
3468 	for (i = 0; i < num_eps; i++) {
3469 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471 	}
3472 	spin_unlock_irqrestore(&xhci->lock, flags);
3473 
3474 	/* Setup internal data structures and allocate HW data structures for
3475 	 * streams (but don't install the HW structures in the input context
3476 	 * until we're sure all memory allocation succeeded).
3477 	 */
3478 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480 			num_stream_ctxs, num_streams);
3481 
3482 	for (i = 0; i < num_eps; i++) {
3483 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486 				num_stream_ctxs,
3487 				num_streams,
3488 				max_packet, mem_flags);
3489 		if (!vdev->eps[ep_index].stream_info)
3490 			goto cleanup;
3491 		/* Set maxPstreams in endpoint context and update deq ptr to
3492 		 * point to stream context array. FIXME
3493 		 */
3494 	}
3495 
3496 	/* Set up the input context for a configure endpoint command. */
3497 	for (i = 0; i < num_eps; i++) {
3498 		struct xhci_ep_ctx *ep_ctx;
3499 
3500 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502 
3503 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504 				vdev->out_ctx, ep_index);
3505 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506 				vdev->eps[ep_index].stream_info);
3507 	}
3508 	/* Tell the HW to drop its old copy of the endpoint context info
3509 	 * and add the updated copy from the input context.
3510 	 */
3511 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512 			vdev->out_ctx, ctrl_ctx,
3513 			changed_ep_bitmask, changed_ep_bitmask);
3514 
3515 	/* Issue and wait for the configure endpoint command */
3516 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517 			false, false);
3518 
3519 	/* xHC rejected the configure endpoint command for some reason, so we
3520 	 * leave the old ring intact and free our internal streams data
3521 	 * structure.
3522 	 */
3523 	if (ret < 0)
3524 		goto cleanup;
3525 
3526 	spin_lock_irqsave(&xhci->lock, flags);
3527 	for (i = 0; i < num_eps; i++) {
3528 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531 			 udev->slot_id, ep_index);
3532 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533 	}
3534 	xhci_free_command(xhci, config_cmd);
3535 	spin_unlock_irqrestore(&xhci->lock, flags);
3536 
3537 	/* Subtract 1 for stream 0, which drivers can't use */
3538 	return num_streams - 1;
3539 
3540 cleanup:
3541 	/* If it didn't work, free the streams! */
3542 	for (i = 0; i < num_eps; i++) {
3543 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545 		vdev->eps[ep_index].stream_info = NULL;
3546 		/* FIXME Unset maxPstreams in endpoint context and
3547 		 * update deq ptr to point to normal string ring.
3548 		 */
3549 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3552 	}
3553 	xhci_free_command(xhci, config_cmd);
3554 	return -ENOMEM;
3555 }
3556 
3557 /* Transition the endpoint from using streams to being a "normal" endpoint
3558  * without streams.
3559  *
3560  * Modify the endpoint context state, submit a configure endpoint command,
3561  * and free all endpoint rings for streams if that completes successfully.
3562  */
3563 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564 		struct usb_host_endpoint **eps, unsigned int num_eps,
3565 		gfp_t mem_flags)
3566 {
3567 	int i, ret;
3568 	struct xhci_hcd *xhci;
3569 	struct xhci_virt_device *vdev;
3570 	struct xhci_command *command;
3571 	struct xhci_input_control_ctx *ctrl_ctx;
3572 	unsigned int ep_index;
3573 	unsigned long flags;
3574 	u32 changed_ep_bitmask;
3575 
3576 	xhci = hcd_to_xhci(hcd);
3577 	vdev = xhci->devs[udev->slot_id];
3578 
3579 	/* Set up a configure endpoint command to remove the streams rings */
3580 	spin_lock_irqsave(&xhci->lock, flags);
3581 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582 			udev, eps, num_eps);
3583 	if (changed_ep_bitmask == 0) {
3584 		spin_unlock_irqrestore(&xhci->lock, flags);
3585 		return -EINVAL;
3586 	}
3587 
3588 	/* Use the xhci_command structure from the first endpoint.  We may have
3589 	 * allocated too many, but the driver may call xhci_free_streams() for
3590 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3591 	 */
3592 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3594 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595 	if (!ctrl_ctx) {
3596 		spin_unlock_irqrestore(&xhci->lock, flags);
3597 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598 				__func__);
3599 		return -EINVAL;
3600 	}
3601 
3602 	for (i = 0; i < num_eps; i++) {
3603 		struct xhci_ep_ctx *ep_ctx;
3604 
3605 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608 			EP_GETTING_NO_STREAMS;
3609 
3610 		xhci_endpoint_copy(xhci, command->in_ctx,
3611 				vdev->out_ctx, ep_index);
3612 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613 				&vdev->eps[ep_index]);
3614 	}
3615 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616 			vdev->out_ctx, ctrl_ctx,
3617 			changed_ep_bitmask, changed_ep_bitmask);
3618 	spin_unlock_irqrestore(&xhci->lock, flags);
3619 
3620 	/* Issue and wait for the configure endpoint command,
3621 	 * which must succeed.
3622 	 */
3623 	ret = xhci_configure_endpoint(xhci, udev, command,
3624 			false, true);
3625 
3626 	/* xHC rejected the configure endpoint command for some reason, so we
3627 	 * leave the streams rings intact.
3628 	 */
3629 	if (ret < 0)
3630 		return ret;
3631 
3632 	spin_lock_irqsave(&xhci->lock, flags);
3633 	for (i = 0; i < num_eps; i++) {
3634 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636 		vdev->eps[ep_index].stream_info = NULL;
3637 		/* FIXME Unset maxPstreams in endpoint context and
3638 		 * update deq ptr to point to normal string ring.
3639 		 */
3640 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642 	}
3643 	spin_unlock_irqrestore(&xhci->lock, flags);
3644 
3645 	return 0;
3646 }
3647 
3648 /*
3649  * Deletes endpoint resources for endpoints that were active before a Reset
3650  * Device command, or a Disable Slot command.  The Reset Device command leaves
3651  * the control endpoint intact, whereas the Disable Slot command deletes it.
3652  *
3653  * Must be called with xhci->lock held.
3654  */
3655 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657 {
3658 	int i;
3659 	unsigned int num_dropped_eps = 0;
3660 	unsigned int drop_flags = 0;
3661 
3662 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663 		if (virt_dev->eps[i].ring) {
3664 			drop_flags |= 1 << i;
3665 			num_dropped_eps++;
3666 		}
3667 	}
3668 	xhci->num_active_eps -= num_dropped_eps;
3669 	if (num_dropped_eps)
3670 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671 				"Dropped %u ep ctxs, flags = 0x%x, "
3672 				"%u now active.",
3673 				num_dropped_eps, drop_flags,
3674 				xhci->num_active_eps);
3675 }
3676 
3677 /*
3678  * This submits a Reset Device Command, which will set the device state to 0,
3679  * set the device address to 0, and disable all the endpoints except the default
3680  * control endpoint.  The USB core should come back and call
3681  * xhci_address_device(), and then re-set up the configuration.  If this is
3682  * called because of a usb_reset_and_verify_device(), then the old alternate
3683  * settings will be re-installed through the normal bandwidth allocation
3684  * functions.
3685  *
3686  * Wait for the Reset Device command to finish.  Remove all structures
3687  * associated with the endpoints that were disabled.  Clear the input device
3688  * structure? Reset the control endpoint 0 max packet size?
3689  *
3690  * If the virt_dev to be reset does not exist or does not match the udev,
3691  * it means the device is lost, possibly due to the xHC restore error and
3692  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693  * re-allocate the device.
3694  */
3695 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696 		struct usb_device *udev)
3697 {
3698 	int ret, i;
3699 	unsigned long flags;
3700 	struct xhci_hcd *xhci;
3701 	unsigned int slot_id;
3702 	struct xhci_virt_device *virt_dev;
3703 	struct xhci_command *reset_device_cmd;
3704 	struct xhci_slot_ctx *slot_ctx;
3705 	int old_active_eps = 0;
3706 
3707 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708 	if (ret <= 0)
3709 		return ret;
3710 	xhci = hcd_to_xhci(hcd);
3711 	slot_id = udev->slot_id;
3712 	virt_dev = xhci->devs[slot_id];
3713 	if (!virt_dev) {
3714 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715 				"not exist. Re-allocate the device\n", slot_id);
3716 		ret = xhci_alloc_dev(hcd, udev);
3717 		if (ret == 1)
3718 			return 0;
3719 		else
3720 			return -EINVAL;
3721 	}
3722 
3723 	if (virt_dev->tt_info)
3724 		old_active_eps = virt_dev->tt_info->active_eps;
3725 
3726 	if (virt_dev->udev != udev) {
3727 		/* If the virt_dev and the udev does not match, this virt_dev
3728 		 * may belong to another udev.
3729 		 * Re-allocate the device.
3730 		 */
3731 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732 				"not match the udev. Re-allocate the device\n",
3733 				slot_id);
3734 		ret = xhci_alloc_dev(hcd, udev);
3735 		if (ret == 1)
3736 			return 0;
3737 		else
3738 			return -EINVAL;
3739 	}
3740 
3741 	/* If device is not setup, there is no point in resetting it */
3742 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744 						SLOT_STATE_DISABLED)
3745 		return 0;
3746 
3747 	trace_xhci_discover_or_reset_device(slot_ctx);
3748 
3749 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750 	/* Allocate the command structure that holds the struct completion.
3751 	 * Assume we're in process context, since the normal device reset
3752 	 * process has to wait for the device anyway.  Storage devices are
3753 	 * reset as part of error handling, so use GFP_NOIO instead of
3754 	 * GFP_KERNEL.
3755 	 */
3756 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757 	if (!reset_device_cmd) {
3758 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759 		return -ENOMEM;
3760 	}
3761 
3762 	/* Attempt to submit the Reset Device command to the command ring */
3763 	spin_lock_irqsave(&xhci->lock, flags);
3764 
3765 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766 	if (ret) {
3767 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768 		spin_unlock_irqrestore(&xhci->lock, flags);
3769 		goto command_cleanup;
3770 	}
3771 	xhci_ring_cmd_db(xhci);
3772 	spin_unlock_irqrestore(&xhci->lock, flags);
3773 
3774 	/* Wait for the Reset Device command to finish */
3775 	wait_for_completion(reset_device_cmd->completion);
3776 
3777 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778 	 * unless we tried to reset a slot ID that wasn't enabled,
3779 	 * or the device wasn't in the addressed or configured state.
3780 	 */
3781 	ret = reset_device_cmd->status;
3782 	switch (ret) {
3783 	case COMP_COMMAND_ABORTED:
3784 	case COMP_COMMAND_RING_STOPPED:
3785 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786 		ret = -ETIME;
3787 		goto command_cleanup;
3788 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791 				slot_id,
3792 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793 		xhci_dbg(xhci, "Not freeing device rings.\n");
3794 		/* Don't treat this as an error.  May change my mind later. */
3795 		ret = 0;
3796 		goto command_cleanup;
3797 	case COMP_SUCCESS:
3798 		xhci_dbg(xhci, "Successful reset device command.\n");
3799 		break;
3800 	default:
3801 		if (xhci_is_vendor_info_code(xhci, ret))
3802 			break;
3803 		xhci_warn(xhci, "Unknown completion code %u for "
3804 				"reset device command.\n", ret);
3805 		ret = -EINVAL;
3806 		goto command_cleanup;
3807 	}
3808 
3809 	/* Free up host controller endpoint resources */
3810 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811 		spin_lock_irqsave(&xhci->lock, flags);
3812 		/* Don't delete the default control endpoint resources */
3813 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814 		spin_unlock_irqrestore(&xhci->lock, flags);
3815 	}
3816 
3817 	/* Everything but endpoint 0 is disabled, so free the rings. */
3818 	for (i = 1; i < 31; i++) {
3819 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820 
3821 		if (ep->ep_state & EP_HAS_STREAMS) {
3822 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823 					xhci_get_endpoint_address(i));
3824 			xhci_free_stream_info(xhci, ep->stream_info);
3825 			ep->stream_info = NULL;
3826 			ep->ep_state &= ~EP_HAS_STREAMS;
3827 		}
3828 
3829 		if (ep->ring) {
3830 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832 		}
3833 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834 			xhci_drop_ep_from_interval_table(xhci,
3835 					&virt_dev->eps[i].bw_info,
3836 					virt_dev->bw_table,
3837 					udev,
3838 					&virt_dev->eps[i],
3839 					virt_dev->tt_info);
3840 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841 	}
3842 	/* If necessary, update the number of active TTs on this root port */
3843 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844 	virt_dev->flags = 0;
3845 	ret = 0;
3846 
3847 command_cleanup:
3848 	xhci_free_command(xhci, reset_device_cmd);
3849 	return ret;
3850 }
3851 
3852 /*
3853  * At this point, the struct usb_device is about to go away, the device has
3854  * disconnected, and all traffic has been stopped and the endpoints have been
3855  * disabled.  Free any HC data structures associated with that device.
3856  */
3857 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858 {
3859 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860 	struct xhci_virt_device *virt_dev;
3861 	struct xhci_slot_ctx *slot_ctx;
3862 	int i, ret;
3863 
3864 #ifndef CONFIG_USB_DEFAULT_PERSIST
3865 	/*
3866 	 * We called pm_runtime_get_noresume when the device was attached.
3867 	 * Decrement the counter here to allow controller to runtime suspend
3868 	 * if no devices remain.
3869 	 */
3870 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871 		pm_runtime_put_noidle(hcd->self.controller);
3872 #endif
3873 
3874 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875 	/* If the host is halted due to driver unload, we still need to free the
3876 	 * device.
3877 	 */
3878 	if (ret <= 0 && ret != -ENODEV)
3879 		return;
3880 
3881 	virt_dev = xhci->devs[udev->slot_id];
3882 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883 	trace_xhci_free_dev(slot_ctx);
3884 
3885 	/* Stop any wayward timer functions (which may grab the lock) */
3886 	for (i = 0; i < 31; i++) {
3887 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889 	}
3890 	virt_dev->udev = NULL;
3891 	ret = xhci_disable_slot(xhci, udev->slot_id);
3892 	if (ret)
3893 		xhci_free_virt_device(xhci, udev->slot_id);
3894 }
3895 
3896 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897 {
3898 	struct xhci_command *command;
3899 	unsigned long flags;
3900 	u32 state;
3901 	int ret = 0;
3902 
3903 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904 	if (!command)
3905 		return -ENOMEM;
3906 
3907 	xhci_debugfs_remove_slot(xhci, slot_id);
3908 
3909 	spin_lock_irqsave(&xhci->lock, flags);
3910 	/* Don't disable the slot if the host controller is dead. */
3911 	state = readl(&xhci->op_regs->status);
3912 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914 		spin_unlock_irqrestore(&xhci->lock, flags);
3915 		kfree(command);
3916 		return -ENODEV;
3917 	}
3918 
3919 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920 				slot_id);
3921 	if (ret) {
3922 		spin_unlock_irqrestore(&xhci->lock, flags);
3923 		kfree(command);
3924 		return ret;
3925 	}
3926 	xhci_ring_cmd_db(xhci);
3927 	spin_unlock_irqrestore(&xhci->lock, flags);
3928 	return ret;
3929 }
3930 
3931 /*
3932  * Checks if we have enough host controller resources for the default control
3933  * endpoint.
3934  *
3935  * Must be called with xhci->lock held.
3936  */
3937 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938 {
3939 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941 				"Not enough ep ctxs: "
3942 				"%u active, need to add 1, limit is %u.",
3943 				xhci->num_active_eps, xhci->limit_active_eps);
3944 		return -ENOMEM;
3945 	}
3946 	xhci->num_active_eps += 1;
3947 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948 			"Adding 1 ep ctx, %u now active.",
3949 			xhci->num_active_eps);
3950 	return 0;
3951 }
3952 
3953 
3954 /*
3955  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956  * timed out, or allocating memory failed.  Returns 1 on success.
3957  */
3958 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959 {
3960 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961 	struct xhci_virt_device *vdev;
3962 	struct xhci_slot_ctx *slot_ctx;
3963 	unsigned long flags;
3964 	int ret, slot_id;
3965 	struct xhci_command *command;
3966 
3967 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968 	if (!command)
3969 		return 0;
3970 
3971 	spin_lock_irqsave(&xhci->lock, flags);
3972 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973 	if (ret) {
3974 		spin_unlock_irqrestore(&xhci->lock, flags);
3975 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976 		xhci_free_command(xhci, command);
3977 		return 0;
3978 	}
3979 	xhci_ring_cmd_db(xhci);
3980 	spin_unlock_irqrestore(&xhci->lock, flags);
3981 
3982 	wait_for_completion(command->completion);
3983 	slot_id = command->slot_id;
3984 
3985 	if (!slot_id || command->status != COMP_SUCCESS) {
3986 		xhci_err(xhci, "Error while assigning device slot ID\n");
3987 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988 				HCS_MAX_SLOTS(
3989 					readl(&xhci->cap_regs->hcs_params1)));
3990 		xhci_free_command(xhci, command);
3991 		return 0;
3992 	}
3993 
3994 	xhci_free_command(xhci, command);
3995 
3996 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997 		spin_lock_irqsave(&xhci->lock, flags);
3998 		ret = xhci_reserve_host_control_ep_resources(xhci);
3999 		if (ret) {
4000 			spin_unlock_irqrestore(&xhci->lock, flags);
4001 			xhci_warn(xhci, "Not enough host resources, "
4002 					"active endpoint contexts = %u\n",
4003 					xhci->num_active_eps);
4004 			goto disable_slot;
4005 		}
4006 		spin_unlock_irqrestore(&xhci->lock, flags);
4007 	}
4008 	/* Use GFP_NOIO, since this function can be called from
4009 	 * xhci_discover_or_reset_device(), which may be called as part of
4010 	 * mass storage driver error handling.
4011 	 */
4012 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014 		goto disable_slot;
4015 	}
4016 	vdev = xhci->devs[slot_id];
4017 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018 	trace_xhci_alloc_dev(slot_ctx);
4019 
4020 	udev->slot_id = slot_id;
4021 
4022 	xhci_debugfs_create_slot(xhci, slot_id);
4023 
4024 #ifndef CONFIG_USB_DEFAULT_PERSIST
4025 	/*
4026 	 * If resetting upon resume, we can't put the controller into runtime
4027 	 * suspend if there is a device attached.
4028 	 */
4029 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030 		pm_runtime_get_noresume(hcd->self.controller);
4031 #endif
4032 
4033 	/* Is this a LS or FS device under a HS hub? */
4034 	/* Hub or peripherial? */
4035 	return 1;
4036 
4037 disable_slot:
4038 	ret = xhci_disable_slot(xhci, udev->slot_id);
4039 	if (ret)
4040 		xhci_free_virt_device(xhci, udev->slot_id);
4041 
4042 	return 0;
4043 }
4044 
4045 /*
4046  * Issue an Address Device command and optionally send a corresponding
4047  * SetAddress request to the device.
4048  */
4049 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050 			     enum xhci_setup_dev setup)
4051 {
4052 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053 	unsigned long flags;
4054 	struct xhci_virt_device *virt_dev;
4055 	int ret = 0;
4056 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057 	struct xhci_slot_ctx *slot_ctx;
4058 	struct xhci_input_control_ctx *ctrl_ctx;
4059 	u64 temp_64;
4060 	struct xhci_command *command = NULL;
4061 
4062 	mutex_lock(&xhci->mutex);
4063 
4064 	if (xhci->xhc_state) {	/* dying, removing or halted */
4065 		ret = -ESHUTDOWN;
4066 		goto out;
4067 	}
4068 
4069 	if (!udev->slot_id) {
4070 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071 				"Bad Slot ID %d", udev->slot_id);
4072 		ret = -EINVAL;
4073 		goto out;
4074 	}
4075 
4076 	virt_dev = xhci->devs[udev->slot_id];
4077 
4078 	if (WARN_ON(!virt_dev)) {
4079 		/*
4080 		 * In plug/unplug torture test with an NEC controller,
4081 		 * a zero-dereference was observed once due to virt_dev = 0.
4082 		 * Print useful debug rather than crash if it is observed again!
4083 		 */
4084 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085 			udev->slot_id);
4086 		ret = -EINVAL;
4087 		goto out;
4088 	}
4089 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090 	trace_xhci_setup_device_slot(slot_ctx);
4091 
4092 	if (setup == SETUP_CONTEXT_ONLY) {
4093 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094 		    SLOT_STATE_DEFAULT) {
4095 			xhci_dbg(xhci, "Slot already in default state\n");
4096 			goto out;
4097 		}
4098 	}
4099 
4100 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101 	if (!command) {
4102 		ret = -ENOMEM;
4103 		goto out;
4104 	}
4105 
4106 	command->in_ctx = virt_dev->in_ctx;
4107 
4108 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110 	if (!ctrl_ctx) {
4111 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112 				__func__);
4113 		ret = -EINVAL;
4114 		goto out;
4115 	}
4116 	/*
4117 	 * If this is the first Set Address since device plug-in or
4118 	 * virt_device realloaction after a resume with an xHCI power loss,
4119 	 * then set up the slot context.
4120 	 */
4121 	if (!slot_ctx->dev_info)
4122 		xhci_setup_addressable_virt_dev(xhci, udev);
4123 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4124 	else
4125 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127 	ctrl_ctx->drop_flags = 0;
4128 
4129 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4131 
4132 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133 	spin_lock_irqsave(&xhci->lock, flags);
4134 	trace_xhci_setup_device(virt_dev);
4135 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136 					udev->slot_id, setup);
4137 	if (ret) {
4138 		spin_unlock_irqrestore(&xhci->lock, flags);
4139 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140 				"FIXME: allocate a command ring segment");
4141 		goto out;
4142 	}
4143 	xhci_ring_cmd_db(xhci);
4144 	spin_unlock_irqrestore(&xhci->lock, flags);
4145 
4146 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147 	wait_for_completion(command->completion);
4148 
4149 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150 	 * the SetAddress() "recovery interval" required by USB and aborting the
4151 	 * command on a timeout.
4152 	 */
4153 	switch (command->status) {
4154 	case COMP_COMMAND_ABORTED:
4155 	case COMP_COMMAND_RING_STOPPED:
4156 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157 		ret = -ETIME;
4158 		break;
4159 	case COMP_CONTEXT_STATE_ERROR:
4160 	case COMP_SLOT_NOT_ENABLED_ERROR:
4161 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162 			 act, udev->slot_id);
4163 		ret = -EINVAL;
4164 		break;
4165 	case COMP_USB_TRANSACTION_ERROR:
4166 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167 
4168 		mutex_unlock(&xhci->mutex);
4169 		ret = xhci_disable_slot(xhci, udev->slot_id);
4170 		if (!ret)
4171 			xhci_alloc_dev(hcd, udev);
4172 		kfree(command->completion);
4173 		kfree(command);
4174 		return -EPROTO;
4175 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176 		dev_warn(&udev->dev,
4177 			 "ERROR: Incompatible device for setup %s command\n", act);
4178 		ret = -ENODEV;
4179 		break;
4180 	case COMP_SUCCESS:
4181 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182 			       "Successful setup %s command", act);
4183 		break;
4184 	default:
4185 		xhci_err(xhci,
4186 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187 			 act, command->status);
4188 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189 		ret = -EINVAL;
4190 		break;
4191 	}
4192 	if (ret)
4193 		goto out;
4194 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196 			"Op regs DCBAA ptr = %#016llx", temp_64);
4197 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198 		"Slot ID %d dcbaa entry @%p = %#016llx",
4199 		udev->slot_id,
4200 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201 		(unsigned long long)
4202 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204 			"Output Context DMA address = %#08llx",
4205 			(unsigned long long)virt_dev->out_ctx->dma);
4206 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4208 	/*
4209 	 * USB core uses address 1 for the roothubs, so we add one to the
4210 	 * address given back to us by the HC.
4211 	 */
4212 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4214 	/* Zero the input context control for later use */
4215 	ctrl_ctx->add_flags = 0;
4216 	ctrl_ctx->drop_flags = 0;
4217 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219 
4220 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 		       "Internal device address = %d",
4222 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223 out:
4224 	mutex_unlock(&xhci->mutex);
4225 	if (command) {
4226 		kfree(command->completion);
4227 		kfree(command);
4228 	}
4229 	return ret;
4230 }
4231 
4232 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233 {
4234 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235 }
4236 
4237 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238 {
4239 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240 }
4241 
4242 /*
4243  * Transfer the port index into real index in the HW port status
4244  * registers. Caculate offset between the port's PORTSC register
4245  * and port status base. Divide the number of per port register
4246  * to get the real index. The raw port number bases 1.
4247  */
4248 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249 {
4250 	struct xhci_hub *rhub;
4251 
4252 	rhub = xhci_get_rhub(hcd);
4253 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4254 }
4255 
4256 /*
4257  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259  */
4260 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261 			struct usb_device *udev, u16 max_exit_latency)
4262 {
4263 	struct xhci_virt_device *virt_dev;
4264 	struct xhci_command *command;
4265 	struct xhci_input_control_ctx *ctrl_ctx;
4266 	struct xhci_slot_ctx *slot_ctx;
4267 	unsigned long flags;
4268 	int ret;
4269 
4270 	spin_lock_irqsave(&xhci->lock, flags);
4271 
4272 	virt_dev = xhci->devs[udev->slot_id];
4273 
4274 	/*
4275 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276 	 * xHC was re-initialized. Exit latency will be set later after
4277 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278 	 */
4279 
4280 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281 		spin_unlock_irqrestore(&xhci->lock, flags);
4282 		return 0;
4283 	}
4284 
4285 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4286 	command = xhci->lpm_command;
4287 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288 	if (!ctrl_ctx) {
4289 		spin_unlock_irqrestore(&xhci->lock, flags);
4290 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291 				__func__);
4292 		return -ENOMEM;
4293 	}
4294 
4295 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296 	spin_unlock_irqrestore(&xhci->lock, flags);
4297 
4298 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302 	slot_ctx->dev_state = 0;
4303 
4304 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305 			"Set up evaluate context for LPM MEL change.");
4306 
4307 	/* Issue and wait for the evaluate context command. */
4308 	ret = xhci_configure_endpoint(xhci, udev, command,
4309 			true, true);
4310 
4311 	if (!ret) {
4312 		spin_lock_irqsave(&xhci->lock, flags);
4313 		virt_dev->current_mel = max_exit_latency;
4314 		spin_unlock_irqrestore(&xhci->lock, flags);
4315 	}
4316 	return ret;
4317 }
4318 
4319 #ifdef CONFIG_PM
4320 
4321 /* BESL to HIRD Encoding array for USB2 LPM */
4322 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324 
4325 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327 					struct usb_device *udev)
4328 {
4329 	int u2del, besl, besl_host;
4330 	int besl_device = 0;
4331 	u32 field;
4332 
4333 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335 
4336 	if (field & USB_BESL_SUPPORT) {
4337 		for (besl_host = 0; besl_host < 16; besl_host++) {
4338 			if (xhci_besl_encoding[besl_host] >= u2del)
4339 				break;
4340 		}
4341 		/* Use baseline BESL value as default */
4342 		if (field & USB_BESL_BASELINE_VALID)
4343 			besl_device = USB_GET_BESL_BASELINE(field);
4344 		else if (field & USB_BESL_DEEP_VALID)
4345 			besl_device = USB_GET_BESL_DEEP(field);
4346 	} else {
4347 		if (u2del <= 50)
4348 			besl_host = 0;
4349 		else
4350 			besl_host = (u2del - 51) / 75 + 1;
4351 	}
4352 
4353 	besl = besl_host + besl_device;
4354 	if (besl > 15)
4355 		besl = 15;
4356 
4357 	return besl;
4358 }
4359 
4360 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362 {
4363 	u32 field;
4364 	int l1;
4365 	int besld = 0;
4366 	int hirdm = 0;
4367 
4368 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369 
4370 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371 	l1 = udev->l1_params.timeout / 256;
4372 
4373 	/* device has preferred BESLD */
4374 	if (field & USB_BESL_DEEP_VALID) {
4375 		besld = USB_GET_BESL_DEEP(field);
4376 		hirdm = 1;
4377 	}
4378 
4379 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380 }
4381 
4382 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383 			struct usb_device *udev, int enable)
4384 {
4385 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4386 	struct xhci_port **ports;
4387 	__le32 __iomem	*pm_addr, *hlpm_addr;
4388 	u32		pm_val, hlpm_val, field;
4389 	unsigned int	port_num;
4390 	unsigned long	flags;
4391 	int		hird, exit_latency;
4392 	int		ret;
4393 
4394 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4395 		return -EPERM;
4396 
4397 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4398 			!udev->lpm_capable)
4399 		return -EPERM;
4400 
4401 	if (!udev->parent || udev->parent->parent ||
4402 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4403 		return -EPERM;
4404 
4405 	if (udev->usb2_hw_lpm_capable != 1)
4406 		return -EPERM;
4407 
4408 	spin_lock_irqsave(&xhci->lock, flags);
4409 
4410 	ports = xhci->usb2_rhub.ports;
4411 	port_num = udev->portnum - 1;
4412 	pm_addr = ports[port_num]->addr + PORTPMSC;
4413 	pm_val = readl(pm_addr);
4414 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4415 
4416 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4417 			enable ? "enable" : "disable", port_num + 1);
4418 
4419 	if (enable) {
4420 		/* Host supports BESL timeout instead of HIRD */
4421 		if (udev->usb2_hw_lpm_besl_capable) {
4422 			/* if device doesn't have a preferred BESL value use a
4423 			 * default one which works with mixed HIRD and BESL
4424 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4425 			 */
4426 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4427 			if ((field & USB_BESL_SUPPORT) &&
4428 			    (field & USB_BESL_BASELINE_VALID))
4429 				hird = USB_GET_BESL_BASELINE(field);
4430 			else
4431 				hird = udev->l1_params.besl;
4432 
4433 			exit_latency = xhci_besl_encoding[hird];
4434 			spin_unlock_irqrestore(&xhci->lock, flags);
4435 
4436 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4437 			 * input context for link powermanagement evaluate
4438 			 * context commands. It is protected by hcd->bandwidth
4439 			 * mutex and is shared by all devices. We need to set
4440 			 * the max ext latency in USB 2 BESL LPM as well, so
4441 			 * use the same mutex and xhci_change_max_exit_latency()
4442 			 */
4443 			mutex_lock(hcd->bandwidth_mutex);
4444 			ret = xhci_change_max_exit_latency(xhci, udev,
4445 							   exit_latency);
4446 			mutex_unlock(hcd->bandwidth_mutex);
4447 
4448 			if (ret < 0)
4449 				return ret;
4450 			spin_lock_irqsave(&xhci->lock, flags);
4451 
4452 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4453 			writel(hlpm_val, hlpm_addr);
4454 			/* flush write */
4455 			readl(hlpm_addr);
4456 		} else {
4457 			hird = xhci_calculate_hird_besl(xhci, udev);
4458 		}
4459 
4460 		pm_val &= ~PORT_HIRD_MASK;
4461 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4462 		writel(pm_val, pm_addr);
4463 		pm_val = readl(pm_addr);
4464 		pm_val |= PORT_HLE;
4465 		writel(pm_val, pm_addr);
4466 		/* flush write */
4467 		readl(pm_addr);
4468 	} else {
4469 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4470 		writel(pm_val, pm_addr);
4471 		/* flush write */
4472 		readl(pm_addr);
4473 		if (udev->usb2_hw_lpm_besl_capable) {
4474 			spin_unlock_irqrestore(&xhci->lock, flags);
4475 			mutex_lock(hcd->bandwidth_mutex);
4476 			xhci_change_max_exit_latency(xhci, udev, 0);
4477 			mutex_unlock(hcd->bandwidth_mutex);
4478 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4479 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4480 					   100, 10000);
4481 			return 0;
4482 		}
4483 	}
4484 
4485 	spin_unlock_irqrestore(&xhci->lock, flags);
4486 	return 0;
4487 }
4488 
4489 /* check if a usb2 port supports a given extened capability protocol
4490  * only USB2 ports extended protocol capability values are cached.
4491  * Return 1 if capability is supported
4492  */
4493 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4494 					   unsigned capability)
4495 {
4496 	u32 port_offset, port_count;
4497 	int i;
4498 
4499 	for (i = 0; i < xhci->num_ext_caps; i++) {
4500 		if (xhci->ext_caps[i] & capability) {
4501 			/* port offsets starts at 1 */
4502 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4503 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4504 			if (port >= port_offset &&
4505 			    port < port_offset + port_count)
4506 				return 1;
4507 		}
4508 	}
4509 	return 0;
4510 }
4511 
4512 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4513 {
4514 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4515 	int		portnum = udev->portnum - 1;
4516 
4517 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4518 		return 0;
4519 
4520 	/* we only support lpm for non-hub device connected to root hub yet */
4521 	if (!udev->parent || udev->parent->parent ||
4522 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4523 		return 0;
4524 
4525 	if (xhci->hw_lpm_support == 1 &&
4526 			xhci_check_usb2_port_capability(
4527 				xhci, portnum, XHCI_HLC)) {
4528 		udev->usb2_hw_lpm_capable = 1;
4529 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4530 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4531 		if (xhci_check_usb2_port_capability(xhci, portnum,
4532 					XHCI_BLC))
4533 			udev->usb2_hw_lpm_besl_capable = 1;
4534 	}
4535 
4536 	return 0;
4537 }
4538 
4539 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4540 
4541 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4542 static unsigned long long xhci_service_interval_to_ns(
4543 		struct usb_endpoint_descriptor *desc)
4544 {
4545 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4546 }
4547 
4548 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4549 		enum usb3_link_state state)
4550 {
4551 	unsigned long long sel;
4552 	unsigned long long pel;
4553 	unsigned int max_sel_pel;
4554 	char *state_name;
4555 
4556 	switch (state) {
4557 	case USB3_LPM_U1:
4558 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4559 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4560 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4561 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4562 		state_name = "U1";
4563 		break;
4564 	case USB3_LPM_U2:
4565 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4566 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4567 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4568 		state_name = "U2";
4569 		break;
4570 	default:
4571 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4572 				__func__);
4573 		return USB3_LPM_DISABLED;
4574 	}
4575 
4576 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4577 		return USB3_LPM_DEVICE_INITIATED;
4578 
4579 	if (sel > max_sel_pel)
4580 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4581 				"due to long SEL %llu ms\n",
4582 				state_name, sel);
4583 	else
4584 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4585 				"due to long PEL %llu ms\n",
4586 				state_name, pel);
4587 	return USB3_LPM_DISABLED;
4588 }
4589 
4590 /* The U1 timeout should be the maximum of the following values:
4591  *  - For control endpoints, U1 system exit latency (SEL) * 3
4592  *  - For bulk endpoints, U1 SEL * 5
4593  *  - For interrupt endpoints:
4594  *    - Notification EPs, U1 SEL * 3
4595  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4596  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4597  */
4598 static unsigned long long xhci_calculate_intel_u1_timeout(
4599 		struct usb_device *udev,
4600 		struct usb_endpoint_descriptor *desc)
4601 {
4602 	unsigned long long timeout_ns;
4603 	int ep_type;
4604 	int intr_type;
4605 
4606 	ep_type = usb_endpoint_type(desc);
4607 	switch (ep_type) {
4608 	case USB_ENDPOINT_XFER_CONTROL:
4609 		timeout_ns = udev->u1_params.sel * 3;
4610 		break;
4611 	case USB_ENDPOINT_XFER_BULK:
4612 		timeout_ns = udev->u1_params.sel * 5;
4613 		break;
4614 	case USB_ENDPOINT_XFER_INT:
4615 		intr_type = usb_endpoint_interrupt_type(desc);
4616 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4617 			timeout_ns = udev->u1_params.sel * 3;
4618 			break;
4619 		}
4620 		/* Otherwise the calculation is the same as isoc eps */
4621 		/* fall through */
4622 	case USB_ENDPOINT_XFER_ISOC:
4623 		timeout_ns = xhci_service_interval_to_ns(desc);
4624 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4625 		if (timeout_ns < udev->u1_params.sel * 2)
4626 			timeout_ns = udev->u1_params.sel * 2;
4627 		break;
4628 	default:
4629 		return 0;
4630 	}
4631 
4632 	return timeout_ns;
4633 }
4634 
4635 /* Returns the hub-encoded U1 timeout value. */
4636 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4637 		struct usb_device *udev,
4638 		struct usb_endpoint_descriptor *desc)
4639 {
4640 	unsigned long long timeout_ns;
4641 
4642 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4643 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4644 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4645 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4646 			return USB3_LPM_DISABLED;
4647 		}
4648 	}
4649 
4650 	if (xhci->quirks & XHCI_INTEL_HOST)
4651 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4652 	else
4653 		timeout_ns = udev->u1_params.sel;
4654 
4655 	/* The U1 timeout is encoded in 1us intervals.
4656 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4657 	 */
4658 	if (timeout_ns == USB3_LPM_DISABLED)
4659 		timeout_ns = 1;
4660 	else
4661 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4662 
4663 	/* If the necessary timeout value is bigger than what we can set in the
4664 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4665 	 */
4666 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4667 		return timeout_ns;
4668 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4669 			"due to long timeout %llu ms\n", timeout_ns);
4670 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4671 }
4672 
4673 /* The U2 timeout should be the maximum of:
4674  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4675  *  - largest bInterval of any active periodic endpoint (to avoid going
4676  *    into lower power link states between intervals).
4677  *  - the U2 Exit Latency of the device
4678  */
4679 static unsigned long long xhci_calculate_intel_u2_timeout(
4680 		struct usb_device *udev,
4681 		struct usb_endpoint_descriptor *desc)
4682 {
4683 	unsigned long long timeout_ns;
4684 	unsigned long long u2_del_ns;
4685 
4686 	timeout_ns = 10 * 1000 * 1000;
4687 
4688 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4689 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4690 		timeout_ns = xhci_service_interval_to_ns(desc);
4691 
4692 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4693 	if (u2_del_ns > timeout_ns)
4694 		timeout_ns = u2_del_ns;
4695 
4696 	return timeout_ns;
4697 }
4698 
4699 /* Returns the hub-encoded U2 timeout value. */
4700 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4701 		struct usb_device *udev,
4702 		struct usb_endpoint_descriptor *desc)
4703 {
4704 	unsigned long long timeout_ns;
4705 
4706 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4707 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4708 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4709 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4710 			return USB3_LPM_DISABLED;
4711 		}
4712 	}
4713 
4714 	if (xhci->quirks & XHCI_INTEL_HOST)
4715 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4716 	else
4717 		timeout_ns = udev->u2_params.sel;
4718 
4719 	/* The U2 timeout is encoded in 256us intervals */
4720 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4721 	/* If the necessary timeout value is bigger than what we can set in the
4722 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4723 	 */
4724 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4725 		return timeout_ns;
4726 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4727 			"due to long timeout %llu ms\n", timeout_ns);
4728 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4729 }
4730 
4731 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4732 		struct usb_device *udev,
4733 		struct usb_endpoint_descriptor *desc,
4734 		enum usb3_link_state state,
4735 		u16 *timeout)
4736 {
4737 	if (state == USB3_LPM_U1)
4738 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4739 	else if (state == USB3_LPM_U2)
4740 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4741 
4742 	return USB3_LPM_DISABLED;
4743 }
4744 
4745 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4746 		struct usb_device *udev,
4747 		struct usb_endpoint_descriptor *desc,
4748 		enum usb3_link_state state,
4749 		u16 *timeout)
4750 {
4751 	u16 alt_timeout;
4752 
4753 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4754 		desc, state, timeout);
4755 
4756 	/* If we found we can't enable hub-initiated LPM, and
4757 	 * the U1 or U2 exit latency was too high to allow
4758 	 * device-initiated LPM as well, then we will disable LPM
4759 	 * for this device, so stop searching any further.
4760 	 */
4761 	if (alt_timeout == USB3_LPM_DISABLED) {
4762 		*timeout = alt_timeout;
4763 		return -E2BIG;
4764 	}
4765 	if (alt_timeout > *timeout)
4766 		*timeout = alt_timeout;
4767 	return 0;
4768 }
4769 
4770 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4771 		struct usb_device *udev,
4772 		struct usb_host_interface *alt,
4773 		enum usb3_link_state state,
4774 		u16 *timeout)
4775 {
4776 	int j;
4777 
4778 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4779 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4780 					&alt->endpoint[j].desc, state, timeout))
4781 			return -E2BIG;
4782 		continue;
4783 	}
4784 	return 0;
4785 }
4786 
4787 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4788 		enum usb3_link_state state)
4789 {
4790 	struct usb_device *parent;
4791 	unsigned int num_hubs;
4792 
4793 	if (state == USB3_LPM_U2)
4794 		return 0;
4795 
4796 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4797 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4798 			parent = parent->parent)
4799 		num_hubs++;
4800 
4801 	if (num_hubs < 2)
4802 		return 0;
4803 
4804 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4805 			" below second-tier hub.\n");
4806 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4807 			"to decrease power consumption.\n");
4808 	return -E2BIG;
4809 }
4810 
4811 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4812 		struct usb_device *udev,
4813 		enum usb3_link_state state)
4814 {
4815 	if (xhci->quirks & XHCI_INTEL_HOST)
4816 		return xhci_check_intel_tier_policy(udev, state);
4817 	else
4818 		return 0;
4819 }
4820 
4821 /* Returns the U1 or U2 timeout that should be enabled.
4822  * If the tier check or timeout setting functions return with a non-zero exit
4823  * code, that means the timeout value has been finalized and we shouldn't look
4824  * at any more endpoints.
4825  */
4826 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4827 			struct usb_device *udev, enum usb3_link_state state)
4828 {
4829 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830 	struct usb_host_config *config;
4831 	char *state_name;
4832 	int i;
4833 	u16 timeout = USB3_LPM_DISABLED;
4834 
4835 	if (state == USB3_LPM_U1)
4836 		state_name = "U1";
4837 	else if (state == USB3_LPM_U2)
4838 		state_name = "U2";
4839 	else {
4840 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4841 				state);
4842 		return timeout;
4843 	}
4844 
4845 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4846 		return timeout;
4847 
4848 	/* Gather some information about the currently installed configuration
4849 	 * and alternate interface settings.
4850 	 */
4851 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4852 			state, &timeout))
4853 		return timeout;
4854 
4855 	config = udev->actconfig;
4856 	if (!config)
4857 		return timeout;
4858 
4859 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4860 		struct usb_driver *driver;
4861 		struct usb_interface *intf = config->interface[i];
4862 
4863 		if (!intf)
4864 			continue;
4865 
4866 		/* Check if any currently bound drivers want hub-initiated LPM
4867 		 * disabled.
4868 		 */
4869 		if (intf->dev.driver) {
4870 			driver = to_usb_driver(intf->dev.driver);
4871 			if (driver && driver->disable_hub_initiated_lpm) {
4872 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4873 					state_name, driver->name);
4874 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4875 								      state);
4876 				if (timeout == USB3_LPM_DISABLED)
4877 					return timeout;
4878 			}
4879 		}
4880 
4881 		/* Not sure how this could happen... */
4882 		if (!intf->cur_altsetting)
4883 			continue;
4884 
4885 		if (xhci_update_timeout_for_interface(xhci, udev,
4886 					intf->cur_altsetting,
4887 					state, &timeout))
4888 			return timeout;
4889 	}
4890 	return timeout;
4891 }
4892 
4893 static int calculate_max_exit_latency(struct usb_device *udev,
4894 		enum usb3_link_state state_changed,
4895 		u16 hub_encoded_timeout)
4896 {
4897 	unsigned long long u1_mel_us = 0;
4898 	unsigned long long u2_mel_us = 0;
4899 	unsigned long long mel_us = 0;
4900 	bool disabling_u1;
4901 	bool disabling_u2;
4902 	bool enabling_u1;
4903 	bool enabling_u2;
4904 
4905 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4906 			hub_encoded_timeout == USB3_LPM_DISABLED);
4907 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4908 			hub_encoded_timeout == USB3_LPM_DISABLED);
4909 
4910 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4911 			hub_encoded_timeout != USB3_LPM_DISABLED);
4912 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4913 			hub_encoded_timeout != USB3_LPM_DISABLED);
4914 
4915 	/* If U1 was already enabled and we're not disabling it,
4916 	 * or we're going to enable U1, account for the U1 max exit latency.
4917 	 */
4918 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4919 			enabling_u1)
4920 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4921 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4922 			enabling_u2)
4923 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4924 
4925 	if (u1_mel_us > u2_mel_us)
4926 		mel_us = u1_mel_us;
4927 	else
4928 		mel_us = u2_mel_us;
4929 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4930 	if (mel_us > MAX_EXIT) {
4931 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4932 				"is too big.\n", mel_us);
4933 		return -E2BIG;
4934 	}
4935 	return mel_us;
4936 }
4937 
4938 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4939 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4940 			struct usb_device *udev, enum usb3_link_state state)
4941 {
4942 	struct xhci_hcd	*xhci;
4943 	u16 hub_encoded_timeout;
4944 	int mel;
4945 	int ret;
4946 
4947 	xhci = hcd_to_xhci(hcd);
4948 	/* The LPM timeout values are pretty host-controller specific, so don't
4949 	 * enable hub-initiated timeouts unless the vendor has provided
4950 	 * information about their timeout algorithm.
4951 	 */
4952 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4953 			!xhci->devs[udev->slot_id])
4954 		return USB3_LPM_DISABLED;
4955 
4956 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4957 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4958 	if (mel < 0) {
4959 		/* Max Exit Latency is too big, disable LPM. */
4960 		hub_encoded_timeout = USB3_LPM_DISABLED;
4961 		mel = 0;
4962 	}
4963 
4964 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4965 	if (ret)
4966 		return ret;
4967 	return hub_encoded_timeout;
4968 }
4969 
4970 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4971 			struct usb_device *udev, enum usb3_link_state state)
4972 {
4973 	struct xhci_hcd	*xhci;
4974 	u16 mel;
4975 
4976 	xhci = hcd_to_xhci(hcd);
4977 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4978 			!xhci->devs[udev->slot_id])
4979 		return 0;
4980 
4981 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4982 	return xhci_change_max_exit_latency(xhci, udev, mel);
4983 }
4984 #else /* CONFIG_PM */
4985 
4986 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4987 				struct usb_device *udev, int enable)
4988 {
4989 	return 0;
4990 }
4991 
4992 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4993 {
4994 	return 0;
4995 }
4996 
4997 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998 			struct usb_device *udev, enum usb3_link_state state)
4999 {
5000 	return USB3_LPM_DISABLED;
5001 }
5002 
5003 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5004 			struct usb_device *udev, enum usb3_link_state state)
5005 {
5006 	return 0;
5007 }
5008 #endif	/* CONFIG_PM */
5009 
5010 /*-------------------------------------------------------------------------*/
5011 
5012 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5013  * internal data structures for the device.
5014  */
5015 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5016 			struct usb_tt *tt, gfp_t mem_flags)
5017 {
5018 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5019 	struct xhci_virt_device *vdev;
5020 	struct xhci_command *config_cmd;
5021 	struct xhci_input_control_ctx *ctrl_ctx;
5022 	struct xhci_slot_ctx *slot_ctx;
5023 	unsigned long flags;
5024 	unsigned think_time;
5025 	int ret;
5026 
5027 	/* Ignore root hubs */
5028 	if (!hdev->parent)
5029 		return 0;
5030 
5031 	vdev = xhci->devs[hdev->slot_id];
5032 	if (!vdev) {
5033 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5034 		return -EINVAL;
5035 	}
5036 
5037 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5038 	if (!config_cmd)
5039 		return -ENOMEM;
5040 
5041 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5042 	if (!ctrl_ctx) {
5043 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5044 				__func__);
5045 		xhci_free_command(xhci, config_cmd);
5046 		return -ENOMEM;
5047 	}
5048 
5049 	spin_lock_irqsave(&xhci->lock, flags);
5050 	if (hdev->speed == USB_SPEED_HIGH &&
5051 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5052 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5053 		xhci_free_command(xhci, config_cmd);
5054 		spin_unlock_irqrestore(&xhci->lock, flags);
5055 		return -ENOMEM;
5056 	}
5057 
5058 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5059 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5060 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5061 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5062 	/*
5063 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5064 	 * but it may be already set to 1 when setup an xHCI virtual
5065 	 * device, so clear it anyway.
5066 	 */
5067 	if (tt->multi)
5068 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5069 	else if (hdev->speed == USB_SPEED_FULL)
5070 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5071 
5072 	if (xhci->hci_version > 0x95) {
5073 		xhci_dbg(xhci, "xHCI version %x needs hub "
5074 				"TT think time and number of ports\n",
5075 				(unsigned int) xhci->hci_version);
5076 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5077 		/* Set TT think time - convert from ns to FS bit times.
5078 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5079 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5080 		 *
5081 		 * xHCI 1.0: this field shall be 0 if the device is not a
5082 		 * High-spped hub.
5083 		 */
5084 		think_time = tt->think_time;
5085 		if (think_time != 0)
5086 			think_time = (think_time / 666) - 1;
5087 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5088 			slot_ctx->tt_info |=
5089 				cpu_to_le32(TT_THINK_TIME(think_time));
5090 	} else {
5091 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5092 				"TT think time or number of ports\n",
5093 				(unsigned int) xhci->hci_version);
5094 	}
5095 	slot_ctx->dev_state = 0;
5096 	spin_unlock_irqrestore(&xhci->lock, flags);
5097 
5098 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5099 			(xhci->hci_version > 0x95) ?
5100 			"configure endpoint" : "evaluate context");
5101 
5102 	/* Issue and wait for the configure endpoint or
5103 	 * evaluate context command.
5104 	 */
5105 	if (xhci->hci_version > 0x95)
5106 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5107 				false, false);
5108 	else
5109 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5110 				true, false);
5111 
5112 	xhci_free_command(xhci, config_cmd);
5113 	return ret;
5114 }
5115 
5116 static int xhci_get_frame(struct usb_hcd *hcd)
5117 {
5118 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5119 	/* EHCI mods by the periodic size.  Why? */
5120 	return readl(&xhci->run_regs->microframe_index) >> 3;
5121 }
5122 
5123 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5124 {
5125 	struct xhci_hcd		*xhci;
5126 	/*
5127 	 * TODO: Check with DWC3 clients for sysdev according to
5128 	 * quirks
5129 	 */
5130 	struct device		*dev = hcd->self.sysdev;
5131 	unsigned int		minor_rev;
5132 	int			retval;
5133 
5134 	/* Accept arbitrarily long scatter-gather lists */
5135 	hcd->self.sg_tablesize = ~0;
5136 
5137 	/* support to build packet from discontinuous buffers */
5138 	hcd->self.no_sg_constraint = 1;
5139 
5140 	/* XHCI controllers don't stop the ep queue on short packets :| */
5141 	hcd->self.no_stop_on_short = 1;
5142 
5143 	xhci = hcd_to_xhci(hcd);
5144 
5145 	if (usb_hcd_is_primary_hcd(hcd)) {
5146 		xhci->main_hcd = hcd;
5147 		xhci->usb2_rhub.hcd = hcd;
5148 		/* Mark the first roothub as being USB 2.0.
5149 		 * The xHCI driver will register the USB 3.0 roothub.
5150 		 */
5151 		hcd->speed = HCD_USB2;
5152 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5153 		/*
5154 		 * USB 2.0 roothub under xHCI has an integrated TT,
5155 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5156 		 * companion controller.
5157 		 */
5158 		hcd->has_tt = 1;
5159 	} else {
5160 		/*
5161 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5162 		 * should return 0x31 for sbrn, or that the minor revision
5163 		 * is a two digit BCD containig minor and sub-minor numbers.
5164 		 * This was later clarified in xHCI 1.2.
5165 		 *
5166 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5167 		 * minor revision set to 0x1 instead of 0x10.
5168 		 */
5169 		if (xhci->usb3_rhub.min_rev == 0x1)
5170 			minor_rev = 1;
5171 		else
5172 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5173 
5174 		switch (minor_rev) {
5175 		case 2:
5176 			hcd->speed = HCD_USB32;
5177 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178 			hcd->self.root_hub->rx_lanes = 2;
5179 			hcd->self.root_hub->tx_lanes = 2;
5180 			break;
5181 		case 1:
5182 			hcd->speed = HCD_USB31;
5183 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5184 			break;
5185 		}
5186 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5187 			  minor_rev,
5188 			  minor_rev ? "Enhanced " : "");
5189 
5190 		xhci->usb3_rhub.hcd = hcd;
5191 		/* xHCI private pointer was set in xhci_pci_probe for the second
5192 		 * registered roothub.
5193 		 */
5194 		return 0;
5195 	}
5196 
5197 	mutex_init(&xhci->mutex);
5198 	xhci->cap_regs = hcd->regs;
5199 	xhci->op_regs = hcd->regs +
5200 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5201 	xhci->run_regs = hcd->regs +
5202 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5203 	/* Cache read-only capability registers */
5204 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5205 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5206 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5207 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5208 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5209 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5210 	if (xhci->hci_version > 0x100)
5211 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5212 
5213 	xhci->quirks |= quirks;
5214 
5215 	get_quirks(dev, xhci);
5216 
5217 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5218 	 * success event after a short transfer. This quirk will ignore such
5219 	 * spurious event.
5220 	 */
5221 	if (xhci->hci_version > 0x96)
5222 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5223 
5224 	/* Make sure the HC is halted. */
5225 	retval = xhci_halt(xhci);
5226 	if (retval)
5227 		return retval;
5228 
5229 	xhci_zero_64b_regs(xhci);
5230 
5231 	xhci_dbg(xhci, "Resetting HCD\n");
5232 	/* Reset the internal HC memory state and registers. */
5233 	retval = xhci_reset(xhci);
5234 	if (retval)
5235 		return retval;
5236 	xhci_dbg(xhci, "Reset complete\n");
5237 
5238 	/*
5239 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5240 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5241 	 * address memory pointers actually. So, this driver clears the AC64
5242 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5243 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5244 	 */
5245 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5246 		xhci->hcc_params &= ~BIT(0);
5247 
5248 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5249 	 * if xHC supports 64-bit addressing */
5250 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5251 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5252 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5253 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5254 	} else {
5255 		/*
5256 		 * This is to avoid error in cases where a 32-bit USB
5257 		 * controller is used on a 64-bit capable system.
5258 		 */
5259 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5260 		if (retval)
5261 			return retval;
5262 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5263 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5264 	}
5265 
5266 	xhci_dbg(xhci, "Calling HCD init\n");
5267 	/* Initialize HCD and host controller data structures. */
5268 	retval = xhci_init(hcd);
5269 	if (retval)
5270 		return retval;
5271 	xhci_dbg(xhci, "Called HCD init\n");
5272 
5273 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5274 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5275 
5276 	return 0;
5277 }
5278 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5279 
5280 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5281 		struct usb_host_endpoint *ep)
5282 {
5283 	struct xhci_hcd *xhci;
5284 	struct usb_device *udev;
5285 	unsigned int slot_id;
5286 	unsigned int ep_index;
5287 	unsigned long flags;
5288 
5289 	xhci = hcd_to_xhci(hcd);
5290 
5291 	spin_lock_irqsave(&xhci->lock, flags);
5292 	udev = (struct usb_device *)ep->hcpriv;
5293 	slot_id = udev->slot_id;
5294 	ep_index = xhci_get_endpoint_index(&ep->desc);
5295 
5296 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5297 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5298 	spin_unlock_irqrestore(&xhci->lock, flags);
5299 }
5300 
5301 static const struct hc_driver xhci_hc_driver = {
5302 	.description =		"xhci-hcd",
5303 	.product_desc =		"xHCI Host Controller",
5304 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5305 
5306 	/*
5307 	 * generic hardware linkage
5308 	 */
5309 	.irq =			xhci_irq,
5310 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5311 				HCD_BH,
5312 
5313 	/*
5314 	 * basic lifecycle operations
5315 	 */
5316 	.reset =		NULL, /* set in xhci_init_driver() */
5317 	.start =		xhci_run,
5318 	.stop =			xhci_stop,
5319 	.shutdown =		xhci_shutdown,
5320 
5321 	/*
5322 	 * managing i/o requests and associated device resources
5323 	 */
5324 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5325 	.urb_enqueue =		xhci_urb_enqueue,
5326 	.urb_dequeue =		xhci_urb_dequeue,
5327 	.alloc_dev =		xhci_alloc_dev,
5328 	.free_dev =		xhci_free_dev,
5329 	.alloc_streams =	xhci_alloc_streams,
5330 	.free_streams =		xhci_free_streams,
5331 	.add_endpoint =		xhci_add_endpoint,
5332 	.drop_endpoint =	xhci_drop_endpoint,
5333 	.endpoint_disable =	xhci_endpoint_disable,
5334 	.endpoint_reset =	xhci_endpoint_reset,
5335 	.check_bandwidth =	xhci_check_bandwidth,
5336 	.reset_bandwidth =	xhci_reset_bandwidth,
5337 	.address_device =	xhci_address_device,
5338 	.enable_device =	xhci_enable_device,
5339 	.update_hub_device =	xhci_update_hub_device,
5340 	.reset_device =		xhci_discover_or_reset_device,
5341 
5342 	/*
5343 	 * scheduling support
5344 	 */
5345 	.get_frame_number =	xhci_get_frame,
5346 
5347 	/*
5348 	 * root hub support
5349 	 */
5350 	.hub_control =		xhci_hub_control,
5351 	.hub_status_data =	xhci_hub_status_data,
5352 	.bus_suspend =		xhci_bus_suspend,
5353 	.bus_resume =		xhci_bus_resume,
5354 	.get_resuming_ports =	xhci_get_resuming_ports,
5355 
5356 	/*
5357 	 * call back when device connected and addressed
5358 	 */
5359 	.update_device =        xhci_update_device,
5360 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5361 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5362 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5363 	.find_raw_port_number =	xhci_find_raw_port_number,
5364 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5365 };
5366 
5367 void xhci_init_driver(struct hc_driver *drv,
5368 		      const struct xhci_driver_overrides *over)
5369 {
5370 	BUG_ON(!over);
5371 
5372 	/* Copy the generic table to drv then apply the overrides */
5373 	*drv = xhci_hc_driver;
5374 
5375 	if (over) {
5376 		drv->hcd_priv_size += over->extra_priv_size;
5377 		if (over->reset)
5378 			drv->reset = over->reset;
5379 		if (over->start)
5380 			drv->start = over->start;
5381 	}
5382 }
5383 EXPORT_SYMBOL_GPL(xhci_init_driver);
5384 
5385 MODULE_DESCRIPTION(DRIVER_DESC);
5386 MODULE_AUTHOR(DRIVER_AUTHOR);
5387 MODULE_LICENSE("GPL");
5388 
5389 static int __init xhci_hcd_init(void)
5390 {
5391 	/*
5392 	 * Check the compiler generated sizes of structures that must be laid
5393 	 * out in specific ways for hardware access.
5394 	 */
5395 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5396 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5397 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5398 	/* xhci_device_control has eight fields, and also
5399 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5400 	 */
5401 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5402 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5403 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5404 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5405 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5406 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5407 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5408 
5409 	if (usb_disabled())
5410 		return -ENODEV;
5411 
5412 	xhci_debugfs_create_root();
5413 
5414 	return 0;
5415 }
5416 
5417 /*
5418  * If an init function is provided, an exit function must also be provided
5419  * to allow module unload.
5420  */
5421 static void __exit xhci_hcd_fini(void)
5422 {
5423 	xhci_debugfs_remove_root();
5424 }
5425 
5426 module_init(xhci_hcd_init);
5427 module_exit(xhci_hcd_fini);
5428