xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * xHCI host controller driver
4   *
5   * Copyright (C) 2008 Intel Corp.
6   *
7   * Author: Sarah Sharp
8   * Some code borrowed from the Linux EHCI driver.
9   */
10  
11  #include <linux/jiffies.h>
12  #include <linux/pci.h>
13  #include <linux/iommu.h>
14  #include <linux/iopoll.h>
15  #include <linux/irq.h>
16  #include <linux/log2.h>
17  #include <linux/module.h>
18  #include <linux/moduleparam.h>
19  #include <linux/slab.h>
20  #include <linux/dmi.h>
21  #include <linux/dma-mapping.h>
22  
23  #include "xhci.h"
24  #include "xhci-trace.h"
25  #include "xhci-debugfs.h"
26  #include "xhci-dbgcap.h"
27  
28  #define DRIVER_AUTHOR "Sarah Sharp"
29  #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30  
31  #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32  
33  /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34  static int link_quirk;
35  module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36  MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37  
38  static unsigned long long quirks;
39  module_param(quirks, ullong, S_IRUGO);
40  MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41  
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)42  static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43  {
44  	struct xhci_segment *seg = ring->first_seg;
45  
46  	if (!td || !td->start_seg)
47  		return false;
48  	do {
49  		if (seg == td->start_seg)
50  			return true;
51  		seg = seg->next;
52  	} while (seg && seg != ring->first_seg);
53  
54  	return false;
55  }
56  
57  /*
58   * xhci_handshake - spin reading hc until handshake completes or fails
59   * @ptr: address of hc register to be read
60   * @mask: bits to look at in result of read
61   * @done: value of those bits when handshake succeeds
62   * @usec: timeout in microseconds
63   *
64   * Returns negative errno, or zero on success
65   *
66   * Success happens when the "mask" bits have the specified value (hardware
67   * handshake done).  There are two failure modes:  "usec" have passed (major
68   * hardware flakeout), or the register reads as all-ones (hardware removed).
69   */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)70  int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71  {
72  	u32	result;
73  	int	ret;
74  
75  	ret = readl_poll_timeout_atomic(ptr, result,
76  					(result & mask) == done ||
77  					result == U32_MAX,
78  					1, timeout_us);
79  	if (result == U32_MAX)		/* card removed */
80  		return -ENODEV;
81  
82  	return ret;
83  }
84  
85  /*
86   * Disable interrupts and begin the xHCI halting process.
87   */
xhci_quiesce(struct xhci_hcd * xhci)88  void xhci_quiesce(struct xhci_hcd *xhci)
89  {
90  	u32 halted;
91  	u32 cmd;
92  	u32 mask;
93  
94  	mask = ~(XHCI_IRQS);
95  	halted = readl(&xhci->op_regs->status) & STS_HALT;
96  	if (!halted)
97  		mask &= ~CMD_RUN;
98  
99  	cmd = readl(&xhci->op_regs->command);
100  	cmd &= mask;
101  	writel(cmd, &xhci->op_regs->command);
102  }
103  
104  /*
105   * Force HC into halt state.
106   *
107   * Disable any IRQs and clear the run/stop bit.
108   * HC will complete any current and actively pipelined transactions, and
109   * should halt within 16 ms of the run/stop bit being cleared.
110   * Read HC Halted bit in the status register to see when the HC is finished.
111   */
xhci_halt(struct xhci_hcd * xhci)112  int xhci_halt(struct xhci_hcd *xhci)
113  {
114  	int ret;
115  
116  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117  	xhci_quiesce(xhci);
118  
119  	ret = xhci_handshake(&xhci->op_regs->status,
120  			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121  	if (ret) {
122  		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123  		return ret;
124  	}
125  
126  	xhci->xhc_state |= XHCI_STATE_HALTED;
127  	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
128  
129  	return ret;
130  }
131  
132  /*
133   * Set the run bit and wait for the host to be running.
134   */
xhci_start(struct xhci_hcd * xhci)135  int xhci_start(struct xhci_hcd *xhci)
136  {
137  	u32 temp;
138  	int ret;
139  
140  	temp = readl(&xhci->op_regs->command);
141  	temp |= (CMD_RUN);
142  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
143  			temp);
144  	writel(temp, &xhci->op_regs->command);
145  
146  	/*
147  	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
148  	 * running.
149  	 */
150  	ret = xhci_handshake(&xhci->op_regs->status,
151  			STS_HALT, 0, XHCI_MAX_HALT_USEC);
152  	if (ret == -ETIMEDOUT)
153  		xhci_err(xhci, "Host took too long to start, "
154  				"waited %u microseconds.\n",
155  				XHCI_MAX_HALT_USEC);
156  	if (!ret) {
157  		/* clear state flags. Including dying, halted or removing */
158  		xhci->xhc_state = 0;
159  		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
160  	}
161  
162  	return ret;
163  }
164  
165  /*
166   * Reset a halted HC.
167   *
168   * This resets pipelines, timers, counters, state machines, etc.
169   * Transactions will be terminated immediately, and operational registers
170   * will be set to their defaults.
171   */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)172  int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
173  {
174  	u32 command;
175  	u32 state;
176  	int ret;
177  
178  	state = readl(&xhci->op_regs->status);
179  
180  	if (state == ~(u32)0) {
181  		xhci_warn(xhci, "Host not accessible, reset failed.\n");
182  		return -ENODEV;
183  	}
184  
185  	if ((state & STS_HALT) == 0) {
186  		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
187  		return 0;
188  	}
189  
190  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
191  	command = readl(&xhci->op_regs->command);
192  	command |= CMD_RESET;
193  	writel(command, &xhci->op_regs->command);
194  
195  	/* Existing Intel xHCI controllers require a delay of 1 mS,
196  	 * after setting the CMD_RESET bit, and before accessing any
197  	 * HC registers. This allows the HC to complete the
198  	 * reset operation and be ready for HC register access.
199  	 * Without this delay, the subsequent HC register access,
200  	 * may result in a system hang very rarely.
201  	 */
202  	if (xhci->quirks & XHCI_INTEL_HOST)
203  		udelay(1000);
204  
205  	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
206  	if (ret)
207  		return ret;
208  
209  	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
210  		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
211  
212  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
213  			 "Wait for controller to be ready for doorbell rings");
214  	/*
215  	 * xHCI cannot write to any doorbells or operational registers other
216  	 * than status until the "Controller Not Ready" flag is cleared.
217  	 */
218  	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
219  
220  	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
221  	xhci->usb2_rhub.bus_state.suspended_ports = 0;
222  	xhci->usb2_rhub.bus_state.resuming_ports = 0;
223  	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
224  	xhci->usb3_rhub.bus_state.suspended_ports = 0;
225  	xhci->usb3_rhub.bus_state.resuming_ports = 0;
226  
227  	return ret;
228  }
229  
xhci_zero_64b_regs(struct xhci_hcd * xhci)230  static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
231  {
232  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
233  	struct iommu_domain *domain;
234  	int err, i;
235  	u64 val;
236  	u32 intrs;
237  
238  	/*
239  	 * Some Renesas controllers get into a weird state if they are
240  	 * reset while programmed with 64bit addresses (they will preserve
241  	 * the top half of the address in internal, non visible
242  	 * registers). You end up with half the address coming from the
243  	 * kernel, and the other half coming from the firmware. Also,
244  	 * changing the programming leads to extra accesses even if the
245  	 * controller is supposed to be halted. The controller ends up with
246  	 * a fatal fault, and is then ripe for being properly reset.
247  	 *
248  	 * Special care is taken to only apply this if the device is behind
249  	 * an iommu. Doing anything when there is no iommu is definitely
250  	 * unsafe...
251  	 */
252  	domain = iommu_get_domain_for_dev(dev);
253  	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
254  	    domain->type == IOMMU_DOMAIN_IDENTITY)
255  		return;
256  
257  	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
258  
259  	/* Clear HSEIE so that faults do not get signaled */
260  	val = readl(&xhci->op_regs->command);
261  	val &= ~CMD_HSEIE;
262  	writel(val, &xhci->op_regs->command);
263  
264  	/* Clear HSE (aka FATAL) */
265  	val = readl(&xhci->op_regs->status);
266  	val |= STS_FATAL;
267  	writel(val, &xhci->op_regs->status);
268  
269  	/* Now zero the registers, and brace for impact */
270  	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
271  	if (upper_32_bits(val))
272  		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
273  	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
274  	if (upper_32_bits(val))
275  		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
276  
277  	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
278  		      ARRAY_SIZE(xhci->run_regs->ir_set));
279  
280  	for (i = 0; i < intrs; i++) {
281  		struct xhci_intr_reg __iomem *ir;
282  
283  		ir = &xhci->run_regs->ir_set[i];
284  		val = xhci_read_64(xhci, &ir->erst_base);
285  		if (upper_32_bits(val))
286  			xhci_write_64(xhci, 0, &ir->erst_base);
287  		val= xhci_read_64(xhci, &ir->erst_dequeue);
288  		if (upper_32_bits(val))
289  			xhci_write_64(xhci, 0, &ir->erst_dequeue);
290  	}
291  
292  	/* Wait for the fault to appear. It will be cleared on reset */
293  	err = xhci_handshake(&xhci->op_regs->status,
294  			     STS_FATAL, STS_FATAL,
295  			     XHCI_MAX_HALT_USEC);
296  	if (!err)
297  		xhci_info(xhci, "Fault detected\n");
298  }
299  
xhci_enable_interrupter(struct xhci_interrupter * ir)300  static int xhci_enable_interrupter(struct xhci_interrupter *ir)
301  {
302  	u32 iman;
303  
304  	if (!ir || !ir->ir_set)
305  		return -EINVAL;
306  
307  	iman = readl(&ir->ir_set->irq_pending);
308  	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
309  
310  	return 0;
311  }
312  
xhci_disable_interrupter(struct xhci_interrupter * ir)313  static int xhci_disable_interrupter(struct xhci_interrupter *ir)
314  {
315  	u32 iman;
316  
317  	if (!ir || !ir->ir_set)
318  		return -EINVAL;
319  
320  	iman = readl(&ir->ir_set->irq_pending);
321  	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
322  
323  	return 0;
324  }
325  
compliance_mode_recovery(struct timer_list * t)326  static void compliance_mode_recovery(struct timer_list *t)
327  {
328  	struct xhci_hcd *xhci;
329  	struct usb_hcd *hcd;
330  	struct xhci_hub *rhub;
331  	u32 temp;
332  	int i;
333  
334  	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
335  	rhub = &xhci->usb3_rhub;
336  	hcd = rhub->hcd;
337  
338  	if (!hcd)
339  		return;
340  
341  	for (i = 0; i < rhub->num_ports; i++) {
342  		temp = readl(rhub->ports[i]->addr);
343  		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
344  			/*
345  			 * Compliance Mode Detected. Letting USB Core
346  			 * handle the Warm Reset
347  			 */
348  			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
349  					"Compliance mode detected->port %d",
350  					i + 1);
351  			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
352  					"Attempting compliance mode recovery");
353  
354  			if (hcd->state == HC_STATE_SUSPENDED)
355  				usb_hcd_resume_root_hub(hcd);
356  
357  			usb_hcd_poll_rh_status(hcd);
358  		}
359  	}
360  
361  	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
362  		mod_timer(&xhci->comp_mode_recovery_timer,
363  			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
364  }
365  
366  /*
367   * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
368   * that causes ports behind that hardware to enter compliance mode sometimes.
369   * The quirk creates a timer that polls every 2 seconds the link state of
370   * each host controller's port and recovers it by issuing a Warm reset
371   * if Compliance mode is detected, otherwise the port will become "dead" (no
372   * device connections or disconnections will be detected anymore). Becasue no
373   * status event is generated when entering compliance mode (per xhci spec),
374   * this quirk is needed on systems that have the failing hardware installed.
375   */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)376  static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
377  {
378  	xhci->port_status_u0 = 0;
379  	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
380  		    0);
381  	xhci->comp_mode_recovery_timer.expires = jiffies +
382  			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
383  
384  	add_timer(&xhci->comp_mode_recovery_timer);
385  	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
386  			"Compliance mode recovery timer initialized");
387  }
388  
389  /*
390   * This function identifies the systems that have installed the SN65LVPE502CP
391   * USB3.0 re-driver and that need the Compliance Mode Quirk.
392   * Systems:
393   * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
394   */
xhci_compliance_mode_recovery_timer_quirk_check(void)395  static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
396  {
397  	const char *dmi_product_name, *dmi_sys_vendor;
398  
399  	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
400  	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
401  	if (!dmi_product_name || !dmi_sys_vendor)
402  		return false;
403  
404  	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
405  		return false;
406  
407  	if (strstr(dmi_product_name, "Z420") ||
408  			strstr(dmi_product_name, "Z620") ||
409  			strstr(dmi_product_name, "Z820") ||
410  			strstr(dmi_product_name, "Z1 Workstation"))
411  		return true;
412  
413  	return false;
414  }
415  
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)416  static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
417  {
418  	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
419  }
420  
421  
422  /*
423   * Initialize memory for HCD and xHC (one-time init).
424   *
425   * Program the PAGESIZE register, initialize the device context array, create
426   * device contexts (?), set up a command ring segment (or two?), create event
427   * ring (one for now).
428   */
xhci_init(struct usb_hcd * hcd)429  static int xhci_init(struct usb_hcd *hcd)
430  {
431  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
432  	int retval;
433  
434  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
435  	spin_lock_init(&xhci->lock);
436  	if (xhci->hci_version == 0x95 && link_quirk) {
437  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
438  				"QUIRK: Not clearing Link TRB chain bits.");
439  		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
440  	} else {
441  		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
442  				"xHCI doesn't need link TRB QUIRK");
443  	}
444  	retval = xhci_mem_init(xhci, GFP_KERNEL);
445  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
446  
447  	/* Initializing Compliance Mode Recovery Data If Needed */
448  	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
449  		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
450  		compliance_mode_recovery_timer_init(xhci);
451  	}
452  
453  	return retval;
454  }
455  
456  /*-------------------------------------------------------------------------*/
457  
xhci_run_finished(struct xhci_hcd * xhci)458  static int xhci_run_finished(struct xhci_hcd *xhci)
459  {
460  	struct xhci_interrupter *ir = xhci->interrupter;
461  	unsigned long	flags;
462  	u32		temp;
463  
464  	/*
465  	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
466  	 * Protect the short window before host is running with a lock
467  	 */
468  	spin_lock_irqsave(&xhci->lock, flags);
469  
470  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
471  	temp = readl(&xhci->op_regs->command);
472  	temp |= (CMD_EIE);
473  	writel(temp, &xhci->op_regs->command);
474  
475  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
476  	xhci_enable_interrupter(ir);
477  
478  	if (xhci_start(xhci)) {
479  		xhci_halt(xhci);
480  		spin_unlock_irqrestore(&xhci->lock, flags);
481  		return -ENODEV;
482  	}
483  
484  	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
485  
486  	if (xhci->quirks & XHCI_NEC_HOST)
487  		xhci_ring_cmd_db(xhci);
488  
489  	spin_unlock_irqrestore(&xhci->lock, flags);
490  
491  	return 0;
492  }
493  
494  /*
495   * Start the HC after it was halted.
496   *
497   * This function is called by the USB core when the HC driver is added.
498   * Its opposite is xhci_stop().
499   *
500   * xhci_init() must be called once before this function can be called.
501   * Reset the HC, enable device slot contexts, program DCBAAP, and
502   * set command ring pointer and event ring pointer.
503   *
504   * Setup MSI-X vectors and enable interrupts.
505   */
xhci_run(struct usb_hcd * hcd)506  int xhci_run(struct usb_hcd *hcd)
507  {
508  	u32 temp;
509  	u64 temp_64;
510  	int ret;
511  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
512  	struct xhci_interrupter *ir = xhci->interrupter;
513  	/* Start the xHCI host controller running only after the USB 2.0 roothub
514  	 * is setup.
515  	 */
516  
517  	hcd->uses_new_polling = 1;
518  	if (!usb_hcd_is_primary_hcd(hcd))
519  		return xhci_run_finished(xhci);
520  
521  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
522  
523  	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
524  	temp_64 &= ~ERST_PTR_MASK;
525  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
526  			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
527  
528  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
529  			"// Set the interrupt modulation register");
530  	temp = readl(&ir->ir_set->irq_control);
531  	temp &= ~ER_IRQ_INTERVAL_MASK;
532  	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
533  	writel(temp, &ir->ir_set->irq_control);
534  
535  	if (xhci->quirks & XHCI_NEC_HOST) {
536  		struct xhci_command *command;
537  
538  		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
539  		if (!command)
540  			return -ENOMEM;
541  
542  		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
543  				TRB_TYPE(TRB_NEC_GET_FW));
544  		if (ret)
545  			xhci_free_command(xhci, command);
546  	}
547  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
548  			"Finished %s for main hcd", __func__);
549  
550  	xhci_create_dbc_dev(xhci);
551  
552  	xhci_debugfs_init(xhci);
553  
554  	if (xhci_has_one_roothub(xhci))
555  		return xhci_run_finished(xhci);
556  
557  	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
558  
559  	return 0;
560  }
561  EXPORT_SYMBOL_GPL(xhci_run);
562  
563  /*
564   * Stop xHCI driver.
565   *
566   * This function is called by the USB core when the HC driver is removed.
567   * Its opposite is xhci_run().
568   *
569   * Disable device contexts, disable IRQs, and quiesce the HC.
570   * Reset the HC, finish any completed transactions, and cleanup memory.
571   */
xhci_stop(struct usb_hcd * hcd)572  void xhci_stop(struct usb_hcd *hcd)
573  {
574  	u32 temp;
575  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576  	struct xhci_interrupter *ir = xhci->interrupter;
577  
578  	mutex_lock(&xhci->mutex);
579  
580  	/* Only halt host and free memory after both hcds are removed */
581  	if (!usb_hcd_is_primary_hcd(hcd)) {
582  		mutex_unlock(&xhci->mutex);
583  		return;
584  	}
585  
586  	xhci_remove_dbc_dev(xhci);
587  
588  	spin_lock_irq(&xhci->lock);
589  	xhci->xhc_state |= XHCI_STATE_HALTED;
590  	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
591  	xhci_halt(xhci);
592  	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
593  	spin_unlock_irq(&xhci->lock);
594  
595  	/* Deleting Compliance Mode Recovery Timer */
596  	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
597  			(!(xhci_all_ports_seen_u0(xhci)))) {
598  		del_timer_sync(&xhci->comp_mode_recovery_timer);
599  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
600  				"%s: compliance mode recovery timer deleted",
601  				__func__);
602  	}
603  
604  	if (xhci->quirks & XHCI_AMD_PLL_FIX)
605  		usb_amd_dev_put();
606  
607  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608  			"// Disabling event ring interrupts");
609  	temp = readl(&xhci->op_regs->status);
610  	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
611  	xhci_disable_interrupter(ir);
612  
613  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
614  	xhci_mem_cleanup(xhci);
615  	xhci_debugfs_exit(xhci);
616  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617  			"xhci_stop completed - status = %x",
618  			readl(&xhci->op_regs->status));
619  	mutex_unlock(&xhci->mutex);
620  }
621  EXPORT_SYMBOL_GPL(xhci_stop);
622  
623  /*
624   * Shutdown HC (not bus-specific)
625   *
626   * This is called when the machine is rebooting or halting.  We assume that the
627   * machine will be powered off, and the HC's internal state will be reset.
628   * Don't bother to free memory.
629   *
630   * This will only ever be called with the main usb_hcd (the USB3 roothub).
631   */
xhci_shutdown(struct usb_hcd * hcd)632  void xhci_shutdown(struct usb_hcd *hcd)
633  {
634  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
635  
636  	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
637  		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
638  
639  	/* Don't poll the roothubs after shutdown. */
640  	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
641  			__func__, hcd->self.busnum);
642  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
643  	del_timer_sync(&hcd->rh_timer);
644  
645  	if (xhci->shared_hcd) {
646  		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
647  		del_timer_sync(&xhci->shared_hcd->rh_timer);
648  	}
649  
650  	spin_lock_irq(&xhci->lock);
651  	xhci_halt(xhci);
652  
653  	/*
654  	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
655  	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
656  	 */
657  	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
658  	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
659  		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
660  
661  	spin_unlock_irq(&xhci->lock);
662  
663  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664  			"xhci_shutdown completed - status = %x",
665  			readl(&xhci->op_regs->status));
666  }
667  EXPORT_SYMBOL_GPL(xhci_shutdown);
668  
669  #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)670  static void xhci_save_registers(struct xhci_hcd *xhci)
671  {
672  	struct xhci_interrupter *ir = xhci->interrupter;
673  
674  	xhci->s3.command = readl(&xhci->op_regs->command);
675  	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
676  	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
677  	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
678  
679  	if (!ir)
680  		return;
681  
682  	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
683  	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
684  	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
685  	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
686  	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
687  }
688  
xhci_restore_registers(struct xhci_hcd * xhci)689  static void xhci_restore_registers(struct xhci_hcd *xhci)
690  {
691  	struct xhci_interrupter *ir = xhci->interrupter;
692  
693  	writel(xhci->s3.command, &xhci->op_regs->command);
694  	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
695  	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
696  	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
697  	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
698  	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
699  	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
700  	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
701  	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
702  }
703  
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)704  static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
705  {
706  	u64	val_64;
707  
708  	/* step 2: initialize command ring buffer */
709  	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
710  	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
711  		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
712  				      xhci->cmd_ring->dequeue) &
713  		 (u64) ~CMD_RING_RSVD_BITS) |
714  		xhci->cmd_ring->cycle_state;
715  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716  			"// Setting command ring address to 0x%llx",
717  			(long unsigned long) val_64);
718  	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
719  }
720  
721  /*
722   * The whole command ring must be cleared to zero when we suspend the host.
723   *
724   * The host doesn't save the command ring pointer in the suspend well, so we
725   * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
726   * aligned, because of the reserved bits in the command ring dequeue pointer
727   * register.  Therefore, we can't just set the dequeue pointer back in the
728   * middle of the ring (TRBs are 16-byte aligned).
729   */
xhci_clear_command_ring(struct xhci_hcd * xhci)730  static void xhci_clear_command_ring(struct xhci_hcd *xhci)
731  {
732  	struct xhci_ring *ring;
733  	struct xhci_segment *seg;
734  
735  	ring = xhci->cmd_ring;
736  	seg = ring->deq_seg;
737  	do {
738  		memset(seg->trbs, 0,
739  			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
740  		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
741  			cpu_to_le32(~TRB_CYCLE);
742  		seg = seg->next;
743  	} while (seg != ring->deq_seg);
744  
745  	/* Reset the software enqueue and dequeue pointers */
746  	ring->deq_seg = ring->first_seg;
747  	ring->dequeue = ring->first_seg->trbs;
748  	ring->enq_seg = ring->deq_seg;
749  	ring->enqueue = ring->dequeue;
750  
751  	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
752  	/*
753  	 * Ring is now zeroed, so the HW should look for change of ownership
754  	 * when the cycle bit is set to 1.
755  	 */
756  	ring->cycle_state = 1;
757  
758  	/*
759  	 * Reset the hardware dequeue pointer.
760  	 * Yes, this will need to be re-written after resume, but we're paranoid
761  	 * and want to make sure the hardware doesn't access bogus memory
762  	 * because, say, the BIOS or an SMI started the host without changing
763  	 * the command ring pointers.
764  	 */
765  	xhci_set_cmd_ring_deq(xhci);
766  }
767  
768  /*
769   * Disable port wake bits if do_wakeup is not set.
770   *
771   * Also clear a possible internal port wake state left hanging for ports that
772   * detected termination but never successfully enumerated (trained to 0U).
773   * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
774   * at enumeration clears this wake, force one here as well for unconnected ports
775   */
776  
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)777  static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
778  				       struct xhci_hub *rhub,
779  				       bool do_wakeup)
780  {
781  	unsigned long flags;
782  	u32 t1, t2, portsc;
783  	int i;
784  
785  	spin_lock_irqsave(&xhci->lock, flags);
786  
787  	for (i = 0; i < rhub->num_ports; i++) {
788  		portsc = readl(rhub->ports[i]->addr);
789  		t1 = xhci_port_state_to_neutral(portsc);
790  		t2 = t1;
791  
792  		/* clear wake bits if do_wake is not set */
793  		if (!do_wakeup)
794  			t2 &= ~PORT_WAKE_BITS;
795  
796  		/* Don't touch csc bit if connected or connect change is set */
797  		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
798  			t2 |= PORT_CSC;
799  
800  		if (t1 != t2) {
801  			writel(t2, rhub->ports[i]->addr);
802  			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
803  				 rhub->hcd->self.busnum, i + 1, portsc, t2);
804  		}
805  	}
806  	spin_unlock_irqrestore(&xhci->lock, flags);
807  }
808  
xhci_pending_portevent(struct xhci_hcd * xhci)809  static bool xhci_pending_portevent(struct xhci_hcd *xhci)
810  {
811  	struct xhci_port	**ports;
812  	int			port_index;
813  	u32			status;
814  	u32			portsc;
815  
816  	status = readl(&xhci->op_regs->status);
817  	if (status & STS_EINT)
818  		return true;
819  	/*
820  	 * Checking STS_EINT is not enough as there is a lag between a change
821  	 * bit being set and the Port Status Change Event that it generated
822  	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
823  	 */
824  
825  	port_index = xhci->usb2_rhub.num_ports;
826  	ports = xhci->usb2_rhub.ports;
827  	while (port_index--) {
828  		portsc = readl(ports[port_index]->addr);
829  		if (portsc & PORT_CHANGE_MASK ||
830  		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
831  			return true;
832  	}
833  	port_index = xhci->usb3_rhub.num_ports;
834  	ports = xhci->usb3_rhub.ports;
835  	while (port_index--) {
836  		portsc = readl(ports[port_index]->addr);
837  		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
838  		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
839  			return true;
840  	}
841  	return false;
842  }
843  
844  /*
845   * Stop HC (not bus-specific)
846   *
847   * This is called when the machine transition into S3/S4 mode.
848   *
849   */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)850  int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
851  {
852  	int			rc = 0;
853  	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
854  	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
855  	u32			command;
856  	u32			res;
857  
858  	if (!hcd->state)
859  		return 0;
860  
861  	if (hcd->state != HC_STATE_SUSPENDED ||
862  	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
863  		return -EINVAL;
864  
865  	/* Clear root port wake on bits if wakeup not allowed. */
866  	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
867  	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
868  
869  	if (!HCD_HW_ACCESSIBLE(hcd))
870  		return 0;
871  
872  	xhci_dbc_suspend(xhci);
873  
874  	/* Don't poll the roothubs on bus suspend. */
875  	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
876  		 __func__, hcd->self.busnum);
877  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
878  	del_timer_sync(&hcd->rh_timer);
879  	if (xhci->shared_hcd) {
880  		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
881  		del_timer_sync(&xhci->shared_hcd->rh_timer);
882  	}
883  
884  	if (xhci->quirks & XHCI_SUSPEND_DELAY)
885  		usleep_range(1000, 1500);
886  
887  	spin_lock_irq(&xhci->lock);
888  	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
889  	if (xhci->shared_hcd)
890  		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
891  	/* step 1: stop endpoint */
892  	/* skipped assuming that port suspend has done */
893  
894  	/* step 2: clear Run/Stop bit */
895  	command = readl(&xhci->op_regs->command);
896  	command &= ~CMD_RUN;
897  	writel(command, &xhci->op_regs->command);
898  
899  	/* Some chips from Fresco Logic need an extraordinary delay */
900  	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
901  
902  	if (xhci_handshake(&xhci->op_regs->status,
903  		      STS_HALT, STS_HALT, delay)) {
904  		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905  		spin_unlock_irq(&xhci->lock);
906  		return -ETIMEDOUT;
907  	}
908  	xhci_clear_command_ring(xhci);
909  
910  	/* step 3: save registers */
911  	xhci_save_registers(xhci);
912  
913  	/* step 4: set CSS flag */
914  	command = readl(&xhci->op_regs->command);
915  	command |= CMD_CSS;
916  	writel(command, &xhci->op_regs->command);
917  	xhci->broken_suspend = 0;
918  	if (xhci_handshake(&xhci->op_regs->status,
919  				STS_SAVE, 0, 20 * 1000)) {
920  	/*
921  	 * AMD SNPS xHC 3.0 occasionally does not clear the
922  	 * SSS bit of USBSTS and when driver tries to poll
923  	 * to see if the xHC clears BIT(8) which never happens
924  	 * and driver assumes that controller is not responding
925  	 * and times out. To workaround this, its good to check
926  	 * if SRE and HCE bits are not set (as per xhci
927  	 * Section 5.4.2) and bypass the timeout.
928  	 */
929  		res = readl(&xhci->op_regs->status);
930  		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
931  		    (((res & STS_SRE) == 0) &&
932  				((res & STS_HCE) == 0))) {
933  			xhci->broken_suspend = 1;
934  		} else {
935  			xhci_warn(xhci, "WARN: xHC save state timeout\n");
936  			spin_unlock_irq(&xhci->lock);
937  			return -ETIMEDOUT;
938  		}
939  	}
940  	spin_unlock_irq(&xhci->lock);
941  
942  	/*
943  	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
944  	 * is about to be suspended.
945  	 */
946  	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
947  			(!(xhci_all_ports_seen_u0(xhci)))) {
948  		del_timer_sync(&xhci->comp_mode_recovery_timer);
949  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
950  				"%s: compliance mode recovery timer deleted",
951  				__func__);
952  	}
953  
954  	return rc;
955  }
956  EXPORT_SYMBOL_GPL(xhci_suspend);
957  
958  /*
959   * start xHC (not bus-specific)
960   *
961   * This is called when the machine transition from S3/S4 mode.
962   *
963   */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)964  int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
965  {
966  	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
967  	u32			command, temp = 0;
968  	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
969  	int			retval = 0;
970  	bool			comp_timer_running = false;
971  	bool			pending_portevent = false;
972  	bool			suspended_usb3_devs = false;
973  	bool			reinit_xhc = false;
974  
975  	if (!hcd->state)
976  		return 0;
977  
978  	/* Wait a bit if either of the roothubs need to settle from the
979  	 * transition into bus suspend.
980  	 */
981  
982  	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
983  	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
984  		msleep(100);
985  
986  	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
987  	if (xhci->shared_hcd)
988  		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
989  
990  	spin_lock_irq(&xhci->lock);
991  
992  	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
993  		reinit_xhc = true;
994  
995  	if (!reinit_xhc) {
996  		/*
997  		 * Some controllers might lose power during suspend, so wait
998  		 * for controller not ready bit to clear, just as in xHC init.
999  		 */
1000  		retval = xhci_handshake(&xhci->op_regs->status,
1001  					STS_CNR, 0, 10 * 1000 * 1000);
1002  		if (retval) {
1003  			xhci_warn(xhci, "Controller not ready at resume %d\n",
1004  				  retval);
1005  			spin_unlock_irq(&xhci->lock);
1006  			return retval;
1007  		}
1008  		/* step 1: restore register */
1009  		xhci_restore_registers(xhci);
1010  		/* step 2: initialize command ring buffer */
1011  		xhci_set_cmd_ring_deq(xhci);
1012  		/* step 3: restore state and start state*/
1013  		/* step 3: set CRS flag */
1014  		command = readl(&xhci->op_regs->command);
1015  		command |= CMD_CRS;
1016  		writel(command, &xhci->op_regs->command);
1017  		/*
1018  		 * Some controllers take up to 55+ ms to complete the controller
1019  		 * restore so setting the timeout to 100ms. Xhci specification
1020  		 * doesn't mention any timeout value.
1021  		 */
1022  		if (xhci_handshake(&xhci->op_regs->status,
1023  			      STS_RESTORE, 0, 100 * 1000)) {
1024  			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025  			spin_unlock_irq(&xhci->lock);
1026  			return -ETIMEDOUT;
1027  		}
1028  	}
1029  
1030  	temp = readl(&xhci->op_regs->status);
1031  
1032  	/* re-initialize the HC on Restore Error, or Host Controller Error */
1033  	if ((temp & (STS_SRE | STS_HCE)) &&
1034  	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1035  		reinit_xhc = true;
1036  		if (!xhci->broken_suspend)
1037  			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1038  	}
1039  
1040  	if (reinit_xhc) {
1041  		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1042  				!(xhci_all_ports_seen_u0(xhci))) {
1043  			del_timer_sync(&xhci->comp_mode_recovery_timer);
1044  			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1045  				"Compliance Mode Recovery Timer deleted!");
1046  		}
1047  
1048  		/* Let the USB core know _both_ roothubs lost power. */
1049  		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1050  		if (xhci->shared_hcd)
1051  			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1052  
1053  		xhci_dbg(xhci, "Stop HCD\n");
1054  		xhci_halt(xhci);
1055  		xhci_zero_64b_regs(xhci);
1056  		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1057  		spin_unlock_irq(&xhci->lock);
1058  		if (retval)
1059  			return retval;
1060  
1061  		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1062  		temp = readl(&xhci->op_regs->status);
1063  		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1064  		xhci_disable_interrupter(xhci->interrupter);
1065  
1066  		xhci_dbg(xhci, "cleaning up memory\n");
1067  		xhci_mem_cleanup(xhci);
1068  		xhci_debugfs_exit(xhci);
1069  		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1070  			    readl(&xhci->op_regs->status));
1071  
1072  		/* USB core calls the PCI reinit and start functions twice:
1073  		 * first with the primary HCD, and then with the secondary HCD.
1074  		 * If we don't do the same, the host will never be started.
1075  		 */
1076  		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077  		retval = xhci_init(hcd);
1078  		if (retval)
1079  			return retval;
1080  		comp_timer_running = true;
1081  
1082  		xhci_dbg(xhci, "Start the primary HCD\n");
1083  		retval = xhci_run(hcd);
1084  		if (!retval && xhci->shared_hcd) {
1085  			xhci_dbg(xhci, "Start the secondary HCD\n");
1086  			retval = xhci_run(xhci->shared_hcd);
1087  		}
1088  		if (retval)
1089  			return retval;
1090  		/*
1091  		 * Resume roothubs unconditionally as PORTSC change bits are not
1092  		 * immediately visible after xHC reset
1093  		 */
1094  		hcd->state = HC_STATE_SUSPENDED;
1095  
1096  		if (xhci->shared_hcd) {
1097  			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1098  			usb_hcd_resume_root_hub(xhci->shared_hcd);
1099  		}
1100  		usb_hcd_resume_root_hub(hcd);
1101  
1102  		goto done;
1103  	}
1104  
1105  	/* step 4: set Run/Stop bit */
1106  	command = readl(&xhci->op_regs->command);
1107  	command |= CMD_RUN;
1108  	writel(command, &xhci->op_regs->command);
1109  	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1110  		  0, 250 * 1000);
1111  
1112  	/* step 5: walk topology and initialize portsc,
1113  	 * portpmsc and portli
1114  	 */
1115  	/* this is done in bus_resume */
1116  
1117  	/* step 6: restart each of the previously
1118  	 * Running endpoints by ringing their doorbells
1119  	 */
1120  
1121  	spin_unlock_irq(&xhci->lock);
1122  
1123  	xhci_dbc_resume(xhci);
1124  
1125  	if (retval == 0) {
1126  		/*
1127  		 * Resume roothubs only if there are pending events.
1128  		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1129  		 * the first wake signalling failed, give it that chance if
1130  		 * there are suspended USB 3 devices.
1131  		 */
1132  		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1133  		    xhci->usb3_rhub.bus_state.bus_suspended)
1134  			suspended_usb3_devs = true;
1135  
1136  		pending_portevent = xhci_pending_portevent(xhci);
1137  
1138  		if (suspended_usb3_devs && !pending_portevent &&
1139  		    msg.event == PM_EVENT_AUTO_RESUME) {
1140  			msleep(120);
1141  			pending_portevent = xhci_pending_portevent(xhci);
1142  		}
1143  
1144  		if (pending_portevent) {
1145  			if (xhci->shared_hcd)
1146  				usb_hcd_resume_root_hub(xhci->shared_hcd);
1147  			usb_hcd_resume_root_hub(hcd);
1148  		}
1149  	}
1150  done:
1151  	/*
1152  	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1153  	 * be re-initialized Always after a system resume. Ports are subject
1154  	 * to suffer the Compliance Mode issue again. It doesn't matter if
1155  	 * ports have entered previously to U0 before system's suspension.
1156  	 */
1157  	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1158  		compliance_mode_recovery_timer_init(xhci);
1159  
1160  	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1161  		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1162  
1163  	/* Re-enable port polling. */
1164  	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1165  		 __func__, hcd->self.busnum);
1166  	if (xhci->shared_hcd) {
1167  		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1168  		usb_hcd_poll_rh_status(xhci->shared_hcd);
1169  	}
1170  	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1171  	usb_hcd_poll_rh_status(hcd);
1172  
1173  	return retval;
1174  }
1175  EXPORT_SYMBOL_GPL(xhci_resume);
1176  #endif	/* CONFIG_PM */
1177  
1178  /*-------------------------------------------------------------------------*/
1179  
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1180  static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1181  {
1182  	void *temp;
1183  	int ret = 0;
1184  	unsigned int buf_len;
1185  	enum dma_data_direction dir;
1186  
1187  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1188  	buf_len = urb->transfer_buffer_length;
1189  
1190  	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1191  			    dev_to_node(hcd->self.sysdev));
1192  	if (!temp)
1193  		return -ENOMEM;
1194  
1195  	if (usb_urb_dir_out(urb))
1196  		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1197  				   temp, buf_len, 0);
1198  
1199  	urb->transfer_buffer = temp;
1200  	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1201  					   urb->transfer_buffer,
1202  					   urb->transfer_buffer_length,
1203  					   dir);
1204  
1205  	if (dma_mapping_error(hcd->self.sysdev,
1206  			      urb->transfer_dma)) {
1207  		ret = -EAGAIN;
1208  		kfree(temp);
1209  	} else {
1210  		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1211  	}
1212  
1213  	return ret;
1214  }
1215  
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1216  static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1217  					  struct urb *urb)
1218  {
1219  	bool ret = false;
1220  	unsigned int i;
1221  	unsigned int len = 0;
1222  	unsigned int trb_size;
1223  	unsigned int max_pkt;
1224  	struct scatterlist *sg;
1225  	struct scatterlist *tail_sg;
1226  
1227  	tail_sg = urb->sg;
1228  	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1229  
1230  	if (!urb->num_sgs)
1231  		return ret;
1232  
1233  	if (urb->dev->speed >= USB_SPEED_SUPER)
1234  		trb_size = TRB_CACHE_SIZE_SS;
1235  	else
1236  		trb_size = TRB_CACHE_SIZE_HS;
1237  
1238  	if (urb->transfer_buffer_length != 0 &&
1239  	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1240  		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1241  			len = len + sg->length;
1242  			if (i > trb_size - 2) {
1243  				len = len - tail_sg->length;
1244  				if (len < max_pkt) {
1245  					ret = true;
1246  					break;
1247  				}
1248  
1249  				tail_sg = sg_next(tail_sg);
1250  			}
1251  		}
1252  	}
1253  	return ret;
1254  }
1255  
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1256  static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1257  {
1258  	unsigned int len;
1259  	unsigned int buf_len;
1260  	enum dma_data_direction dir;
1261  
1262  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1263  
1264  	buf_len = urb->transfer_buffer_length;
1265  
1266  	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1267  	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1268  		dma_unmap_single(hcd->self.sysdev,
1269  				 urb->transfer_dma,
1270  				 urb->transfer_buffer_length,
1271  				 dir);
1272  
1273  	if (usb_urb_dir_in(urb)) {
1274  		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1275  					   urb->transfer_buffer,
1276  					   buf_len,
1277  					   0);
1278  		if (len != buf_len) {
1279  			xhci_dbg(hcd_to_xhci(hcd),
1280  				 "Copy from tmp buf to urb sg list failed\n");
1281  			urb->actual_length = len;
1282  		}
1283  	}
1284  	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1285  	kfree(urb->transfer_buffer);
1286  	urb->transfer_buffer = NULL;
1287  }
1288  
1289  /*
1290   * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1291   * we'll copy the actual data into the TRB address register. This is limited to
1292   * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1293   * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1294   */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1295  static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1296  				gfp_t mem_flags)
1297  {
1298  	struct xhci_hcd *xhci;
1299  
1300  	xhci = hcd_to_xhci(hcd);
1301  
1302  	if (xhci_urb_suitable_for_idt(urb))
1303  		return 0;
1304  
1305  	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1306  		if (xhci_urb_temp_buffer_required(hcd, urb))
1307  			return xhci_map_temp_buffer(hcd, urb);
1308  	}
1309  	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1310  }
1311  
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1312  static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313  {
1314  	struct xhci_hcd *xhci;
1315  	bool unmap_temp_buf = false;
1316  
1317  	xhci = hcd_to_xhci(hcd);
1318  
1319  	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1320  		unmap_temp_buf = true;
1321  
1322  	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1323  		xhci_unmap_temp_buf(hcd, urb);
1324  	else
1325  		usb_hcd_unmap_urb_for_dma(hcd, urb);
1326  }
1327  
1328  /**
1329   * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1330   * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1331   * value to right shift 1 for the bitmask.
1332   *
1333   * Index  = (epnum * 2) + direction - 1,
1334   * where direction = 0 for OUT, 1 for IN.
1335   * For control endpoints, the IN index is used (OUT index is unused), so
1336   * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1337   */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1338  unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1339  {
1340  	unsigned int index;
1341  	if (usb_endpoint_xfer_control(desc))
1342  		index = (unsigned int) (usb_endpoint_num(desc)*2);
1343  	else
1344  		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1345  			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1346  	return index;
1347  }
1348  EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1349  
1350  /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1351   * address from the XHCI endpoint index.
1352   */
xhci_get_endpoint_address(unsigned int ep_index)1353  static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1354  {
1355  	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1356  	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1357  	return direction | number;
1358  }
1359  
1360  /* Find the flag for this endpoint (for use in the control context).  Use the
1361   * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1362   * bit 1, etc.
1363   */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1364  static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1365  {
1366  	return 1 << (xhci_get_endpoint_index(desc) + 1);
1367  }
1368  
1369  /* Compute the last valid endpoint context index.  Basically, this is the
1370   * endpoint index plus one.  For slot contexts with more than valid endpoint,
1371   * we find the most significant bit set in the added contexts flags.
1372   * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1373   * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1374   */
xhci_last_valid_endpoint(u32 added_ctxs)1375  unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1376  {
1377  	return fls(added_ctxs) - 1;
1378  }
1379  
1380  /* Returns 1 if the arguments are OK;
1381   * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1382   */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1383  static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1384  		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1385  		const char *func) {
1386  	struct xhci_hcd	*xhci;
1387  	struct xhci_virt_device	*virt_dev;
1388  
1389  	if (!hcd || (check_ep && !ep) || !udev) {
1390  		pr_debug("xHCI %s called with invalid args\n", func);
1391  		return -EINVAL;
1392  	}
1393  	if (!udev->parent) {
1394  		pr_debug("xHCI %s called for root hub\n", func);
1395  		return 0;
1396  	}
1397  
1398  	xhci = hcd_to_xhci(hcd);
1399  	if (check_virt_dev) {
1400  		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1401  			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1402  					func);
1403  			return -EINVAL;
1404  		}
1405  
1406  		virt_dev = xhci->devs[udev->slot_id];
1407  		if (virt_dev->udev != udev) {
1408  			xhci_dbg(xhci, "xHCI %s called with udev and "
1409  					  "virt_dev does not match\n", func);
1410  			return -EINVAL;
1411  		}
1412  	}
1413  
1414  	if (xhci->xhc_state & XHCI_STATE_HALTED)
1415  		return -ENODEV;
1416  
1417  	return 1;
1418  }
1419  
1420  static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1421  		struct usb_device *udev, struct xhci_command *command,
1422  		bool ctx_change, bool must_succeed);
1423  
1424  /*
1425   * Full speed devices may have a max packet size greater than 8 bytes, but the
1426   * USB core doesn't know that until it reads the first 8 bytes of the
1427   * descriptor.  If the usb_device's max packet size changes after that point,
1428   * we need to issue an evaluate context command and wait on it.
1429   */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1430  static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1431  		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1432  {
1433  	struct xhci_container_ctx *out_ctx;
1434  	struct xhci_input_control_ctx *ctrl_ctx;
1435  	struct xhci_ep_ctx *ep_ctx;
1436  	struct xhci_command *command;
1437  	int max_packet_size;
1438  	int hw_max_packet_size;
1439  	int ret = 0;
1440  
1441  	out_ctx = xhci->devs[slot_id]->out_ctx;
1442  	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443  	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1444  	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1445  	if (hw_max_packet_size != max_packet_size) {
1446  		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1447  				"Max Packet Size for ep 0 changed.");
1448  		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449  				"Max packet size in usb_device = %d",
1450  				max_packet_size);
1451  		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1452  				"Max packet size in xHCI HW = %d",
1453  				hw_max_packet_size);
1454  		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1455  				"Issuing evaluate context command.");
1456  
1457  		/* Set up the input context flags for the command */
1458  		/* FIXME: This won't work if a non-default control endpoint
1459  		 * changes max packet sizes.
1460  		 */
1461  
1462  		command = xhci_alloc_command(xhci, true, mem_flags);
1463  		if (!command)
1464  			return -ENOMEM;
1465  
1466  		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1467  		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1468  		if (!ctrl_ctx) {
1469  			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1470  					__func__);
1471  			ret = -ENOMEM;
1472  			goto command_cleanup;
1473  		}
1474  		/* Set up the modified control endpoint 0 */
1475  		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1476  				xhci->devs[slot_id]->out_ctx, ep_index);
1477  
1478  		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1479  		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1480  		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1481  		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1482  
1483  		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1484  		ctrl_ctx->drop_flags = 0;
1485  
1486  		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1487  				true, false);
1488  
1489  		/* Clean up the input context for later use by bandwidth
1490  		 * functions.
1491  		 */
1492  		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1493  command_cleanup:
1494  		kfree(command->completion);
1495  		kfree(command);
1496  	}
1497  	return ret;
1498  }
1499  
1500  /*
1501   * non-error returns are a promise to giveback() the urb later
1502   * we drop ownership so next owner (or urb unlink) can get it
1503   */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1504  static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1505  {
1506  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1507  	unsigned long flags;
1508  	int ret = 0;
1509  	unsigned int slot_id, ep_index;
1510  	unsigned int *ep_state;
1511  	struct urb_priv	*urb_priv;
1512  	int num_tds;
1513  
1514  	if (!urb)
1515  		return -EINVAL;
1516  	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1517  					true, true, __func__);
1518  	if (ret <= 0)
1519  		return ret ? ret : -EINVAL;
1520  
1521  	slot_id = urb->dev->slot_id;
1522  	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523  	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1524  
1525  	if (!HCD_HW_ACCESSIBLE(hcd))
1526  		return -ESHUTDOWN;
1527  
1528  	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1529  		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1530  		return -ENODEV;
1531  	}
1532  
1533  	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1534  		num_tds = urb->number_of_packets;
1535  	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1536  	    urb->transfer_buffer_length > 0 &&
1537  	    urb->transfer_flags & URB_ZERO_PACKET &&
1538  	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1539  		num_tds = 2;
1540  	else
1541  		num_tds = 1;
1542  
1543  	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1544  	if (!urb_priv)
1545  		return -ENOMEM;
1546  
1547  	urb_priv->num_tds = num_tds;
1548  	urb_priv->num_tds_done = 0;
1549  	urb->hcpriv = urb_priv;
1550  
1551  	trace_xhci_urb_enqueue(urb);
1552  
1553  	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1554  		/* Check to see if the max packet size for the default control
1555  		 * endpoint changed during FS device enumeration
1556  		 */
1557  		if (urb->dev->speed == USB_SPEED_FULL) {
1558  			ret = xhci_check_maxpacket(xhci, slot_id,
1559  					ep_index, urb, mem_flags);
1560  			if (ret < 0) {
1561  				xhci_urb_free_priv(urb_priv);
1562  				urb->hcpriv = NULL;
1563  				return ret;
1564  			}
1565  		}
1566  	}
1567  
1568  	spin_lock_irqsave(&xhci->lock, flags);
1569  
1570  	if (xhci->xhc_state & XHCI_STATE_DYING) {
1571  		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1572  			 urb->ep->desc.bEndpointAddress, urb);
1573  		ret = -ESHUTDOWN;
1574  		goto free_priv;
1575  	}
1576  	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1577  		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1578  			  *ep_state);
1579  		ret = -EINVAL;
1580  		goto free_priv;
1581  	}
1582  	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1583  		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1584  		ret = -EINVAL;
1585  		goto free_priv;
1586  	}
1587  
1588  	switch (usb_endpoint_type(&urb->ep->desc)) {
1589  
1590  	case USB_ENDPOINT_XFER_CONTROL:
1591  		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1592  					 slot_id, ep_index);
1593  		break;
1594  	case USB_ENDPOINT_XFER_BULK:
1595  		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1596  					 slot_id, ep_index);
1597  		break;
1598  	case USB_ENDPOINT_XFER_INT:
1599  		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1600  				slot_id, ep_index);
1601  		break;
1602  	case USB_ENDPOINT_XFER_ISOC:
1603  		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1604  				slot_id, ep_index);
1605  	}
1606  
1607  	if (ret) {
1608  free_priv:
1609  		xhci_urb_free_priv(urb_priv);
1610  		urb->hcpriv = NULL;
1611  	}
1612  	spin_unlock_irqrestore(&xhci->lock, flags);
1613  	return ret;
1614  }
1615  
1616  /*
1617   * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1618   * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1619   * should pick up where it left off in the TD, unless a Set Transfer Ring
1620   * Dequeue Pointer is issued.
1621   *
1622   * The TRBs that make up the buffers for the canceled URB will be "removed" from
1623   * the ring.  Since the ring is a contiguous structure, they can't be physically
1624   * removed.  Instead, there are two options:
1625   *
1626   *  1) If the HC is in the middle of processing the URB to be canceled, we
1627   *     simply move the ring's dequeue pointer past those TRBs using the Set
1628   *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1629   *     when drivers timeout on the last submitted URB and attempt to cancel.
1630   *
1631   *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1632   *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1633   *     HC will need to invalidate the any TRBs it has cached after the stop
1634   *     endpoint command, as noted in the xHCI 0.95 errata.
1635   *
1636   *  3) The TD may have completed by the time the Stop Endpoint Command
1637   *     completes, so software needs to handle that case too.
1638   *
1639   * This function should protect against the TD enqueueing code ringing the
1640   * doorbell while this code is waiting for a Stop Endpoint command to complete.
1641   * It also needs to account for multiple cancellations on happening at the same
1642   * time for the same endpoint.
1643   *
1644   * Note that this function can be called in any context, or so says
1645   * usb_hcd_unlink_urb()
1646   */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1647  static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1648  {
1649  	unsigned long flags;
1650  	int ret, i;
1651  	u32 temp;
1652  	struct xhci_hcd *xhci;
1653  	struct urb_priv	*urb_priv;
1654  	struct xhci_td *td;
1655  	unsigned int ep_index;
1656  	struct xhci_ring *ep_ring;
1657  	struct xhci_virt_ep *ep;
1658  	struct xhci_command *command;
1659  	struct xhci_virt_device *vdev;
1660  
1661  	xhci = hcd_to_xhci(hcd);
1662  	spin_lock_irqsave(&xhci->lock, flags);
1663  
1664  	trace_xhci_urb_dequeue(urb);
1665  
1666  	/* Make sure the URB hasn't completed or been unlinked already */
1667  	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1668  	if (ret)
1669  		goto done;
1670  
1671  	/* give back URB now if we can't queue it for cancel */
1672  	vdev = xhci->devs[urb->dev->slot_id];
1673  	urb_priv = urb->hcpriv;
1674  	if (!vdev || !urb_priv)
1675  		goto err_giveback;
1676  
1677  	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1678  	ep = &vdev->eps[ep_index];
1679  	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1680  	if (!ep || !ep_ring)
1681  		goto err_giveback;
1682  
1683  	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1684  	temp = readl(&xhci->op_regs->status);
1685  	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1686  		xhci_hc_died(xhci);
1687  		goto done;
1688  	}
1689  
1690  	/*
1691  	 * check ring is not re-allocated since URB was enqueued. If it is, then
1692  	 * make sure none of the ring related pointers in this URB private data
1693  	 * are touched, such as td_list, otherwise we overwrite freed data
1694  	 */
1695  	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1696  		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1697  		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1698  			td = &urb_priv->td[i];
1699  			if (!list_empty(&td->cancelled_td_list))
1700  				list_del_init(&td->cancelled_td_list);
1701  		}
1702  		goto err_giveback;
1703  	}
1704  
1705  	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1706  		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1707  				"HC halted, freeing TD manually.");
1708  		for (i = urb_priv->num_tds_done;
1709  		     i < urb_priv->num_tds;
1710  		     i++) {
1711  			td = &urb_priv->td[i];
1712  			if (!list_empty(&td->td_list))
1713  				list_del_init(&td->td_list);
1714  			if (!list_empty(&td->cancelled_td_list))
1715  				list_del_init(&td->cancelled_td_list);
1716  		}
1717  		goto err_giveback;
1718  	}
1719  
1720  	i = urb_priv->num_tds_done;
1721  	if (i < urb_priv->num_tds)
1722  		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723  				"Cancel URB %p, dev %s, ep 0x%x, "
1724  				"starting at offset 0x%llx",
1725  				urb, urb->dev->devpath,
1726  				urb->ep->desc.bEndpointAddress,
1727  				(unsigned long long) xhci_trb_virt_to_dma(
1728  					urb_priv->td[i].start_seg,
1729  					urb_priv->td[i].first_trb));
1730  
1731  	for (; i < urb_priv->num_tds; i++) {
1732  		td = &urb_priv->td[i];
1733  		/* TD can already be on cancelled list if ep halted on it */
1734  		if (list_empty(&td->cancelled_td_list)) {
1735  			td->cancel_status = TD_DIRTY;
1736  			list_add_tail(&td->cancelled_td_list,
1737  				      &ep->cancelled_td_list);
1738  		}
1739  	}
1740  
1741  	/* These completion handlers will sort out cancelled TDs for us */
1742  	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1743  		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1744  				urb->dev->slot_id, ep_index, ep->ep_state);
1745  		goto done;
1746  	}
1747  
1748  	/* In this case no commands are pending but the endpoint is stopped */
1749  	if (ep->ep_state & EP_CLEARING_TT) {
1750  		/* and cancelled TDs can be given back right away */
1751  		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1752  				urb->dev->slot_id, ep_index, ep->ep_state);
1753  		xhci_process_cancelled_tds(ep);
1754  	} else {
1755  		/* Otherwise, queue a new Stop Endpoint command */
1756  		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1757  		if (!command) {
1758  			ret = -ENOMEM;
1759  			goto done;
1760  		}
1761  		ep->stop_time = jiffies;
1762  		ep->ep_state |= EP_STOP_CMD_PENDING;
1763  		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1764  					 ep_index, 0);
1765  		xhci_ring_cmd_db(xhci);
1766  	}
1767  done:
1768  	spin_unlock_irqrestore(&xhci->lock, flags);
1769  	return ret;
1770  
1771  err_giveback:
1772  	if (urb_priv)
1773  		xhci_urb_free_priv(urb_priv);
1774  	usb_hcd_unlink_urb_from_ep(hcd, urb);
1775  	spin_unlock_irqrestore(&xhci->lock, flags);
1776  	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1777  	return ret;
1778  }
1779  
1780  /* Drop an endpoint from a new bandwidth configuration for this device.
1781   * Only one call to this function is allowed per endpoint before
1782   * check_bandwidth() or reset_bandwidth() must be called.
1783   * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1784   * add the endpoint to the schedule with possibly new parameters denoted by a
1785   * different endpoint descriptor in usb_host_endpoint.
1786   * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1787   * not allowed.
1788   *
1789   * The USB core will not allow URBs to be queued to an endpoint that is being
1790   * disabled, so there's no need for mutual exclusion to protect
1791   * the xhci->devs[slot_id] structure.
1792   */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1793  int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1794  		       struct usb_host_endpoint *ep)
1795  {
1796  	struct xhci_hcd *xhci;
1797  	struct xhci_container_ctx *in_ctx, *out_ctx;
1798  	struct xhci_input_control_ctx *ctrl_ctx;
1799  	unsigned int ep_index;
1800  	struct xhci_ep_ctx *ep_ctx;
1801  	u32 drop_flag;
1802  	u32 new_add_flags, new_drop_flags;
1803  	int ret;
1804  
1805  	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1806  	if (ret <= 0)
1807  		return ret;
1808  	xhci = hcd_to_xhci(hcd);
1809  	if (xhci->xhc_state & XHCI_STATE_DYING)
1810  		return -ENODEV;
1811  
1812  	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1813  	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1814  	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1815  		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1816  				__func__, drop_flag);
1817  		return 0;
1818  	}
1819  
1820  	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1821  	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1822  	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1823  	if (!ctrl_ctx) {
1824  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1825  				__func__);
1826  		return 0;
1827  	}
1828  
1829  	ep_index = xhci_get_endpoint_index(&ep->desc);
1830  	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1831  	/* If the HC already knows the endpoint is disabled,
1832  	 * or the HCD has noted it is disabled, ignore this request
1833  	 */
1834  	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1835  	    le32_to_cpu(ctrl_ctx->drop_flags) &
1836  	    xhci_get_endpoint_flag(&ep->desc)) {
1837  		/* Do not warn when called after a usb_device_reset */
1838  		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1839  			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1840  				  __func__, ep);
1841  		return 0;
1842  	}
1843  
1844  	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1845  	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1846  
1847  	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1848  	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1849  
1850  	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1851  
1852  	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1853  
1854  	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1855  			(unsigned int) ep->desc.bEndpointAddress,
1856  			udev->slot_id,
1857  			(unsigned int) new_drop_flags,
1858  			(unsigned int) new_add_flags);
1859  	return 0;
1860  }
1861  EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1862  
1863  /* Add an endpoint to a new possible bandwidth configuration for this device.
1864   * Only one call to this function is allowed per endpoint before
1865   * check_bandwidth() or reset_bandwidth() must be called.
1866   * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1867   * add the endpoint to the schedule with possibly new parameters denoted by a
1868   * different endpoint descriptor in usb_host_endpoint.
1869   * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1870   * not allowed.
1871   *
1872   * The USB core will not allow URBs to be queued to an endpoint until the
1873   * configuration or alt setting is installed in the device, so there's no need
1874   * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1875   */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1876  int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1877  		      struct usb_host_endpoint *ep)
1878  {
1879  	struct xhci_hcd *xhci;
1880  	struct xhci_container_ctx *in_ctx;
1881  	unsigned int ep_index;
1882  	struct xhci_input_control_ctx *ctrl_ctx;
1883  	struct xhci_ep_ctx *ep_ctx;
1884  	u32 added_ctxs;
1885  	u32 new_add_flags, new_drop_flags;
1886  	struct xhci_virt_device *virt_dev;
1887  	int ret = 0;
1888  
1889  	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1890  	if (ret <= 0) {
1891  		/* So we won't queue a reset ep command for a root hub */
1892  		ep->hcpriv = NULL;
1893  		return ret;
1894  	}
1895  	xhci = hcd_to_xhci(hcd);
1896  	if (xhci->xhc_state & XHCI_STATE_DYING)
1897  		return -ENODEV;
1898  
1899  	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1900  	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1901  		/* FIXME when we have to issue an evaluate endpoint command to
1902  		 * deal with ep0 max packet size changing once we get the
1903  		 * descriptors
1904  		 */
1905  		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1906  				__func__, added_ctxs);
1907  		return 0;
1908  	}
1909  
1910  	virt_dev = xhci->devs[udev->slot_id];
1911  	in_ctx = virt_dev->in_ctx;
1912  	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1913  	if (!ctrl_ctx) {
1914  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1915  				__func__);
1916  		return 0;
1917  	}
1918  
1919  	ep_index = xhci_get_endpoint_index(&ep->desc);
1920  	/* If this endpoint is already in use, and the upper layers are trying
1921  	 * to add it again without dropping it, reject the addition.
1922  	 */
1923  	if (virt_dev->eps[ep_index].ring &&
1924  			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1925  		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1926  				"without dropping it.\n",
1927  				(unsigned int) ep->desc.bEndpointAddress);
1928  		return -EINVAL;
1929  	}
1930  
1931  	/* If the HCD has already noted the endpoint is enabled,
1932  	 * ignore this request.
1933  	 */
1934  	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1935  		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1936  				__func__, ep);
1937  		return 0;
1938  	}
1939  
1940  	/*
1941  	 * Configuration and alternate setting changes must be done in
1942  	 * process context, not interrupt context (or so documenation
1943  	 * for usb_set_interface() and usb_set_configuration() claim).
1944  	 */
1945  	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1946  		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1947  				__func__, ep->desc.bEndpointAddress);
1948  		return -ENOMEM;
1949  	}
1950  
1951  	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1952  	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1953  
1954  	/* If xhci_endpoint_disable() was called for this endpoint, but the
1955  	 * xHC hasn't been notified yet through the check_bandwidth() call,
1956  	 * this re-adds a new state for the endpoint from the new endpoint
1957  	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1958  	 * drop flags alone.
1959  	 */
1960  	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1961  
1962  	/* Store the usb_device pointer for later use */
1963  	ep->hcpriv = udev;
1964  
1965  	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1966  	trace_xhci_add_endpoint(ep_ctx);
1967  
1968  	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1969  			(unsigned int) ep->desc.bEndpointAddress,
1970  			udev->slot_id,
1971  			(unsigned int) new_drop_flags,
1972  			(unsigned int) new_add_flags);
1973  	return 0;
1974  }
1975  EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1976  
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1977  static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1978  {
1979  	struct xhci_input_control_ctx *ctrl_ctx;
1980  	struct xhci_ep_ctx *ep_ctx;
1981  	struct xhci_slot_ctx *slot_ctx;
1982  	int i;
1983  
1984  	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1985  	if (!ctrl_ctx) {
1986  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1987  				__func__);
1988  		return;
1989  	}
1990  
1991  	/* When a device's add flag and drop flag are zero, any subsequent
1992  	 * configure endpoint command will leave that endpoint's state
1993  	 * untouched.  Make sure we don't leave any old state in the input
1994  	 * endpoint contexts.
1995  	 */
1996  	ctrl_ctx->drop_flags = 0;
1997  	ctrl_ctx->add_flags = 0;
1998  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1999  	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2000  	/* Endpoint 0 is always valid */
2001  	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2002  	for (i = 1; i < 31; i++) {
2003  		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2004  		ep_ctx->ep_info = 0;
2005  		ep_ctx->ep_info2 = 0;
2006  		ep_ctx->deq = 0;
2007  		ep_ctx->tx_info = 0;
2008  	}
2009  }
2010  
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2011  static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2012  		struct usb_device *udev, u32 *cmd_status)
2013  {
2014  	int ret;
2015  
2016  	switch (*cmd_status) {
2017  	case COMP_COMMAND_ABORTED:
2018  	case COMP_COMMAND_RING_STOPPED:
2019  		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2020  		ret = -ETIME;
2021  		break;
2022  	case COMP_RESOURCE_ERROR:
2023  		dev_warn(&udev->dev,
2024  			 "Not enough host controller resources for new device state.\n");
2025  		ret = -ENOMEM;
2026  		/* FIXME: can we allocate more resources for the HC? */
2027  		break;
2028  	case COMP_BANDWIDTH_ERROR:
2029  	case COMP_SECONDARY_BANDWIDTH_ERROR:
2030  		dev_warn(&udev->dev,
2031  			 "Not enough bandwidth for new device state.\n");
2032  		ret = -ENOSPC;
2033  		/* FIXME: can we go back to the old state? */
2034  		break;
2035  	case COMP_TRB_ERROR:
2036  		/* the HCD set up something wrong */
2037  		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2038  				"add flag = 1, "
2039  				"and endpoint is not disabled.\n");
2040  		ret = -EINVAL;
2041  		break;
2042  	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2043  		dev_warn(&udev->dev,
2044  			 "ERROR: Incompatible device for endpoint configure command.\n");
2045  		ret = -ENODEV;
2046  		break;
2047  	case COMP_SUCCESS:
2048  		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049  				"Successful Endpoint Configure command");
2050  		ret = 0;
2051  		break;
2052  	default:
2053  		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054  				*cmd_status);
2055  		ret = -EINVAL;
2056  		break;
2057  	}
2058  	return ret;
2059  }
2060  
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2061  static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2062  		struct usb_device *udev, u32 *cmd_status)
2063  {
2064  	int ret;
2065  
2066  	switch (*cmd_status) {
2067  	case COMP_COMMAND_ABORTED:
2068  	case COMP_COMMAND_RING_STOPPED:
2069  		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2070  		ret = -ETIME;
2071  		break;
2072  	case COMP_PARAMETER_ERROR:
2073  		dev_warn(&udev->dev,
2074  			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2075  		ret = -EINVAL;
2076  		break;
2077  	case COMP_SLOT_NOT_ENABLED_ERROR:
2078  		dev_warn(&udev->dev,
2079  			"WARN: slot not enabled for evaluate context command.\n");
2080  		ret = -EINVAL;
2081  		break;
2082  	case COMP_CONTEXT_STATE_ERROR:
2083  		dev_warn(&udev->dev,
2084  			"WARN: invalid context state for evaluate context command.\n");
2085  		ret = -EINVAL;
2086  		break;
2087  	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2088  		dev_warn(&udev->dev,
2089  			"ERROR: Incompatible device for evaluate context command.\n");
2090  		ret = -ENODEV;
2091  		break;
2092  	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2093  		/* Max Exit Latency too large error */
2094  		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2095  		ret = -EINVAL;
2096  		break;
2097  	case COMP_SUCCESS:
2098  		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2099  				"Successful evaluate context command");
2100  		ret = 0;
2101  		break;
2102  	default:
2103  		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2104  			*cmd_status);
2105  		ret = -EINVAL;
2106  		break;
2107  	}
2108  	return ret;
2109  }
2110  
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2111  static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2112  		struct xhci_input_control_ctx *ctrl_ctx)
2113  {
2114  	u32 valid_add_flags;
2115  	u32 valid_drop_flags;
2116  
2117  	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2118  	 * (bit 1).  The default control endpoint is added during the Address
2119  	 * Device command and is never removed until the slot is disabled.
2120  	 */
2121  	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2122  	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2123  
2124  	/* Use hweight32 to count the number of ones in the add flags, or
2125  	 * number of endpoints added.  Don't count endpoints that are changed
2126  	 * (both added and dropped).
2127  	 */
2128  	return hweight32(valid_add_flags) -
2129  		hweight32(valid_add_flags & valid_drop_flags);
2130  }
2131  
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2132  static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2133  		struct xhci_input_control_ctx *ctrl_ctx)
2134  {
2135  	u32 valid_add_flags;
2136  	u32 valid_drop_flags;
2137  
2138  	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2139  	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2140  
2141  	return hweight32(valid_drop_flags) -
2142  		hweight32(valid_add_flags & valid_drop_flags);
2143  }
2144  
2145  /*
2146   * We need to reserve the new number of endpoints before the configure endpoint
2147   * command completes.  We can't subtract the dropped endpoints from the number
2148   * of active endpoints until the command completes because we can oversubscribe
2149   * the host in this case:
2150   *
2151   *  - the first configure endpoint command drops more endpoints than it adds
2152   *  - a second configure endpoint command that adds more endpoints is queued
2153   *  - the first configure endpoint command fails, so the config is unchanged
2154   *  - the second command may succeed, even though there isn't enough resources
2155   *
2156   * Must be called with xhci->lock held.
2157   */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2158  static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2159  		struct xhci_input_control_ctx *ctrl_ctx)
2160  {
2161  	u32 added_eps;
2162  
2163  	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2164  	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2165  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166  				"Not enough ep ctxs: "
2167  				"%u active, need to add %u, limit is %u.",
2168  				xhci->num_active_eps, added_eps,
2169  				xhci->limit_active_eps);
2170  		return -ENOMEM;
2171  	}
2172  	xhci->num_active_eps += added_eps;
2173  	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174  			"Adding %u ep ctxs, %u now active.", added_eps,
2175  			xhci->num_active_eps);
2176  	return 0;
2177  }
2178  
2179  /*
2180   * The configure endpoint was failed by the xHC for some other reason, so we
2181   * need to revert the resources that failed configuration would have used.
2182   *
2183   * Must be called with xhci->lock held.
2184   */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2185  static void xhci_free_host_resources(struct xhci_hcd *xhci,
2186  		struct xhci_input_control_ctx *ctrl_ctx)
2187  {
2188  	u32 num_failed_eps;
2189  
2190  	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2191  	xhci->num_active_eps -= num_failed_eps;
2192  	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2193  			"Removing %u failed ep ctxs, %u now active.",
2194  			num_failed_eps,
2195  			xhci->num_active_eps);
2196  }
2197  
2198  /*
2199   * Now that the command has completed, clean up the active endpoint count by
2200   * subtracting out the endpoints that were dropped (but not changed).
2201   *
2202   * Must be called with xhci->lock held.
2203   */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2204  static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2205  		struct xhci_input_control_ctx *ctrl_ctx)
2206  {
2207  	u32 num_dropped_eps;
2208  
2209  	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2210  	xhci->num_active_eps -= num_dropped_eps;
2211  	if (num_dropped_eps)
2212  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2213  				"Removing %u dropped ep ctxs, %u now active.",
2214  				num_dropped_eps,
2215  				xhci->num_active_eps);
2216  }
2217  
xhci_get_block_size(struct usb_device * udev)2218  static unsigned int xhci_get_block_size(struct usb_device *udev)
2219  {
2220  	switch (udev->speed) {
2221  	case USB_SPEED_LOW:
2222  	case USB_SPEED_FULL:
2223  		return FS_BLOCK;
2224  	case USB_SPEED_HIGH:
2225  		return HS_BLOCK;
2226  	case USB_SPEED_SUPER:
2227  	case USB_SPEED_SUPER_PLUS:
2228  		return SS_BLOCK;
2229  	case USB_SPEED_UNKNOWN:
2230  	default:
2231  		/* Should never happen */
2232  		return 1;
2233  	}
2234  }
2235  
2236  static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2237  xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2238  {
2239  	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2240  		return LS_OVERHEAD;
2241  	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2242  		return FS_OVERHEAD;
2243  	return HS_OVERHEAD;
2244  }
2245  
2246  /* If we are changing a LS/FS device under a HS hub,
2247   * make sure (if we are activating a new TT) that the HS bus has enough
2248   * bandwidth for this new TT.
2249   */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2250  static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2251  		struct xhci_virt_device *virt_dev,
2252  		int old_active_eps)
2253  {
2254  	struct xhci_interval_bw_table *bw_table;
2255  	struct xhci_tt_bw_info *tt_info;
2256  
2257  	/* Find the bandwidth table for the root port this TT is attached to. */
2258  	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2259  	tt_info = virt_dev->tt_info;
2260  	/* If this TT already had active endpoints, the bandwidth for this TT
2261  	 * has already been added.  Removing all periodic endpoints (and thus
2262  	 * making the TT enactive) will only decrease the bandwidth used.
2263  	 */
2264  	if (old_active_eps)
2265  		return 0;
2266  	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2267  		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2268  			return -ENOMEM;
2269  		return 0;
2270  	}
2271  	/* Not sure why we would have no new active endpoints...
2272  	 *
2273  	 * Maybe because of an Evaluate Context change for a hub update or a
2274  	 * control endpoint 0 max packet size change?
2275  	 * FIXME: skip the bandwidth calculation in that case.
2276  	 */
2277  	return 0;
2278  }
2279  
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2280  static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2281  		struct xhci_virt_device *virt_dev)
2282  {
2283  	unsigned int bw_reserved;
2284  
2285  	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2286  	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2287  		return -ENOMEM;
2288  
2289  	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2290  	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2291  		return -ENOMEM;
2292  
2293  	return 0;
2294  }
2295  
2296  /*
2297   * This algorithm is a very conservative estimate of the worst-case scheduling
2298   * scenario for any one interval.  The hardware dynamically schedules the
2299   * packets, so we can't tell which microframe could be the limiting factor in
2300   * the bandwidth scheduling.  This only takes into account periodic endpoints.
2301   *
2302   * Obviously, we can't solve an NP complete problem to find the minimum worst
2303   * case scenario.  Instead, we come up with an estimate that is no less than
2304   * the worst case bandwidth used for any one microframe, but may be an
2305   * over-estimate.
2306   *
2307   * We walk the requirements for each endpoint by interval, starting with the
2308   * smallest interval, and place packets in the schedule where there is only one
2309   * possible way to schedule packets for that interval.  In order to simplify
2310   * this algorithm, we record the largest max packet size for each interval, and
2311   * assume all packets will be that size.
2312   *
2313   * For interval 0, we obviously must schedule all packets for each interval.
2314   * The bandwidth for interval 0 is just the amount of data to be transmitted
2315   * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2316   * the number of packets).
2317   *
2318   * For interval 1, we have two possible microframes to schedule those packets
2319   * in.  For this algorithm, if we can schedule the same number of packets for
2320   * each possible scheduling opportunity (each microframe), we will do so.  The
2321   * remaining number of packets will be saved to be transmitted in the gaps in
2322   * the next interval's scheduling sequence.
2323   *
2324   * As we move those remaining packets to be scheduled with interval 2 packets,
2325   * we have to double the number of remaining packets to transmit.  This is
2326   * because the intervals are actually powers of 2, and we would be transmitting
2327   * the previous interval's packets twice in this interval.  We also have to be
2328   * sure that when we look at the largest max packet size for this interval, we
2329   * also look at the largest max packet size for the remaining packets and take
2330   * the greater of the two.
2331   *
2332   * The algorithm continues to evenly distribute packets in each scheduling
2333   * opportunity, and push the remaining packets out, until we get to the last
2334   * interval.  Then those packets and their associated overhead are just added
2335   * to the bandwidth used.
2336   */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2337  static int xhci_check_bw_table(struct xhci_hcd *xhci,
2338  		struct xhci_virt_device *virt_dev,
2339  		int old_active_eps)
2340  {
2341  	unsigned int bw_reserved;
2342  	unsigned int max_bandwidth;
2343  	unsigned int bw_used;
2344  	unsigned int block_size;
2345  	struct xhci_interval_bw_table *bw_table;
2346  	unsigned int packet_size = 0;
2347  	unsigned int overhead = 0;
2348  	unsigned int packets_transmitted = 0;
2349  	unsigned int packets_remaining = 0;
2350  	unsigned int i;
2351  
2352  	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2353  		return xhci_check_ss_bw(xhci, virt_dev);
2354  
2355  	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2356  		max_bandwidth = HS_BW_LIMIT;
2357  		/* Convert percent of bus BW reserved to blocks reserved */
2358  		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2359  	} else {
2360  		max_bandwidth = FS_BW_LIMIT;
2361  		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2362  	}
2363  
2364  	bw_table = virt_dev->bw_table;
2365  	/* We need to translate the max packet size and max ESIT payloads into
2366  	 * the units the hardware uses.
2367  	 */
2368  	block_size = xhci_get_block_size(virt_dev->udev);
2369  
2370  	/* If we are manipulating a LS/FS device under a HS hub, double check
2371  	 * that the HS bus has enough bandwidth if we are activing a new TT.
2372  	 */
2373  	if (virt_dev->tt_info) {
2374  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2375  				"Recalculating BW for rootport %u",
2376  				virt_dev->real_port);
2377  		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2378  			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2379  					"newly activated TT.\n");
2380  			return -ENOMEM;
2381  		}
2382  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383  				"Recalculating BW for TT slot %u port %u",
2384  				virt_dev->tt_info->slot_id,
2385  				virt_dev->tt_info->ttport);
2386  	} else {
2387  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2388  				"Recalculating BW for rootport %u",
2389  				virt_dev->real_port);
2390  	}
2391  
2392  	/* Add in how much bandwidth will be used for interval zero, or the
2393  	 * rounded max ESIT payload + number of packets * largest overhead.
2394  	 */
2395  	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2396  		bw_table->interval_bw[0].num_packets *
2397  		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2398  
2399  	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2400  		unsigned int bw_added;
2401  		unsigned int largest_mps;
2402  		unsigned int interval_overhead;
2403  
2404  		/*
2405  		 * How many packets could we transmit in this interval?
2406  		 * If packets didn't fit in the previous interval, we will need
2407  		 * to transmit that many packets twice within this interval.
2408  		 */
2409  		packets_remaining = 2 * packets_remaining +
2410  			bw_table->interval_bw[i].num_packets;
2411  
2412  		/* Find the largest max packet size of this or the previous
2413  		 * interval.
2414  		 */
2415  		if (list_empty(&bw_table->interval_bw[i].endpoints))
2416  			largest_mps = 0;
2417  		else {
2418  			struct xhci_virt_ep *virt_ep;
2419  			struct list_head *ep_entry;
2420  
2421  			ep_entry = bw_table->interval_bw[i].endpoints.next;
2422  			virt_ep = list_entry(ep_entry,
2423  					struct xhci_virt_ep, bw_endpoint_list);
2424  			/* Convert to blocks, rounding up */
2425  			largest_mps = DIV_ROUND_UP(
2426  					virt_ep->bw_info.max_packet_size,
2427  					block_size);
2428  		}
2429  		if (largest_mps > packet_size)
2430  			packet_size = largest_mps;
2431  
2432  		/* Use the larger overhead of this or the previous interval. */
2433  		interval_overhead = xhci_get_largest_overhead(
2434  				&bw_table->interval_bw[i]);
2435  		if (interval_overhead > overhead)
2436  			overhead = interval_overhead;
2437  
2438  		/* How many packets can we evenly distribute across
2439  		 * (1 << (i + 1)) possible scheduling opportunities?
2440  		 */
2441  		packets_transmitted = packets_remaining >> (i + 1);
2442  
2443  		/* Add in the bandwidth used for those scheduled packets */
2444  		bw_added = packets_transmitted * (overhead + packet_size);
2445  
2446  		/* How many packets do we have remaining to transmit? */
2447  		packets_remaining = packets_remaining % (1 << (i + 1));
2448  
2449  		/* What largest max packet size should those packets have? */
2450  		/* If we've transmitted all packets, don't carry over the
2451  		 * largest packet size.
2452  		 */
2453  		if (packets_remaining == 0) {
2454  			packet_size = 0;
2455  			overhead = 0;
2456  		} else if (packets_transmitted > 0) {
2457  			/* Otherwise if we do have remaining packets, and we've
2458  			 * scheduled some packets in this interval, take the
2459  			 * largest max packet size from endpoints with this
2460  			 * interval.
2461  			 */
2462  			packet_size = largest_mps;
2463  			overhead = interval_overhead;
2464  		}
2465  		/* Otherwise carry over packet_size and overhead from the last
2466  		 * time we had a remainder.
2467  		 */
2468  		bw_used += bw_added;
2469  		if (bw_used > max_bandwidth) {
2470  			xhci_warn(xhci, "Not enough bandwidth. "
2471  					"Proposed: %u, Max: %u\n",
2472  				bw_used, max_bandwidth);
2473  			return -ENOMEM;
2474  		}
2475  	}
2476  	/*
2477  	 * Ok, we know we have some packets left over after even-handedly
2478  	 * scheduling interval 15.  We don't know which microframes they will
2479  	 * fit into, so we over-schedule and say they will be scheduled every
2480  	 * microframe.
2481  	 */
2482  	if (packets_remaining > 0)
2483  		bw_used += overhead + packet_size;
2484  
2485  	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2486  		unsigned int port_index = virt_dev->real_port - 1;
2487  
2488  		/* OK, we're manipulating a HS device attached to a
2489  		 * root port bandwidth domain.  Include the number of active TTs
2490  		 * in the bandwidth used.
2491  		 */
2492  		bw_used += TT_HS_OVERHEAD *
2493  			xhci->rh_bw[port_index].num_active_tts;
2494  	}
2495  
2496  	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497  		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2498  		"Available: %u " "percent",
2499  		bw_used, max_bandwidth, bw_reserved,
2500  		(max_bandwidth - bw_used - bw_reserved) * 100 /
2501  		max_bandwidth);
2502  
2503  	bw_used += bw_reserved;
2504  	if (bw_used > max_bandwidth) {
2505  		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2506  				bw_used, max_bandwidth);
2507  		return -ENOMEM;
2508  	}
2509  
2510  	bw_table->bw_used = bw_used;
2511  	return 0;
2512  }
2513  
xhci_is_async_ep(unsigned int ep_type)2514  static bool xhci_is_async_ep(unsigned int ep_type)
2515  {
2516  	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2517  					ep_type != ISOC_IN_EP &&
2518  					ep_type != INT_IN_EP);
2519  }
2520  
xhci_is_sync_in_ep(unsigned int ep_type)2521  static bool xhci_is_sync_in_ep(unsigned int ep_type)
2522  {
2523  	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2524  }
2525  
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2526  static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2527  {
2528  	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2529  
2530  	if (ep_bw->ep_interval == 0)
2531  		return SS_OVERHEAD_BURST +
2532  			(ep_bw->mult * ep_bw->num_packets *
2533  					(SS_OVERHEAD + mps));
2534  	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2535  				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2536  				1 << ep_bw->ep_interval);
2537  
2538  }
2539  
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2540  static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2541  		struct xhci_bw_info *ep_bw,
2542  		struct xhci_interval_bw_table *bw_table,
2543  		struct usb_device *udev,
2544  		struct xhci_virt_ep *virt_ep,
2545  		struct xhci_tt_bw_info *tt_info)
2546  {
2547  	struct xhci_interval_bw	*interval_bw;
2548  	int normalized_interval;
2549  
2550  	if (xhci_is_async_ep(ep_bw->type))
2551  		return;
2552  
2553  	if (udev->speed >= USB_SPEED_SUPER) {
2554  		if (xhci_is_sync_in_ep(ep_bw->type))
2555  			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2556  				xhci_get_ss_bw_consumed(ep_bw);
2557  		else
2558  			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2559  				xhci_get_ss_bw_consumed(ep_bw);
2560  		return;
2561  	}
2562  
2563  	/* SuperSpeed endpoints never get added to intervals in the table, so
2564  	 * this check is only valid for HS/FS/LS devices.
2565  	 */
2566  	if (list_empty(&virt_ep->bw_endpoint_list))
2567  		return;
2568  	/* For LS/FS devices, we need to translate the interval expressed in
2569  	 * microframes to frames.
2570  	 */
2571  	if (udev->speed == USB_SPEED_HIGH)
2572  		normalized_interval = ep_bw->ep_interval;
2573  	else
2574  		normalized_interval = ep_bw->ep_interval - 3;
2575  
2576  	if (normalized_interval == 0)
2577  		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2578  	interval_bw = &bw_table->interval_bw[normalized_interval];
2579  	interval_bw->num_packets -= ep_bw->num_packets;
2580  	switch (udev->speed) {
2581  	case USB_SPEED_LOW:
2582  		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2583  		break;
2584  	case USB_SPEED_FULL:
2585  		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2586  		break;
2587  	case USB_SPEED_HIGH:
2588  		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2589  		break;
2590  	default:
2591  		/* Should never happen because only LS/FS/HS endpoints will get
2592  		 * added to the endpoint list.
2593  		 */
2594  		return;
2595  	}
2596  	if (tt_info)
2597  		tt_info->active_eps -= 1;
2598  	list_del_init(&virt_ep->bw_endpoint_list);
2599  }
2600  
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2601  static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2602  		struct xhci_bw_info *ep_bw,
2603  		struct xhci_interval_bw_table *bw_table,
2604  		struct usb_device *udev,
2605  		struct xhci_virt_ep *virt_ep,
2606  		struct xhci_tt_bw_info *tt_info)
2607  {
2608  	struct xhci_interval_bw	*interval_bw;
2609  	struct xhci_virt_ep *smaller_ep;
2610  	int normalized_interval;
2611  
2612  	if (xhci_is_async_ep(ep_bw->type))
2613  		return;
2614  
2615  	if (udev->speed == USB_SPEED_SUPER) {
2616  		if (xhci_is_sync_in_ep(ep_bw->type))
2617  			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2618  				xhci_get_ss_bw_consumed(ep_bw);
2619  		else
2620  			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2621  				xhci_get_ss_bw_consumed(ep_bw);
2622  		return;
2623  	}
2624  
2625  	/* For LS/FS devices, we need to translate the interval expressed in
2626  	 * microframes to frames.
2627  	 */
2628  	if (udev->speed == USB_SPEED_HIGH)
2629  		normalized_interval = ep_bw->ep_interval;
2630  	else
2631  		normalized_interval = ep_bw->ep_interval - 3;
2632  
2633  	if (normalized_interval == 0)
2634  		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2635  	interval_bw = &bw_table->interval_bw[normalized_interval];
2636  	interval_bw->num_packets += ep_bw->num_packets;
2637  	switch (udev->speed) {
2638  	case USB_SPEED_LOW:
2639  		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2640  		break;
2641  	case USB_SPEED_FULL:
2642  		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2643  		break;
2644  	case USB_SPEED_HIGH:
2645  		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2646  		break;
2647  	default:
2648  		/* Should never happen because only LS/FS/HS endpoints will get
2649  		 * added to the endpoint list.
2650  		 */
2651  		return;
2652  	}
2653  
2654  	if (tt_info)
2655  		tt_info->active_eps += 1;
2656  	/* Insert the endpoint into the list, largest max packet size first. */
2657  	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2658  			bw_endpoint_list) {
2659  		if (ep_bw->max_packet_size >=
2660  				smaller_ep->bw_info.max_packet_size) {
2661  			/* Add the new ep before the smaller endpoint */
2662  			list_add_tail(&virt_ep->bw_endpoint_list,
2663  					&smaller_ep->bw_endpoint_list);
2664  			return;
2665  		}
2666  	}
2667  	/* Add the new endpoint at the end of the list. */
2668  	list_add_tail(&virt_ep->bw_endpoint_list,
2669  			&interval_bw->endpoints);
2670  }
2671  
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2672  void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2673  		struct xhci_virt_device *virt_dev,
2674  		int old_active_eps)
2675  {
2676  	struct xhci_root_port_bw_info *rh_bw_info;
2677  	if (!virt_dev->tt_info)
2678  		return;
2679  
2680  	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2681  	if (old_active_eps == 0 &&
2682  				virt_dev->tt_info->active_eps != 0) {
2683  		rh_bw_info->num_active_tts += 1;
2684  		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2685  	} else if (old_active_eps != 0 &&
2686  				virt_dev->tt_info->active_eps == 0) {
2687  		rh_bw_info->num_active_tts -= 1;
2688  		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2689  	}
2690  }
2691  
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2692  static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2693  		struct xhci_virt_device *virt_dev,
2694  		struct xhci_container_ctx *in_ctx)
2695  {
2696  	struct xhci_bw_info ep_bw_info[31];
2697  	int i;
2698  	struct xhci_input_control_ctx *ctrl_ctx;
2699  	int old_active_eps = 0;
2700  
2701  	if (virt_dev->tt_info)
2702  		old_active_eps = virt_dev->tt_info->active_eps;
2703  
2704  	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2705  	if (!ctrl_ctx) {
2706  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2707  				__func__);
2708  		return -ENOMEM;
2709  	}
2710  
2711  	for (i = 0; i < 31; i++) {
2712  		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2713  			continue;
2714  
2715  		/* Make a copy of the BW info in case we need to revert this */
2716  		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2717  				sizeof(ep_bw_info[i]));
2718  		/* Drop the endpoint from the interval table if the endpoint is
2719  		 * being dropped or changed.
2720  		 */
2721  		if (EP_IS_DROPPED(ctrl_ctx, i))
2722  			xhci_drop_ep_from_interval_table(xhci,
2723  					&virt_dev->eps[i].bw_info,
2724  					virt_dev->bw_table,
2725  					virt_dev->udev,
2726  					&virt_dev->eps[i],
2727  					virt_dev->tt_info);
2728  	}
2729  	/* Overwrite the information stored in the endpoints' bw_info */
2730  	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2731  	for (i = 0; i < 31; i++) {
2732  		/* Add any changed or added endpoints to the interval table */
2733  		if (EP_IS_ADDED(ctrl_ctx, i))
2734  			xhci_add_ep_to_interval_table(xhci,
2735  					&virt_dev->eps[i].bw_info,
2736  					virt_dev->bw_table,
2737  					virt_dev->udev,
2738  					&virt_dev->eps[i],
2739  					virt_dev->tt_info);
2740  	}
2741  
2742  	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2743  		/* Ok, this fits in the bandwidth we have.
2744  		 * Update the number of active TTs.
2745  		 */
2746  		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2747  		return 0;
2748  	}
2749  
2750  	/* We don't have enough bandwidth for this, revert the stored info. */
2751  	for (i = 0; i < 31; i++) {
2752  		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2753  			continue;
2754  
2755  		/* Drop the new copies of any added or changed endpoints from
2756  		 * the interval table.
2757  		 */
2758  		if (EP_IS_ADDED(ctrl_ctx, i)) {
2759  			xhci_drop_ep_from_interval_table(xhci,
2760  					&virt_dev->eps[i].bw_info,
2761  					virt_dev->bw_table,
2762  					virt_dev->udev,
2763  					&virt_dev->eps[i],
2764  					virt_dev->tt_info);
2765  		}
2766  		/* Revert the endpoint back to its old information */
2767  		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2768  				sizeof(ep_bw_info[i]));
2769  		/* Add any changed or dropped endpoints back into the table */
2770  		if (EP_IS_DROPPED(ctrl_ctx, i))
2771  			xhci_add_ep_to_interval_table(xhci,
2772  					&virt_dev->eps[i].bw_info,
2773  					virt_dev->bw_table,
2774  					virt_dev->udev,
2775  					&virt_dev->eps[i],
2776  					virt_dev->tt_info);
2777  	}
2778  	return -ENOMEM;
2779  }
2780  
2781  
2782  /* Issue a configure endpoint command or evaluate context command
2783   * and wait for it to finish.
2784   */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2785  static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2786  		struct usb_device *udev,
2787  		struct xhci_command *command,
2788  		bool ctx_change, bool must_succeed)
2789  {
2790  	int ret;
2791  	unsigned long flags;
2792  	struct xhci_input_control_ctx *ctrl_ctx;
2793  	struct xhci_virt_device *virt_dev;
2794  	struct xhci_slot_ctx *slot_ctx;
2795  
2796  	if (!command)
2797  		return -EINVAL;
2798  
2799  	spin_lock_irqsave(&xhci->lock, flags);
2800  
2801  	if (xhci->xhc_state & XHCI_STATE_DYING) {
2802  		spin_unlock_irqrestore(&xhci->lock, flags);
2803  		return -ESHUTDOWN;
2804  	}
2805  
2806  	virt_dev = xhci->devs[udev->slot_id];
2807  
2808  	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2809  	if (!ctrl_ctx) {
2810  		spin_unlock_irqrestore(&xhci->lock, flags);
2811  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812  				__func__);
2813  		return -ENOMEM;
2814  	}
2815  
2816  	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2817  			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2818  		spin_unlock_irqrestore(&xhci->lock, flags);
2819  		xhci_warn(xhci, "Not enough host resources, "
2820  				"active endpoint contexts = %u\n",
2821  				xhci->num_active_eps);
2822  		return -ENOMEM;
2823  	}
2824  	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2825  	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2826  		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2827  			xhci_free_host_resources(xhci, ctrl_ctx);
2828  		spin_unlock_irqrestore(&xhci->lock, flags);
2829  		xhci_warn(xhci, "Not enough bandwidth\n");
2830  		return -ENOMEM;
2831  	}
2832  
2833  	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2834  
2835  	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2836  	trace_xhci_configure_endpoint(slot_ctx);
2837  
2838  	if (!ctx_change)
2839  		ret = xhci_queue_configure_endpoint(xhci, command,
2840  				command->in_ctx->dma,
2841  				udev->slot_id, must_succeed);
2842  	else
2843  		ret = xhci_queue_evaluate_context(xhci, command,
2844  				command->in_ctx->dma,
2845  				udev->slot_id, must_succeed);
2846  	if (ret < 0) {
2847  		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2848  			xhci_free_host_resources(xhci, ctrl_ctx);
2849  		spin_unlock_irqrestore(&xhci->lock, flags);
2850  		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2851  				"FIXME allocate a new ring segment");
2852  		return -ENOMEM;
2853  	}
2854  	xhci_ring_cmd_db(xhci);
2855  	spin_unlock_irqrestore(&xhci->lock, flags);
2856  
2857  	/* Wait for the configure endpoint command to complete */
2858  	wait_for_completion(command->completion);
2859  
2860  	if (!ctx_change)
2861  		ret = xhci_configure_endpoint_result(xhci, udev,
2862  						     &command->status);
2863  	else
2864  		ret = xhci_evaluate_context_result(xhci, udev,
2865  						   &command->status);
2866  
2867  	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2868  		spin_lock_irqsave(&xhci->lock, flags);
2869  		/* If the command failed, remove the reserved resources.
2870  		 * Otherwise, clean up the estimate to include dropped eps.
2871  		 */
2872  		if (ret)
2873  			xhci_free_host_resources(xhci, ctrl_ctx);
2874  		else
2875  			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2876  		spin_unlock_irqrestore(&xhci->lock, flags);
2877  	}
2878  	return ret;
2879  }
2880  
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2881  static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2882  	struct xhci_virt_device *vdev, int i)
2883  {
2884  	struct xhci_virt_ep *ep = &vdev->eps[i];
2885  
2886  	if (ep->ep_state & EP_HAS_STREAMS) {
2887  		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2888  				xhci_get_endpoint_address(i));
2889  		xhci_free_stream_info(xhci, ep->stream_info);
2890  		ep->stream_info = NULL;
2891  		ep->ep_state &= ~EP_HAS_STREAMS;
2892  	}
2893  }
2894  
2895  /* Called after one or more calls to xhci_add_endpoint() or
2896   * xhci_drop_endpoint().  If this call fails, the USB core is expected
2897   * to call xhci_reset_bandwidth().
2898   *
2899   * Since we are in the middle of changing either configuration or
2900   * installing a new alt setting, the USB core won't allow URBs to be
2901   * enqueued for any endpoint on the old config or interface.  Nothing
2902   * else should be touching the xhci->devs[slot_id] structure, so we
2903   * don't need to take the xhci->lock for manipulating that.
2904   */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2905  int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2906  {
2907  	int i;
2908  	int ret = 0;
2909  	struct xhci_hcd *xhci;
2910  	struct xhci_virt_device	*virt_dev;
2911  	struct xhci_input_control_ctx *ctrl_ctx;
2912  	struct xhci_slot_ctx *slot_ctx;
2913  	struct xhci_command *command;
2914  
2915  	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2916  	if (ret <= 0)
2917  		return ret;
2918  	xhci = hcd_to_xhci(hcd);
2919  	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2920  		(xhci->xhc_state & XHCI_STATE_REMOVING))
2921  		return -ENODEV;
2922  
2923  	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2924  	virt_dev = xhci->devs[udev->slot_id];
2925  
2926  	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2927  	if (!command)
2928  		return -ENOMEM;
2929  
2930  	command->in_ctx = virt_dev->in_ctx;
2931  
2932  	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2933  	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2934  	if (!ctrl_ctx) {
2935  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2936  				__func__);
2937  		ret = -ENOMEM;
2938  		goto command_cleanup;
2939  	}
2940  	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2941  	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2942  	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2943  
2944  	/* Don't issue the command if there's no endpoints to update. */
2945  	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2946  	    ctrl_ctx->drop_flags == 0) {
2947  		ret = 0;
2948  		goto command_cleanup;
2949  	}
2950  	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2951  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2952  	for (i = 31; i >= 1; i--) {
2953  		__le32 le32 = cpu_to_le32(BIT(i));
2954  
2955  		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2956  		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2957  			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2958  			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2959  			break;
2960  		}
2961  	}
2962  
2963  	ret = xhci_configure_endpoint(xhci, udev, command,
2964  			false, false);
2965  	if (ret)
2966  		/* Callee should call reset_bandwidth() */
2967  		goto command_cleanup;
2968  
2969  	/* Free any rings that were dropped, but not changed. */
2970  	for (i = 1; i < 31; i++) {
2971  		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2972  		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2973  			xhci_free_endpoint_ring(xhci, virt_dev, i);
2974  			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2975  		}
2976  	}
2977  	xhci_zero_in_ctx(xhci, virt_dev);
2978  	/*
2979  	 * Install any rings for completely new endpoints or changed endpoints,
2980  	 * and free any old rings from changed endpoints.
2981  	 */
2982  	for (i = 1; i < 31; i++) {
2983  		if (!virt_dev->eps[i].new_ring)
2984  			continue;
2985  		/* Only free the old ring if it exists.
2986  		 * It may not if this is the first add of an endpoint.
2987  		 */
2988  		if (virt_dev->eps[i].ring) {
2989  			xhci_free_endpoint_ring(xhci, virt_dev, i);
2990  		}
2991  		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2992  		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2993  		virt_dev->eps[i].new_ring = NULL;
2994  		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2995  	}
2996  command_cleanup:
2997  	kfree(command->completion);
2998  	kfree(command);
2999  
3000  	return ret;
3001  }
3002  EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3003  
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3004  void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3005  {
3006  	struct xhci_hcd *xhci;
3007  	struct xhci_virt_device	*virt_dev;
3008  	int i, ret;
3009  
3010  	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3011  	if (ret <= 0)
3012  		return;
3013  	xhci = hcd_to_xhci(hcd);
3014  
3015  	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3016  	virt_dev = xhci->devs[udev->slot_id];
3017  	/* Free any rings allocated for added endpoints */
3018  	for (i = 0; i < 31; i++) {
3019  		if (virt_dev->eps[i].new_ring) {
3020  			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3021  			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3022  			virt_dev->eps[i].new_ring = NULL;
3023  		}
3024  	}
3025  	xhci_zero_in_ctx(xhci, virt_dev);
3026  }
3027  EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3028  
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3029  static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3030  		struct xhci_container_ctx *in_ctx,
3031  		struct xhci_container_ctx *out_ctx,
3032  		struct xhci_input_control_ctx *ctrl_ctx,
3033  		u32 add_flags, u32 drop_flags)
3034  {
3035  	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3036  	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3037  	xhci_slot_copy(xhci, in_ctx, out_ctx);
3038  	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3039  }
3040  
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3041  static void xhci_endpoint_disable(struct usb_hcd *hcd,
3042  				  struct usb_host_endpoint *host_ep)
3043  {
3044  	struct xhci_hcd		*xhci;
3045  	struct xhci_virt_device	*vdev;
3046  	struct xhci_virt_ep	*ep;
3047  	struct usb_device	*udev;
3048  	unsigned long		flags;
3049  	unsigned int		ep_index;
3050  
3051  	xhci = hcd_to_xhci(hcd);
3052  rescan:
3053  	spin_lock_irqsave(&xhci->lock, flags);
3054  
3055  	udev = (struct usb_device *)host_ep->hcpriv;
3056  	if (!udev || !udev->slot_id)
3057  		goto done;
3058  
3059  	vdev = xhci->devs[udev->slot_id];
3060  	if (!vdev)
3061  		goto done;
3062  
3063  	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3064  	ep = &vdev->eps[ep_index];
3065  
3066  	/* wait for hub_tt_work to finish clearing hub TT */
3067  	if (ep->ep_state & EP_CLEARING_TT) {
3068  		spin_unlock_irqrestore(&xhci->lock, flags);
3069  		schedule_timeout_uninterruptible(1);
3070  		goto rescan;
3071  	}
3072  
3073  	if (ep->ep_state)
3074  		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3075  			 ep->ep_state);
3076  done:
3077  	host_ep->hcpriv = NULL;
3078  	spin_unlock_irqrestore(&xhci->lock, flags);
3079  }
3080  
3081  /*
3082   * Called after usb core issues a clear halt control message.
3083   * The host side of the halt should already be cleared by a reset endpoint
3084   * command issued when the STALL event was received.
3085   *
3086   * The reset endpoint command may only be issued to endpoints in the halted
3087   * state. For software that wishes to reset the data toggle or sequence number
3088   * of an endpoint that isn't in the halted state this function will issue a
3089   * configure endpoint command with the Drop and Add bits set for the target
3090   * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3091   */
3092  
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3093  static void xhci_endpoint_reset(struct usb_hcd *hcd,
3094  		struct usb_host_endpoint *host_ep)
3095  {
3096  	struct xhci_hcd *xhci;
3097  	struct usb_device *udev;
3098  	struct xhci_virt_device *vdev;
3099  	struct xhci_virt_ep *ep;
3100  	struct xhci_input_control_ctx *ctrl_ctx;
3101  	struct xhci_command *stop_cmd, *cfg_cmd;
3102  	unsigned int ep_index;
3103  	unsigned long flags;
3104  	u32 ep_flag;
3105  	int err;
3106  
3107  	xhci = hcd_to_xhci(hcd);
3108  	if (!host_ep->hcpriv)
3109  		return;
3110  	udev = (struct usb_device *) host_ep->hcpriv;
3111  	vdev = xhci->devs[udev->slot_id];
3112  
3113  	/*
3114  	 * vdev may be lost due to xHC restore error and re-initialization
3115  	 * during S3/S4 resume. A new vdev will be allocated later by
3116  	 * xhci_discover_or_reset_device()
3117  	 */
3118  	if (!udev->slot_id || !vdev)
3119  		return;
3120  	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3121  	ep = &vdev->eps[ep_index];
3122  
3123  	/* Bail out if toggle is already being cleared by a endpoint reset */
3124  	spin_lock_irqsave(&xhci->lock, flags);
3125  	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3126  		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3127  		spin_unlock_irqrestore(&xhci->lock, flags);
3128  		return;
3129  	}
3130  	spin_unlock_irqrestore(&xhci->lock, flags);
3131  	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3132  	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3133  	    usb_endpoint_xfer_isoc(&host_ep->desc))
3134  		return;
3135  
3136  	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3137  
3138  	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3139  		return;
3140  
3141  	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3142  	if (!stop_cmd)
3143  		return;
3144  
3145  	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3146  	if (!cfg_cmd)
3147  		goto cleanup;
3148  
3149  	spin_lock_irqsave(&xhci->lock, flags);
3150  
3151  	/* block queuing new trbs and ringing ep doorbell */
3152  	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3153  
3154  	/*
3155  	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3156  	 * Driver is required to synchronously cancel all transfer request.
3157  	 * Stop the endpoint to force xHC to update the output context
3158  	 */
3159  
3160  	if (!list_empty(&ep->ring->td_list)) {
3161  		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3162  		spin_unlock_irqrestore(&xhci->lock, flags);
3163  		xhci_free_command(xhci, cfg_cmd);
3164  		goto cleanup;
3165  	}
3166  
3167  	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3168  					ep_index, 0);
3169  	if (err < 0) {
3170  		spin_unlock_irqrestore(&xhci->lock, flags);
3171  		xhci_free_command(xhci, cfg_cmd);
3172  		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3173  				__func__, err);
3174  		goto cleanup;
3175  	}
3176  
3177  	xhci_ring_cmd_db(xhci);
3178  	spin_unlock_irqrestore(&xhci->lock, flags);
3179  
3180  	wait_for_completion(stop_cmd->completion);
3181  
3182  	spin_lock_irqsave(&xhci->lock, flags);
3183  
3184  	/* config ep command clears toggle if add and drop ep flags are set */
3185  	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3186  	if (!ctrl_ctx) {
3187  		spin_unlock_irqrestore(&xhci->lock, flags);
3188  		xhci_free_command(xhci, cfg_cmd);
3189  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3190  				__func__);
3191  		goto cleanup;
3192  	}
3193  
3194  	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3195  					   ctrl_ctx, ep_flag, ep_flag);
3196  	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3197  
3198  	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3199  				      udev->slot_id, false);
3200  	if (err < 0) {
3201  		spin_unlock_irqrestore(&xhci->lock, flags);
3202  		xhci_free_command(xhci, cfg_cmd);
3203  		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3204  				__func__, err);
3205  		goto cleanup;
3206  	}
3207  
3208  	xhci_ring_cmd_db(xhci);
3209  	spin_unlock_irqrestore(&xhci->lock, flags);
3210  
3211  	wait_for_completion(cfg_cmd->completion);
3212  
3213  	xhci_free_command(xhci, cfg_cmd);
3214  cleanup:
3215  	xhci_free_command(xhci, stop_cmd);
3216  	spin_lock_irqsave(&xhci->lock, flags);
3217  	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3218  		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3219  	spin_unlock_irqrestore(&xhci->lock, flags);
3220  }
3221  
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3222  static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3223  		struct usb_device *udev, struct usb_host_endpoint *ep,
3224  		unsigned int slot_id)
3225  {
3226  	int ret;
3227  	unsigned int ep_index;
3228  	unsigned int ep_state;
3229  
3230  	if (!ep)
3231  		return -EINVAL;
3232  	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3233  	if (ret <= 0)
3234  		return ret ? ret : -EINVAL;
3235  	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3236  		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3237  				" descriptor for ep 0x%x does not support streams\n",
3238  				ep->desc.bEndpointAddress);
3239  		return -EINVAL;
3240  	}
3241  
3242  	ep_index = xhci_get_endpoint_index(&ep->desc);
3243  	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3244  	if (ep_state & EP_HAS_STREAMS ||
3245  			ep_state & EP_GETTING_STREAMS) {
3246  		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3247  				"already has streams set up.\n",
3248  				ep->desc.bEndpointAddress);
3249  		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3250  				"dynamic stream context array reallocation.\n");
3251  		return -EINVAL;
3252  	}
3253  	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3254  		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3255  				"endpoint 0x%x; URBs are pending.\n",
3256  				ep->desc.bEndpointAddress);
3257  		return -EINVAL;
3258  	}
3259  	return 0;
3260  }
3261  
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3262  static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3263  		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3264  {
3265  	unsigned int max_streams;
3266  
3267  	/* The stream context array size must be a power of two */
3268  	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3269  	/*
3270  	 * Find out how many primary stream array entries the host controller
3271  	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3272  	 * level page entries), but that's an optional feature for xHCI host
3273  	 * controllers. xHCs must support at least 4 stream IDs.
3274  	 */
3275  	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3276  	if (*num_stream_ctxs > max_streams) {
3277  		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3278  				max_streams);
3279  		*num_stream_ctxs = max_streams;
3280  		*num_streams = max_streams;
3281  	}
3282  }
3283  
3284  /* Returns an error code if one of the endpoint already has streams.
3285   * This does not change any data structures, it only checks and gathers
3286   * information.
3287   */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3288  static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3289  		struct usb_device *udev,
3290  		struct usb_host_endpoint **eps, unsigned int num_eps,
3291  		unsigned int *num_streams, u32 *changed_ep_bitmask)
3292  {
3293  	unsigned int max_streams;
3294  	unsigned int endpoint_flag;
3295  	int i;
3296  	int ret;
3297  
3298  	for (i = 0; i < num_eps; i++) {
3299  		ret = xhci_check_streams_endpoint(xhci, udev,
3300  				eps[i], udev->slot_id);
3301  		if (ret < 0)
3302  			return ret;
3303  
3304  		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3305  		if (max_streams < (*num_streams - 1)) {
3306  			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3307  					eps[i]->desc.bEndpointAddress,
3308  					max_streams);
3309  			*num_streams = max_streams+1;
3310  		}
3311  
3312  		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3313  		if (*changed_ep_bitmask & endpoint_flag)
3314  			return -EINVAL;
3315  		*changed_ep_bitmask |= endpoint_flag;
3316  	}
3317  	return 0;
3318  }
3319  
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3320  static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3321  		struct usb_device *udev,
3322  		struct usb_host_endpoint **eps, unsigned int num_eps)
3323  {
3324  	u32 changed_ep_bitmask = 0;
3325  	unsigned int slot_id;
3326  	unsigned int ep_index;
3327  	unsigned int ep_state;
3328  	int i;
3329  
3330  	slot_id = udev->slot_id;
3331  	if (!xhci->devs[slot_id])
3332  		return 0;
3333  
3334  	for (i = 0; i < num_eps; i++) {
3335  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336  		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337  		/* Are streams already being freed for the endpoint? */
3338  		if (ep_state & EP_GETTING_NO_STREAMS) {
3339  			xhci_warn(xhci, "WARN Can't disable streams for "
3340  					"endpoint 0x%x, "
3341  					"streams are being disabled already\n",
3342  					eps[i]->desc.bEndpointAddress);
3343  			return 0;
3344  		}
3345  		/* Are there actually any streams to free? */
3346  		if (!(ep_state & EP_HAS_STREAMS) &&
3347  				!(ep_state & EP_GETTING_STREAMS)) {
3348  			xhci_warn(xhci, "WARN Can't disable streams for "
3349  					"endpoint 0x%x, "
3350  					"streams are already disabled!\n",
3351  					eps[i]->desc.bEndpointAddress);
3352  			xhci_warn(xhci, "WARN xhci_free_streams() called "
3353  					"with non-streams endpoint\n");
3354  			return 0;
3355  		}
3356  		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3357  	}
3358  	return changed_ep_bitmask;
3359  }
3360  
3361  /*
3362   * The USB device drivers use this function (through the HCD interface in USB
3363   * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3364   * coordinate mass storage command queueing across multiple endpoints (basically
3365   * a stream ID == a task ID).
3366   *
3367   * Setting up streams involves allocating the same size stream context array
3368   * for each endpoint and issuing a configure endpoint command for all endpoints.
3369   *
3370   * Don't allow the call to succeed if one endpoint only supports one stream
3371   * (which means it doesn't support streams at all).
3372   *
3373   * Drivers may get less stream IDs than they asked for, if the host controller
3374   * hardware or endpoints claim they can't support the number of requested
3375   * stream IDs.
3376   */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3377  static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3378  		struct usb_host_endpoint **eps, unsigned int num_eps,
3379  		unsigned int num_streams, gfp_t mem_flags)
3380  {
3381  	int i, ret;
3382  	struct xhci_hcd *xhci;
3383  	struct xhci_virt_device *vdev;
3384  	struct xhci_command *config_cmd;
3385  	struct xhci_input_control_ctx *ctrl_ctx;
3386  	unsigned int ep_index;
3387  	unsigned int num_stream_ctxs;
3388  	unsigned int max_packet;
3389  	unsigned long flags;
3390  	u32 changed_ep_bitmask = 0;
3391  
3392  	if (!eps)
3393  		return -EINVAL;
3394  
3395  	/* Add one to the number of streams requested to account for
3396  	 * stream 0 that is reserved for xHCI usage.
3397  	 */
3398  	num_streams += 1;
3399  	xhci = hcd_to_xhci(hcd);
3400  	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3401  			num_streams);
3402  
3403  	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3404  	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3405  			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3406  		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3407  		return -ENOSYS;
3408  	}
3409  
3410  	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3411  	if (!config_cmd)
3412  		return -ENOMEM;
3413  
3414  	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3415  	if (!ctrl_ctx) {
3416  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3417  				__func__);
3418  		xhci_free_command(xhci, config_cmd);
3419  		return -ENOMEM;
3420  	}
3421  
3422  	/* Check to make sure all endpoints are not already configured for
3423  	 * streams.  While we're at it, find the maximum number of streams that
3424  	 * all the endpoints will support and check for duplicate endpoints.
3425  	 */
3426  	spin_lock_irqsave(&xhci->lock, flags);
3427  	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3428  			num_eps, &num_streams, &changed_ep_bitmask);
3429  	if (ret < 0) {
3430  		xhci_free_command(xhci, config_cmd);
3431  		spin_unlock_irqrestore(&xhci->lock, flags);
3432  		return ret;
3433  	}
3434  	if (num_streams <= 1) {
3435  		xhci_warn(xhci, "WARN: endpoints can't handle "
3436  				"more than one stream.\n");
3437  		xhci_free_command(xhci, config_cmd);
3438  		spin_unlock_irqrestore(&xhci->lock, flags);
3439  		return -EINVAL;
3440  	}
3441  	vdev = xhci->devs[udev->slot_id];
3442  	/* Mark each endpoint as being in transition, so
3443  	 * xhci_urb_enqueue() will reject all URBs.
3444  	 */
3445  	for (i = 0; i < num_eps; i++) {
3446  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3447  		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3448  	}
3449  	spin_unlock_irqrestore(&xhci->lock, flags);
3450  
3451  	/* Setup internal data structures and allocate HW data structures for
3452  	 * streams (but don't install the HW structures in the input context
3453  	 * until we're sure all memory allocation succeeded).
3454  	 */
3455  	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3456  	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3457  			num_stream_ctxs, num_streams);
3458  
3459  	for (i = 0; i < num_eps; i++) {
3460  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3461  		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3462  		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3463  				num_stream_ctxs,
3464  				num_streams,
3465  				max_packet, mem_flags);
3466  		if (!vdev->eps[ep_index].stream_info)
3467  			goto cleanup;
3468  		/* Set maxPstreams in endpoint context and update deq ptr to
3469  		 * point to stream context array. FIXME
3470  		 */
3471  	}
3472  
3473  	/* Set up the input context for a configure endpoint command. */
3474  	for (i = 0; i < num_eps; i++) {
3475  		struct xhci_ep_ctx *ep_ctx;
3476  
3477  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3478  		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3479  
3480  		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3481  				vdev->out_ctx, ep_index);
3482  		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3483  				vdev->eps[ep_index].stream_info);
3484  	}
3485  	/* Tell the HW to drop its old copy of the endpoint context info
3486  	 * and add the updated copy from the input context.
3487  	 */
3488  	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3489  			vdev->out_ctx, ctrl_ctx,
3490  			changed_ep_bitmask, changed_ep_bitmask);
3491  
3492  	/* Issue and wait for the configure endpoint command */
3493  	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3494  			false, false);
3495  
3496  	/* xHC rejected the configure endpoint command for some reason, so we
3497  	 * leave the old ring intact and free our internal streams data
3498  	 * structure.
3499  	 */
3500  	if (ret < 0)
3501  		goto cleanup;
3502  
3503  	spin_lock_irqsave(&xhci->lock, flags);
3504  	for (i = 0; i < num_eps; i++) {
3505  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3506  		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3507  		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3508  			 udev->slot_id, ep_index);
3509  		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3510  	}
3511  	xhci_free_command(xhci, config_cmd);
3512  	spin_unlock_irqrestore(&xhci->lock, flags);
3513  
3514  	for (i = 0; i < num_eps; i++) {
3515  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3516  		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3517  	}
3518  	/* Subtract 1 for stream 0, which drivers can't use */
3519  	return num_streams - 1;
3520  
3521  cleanup:
3522  	/* If it didn't work, free the streams! */
3523  	for (i = 0; i < num_eps; i++) {
3524  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3525  		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3526  		vdev->eps[ep_index].stream_info = NULL;
3527  		/* FIXME Unset maxPstreams in endpoint context and
3528  		 * update deq ptr to point to normal string ring.
3529  		 */
3530  		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3531  		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3532  		xhci_endpoint_zero(xhci, vdev, eps[i]);
3533  	}
3534  	xhci_free_command(xhci, config_cmd);
3535  	return -ENOMEM;
3536  }
3537  
3538  /* Transition the endpoint from using streams to being a "normal" endpoint
3539   * without streams.
3540   *
3541   * Modify the endpoint context state, submit a configure endpoint command,
3542   * and free all endpoint rings for streams if that completes successfully.
3543   */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3544  static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3545  		struct usb_host_endpoint **eps, unsigned int num_eps,
3546  		gfp_t mem_flags)
3547  {
3548  	int i, ret;
3549  	struct xhci_hcd *xhci;
3550  	struct xhci_virt_device *vdev;
3551  	struct xhci_command *command;
3552  	struct xhci_input_control_ctx *ctrl_ctx;
3553  	unsigned int ep_index;
3554  	unsigned long flags;
3555  	u32 changed_ep_bitmask;
3556  
3557  	xhci = hcd_to_xhci(hcd);
3558  	vdev = xhci->devs[udev->slot_id];
3559  
3560  	/* Set up a configure endpoint command to remove the streams rings */
3561  	spin_lock_irqsave(&xhci->lock, flags);
3562  	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3563  			udev, eps, num_eps);
3564  	if (changed_ep_bitmask == 0) {
3565  		spin_unlock_irqrestore(&xhci->lock, flags);
3566  		return -EINVAL;
3567  	}
3568  
3569  	/* Use the xhci_command structure from the first endpoint.  We may have
3570  	 * allocated too many, but the driver may call xhci_free_streams() for
3571  	 * each endpoint it grouped into one call to xhci_alloc_streams().
3572  	 */
3573  	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3574  	command = vdev->eps[ep_index].stream_info->free_streams_command;
3575  	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3576  	if (!ctrl_ctx) {
3577  		spin_unlock_irqrestore(&xhci->lock, flags);
3578  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3579  				__func__);
3580  		return -EINVAL;
3581  	}
3582  
3583  	for (i = 0; i < num_eps; i++) {
3584  		struct xhci_ep_ctx *ep_ctx;
3585  
3586  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3587  		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3588  		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3589  			EP_GETTING_NO_STREAMS;
3590  
3591  		xhci_endpoint_copy(xhci, command->in_ctx,
3592  				vdev->out_ctx, ep_index);
3593  		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3594  				&vdev->eps[ep_index]);
3595  	}
3596  	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3597  			vdev->out_ctx, ctrl_ctx,
3598  			changed_ep_bitmask, changed_ep_bitmask);
3599  	spin_unlock_irqrestore(&xhci->lock, flags);
3600  
3601  	/* Issue and wait for the configure endpoint command,
3602  	 * which must succeed.
3603  	 */
3604  	ret = xhci_configure_endpoint(xhci, udev, command,
3605  			false, true);
3606  
3607  	/* xHC rejected the configure endpoint command for some reason, so we
3608  	 * leave the streams rings intact.
3609  	 */
3610  	if (ret < 0)
3611  		return ret;
3612  
3613  	spin_lock_irqsave(&xhci->lock, flags);
3614  	for (i = 0; i < num_eps; i++) {
3615  		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616  		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617  		vdev->eps[ep_index].stream_info = NULL;
3618  		/* FIXME Unset maxPstreams in endpoint context and
3619  		 * update deq ptr to point to normal string ring.
3620  		 */
3621  		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3622  		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623  	}
3624  	spin_unlock_irqrestore(&xhci->lock, flags);
3625  
3626  	return 0;
3627  }
3628  
3629  /*
3630   * Deletes endpoint resources for endpoints that were active before a Reset
3631   * Device command, or a Disable Slot command.  The Reset Device command leaves
3632   * the control endpoint intact, whereas the Disable Slot command deletes it.
3633   *
3634   * Must be called with xhci->lock held.
3635   */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3636  void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3637  	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3638  {
3639  	int i;
3640  	unsigned int num_dropped_eps = 0;
3641  	unsigned int drop_flags = 0;
3642  
3643  	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3644  		if (virt_dev->eps[i].ring) {
3645  			drop_flags |= 1 << i;
3646  			num_dropped_eps++;
3647  		}
3648  	}
3649  	xhci->num_active_eps -= num_dropped_eps;
3650  	if (num_dropped_eps)
3651  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652  				"Dropped %u ep ctxs, flags = 0x%x, "
3653  				"%u now active.",
3654  				num_dropped_eps, drop_flags,
3655  				xhci->num_active_eps);
3656  }
3657  
3658  static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3659  
3660  /*
3661   * This submits a Reset Device Command, which will set the device state to 0,
3662   * set the device address to 0, and disable all the endpoints except the default
3663   * control endpoint.  The USB core should come back and call
3664   * xhci_address_device(), and then re-set up the configuration.  If this is
3665   * called because of a usb_reset_and_verify_device(), then the old alternate
3666   * settings will be re-installed through the normal bandwidth allocation
3667   * functions.
3668   *
3669   * Wait for the Reset Device command to finish.  Remove all structures
3670   * associated with the endpoints that were disabled.  Clear the input device
3671   * structure? Reset the control endpoint 0 max packet size?
3672   *
3673   * If the virt_dev to be reset does not exist or does not match the udev,
3674   * it means the device is lost, possibly due to the xHC restore error and
3675   * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3676   * re-allocate the device.
3677   */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3678  static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3679  		struct usb_device *udev)
3680  {
3681  	int ret, i;
3682  	unsigned long flags;
3683  	struct xhci_hcd *xhci;
3684  	unsigned int slot_id;
3685  	struct xhci_virt_device *virt_dev;
3686  	struct xhci_command *reset_device_cmd;
3687  	struct xhci_slot_ctx *slot_ctx;
3688  	int old_active_eps = 0;
3689  
3690  	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3691  	if (ret <= 0)
3692  		return ret;
3693  	xhci = hcd_to_xhci(hcd);
3694  	slot_id = udev->slot_id;
3695  	virt_dev = xhci->devs[slot_id];
3696  	if (!virt_dev) {
3697  		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3698  				"not exist. Re-allocate the device\n", slot_id);
3699  		ret = xhci_alloc_dev(hcd, udev);
3700  		if (ret == 1)
3701  			return 0;
3702  		else
3703  			return -EINVAL;
3704  	}
3705  
3706  	if (virt_dev->tt_info)
3707  		old_active_eps = virt_dev->tt_info->active_eps;
3708  
3709  	if (virt_dev->udev != udev) {
3710  		/* If the virt_dev and the udev does not match, this virt_dev
3711  		 * may belong to another udev.
3712  		 * Re-allocate the device.
3713  		 */
3714  		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715  				"not match the udev. Re-allocate the device\n",
3716  				slot_id);
3717  		ret = xhci_alloc_dev(hcd, udev);
3718  		if (ret == 1)
3719  			return 0;
3720  		else
3721  			return -EINVAL;
3722  	}
3723  
3724  	/* If device is not setup, there is no point in resetting it */
3725  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3726  	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3727  						SLOT_STATE_DISABLED)
3728  		return 0;
3729  
3730  	if (xhci->quirks & XHCI_ETRON_HOST) {
3731  		/*
3732  		 * Obtaining a new device slot to inform the xHCI host that
3733  		 * the USB device has been reset.
3734  		 */
3735  		ret = xhci_disable_slot(xhci, udev->slot_id);
3736  		xhci_free_virt_device(xhci, udev->slot_id);
3737  		if (!ret) {
3738  			ret = xhci_alloc_dev(hcd, udev);
3739  			if (ret == 1)
3740  				ret = 0;
3741  			else
3742  				ret = -EINVAL;
3743  		}
3744  		return ret;
3745  	}
3746  
3747  	trace_xhci_discover_or_reset_device(slot_ctx);
3748  
3749  	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750  	/* Allocate the command structure that holds the struct completion.
3751  	 * Assume we're in process context, since the normal device reset
3752  	 * process has to wait for the device anyway.  Storage devices are
3753  	 * reset as part of error handling, so use GFP_NOIO instead of
3754  	 * GFP_KERNEL.
3755  	 */
3756  	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757  	if (!reset_device_cmd) {
3758  		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759  		return -ENOMEM;
3760  	}
3761  
3762  	/* Attempt to submit the Reset Device command to the command ring */
3763  	spin_lock_irqsave(&xhci->lock, flags);
3764  
3765  	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766  	if (ret) {
3767  		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768  		spin_unlock_irqrestore(&xhci->lock, flags);
3769  		goto command_cleanup;
3770  	}
3771  	xhci_ring_cmd_db(xhci);
3772  	spin_unlock_irqrestore(&xhci->lock, flags);
3773  
3774  	/* Wait for the Reset Device command to finish */
3775  	wait_for_completion(reset_device_cmd->completion);
3776  
3777  	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778  	 * unless we tried to reset a slot ID that wasn't enabled,
3779  	 * or the device wasn't in the addressed or configured state.
3780  	 */
3781  	ret = reset_device_cmd->status;
3782  	switch (ret) {
3783  	case COMP_COMMAND_ABORTED:
3784  	case COMP_COMMAND_RING_STOPPED:
3785  		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786  		ret = -ETIME;
3787  		goto command_cleanup;
3788  	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789  	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790  		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791  				slot_id,
3792  				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793  		xhci_dbg(xhci, "Not freeing device rings.\n");
3794  		/* Don't treat this as an error.  May change my mind later. */
3795  		ret = 0;
3796  		goto command_cleanup;
3797  	case COMP_SUCCESS:
3798  		xhci_dbg(xhci, "Successful reset device command.\n");
3799  		break;
3800  	default:
3801  		if (xhci_is_vendor_info_code(xhci, ret))
3802  			break;
3803  		xhci_warn(xhci, "Unknown completion code %u for "
3804  				"reset device command.\n", ret);
3805  		ret = -EINVAL;
3806  		goto command_cleanup;
3807  	}
3808  
3809  	/* Free up host controller endpoint resources */
3810  	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811  		spin_lock_irqsave(&xhci->lock, flags);
3812  		/* Don't delete the default control endpoint resources */
3813  		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814  		spin_unlock_irqrestore(&xhci->lock, flags);
3815  	}
3816  
3817  	/* Everything but endpoint 0 is disabled, so free the rings. */
3818  	for (i = 1; i < 31; i++) {
3819  		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820  
3821  		if (ep->ep_state & EP_HAS_STREAMS) {
3822  			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823  					xhci_get_endpoint_address(i));
3824  			xhci_free_stream_info(xhci, ep->stream_info);
3825  			ep->stream_info = NULL;
3826  			ep->ep_state &= ~EP_HAS_STREAMS;
3827  		}
3828  
3829  		if (ep->ring) {
3830  			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831  			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832  		}
3833  		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834  			xhci_drop_ep_from_interval_table(xhci,
3835  					&virt_dev->eps[i].bw_info,
3836  					virt_dev->bw_table,
3837  					udev,
3838  					&virt_dev->eps[i],
3839  					virt_dev->tt_info);
3840  		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841  	}
3842  	/* If necessary, update the number of active TTs on this root port */
3843  	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844  	virt_dev->flags = 0;
3845  	ret = 0;
3846  
3847  command_cleanup:
3848  	xhci_free_command(xhci, reset_device_cmd);
3849  	return ret;
3850  }
3851  
3852  /*
3853   * At this point, the struct usb_device is about to go away, the device has
3854   * disconnected, and all traffic has been stopped and the endpoints have been
3855   * disabled.  Free any HC data structures associated with that device.
3856   */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3857  static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858  {
3859  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860  	struct xhci_virt_device *virt_dev;
3861  	struct xhci_slot_ctx *slot_ctx;
3862  	unsigned long flags;
3863  	int i, ret;
3864  
3865  	/*
3866  	 * We called pm_runtime_get_noresume when the device was attached.
3867  	 * Decrement the counter here to allow controller to runtime suspend
3868  	 * if no devices remain.
3869  	 */
3870  	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871  		pm_runtime_put_noidle(hcd->self.controller);
3872  
3873  	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3874  	/* If the host is halted due to driver unload, we still need to free the
3875  	 * device.
3876  	 */
3877  	if (ret <= 0 && ret != -ENODEV)
3878  		return;
3879  
3880  	virt_dev = xhci->devs[udev->slot_id];
3881  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3882  	trace_xhci_free_dev(slot_ctx);
3883  
3884  	/* Stop any wayward timer functions (which may grab the lock) */
3885  	for (i = 0; i < 31; i++)
3886  		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3887  	virt_dev->udev = NULL;
3888  	xhci_disable_slot(xhci, udev->slot_id);
3889  
3890  	spin_lock_irqsave(&xhci->lock, flags);
3891  	xhci_free_virt_device(xhci, udev->slot_id);
3892  	spin_unlock_irqrestore(&xhci->lock, flags);
3893  
3894  }
3895  
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3896  int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897  {
3898  	struct xhci_command *command;
3899  	unsigned long flags;
3900  	u32 state;
3901  	int ret;
3902  
3903  	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3904  	if (!command)
3905  		return -ENOMEM;
3906  
3907  	xhci_debugfs_remove_slot(xhci, slot_id);
3908  
3909  	spin_lock_irqsave(&xhci->lock, flags);
3910  	/* Don't disable the slot if the host controller is dead. */
3911  	state = readl(&xhci->op_regs->status);
3912  	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913  			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914  		spin_unlock_irqrestore(&xhci->lock, flags);
3915  		kfree(command);
3916  		return -ENODEV;
3917  	}
3918  
3919  	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920  				slot_id);
3921  	if (ret) {
3922  		spin_unlock_irqrestore(&xhci->lock, flags);
3923  		kfree(command);
3924  		return ret;
3925  	}
3926  	xhci_ring_cmd_db(xhci);
3927  	spin_unlock_irqrestore(&xhci->lock, flags);
3928  
3929  	wait_for_completion(command->completion);
3930  
3931  	if (command->status != COMP_SUCCESS)
3932  		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3933  			  slot_id, command->status);
3934  
3935  	xhci_free_command(xhci, command);
3936  
3937  	return 0;
3938  }
3939  
3940  /*
3941   * Checks if we have enough host controller resources for the default control
3942   * endpoint.
3943   *
3944   * Must be called with xhci->lock held.
3945   */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3946  static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3947  {
3948  	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3949  		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3950  				"Not enough ep ctxs: "
3951  				"%u active, need to add 1, limit is %u.",
3952  				xhci->num_active_eps, xhci->limit_active_eps);
3953  		return -ENOMEM;
3954  	}
3955  	xhci->num_active_eps += 1;
3956  	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3957  			"Adding 1 ep ctx, %u now active.",
3958  			xhci->num_active_eps);
3959  	return 0;
3960  }
3961  
3962  
3963  /*
3964   * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3965   * timed out, or allocating memory failed.  Returns 1 on success.
3966   */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3967  int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3968  {
3969  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970  	struct xhci_virt_device *vdev;
3971  	struct xhci_slot_ctx *slot_ctx;
3972  	unsigned long flags;
3973  	int ret, slot_id;
3974  	struct xhci_command *command;
3975  
3976  	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3977  	if (!command)
3978  		return 0;
3979  
3980  	spin_lock_irqsave(&xhci->lock, flags);
3981  	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3982  	if (ret) {
3983  		spin_unlock_irqrestore(&xhci->lock, flags);
3984  		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3985  		xhci_free_command(xhci, command);
3986  		return 0;
3987  	}
3988  	xhci_ring_cmd_db(xhci);
3989  	spin_unlock_irqrestore(&xhci->lock, flags);
3990  
3991  	wait_for_completion(command->completion);
3992  	slot_id = command->slot_id;
3993  
3994  	if (!slot_id || command->status != COMP_SUCCESS) {
3995  		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3996  			 xhci_trb_comp_code_string(command->status));
3997  		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3998  				HCS_MAX_SLOTS(
3999  					readl(&xhci->cap_regs->hcs_params1)));
4000  		xhci_free_command(xhci, command);
4001  		return 0;
4002  	}
4003  
4004  	xhci_free_command(xhci, command);
4005  
4006  	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4007  		spin_lock_irqsave(&xhci->lock, flags);
4008  		ret = xhci_reserve_host_control_ep_resources(xhci);
4009  		if (ret) {
4010  			spin_unlock_irqrestore(&xhci->lock, flags);
4011  			xhci_warn(xhci, "Not enough host resources, "
4012  					"active endpoint contexts = %u\n",
4013  					xhci->num_active_eps);
4014  			goto disable_slot;
4015  		}
4016  		spin_unlock_irqrestore(&xhci->lock, flags);
4017  	}
4018  	/* Use GFP_NOIO, since this function can be called from
4019  	 * xhci_discover_or_reset_device(), which may be called as part of
4020  	 * mass storage driver error handling.
4021  	 */
4022  	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4023  		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4024  		goto disable_slot;
4025  	}
4026  	vdev = xhci->devs[slot_id];
4027  	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4028  	trace_xhci_alloc_dev(slot_ctx);
4029  
4030  	udev->slot_id = slot_id;
4031  
4032  	xhci_debugfs_create_slot(xhci, slot_id);
4033  
4034  	/*
4035  	 * If resetting upon resume, we can't put the controller into runtime
4036  	 * suspend if there is a device attached.
4037  	 */
4038  	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4039  		pm_runtime_get_noresume(hcd->self.controller);
4040  
4041  	/* Is this a LS or FS device under a HS hub? */
4042  	/* Hub or peripherial? */
4043  	return 1;
4044  
4045  disable_slot:
4046  	xhci_disable_slot(xhci, udev->slot_id);
4047  	xhci_free_virt_device(xhci, udev->slot_id);
4048  
4049  	return 0;
4050  }
4051  
4052  /**
4053   * xhci_setup_device - issues an Address Device command to assign a unique
4054   *			USB bus address.
4055   * @hcd: USB host controller data structure.
4056   * @udev: USB dev structure representing the connected device.
4057   * @setup: Enum specifying setup mode: address only or with context.
4058   * @timeout_ms: Max wait time (ms) for the command operation to complete.
4059   *
4060   * Return: 0 if successful; otherwise, negative error code.
4061   */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4062  static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4063  			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4064  {
4065  	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4066  	unsigned long flags;
4067  	struct xhci_virt_device *virt_dev;
4068  	int ret = 0;
4069  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4070  	struct xhci_slot_ctx *slot_ctx;
4071  	struct xhci_input_control_ctx *ctrl_ctx;
4072  	u64 temp_64;
4073  	struct xhci_command *command = NULL;
4074  
4075  	mutex_lock(&xhci->mutex);
4076  
4077  	if (xhci->xhc_state) {	/* dying, removing or halted */
4078  		ret = -ESHUTDOWN;
4079  		goto out;
4080  	}
4081  
4082  	if (!udev->slot_id) {
4083  		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4084  				"Bad Slot ID %d", udev->slot_id);
4085  		ret = -EINVAL;
4086  		goto out;
4087  	}
4088  
4089  	virt_dev = xhci->devs[udev->slot_id];
4090  
4091  	if (WARN_ON(!virt_dev)) {
4092  		/*
4093  		 * In plug/unplug torture test with an NEC controller,
4094  		 * a zero-dereference was observed once due to virt_dev = 0.
4095  		 * Print useful debug rather than crash if it is observed again!
4096  		 */
4097  		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4098  			udev->slot_id);
4099  		ret = -EINVAL;
4100  		goto out;
4101  	}
4102  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4103  	trace_xhci_setup_device_slot(slot_ctx);
4104  
4105  	if (setup == SETUP_CONTEXT_ONLY) {
4106  		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4107  		    SLOT_STATE_DEFAULT) {
4108  			xhci_dbg(xhci, "Slot already in default state\n");
4109  			goto out;
4110  		}
4111  	}
4112  
4113  	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4114  	if (!command) {
4115  		ret = -ENOMEM;
4116  		goto out;
4117  	}
4118  
4119  	command->in_ctx = virt_dev->in_ctx;
4120  	command->timeout_ms = timeout_ms;
4121  
4122  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4123  	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4124  	if (!ctrl_ctx) {
4125  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4126  				__func__);
4127  		ret = -EINVAL;
4128  		goto out;
4129  	}
4130  	/*
4131  	 * If this is the first Set Address since device plug-in or
4132  	 * virt_device realloaction after a resume with an xHCI power loss,
4133  	 * then set up the slot context.
4134  	 */
4135  	if (!slot_ctx->dev_info)
4136  		xhci_setup_addressable_virt_dev(xhci, udev);
4137  	/* Otherwise, update the control endpoint ring enqueue pointer. */
4138  	else
4139  		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4140  	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4141  	ctrl_ctx->drop_flags = 0;
4142  
4143  	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4144  				le32_to_cpu(slot_ctx->dev_info) >> 27);
4145  
4146  	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4147  	spin_lock_irqsave(&xhci->lock, flags);
4148  	trace_xhci_setup_device(virt_dev);
4149  	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4150  					udev->slot_id, setup);
4151  	if (ret) {
4152  		spin_unlock_irqrestore(&xhci->lock, flags);
4153  		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4154  				"FIXME: allocate a command ring segment");
4155  		goto out;
4156  	}
4157  	xhci_ring_cmd_db(xhci);
4158  	spin_unlock_irqrestore(&xhci->lock, flags);
4159  
4160  	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4161  	wait_for_completion(command->completion);
4162  
4163  	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4164  	 * the SetAddress() "recovery interval" required by USB and aborting the
4165  	 * command on a timeout.
4166  	 */
4167  	switch (command->status) {
4168  	case COMP_COMMAND_ABORTED:
4169  	case COMP_COMMAND_RING_STOPPED:
4170  		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4171  		ret = -ETIME;
4172  		break;
4173  	case COMP_CONTEXT_STATE_ERROR:
4174  	case COMP_SLOT_NOT_ENABLED_ERROR:
4175  		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4176  			 act, udev->slot_id);
4177  		ret = -EINVAL;
4178  		break;
4179  	case COMP_USB_TRANSACTION_ERROR:
4180  		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4181  
4182  		mutex_unlock(&xhci->mutex);
4183  		ret = xhci_disable_slot(xhci, udev->slot_id);
4184  		xhci_free_virt_device(xhci, udev->slot_id);
4185  		if (!ret) {
4186  			if (xhci_alloc_dev(hcd, udev) == 1)
4187  				xhci_setup_addressable_virt_dev(xhci, udev);
4188  		}
4189  		kfree(command->completion);
4190  		kfree(command);
4191  		return -EPROTO;
4192  	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4193  		dev_warn(&udev->dev,
4194  			 "ERROR: Incompatible device for setup %s command\n", act);
4195  		ret = -ENODEV;
4196  		break;
4197  	case COMP_SUCCESS:
4198  		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4199  			       "Successful setup %s command", act);
4200  		break;
4201  	default:
4202  		xhci_err(xhci,
4203  			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4204  			 act, command->status);
4205  		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4206  		ret = -EINVAL;
4207  		break;
4208  	}
4209  	if (ret)
4210  		goto out;
4211  	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4212  	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4213  			"Op regs DCBAA ptr = %#016llx", temp_64);
4214  	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4215  		"Slot ID %d dcbaa entry @%p = %#016llx",
4216  		udev->slot_id,
4217  		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4218  		(unsigned long long)
4219  		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4220  	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221  			"Output Context DMA address = %#08llx",
4222  			(unsigned long long)virt_dev->out_ctx->dma);
4223  	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4224  				le32_to_cpu(slot_ctx->dev_info) >> 27);
4225  	/*
4226  	 * USB core uses address 1 for the roothubs, so we add one to the
4227  	 * address given back to us by the HC.
4228  	 */
4229  	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4230  				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231  	/* Zero the input context control for later use */
4232  	ctrl_ctx->add_flags = 0;
4233  	ctrl_ctx->drop_flags = 0;
4234  	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4235  	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4236  
4237  	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238  		       "Internal device address = %d",
4239  		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240  out:
4241  	mutex_unlock(&xhci->mutex);
4242  	if (command) {
4243  		kfree(command->completion);
4244  		kfree(command);
4245  	}
4246  	return ret;
4247  }
4248  
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4249  static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4250  			       unsigned int timeout_ms)
4251  {
4252  	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4253  }
4254  
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4255  static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4256  {
4257  	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4258  				 XHCI_CMD_DEFAULT_TIMEOUT);
4259  }
4260  
4261  /*
4262   * Transfer the port index into real index in the HW port status
4263   * registers. Caculate offset between the port's PORTSC register
4264   * and port status base. Divide the number of per port register
4265   * to get the real index. The raw port number bases 1.
4266   */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4267  int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4268  {
4269  	struct xhci_hub *rhub;
4270  
4271  	rhub = xhci_get_rhub(hcd);
4272  	return rhub->ports[port1 - 1]->hw_portnum + 1;
4273  }
4274  
4275  /*
4276   * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4277   * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4278   */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4279  static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4280  			struct usb_device *udev, u16 max_exit_latency)
4281  {
4282  	struct xhci_virt_device *virt_dev;
4283  	struct xhci_command *command;
4284  	struct xhci_input_control_ctx *ctrl_ctx;
4285  	struct xhci_slot_ctx *slot_ctx;
4286  	unsigned long flags;
4287  	int ret;
4288  
4289  	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4290  	if (!command)
4291  		return -ENOMEM;
4292  
4293  	spin_lock_irqsave(&xhci->lock, flags);
4294  
4295  	virt_dev = xhci->devs[udev->slot_id];
4296  
4297  	/*
4298  	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4299  	 * xHC was re-initialized. Exit latency will be set later after
4300  	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4301  	 */
4302  
4303  	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4304  		spin_unlock_irqrestore(&xhci->lock, flags);
4305  		xhci_free_command(xhci, command);
4306  		return 0;
4307  	}
4308  
4309  	/* Attempt to issue an Evaluate Context command to change the MEL. */
4310  	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4311  	if (!ctrl_ctx) {
4312  		spin_unlock_irqrestore(&xhci->lock, flags);
4313  		xhci_free_command(xhci, command);
4314  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4315  				__func__);
4316  		return -ENOMEM;
4317  	}
4318  
4319  	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4320  	spin_unlock_irqrestore(&xhci->lock, flags);
4321  
4322  	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4323  	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4324  	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4325  	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4326  	slot_ctx->dev_state = 0;
4327  
4328  	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4329  			"Set up evaluate context for LPM MEL change.");
4330  
4331  	/* Issue and wait for the evaluate context command. */
4332  	ret = xhci_configure_endpoint(xhci, udev, command,
4333  			true, true);
4334  
4335  	if (!ret) {
4336  		spin_lock_irqsave(&xhci->lock, flags);
4337  		virt_dev->current_mel = max_exit_latency;
4338  		spin_unlock_irqrestore(&xhci->lock, flags);
4339  	}
4340  
4341  	xhci_free_command(xhci, command);
4342  
4343  	return ret;
4344  }
4345  
4346  #ifdef CONFIG_PM
4347  
4348  /* BESL to HIRD Encoding array for USB2 LPM */
4349  static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4350  	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4351  
4352  /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4353  static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4354  					struct usb_device *udev)
4355  {
4356  	int u2del, besl, besl_host;
4357  	int besl_device = 0;
4358  	u32 field;
4359  
4360  	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4361  	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4362  
4363  	if (field & USB_BESL_SUPPORT) {
4364  		for (besl_host = 0; besl_host < 16; besl_host++) {
4365  			if (xhci_besl_encoding[besl_host] >= u2del)
4366  				break;
4367  		}
4368  		/* Use baseline BESL value as default */
4369  		if (field & USB_BESL_BASELINE_VALID)
4370  			besl_device = USB_GET_BESL_BASELINE(field);
4371  		else if (field & USB_BESL_DEEP_VALID)
4372  			besl_device = USB_GET_BESL_DEEP(field);
4373  	} else {
4374  		if (u2del <= 50)
4375  			besl_host = 0;
4376  		else
4377  			besl_host = (u2del - 51) / 75 + 1;
4378  	}
4379  
4380  	besl = besl_host + besl_device;
4381  	if (besl > 15)
4382  		besl = 15;
4383  
4384  	return besl;
4385  }
4386  
4387  /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4388  static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4389  {
4390  	u32 field;
4391  	int l1;
4392  	int besld = 0;
4393  	int hirdm = 0;
4394  
4395  	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4396  
4397  	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4398  	l1 = udev->l1_params.timeout / 256;
4399  
4400  	/* device has preferred BESLD */
4401  	if (field & USB_BESL_DEEP_VALID) {
4402  		besld = USB_GET_BESL_DEEP(field);
4403  		hirdm = 1;
4404  	}
4405  
4406  	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4407  }
4408  
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4409  static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4410  			struct usb_device *udev, int enable)
4411  {
4412  	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4413  	struct xhci_port **ports;
4414  	__le32 __iomem	*pm_addr, *hlpm_addr;
4415  	u32		pm_val, hlpm_val, field;
4416  	unsigned int	port_num;
4417  	unsigned long	flags;
4418  	int		hird, exit_latency;
4419  	int		ret;
4420  
4421  	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4422  		return -EPERM;
4423  
4424  	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4425  			!udev->lpm_capable)
4426  		return -EPERM;
4427  
4428  	if (!udev->parent || udev->parent->parent ||
4429  			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4430  		return -EPERM;
4431  
4432  	if (udev->usb2_hw_lpm_capable != 1)
4433  		return -EPERM;
4434  
4435  	spin_lock_irqsave(&xhci->lock, flags);
4436  
4437  	ports = xhci->usb2_rhub.ports;
4438  	port_num = udev->portnum - 1;
4439  	pm_addr = ports[port_num]->addr + PORTPMSC;
4440  	pm_val = readl(pm_addr);
4441  	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4442  
4443  	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4444  			enable ? "enable" : "disable", port_num + 1);
4445  
4446  	if (enable) {
4447  		/* Host supports BESL timeout instead of HIRD */
4448  		if (udev->usb2_hw_lpm_besl_capable) {
4449  			/* if device doesn't have a preferred BESL value use a
4450  			 * default one which works with mixed HIRD and BESL
4451  			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4452  			 */
4453  			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454  			if ((field & USB_BESL_SUPPORT) &&
4455  			    (field & USB_BESL_BASELINE_VALID))
4456  				hird = USB_GET_BESL_BASELINE(field);
4457  			else
4458  				hird = udev->l1_params.besl;
4459  
4460  			exit_latency = xhci_besl_encoding[hird];
4461  			spin_unlock_irqrestore(&xhci->lock, flags);
4462  
4463  			ret = xhci_change_max_exit_latency(xhci, udev,
4464  							   exit_latency);
4465  			if (ret < 0)
4466  				return ret;
4467  			spin_lock_irqsave(&xhci->lock, flags);
4468  
4469  			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4470  			writel(hlpm_val, hlpm_addr);
4471  			/* flush write */
4472  			readl(hlpm_addr);
4473  		} else {
4474  			hird = xhci_calculate_hird_besl(xhci, udev);
4475  		}
4476  
4477  		pm_val &= ~PORT_HIRD_MASK;
4478  		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4479  		writel(pm_val, pm_addr);
4480  		pm_val = readl(pm_addr);
4481  		pm_val |= PORT_HLE;
4482  		writel(pm_val, pm_addr);
4483  		/* flush write */
4484  		readl(pm_addr);
4485  	} else {
4486  		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4487  		writel(pm_val, pm_addr);
4488  		/* flush write */
4489  		readl(pm_addr);
4490  		if (udev->usb2_hw_lpm_besl_capable) {
4491  			spin_unlock_irqrestore(&xhci->lock, flags);
4492  			xhci_change_max_exit_latency(xhci, udev, 0);
4493  			readl_poll_timeout(ports[port_num]->addr, pm_val,
4494  					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4495  					   100, 10000);
4496  			return 0;
4497  		}
4498  	}
4499  
4500  	spin_unlock_irqrestore(&xhci->lock, flags);
4501  	return 0;
4502  }
4503  
4504  /* check if a usb2 port supports a given extened capability protocol
4505   * only USB2 ports extended protocol capability values are cached.
4506   * Return 1 if capability is supported
4507   */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4508  static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4509  					   unsigned capability)
4510  {
4511  	u32 port_offset, port_count;
4512  	int i;
4513  
4514  	for (i = 0; i < xhci->num_ext_caps; i++) {
4515  		if (xhci->ext_caps[i] & capability) {
4516  			/* port offsets starts at 1 */
4517  			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4518  			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4519  			if (port >= port_offset &&
4520  			    port < port_offset + port_count)
4521  				return 1;
4522  		}
4523  	}
4524  	return 0;
4525  }
4526  
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4527  static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4528  {
4529  	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4530  	int		portnum = udev->portnum - 1;
4531  
4532  	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4533  		return 0;
4534  
4535  	/* we only support lpm for non-hub device connected to root hub yet */
4536  	if (!udev->parent || udev->parent->parent ||
4537  			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4538  		return 0;
4539  
4540  	if (xhci->hw_lpm_support == 1 &&
4541  			xhci_check_usb2_port_capability(
4542  				xhci, portnum, XHCI_HLC)) {
4543  		udev->usb2_hw_lpm_capable = 1;
4544  		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4545  		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4546  		if (xhci_check_usb2_port_capability(xhci, portnum,
4547  					XHCI_BLC))
4548  			udev->usb2_hw_lpm_besl_capable = 1;
4549  	}
4550  
4551  	return 0;
4552  }
4553  
4554  /*---------------------- USB 3.0 Link PM functions ------------------------*/
4555  
4556  /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4557  static unsigned long long xhci_service_interval_to_ns(
4558  		struct usb_endpoint_descriptor *desc)
4559  {
4560  	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4561  }
4562  
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4563  static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4564  		enum usb3_link_state state)
4565  {
4566  	unsigned long long sel;
4567  	unsigned long long pel;
4568  	unsigned int max_sel_pel;
4569  	char *state_name;
4570  
4571  	switch (state) {
4572  	case USB3_LPM_U1:
4573  		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4574  		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4575  		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4576  		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4577  		state_name = "U1";
4578  		break;
4579  	case USB3_LPM_U2:
4580  		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4581  		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4582  		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4583  		state_name = "U2";
4584  		break;
4585  	default:
4586  		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4587  				__func__);
4588  		return USB3_LPM_DISABLED;
4589  	}
4590  
4591  	if (sel <= max_sel_pel && pel <= max_sel_pel)
4592  		return USB3_LPM_DEVICE_INITIATED;
4593  
4594  	if (sel > max_sel_pel)
4595  		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4596  				"due to long SEL %llu ms\n",
4597  				state_name, sel);
4598  	else
4599  		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600  				"due to long PEL %llu ms\n",
4601  				state_name, pel);
4602  	return USB3_LPM_DISABLED;
4603  }
4604  
4605  /* The U1 timeout should be the maximum of the following values:
4606   *  - For control endpoints, U1 system exit latency (SEL) * 3
4607   *  - For bulk endpoints, U1 SEL * 5
4608   *  - For interrupt endpoints:
4609   *    - Notification EPs, U1 SEL * 3
4610   *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4611   *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4612   */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4613  static unsigned long long xhci_calculate_intel_u1_timeout(
4614  		struct usb_device *udev,
4615  		struct usb_endpoint_descriptor *desc)
4616  {
4617  	unsigned long long timeout_ns;
4618  	int ep_type;
4619  	int intr_type;
4620  
4621  	ep_type = usb_endpoint_type(desc);
4622  	switch (ep_type) {
4623  	case USB_ENDPOINT_XFER_CONTROL:
4624  		timeout_ns = udev->u1_params.sel * 3;
4625  		break;
4626  	case USB_ENDPOINT_XFER_BULK:
4627  		timeout_ns = udev->u1_params.sel * 5;
4628  		break;
4629  	case USB_ENDPOINT_XFER_INT:
4630  		intr_type = usb_endpoint_interrupt_type(desc);
4631  		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4632  			timeout_ns = udev->u1_params.sel * 3;
4633  			break;
4634  		}
4635  		/* Otherwise the calculation is the same as isoc eps */
4636  		fallthrough;
4637  	case USB_ENDPOINT_XFER_ISOC:
4638  		timeout_ns = xhci_service_interval_to_ns(desc);
4639  		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4640  		if (timeout_ns < udev->u1_params.sel * 2)
4641  			timeout_ns = udev->u1_params.sel * 2;
4642  		break;
4643  	default:
4644  		return 0;
4645  	}
4646  
4647  	return timeout_ns;
4648  }
4649  
4650  /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4651  static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4652  		struct usb_device *udev,
4653  		struct usb_endpoint_descriptor *desc)
4654  {
4655  	unsigned long long timeout_ns;
4656  
4657  	/* Prevent U1 if service interval is shorter than U1 exit latency */
4658  	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4659  		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4660  			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4661  			return USB3_LPM_DISABLED;
4662  		}
4663  	}
4664  
4665  	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4666  		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4667  	else
4668  		timeout_ns = udev->u1_params.sel;
4669  
4670  	/* The U1 timeout is encoded in 1us intervals.
4671  	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4672  	 */
4673  	if (timeout_ns == USB3_LPM_DISABLED)
4674  		timeout_ns = 1;
4675  	else
4676  		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4677  
4678  	/* If the necessary timeout value is bigger than what we can set in the
4679  	 * USB 3.0 hub, we have to disable hub-initiated U1.
4680  	 */
4681  	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4682  		return timeout_ns;
4683  	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4684  			"due to long timeout %llu ms\n", timeout_ns);
4685  	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4686  }
4687  
4688  /* The U2 timeout should be the maximum of:
4689   *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4690   *  - largest bInterval of any active periodic endpoint (to avoid going
4691   *    into lower power link states between intervals).
4692   *  - the U2 Exit Latency of the device
4693   */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4694  static unsigned long long xhci_calculate_intel_u2_timeout(
4695  		struct usb_device *udev,
4696  		struct usb_endpoint_descriptor *desc)
4697  {
4698  	unsigned long long timeout_ns;
4699  	unsigned long long u2_del_ns;
4700  
4701  	timeout_ns = 10 * 1000 * 1000;
4702  
4703  	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4704  			(xhci_service_interval_to_ns(desc) > timeout_ns))
4705  		timeout_ns = xhci_service_interval_to_ns(desc);
4706  
4707  	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4708  	if (u2_del_ns > timeout_ns)
4709  		timeout_ns = u2_del_ns;
4710  
4711  	return timeout_ns;
4712  }
4713  
4714  /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4715  static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4716  		struct usb_device *udev,
4717  		struct usb_endpoint_descriptor *desc)
4718  {
4719  	unsigned long long timeout_ns;
4720  
4721  	/* Prevent U2 if service interval is shorter than U2 exit latency */
4722  	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4723  		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4724  			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4725  			return USB3_LPM_DISABLED;
4726  		}
4727  	}
4728  
4729  	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4730  		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4731  	else
4732  		timeout_ns = udev->u2_params.sel;
4733  
4734  	/* The U2 timeout is encoded in 256us intervals */
4735  	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4736  	/* If the necessary timeout value is bigger than what we can set in the
4737  	 * USB 3.0 hub, we have to disable hub-initiated U2.
4738  	 */
4739  	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4740  		return timeout_ns;
4741  	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4742  			"due to long timeout %llu ms\n", timeout_ns);
4743  	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4744  }
4745  
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4746  static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4747  		struct usb_device *udev,
4748  		struct usb_endpoint_descriptor *desc,
4749  		enum usb3_link_state state,
4750  		u16 *timeout)
4751  {
4752  	if (state == USB3_LPM_U1)
4753  		return xhci_calculate_u1_timeout(xhci, udev, desc);
4754  	else if (state == USB3_LPM_U2)
4755  		return xhci_calculate_u2_timeout(xhci, udev, desc);
4756  
4757  	return USB3_LPM_DISABLED;
4758  }
4759  
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4760  static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4761  		struct usb_device *udev,
4762  		struct usb_endpoint_descriptor *desc,
4763  		enum usb3_link_state state,
4764  		u16 *timeout)
4765  {
4766  	u16 alt_timeout;
4767  
4768  	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4769  		desc, state, timeout);
4770  
4771  	/* If we found we can't enable hub-initiated LPM, and
4772  	 * the U1 or U2 exit latency was too high to allow
4773  	 * device-initiated LPM as well, then we will disable LPM
4774  	 * for this device, so stop searching any further.
4775  	 */
4776  	if (alt_timeout == USB3_LPM_DISABLED) {
4777  		*timeout = alt_timeout;
4778  		return -E2BIG;
4779  	}
4780  	if (alt_timeout > *timeout)
4781  		*timeout = alt_timeout;
4782  	return 0;
4783  }
4784  
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4785  static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4786  		struct usb_device *udev,
4787  		struct usb_host_interface *alt,
4788  		enum usb3_link_state state,
4789  		u16 *timeout)
4790  {
4791  	int j;
4792  
4793  	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4794  		if (xhci_update_timeout_for_endpoint(xhci, udev,
4795  					&alt->endpoint[j].desc, state, timeout))
4796  			return -E2BIG;
4797  	}
4798  	return 0;
4799  }
4800  
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4801  static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4802  		struct usb_device *udev,
4803  		enum usb3_link_state state)
4804  {
4805  	struct usb_device *parent = udev->parent;
4806  	int tier = 1; /* roothub is tier1 */
4807  
4808  	while (parent) {
4809  		parent = parent->parent;
4810  		tier++;
4811  	}
4812  
4813  	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4814  		goto fail;
4815  	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4816  		goto fail;
4817  
4818  	return 0;
4819  fail:
4820  	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4821  			tier);
4822  	return -E2BIG;
4823  }
4824  
4825  /* Returns the U1 or U2 timeout that should be enabled.
4826   * If the tier check or timeout setting functions return with a non-zero exit
4827   * code, that means the timeout value has been finalized and we shouldn't look
4828   * at any more endpoints.
4829   */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4830  static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4831  			struct usb_device *udev, enum usb3_link_state state)
4832  {
4833  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834  	struct usb_host_config *config;
4835  	char *state_name;
4836  	int i;
4837  	u16 timeout = USB3_LPM_DISABLED;
4838  
4839  	if (state == USB3_LPM_U1)
4840  		state_name = "U1";
4841  	else if (state == USB3_LPM_U2)
4842  		state_name = "U2";
4843  	else {
4844  		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4845  				state);
4846  		return timeout;
4847  	}
4848  
4849  	/* Gather some information about the currently installed configuration
4850  	 * and alternate interface settings.
4851  	 */
4852  	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4853  			state, &timeout))
4854  		return timeout;
4855  
4856  	config = udev->actconfig;
4857  	if (!config)
4858  		return timeout;
4859  
4860  	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4861  		struct usb_driver *driver;
4862  		struct usb_interface *intf = config->interface[i];
4863  
4864  		if (!intf)
4865  			continue;
4866  
4867  		/* Check if any currently bound drivers want hub-initiated LPM
4868  		 * disabled.
4869  		 */
4870  		if (intf->dev.driver) {
4871  			driver = to_usb_driver(intf->dev.driver);
4872  			if (driver && driver->disable_hub_initiated_lpm) {
4873  				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4874  					state_name, driver->name);
4875  				timeout = xhci_get_timeout_no_hub_lpm(udev,
4876  								      state);
4877  				if (timeout == USB3_LPM_DISABLED)
4878  					return timeout;
4879  			}
4880  		}
4881  
4882  		/* Not sure how this could happen... */
4883  		if (!intf->cur_altsetting)
4884  			continue;
4885  
4886  		if (xhci_update_timeout_for_interface(xhci, udev,
4887  					intf->cur_altsetting,
4888  					state, &timeout))
4889  			return timeout;
4890  	}
4891  	return timeout;
4892  }
4893  
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4894  static int calculate_max_exit_latency(struct usb_device *udev,
4895  		enum usb3_link_state state_changed,
4896  		u16 hub_encoded_timeout)
4897  {
4898  	unsigned long long u1_mel_us = 0;
4899  	unsigned long long u2_mel_us = 0;
4900  	unsigned long long mel_us = 0;
4901  	bool disabling_u1;
4902  	bool disabling_u2;
4903  	bool enabling_u1;
4904  	bool enabling_u2;
4905  
4906  	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4907  			hub_encoded_timeout == USB3_LPM_DISABLED);
4908  	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4909  			hub_encoded_timeout == USB3_LPM_DISABLED);
4910  
4911  	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4912  			hub_encoded_timeout != USB3_LPM_DISABLED);
4913  	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4914  			hub_encoded_timeout != USB3_LPM_DISABLED);
4915  
4916  	/* If U1 was already enabled and we're not disabling it,
4917  	 * or we're going to enable U1, account for the U1 max exit latency.
4918  	 */
4919  	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4920  			enabling_u1)
4921  		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4922  	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4923  			enabling_u2)
4924  		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4925  
4926  	mel_us = max(u1_mel_us, u2_mel_us);
4927  
4928  	/* xHCI host controller max exit latency field is only 16 bits wide. */
4929  	if (mel_us > MAX_EXIT) {
4930  		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4931  				"is too big.\n", mel_us);
4932  		return -E2BIG;
4933  	}
4934  	return mel_us;
4935  }
4936  
4937  /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4938  static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4939  			struct usb_device *udev, enum usb3_link_state state)
4940  {
4941  	struct xhci_hcd	*xhci;
4942  	struct xhci_port *port;
4943  	u16 hub_encoded_timeout;
4944  	int mel;
4945  	int ret;
4946  
4947  	xhci = hcd_to_xhci(hcd);
4948  	/* The LPM timeout values are pretty host-controller specific, so don't
4949  	 * enable hub-initiated timeouts unless the vendor has provided
4950  	 * information about their timeout algorithm.
4951  	 */
4952  	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4953  			!xhci->devs[udev->slot_id])
4954  		return USB3_LPM_DISABLED;
4955  
4956  	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4957  		return USB3_LPM_DISABLED;
4958  
4959  	/* If connected to root port then check port can handle lpm */
4960  	if (udev->parent && !udev->parent->parent) {
4961  		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4962  		if (port->lpm_incapable)
4963  			return USB3_LPM_DISABLED;
4964  	}
4965  
4966  	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4967  	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4968  	if (mel < 0) {
4969  		/* Max Exit Latency is too big, disable LPM. */
4970  		hub_encoded_timeout = USB3_LPM_DISABLED;
4971  		mel = 0;
4972  	}
4973  
4974  	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4975  	if (ret)
4976  		return ret;
4977  	return hub_encoded_timeout;
4978  }
4979  
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4980  static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4981  			struct usb_device *udev, enum usb3_link_state state)
4982  {
4983  	struct xhci_hcd	*xhci;
4984  	u16 mel;
4985  
4986  	xhci = hcd_to_xhci(hcd);
4987  	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4988  			!xhci->devs[udev->slot_id])
4989  		return 0;
4990  
4991  	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4992  	return xhci_change_max_exit_latency(xhci, udev, mel);
4993  }
4994  #else /* CONFIG_PM */
4995  
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4996  static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4997  				struct usb_device *udev, int enable)
4998  {
4999  	return 0;
5000  }
5001  
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5002  static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5003  {
5004  	return 0;
5005  }
5006  
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5007  static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008  			struct usb_device *udev, enum usb3_link_state state)
5009  {
5010  	return USB3_LPM_DISABLED;
5011  }
5012  
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5013  static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014  			struct usb_device *udev, enum usb3_link_state state)
5015  {
5016  	return 0;
5017  }
5018  #endif	/* CONFIG_PM */
5019  
5020  /*-------------------------------------------------------------------------*/
5021  
5022  /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5023   * internal data structures for the device.
5024   */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5025  int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5026  			struct usb_tt *tt, gfp_t mem_flags)
5027  {
5028  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5029  	struct xhci_virt_device *vdev;
5030  	struct xhci_command *config_cmd;
5031  	struct xhci_input_control_ctx *ctrl_ctx;
5032  	struct xhci_slot_ctx *slot_ctx;
5033  	unsigned long flags;
5034  	unsigned think_time;
5035  	int ret;
5036  
5037  	/* Ignore root hubs */
5038  	if (!hdev->parent)
5039  		return 0;
5040  
5041  	vdev = xhci->devs[hdev->slot_id];
5042  	if (!vdev) {
5043  		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5044  		return -EINVAL;
5045  	}
5046  
5047  	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5048  	if (!config_cmd)
5049  		return -ENOMEM;
5050  
5051  	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5052  	if (!ctrl_ctx) {
5053  		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5054  				__func__);
5055  		xhci_free_command(xhci, config_cmd);
5056  		return -ENOMEM;
5057  	}
5058  
5059  	spin_lock_irqsave(&xhci->lock, flags);
5060  	if (hdev->speed == USB_SPEED_HIGH &&
5061  			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5062  		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5063  		xhci_free_command(xhci, config_cmd);
5064  		spin_unlock_irqrestore(&xhci->lock, flags);
5065  		return -ENOMEM;
5066  	}
5067  
5068  	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5069  	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5070  	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5071  	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5072  	/*
5073  	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5074  	 * but it may be already set to 1 when setup an xHCI virtual
5075  	 * device, so clear it anyway.
5076  	 */
5077  	if (tt->multi)
5078  		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5079  	else if (hdev->speed == USB_SPEED_FULL)
5080  		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5081  
5082  	if (xhci->hci_version > 0x95) {
5083  		xhci_dbg(xhci, "xHCI version %x needs hub "
5084  				"TT think time and number of ports\n",
5085  				(unsigned int) xhci->hci_version);
5086  		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5087  		/* Set TT think time - convert from ns to FS bit times.
5088  		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5089  		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5090  		 *
5091  		 * xHCI 1.0: this field shall be 0 if the device is not a
5092  		 * High-spped hub.
5093  		 */
5094  		think_time = tt->think_time;
5095  		if (think_time != 0)
5096  			think_time = (think_time / 666) - 1;
5097  		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5098  			slot_ctx->tt_info |=
5099  				cpu_to_le32(TT_THINK_TIME(think_time));
5100  	} else {
5101  		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5102  				"TT think time or number of ports\n",
5103  				(unsigned int) xhci->hci_version);
5104  	}
5105  	slot_ctx->dev_state = 0;
5106  	spin_unlock_irqrestore(&xhci->lock, flags);
5107  
5108  	xhci_dbg(xhci, "Set up %s for hub device.\n",
5109  			(xhci->hci_version > 0x95) ?
5110  			"configure endpoint" : "evaluate context");
5111  
5112  	/* Issue and wait for the configure endpoint or
5113  	 * evaluate context command.
5114  	 */
5115  	if (xhci->hci_version > 0x95)
5116  		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5117  				false, false);
5118  	else
5119  		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5120  				true, false);
5121  
5122  	xhci_free_command(xhci, config_cmd);
5123  	return ret;
5124  }
5125  EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5126  
xhci_get_frame(struct usb_hcd * hcd)5127  static int xhci_get_frame(struct usb_hcd *hcd)
5128  {
5129  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5130  	/* EHCI mods by the periodic size.  Why? */
5131  	return readl(&xhci->run_regs->microframe_index) >> 3;
5132  }
5133  
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5134  static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5135  {
5136  	xhci->usb2_rhub.hcd = hcd;
5137  	hcd->speed = HCD_USB2;
5138  	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5139  	/*
5140  	 * USB 2.0 roothub under xHCI has an integrated TT,
5141  	 * (rate matching hub) as opposed to having an OHCI/UHCI
5142  	 * companion controller.
5143  	 */
5144  	hcd->has_tt = 1;
5145  }
5146  
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5147  static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5148  {
5149  	unsigned int minor_rev;
5150  
5151  	/*
5152  	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153  	 * should return 0x31 for sbrn, or that the minor revision
5154  	 * is a two digit BCD containig minor and sub-minor numbers.
5155  	 * This was later clarified in xHCI 1.2.
5156  	 *
5157  	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158  	 * minor revision set to 0x1 instead of 0x10.
5159  	 */
5160  	if (xhci->usb3_rhub.min_rev == 0x1)
5161  		minor_rev = 1;
5162  	else
5163  		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5164  
5165  	switch (minor_rev) {
5166  	case 2:
5167  		hcd->speed = HCD_USB32;
5168  		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169  		hcd->self.root_hub->rx_lanes = 2;
5170  		hcd->self.root_hub->tx_lanes = 2;
5171  		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5172  		break;
5173  	case 1:
5174  		hcd->speed = HCD_USB31;
5175  		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5176  		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5177  		break;
5178  	}
5179  	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5180  		  minor_rev, minor_rev ? "Enhanced " : "");
5181  
5182  	xhci->usb3_rhub.hcd = hcd;
5183  }
5184  
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5185  int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5186  {
5187  	struct xhci_hcd		*xhci;
5188  	/*
5189  	 * TODO: Check with DWC3 clients for sysdev according to
5190  	 * quirks
5191  	 */
5192  	struct device		*dev = hcd->self.sysdev;
5193  	int			retval;
5194  
5195  	/* Accept arbitrarily long scatter-gather lists */
5196  	hcd->self.sg_tablesize = ~0;
5197  
5198  	/* support to build packet from discontinuous buffers */
5199  	hcd->self.no_sg_constraint = 1;
5200  
5201  	/* XHCI controllers don't stop the ep queue on short packets :| */
5202  	hcd->self.no_stop_on_short = 1;
5203  
5204  	xhci = hcd_to_xhci(hcd);
5205  
5206  	if (!usb_hcd_is_primary_hcd(hcd)) {
5207  		xhci_hcd_init_usb3_data(xhci, hcd);
5208  		return 0;
5209  	}
5210  
5211  	mutex_init(&xhci->mutex);
5212  	xhci->main_hcd = hcd;
5213  	xhci->cap_regs = hcd->regs;
5214  	xhci->op_regs = hcd->regs +
5215  		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5216  	xhci->run_regs = hcd->regs +
5217  		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5218  	/* Cache read-only capability registers */
5219  	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5220  	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5221  	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5222  	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5223  	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5224  	if (xhci->hci_version > 0x100)
5225  		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5226  
5227  	/* xhci-plat or xhci-pci might have set max_interrupters already */
5228  	if ((!xhci->max_interrupters) ||
5229  	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5230  		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5231  
5232  	xhci->quirks |= quirks;
5233  
5234  	if (get_quirks)
5235  		get_quirks(dev, xhci);
5236  
5237  	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5238  	 * success event after a short transfer. This quirk will ignore such
5239  	 * spurious event.
5240  	 */
5241  	if (xhci->hci_version > 0x96)
5242  		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5243  
5244  	/* Make sure the HC is halted. */
5245  	retval = xhci_halt(xhci);
5246  	if (retval)
5247  		return retval;
5248  
5249  	xhci_zero_64b_regs(xhci);
5250  
5251  	xhci_dbg(xhci, "Resetting HCD\n");
5252  	/* Reset the internal HC memory state and registers. */
5253  	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5254  	if (retval)
5255  		return retval;
5256  	xhci_dbg(xhci, "Reset complete\n");
5257  
5258  	/*
5259  	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5260  	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5261  	 * address memory pointers actually. So, this driver clears the AC64
5262  	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5263  	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5264  	 */
5265  	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5266  		xhci->hcc_params &= ~BIT(0);
5267  
5268  	/* Set dma_mask and coherent_dma_mask to 64-bits,
5269  	 * if xHC supports 64-bit addressing */
5270  	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5271  			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5272  		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5273  		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5274  	} else {
5275  		/*
5276  		 * This is to avoid error in cases where a 32-bit USB
5277  		 * controller is used on a 64-bit capable system.
5278  		 */
5279  		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5280  		if (retval)
5281  			return retval;
5282  		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5283  		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5284  	}
5285  
5286  	xhci_dbg(xhci, "Calling HCD init\n");
5287  	/* Initialize HCD and host controller data structures. */
5288  	retval = xhci_init(hcd);
5289  	if (retval)
5290  		return retval;
5291  	xhci_dbg(xhci, "Called HCD init\n");
5292  
5293  	if (xhci_hcd_is_usb3(hcd))
5294  		xhci_hcd_init_usb3_data(xhci, hcd);
5295  	else
5296  		xhci_hcd_init_usb2_data(xhci, hcd);
5297  
5298  	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5299  		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5300  
5301  	return 0;
5302  }
5303  EXPORT_SYMBOL_GPL(xhci_gen_setup);
5304  
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5305  static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5306  		struct usb_host_endpoint *ep)
5307  {
5308  	struct xhci_hcd *xhci;
5309  	struct usb_device *udev;
5310  	unsigned int slot_id;
5311  	unsigned int ep_index;
5312  	unsigned long flags;
5313  
5314  	xhci = hcd_to_xhci(hcd);
5315  
5316  	spin_lock_irqsave(&xhci->lock, flags);
5317  	udev = (struct usb_device *)ep->hcpriv;
5318  	slot_id = udev->slot_id;
5319  	ep_index = xhci_get_endpoint_index(&ep->desc);
5320  
5321  	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5322  	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5323  	spin_unlock_irqrestore(&xhci->lock, flags);
5324  }
5325  
5326  static const struct hc_driver xhci_hc_driver = {
5327  	.description =		"xhci-hcd",
5328  	.product_desc =		"xHCI Host Controller",
5329  	.hcd_priv_size =	sizeof(struct xhci_hcd),
5330  
5331  	/*
5332  	 * generic hardware linkage
5333  	 */
5334  	.irq =			xhci_irq,
5335  	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5336  				HCD_BH,
5337  
5338  	/*
5339  	 * basic lifecycle operations
5340  	 */
5341  	.reset =		NULL, /* set in xhci_init_driver() */
5342  	.start =		xhci_run,
5343  	.stop =			xhci_stop,
5344  	.shutdown =		xhci_shutdown,
5345  
5346  	/*
5347  	 * managing i/o requests and associated device resources
5348  	 */
5349  	.map_urb_for_dma =      xhci_map_urb_for_dma,
5350  	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5351  	.urb_enqueue =		xhci_urb_enqueue,
5352  	.urb_dequeue =		xhci_urb_dequeue,
5353  	.alloc_dev =		xhci_alloc_dev,
5354  	.free_dev =		xhci_free_dev,
5355  	.alloc_streams =	xhci_alloc_streams,
5356  	.free_streams =		xhci_free_streams,
5357  	.add_endpoint =		xhci_add_endpoint,
5358  	.drop_endpoint =	xhci_drop_endpoint,
5359  	.endpoint_disable =	xhci_endpoint_disable,
5360  	.endpoint_reset =	xhci_endpoint_reset,
5361  	.check_bandwidth =	xhci_check_bandwidth,
5362  	.reset_bandwidth =	xhci_reset_bandwidth,
5363  	.address_device =	xhci_address_device,
5364  	.enable_device =	xhci_enable_device,
5365  	.update_hub_device =	xhci_update_hub_device,
5366  	.reset_device =		xhci_discover_or_reset_device,
5367  
5368  	/*
5369  	 * scheduling support
5370  	 */
5371  	.get_frame_number =	xhci_get_frame,
5372  
5373  	/*
5374  	 * root hub support
5375  	 */
5376  	.hub_control =		xhci_hub_control,
5377  	.hub_status_data =	xhci_hub_status_data,
5378  	.bus_suspend =		xhci_bus_suspend,
5379  	.bus_resume =		xhci_bus_resume,
5380  	.get_resuming_ports =	xhci_get_resuming_ports,
5381  
5382  	/*
5383  	 * call back when device connected and addressed
5384  	 */
5385  	.update_device =        xhci_update_device,
5386  	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5387  	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5388  	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5389  	.find_raw_port_number =	xhci_find_raw_port_number,
5390  	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5391  };
5392  
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5393  void xhci_init_driver(struct hc_driver *drv,
5394  		      const struct xhci_driver_overrides *over)
5395  {
5396  	BUG_ON(!over);
5397  
5398  	/* Copy the generic table to drv then apply the overrides */
5399  	*drv = xhci_hc_driver;
5400  
5401  	if (over) {
5402  		drv->hcd_priv_size += over->extra_priv_size;
5403  		if (over->reset)
5404  			drv->reset = over->reset;
5405  		if (over->start)
5406  			drv->start = over->start;
5407  		if (over->add_endpoint)
5408  			drv->add_endpoint = over->add_endpoint;
5409  		if (over->drop_endpoint)
5410  			drv->drop_endpoint = over->drop_endpoint;
5411  		if (over->check_bandwidth)
5412  			drv->check_bandwidth = over->check_bandwidth;
5413  		if (over->reset_bandwidth)
5414  			drv->reset_bandwidth = over->reset_bandwidth;
5415  		if (over->update_hub_device)
5416  			drv->update_hub_device = over->update_hub_device;
5417  		if (over->hub_control)
5418  			drv->hub_control = over->hub_control;
5419  	}
5420  }
5421  EXPORT_SYMBOL_GPL(xhci_init_driver);
5422  
5423  MODULE_DESCRIPTION(DRIVER_DESC);
5424  MODULE_AUTHOR(DRIVER_AUTHOR);
5425  MODULE_LICENSE("GPL");
5426  
xhci_hcd_init(void)5427  static int __init xhci_hcd_init(void)
5428  {
5429  	/*
5430  	 * Check the compiler generated sizes of structures that must be laid
5431  	 * out in specific ways for hardware access.
5432  	 */
5433  	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5434  	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5435  	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5436  	/* xhci_device_control has eight fields, and also
5437  	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5438  	 */
5439  	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5440  	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5441  	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5442  	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5443  	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5444  	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5445  	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5446  
5447  	if (usb_disabled())
5448  		return -ENODEV;
5449  
5450  	xhci_debugfs_create_root();
5451  	xhci_dbc_init();
5452  
5453  	return 0;
5454  }
5455  
5456  /*
5457   * If an init function is provided, an exit function must also be provided
5458   * to allow module unload.
5459   */
xhci_hcd_fini(void)5460  static void __exit xhci_hcd_fini(void)
5461  {
5462  	xhci_debugfs_remove_root();
5463  	xhci_dbc_exit();
5464  }
5465  
5466  module_init(xhci_hcd_init);
5467  module_exit(xhci_hcd_fini);
5468