1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring) 127 { 128 /* Enqueue pointer can be left pointing to the link TRB, 129 * we must handle that 130 */ 131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control)) 132 return ring->enq_seg->next->trbs; 133 return ring->enqueue; 134 } 135 136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 137 * TRB is in a new segment. This does not skip over link TRBs, and it does not 138 * effect the ring dequeue or enqueue pointers. 139 */ 140 static void next_trb(struct xhci_hcd *xhci, 141 struct xhci_ring *ring, 142 struct xhci_segment **seg, 143 union xhci_trb **trb) 144 { 145 if (last_trb(xhci, ring, *seg, *trb)) { 146 *seg = (*seg)->next; 147 *trb = ((*seg)->trbs); 148 } else { 149 (*trb)++; 150 } 151 } 152 153 /* 154 * See Cycle bit rules. SW is the consumer for the event ring only. 155 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 156 */ 157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 158 { 159 ring->deq_updates++; 160 161 /* 162 * If this is not event ring, and the dequeue pointer 163 * is not on a link TRB, there is one more usable TRB 164 */ 165 if (ring->type != TYPE_EVENT && 166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 167 ring->num_trbs_free++; 168 169 do { 170 /* 171 * Update the dequeue pointer further if that was a link TRB or 172 * we're at the end of an event ring segment (which doesn't have 173 * link TRBS) 174 */ 175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 176 if (ring->type == TYPE_EVENT && 177 last_trb_on_last_seg(xhci, ring, 178 ring->deq_seg, ring->dequeue)) { 179 ring->cycle_state ^= 1; 180 } 181 ring->deq_seg = ring->deq_seg->next; 182 ring->dequeue = ring->deq_seg->trbs; 183 } else { 184 ring->dequeue++; 185 } 186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 187 } 188 189 /* 190 * See Cycle bit rules. SW is the consumer for the event ring only. 191 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 192 * 193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 194 * chain bit is set), then set the chain bit in all the following link TRBs. 195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 196 * have their chain bit cleared (so that each Link TRB is a separate TD). 197 * 198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 199 * set, but other sections talk about dealing with the chain bit set. This was 200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 201 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 202 * 203 * @more_trbs_coming: Will you enqueue more TRBs before calling 204 * prepare_transfer()? 205 */ 206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 207 bool more_trbs_coming) 208 { 209 u32 chain; 210 union xhci_trb *next; 211 212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 213 /* If this is not event ring, there is one less usable TRB */ 214 if (ring->type != TYPE_EVENT && 215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 216 ring->num_trbs_free--; 217 next = ++(ring->enqueue); 218 219 ring->enq_updates++; 220 /* Update the dequeue pointer further if that was a link TRB or we're at 221 * the end of an event ring segment (which doesn't have link TRBS) 222 */ 223 while (last_trb(xhci, ring, ring->enq_seg, next)) { 224 if (ring->type != TYPE_EVENT) { 225 /* 226 * If the caller doesn't plan on enqueueing more 227 * TDs before ringing the doorbell, then we 228 * don't want to give the link TRB to the 229 * hardware just yet. We'll give the link TRB 230 * back in prepare_ring() just before we enqueue 231 * the TD at the top of the ring. 232 */ 233 if (!chain && !more_trbs_coming) 234 break; 235 236 /* If we're not dealing with 0.95 hardware or 237 * isoc rings on AMD 0.96 host, 238 * carry over the chain bit of the previous TRB 239 * (which may mean the chain bit is cleared). 240 */ 241 if (!(ring->type == TYPE_ISOC && 242 (xhci->quirks & XHCI_AMD_0x96_HOST)) 243 && !xhci_link_trb_quirk(xhci)) { 244 next->link.control &= 245 cpu_to_le32(~TRB_CHAIN); 246 next->link.control |= 247 cpu_to_le32(chain); 248 } 249 /* Give this link TRB to the hardware */ 250 wmb(); 251 next->link.control ^= cpu_to_le32(TRB_CYCLE); 252 253 /* Toggle the cycle bit after the last ring segment. */ 254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 255 ring->cycle_state = (ring->cycle_state ? 0 : 1); 256 } 257 } 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 } 263 264 /* 265 * Check to see if there's room to enqueue num_trbs on the ring and make sure 266 * enqueue pointer will not advance into dequeue segment. See rules above. 267 */ 268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 269 unsigned int num_trbs) 270 { 271 int num_trbs_in_deq_seg; 272 273 if (ring->num_trbs_free < num_trbs) 274 return 0; 275 276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* Ring the host controller doorbell after placing a command on the ring */ 286 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 287 { 288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 289 return; 290 291 xhci_dbg(xhci, "// Ding dong!\n"); 292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 293 /* Flush PCI posted writes */ 294 readl(&xhci->dba->doorbell[0]); 295 } 296 297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 298 { 299 u64 temp_64; 300 int ret; 301 302 xhci_dbg(xhci, "Abort command ring\n"); 303 304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 305 xhci_dbg(xhci, "The command ring isn't running, " 306 "Have the command ring been stopped?\n"); 307 return 0; 308 } 309 310 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 311 if (!(temp_64 & CMD_RING_RUNNING)) { 312 xhci_dbg(xhci, "Command ring had been stopped\n"); 313 return 0; 314 } 315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 316 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 317 &xhci->op_regs->cmd_ring); 318 319 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 320 * time the completion od all xHCI commands, including 321 * the Command Abort operation. If software doesn't see 322 * CRR negated in a timely manner (e.g. longer than 5 323 * seconds), then it should assume that the there are 324 * larger problems with the xHC and assert HCRST. 325 */ 326 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 327 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 328 if (ret < 0) { 329 xhci_err(xhci, "Stopped the command ring failed, " 330 "maybe the host is dead\n"); 331 xhci->xhc_state |= XHCI_STATE_DYING; 332 xhci_quiesce(xhci); 333 xhci_halt(xhci); 334 return -ESHUTDOWN; 335 } 336 337 return 0; 338 } 339 340 static int xhci_queue_cd(struct xhci_hcd *xhci, 341 struct xhci_command *command, 342 union xhci_trb *cmd_trb) 343 { 344 struct xhci_cd *cd; 345 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 346 if (!cd) 347 return -ENOMEM; 348 INIT_LIST_HEAD(&cd->cancel_cmd_list); 349 350 cd->command = command; 351 cd->cmd_trb = cmd_trb; 352 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 353 354 return 0; 355 } 356 357 /* 358 * Cancel the command which has issue. 359 * 360 * Some commands may hang due to waiting for acknowledgement from 361 * usb device. It is outside of the xHC's ability to control and 362 * will cause the command ring is blocked. When it occurs software 363 * should intervene to recover the command ring. 364 * See Section 4.6.1.1 and 4.6.1.2 365 */ 366 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 367 union xhci_trb *cmd_trb) 368 { 369 int retval = 0; 370 unsigned long flags; 371 372 spin_lock_irqsave(&xhci->lock, flags); 373 374 if (xhci->xhc_state & XHCI_STATE_DYING) { 375 xhci_warn(xhci, "Abort the command ring," 376 " but the xHCI is dead.\n"); 377 retval = -ESHUTDOWN; 378 goto fail; 379 } 380 381 /* queue the cmd desriptor to cancel_cmd_list */ 382 retval = xhci_queue_cd(xhci, command, cmd_trb); 383 if (retval) { 384 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 385 goto fail; 386 } 387 388 /* abort command ring */ 389 retval = xhci_abort_cmd_ring(xhci); 390 if (retval) { 391 xhci_err(xhci, "Abort command ring failed\n"); 392 if (unlikely(retval == -ESHUTDOWN)) { 393 spin_unlock_irqrestore(&xhci->lock, flags); 394 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 395 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 396 return retval; 397 } 398 } 399 400 fail: 401 spin_unlock_irqrestore(&xhci->lock, flags); 402 return retval; 403 } 404 405 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 406 unsigned int slot_id, 407 unsigned int ep_index, 408 unsigned int stream_id) 409 { 410 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 411 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 412 unsigned int ep_state = ep->ep_state; 413 414 /* Don't ring the doorbell for this endpoint if there are pending 415 * cancellations because we don't want to interrupt processing. 416 * We don't want to restart any stream rings if there's a set dequeue 417 * pointer command pending because the device can choose to start any 418 * stream once the endpoint is on the HW schedule. 419 * FIXME - check all the stream rings for pending cancellations. 420 */ 421 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 422 (ep_state & EP_HALTED)) 423 return; 424 writel(DB_VALUE(ep_index, stream_id), db_addr); 425 /* The CPU has better things to do at this point than wait for a 426 * write-posting flush. It'll get there soon enough. 427 */ 428 } 429 430 /* Ring the doorbell for any rings with pending URBs */ 431 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 432 unsigned int slot_id, 433 unsigned int ep_index) 434 { 435 unsigned int stream_id; 436 struct xhci_virt_ep *ep; 437 438 ep = &xhci->devs[slot_id]->eps[ep_index]; 439 440 /* A ring has pending URBs if its TD list is not empty */ 441 if (!(ep->ep_state & EP_HAS_STREAMS)) { 442 if (ep->ring && !(list_empty(&ep->ring->td_list))) 443 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 444 return; 445 } 446 447 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 448 stream_id++) { 449 struct xhci_stream_info *stream_info = ep->stream_info; 450 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 451 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 452 stream_id); 453 } 454 } 455 456 /* 457 * Find the segment that trb is in. Start searching in start_seg. 458 * If we must move past a segment that has a link TRB with a toggle cycle state 459 * bit set, then we will toggle the value pointed at by cycle_state. 460 */ 461 static struct xhci_segment *find_trb_seg( 462 struct xhci_segment *start_seg, 463 union xhci_trb *trb, int *cycle_state) 464 { 465 struct xhci_segment *cur_seg = start_seg; 466 struct xhci_generic_trb *generic_trb; 467 468 while (cur_seg->trbs > trb || 469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 470 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 471 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 472 *cycle_state ^= 0x1; 473 cur_seg = cur_seg->next; 474 if (cur_seg == start_seg) 475 /* Looped over the entire list. Oops! */ 476 return NULL; 477 } 478 return cur_seg; 479 } 480 481 482 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 483 unsigned int slot_id, unsigned int ep_index, 484 unsigned int stream_id) 485 { 486 struct xhci_virt_ep *ep; 487 488 ep = &xhci->devs[slot_id]->eps[ep_index]; 489 /* Common case: no streams */ 490 if (!(ep->ep_state & EP_HAS_STREAMS)) 491 return ep->ring; 492 493 if (stream_id == 0) { 494 xhci_warn(xhci, 495 "WARN: Slot ID %u, ep index %u has streams, " 496 "but URB has no stream ID.\n", 497 slot_id, ep_index); 498 return NULL; 499 } 500 501 if (stream_id < ep->stream_info->num_streams) 502 return ep->stream_info->stream_rings[stream_id]; 503 504 xhci_warn(xhci, 505 "WARN: Slot ID %u, ep index %u has " 506 "stream IDs 1 to %u allocated, " 507 "but stream ID %u is requested.\n", 508 slot_id, ep_index, 509 ep->stream_info->num_streams - 1, 510 stream_id); 511 return NULL; 512 } 513 514 /* Get the right ring for the given URB. 515 * If the endpoint supports streams, boundary check the URB's stream ID. 516 * If the endpoint doesn't support streams, return the singular endpoint ring. 517 */ 518 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 519 struct urb *urb) 520 { 521 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 522 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 523 } 524 525 /* 526 * Move the xHC's endpoint ring dequeue pointer past cur_td. 527 * Record the new state of the xHC's endpoint ring dequeue segment, 528 * dequeue pointer, and new consumer cycle state in state. 529 * Update our internal representation of the ring's dequeue pointer. 530 * 531 * We do this in three jumps: 532 * - First we update our new ring state to be the same as when the xHC stopped. 533 * - Then we traverse the ring to find the segment that contains 534 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 535 * any link TRBs with the toggle cycle bit set. 536 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 537 * if we've moved it past a link TRB with the toggle cycle bit set. 538 * 539 * Some of the uses of xhci_generic_trb are grotty, but if they're done 540 * with correct __le32 accesses they should work fine. Only users of this are 541 * in here. 542 */ 543 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 544 unsigned int slot_id, unsigned int ep_index, 545 unsigned int stream_id, struct xhci_td *cur_td, 546 struct xhci_dequeue_state *state) 547 { 548 struct xhci_virt_device *dev = xhci->devs[slot_id]; 549 struct xhci_ring *ep_ring; 550 struct xhci_generic_trb *trb; 551 struct xhci_ep_ctx *ep_ctx; 552 dma_addr_t addr; 553 554 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 555 ep_index, stream_id); 556 if (!ep_ring) { 557 xhci_warn(xhci, "WARN can't find new dequeue state " 558 "for invalid stream ID %u.\n", 559 stream_id); 560 return; 561 } 562 state->new_cycle_state = 0; 563 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 564 "Finding segment containing stopped TRB."); 565 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 566 dev->eps[ep_index].stopped_trb, 567 &state->new_cycle_state); 568 if (!state->new_deq_seg) { 569 WARN_ON(1); 570 return; 571 } 572 573 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 574 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 575 "Finding endpoint context"); 576 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 577 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 578 579 state->new_deq_ptr = cur_td->last_trb; 580 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 581 "Finding segment containing last TRB in TD."); 582 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 583 state->new_deq_ptr, 584 &state->new_cycle_state); 585 if (!state->new_deq_seg) { 586 WARN_ON(1); 587 return; 588 } 589 590 trb = &state->new_deq_ptr->generic; 591 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 592 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 593 state->new_cycle_state ^= 0x1; 594 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 595 596 /* 597 * If there is only one segment in a ring, find_trb_seg()'s while loop 598 * will not run, and it will return before it has a chance to see if it 599 * needs to toggle the cycle bit. It can't tell if the stalled transfer 600 * ended just before the link TRB on a one-segment ring, or if the TD 601 * wrapped around the top of the ring, because it doesn't have the TD in 602 * question. Look for the one-segment case where stalled TRB's address 603 * is greater than the new dequeue pointer address. 604 */ 605 if (ep_ring->first_seg == ep_ring->first_seg->next && 606 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 607 state->new_cycle_state ^= 0x1; 608 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 609 "Cycle state = 0x%x", state->new_cycle_state); 610 611 /* Don't update the ring cycle state for the producer (us). */ 612 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 613 "New dequeue segment = %p (virtual)", 614 state->new_deq_seg); 615 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 616 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 617 "New dequeue pointer = 0x%llx (DMA)", 618 (unsigned long long) addr); 619 } 620 621 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 622 * (The last TRB actually points to the ring enqueue pointer, which is not part 623 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 624 */ 625 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 626 struct xhci_td *cur_td, bool flip_cycle) 627 { 628 struct xhci_segment *cur_seg; 629 union xhci_trb *cur_trb; 630 631 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 632 true; 633 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 634 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 635 /* Unchain any chained Link TRBs, but 636 * leave the pointers intact. 637 */ 638 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 639 /* Flip the cycle bit (link TRBs can't be the first 640 * or last TRB). 641 */ 642 if (flip_cycle) 643 cur_trb->generic.field[3] ^= 644 cpu_to_le32(TRB_CYCLE); 645 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 646 "Cancel (unchain) link TRB"); 647 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 648 "Address = %p (0x%llx dma); " 649 "in seg %p (0x%llx dma)", 650 cur_trb, 651 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 652 cur_seg, 653 (unsigned long long)cur_seg->dma); 654 } else { 655 cur_trb->generic.field[0] = 0; 656 cur_trb->generic.field[1] = 0; 657 cur_trb->generic.field[2] = 0; 658 /* Preserve only the cycle bit of this TRB */ 659 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 660 /* Flip the cycle bit except on the first or last TRB */ 661 if (flip_cycle && cur_trb != cur_td->first_trb && 662 cur_trb != cur_td->last_trb) 663 cur_trb->generic.field[3] ^= 664 cpu_to_le32(TRB_CYCLE); 665 cur_trb->generic.field[3] |= cpu_to_le32( 666 TRB_TYPE(TRB_TR_NOOP)); 667 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 668 "TRB to noop at offset 0x%llx", 669 (unsigned long long) 670 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 671 } 672 if (cur_trb == cur_td->last_trb) 673 break; 674 } 675 } 676 677 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 678 unsigned int ep_index, unsigned int stream_id, 679 struct xhci_segment *deq_seg, 680 union xhci_trb *deq_ptr, u32 cycle_state); 681 682 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 683 unsigned int slot_id, unsigned int ep_index, 684 unsigned int stream_id, 685 struct xhci_dequeue_state *deq_state) 686 { 687 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 688 689 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 690 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 691 "new deq ptr = %p (0x%llx dma), new cycle = %u", 692 deq_state->new_deq_seg, 693 (unsigned long long)deq_state->new_deq_seg->dma, 694 deq_state->new_deq_ptr, 695 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 696 deq_state->new_cycle_state); 697 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 698 deq_state->new_deq_seg, 699 deq_state->new_deq_ptr, 700 (u32) deq_state->new_cycle_state); 701 /* Stop the TD queueing code from ringing the doorbell until 702 * this command completes. The HC won't set the dequeue pointer 703 * if the ring is running, and ringing the doorbell starts the 704 * ring running. 705 */ 706 ep->ep_state |= SET_DEQ_PENDING; 707 } 708 709 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 710 struct xhci_virt_ep *ep) 711 { 712 ep->ep_state &= ~EP_HALT_PENDING; 713 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 714 * timer is running on another CPU, we don't decrement stop_cmds_pending 715 * (since we didn't successfully stop the watchdog timer). 716 */ 717 if (del_timer(&ep->stop_cmd_timer)) 718 ep->stop_cmds_pending--; 719 } 720 721 /* Must be called with xhci->lock held in interrupt context */ 722 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 723 struct xhci_td *cur_td, int status) 724 { 725 struct usb_hcd *hcd; 726 struct urb *urb; 727 struct urb_priv *urb_priv; 728 729 urb = cur_td->urb; 730 urb_priv = urb->hcpriv; 731 urb_priv->td_cnt++; 732 hcd = bus_to_hcd(urb->dev->bus); 733 734 /* Only giveback urb when this is the last td in urb */ 735 if (urb_priv->td_cnt == urb_priv->length) { 736 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 737 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 738 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 739 if (xhci->quirks & XHCI_AMD_PLL_FIX) 740 usb_amd_quirk_pll_enable(); 741 } 742 } 743 usb_hcd_unlink_urb_from_ep(hcd, urb); 744 745 spin_unlock(&xhci->lock); 746 usb_hcd_giveback_urb(hcd, urb, status); 747 xhci_urb_free_priv(xhci, urb_priv); 748 spin_lock(&xhci->lock); 749 } 750 } 751 752 /* 753 * When we get a command completion for a Stop Endpoint Command, we need to 754 * unlink any cancelled TDs from the ring. There are two ways to do that: 755 * 756 * 1. If the HW was in the middle of processing the TD that needs to be 757 * cancelled, then we must move the ring's dequeue pointer past the last TRB 758 * in the TD with a Set Dequeue Pointer Command. 759 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 760 * bit cleared) so that the HW will skip over them. 761 */ 762 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 763 union xhci_trb *trb, struct xhci_event_cmd *event) 764 { 765 unsigned int ep_index; 766 struct xhci_virt_device *virt_dev; 767 struct xhci_ring *ep_ring; 768 struct xhci_virt_ep *ep; 769 struct list_head *entry; 770 struct xhci_td *cur_td = NULL; 771 struct xhci_td *last_unlinked_td; 772 773 struct xhci_dequeue_state deq_state; 774 775 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 776 virt_dev = xhci->devs[slot_id]; 777 if (virt_dev) 778 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 779 event); 780 else 781 xhci_warn(xhci, "Stop endpoint command " 782 "completion for disabled slot %u\n", 783 slot_id); 784 return; 785 } 786 787 memset(&deq_state, 0, sizeof(deq_state)); 788 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 789 ep = &xhci->devs[slot_id]->eps[ep_index]; 790 791 if (list_empty(&ep->cancelled_td_list)) { 792 xhci_stop_watchdog_timer_in_irq(xhci, ep); 793 ep->stopped_td = NULL; 794 ep->stopped_trb = NULL; 795 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 796 return; 797 } 798 799 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 800 * We have the xHCI lock, so nothing can modify this list until we drop 801 * it. We're also in the event handler, so we can't get re-interrupted 802 * if another Stop Endpoint command completes 803 */ 804 list_for_each(entry, &ep->cancelled_td_list) { 805 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 806 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 807 "Removing canceled TD starting at 0x%llx (dma).", 808 (unsigned long long)xhci_trb_virt_to_dma( 809 cur_td->start_seg, cur_td->first_trb)); 810 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 811 if (!ep_ring) { 812 /* This shouldn't happen unless a driver is mucking 813 * with the stream ID after submission. This will 814 * leave the TD on the hardware ring, and the hardware 815 * will try to execute it, and may access a buffer 816 * that has already been freed. In the best case, the 817 * hardware will execute it, and the event handler will 818 * ignore the completion event for that TD, since it was 819 * removed from the td_list for that endpoint. In 820 * short, don't muck with the stream ID after 821 * submission. 822 */ 823 xhci_warn(xhci, "WARN Cancelled URB %p " 824 "has invalid stream ID %u.\n", 825 cur_td->urb, 826 cur_td->urb->stream_id); 827 goto remove_finished_td; 828 } 829 /* 830 * If we stopped on the TD we need to cancel, then we have to 831 * move the xHC endpoint ring dequeue pointer past this TD. 832 */ 833 if (cur_td == ep->stopped_td) 834 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 835 cur_td->urb->stream_id, 836 cur_td, &deq_state); 837 else 838 td_to_noop(xhci, ep_ring, cur_td, false); 839 remove_finished_td: 840 /* 841 * The event handler won't see a completion for this TD anymore, 842 * so remove it from the endpoint ring's TD list. Keep it in 843 * the cancelled TD list for URB completion later. 844 */ 845 list_del_init(&cur_td->td_list); 846 } 847 last_unlinked_td = cur_td; 848 xhci_stop_watchdog_timer_in_irq(xhci, ep); 849 850 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 851 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 852 xhci_queue_new_dequeue_state(xhci, 853 slot_id, ep_index, 854 ep->stopped_td->urb->stream_id, 855 &deq_state); 856 xhci_ring_cmd_db(xhci); 857 } else { 858 /* Otherwise ring the doorbell(s) to restart queued transfers */ 859 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 860 } 861 862 /* Clear stopped_td and stopped_trb if endpoint is not halted */ 863 if (!(ep->ep_state & EP_HALTED)) { 864 ep->stopped_td = NULL; 865 ep->stopped_trb = NULL; 866 } 867 868 /* 869 * Drop the lock and complete the URBs in the cancelled TD list. 870 * New TDs to be cancelled might be added to the end of the list before 871 * we can complete all the URBs for the TDs we already unlinked. 872 * So stop when we've completed the URB for the last TD we unlinked. 873 */ 874 do { 875 cur_td = list_entry(ep->cancelled_td_list.next, 876 struct xhci_td, cancelled_td_list); 877 list_del_init(&cur_td->cancelled_td_list); 878 879 /* Clean up the cancelled URB */ 880 /* Doesn't matter what we pass for status, since the core will 881 * just overwrite it (because the URB has been unlinked). 882 */ 883 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 884 885 /* Stop processing the cancelled list if the watchdog timer is 886 * running. 887 */ 888 if (xhci->xhc_state & XHCI_STATE_DYING) 889 return; 890 } while (cur_td != last_unlinked_td); 891 892 /* Return to the event handler with xhci->lock re-acquired */ 893 } 894 895 /* Watchdog timer function for when a stop endpoint command fails to complete. 896 * In this case, we assume the host controller is broken or dying or dead. The 897 * host may still be completing some other events, so we have to be careful to 898 * let the event ring handler and the URB dequeueing/enqueueing functions know 899 * through xhci->state. 900 * 901 * The timer may also fire if the host takes a very long time to respond to the 902 * command, and the stop endpoint command completion handler cannot delete the 903 * timer before the timer function is called. Another endpoint cancellation may 904 * sneak in before the timer function can grab the lock, and that may queue 905 * another stop endpoint command and add the timer back. So we cannot use a 906 * simple flag to say whether there is a pending stop endpoint command for a 907 * particular endpoint. 908 * 909 * Instead we use a combination of that flag and a counter for the number of 910 * pending stop endpoint commands. If the timer is the tail end of the last 911 * stop endpoint command, and the endpoint's command is still pending, we assume 912 * the host is dying. 913 */ 914 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 915 { 916 struct xhci_hcd *xhci; 917 struct xhci_virt_ep *ep; 918 struct xhci_virt_ep *temp_ep; 919 struct xhci_ring *ring; 920 struct xhci_td *cur_td; 921 int ret, i, j; 922 unsigned long flags; 923 924 ep = (struct xhci_virt_ep *) arg; 925 xhci = ep->xhci; 926 927 spin_lock_irqsave(&xhci->lock, flags); 928 929 ep->stop_cmds_pending--; 930 if (xhci->xhc_state & XHCI_STATE_DYING) { 931 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 932 "Stop EP timer ran, but another timer marked " 933 "xHCI as DYING, exiting."); 934 spin_unlock_irqrestore(&xhci->lock, flags); 935 return; 936 } 937 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 938 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 939 "Stop EP timer ran, but no command pending, " 940 "exiting."); 941 spin_unlock_irqrestore(&xhci->lock, flags); 942 return; 943 } 944 945 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 946 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 947 /* Oops, HC is dead or dying or at least not responding to the stop 948 * endpoint command. 949 */ 950 xhci->xhc_state |= XHCI_STATE_DYING; 951 /* Disable interrupts from the host controller and start halting it */ 952 xhci_quiesce(xhci); 953 spin_unlock_irqrestore(&xhci->lock, flags); 954 955 ret = xhci_halt(xhci); 956 957 spin_lock_irqsave(&xhci->lock, flags); 958 if (ret < 0) { 959 /* This is bad; the host is not responding to commands and it's 960 * not allowing itself to be halted. At least interrupts are 961 * disabled. If we call usb_hc_died(), it will attempt to 962 * disconnect all device drivers under this host. Those 963 * disconnect() methods will wait for all URBs to be unlinked, 964 * so we must complete them. 965 */ 966 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 967 xhci_warn(xhci, "Completing active URBs anyway.\n"); 968 /* We could turn all TDs on the rings to no-ops. This won't 969 * help if the host has cached part of the ring, and is slow if 970 * we want to preserve the cycle bit. Skip it and hope the host 971 * doesn't touch the memory. 972 */ 973 } 974 for (i = 0; i < MAX_HC_SLOTS; i++) { 975 if (!xhci->devs[i]) 976 continue; 977 for (j = 0; j < 31; j++) { 978 temp_ep = &xhci->devs[i]->eps[j]; 979 ring = temp_ep->ring; 980 if (!ring) 981 continue; 982 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 983 "Killing URBs for slot ID %u, " 984 "ep index %u", i, j); 985 while (!list_empty(&ring->td_list)) { 986 cur_td = list_first_entry(&ring->td_list, 987 struct xhci_td, 988 td_list); 989 list_del_init(&cur_td->td_list); 990 if (!list_empty(&cur_td->cancelled_td_list)) 991 list_del_init(&cur_td->cancelled_td_list); 992 xhci_giveback_urb_in_irq(xhci, cur_td, 993 -ESHUTDOWN); 994 } 995 while (!list_empty(&temp_ep->cancelled_td_list)) { 996 cur_td = list_first_entry( 997 &temp_ep->cancelled_td_list, 998 struct xhci_td, 999 cancelled_td_list); 1000 list_del_init(&cur_td->cancelled_td_list); 1001 xhci_giveback_urb_in_irq(xhci, cur_td, 1002 -ESHUTDOWN); 1003 } 1004 } 1005 } 1006 spin_unlock_irqrestore(&xhci->lock, flags); 1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1008 "Calling usb_hc_died()"); 1009 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1010 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1011 "xHCI host controller is dead."); 1012 } 1013 1014 1015 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1016 struct xhci_virt_device *dev, 1017 struct xhci_ring *ep_ring, 1018 unsigned int ep_index) 1019 { 1020 union xhci_trb *dequeue_temp; 1021 int num_trbs_free_temp; 1022 bool revert = false; 1023 1024 num_trbs_free_temp = ep_ring->num_trbs_free; 1025 dequeue_temp = ep_ring->dequeue; 1026 1027 /* If we get two back-to-back stalls, and the first stalled transfer 1028 * ends just before a link TRB, the dequeue pointer will be left on 1029 * the link TRB by the code in the while loop. So we have to update 1030 * the dequeue pointer one segment further, or we'll jump off 1031 * the segment into la-la-land. 1032 */ 1033 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1034 ep_ring->deq_seg = ep_ring->deq_seg->next; 1035 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1036 } 1037 1038 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1039 /* We have more usable TRBs */ 1040 ep_ring->num_trbs_free++; 1041 ep_ring->dequeue++; 1042 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1043 ep_ring->dequeue)) { 1044 if (ep_ring->dequeue == 1045 dev->eps[ep_index].queued_deq_ptr) 1046 break; 1047 ep_ring->deq_seg = ep_ring->deq_seg->next; 1048 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1049 } 1050 if (ep_ring->dequeue == dequeue_temp) { 1051 revert = true; 1052 break; 1053 } 1054 } 1055 1056 if (revert) { 1057 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1058 ep_ring->num_trbs_free = num_trbs_free_temp; 1059 } 1060 } 1061 1062 /* 1063 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1064 * we need to clear the set deq pending flag in the endpoint ring state, so that 1065 * the TD queueing code can ring the doorbell again. We also need to ring the 1066 * endpoint doorbell to restart the ring, but only if there aren't more 1067 * cancellations pending. 1068 */ 1069 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1070 union xhci_trb *trb, u32 cmd_comp_code) 1071 { 1072 unsigned int ep_index; 1073 unsigned int stream_id; 1074 struct xhci_ring *ep_ring; 1075 struct xhci_virt_device *dev; 1076 struct xhci_ep_ctx *ep_ctx; 1077 struct xhci_slot_ctx *slot_ctx; 1078 1079 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1080 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1081 dev = xhci->devs[slot_id]; 1082 1083 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1084 if (!ep_ring) { 1085 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1086 "freed stream ID %u\n", 1087 stream_id); 1088 /* XXX: Harmless??? */ 1089 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1090 return; 1091 } 1092 1093 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1094 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1095 1096 if (cmd_comp_code != COMP_SUCCESS) { 1097 unsigned int ep_state; 1098 unsigned int slot_state; 1099 1100 switch (cmd_comp_code) { 1101 case COMP_TRB_ERR: 1102 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1103 "of stream ID configuration\n"); 1104 break; 1105 case COMP_CTX_STATE: 1106 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1107 "to incorrect slot or ep state.\n"); 1108 ep_state = le32_to_cpu(ep_ctx->ep_info); 1109 ep_state &= EP_STATE_MASK; 1110 slot_state = le32_to_cpu(slot_ctx->dev_state); 1111 slot_state = GET_SLOT_STATE(slot_state); 1112 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1113 "Slot state = %u, EP state = %u", 1114 slot_state, ep_state); 1115 break; 1116 case COMP_EBADSLT: 1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1118 "slot %u was not enabled.\n", slot_id); 1119 break; 1120 default: 1121 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1122 "completion code of %u.\n", 1123 cmd_comp_code); 1124 break; 1125 } 1126 /* OK what do we do now? The endpoint state is hosed, and we 1127 * should never get to this point if the synchronization between 1128 * queueing, and endpoint state are correct. This might happen 1129 * if the device gets disconnected after we've finished 1130 * cancelling URBs, which might not be an error... 1131 */ 1132 } else { 1133 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1134 "Successful Set TR Deq Ptr cmd, deq = @%08llx", 1135 le64_to_cpu(ep_ctx->deq)); 1136 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1137 dev->eps[ep_index].queued_deq_ptr) == 1138 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1139 /* Update the ring's dequeue segment and dequeue pointer 1140 * to reflect the new position. 1141 */ 1142 update_ring_for_set_deq_completion(xhci, dev, 1143 ep_ring, ep_index); 1144 } else { 1145 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1146 "Ptr command & xHCI internal state.\n"); 1147 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1148 dev->eps[ep_index].queued_deq_seg, 1149 dev->eps[ep_index].queued_deq_ptr); 1150 } 1151 } 1152 1153 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1154 dev->eps[ep_index].queued_deq_seg = NULL; 1155 dev->eps[ep_index].queued_deq_ptr = NULL; 1156 /* Restart any rings with pending URBs */ 1157 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1158 } 1159 1160 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1161 union xhci_trb *trb, u32 cmd_comp_code) 1162 { 1163 unsigned int ep_index; 1164 1165 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1166 /* This command will only fail if the endpoint wasn't halted, 1167 * but we don't care. 1168 */ 1169 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1170 "Ignoring reset ep completion code of %u", cmd_comp_code); 1171 1172 /* HW with the reset endpoint quirk needs to have a configure endpoint 1173 * command complete before the endpoint can be used. Queue that here 1174 * because the HW can't handle two commands being queued in a row. 1175 */ 1176 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1178 "Queueing configure endpoint command"); 1179 xhci_queue_configure_endpoint(xhci, 1180 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1181 false); 1182 xhci_ring_cmd_db(xhci); 1183 } else { 1184 /* Clear our internal halted state and restart the ring(s) */ 1185 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1186 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1187 } 1188 } 1189 1190 /* Complete the command and detele it from the devcie's command queue. 1191 */ 1192 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1193 struct xhci_command *command, u32 status) 1194 { 1195 command->status = status; 1196 list_del(&command->cmd_list); 1197 if (command->completion) 1198 complete(command->completion); 1199 else 1200 xhci_free_command(xhci, command); 1201 } 1202 1203 1204 /* Check to see if a command in the device's command queue matches this one. 1205 * Signal the completion or free the command, and return 1. Return 0 if the 1206 * completed command isn't at the head of the command list. 1207 */ 1208 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1209 struct xhci_virt_device *virt_dev, 1210 struct xhci_event_cmd *event) 1211 { 1212 struct xhci_command *command; 1213 1214 if (list_empty(&virt_dev->cmd_list)) 1215 return 0; 1216 1217 command = list_entry(virt_dev->cmd_list.next, 1218 struct xhci_command, cmd_list); 1219 if (xhci->cmd_ring->dequeue != command->command_trb) 1220 return 0; 1221 1222 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1223 GET_COMP_CODE(le32_to_cpu(event->status))); 1224 return 1; 1225 } 1226 1227 /* 1228 * Finding the command trb need to be cancelled and modifying it to 1229 * NO OP command. And if the command is in device's command wait 1230 * list, finishing and freeing it. 1231 * 1232 * If we can't find the command trb, we think it had already been 1233 * executed. 1234 */ 1235 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1236 { 1237 struct xhci_segment *cur_seg; 1238 union xhci_trb *cmd_trb; 1239 u32 cycle_state; 1240 1241 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1242 return; 1243 1244 /* find the current segment of command ring */ 1245 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1246 xhci->cmd_ring->dequeue, &cycle_state); 1247 1248 if (!cur_seg) { 1249 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1250 xhci->cmd_ring->dequeue, 1251 (unsigned long long) 1252 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1253 xhci->cmd_ring->dequeue)); 1254 xhci_debug_ring(xhci, xhci->cmd_ring); 1255 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1256 return; 1257 } 1258 1259 /* find the command trb matched by cd from command ring */ 1260 for (cmd_trb = xhci->cmd_ring->dequeue; 1261 cmd_trb != xhci->cmd_ring->enqueue; 1262 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1263 /* If the trb is link trb, continue */ 1264 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1265 continue; 1266 1267 if (cur_cd->cmd_trb == cmd_trb) { 1268 1269 /* If the command in device's command list, we should 1270 * finish it and free the command structure. 1271 */ 1272 if (cur_cd->command) 1273 xhci_complete_cmd_in_cmd_wait_list(xhci, 1274 cur_cd->command, COMP_CMD_STOP); 1275 1276 /* get cycle state from the origin command trb */ 1277 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1278 & TRB_CYCLE; 1279 1280 /* modify the command trb to NO OP command */ 1281 cmd_trb->generic.field[0] = 0; 1282 cmd_trb->generic.field[1] = 0; 1283 cmd_trb->generic.field[2] = 0; 1284 cmd_trb->generic.field[3] = cpu_to_le32( 1285 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1286 break; 1287 } 1288 } 1289 } 1290 1291 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1292 { 1293 struct xhci_cd *cur_cd, *next_cd; 1294 1295 if (list_empty(&xhci->cancel_cmd_list)) 1296 return; 1297 1298 list_for_each_entry_safe(cur_cd, next_cd, 1299 &xhci->cancel_cmd_list, cancel_cmd_list) { 1300 xhci_cmd_to_noop(xhci, cur_cd); 1301 list_del(&cur_cd->cancel_cmd_list); 1302 kfree(cur_cd); 1303 } 1304 } 1305 1306 /* 1307 * traversing the cancel_cmd_list. If the command descriptor according 1308 * to cmd_trb is found, the function free it and return 1, otherwise 1309 * return 0. 1310 */ 1311 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1312 union xhci_trb *cmd_trb) 1313 { 1314 struct xhci_cd *cur_cd, *next_cd; 1315 1316 if (list_empty(&xhci->cancel_cmd_list)) 1317 return 0; 1318 1319 list_for_each_entry_safe(cur_cd, next_cd, 1320 &xhci->cancel_cmd_list, cancel_cmd_list) { 1321 if (cur_cd->cmd_trb == cmd_trb) { 1322 if (cur_cd->command) 1323 xhci_complete_cmd_in_cmd_wait_list(xhci, 1324 cur_cd->command, COMP_CMD_STOP); 1325 list_del(&cur_cd->cancel_cmd_list); 1326 kfree(cur_cd); 1327 return 1; 1328 } 1329 } 1330 1331 return 0; 1332 } 1333 1334 /* 1335 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1336 * trb pointed by the command ring dequeue pointer is the trb we want to 1337 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1338 * traverse the cancel_cmd_list to trun the all of the commands according 1339 * to command descriptor to NO-OP trb. 1340 */ 1341 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1342 int cmd_trb_comp_code) 1343 { 1344 int cur_trb_is_good = 0; 1345 1346 /* Searching the cmd trb pointed by the command ring dequeue 1347 * pointer in command descriptor list. If it is found, free it. 1348 */ 1349 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1350 xhci->cmd_ring->dequeue); 1351 1352 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1353 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1354 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1355 /* traversing the cancel_cmd_list and canceling 1356 * the command according to command descriptor 1357 */ 1358 xhci_cancel_cmd_in_cd_list(xhci); 1359 1360 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1361 /* 1362 * ring command ring doorbell again to restart the 1363 * command ring 1364 */ 1365 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1366 xhci_ring_cmd_db(xhci); 1367 } 1368 return cur_trb_is_good; 1369 } 1370 1371 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1372 u32 cmd_comp_code) 1373 { 1374 if (cmd_comp_code == COMP_SUCCESS) 1375 xhci->slot_id = slot_id; 1376 else 1377 xhci->slot_id = 0; 1378 complete(&xhci->addr_dev); 1379 } 1380 1381 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1382 { 1383 struct xhci_virt_device *virt_dev; 1384 1385 virt_dev = xhci->devs[slot_id]; 1386 if (!virt_dev) 1387 return; 1388 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1389 /* Delete default control endpoint resources */ 1390 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1391 xhci_free_virt_device(xhci, slot_id); 1392 } 1393 1394 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1395 struct xhci_event_cmd *event, u32 cmd_comp_code) 1396 { 1397 struct xhci_virt_device *virt_dev; 1398 struct xhci_input_control_ctx *ctrl_ctx; 1399 unsigned int ep_index; 1400 unsigned int ep_state; 1401 u32 add_flags, drop_flags; 1402 1403 virt_dev = xhci->devs[slot_id]; 1404 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1405 return; 1406 /* 1407 * Configure endpoint commands can come from the USB core 1408 * configuration or alt setting changes, or because the HW 1409 * needed an extra configure endpoint command after a reset 1410 * endpoint command or streams were being configured. 1411 * If the command was for a halted endpoint, the xHCI driver 1412 * is not waiting on the configure endpoint command. 1413 */ 1414 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1415 if (!ctrl_ctx) { 1416 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1417 return; 1418 } 1419 1420 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1421 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1422 /* Input ctx add_flags are the endpoint index plus one */ 1423 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1424 1425 /* A usb_set_interface() call directly after clearing a halted 1426 * condition may race on this quirky hardware. Not worth 1427 * worrying about, since this is prototype hardware. Not sure 1428 * if this will work for streams, but streams support was 1429 * untested on this prototype. 1430 */ 1431 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1432 ep_index != (unsigned int) -1 && 1433 add_flags - SLOT_FLAG == drop_flags) { 1434 ep_state = virt_dev->eps[ep_index].ep_state; 1435 if (!(ep_state & EP_HALTED)) 1436 goto bandwidth_change; 1437 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1438 "Completed config ep cmd - " 1439 "last ep index = %d, state = %d", 1440 ep_index, ep_state); 1441 /* Clear internal halted state and restart ring(s) */ 1442 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1443 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1444 return; 1445 } 1446 bandwidth_change: 1447 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1448 "Completed config ep cmd"); 1449 virt_dev->cmd_status = cmd_comp_code; 1450 complete(&virt_dev->cmd_completion); 1451 return; 1452 } 1453 1454 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id, 1455 struct xhci_event_cmd *event, u32 cmd_comp_code) 1456 { 1457 struct xhci_virt_device *virt_dev; 1458 1459 virt_dev = xhci->devs[slot_id]; 1460 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1461 return; 1462 virt_dev->cmd_status = cmd_comp_code; 1463 complete(&virt_dev->cmd_completion); 1464 } 1465 1466 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id, 1467 u32 cmd_comp_code) 1468 { 1469 xhci->devs[slot_id]->cmd_status = cmd_comp_code; 1470 complete(&xhci->addr_dev); 1471 } 1472 1473 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1474 struct xhci_event_cmd *event) 1475 { 1476 struct xhci_virt_device *virt_dev; 1477 1478 xhci_dbg(xhci, "Completed reset device command.\n"); 1479 virt_dev = xhci->devs[slot_id]; 1480 if (virt_dev) 1481 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1482 else 1483 xhci_warn(xhci, "Reset device command completion " 1484 "for disabled slot %u\n", slot_id); 1485 } 1486 1487 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1488 struct xhci_event_cmd *event) 1489 { 1490 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1491 xhci->error_bitmask |= 1 << 6; 1492 return; 1493 } 1494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1495 "NEC firmware version %2x.%02x", 1496 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1497 NEC_FW_MINOR(le32_to_cpu(event->status))); 1498 } 1499 1500 static void handle_cmd_completion(struct xhci_hcd *xhci, 1501 struct xhci_event_cmd *event) 1502 { 1503 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1504 u64 cmd_dma; 1505 dma_addr_t cmd_dequeue_dma; 1506 u32 cmd_comp_code; 1507 union xhci_trb *cmd_trb; 1508 u32 cmd_type; 1509 1510 cmd_dma = le64_to_cpu(event->cmd_trb); 1511 cmd_trb = xhci->cmd_ring->dequeue; 1512 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1513 cmd_trb); 1514 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1515 if (cmd_dequeue_dma == 0) { 1516 xhci->error_bitmask |= 1 << 4; 1517 return; 1518 } 1519 /* Does the DMA address match our internal dequeue pointer address? */ 1520 if (cmd_dma != (u64) cmd_dequeue_dma) { 1521 xhci->error_bitmask |= 1 << 5; 1522 return; 1523 } 1524 1525 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1526 1527 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1528 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) { 1529 /* If the return value is 0, we think the trb pointed by 1530 * command ring dequeue pointer is a good trb. The good 1531 * trb means we don't want to cancel the trb, but it have 1532 * been stopped by host. So we should handle it normally. 1533 * Otherwise, driver should invoke inc_deq() and return. 1534 */ 1535 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) { 1536 inc_deq(xhci, xhci->cmd_ring); 1537 return; 1538 } 1539 /* There is no command to handle if we get a stop event when the 1540 * command ring is empty, event->cmd_trb points to the next 1541 * unset command 1542 */ 1543 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1544 return; 1545 } 1546 1547 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1548 switch (cmd_type) { 1549 case TRB_ENABLE_SLOT: 1550 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1551 break; 1552 case TRB_DISABLE_SLOT: 1553 xhci_handle_cmd_disable_slot(xhci, slot_id); 1554 break; 1555 case TRB_CONFIG_EP: 1556 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); 1557 break; 1558 case TRB_EVAL_CONTEXT: 1559 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code); 1560 break; 1561 case TRB_ADDR_DEV: 1562 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code); 1563 break; 1564 case TRB_STOP_RING: 1565 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1566 le32_to_cpu(cmd_trb->generic.field[3]))); 1567 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1568 break; 1569 case TRB_SET_DEQ: 1570 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1571 le32_to_cpu(cmd_trb->generic.field[3]))); 1572 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1573 break; 1574 case TRB_CMD_NOOP: 1575 break; 1576 case TRB_RESET_EP: 1577 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1578 le32_to_cpu(cmd_trb->generic.field[3]))); 1579 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1580 break; 1581 case TRB_RESET_DEV: 1582 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1583 le32_to_cpu(cmd_trb->generic.field[3]))); 1584 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1585 break; 1586 case TRB_NEC_GET_FW: 1587 xhci_handle_cmd_nec_get_fw(xhci, event); 1588 break; 1589 default: 1590 /* Skip over unknown commands on the event ring */ 1591 xhci->error_bitmask |= 1 << 6; 1592 break; 1593 } 1594 inc_deq(xhci, xhci->cmd_ring); 1595 } 1596 1597 static void handle_vendor_event(struct xhci_hcd *xhci, 1598 union xhci_trb *event) 1599 { 1600 u32 trb_type; 1601 1602 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1603 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1604 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1605 handle_cmd_completion(xhci, &event->event_cmd); 1606 } 1607 1608 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1609 * port registers -- USB 3.0 and USB 2.0). 1610 * 1611 * Returns a zero-based port number, which is suitable for indexing into each of 1612 * the split roothubs' port arrays and bus state arrays. 1613 * Add one to it in order to call xhci_find_slot_id_by_port. 1614 */ 1615 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1616 struct xhci_hcd *xhci, u32 port_id) 1617 { 1618 unsigned int i; 1619 unsigned int num_similar_speed_ports = 0; 1620 1621 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1622 * and usb2_ports are 0-based indexes. Count the number of similar 1623 * speed ports, up to 1 port before this port. 1624 */ 1625 for (i = 0; i < (port_id - 1); i++) { 1626 u8 port_speed = xhci->port_array[i]; 1627 1628 /* 1629 * Skip ports that don't have known speeds, or have duplicate 1630 * Extended Capabilities port speed entries. 1631 */ 1632 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1633 continue; 1634 1635 /* 1636 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1637 * 1.1 ports are under the USB 2.0 hub. If the port speed 1638 * matches the device speed, it's a similar speed port. 1639 */ 1640 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1641 num_similar_speed_ports++; 1642 } 1643 return num_similar_speed_ports; 1644 } 1645 1646 static void handle_device_notification(struct xhci_hcd *xhci, 1647 union xhci_trb *event) 1648 { 1649 u32 slot_id; 1650 struct usb_device *udev; 1651 1652 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1653 if (!xhci->devs[slot_id]) { 1654 xhci_warn(xhci, "Device Notification event for " 1655 "unused slot %u\n", slot_id); 1656 return; 1657 } 1658 1659 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1660 slot_id); 1661 udev = xhci->devs[slot_id]->udev; 1662 if (udev && udev->parent) 1663 usb_wakeup_notification(udev->parent, udev->portnum); 1664 } 1665 1666 static void handle_port_status(struct xhci_hcd *xhci, 1667 union xhci_trb *event) 1668 { 1669 struct usb_hcd *hcd; 1670 u32 port_id; 1671 u32 temp, temp1; 1672 int max_ports; 1673 int slot_id; 1674 unsigned int faked_port_index; 1675 u8 major_revision; 1676 struct xhci_bus_state *bus_state; 1677 __le32 __iomem **port_array; 1678 bool bogus_port_status = false; 1679 1680 /* Port status change events always have a successful completion code */ 1681 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1682 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1683 xhci->error_bitmask |= 1 << 8; 1684 } 1685 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1686 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1687 1688 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1689 if ((port_id <= 0) || (port_id > max_ports)) { 1690 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1691 inc_deq(xhci, xhci->event_ring); 1692 return; 1693 } 1694 1695 /* Figure out which usb_hcd this port is attached to: 1696 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1697 */ 1698 major_revision = xhci->port_array[port_id - 1]; 1699 1700 /* Find the right roothub. */ 1701 hcd = xhci_to_hcd(xhci); 1702 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1703 hcd = xhci->shared_hcd; 1704 1705 if (major_revision == 0) { 1706 xhci_warn(xhci, "Event for port %u not in " 1707 "Extended Capabilities, ignoring.\n", 1708 port_id); 1709 bogus_port_status = true; 1710 goto cleanup; 1711 } 1712 if (major_revision == DUPLICATE_ENTRY) { 1713 xhci_warn(xhci, "Event for port %u duplicated in" 1714 "Extended Capabilities, ignoring.\n", 1715 port_id); 1716 bogus_port_status = true; 1717 goto cleanup; 1718 } 1719 1720 /* 1721 * Hardware port IDs reported by a Port Status Change Event include USB 1722 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1723 * resume event, but we first need to translate the hardware port ID 1724 * into the index into the ports on the correct split roothub, and the 1725 * correct bus_state structure. 1726 */ 1727 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1728 if (hcd->speed == HCD_USB3) 1729 port_array = xhci->usb3_ports; 1730 else 1731 port_array = xhci->usb2_ports; 1732 /* Find the faked port hub number */ 1733 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1734 port_id); 1735 1736 temp = readl(port_array[faked_port_index]); 1737 if (hcd->state == HC_STATE_SUSPENDED) { 1738 xhci_dbg(xhci, "resume root hub\n"); 1739 usb_hcd_resume_root_hub(hcd); 1740 } 1741 1742 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1743 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1744 1745 temp1 = readl(&xhci->op_regs->command); 1746 if (!(temp1 & CMD_RUN)) { 1747 xhci_warn(xhci, "xHC is not running.\n"); 1748 goto cleanup; 1749 } 1750 1751 if (DEV_SUPERSPEED(temp)) { 1752 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1753 /* Set a flag to say the port signaled remote wakeup, 1754 * so we can tell the difference between the end of 1755 * device and host initiated resume. 1756 */ 1757 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1758 xhci_test_and_clear_bit(xhci, port_array, 1759 faked_port_index, PORT_PLC); 1760 xhci_set_link_state(xhci, port_array, faked_port_index, 1761 XDEV_U0); 1762 /* Need to wait until the next link state change 1763 * indicates the device is actually in U0. 1764 */ 1765 bogus_port_status = true; 1766 goto cleanup; 1767 } else { 1768 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1769 bus_state->resume_done[faked_port_index] = jiffies + 1770 msecs_to_jiffies(20); 1771 set_bit(faked_port_index, &bus_state->resuming_ports); 1772 mod_timer(&hcd->rh_timer, 1773 bus_state->resume_done[faked_port_index]); 1774 /* Do the rest in GetPortStatus */ 1775 } 1776 } 1777 1778 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1779 DEV_SUPERSPEED(temp)) { 1780 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1781 /* We've just brought the device into U0 through either the 1782 * Resume state after a device remote wakeup, or through the 1783 * U3Exit state after a host-initiated resume. If it's a device 1784 * initiated remote wake, don't pass up the link state change, 1785 * so the roothub behavior is consistent with external 1786 * USB 3.0 hub behavior. 1787 */ 1788 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1789 faked_port_index + 1); 1790 if (slot_id && xhci->devs[slot_id]) 1791 xhci_ring_device(xhci, slot_id); 1792 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1793 bus_state->port_remote_wakeup &= 1794 ~(1 << faked_port_index); 1795 xhci_test_and_clear_bit(xhci, port_array, 1796 faked_port_index, PORT_PLC); 1797 usb_wakeup_notification(hcd->self.root_hub, 1798 faked_port_index + 1); 1799 bogus_port_status = true; 1800 goto cleanup; 1801 } 1802 } 1803 1804 /* 1805 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1806 * RExit to a disconnect state). If so, let the the driver know it's 1807 * out of the RExit state. 1808 */ 1809 if (!DEV_SUPERSPEED(temp) && 1810 test_and_clear_bit(faked_port_index, 1811 &bus_state->rexit_ports)) { 1812 complete(&bus_state->rexit_done[faked_port_index]); 1813 bogus_port_status = true; 1814 goto cleanup; 1815 } 1816 1817 if (hcd->speed != HCD_USB3) 1818 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1819 PORT_PLC); 1820 1821 cleanup: 1822 /* Update event ring dequeue pointer before dropping the lock */ 1823 inc_deq(xhci, xhci->event_ring); 1824 1825 /* Don't make the USB core poll the roothub if we got a bad port status 1826 * change event. Besides, at that point we can't tell which roothub 1827 * (USB 2.0 or USB 3.0) to kick. 1828 */ 1829 if (bogus_port_status) 1830 return; 1831 1832 /* 1833 * xHCI port-status-change events occur when the "or" of all the 1834 * status-change bits in the portsc register changes from 0 to 1. 1835 * New status changes won't cause an event if any other change 1836 * bits are still set. When an event occurs, switch over to 1837 * polling to avoid losing status changes. 1838 */ 1839 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1840 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1841 spin_unlock(&xhci->lock); 1842 /* Pass this up to the core */ 1843 usb_hcd_poll_rh_status(hcd); 1844 spin_lock(&xhci->lock); 1845 } 1846 1847 /* 1848 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1849 * at end_trb, which may be in another segment. If the suspect DMA address is a 1850 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1851 * returns 0. 1852 */ 1853 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1854 union xhci_trb *start_trb, 1855 union xhci_trb *end_trb, 1856 dma_addr_t suspect_dma) 1857 { 1858 dma_addr_t start_dma; 1859 dma_addr_t end_seg_dma; 1860 dma_addr_t end_trb_dma; 1861 struct xhci_segment *cur_seg; 1862 1863 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1864 cur_seg = start_seg; 1865 1866 do { 1867 if (start_dma == 0) 1868 return NULL; 1869 /* We may get an event for a Link TRB in the middle of a TD */ 1870 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1871 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1872 /* If the end TRB isn't in this segment, this is set to 0 */ 1873 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1874 1875 if (end_trb_dma > 0) { 1876 /* The end TRB is in this segment, so suspect should be here */ 1877 if (start_dma <= end_trb_dma) { 1878 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1879 return cur_seg; 1880 } else { 1881 /* Case for one segment with 1882 * a TD wrapped around to the top 1883 */ 1884 if ((suspect_dma >= start_dma && 1885 suspect_dma <= end_seg_dma) || 1886 (suspect_dma >= cur_seg->dma && 1887 suspect_dma <= end_trb_dma)) 1888 return cur_seg; 1889 } 1890 return NULL; 1891 } else { 1892 /* Might still be somewhere in this segment */ 1893 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1894 return cur_seg; 1895 } 1896 cur_seg = cur_seg->next; 1897 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1898 } while (cur_seg != start_seg); 1899 1900 return NULL; 1901 } 1902 1903 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1904 unsigned int slot_id, unsigned int ep_index, 1905 unsigned int stream_id, 1906 struct xhci_td *td, union xhci_trb *event_trb) 1907 { 1908 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1909 ep->ep_state |= EP_HALTED; 1910 ep->stopped_td = td; 1911 ep->stopped_trb = event_trb; 1912 ep->stopped_stream = stream_id; 1913 1914 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1915 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1916 1917 ep->stopped_td = NULL; 1918 ep->stopped_trb = NULL; 1919 ep->stopped_stream = 0; 1920 1921 xhci_ring_cmd_db(xhci); 1922 } 1923 1924 /* Check if an error has halted the endpoint ring. The class driver will 1925 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1926 * However, a babble and other errors also halt the endpoint ring, and the class 1927 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1928 * Ring Dequeue Pointer command manually. 1929 */ 1930 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1931 struct xhci_ep_ctx *ep_ctx, 1932 unsigned int trb_comp_code) 1933 { 1934 /* TRB completion codes that may require a manual halt cleanup */ 1935 if (trb_comp_code == COMP_TX_ERR || 1936 trb_comp_code == COMP_BABBLE || 1937 trb_comp_code == COMP_SPLIT_ERR) 1938 /* The 0.96 spec says a babbling control endpoint 1939 * is not halted. The 0.96 spec says it is. Some HW 1940 * claims to be 0.95 compliant, but it halts the control 1941 * endpoint anyway. Check if a babble halted the 1942 * endpoint. 1943 */ 1944 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1945 cpu_to_le32(EP_STATE_HALTED)) 1946 return 1; 1947 1948 return 0; 1949 } 1950 1951 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1952 { 1953 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1954 /* Vendor defined "informational" completion code, 1955 * treat as not-an-error. 1956 */ 1957 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1958 trb_comp_code); 1959 xhci_dbg(xhci, "Treating code as success.\n"); 1960 return 1; 1961 } 1962 return 0; 1963 } 1964 1965 /* 1966 * Finish the td processing, remove the td from td list; 1967 * Return 1 if the urb can be given back. 1968 */ 1969 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1970 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1971 struct xhci_virt_ep *ep, int *status, bool skip) 1972 { 1973 struct xhci_virt_device *xdev; 1974 struct xhci_ring *ep_ring; 1975 unsigned int slot_id; 1976 int ep_index; 1977 struct urb *urb = NULL; 1978 struct xhci_ep_ctx *ep_ctx; 1979 int ret = 0; 1980 struct urb_priv *urb_priv; 1981 u32 trb_comp_code; 1982 1983 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1984 xdev = xhci->devs[slot_id]; 1985 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1986 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1987 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1988 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1989 1990 if (skip) 1991 goto td_cleanup; 1992 1993 if (trb_comp_code == COMP_STOP_INVAL || 1994 trb_comp_code == COMP_STOP) { 1995 /* The Endpoint Stop Command completion will take care of any 1996 * stopped TDs. A stopped TD may be restarted, so don't update 1997 * the ring dequeue pointer or take this TD off any lists yet. 1998 */ 1999 ep->stopped_td = td; 2000 ep->stopped_trb = event_trb; 2001 return 0; 2002 } else { 2003 if (trb_comp_code == COMP_STALL) { 2004 /* The transfer is completed from the driver's 2005 * perspective, but we need to issue a set dequeue 2006 * command for this stalled endpoint to move the dequeue 2007 * pointer past the TD. We can't do that here because 2008 * the halt condition must be cleared first. Let the 2009 * USB class driver clear the stall later. 2010 */ 2011 ep->stopped_td = td; 2012 ep->stopped_trb = event_trb; 2013 ep->stopped_stream = ep_ring->stream_id; 2014 } else if (xhci_requires_manual_halt_cleanup(xhci, 2015 ep_ctx, trb_comp_code)) { 2016 /* Other types of errors halt the endpoint, but the 2017 * class driver doesn't call usb_reset_endpoint() unless 2018 * the error is -EPIPE. Clear the halted status in the 2019 * xHCI hardware manually. 2020 */ 2021 xhci_cleanup_halted_endpoint(xhci, 2022 slot_id, ep_index, ep_ring->stream_id, 2023 td, event_trb); 2024 } else { 2025 /* Update ring dequeue pointer */ 2026 while (ep_ring->dequeue != td->last_trb) 2027 inc_deq(xhci, ep_ring); 2028 inc_deq(xhci, ep_ring); 2029 } 2030 2031 td_cleanup: 2032 /* Clean up the endpoint's TD list */ 2033 urb = td->urb; 2034 urb_priv = urb->hcpriv; 2035 2036 /* Do one last check of the actual transfer length. 2037 * If the host controller said we transferred more data than 2038 * the buffer length, urb->actual_length will be a very big 2039 * number (since it's unsigned). Play it safe and say we didn't 2040 * transfer anything. 2041 */ 2042 if (urb->actual_length > urb->transfer_buffer_length) { 2043 xhci_warn(xhci, "URB transfer length is wrong, " 2044 "xHC issue? req. len = %u, " 2045 "act. len = %u\n", 2046 urb->transfer_buffer_length, 2047 urb->actual_length); 2048 urb->actual_length = 0; 2049 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2050 *status = -EREMOTEIO; 2051 else 2052 *status = 0; 2053 } 2054 list_del_init(&td->td_list); 2055 /* Was this TD slated to be cancelled but completed anyway? */ 2056 if (!list_empty(&td->cancelled_td_list)) 2057 list_del_init(&td->cancelled_td_list); 2058 2059 urb_priv->td_cnt++; 2060 /* Giveback the urb when all the tds are completed */ 2061 if (urb_priv->td_cnt == urb_priv->length) { 2062 ret = 1; 2063 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2064 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 2065 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 2066 == 0) { 2067 if (xhci->quirks & XHCI_AMD_PLL_FIX) 2068 usb_amd_quirk_pll_enable(); 2069 } 2070 } 2071 } 2072 } 2073 2074 return ret; 2075 } 2076 2077 /* 2078 * Process control tds, update urb status and actual_length. 2079 */ 2080 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2081 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2082 struct xhci_virt_ep *ep, int *status) 2083 { 2084 struct xhci_virt_device *xdev; 2085 struct xhci_ring *ep_ring; 2086 unsigned int slot_id; 2087 int ep_index; 2088 struct xhci_ep_ctx *ep_ctx; 2089 u32 trb_comp_code; 2090 2091 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2092 xdev = xhci->devs[slot_id]; 2093 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2094 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2095 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2096 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2097 2098 switch (trb_comp_code) { 2099 case COMP_SUCCESS: 2100 if (event_trb == ep_ring->dequeue) { 2101 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2102 "without IOC set??\n"); 2103 *status = -ESHUTDOWN; 2104 } else if (event_trb != td->last_trb) { 2105 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2106 "without IOC set??\n"); 2107 *status = -ESHUTDOWN; 2108 } else { 2109 *status = 0; 2110 } 2111 break; 2112 case COMP_SHORT_TX: 2113 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2114 *status = -EREMOTEIO; 2115 else 2116 *status = 0; 2117 break; 2118 case COMP_STOP_INVAL: 2119 case COMP_STOP: 2120 return finish_td(xhci, td, event_trb, event, ep, status, false); 2121 default: 2122 if (!xhci_requires_manual_halt_cleanup(xhci, 2123 ep_ctx, trb_comp_code)) 2124 break; 2125 xhci_dbg(xhci, "TRB error code %u, " 2126 "halted endpoint index = %u\n", 2127 trb_comp_code, ep_index); 2128 /* else fall through */ 2129 case COMP_STALL: 2130 /* Did we transfer part of the data (middle) phase? */ 2131 if (event_trb != ep_ring->dequeue && 2132 event_trb != td->last_trb) 2133 td->urb->actual_length = 2134 td->urb->transfer_buffer_length - 2135 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2136 else 2137 td->urb->actual_length = 0; 2138 2139 xhci_cleanup_halted_endpoint(xhci, 2140 slot_id, ep_index, 0, td, event_trb); 2141 return finish_td(xhci, td, event_trb, event, ep, status, true); 2142 } 2143 /* 2144 * Did we transfer any data, despite the errors that might have 2145 * happened? I.e. did we get past the setup stage? 2146 */ 2147 if (event_trb != ep_ring->dequeue) { 2148 /* The event was for the status stage */ 2149 if (event_trb == td->last_trb) { 2150 if (td->urb->actual_length != 0) { 2151 /* Don't overwrite a previously set error code 2152 */ 2153 if ((*status == -EINPROGRESS || *status == 0) && 2154 (td->urb->transfer_flags 2155 & URB_SHORT_NOT_OK)) 2156 /* Did we already see a short data 2157 * stage? */ 2158 *status = -EREMOTEIO; 2159 } else { 2160 td->urb->actual_length = 2161 td->urb->transfer_buffer_length; 2162 } 2163 } else { 2164 /* Maybe the event was for the data stage? */ 2165 td->urb->actual_length = 2166 td->urb->transfer_buffer_length - 2167 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2168 xhci_dbg(xhci, "Waiting for status " 2169 "stage event\n"); 2170 return 0; 2171 } 2172 } 2173 2174 return finish_td(xhci, td, event_trb, event, ep, status, false); 2175 } 2176 2177 /* 2178 * Process isochronous tds, update urb packet status and actual_length. 2179 */ 2180 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2181 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2182 struct xhci_virt_ep *ep, int *status) 2183 { 2184 struct xhci_ring *ep_ring; 2185 struct urb_priv *urb_priv; 2186 int idx; 2187 int len = 0; 2188 union xhci_trb *cur_trb; 2189 struct xhci_segment *cur_seg; 2190 struct usb_iso_packet_descriptor *frame; 2191 u32 trb_comp_code; 2192 bool skip_td = false; 2193 2194 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2195 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2196 urb_priv = td->urb->hcpriv; 2197 idx = urb_priv->td_cnt; 2198 frame = &td->urb->iso_frame_desc[idx]; 2199 2200 /* handle completion code */ 2201 switch (trb_comp_code) { 2202 case COMP_SUCCESS: 2203 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2204 frame->status = 0; 2205 break; 2206 } 2207 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2208 trb_comp_code = COMP_SHORT_TX; 2209 case COMP_SHORT_TX: 2210 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2211 -EREMOTEIO : 0; 2212 break; 2213 case COMP_BW_OVER: 2214 frame->status = -ECOMM; 2215 skip_td = true; 2216 break; 2217 case COMP_BUFF_OVER: 2218 case COMP_BABBLE: 2219 frame->status = -EOVERFLOW; 2220 skip_td = true; 2221 break; 2222 case COMP_DEV_ERR: 2223 case COMP_STALL: 2224 case COMP_TX_ERR: 2225 frame->status = -EPROTO; 2226 skip_td = true; 2227 break; 2228 case COMP_STOP: 2229 case COMP_STOP_INVAL: 2230 break; 2231 default: 2232 frame->status = -1; 2233 break; 2234 } 2235 2236 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2237 frame->actual_length = frame->length; 2238 td->urb->actual_length += frame->length; 2239 } else { 2240 for (cur_trb = ep_ring->dequeue, 2241 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2242 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2243 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2244 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2245 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2246 } 2247 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2248 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2249 2250 if (trb_comp_code != COMP_STOP_INVAL) { 2251 frame->actual_length = len; 2252 td->urb->actual_length += len; 2253 } 2254 } 2255 2256 return finish_td(xhci, td, event_trb, event, ep, status, false); 2257 } 2258 2259 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2260 struct xhci_transfer_event *event, 2261 struct xhci_virt_ep *ep, int *status) 2262 { 2263 struct xhci_ring *ep_ring; 2264 struct urb_priv *urb_priv; 2265 struct usb_iso_packet_descriptor *frame; 2266 int idx; 2267 2268 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2269 urb_priv = td->urb->hcpriv; 2270 idx = urb_priv->td_cnt; 2271 frame = &td->urb->iso_frame_desc[idx]; 2272 2273 /* The transfer is partly done. */ 2274 frame->status = -EXDEV; 2275 2276 /* calc actual length */ 2277 frame->actual_length = 0; 2278 2279 /* Update ring dequeue pointer */ 2280 while (ep_ring->dequeue != td->last_trb) 2281 inc_deq(xhci, ep_ring); 2282 inc_deq(xhci, ep_ring); 2283 2284 return finish_td(xhci, td, NULL, event, ep, status, true); 2285 } 2286 2287 /* 2288 * Process bulk and interrupt tds, update urb status and actual_length. 2289 */ 2290 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2291 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2292 struct xhci_virt_ep *ep, int *status) 2293 { 2294 struct xhci_ring *ep_ring; 2295 union xhci_trb *cur_trb; 2296 struct xhci_segment *cur_seg; 2297 u32 trb_comp_code; 2298 2299 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2300 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2301 2302 switch (trb_comp_code) { 2303 case COMP_SUCCESS: 2304 /* Double check that the HW transferred everything. */ 2305 if (event_trb != td->last_trb || 2306 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2307 xhci_warn(xhci, "WARN Successful completion " 2308 "on short TX\n"); 2309 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2310 *status = -EREMOTEIO; 2311 else 2312 *status = 0; 2313 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2314 trb_comp_code = COMP_SHORT_TX; 2315 } else { 2316 *status = 0; 2317 } 2318 break; 2319 case COMP_SHORT_TX: 2320 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2321 *status = -EREMOTEIO; 2322 else 2323 *status = 0; 2324 break; 2325 default: 2326 /* Others already handled above */ 2327 break; 2328 } 2329 if (trb_comp_code == COMP_SHORT_TX) 2330 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2331 "%d bytes untransferred\n", 2332 td->urb->ep->desc.bEndpointAddress, 2333 td->urb->transfer_buffer_length, 2334 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2335 /* Fast path - was this the last TRB in the TD for this URB? */ 2336 if (event_trb == td->last_trb) { 2337 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2338 td->urb->actual_length = 2339 td->urb->transfer_buffer_length - 2340 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2341 if (td->urb->transfer_buffer_length < 2342 td->urb->actual_length) { 2343 xhci_warn(xhci, "HC gave bad length " 2344 "of %d bytes left\n", 2345 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2346 td->urb->actual_length = 0; 2347 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2348 *status = -EREMOTEIO; 2349 else 2350 *status = 0; 2351 } 2352 /* Don't overwrite a previously set error code */ 2353 if (*status == -EINPROGRESS) { 2354 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2355 *status = -EREMOTEIO; 2356 else 2357 *status = 0; 2358 } 2359 } else { 2360 td->urb->actual_length = 2361 td->urb->transfer_buffer_length; 2362 /* Ignore a short packet completion if the 2363 * untransferred length was zero. 2364 */ 2365 if (*status == -EREMOTEIO) 2366 *status = 0; 2367 } 2368 } else { 2369 /* Slow path - walk the list, starting from the dequeue 2370 * pointer, to get the actual length transferred. 2371 */ 2372 td->urb->actual_length = 0; 2373 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2374 cur_trb != event_trb; 2375 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2376 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2377 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2378 td->urb->actual_length += 2379 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2380 } 2381 /* If the ring didn't stop on a Link or No-op TRB, add 2382 * in the actual bytes transferred from the Normal TRB 2383 */ 2384 if (trb_comp_code != COMP_STOP_INVAL) 2385 td->urb->actual_length += 2386 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2387 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2388 } 2389 2390 return finish_td(xhci, td, event_trb, event, ep, status, false); 2391 } 2392 2393 /* 2394 * If this function returns an error condition, it means it got a Transfer 2395 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2396 * At this point, the host controller is probably hosed and should be reset. 2397 */ 2398 static int handle_tx_event(struct xhci_hcd *xhci, 2399 struct xhci_transfer_event *event) 2400 __releases(&xhci->lock) 2401 __acquires(&xhci->lock) 2402 { 2403 struct xhci_virt_device *xdev; 2404 struct xhci_virt_ep *ep; 2405 struct xhci_ring *ep_ring; 2406 unsigned int slot_id; 2407 int ep_index; 2408 struct xhci_td *td = NULL; 2409 dma_addr_t event_dma; 2410 struct xhci_segment *event_seg; 2411 union xhci_trb *event_trb; 2412 struct urb *urb = NULL; 2413 int status = -EINPROGRESS; 2414 struct urb_priv *urb_priv; 2415 struct xhci_ep_ctx *ep_ctx; 2416 struct list_head *tmp; 2417 u32 trb_comp_code; 2418 int ret = 0; 2419 int td_num = 0; 2420 2421 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2422 xdev = xhci->devs[slot_id]; 2423 if (!xdev) { 2424 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2425 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2426 (unsigned long long) xhci_trb_virt_to_dma( 2427 xhci->event_ring->deq_seg, 2428 xhci->event_ring->dequeue), 2429 lower_32_bits(le64_to_cpu(event->buffer)), 2430 upper_32_bits(le64_to_cpu(event->buffer)), 2431 le32_to_cpu(event->transfer_len), 2432 le32_to_cpu(event->flags)); 2433 xhci_dbg(xhci, "Event ring:\n"); 2434 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2435 return -ENODEV; 2436 } 2437 2438 /* Endpoint ID is 1 based, our index is zero based */ 2439 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2440 ep = &xdev->eps[ep_index]; 2441 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2442 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2443 if (!ep_ring || 2444 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2445 EP_STATE_DISABLED) { 2446 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2447 "or incorrect stream ring\n"); 2448 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2449 (unsigned long long) xhci_trb_virt_to_dma( 2450 xhci->event_ring->deq_seg, 2451 xhci->event_ring->dequeue), 2452 lower_32_bits(le64_to_cpu(event->buffer)), 2453 upper_32_bits(le64_to_cpu(event->buffer)), 2454 le32_to_cpu(event->transfer_len), 2455 le32_to_cpu(event->flags)); 2456 xhci_dbg(xhci, "Event ring:\n"); 2457 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2458 return -ENODEV; 2459 } 2460 2461 /* Count current td numbers if ep->skip is set */ 2462 if (ep->skip) { 2463 list_for_each(tmp, &ep_ring->td_list) 2464 td_num++; 2465 } 2466 2467 event_dma = le64_to_cpu(event->buffer); 2468 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2469 /* Look for common error cases */ 2470 switch (trb_comp_code) { 2471 /* Skip codes that require special handling depending on 2472 * transfer type 2473 */ 2474 case COMP_SUCCESS: 2475 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2476 break; 2477 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2478 trb_comp_code = COMP_SHORT_TX; 2479 else 2480 xhci_warn_ratelimited(xhci, 2481 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2482 case COMP_SHORT_TX: 2483 break; 2484 case COMP_STOP: 2485 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2486 break; 2487 case COMP_STOP_INVAL: 2488 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2489 break; 2490 case COMP_STALL: 2491 xhci_dbg(xhci, "Stalled endpoint\n"); 2492 ep->ep_state |= EP_HALTED; 2493 status = -EPIPE; 2494 break; 2495 case COMP_TRB_ERR: 2496 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2497 status = -EILSEQ; 2498 break; 2499 case COMP_SPLIT_ERR: 2500 case COMP_TX_ERR: 2501 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2502 status = -EPROTO; 2503 break; 2504 case COMP_BABBLE: 2505 xhci_dbg(xhci, "Babble error on endpoint\n"); 2506 status = -EOVERFLOW; 2507 break; 2508 case COMP_DB_ERR: 2509 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2510 status = -ENOSR; 2511 break; 2512 case COMP_BW_OVER: 2513 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2514 break; 2515 case COMP_BUFF_OVER: 2516 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2517 break; 2518 case COMP_UNDERRUN: 2519 /* 2520 * When the Isoch ring is empty, the xHC will generate 2521 * a Ring Overrun Event for IN Isoch endpoint or Ring 2522 * Underrun Event for OUT Isoch endpoint. 2523 */ 2524 xhci_dbg(xhci, "underrun event on endpoint\n"); 2525 if (!list_empty(&ep_ring->td_list)) 2526 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2527 "still with TDs queued?\n", 2528 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2529 ep_index); 2530 goto cleanup; 2531 case COMP_OVERRUN: 2532 xhci_dbg(xhci, "overrun event on endpoint\n"); 2533 if (!list_empty(&ep_ring->td_list)) 2534 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2535 "still with TDs queued?\n", 2536 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2537 ep_index); 2538 goto cleanup; 2539 case COMP_DEV_ERR: 2540 xhci_warn(xhci, "WARN: detect an incompatible device"); 2541 status = -EPROTO; 2542 break; 2543 case COMP_MISSED_INT: 2544 /* 2545 * When encounter missed service error, one or more isoc tds 2546 * may be missed by xHC. 2547 * Set skip flag of the ep_ring; Complete the missed tds as 2548 * short transfer when process the ep_ring next time. 2549 */ 2550 ep->skip = true; 2551 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2552 goto cleanup; 2553 default: 2554 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2555 status = 0; 2556 break; 2557 } 2558 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2559 "busted\n"); 2560 goto cleanup; 2561 } 2562 2563 do { 2564 /* This TRB should be in the TD at the head of this ring's 2565 * TD list. 2566 */ 2567 if (list_empty(&ep_ring->td_list)) { 2568 /* 2569 * A stopped endpoint may generate an extra completion 2570 * event if the device was suspended. Don't print 2571 * warnings. 2572 */ 2573 if (!(trb_comp_code == COMP_STOP || 2574 trb_comp_code == COMP_STOP_INVAL)) { 2575 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2576 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2577 ep_index); 2578 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2579 (le32_to_cpu(event->flags) & 2580 TRB_TYPE_BITMASK)>>10); 2581 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2582 } 2583 if (ep->skip) { 2584 ep->skip = false; 2585 xhci_dbg(xhci, "td_list is empty while skip " 2586 "flag set. Clear skip flag.\n"); 2587 } 2588 ret = 0; 2589 goto cleanup; 2590 } 2591 2592 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2593 if (ep->skip && td_num == 0) { 2594 ep->skip = false; 2595 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2596 "Clear skip flag.\n"); 2597 ret = 0; 2598 goto cleanup; 2599 } 2600 2601 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2602 if (ep->skip) 2603 td_num--; 2604 2605 /* Is this a TRB in the currently executing TD? */ 2606 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2607 td->last_trb, event_dma); 2608 2609 /* 2610 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2611 * is not in the current TD pointed by ep_ring->dequeue because 2612 * that the hardware dequeue pointer still at the previous TRB 2613 * of the current TD. The previous TRB maybe a Link TD or the 2614 * last TRB of the previous TD. The command completion handle 2615 * will take care the rest. 2616 */ 2617 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2618 ret = 0; 2619 goto cleanup; 2620 } 2621 2622 if (!event_seg) { 2623 if (!ep->skip || 2624 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2625 /* Some host controllers give a spurious 2626 * successful event after a short transfer. 2627 * Ignore it. 2628 */ 2629 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2630 ep_ring->last_td_was_short) { 2631 ep_ring->last_td_was_short = false; 2632 ret = 0; 2633 goto cleanup; 2634 } 2635 /* HC is busted, give up! */ 2636 xhci_err(xhci, 2637 "ERROR Transfer event TRB DMA ptr not " 2638 "part of current TD\n"); 2639 return -ESHUTDOWN; 2640 } 2641 2642 ret = skip_isoc_td(xhci, td, event, ep, &status); 2643 goto cleanup; 2644 } 2645 if (trb_comp_code == COMP_SHORT_TX) 2646 ep_ring->last_td_was_short = true; 2647 else 2648 ep_ring->last_td_was_short = false; 2649 2650 if (ep->skip) { 2651 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2652 ep->skip = false; 2653 } 2654 2655 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2656 sizeof(*event_trb)]; 2657 /* 2658 * No-op TRB should not trigger interrupts. 2659 * If event_trb is a no-op TRB, it means the 2660 * corresponding TD has been cancelled. Just ignore 2661 * the TD. 2662 */ 2663 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2664 xhci_dbg(xhci, 2665 "event_trb is a no-op TRB. Skip it\n"); 2666 goto cleanup; 2667 } 2668 2669 /* Now update the urb's actual_length and give back to 2670 * the core 2671 */ 2672 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2673 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2674 &status); 2675 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2676 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2677 &status); 2678 else 2679 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2680 ep, &status); 2681 2682 cleanup: 2683 /* 2684 * Do not update event ring dequeue pointer if ep->skip is set. 2685 * Will roll back to continue process missed tds. 2686 */ 2687 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2688 inc_deq(xhci, xhci->event_ring); 2689 } 2690 2691 if (ret) { 2692 urb = td->urb; 2693 urb_priv = urb->hcpriv; 2694 /* Leave the TD around for the reset endpoint function 2695 * to use(but only if it's not a control endpoint, 2696 * since we already queued the Set TR dequeue pointer 2697 * command for stalled control endpoints). 2698 */ 2699 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2700 (trb_comp_code != COMP_STALL && 2701 trb_comp_code != COMP_BABBLE)) 2702 xhci_urb_free_priv(xhci, urb_priv); 2703 else 2704 kfree(urb_priv); 2705 2706 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2707 if ((urb->actual_length != urb->transfer_buffer_length && 2708 (urb->transfer_flags & 2709 URB_SHORT_NOT_OK)) || 2710 (status != 0 && 2711 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2712 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2713 "expected = %d, status = %d\n", 2714 urb, urb->actual_length, 2715 urb->transfer_buffer_length, 2716 status); 2717 spin_unlock(&xhci->lock); 2718 /* EHCI, UHCI, and OHCI always unconditionally set the 2719 * urb->status of an isochronous endpoint to 0. 2720 */ 2721 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2722 status = 0; 2723 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2724 spin_lock(&xhci->lock); 2725 } 2726 2727 /* 2728 * If ep->skip is set, it means there are missed tds on the 2729 * endpoint ring need to take care of. 2730 * Process them as short transfer until reach the td pointed by 2731 * the event. 2732 */ 2733 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2734 2735 return 0; 2736 } 2737 2738 /* 2739 * This function handles all OS-owned events on the event ring. It may drop 2740 * xhci->lock between event processing (e.g. to pass up port status changes). 2741 * Returns >0 for "possibly more events to process" (caller should call again), 2742 * otherwise 0 if done. In future, <0 returns should indicate error code. 2743 */ 2744 static int xhci_handle_event(struct xhci_hcd *xhci) 2745 { 2746 union xhci_trb *event; 2747 int update_ptrs = 1; 2748 int ret; 2749 2750 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2751 xhci->error_bitmask |= 1 << 1; 2752 return 0; 2753 } 2754 2755 event = xhci->event_ring->dequeue; 2756 /* Does the HC or OS own the TRB? */ 2757 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2758 xhci->event_ring->cycle_state) { 2759 xhci->error_bitmask |= 1 << 2; 2760 return 0; 2761 } 2762 2763 /* 2764 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2765 * speculative reads of the event's flags/data below. 2766 */ 2767 rmb(); 2768 /* FIXME: Handle more event types. */ 2769 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2770 case TRB_TYPE(TRB_COMPLETION): 2771 handle_cmd_completion(xhci, &event->event_cmd); 2772 break; 2773 case TRB_TYPE(TRB_PORT_STATUS): 2774 handle_port_status(xhci, event); 2775 update_ptrs = 0; 2776 break; 2777 case TRB_TYPE(TRB_TRANSFER): 2778 ret = handle_tx_event(xhci, &event->trans_event); 2779 if (ret < 0) 2780 xhci->error_bitmask |= 1 << 9; 2781 else 2782 update_ptrs = 0; 2783 break; 2784 case TRB_TYPE(TRB_DEV_NOTE): 2785 handle_device_notification(xhci, event); 2786 break; 2787 default: 2788 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2789 TRB_TYPE(48)) 2790 handle_vendor_event(xhci, event); 2791 else 2792 xhci->error_bitmask |= 1 << 3; 2793 } 2794 /* Any of the above functions may drop and re-acquire the lock, so check 2795 * to make sure a watchdog timer didn't mark the host as non-responsive. 2796 */ 2797 if (xhci->xhc_state & XHCI_STATE_DYING) { 2798 xhci_dbg(xhci, "xHCI host dying, returning from " 2799 "event handler.\n"); 2800 return 0; 2801 } 2802 2803 if (update_ptrs) 2804 /* Update SW event ring dequeue pointer */ 2805 inc_deq(xhci, xhci->event_ring); 2806 2807 /* Are there more items on the event ring? Caller will call us again to 2808 * check. 2809 */ 2810 return 1; 2811 } 2812 2813 /* 2814 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2815 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2816 * indicators of an event TRB error, but we check the status *first* to be safe. 2817 */ 2818 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2819 { 2820 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2821 u32 status; 2822 u64 temp_64; 2823 union xhci_trb *event_ring_deq; 2824 dma_addr_t deq; 2825 2826 spin_lock(&xhci->lock); 2827 /* Check if the xHC generated the interrupt, or the irq is shared */ 2828 status = readl(&xhci->op_regs->status); 2829 if (status == 0xffffffff) 2830 goto hw_died; 2831 2832 if (!(status & STS_EINT)) { 2833 spin_unlock(&xhci->lock); 2834 return IRQ_NONE; 2835 } 2836 if (status & STS_FATAL) { 2837 xhci_warn(xhci, "WARNING: Host System Error\n"); 2838 xhci_halt(xhci); 2839 hw_died: 2840 spin_unlock(&xhci->lock); 2841 return -ESHUTDOWN; 2842 } 2843 2844 /* 2845 * Clear the op reg interrupt status first, 2846 * so we can receive interrupts from other MSI-X interrupters. 2847 * Write 1 to clear the interrupt status. 2848 */ 2849 status |= STS_EINT; 2850 writel(status, &xhci->op_regs->status); 2851 /* FIXME when MSI-X is supported and there are multiple vectors */ 2852 /* Clear the MSI-X event interrupt status */ 2853 2854 if (hcd->irq) { 2855 u32 irq_pending; 2856 /* Acknowledge the PCI interrupt */ 2857 irq_pending = readl(&xhci->ir_set->irq_pending); 2858 irq_pending |= IMAN_IP; 2859 writel(irq_pending, &xhci->ir_set->irq_pending); 2860 } 2861 2862 if (xhci->xhc_state & XHCI_STATE_DYING) { 2863 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2864 "Shouldn't IRQs be disabled?\n"); 2865 /* Clear the event handler busy flag (RW1C); 2866 * the event ring should be empty. 2867 */ 2868 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2869 xhci_write_64(xhci, temp_64 | ERST_EHB, 2870 &xhci->ir_set->erst_dequeue); 2871 spin_unlock(&xhci->lock); 2872 2873 return IRQ_HANDLED; 2874 } 2875 2876 event_ring_deq = xhci->event_ring->dequeue; 2877 /* FIXME this should be a delayed service routine 2878 * that clears the EHB. 2879 */ 2880 while (xhci_handle_event(xhci) > 0) {} 2881 2882 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2883 /* If necessary, update the HW's version of the event ring deq ptr. */ 2884 if (event_ring_deq != xhci->event_ring->dequeue) { 2885 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2886 xhci->event_ring->dequeue); 2887 if (deq == 0) 2888 xhci_warn(xhci, "WARN something wrong with SW event " 2889 "ring dequeue ptr.\n"); 2890 /* Update HC event ring dequeue pointer */ 2891 temp_64 &= ERST_PTR_MASK; 2892 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2893 } 2894 2895 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2896 temp_64 |= ERST_EHB; 2897 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2898 2899 spin_unlock(&xhci->lock); 2900 2901 return IRQ_HANDLED; 2902 } 2903 2904 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2905 { 2906 return xhci_irq(hcd); 2907 } 2908 2909 /**** Endpoint Ring Operations ****/ 2910 2911 /* 2912 * Generic function for queueing a TRB on a ring. 2913 * The caller must have checked to make sure there's room on the ring. 2914 * 2915 * @more_trbs_coming: Will you enqueue more TRBs before calling 2916 * prepare_transfer()? 2917 */ 2918 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2919 bool more_trbs_coming, 2920 u32 field1, u32 field2, u32 field3, u32 field4) 2921 { 2922 struct xhci_generic_trb *trb; 2923 2924 trb = &ring->enqueue->generic; 2925 trb->field[0] = cpu_to_le32(field1); 2926 trb->field[1] = cpu_to_le32(field2); 2927 trb->field[2] = cpu_to_le32(field3); 2928 trb->field[3] = cpu_to_le32(field4); 2929 inc_enq(xhci, ring, more_trbs_coming); 2930 } 2931 2932 /* 2933 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2934 * FIXME allocate segments if the ring is full. 2935 */ 2936 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2937 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2938 { 2939 unsigned int num_trbs_needed; 2940 2941 /* Make sure the endpoint has been added to xHC schedule */ 2942 switch (ep_state) { 2943 case EP_STATE_DISABLED: 2944 /* 2945 * USB core changed config/interfaces without notifying us, 2946 * or hardware is reporting the wrong state. 2947 */ 2948 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2949 return -ENOENT; 2950 case EP_STATE_ERROR: 2951 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2952 /* FIXME event handling code for error needs to clear it */ 2953 /* XXX not sure if this should be -ENOENT or not */ 2954 return -EINVAL; 2955 case EP_STATE_HALTED: 2956 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2957 case EP_STATE_STOPPED: 2958 case EP_STATE_RUNNING: 2959 break; 2960 default: 2961 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2962 /* 2963 * FIXME issue Configure Endpoint command to try to get the HC 2964 * back into a known state. 2965 */ 2966 return -EINVAL; 2967 } 2968 2969 while (1) { 2970 if (room_on_ring(xhci, ep_ring, num_trbs)) 2971 break; 2972 2973 if (ep_ring == xhci->cmd_ring) { 2974 xhci_err(xhci, "Do not support expand command ring\n"); 2975 return -ENOMEM; 2976 } 2977 2978 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2979 "ERROR no room on ep ring, try ring expansion"); 2980 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2981 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2982 mem_flags)) { 2983 xhci_err(xhci, "Ring expansion failed\n"); 2984 return -ENOMEM; 2985 } 2986 } 2987 2988 if (enqueue_is_link_trb(ep_ring)) { 2989 struct xhci_ring *ring = ep_ring; 2990 union xhci_trb *next; 2991 2992 next = ring->enqueue; 2993 2994 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2995 /* If we're not dealing with 0.95 hardware or isoc rings 2996 * on AMD 0.96 host, clear the chain bit. 2997 */ 2998 if (!xhci_link_trb_quirk(xhci) && 2999 !(ring->type == TYPE_ISOC && 3000 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3001 next->link.control &= cpu_to_le32(~TRB_CHAIN); 3002 else 3003 next->link.control |= cpu_to_le32(TRB_CHAIN); 3004 3005 wmb(); 3006 next->link.control ^= cpu_to_le32(TRB_CYCLE); 3007 3008 /* Toggle the cycle bit after the last ring segment. */ 3009 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 3010 ring->cycle_state = (ring->cycle_state ? 0 : 1); 3011 } 3012 ring->enq_seg = ring->enq_seg->next; 3013 ring->enqueue = ring->enq_seg->trbs; 3014 next = ring->enqueue; 3015 } 3016 } 3017 3018 return 0; 3019 } 3020 3021 static int prepare_transfer(struct xhci_hcd *xhci, 3022 struct xhci_virt_device *xdev, 3023 unsigned int ep_index, 3024 unsigned int stream_id, 3025 unsigned int num_trbs, 3026 struct urb *urb, 3027 unsigned int td_index, 3028 gfp_t mem_flags) 3029 { 3030 int ret; 3031 struct urb_priv *urb_priv; 3032 struct xhci_td *td; 3033 struct xhci_ring *ep_ring; 3034 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3035 3036 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3037 if (!ep_ring) { 3038 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3039 stream_id); 3040 return -EINVAL; 3041 } 3042 3043 ret = prepare_ring(xhci, ep_ring, 3044 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3045 num_trbs, mem_flags); 3046 if (ret) 3047 return ret; 3048 3049 urb_priv = urb->hcpriv; 3050 td = urb_priv->td[td_index]; 3051 3052 INIT_LIST_HEAD(&td->td_list); 3053 INIT_LIST_HEAD(&td->cancelled_td_list); 3054 3055 if (td_index == 0) { 3056 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3057 if (unlikely(ret)) 3058 return ret; 3059 } 3060 3061 td->urb = urb; 3062 /* Add this TD to the tail of the endpoint ring's TD list */ 3063 list_add_tail(&td->td_list, &ep_ring->td_list); 3064 td->start_seg = ep_ring->enq_seg; 3065 td->first_trb = ep_ring->enqueue; 3066 3067 urb_priv->td[td_index] = td; 3068 3069 return 0; 3070 } 3071 3072 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3073 { 3074 int num_sgs, num_trbs, running_total, temp, i; 3075 struct scatterlist *sg; 3076 3077 sg = NULL; 3078 num_sgs = urb->num_mapped_sgs; 3079 temp = urb->transfer_buffer_length; 3080 3081 num_trbs = 0; 3082 for_each_sg(urb->sg, sg, num_sgs, i) { 3083 unsigned int len = sg_dma_len(sg); 3084 3085 /* Scatter gather list entries may cross 64KB boundaries */ 3086 running_total = TRB_MAX_BUFF_SIZE - 3087 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3088 running_total &= TRB_MAX_BUFF_SIZE - 1; 3089 if (running_total != 0) 3090 num_trbs++; 3091 3092 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3093 while (running_total < sg_dma_len(sg) && running_total < temp) { 3094 num_trbs++; 3095 running_total += TRB_MAX_BUFF_SIZE; 3096 } 3097 len = min_t(int, len, temp); 3098 temp -= len; 3099 if (temp == 0) 3100 break; 3101 } 3102 return num_trbs; 3103 } 3104 3105 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3106 { 3107 if (num_trbs != 0) 3108 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3109 "TRBs, %d left\n", __func__, 3110 urb->ep->desc.bEndpointAddress, num_trbs); 3111 if (running_total != urb->transfer_buffer_length) 3112 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3113 "queued %#x (%d), asked for %#x (%d)\n", 3114 __func__, 3115 urb->ep->desc.bEndpointAddress, 3116 running_total, running_total, 3117 urb->transfer_buffer_length, 3118 urb->transfer_buffer_length); 3119 } 3120 3121 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3122 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3123 struct xhci_generic_trb *start_trb) 3124 { 3125 /* 3126 * Pass all the TRBs to the hardware at once and make sure this write 3127 * isn't reordered. 3128 */ 3129 wmb(); 3130 if (start_cycle) 3131 start_trb->field[3] |= cpu_to_le32(start_cycle); 3132 else 3133 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3134 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3135 } 3136 3137 /* 3138 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3139 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3140 * (comprised of sg list entries) can take several service intervals to 3141 * transmit. 3142 */ 3143 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3144 struct urb *urb, int slot_id, unsigned int ep_index) 3145 { 3146 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3147 xhci->devs[slot_id]->out_ctx, ep_index); 3148 int xhci_interval; 3149 int ep_interval; 3150 3151 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3152 ep_interval = urb->interval; 3153 /* Convert to microframes */ 3154 if (urb->dev->speed == USB_SPEED_LOW || 3155 urb->dev->speed == USB_SPEED_FULL) 3156 ep_interval *= 8; 3157 /* FIXME change this to a warning and a suggestion to use the new API 3158 * to set the polling interval (once the API is added). 3159 */ 3160 if (xhci_interval != ep_interval) { 3161 dev_dbg_ratelimited(&urb->dev->dev, 3162 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3163 ep_interval, ep_interval == 1 ? "" : "s", 3164 xhci_interval, xhci_interval == 1 ? "" : "s"); 3165 urb->interval = xhci_interval; 3166 /* Convert back to frames for LS/FS devices */ 3167 if (urb->dev->speed == USB_SPEED_LOW || 3168 urb->dev->speed == USB_SPEED_FULL) 3169 urb->interval /= 8; 3170 } 3171 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3172 } 3173 3174 /* 3175 * The TD size is the number of bytes remaining in the TD (including this TRB), 3176 * right shifted by 10. 3177 * It must fit in bits 21:17, so it can't be bigger than 31. 3178 */ 3179 static u32 xhci_td_remainder(unsigned int remainder) 3180 { 3181 u32 max = (1 << (21 - 17 + 1)) - 1; 3182 3183 if ((remainder >> 10) >= max) 3184 return max << 17; 3185 else 3186 return (remainder >> 10) << 17; 3187 } 3188 3189 /* 3190 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3191 * packets remaining in the TD (*not* including this TRB). 3192 * 3193 * Total TD packet count = total_packet_count = 3194 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3195 * 3196 * Packets transferred up to and including this TRB = packets_transferred = 3197 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3198 * 3199 * TD size = total_packet_count - packets_transferred 3200 * 3201 * It must fit in bits 21:17, so it can't be bigger than 31. 3202 * The last TRB in a TD must have the TD size set to zero. 3203 */ 3204 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3205 unsigned int total_packet_count, struct urb *urb, 3206 unsigned int num_trbs_left) 3207 { 3208 int packets_transferred; 3209 3210 /* One TRB with a zero-length data packet. */ 3211 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3212 return 0; 3213 3214 /* All the TRB queueing functions don't count the current TRB in 3215 * running_total. 3216 */ 3217 packets_transferred = (running_total + trb_buff_len) / 3218 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3219 3220 if ((total_packet_count - packets_transferred) > 31) 3221 return 31 << 17; 3222 return (total_packet_count - packets_transferred) << 17; 3223 } 3224 3225 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3226 struct urb *urb, int slot_id, unsigned int ep_index) 3227 { 3228 struct xhci_ring *ep_ring; 3229 unsigned int num_trbs; 3230 struct urb_priv *urb_priv; 3231 struct xhci_td *td; 3232 struct scatterlist *sg; 3233 int num_sgs; 3234 int trb_buff_len, this_sg_len, running_total; 3235 unsigned int total_packet_count; 3236 bool first_trb; 3237 u64 addr; 3238 bool more_trbs_coming; 3239 3240 struct xhci_generic_trb *start_trb; 3241 int start_cycle; 3242 3243 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3244 if (!ep_ring) 3245 return -EINVAL; 3246 3247 num_trbs = count_sg_trbs_needed(xhci, urb); 3248 num_sgs = urb->num_mapped_sgs; 3249 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3250 usb_endpoint_maxp(&urb->ep->desc)); 3251 3252 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3253 ep_index, urb->stream_id, 3254 num_trbs, urb, 0, mem_flags); 3255 if (trb_buff_len < 0) 3256 return trb_buff_len; 3257 3258 urb_priv = urb->hcpriv; 3259 td = urb_priv->td[0]; 3260 3261 /* 3262 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3263 * until we've finished creating all the other TRBs. The ring's cycle 3264 * state may change as we enqueue the other TRBs, so save it too. 3265 */ 3266 start_trb = &ep_ring->enqueue->generic; 3267 start_cycle = ep_ring->cycle_state; 3268 3269 running_total = 0; 3270 /* 3271 * How much data is in the first TRB? 3272 * 3273 * There are three forces at work for TRB buffer pointers and lengths: 3274 * 1. We don't want to walk off the end of this sg-list entry buffer. 3275 * 2. The transfer length that the driver requested may be smaller than 3276 * the amount of memory allocated for this scatter-gather list. 3277 * 3. TRBs buffers can't cross 64KB boundaries. 3278 */ 3279 sg = urb->sg; 3280 addr = (u64) sg_dma_address(sg); 3281 this_sg_len = sg_dma_len(sg); 3282 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3283 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3284 if (trb_buff_len > urb->transfer_buffer_length) 3285 trb_buff_len = urb->transfer_buffer_length; 3286 3287 first_trb = true; 3288 /* Queue the first TRB, even if it's zero-length */ 3289 do { 3290 u32 field = 0; 3291 u32 length_field = 0; 3292 u32 remainder = 0; 3293 3294 /* Don't change the cycle bit of the first TRB until later */ 3295 if (first_trb) { 3296 first_trb = false; 3297 if (start_cycle == 0) 3298 field |= 0x1; 3299 } else 3300 field |= ep_ring->cycle_state; 3301 3302 /* Chain all the TRBs together; clear the chain bit in the last 3303 * TRB to indicate it's the last TRB in the chain. 3304 */ 3305 if (num_trbs > 1) { 3306 field |= TRB_CHAIN; 3307 } else { 3308 /* FIXME - add check for ZERO_PACKET flag before this */ 3309 td->last_trb = ep_ring->enqueue; 3310 field |= TRB_IOC; 3311 } 3312 3313 /* Only set interrupt on short packet for IN endpoints */ 3314 if (usb_urb_dir_in(urb)) 3315 field |= TRB_ISP; 3316 3317 if (TRB_MAX_BUFF_SIZE - 3318 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3319 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3320 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3321 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3322 (unsigned int) addr + trb_buff_len); 3323 } 3324 3325 /* Set the TRB length, TD size, and interrupter fields. */ 3326 if (xhci->hci_version < 0x100) { 3327 remainder = xhci_td_remainder( 3328 urb->transfer_buffer_length - 3329 running_total); 3330 } else { 3331 remainder = xhci_v1_0_td_remainder(running_total, 3332 trb_buff_len, total_packet_count, urb, 3333 num_trbs - 1); 3334 } 3335 length_field = TRB_LEN(trb_buff_len) | 3336 remainder | 3337 TRB_INTR_TARGET(0); 3338 3339 if (num_trbs > 1) 3340 more_trbs_coming = true; 3341 else 3342 more_trbs_coming = false; 3343 queue_trb(xhci, ep_ring, more_trbs_coming, 3344 lower_32_bits(addr), 3345 upper_32_bits(addr), 3346 length_field, 3347 field | TRB_TYPE(TRB_NORMAL)); 3348 --num_trbs; 3349 running_total += trb_buff_len; 3350 3351 /* Calculate length for next transfer -- 3352 * Are we done queueing all the TRBs for this sg entry? 3353 */ 3354 this_sg_len -= trb_buff_len; 3355 if (this_sg_len == 0) { 3356 --num_sgs; 3357 if (num_sgs == 0) 3358 break; 3359 sg = sg_next(sg); 3360 addr = (u64) sg_dma_address(sg); 3361 this_sg_len = sg_dma_len(sg); 3362 } else { 3363 addr += trb_buff_len; 3364 } 3365 3366 trb_buff_len = TRB_MAX_BUFF_SIZE - 3367 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3368 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3369 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3370 trb_buff_len = 3371 urb->transfer_buffer_length - running_total; 3372 } while (running_total < urb->transfer_buffer_length); 3373 3374 check_trb_math(urb, num_trbs, running_total); 3375 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3376 start_cycle, start_trb); 3377 return 0; 3378 } 3379 3380 /* This is very similar to what ehci-q.c qtd_fill() does */ 3381 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3382 struct urb *urb, int slot_id, unsigned int ep_index) 3383 { 3384 struct xhci_ring *ep_ring; 3385 struct urb_priv *urb_priv; 3386 struct xhci_td *td; 3387 int num_trbs; 3388 struct xhci_generic_trb *start_trb; 3389 bool first_trb; 3390 bool more_trbs_coming; 3391 int start_cycle; 3392 u32 field, length_field; 3393 3394 int running_total, trb_buff_len, ret; 3395 unsigned int total_packet_count; 3396 u64 addr; 3397 3398 if (urb->num_sgs) 3399 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3400 3401 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3402 if (!ep_ring) 3403 return -EINVAL; 3404 3405 num_trbs = 0; 3406 /* How much data is (potentially) left before the 64KB boundary? */ 3407 running_total = TRB_MAX_BUFF_SIZE - 3408 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3409 running_total &= TRB_MAX_BUFF_SIZE - 1; 3410 3411 /* If there's some data on this 64KB chunk, or we have to send a 3412 * zero-length transfer, we need at least one TRB 3413 */ 3414 if (running_total != 0 || urb->transfer_buffer_length == 0) 3415 num_trbs++; 3416 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3417 while (running_total < urb->transfer_buffer_length) { 3418 num_trbs++; 3419 running_total += TRB_MAX_BUFF_SIZE; 3420 } 3421 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3422 3423 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3424 ep_index, urb->stream_id, 3425 num_trbs, urb, 0, mem_flags); 3426 if (ret < 0) 3427 return ret; 3428 3429 urb_priv = urb->hcpriv; 3430 td = urb_priv->td[0]; 3431 3432 /* 3433 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3434 * until we've finished creating all the other TRBs. The ring's cycle 3435 * state may change as we enqueue the other TRBs, so save it too. 3436 */ 3437 start_trb = &ep_ring->enqueue->generic; 3438 start_cycle = ep_ring->cycle_state; 3439 3440 running_total = 0; 3441 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3442 usb_endpoint_maxp(&urb->ep->desc)); 3443 /* How much data is in the first TRB? */ 3444 addr = (u64) urb->transfer_dma; 3445 trb_buff_len = TRB_MAX_BUFF_SIZE - 3446 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3447 if (trb_buff_len > urb->transfer_buffer_length) 3448 trb_buff_len = urb->transfer_buffer_length; 3449 3450 first_trb = true; 3451 3452 /* Queue the first TRB, even if it's zero-length */ 3453 do { 3454 u32 remainder = 0; 3455 field = 0; 3456 3457 /* Don't change the cycle bit of the first TRB until later */ 3458 if (first_trb) { 3459 first_trb = false; 3460 if (start_cycle == 0) 3461 field |= 0x1; 3462 } else 3463 field |= ep_ring->cycle_state; 3464 3465 /* Chain all the TRBs together; clear the chain bit in the last 3466 * TRB to indicate it's the last TRB in the chain. 3467 */ 3468 if (num_trbs > 1) { 3469 field |= TRB_CHAIN; 3470 } else { 3471 /* FIXME - add check for ZERO_PACKET flag before this */ 3472 td->last_trb = ep_ring->enqueue; 3473 field |= TRB_IOC; 3474 } 3475 3476 /* Only set interrupt on short packet for IN endpoints */ 3477 if (usb_urb_dir_in(urb)) 3478 field |= TRB_ISP; 3479 3480 /* Set the TRB length, TD size, and interrupter fields. */ 3481 if (xhci->hci_version < 0x100) { 3482 remainder = xhci_td_remainder( 3483 urb->transfer_buffer_length - 3484 running_total); 3485 } else { 3486 remainder = xhci_v1_0_td_remainder(running_total, 3487 trb_buff_len, total_packet_count, urb, 3488 num_trbs - 1); 3489 } 3490 length_field = TRB_LEN(trb_buff_len) | 3491 remainder | 3492 TRB_INTR_TARGET(0); 3493 3494 if (num_trbs > 1) 3495 more_trbs_coming = true; 3496 else 3497 more_trbs_coming = false; 3498 queue_trb(xhci, ep_ring, more_trbs_coming, 3499 lower_32_bits(addr), 3500 upper_32_bits(addr), 3501 length_field, 3502 field | TRB_TYPE(TRB_NORMAL)); 3503 --num_trbs; 3504 running_total += trb_buff_len; 3505 3506 /* Calculate length for next transfer */ 3507 addr += trb_buff_len; 3508 trb_buff_len = urb->transfer_buffer_length - running_total; 3509 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3510 trb_buff_len = TRB_MAX_BUFF_SIZE; 3511 } while (running_total < urb->transfer_buffer_length); 3512 3513 check_trb_math(urb, num_trbs, running_total); 3514 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3515 start_cycle, start_trb); 3516 return 0; 3517 } 3518 3519 /* Caller must have locked xhci->lock */ 3520 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3521 struct urb *urb, int slot_id, unsigned int ep_index) 3522 { 3523 struct xhci_ring *ep_ring; 3524 int num_trbs; 3525 int ret; 3526 struct usb_ctrlrequest *setup; 3527 struct xhci_generic_trb *start_trb; 3528 int start_cycle; 3529 u32 field, length_field; 3530 struct urb_priv *urb_priv; 3531 struct xhci_td *td; 3532 3533 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3534 if (!ep_ring) 3535 return -EINVAL; 3536 3537 /* 3538 * Need to copy setup packet into setup TRB, so we can't use the setup 3539 * DMA address. 3540 */ 3541 if (!urb->setup_packet) 3542 return -EINVAL; 3543 3544 /* 1 TRB for setup, 1 for status */ 3545 num_trbs = 2; 3546 /* 3547 * Don't need to check if we need additional event data and normal TRBs, 3548 * since data in control transfers will never get bigger than 16MB 3549 * XXX: can we get a buffer that crosses 64KB boundaries? 3550 */ 3551 if (urb->transfer_buffer_length > 0) 3552 num_trbs++; 3553 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3554 ep_index, urb->stream_id, 3555 num_trbs, urb, 0, mem_flags); 3556 if (ret < 0) 3557 return ret; 3558 3559 urb_priv = urb->hcpriv; 3560 td = urb_priv->td[0]; 3561 3562 /* 3563 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3564 * until we've finished creating all the other TRBs. The ring's cycle 3565 * state may change as we enqueue the other TRBs, so save it too. 3566 */ 3567 start_trb = &ep_ring->enqueue->generic; 3568 start_cycle = ep_ring->cycle_state; 3569 3570 /* Queue setup TRB - see section 6.4.1.2.1 */ 3571 /* FIXME better way to translate setup_packet into two u32 fields? */ 3572 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3573 field = 0; 3574 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3575 if (start_cycle == 0) 3576 field |= 0x1; 3577 3578 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3579 if (xhci->hci_version == 0x100) { 3580 if (urb->transfer_buffer_length > 0) { 3581 if (setup->bRequestType & USB_DIR_IN) 3582 field |= TRB_TX_TYPE(TRB_DATA_IN); 3583 else 3584 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3585 } 3586 } 3587 3588 queue_trb(xhci, ep_ring, true, 3589 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3590 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3591 TRB_LEN(8) | TRB_INTR_TARGET(0), 3592 /* Immediate data in pointer */ 3593 field); 3594 3595 /* If there's data, queue data TRBs */ 3596 /* Only set interrupt on short packet for IN endpoints */ 3597 if (usb_urb_dir_in(urb)) 3598 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3599 else 3600 field = TRB_TYPE(TRB_DATA); 3601 3602 length_field = TRB_LEN(urb->transfer_buffer_length) | 3603 xhci_td_remainder(urb->transfer_buffer_length) | 3604 TRB_INTR_TARGET(0); 3605 if (urb->transfer_buffer_length > 0) { 3606 if (setup->bRequestType & USB_DIR_IN) 3607 field |= TRB_DIR_IN; 3608 queue_trb(xhci, ep_ring, true, 3609 lower_32_bits(urb->transfer_dma), 3610 upper_32_bits(urb->transfer_dma), 3611 length_field, 3612 field | ep_ring->cycle_state); 3613 } 3614 3615 /* Save the DMA address of the last TRB in the TD */ 3616 td->last_trb = ep_ring->enqueue; 3617 3618 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3619 /* If the device sent data, the status stage is an OUT transfer */ 3620 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3621 field = 0; 3622 else 3623 field = TRB_DIR_IN; 3624 queue_trb(xhci, ep_ring, false, 3625 0, 3626 0, 3627 TRB_INTR_TARGET(0), 3628 /* Event on completion */ 3629 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3630 3631 giveback_first_trb(xhci, slot_id, ep_index, 0, 3632 start_cycle, start_trb); 3633 return 0; 3634 } 3635 3636 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3637 struct urb *urb, int i) 3638 { 3639 int num_trbs = 0; 3640 u64 addr, td_len; 3641 3642 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3643 td_len = urb->iso_frame_desc[i].length; 3644 3645 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3646 TRB_MAX_BUFF_SIZE); 3647 if (num_trbs == 0) 3648 num_trbs++; 3649 3650 return num_trbs; 3651 } 3652 3653 /* 3654 * The transfer burst count field of the isochronous TRB defines the number of 3655 * bursts that are required to move all packets in this TD. Only SuperSpeed 3656 * devices can burst up to bMaxBurst number of packets per service interval. 3657 * This field is zero based, meaning a value of zero in the field means one 3658 * burst. Basically, for everything but SuperSpeed devices, this field will be 3659 * zero. Only xHCI 1.0 host controllers support this field. 3660 */ 3661 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3662 struct usb_device *udev, 3663 struct urb *urb, unsigned int total_packet_count) 3664 { 3665 unsigned int max_burst; 3666 3667 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3668 return 0; 3669 3670 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3671 return roundup(total_packet_count, max_burst + 1) - 1; 3672 } 3673 3674 /* 3675 * Returns the number of packets in the last "burst" of packets. This field is 3676 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3677 * the last burst packet count is equal to the total number of packets in the 3678 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3679 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3680 * contain 1 to (bMaxBurst + 1) packets. 3681 */ 3682 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3683 struct usb_device *udev, 3684 struct urb *urb, unsigned int total_packet_count) 3685 { 3686 unsigned int max_burst; 3687 unsigned int residue; 3688 3689 if (xhci->hci_version < 0x100) 3690 return 0; 3691 3692 switch (udev->speed) { 3693 case USB_SPEED_SUPER: 3694 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3695 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3696 residue = total_packet_count % (max_burst + 1); 3697 /* If residue is zero, the last burst contains (max_burst + 1) 3698 * number of packets, but the TLBPC field is zero-based. 3699 */ 3700 if (residue == 0) 3701 return max_burst; 3702 return residue - 1; 3703 default: 3704 if (total_packet_count == 0) 3705 return 0; 3706 return total_packet_count - 1; 3707 } 3708 } 3709 3710 /* This is for isoc transfer */ 3711 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3712 struct urb *urb, int slot_id, unsigned int ep_index) 3713 { 3714 struct xhci_ring *ep_ring; 3715 struct urb_priv *urb_priv; 3716 struct xhci_td *td; 3717 int num_tds, trbs_per_td; 3718 struct xhci_generic_trb *start_trb; 3719 bool first_trb; 3720 int start_cycle; 3721 u32 field, length_field; 3722 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3723 u64 start_addr, addr; 3724 int i, j; 3725 bool more_trbs_coming; 3726 3727 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3728 3729 num_tds = urb->number_of_packets; 3730 if (num_tds < 1) { 3731 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3732 return -EINVAL; 3733 } 3734 3735 start_addr = (u64) urb->transfer_dma; 3736 start_trb = &ep_ring->enqueue->generic; 3737 start_cycle = ep_ring->cycle_state; 3738 3739 urb_priv = urb->hcpriv; 3740 /* Queue the first TRB, even if it's zero-length */ 3741 for (i = 0; i < num_tds; i++) { 3742 unsigned int total_packet_count; 3743 unsigned int burst_count; 3744 unsigned int residue; 3745 3746 first_trb = true; 3747 running_total = 0; 3748 addr = start_addr + urb->iso_frame_desc[i].offset; 3749 td_len = urb->iso_frame_desc[i].length; 3750 td_remain_len = td_len; 3751 total_packet_count = DIV_ROUND_UP(td_len, 3752 GET_MAX_PACKET( 3753 usb_endpoint_maxp(&urb->ep->desc))); 3754 /* A zero-length transfer still involves at least one packet. */ 3755 if (total_packet_count == 0) 3756 total_packet_count++; 3757 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3758 total_packet_count); 3759 residue = xhci_get_last_burst_packet_count(xhci, 3760 urb->dev, urb, total_packet_count); 3761 3762 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3763 3764 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3765 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3766 if (ret < 0) { 3767 if (i == 0) 3768 return ret; 3769 goto cleanup; 3770 } 3771 3772 td = urb_priv->td[i]; 3773 for (j = 0; j < trbs_per_td; j++) { 3774 u32 remainder = 0; 3775 field = 0; 3776 3777 if (first_trb) { 3778 field = TRB_TBC(burst_count) | 3779 TRB_TLBPC(residue); 3780 /* Queue the isoc TRB */ 3781 field |= TRB_TYPE(TRB_ISOC); 3782 /* Assume URB_ISO_ASAP is set */ 3783 field |= TRB_SIA; 3784 if (i == 0) { 3785 if (start_cycle == 0) 3786 field |= 0x1; 3787 } else 3788 field |= ep_ring->cycle_state; 3789 first_trb = false; 3790 } else { 3791 /* Queue other normal TRBs */ 3792 field |= TRB_TYPE(TRB_NORMAL); 3793 field |= ep_ring->cycle_state; 3794 } 3795 3796 /* Only set interrupt on short packet for IN EPs */ 3797 if (usb_urb_dir_in(urb)) 3798 field |= TRB_ISP; 3799 3800 /* Chain all the TRBs together; clear the chain bit in 3801 * the last TRB to indicate it's the last TRB in the 3802 * chain. 3803 */ 3804 if (j < trbs_per_td - 1) { 3805 field |= TRB_CHAIN; 3806 more_trbs_coming = true; 3807 } else { 3808 td->last_trb = ep_ring->enqueue; 3809 field |= TRB_IOC; 3810 if (xhci->hci_version == 0x100 && 3811 !(xhci->quirks & 3812 XHCI_AVOID_BEI)) { 3813 /* Set BEI bit except for the last td */ 3814 if (i < num_tds - 1) 3815 field |= TRB_BEI; 3816 } 3817 more_trbs_coming = false; 3818 } 3819 3820 /* Calculate TRB length */ 3821 trb_buff_len = TRB_MAX_BUFF_SIZE - 3822 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3823 if (trb_buff_len > td_remain_len) 3824 trb_buff_len = td_remain_len; 3825 3826 /* Set the TRB length, TD size, & interrupter fields. */ 3827 if (xhci->hci_version < 0x100) { 3828 remainder = xhci_td_remainder( 3829 td_len - running_total); 3830 } else { 3831 remainder = xhci_v1_0_td_remainder( 3832 running_total, trb_buff_len, 3833 total_packet_count, urb, 3834 (trbs_per_td - j - 1)); 3835 } 3836 length_field = TRB_LEN(trb_buff_len) | 3837 remainder | 3838 TRB_INTR_TARGET(0); 3839 3840 queue_trb(xhci, ep_ring, more_trbs_coming, 3841 lower_32_bits(addr), 3842 upper_32_bits(addr), 3843 length_field, 3844 field); 3845 running_total += trb_buff_len; 3846 3847 addr += trb_buff_len; 3848 td_remain_len -= trb_buff_len; 3849 } 3850 3851 /* Check TD length */ 3852 if (running_total != td_len) { 3853 xhci_err(xhci, "ISOC TD length unmatch\n"); 3854 ret = -EINVAL; 3855 goto cleanup; 3856 } 3857 } 3858 3859 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3860 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3861 usb_amd_quirk_pll_disable(); 3862 } 3863 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3864 3865 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3866 start_cycle, start_trb); 3867 return 0; 3868 cleanup: 3869 /* Clean up a partially enqueued isoc transfer. */ 3870 3871 for (i--; i >= 0; i--) 3872 list_del_init(&urb_priv->td[i]->td_list); 3873 3874 /* Use the first TD as a temporary variable to turn the TDs we've queued 3875 * into No-ops with a software-owned cycle bit. That way the hardware 3876 * won't accidentally start executing bogus TDs when we partially 3877 * overwrite them. td->first_trb and td->start_seg are already set. 3878 */ 3879 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3880 /* Every TRB except the first & last will have its cycle bit flipped. */ 3881 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3882 3883 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3884 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3885 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3886 ep_ring->cycle_state = start_cycle; 3887 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3888 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3889 return ret; 3890 } 3891 3892 /* 3893 * Check transfer ring to guarantee there is enough room for the urb. 3894 * Update ISO URB start_frame and interval. 3895 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3896 * update the urb->start_frame by now. 3897 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3898 */ 3899 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3900 struct urb *urb, int slot_id, unsigned int ep_index) 3901 { 3902 struct xhci_virt_device *xdev; 3903 struct xhci_ring *ep_ring; 3904 struct xhci_ep_ctx *ep_ctx; 3905 int start_frame; 3906 int xhci_interval; 3907 int ep_interval; 3908 int num_tds, num_trbs, i; 3909 int ret; 3910 3911 xdev = xhci->devs[slot_id]; 3912 ep_ring = xdev->eps[ep_index].ring; 3913 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3914 3915 num_trbs = 0; 3916 num_tds = urb->number_of_packets; 3917 for (i = 0; i < num_tds; i++) 3918 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3919 3920 /* Check the ring to guarantee there is enough room for the whole urb. 3921 * Do not insert any td of the urb to the ring if the check failed. 3922 */ 3923 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3924 num_trbs, mem_flags); 3925 if (ret) 3926 return ret; 3927 3928 start_frame = readl(&xhci->run_regs->microframe_index); 3929 start_frame &= 0x3fff; 3930 3931 urb->start_frame = start_frame; 3932 if (urb->dev->speed == USB_SPEED_LOW || 3933 urb->dev->speed == USB_SPEED_FULL) 3934 urb->start_frame >>= 3; 3935 3936 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3937 ep_interval = urb->interval; 3938 /* Convert to microframes */ 3939 if (urb->dev->speed == USB_SPEED_LOW || 3940 urb->dev->speed == USB_SPEED_FULL) 3941 ep_interval *= 8; 3942 /* FIXME change this to a warning and a suggestion to use the new API 3943 * to set the polling interval (once the API is added). 3944 */ 3945 if (xhci_interval != ep_interval) { 3946 dev_dbg_ratelimited(&urb->dev->dev, 3947 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3948 ep_interval, ep_interval == 1 ? "" : "s", 3949 xhci_interval, xhci_interval == 1 ? "" : "s"); 3950 urb->interval = xhci_interval; 3951 /* Convert back to frames for LS/FS devices */ 3952 if (urb->dev->speed == USB_SPEED_LOW || 3953 urb->dev->speed == USB_SPEED_FULL) 3954 urb->interval /= 8; 3955 } 3956 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3957 3958 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3959 } 3960 3961 /**** Command Ring Operations ****/ 3962 3963 /* Generic function for queueing a command TRB on the command ring. 3964 * Check to make sure there's room on the command ring for one command TRB. 3965 * Also check that there's room reserved for commands that must not fail. 3966 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3967 * then only check for the number of reserved spots. 3968 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3969 * because the command event handler may want to resubmit a failed command. 3970 */ 3971 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3972 u32 field3, u32 field4, bool command_must_succeed) 3973 { 3974 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3975 int ret; 3976 3977 if (!command_must_succeed) 3978 reserved_trbs++; 3979 3980 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3981 reserved_trbs, GFP_ATOMIC); 3982 if (ret < 0) { 3983 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3984 if (command_must_succeed) 3985 xhci_err(xhci, "ERR: Reserved TRB counting for " 3986 "unfailable commands failed.\n"); 3987 return ret; 3988 } 3989 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3990 field4 | xhci->cmd_ring->cycle_state); 3991 return 0; 3992 } 3993 3994 /* Queue a slot enable or disable request on the command ring */ 3995 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3996 { 3997 return queue_command(xhci, 0, 0, 0, 3998 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3999 } 4000 4001 /* Queue an address device command TRB */ 4002 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4003 u32 slot_id, enum xhci_setup_dev setup) 4004 { 4005 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4006 upper_32_bits(in_ctx_ptr), 0, 4007 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4008 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4009 } 4010 4011 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 4012 u32 field1, u32 field2, u32 field3, u32 field4) 4013 { 4014 return queue_command(xhci, field1, field2, field3, field4, false); 4015 } 4016 4017 /* Queue a reset device command TRB */ 4018 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 4019 { 4020 return queue_command(xhci, 0, 0, 0, 4021 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4022 false); 4023 } 4024 4025 /* Queue a configure endpoint command TRB */ 4026 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4027 u32 slot_id, bool command_must_succeed) 4028 { 4029 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4030 upper_32_bits(in_ctx_ptr), 0, 4031 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4032 command_must_succeed); 4033 } 4034 4035 /* Queue an evaluate context command TRB */ 4036 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4037 u32 slot_id, bool command_must_succeed) 4038 { 4039 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4040 upper_32_bits(in_ctx_ptr), 0, 4041 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4042 command_must_succeed); 4043 } 4044 4045 /* 4046 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4047 * activity on an endpoint that is about to be suspended. 4048 */ 4049 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 4050 unsigned int ep_index, int suspend) 4051 { 4052 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4053 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4054 u32 type = TRB_TYPE(TRB_STOP_RING); 4055 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4056 4057 return queue_command(xhci, 0, 0, 0, 4058 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4059 } 4060 4061 /* Set Transfer Ring Dequeue Pointer command. 4062 * This should not be used for endpoints that have streams enabled. 4063 */ 4064 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 4065 unsigned int ep_index, unsigned int stream_id, 4066 struct xhci_segment *deq_seg, 4067 union xhci_trb *deq_ptr, u32 cycle_state) 4068 { 4069 dma_addr_t addr; 4070 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4071 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4072 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4073 u32 type = TRB_TYPE(TRB_SET_DEQ); 4074 struct xhci_virt_ep *ep; 4075 4076 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4077 if (addr == 0) { 4078 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4079 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4080 deq_seg, deq_ptr); 4081 return 0; 4082 } 4083 ep = &xhci->devs[slot_id]->eps[ep_index]; 4084 if ((ep->ep_state & SET_DEQ_PENDING)) { 4085 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4086 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4087 return 0; 4088 } 4089 ep->queued_deq_seg = deq_seg; 4090 ep->queued_deq_ptr = deq_ptr; 4091 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 4092 upper_32_bits(addr), trb_stream_id, 4093 trb_slot_id | trb_ep_index | type, false); 4094 } 4095 4096 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4097 unsigned int ep_index) 4098 { 4099 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4100 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4101 u32 type = TRB_TYPE(TRB_RESET_EP); 4102 4103 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4104 false); 4105 } 4106