1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include <linux/dma-mapping.h> 70 #include "xhci.h" 71 #include "xhci-trace.h" 72 #include "xhci-mtk.h" 73 74 /* 75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 76 * address of the TRB. 77 */ 78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 79 union xhci_trb *trb) 80 { 81 unsigned long segment_offset; 82 83 if (!seg || !trb || trb < seg->trbs) 84 return 0; 85 /* offset in TRBs */ 86 segment_offset = trb - seg->trbs; 87 if (segment_offset >= TRBS_PER_SEGMENT) 88 return 0; 89 return seg->dma + (segment_offset * sizeof(*trb)); 90 } 91 92 static bool trb_is_link(union xhci_trb *trb) 93 { 94 return TRB_TYPE_LINK_LE32(trb->link.control); 95 } 96 97 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 100 } 101 102 static bool last_trb_on_ring(struct xhci_ring *ring, 103 struct xhci_segment *seg, union xhci_trb *trb) 104 { 105 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 106 } 107 108 static bool link_trb_toggles_cycle(union xhci_trb *trb) 109 { 110 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 111 } 112 113 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 114 * TRB is in a new segment. This does not skip over link TRBs, and it does not 115 * effect the ring dequeue or enqueue pointers. 116 */ 117 static void next_trb(struct xhci_hcd *xhci, 118 struct xhci_ring *ring, 119 struct xhci_segment **seg, 120 union xhci_trb **trb) 121 { 122 if (trb_is_link(*trb)) { 123 *seg = (*seg)->next; 124 *trb = ((*seg)->trbs); 125 } else { 126 (*trb)++; 127 } 128 } 129 130 /* 131 * See Cycle bit rules. SW is the consumer for the event ring only. 132 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 133 */ 134 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 135 { 136 ring->deq_updates++; 137 138 /* event ring doesn't have link trbs, check for last trb */ 139 if (ring->type == TYPE_EVENT) { 140 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 141 ring->dequeue++; 142 return; 143 } 144 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 145 ring->cycle_state ^= 1; 146 ring->deq_seg = ring->deq_seg->next; 147 ring->dequeue = ring->deq_seg->trbs; 148 return; 149 } 150 151 /* All other rings have link trbs */ 152 if (!trb_is_link(ring->dequeue)) { 153 ring->dequeue++; 154 ring->num_trbs_free++; 155 } 156 while (trb_is_link(ring->dequeue)) { 157 ring->deq_seg = ring->deq_seg->next; 158 ring->dequeue = ring->deq_seg->trbs; 159 } 160 return; 161 } 162 163 /* 164 * See Cycle bit rules. SW is the consumer for the event ring only. 165 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 166 * 167 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 168 * chain bit is set), then set the chain bit in all the following link TRBs. 169 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 170 * have their chain bit cleared (so that each Link TRB is a separate TD). 171 * 172 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 173 * set, but other sections talk about dealing with the chain bit set. This was 174 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 175 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 176 * 177 * @more_trbs_coming: Will you enqueue more TRBs before calling 178 * prepare_transfer()? 179 */ 180 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 181 bool more_trbs_coming) 182 { 183 u32 chain; 184 union xhci_trb *next; 185 186 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 187 /* If this is not event ring, there is one less usable TRB */ 188 if (!trb_is_link(ring->enqueue)) 189 ring->num_trbs_free--; 190 next = ++(ring->enqueue); 191 192 ring->enq_updates++; 193 /* Update the dequeue pointer further if that was a link TRB */ 194 while (trb_is_link(next)) { 195 196 /* 197 * If the caller doesn't plan on enqueueing more TDs before 198 * ringing the doorbell, then we don't want to give the link TRB 199 * to the hardware just yet. We'll give the link TRB back in 200 * prepare_ring() just before we enqueue the TD at the top of 201 * the ring. 202 */ 203 if (!chain && !more_trbs_coming) 204 break; 205 206 /* If we're not dealing with 0.95 hardware or isoc rings on 207 * AMD 0.96 host, carry over the chain bit of the previous TRB 208 * (which may mean the chain bit is cleared). 209 */ 210 if (!(ring->type == TYPE_ISOC && 211 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 212 !xhci_link_trb_quirk(xhci)) { 213 next->link.control &= cpu_to_le32(~TRB_CHAIN); 214 next->link.control |= cpu_to_le32(chain); 215 } 216 /* Give this link TRB to the hardware */ 217 wmb(); 218 next->link.control ^= cpu_to_le32(TRB_CYCLE); 219 220 /* Toggle the cycle bit after the last ring segment. */ 221 if (link_trb_toggles_cycle(next)) 222 ring->cycle_state ^= 1; 223 224 ring->enq_seg = ring->enq_seg->next; 225 ring->enqueue = ring->enq_seg->trbs; 226 next = ring->enqueue; 227 } 228 } 229 230 /* 231 * Check to see if there's room to enqueue num_trbs on the ring and make sure 232 * enqueue pointer will not advance into dequeue segment. See rules above. 233 */ 234 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 235 unsigned int num_trbs) 236 { 237 int num_trbs_in_deq_seg; 238 239 if (ring->num_trbs_free < num_trbs) 240 return 0; 241 242 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 243 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 244 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 245 return 0; 246 } 247 248 return 1; 249 } 250 251 /* Ring the host controller doorbell after placing a command on the ring */ 252 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 253 { 254 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 255 return; 256 257 xhci_dbg(xhci, "// Ding dong!\n"); 258 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 259 /* Flush PCI posted writes */ 260 readl(&xhci->dba->doorbell[0]); 261 } 262 263 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 264 { 265 u64 temp_64; 266 int ret; 267 268 xhci_dbg(xhci, "Abort command ring\n"); 269 270 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 271 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 272 273 /* 274 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 275 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 276 * but the completion event in never sent. Use the cmd timeout timer to 277 * handle those cases. Use twice the time to cover the bit polling retry 278 */ 279 mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT)); 280 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 281 &xhci->op_regs->cmd_ring); 282 283 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 284 * time the completion od all xHCI commands, including 285 * the Command Abort operation. If software doesn't see 286 * CRR negated in a timely manner (e.g. longer than 5 287 * seconds), then it should assume that the there are 288 * larger problems with the xHC and assert HCRST. 289 */ 290 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 291 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 292 if (ret < 0) { 293 /* we are about to kill xhci, give it one more chance */ 294 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 295 &xhci->op_regs->cmd_ring); 296 udelay(1000); 297 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 298 CMD_RING_RUNNING, 0, 3 * 1000 * 1000); 299 if (ret == 0) 300 return 0; 301 302 xhci_err(xhci, "Stopped the command ring failed, " 303 "maybe the host is dead\n"); 304 del_timer(&xhci->cmd_timer); 305 xhci->xhc_state |= XHCI_STATE_DYING; 306 xhci_quiesce(xhci); 307 xhci_halt(xhci); 308 return -ESHUTDOWN; 309 } 310 311 return 0; 312 } 313 314 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 315 unsigned int slot_id, 316 unsigned int ep_index, 317 unsigned int stream_id) 318 { 319 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 320 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 321 unsigned int ep_state = ep->ep_state; 322 323 /* Don't ring the doorbell for this endpoint if there are pending 324 * cancellations because we don't want to interrupt processing. 325 * We don't want to restart any stream rings if there's a set dequeue 326 * pointer command pending because the device can choose to start any 327 * stream once the endpoint is on the HW schedule. 328 */ 329 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 330 (ep_state & EP_HALTED)) 331 return; 332 writel(DB_VALUE(ep_index, stream_id), db_addr); 333 /* The CPU has better things to do at this point than wait for a 334 * write-posting flush. It'll get there soon enough. 335 */ 336 } 337 338 /* Ring the doorbell for any rings with pending URBs */ 339 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 340 unsigned int slot_id, 341 unsigned int ep_index) 342 { 343 unsigned int stream_id; 344 struct xhci_virt_ep *ep; 345 346 ep = &xhci->devs[slot_id]->eps[ep_index]; 347 348 /* A ring has pending URBs if its TD list is not empty */ 349 if (!(ep->ep_state & EP_HAS_STREAMS)) { 350 if (ep->ring && !(list_empty(&ep->ring->td_list))) 351 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 352 return; 353 } 354 355 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 356 stream_id++) { 357 struct xhci_stream_info *stream_info = ep->stream_info; 358 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 359 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 360 stream_id); 361 } 362 } 363 364 /* Get the right ring for the given slot_id, ep_index and stream_id. 365 * If the endpoint supports streams, boundary check the URB's stream ID. 366 * If the endpoint doesn't support streams, return the singular endpoint ring. 367 */ 368 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 369 unsigned int slot_id, unsigned int ep_index, 370 unsigned int stream_id) 371 { 372 struct xhci_virt_ep *ep; 373 374 ep = &xhci->devs[slot_id]->eps[ep_index]; 375 /* Common case: no streams */ 376 if (!(ep->ep_state & EP_HAS_STREAMS)) 377 return ep->ring; 378 379 if (stream_id == 0) { 380 xhci_warn(xhci, 381 "WARN: Slot ID %u, ep index %u has streams, " 382 "but URB has no stream ID.\n", 383 slot_id, ep_index); 384 return NULL; 385 } 386 387 if (stream_id < ep->stream_info->num_streams) 388 return ep->stream_info->stream_rings[stream_id]; 389 390 xhci_warn(xhci, 391 "WARN: Slot ID %u, ep index %u has " 392 "stream IDs 1 to %u allocated, " 393 "but stream ID %u is requested.\n", 394 slot_id, ep_index, 395 ep->stream_info->num_streams - 1, 396 stream_id); 397 return NULL; 398 } 399 400 /* 401 * Move the xHC's endpoint ring dequeue pointer past cur_td. 402 * Record the new state of the xHC's endpoint ring dequeue segment, 403 * dequeue pointer, and new consumer cycle state in state. 404 * Update our internal representation of the ring's dequeue pointer. 405 * 406 * We do this in three jumps: 407 * - First we update our new ring state to be the same as when the xHC stopped. 408 * - Then we traverse the ring to find the segment that contains 409 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 410 * any link TRBs with the toggle cycle bit set. 411 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 412 * if we've moved it past a link TRB with the toggle cycle bit set. 413 * 414 * Some of the uses of xhci_generic_trb are grotty, but if they're done 415 * with correct __le32 accesses they should work fine. Only users of this are 416 * in here. 417 */ 418 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 419 unsigned int slot_id, unsigned int ep_index, 420 unsigned int stream_id, struct xhci_td *cur_td, 421 struct xhci_dequeue_state *state) 422 { 423 struct xhci_virt_device *dev = xhci->devs[slot_id]; 424 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 425 struct xhci_ring *ep_ring; 426 struct xhci_segment *new_seg; 427 union xhci_trb *new_deq; 428 dma_addr_t addr; 429 u64 hw_dequeue; 430 bool cycle_found = false; 431 bool td_last_trb_found = false; 432 433 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 434 ep_index, stream_id); 435 if (!ep_ring) { 436 xhci_warn(xhci, "WARN can't find new dequeue state " 437 "for invalid stream ID %u.\n", 438 stream_id); 439 return; 440 } 441 442 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 443 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 444 "Finding endpoint context"); 445 /* 4.6.9 the css flag is written to the stream context for streams */ 446 if (ep->ep_state & EP_HAS_STREAMS) { 447 struct xhci_stream_ctx *ctx = 448 &ep->stream_info->stream_ctx_array[stream_id]; 449 hw_dequeue = le64_to_cpu(ctx->stream_ring); 450 } else { 451 struct xhci_ep_ctx *ep_ctx 452 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 453 hw_dequeue = le64_to_cpu(ep_ctx->deq); 454 } 455 456 new_seg = ep_ring->deq_seg; 457 new_deq = ep_ring->dequeue; 458 state->new_cycle_state = hw_dequeue & 0x1; 459 460 /* 461 * We want to find the pointer, segment and cycle state of the new trb 462 * (the one after current TD's last_trb). We know the cycle state at 463 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 464 * found. 465 */ 466 do { 467 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 468 == (dma_addr_t)(hw_dequeue & ~0xf)) { 469 cycle_found = true; 470 if (td_last_trb_found) 471 break; 472 } 473 if (new_deq == cur_td->last_trb) 474 td_last_trb_found = true; 475 476 if (cycle_found && 477 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 478 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 479 state->new_cycle_state ^= 0x1; 480 481 next_trb(xhci, ep_ring, &new_seg, &new_deq); 482 483 /* Search wrapped around, bail out */ 484 if (new_deq == ep->ring->dequeue) { 485 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 486 state->new_deq_seg = NULL; 487 state->new_deq_ptr = NULL; 488 return; 489 } 490 491 } while (!cycle_found || !td_last_trb_found); 492 493 state->new_deq_seg = new_seg; 494 state->new_deq_ptr = new_deq; 495 496 /* Don't update the ring cycle state for the producer (us). */ 497 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 498 "Cycle state = 0x%x", state->new_cycle_state); 499 500 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 501 "New dequeue segment = %p (virtual)", 502 state->new_deq_seg); 503 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 504 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 505 "New dequeue pointer = 0x%llx (DMA)", 506 (unsigned long long) addr); 507 } 508 509 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 510 * (The last TRB actually points to the ring enqueue pointer, which is not part 511 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 512 */ 513 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 514 struct xhci_td *cur_td, bool flip_cycle) 515 { 516 struct xhci_segment *cur_seg; 517 union xhci_trb *cur_trb; 518 519 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 520 true; 521 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 522 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 523 /* Unchain any chained Link TRBs, but 524 * leave the pointers intact. 525 */ 526 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 527 /* Flip the cycle bit (link TRBs can't be the first 528 * or last TRB). 529 */ 530 if (flip_cycle) 531 cur_trb->generic.field[3] ^= 532 cpu_to_le32(TRB_CYCLE); 533 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 534 "Cancel (unchain) link TRB"); 535 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 536 "Address = %p (0x%llx dma); " 537 "in seg %p (0x%llx dma)", 538 cur_trb, 539 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 540 cur_seg, 541 (unsigned long long)cur_seg->dma); 542 } else { 543 cur_trb->generic.field[0] = 0; 544 cur_trb->generic.field[1] = 0; 545 cur_trb->generic.field[2] = 0; 546 /* Preserve only the cycle bit of this TRB */ 547 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 548 /* Flip the cycle bit except on the first or last TRB */ 549 if (flip_cycle && cur_trb != cur_td->first_trb && 550 cur_trb != cur_td->last_trb) 551 cur_trb->generic.field[3] ^= 552 cpu_to_le32(TRB_CYCLE); 553 cur_trb->generic.field[3] |= cpu_to_le32( 554 TRB_TYPE(TRB_TR_NOOP)); 555 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 556 "TRB to noop at offset 0x%llx", 557 (unsigned long long) 558 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 559 } 560 if (cur_trb == cur_td->last_trb) 561 break; 562 } 563 } 564 565 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 566 struct xhci_virt_ep *ep) 567 { 568 ep->ep_state &= ~EP_HALT_PENDING; 569 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 570 * timer is running on another CPU, we don't decrement stop_cmds_pending 571 * (since we didn't successfully stop the watchdog timer). 572 */ 573 if (del_timer(&ep->stop_cmd_timer)) 574 ep->stop_cmds_pending--; 575 } 576 577 /* Must be called with xhci->lock held in interrupt context */ 578 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 579 struct xhci_td *cur_td, int status) 580 { 581 struct usb_hcd *hcd; 582 struct urb *urb; 583 struct urb_priv *urb_priv; 584 585 urb = cur_td->urb; 586 urb_priv = urb->hcpriv; 587 urb_priv->td_cnt++; 588 hcd = bus_to_hcd(urb->dev->bus); 589 590 /* Only giveback urb when this is the last td in urb */ 591 if (urb_priv->td_cnt == urb_priv->length) { 592 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 593 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 594 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 595 if (xhci->quirks & XHCI_AMD_PLL_FIX) 596 usb_amd_quirk_pll_enable(); 597 } 598 } 599 usb_hcd_unlink_urb_from_ep(hcd, urb); 600 601 spin_unlock(&xhci->lock); 602 usb_hcd_giveback_urb(hcd, urb, status); 603 xhci_urb_free_priv(urb_priv); 604 spin_lock(&xhci->lock); 605 } 606 } 607 608 void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, struct xhci_ring *ring, 609 struct xhci_td *td) 610 { 611 struct device *dev = xhci_to_hcd(xhci)->self.controller; 612 struct xhci_segment *seg = td->bounce_seg; 613 struct urb *urb = td->urb; 614 615 if (!seg || !urb) 616 return; 617 618 if (usb_urb_dir_out(urb)) { 619 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 620 DMA_TO_DEVICE); 621 return; 622 } 623 624 /* for in tranfers we need to copy the data from bounce to sg */ 625 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 626 seg->bounce_len, seg->bounce_offs); 627 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 628 DMA_FROM_DEVICE); 629 seg->bounce_len = 0; 630 seg->bounce_offs = 0; 631 } 632 633 /* 634 * When we get a command completion for a Stop Endpoint Command, we need to 635 * unlink any cancelled TDs from the ring. There are two ways to do that: 636 * 637 * 1. If the HW was in the middle of processing the TD that needs to be 638 * cancelled, then we must move the ring's dequeue pointer past the last TRB 639 * in the TD with a Set Dequeue Pointer Command. 640 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 641 * bit cleared) so that the HW will skip over them. 642 */ 643 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 644 union xhci_trb *trb, struct xhci_event_cmd *event) 645 { 646 unsigned int ep_index; 647 struct xhci_ring *ep_ring; 648 struct xhci_virt_ep *ep; 649 struct list_head *entry; 650 struct xhci_td *cur_td = NULL; 651 struct xhci_td *last_unlinked_td; 652 653 struct xhci_dequeue_state deq_state; 654 655 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 656 if (!xhci->devs[slot_id]) 657 xhci_warn(xhci, "Stop endpoint command " 658 "completion for disabled slot %u\n", 659 slot_id); 660 return; 661 } 662 663 memset(&deq_state, 0, sizeof(deq_state)); 664 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 665 ep = &xhci->devs[slot_id]->eps[ep_index]; 666 667 if (list_empty(&ep->cancelled_td_list)) { 668 xhci_stop_watchdog_timer_in_irq(xhci, ep); 669 ep->stopped_td = NULL; 670 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 671 return; 672 } 673 674 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 675 * We have the xHCI lock, so nothing can modify this list until we drop 676 * it. We're also in the event handler, so we can't get re-interrupted 677 * if another Stop Endpoint command completes 678 */ 679 list_for_each(entry, &ep->cancelled_td_list) { 680 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 681 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 682 "Removing canceled TD starting at 0x%llx (dma).", 683 (unsigned long long)xhci_trb_virt_to_dma( 684 cur_td->start_seg, cur_td->first_trb)); 685 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 686 if (!ep_ring) { 687 /* This shouldn't happen unless a driver is mucking 688 * with the stream ID after submission. This will 689 * leave the TD on the hardware ring, and the hardware 690 * will try to execute it, and may access a buffer 691 * that has already been freed. In the best case, the 692 * hardware will execute it, and the event handler will 693 * ignore the completion event for that TD, since it was 694 * removed from the td_list for that endpoint. In 695 * short, don't muck with the stream ID after 696 * submission. 697 */ 698 xhci_warn(xhci, "WARN Cancelled URB %p " 699 "has invalid stream ID %u.\n", 700 cur_td->urb, 701 cur_td->urb->stream_id); 702 goto remove_finished_td; 703 } 704 /* 705 * If we stopped on the TD we need to cancel, then we have to 706 * move the xHC endpoint ring dequeue pointer past this TD. 707 */ 708 if (cur_td == ep->stopped_td) 709 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 710 cur_td->urb->stream_id, 711 cur_td, &deq_state); 712 else 713 td_to_noop(xhci, ep_ring, cur_td, false); 714 remove_finished_td: 715 /* 716 * The event handler won't see a completion for this TD anymore, 717 * so remove it from the endpoint ring's TD list. Keep it in 718 * the cancelled TD list for URB completion later. 719 */ 720 list_del_init(&cur_td->td_list); 721 } 722 last_unlinked_td = cur_td; 723 xhci_stop_watchdog_timer_in_irq(xhci, ep); 724 725 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 726 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 727 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 728 ep->stopped_td->urb->stream_id, &deq_state); 729 xhci_ring_cmd_db(xhci); 730 } else { 731 /* Otherwise ring the doorbell(s) to restart queued transfers */ 732 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 733 } 734 735 ep->stopped_td = NULL; 736 737 /* 738 * Drop the lock and complete the URBs in the cancelled TD list. 739 * New TDs to be cancelled might be added to the end of the list before 740 * we can complete all the URBs for the TDs we already unlinked. 741 * So stop when we've completed the URB for the last TD we unlinked. 742 */ 743 do { 744 cur_td = list_entry(ep->cancelled_td_list.next, 745 struct xhci_td, cancelled_td_list); 746 list_del_init(&cur_td->cancelled_td_list); 747 748 /* Clean up the cancelled URB */ 749 /* Doesn't matter what we pass for status, since the core will 750 * just overwrite it (because the URB has been unlinked). 751 */ 752 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 753 if (ep_ring && cur_td->bounce_seg) 754 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 755 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 756 757 /* Stop processing the cancelled list if the watchdog timer is 758 * running. 759 */ 760 if (xhci->xhc_state & XHCI_STATE_DYING) 761 return; 762 } while (cur_td != last_unlinked_td); 763 764 /* Return to the event handler with xhci->lock re-acquired */ 765 } 766 767 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 768 { 769 struct xhci_td *cur_td; 770 771 while (!list_empty(&ring->td_list)) { 772 cur_td = list_first_entry(&ring->td_list, 773 struct xhci_td, td_list); 774 list_del_init(&cur_td->td_list); 775 if (!list_empty(&cur_td->cancelled_td_list)) 776 list_del_init(&cur_td->cancelled_td_list); 777 778 if (cur_td->bounce_seg) 779 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 780 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 781 } 782 } 783 784 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 785 int slot_id, int ep_index) 786 { 787 struct xhci_td *cur_td; 788 struct xhci_virt_ep *ep; 789 struct xhci_ring *ring; 790 791 ep = &xhci->devs[slot_id]->eps[ep_index]; 792 if ((ep->ep_state & EP_HAS_STREAMS) || 793 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 794 int stream_id; 795 796 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 797 stream_id++) { 798 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 799 "Killing URBs for slot ID %u, ep index %u, stream %u", 800 slot_id, ep_index, stream_id + 1); 801 xhci_kill_ring_urbs(xhci, 802 ep->stream_info->stream_rings[stream_id]); 803 } 804 } else { 805 ring = ep->ring; 806 if (!ring) 807 return; 808 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 809 "Killing URBs for slot ID %u, ep index %u", 810 slot_id, ep_index); 811 xhci_kill_ring_urbs(xhci, ring); 812 } 813 while (!list_empty(&ep->cancelled_td_list)) { 814 cur_td = list_first_entry(&ep->cancelled_td_list, 815 struct xhci_td, cancelled_td_list); 816 list_del_init(&cur_td->cancelled_td_list); 817 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 818 } 819 } 820 821 /* Watchdog timer function for when a stop endpoint command fails to complete. 822 * In this case, we assume the host controller is broken or dying or dead. The 823 * host may still be completing some other events, so we have to be careful to 824 * let the event ring handler and the URB dequeueing/enqueueing functions know 825 * through xhci->state. 826 * 827 * The timer may also fire if the host takes a very long time to respond to the 828 * command, and the stop endpoint command completion handler cannot delete the 829 * timer before the timer function is called. Another endpoint cancellation may 830 * sneak in before the timer function can grab the lock, and that may queue 831 * another stop endpoint command and add the timer back. So we cannot use a 832 * simple flag to say whether there is a pending stop endpoint command for a 833 * particular endpoint. 834 * 835 * Instead we use a combination of that flag and a counter for the number of 836 * pending stop endpoint commands. If the timer is the tail end of the last 837 * stop endpoint command, and the endpoint's command is still pending, we assume 838 * the host is dying. 839 */ 840 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 841 { 842 struct xhci_hcd *xhci; 843 struct xhci_virt_ep *ep; 844 int ret, i, j; 845 unsigned long flags; 846 847 ep = (struct xhci_virt_ep *) arg; 848 xhci = ep->xhci; 849 850 spin_lock_irqsave(&xhci->lock, flags); 851 852 ep->stop_cmds_pending--; 853 if (xhci->xhc_state & XHCI_STATE_DYING) { 854 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 855 "Stop EP timer ran, but another timer marked " 856 "xHCI as DYING, exiting."); 857 spin_unlock_irqrestore(&xhci->lock, flags); 858 return; 859 } 860 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 861 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 862 "Stop EP timer ran, but no command pending, " 863 "exiting."); 864 spin_unlock_irqrestore(&xhci->lock, flags); 865 return; 866 } 867 868 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 869 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 870 /* Oops, HC is dead or dying or at least not responding to the stop 871 * endpoint command. 872 */ 873 xhci->xhc_state |= XHCI_STATE_DYING; 874 /* Disable interrupts from the host controller and start halting it */ 875 xhci_quiesce(xhci); 876 spin_unlock_irqrestore(&xhci->lock, flags); 877 878 ret = xhci_halt(xhci); 879 880 spin_lock_irqsave(&xhci->lock, flags); 881 if (ret < 0) { 882 /* This is bad; the host is not responding to commands and it's 883 * not allowing itself to be halted. At least interrupts are 884 * disabled. If we call usb_hc_died(), it will attempt to 885 * disconnect all device drivers under this host. Those 886 * disconnect() methods will wait for all URBs to be unlinked, 887 * so we must complete them. 888 */ 889 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 890 xhci_warn(xhci, "Completing active URBs anyway.\n"); 891 /* We could turn all TDs on the rings to no-ops. This won't 892 * help if the host has cached part of the ring, and is slow if 893 * we want to preserve the cycle bit. Skip it and hope the host 894 * doesn't touch the memory. 895 */ 896 } 897 for (i = 0; i < MAX_HC_SLOTS; i++) { 898 if (!xhci->devs[i]) 899 continue; 900 for (j = 0; j < 31; j++) 901 xhci_kill_endpoint_urbs(xhci, i, j); 902 } 903 spin_unlock_irqrestore(&xhci->lock, flags); 904 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 905 "Calling usb_hc_died()"); 906 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 907 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 908 "xHCI host controller is dead."); 909 } 910 911 912 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 913 struct xhci_virt_device *dev, 914 struct xhci_ring *ep_ring, 915 unsigned int ep_index) 916 { 917 union xhci_trb *dequeue_temp; 918 int num_trbs_free_temp; 919 bool revert = false; 920 921 num_trbs_free_temp = ep_ring->num_trbs_free; 922 dequeue_temp = ep_ring->dequeue; 923 924 /* If we get two back-to-back stalls, and the first stalled transfer 925 * ends just before a link TRB, the dequeue pointer will be left on 926 * the link TRB by the code in the while loop. So we have to update 927 * the dequeue pointer one segment further, or we'll jump off 928 * the segment into la-la-land. 929 */ 930 if (trb_is_link(ep_ring->dequeue)) { 931 ep_ring->deq_seg = ep_ring->deq_seg->next; 932 ep_ring->dequeue = ep_ring->deq_seg->trbs; 933 } 934 935 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 936 /* We have more usable TRBs */ 937 ep_ring->num_trbs_free++; 938 ep_ring->dequeue++; 939 if (trb_is_link(ep_ring->dequeue)) { 940 if (ep_ring->dequeue == 941 dev->eps[ep_index].queued_deq_ptr) 942 break; 943 ep_ring->deq_seg = ep_ring->deq_seg->next; 944 ep_ring->dequeue = ep_ring->deq_seg->trbs; 945 } 946 if (ep_ring->dequeue == dequeue_temp) { 947 revert = true; 948 break; 949 } 950 } 951 952 if (revert) { 953 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 954 ep_ring->num_trbs_free = num_trbs_free_temp; 955 } 956 } 957 958 /* 959 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 960 * we need to clear the set deq pending flag in the endpoint ring state, so that 961 * the TD queueing code can ring the doorbell again. We also need to ring the 962 * endpoint doorbell to restart the ring, but only if there aren't more 963 * cancellations pending. 964 */ 965 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 966 union xhci_trb *trb, u32 cmd_comp_code) 967 { 968 unsigned int ep_index; 969 unsigned int stream_id; 970 struct xhci_ring *ep_ring; 971 struct xhci_virt_device *dev; 972 struct xhci_virt_ep *ep; 973 struct xhci_ep_ctx *ep_ctx; 974 struct xhci_slot_ctx *slot_ctx; 975 976 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 977 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 978 dev = xhci->devs[slot_id]; 979 ep = &dev->eps[ep_index]; 980 981 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 982 if (!ep_ring) { 983 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 984 stream_id); 985 /* XXX: Harmless??? */ 986 goto cleanup; 987 } 988 989 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 990 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 991 992 if (cmd_comp_code != COMP_SUCCESS) { 993 unsigned int ep_state; 994 unsigned int slot_state; 995 996 switch (cmd_comp_code) { 997 case COMP_TRB_ERR: 998 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 999 break; 1000 case COMP_CTX_STATE: 1001 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1002 ep_state = le32_to_cpu(ep_ctx->ep_info); 1003 ep_state &= EP_STATE_MASK; 1004 slot_state = le32_to_cpu(slot_ctx->dev_state); 1005 slot_state = GET_SLOT_STATE(slot_state); 1006 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1007 "Slot state = %u, EP state = %u", 1008 slot_state, ep_state); 1009 break; 1010 case COMP_EBADSLT: 1011 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1012 slot_id); 1013 break; 1014 default: 1015 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1016 cmd_comp_code); 1017 break; 1018 } 1019 /* OK what do we do now? The endpoint state is hosed, and we 1020 * should never get to this point if the synchronization between 1021 * queueing, and endpoint state are correct. This might happen 1022 * if the device gets disconnected after we've finished 1023 * cancelling URBs, which might not be an error... 1024 */ 1025 } else { 1026 u64 deq; 1027 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1028 if (ep->ep_state & EP_HAS_STREAMS) { 1029 struct xhci_stream_ctx *ctx = 1030 &ep->stream_info->stream_ctx_array[stream_id]; 1031 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1032 } else { 1033 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1034 } 1035 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1036 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1037 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1038 ep->queued_deq_ptr) == deq) { 1039 /* Update the ring's dequeue segment and dequeue pointer 1040 * to reflect the new position. 1041 */ 1042 update_ring_for_set_deq_completion(xhci, dev, 1043 ep_ring, ep_index); 1044 } else { 1045 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1046 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1047 ep->queued_deq_seg, ep->queued_deq_ptr); 1048 } 1049 } 1050 1051 cleanup: 1052 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1053 dev->eps[ep_index].queued_deq_seg = NULL; 1054 dev->eps[ep_index].queued_deq_ptr = NULL; 1055 /* Restart any rings with pending URBs */ 1056 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1057 } 1058 1059 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1060 union xhci_trb *trb, u32 cmd_comp_code) 1061 { 1062 unsigned int ep_index; 1063 1064 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1065 /* This command will only fail if the endpoint wasn't halted, 1066 * but we don't care. 1067 */ 1068 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1069 "Ignoring reset ep completion code of %u", cmd_comp_code); 1070 1071 /* HW with the reset endpoint quirk needs to have a configure endpoint 1072 * command complete before the endpoint can be used. Queue that here 1073 * because the HW can't handle two commands being queued in a row. 1074 */ 1075 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1076 struct xhci_command *command; 1077 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1078 if (!command) { 1079 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1080 return; 1081 } 1082 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1083 "Queueing configure endpoint command"); 1084 xhci_queue_configure_endpoint(xhci, command, 1085 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1086 false); 1087 xhci_ring_cmd_db(xhci); 1088 } else { 1089 /* Clear our internal halted state */ 1090 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1091 } 1092 } 1093 1094 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1095 u32 cmd_comp_code) 1096 { 1097 if (cmd_comp_code == COMP_SUCCESS) 1098 xhci->slot_id = slot_id; 1099 else 1100 xhci->slot_id = 0; 1101 } 1102 1103 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1104 { 1105 struct xhci_virt_device *virt_dev; 1106 1107 virt_dev = xhci->devs[slot_id]; 1108 if (!virt_dev) 1109 return; 1110 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1111 /* Delete default control endpoint resources */ 1112 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1113 xhci_free_virt_device(xhci, slot_id); 1114 } 1115 1116 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1117 struct xhci_event_cmd *event, u32 cmd_comp_code) 1118 { 1119 struct xhci_virt_device *virt_dev; 1120 struct xhci_input_control_ctx *ctrl_ctx; 1121 unsigned int ep_index; 1122 unsigned int ep_state; 1123 u32 add_flags, drop_flags; 1124 1125 /* 1126 * Configure endpoint commands can come from the USB core 1127 * configuration or alt setting changes, or because the HW 1128 * needed an extra configure endpoint command after a reset 1129 * endpoint command or streams were being configured. 1130 * If the command was for a halted endpoint, the xHCI driver 1131 * is not waiting on the configure endpoint command. 1132 */ 1133 virt_dev = xhci->devs[slot_id]; 1134 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1135 if (!ctrl_ctx) { 1136 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1137 return; 1138 } 1139 1140 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1141 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1142 /* Input ctx add_flags are the endpoint index plus one */ 1143 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1144 1145 /* A usb_set_interface() call directly after clearing a halted 1146 * condition may race on this quirky hardware. Not worth 1147 * worrying about, since this is prototype hardware. Not sure 1148 * if this will work for streams, but streams support was 1149 * untested on this prototype. 1150 */ 1151 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1152 ep_index != (unsigned int) -1 && 1153 add_flags - SLOT_FLAG == drop_flags) { 1154 ep_state = virt_dev->eps[ep_index].ep_state; 1155 if (!(ep_state & EP_HALTED)) 1156 return; 1157 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1158 "Completed config ep cmd - " 1159 "last ep index = %d, state = %d", 1160 ep_index, ep_state); 1161 /* Clear internal halted state and restart ring(s) */ 1162 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1163 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1164 return; 1165 } 1166 return; 1167 } 1168 1169 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1170 struct xhci_event_cmd *event) 1171 { 1172 xhci_dbg(xhci, "Completed reset device command.\n"); 1173 if (!xhci->devs[slot_id]) 1174 xhci_warn(xhci, "Reset device command completion " 1175 "for disabled slot %u\n", slot_id); 1176 } 1177 1178 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1179 struct xhci_event_cmd *event) 1180 { 1181 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1182 xhci->error_bitmask |= 1 << 6; 1183 return; 1184 } 1185 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1186 "NEC firmware version %2x.%02x", 1187 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1188 NEC_FW_MINOR(le32_to_cpu(event->status))); 1189 } 1190 1191 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1192 { 1193 list_del(&cmd->cmd_list); 1194 1195 if (cmd->completion) { 1196 cmd->status = status; 1197 complete(cmd->completion); 1198 } else { 1199 kfree(cmd); 1200 } 1201 } 1202 1203 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1204 { 1205 struct xhci_command *cur_cmd, *tmp_cmd; 1206 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1207 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1208 } 1209 1210 /* 1211 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1212 * If there are other commands waiting then restart the ring and kick the timer. 1213 * This must be called with command ring stopped and xhci->lock held. 1214 */ 1215 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1216 struct xhci_command *cur_cmd) 1217 { 1218 struct xhci_command *i_cmd, *tmp_cmd; 1219 u32 cycle_state; 1220 1221 /* Turn all aborted commands in list to no-ops, then restart */ 1222 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1223 cmd_list) { 1224 1225 if (i_cmd->status != COMP_CMD_ABORT) 1226 continue; 1227 1228 i_cmd->status = COMP_CMD_STOP; 1229 1230 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1231 i_cmd->command_trb); 1232 /* get cycle state from the original cmd trb */ 1233 cycle_state = le32_to_cpu( 1234 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1235 /* modify the command trb to no-op command */ 1236 i_cmd->command_trb->generic.field[0] = 0; 1237 i_cmd->command_trb->generic.field[1] = 0; 1238 i_cmd->command_trb->generic.field[2] = 0; 1239 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1240 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1241 1242 /* 1243 * caller waiting for completion is called when command 1244 * completion event is received for these no-op commands 1245 */ 1246 } 1247 1248 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1249 1250 /* ring command ring doorbell to restart the command ring */ 1251 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1252 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1253 xhci->current_cmd = cur_cmd; 1254 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1255 xhci_ring_cmd_db(xhci); 1256 } 1257 return; 1258 } 1259 1260 1261 void xhci_handle_command_timeout(unsigned long data) 1262 { 1263 struct xhci_hcd *xhci; 1264 int ret; 1265 unsigned long flags; 1266 u64 hw_ring_state; 1267 bool second_timeout = false; 1268 xhci = (struct xhci_hcd *) data; 1269 1270 /* mark this command to be cancelled */ 1271 spin_lock_irqsave(&xhci->lock, flags); 1272 if (xhci->current_cmd) { 1273 if (xhci->current_cmd->status == COMP_CMD_ABORT) 1274 second_timeout = true; 1275 xhci->current_cmd->status = COMP_CMD_ABORT; 1276 } 1277 1278 /* Make sure command ring is running before aborting it */ 1279 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1280 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1281 (hw_ring_state & CMD_RING_RUNNING)) { 1282 spin_unlock_irqrestore(&xhci->lock, flags); 1283 xhci_dbg(xhci, "Command timeout\n"); 1284 ret = xhci_abort_cmd_ring(xhci); 1285 if (unlikely(ret == -ESHUTDOWN)) { 1286 xhci_err(xhci, "Abort command ring failed\n"); 1287 xhci_cleanup_command_queue(xhci); 1288 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1289 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1290 } 1291 return; 1292 } 1293 1294 /* command ring failed to restart, or host removed. Bail out */ 1295 if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) { 1296 spin_unlock_irqrestore(&xhci->lock, flags); 1297 xhci_dbg(xhci, "command timed out twice, ring start fail?\n"); 1298 xhci_cleanup_command_queue(xhci); 1299 return; 1300 } 1301 1302 /* command timeout on stopped ring, ring can't be aborted */ 1303 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1304 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1305 spin_unlock_irqrestore(&xhci->lock, flags); 1306 return; 1307 } 1308 1309 static void handle_cmd_completion(struct xhci_hcd *xhci, 1310 struct xhci_event_cmd *event) 1311 { 1312 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1313 u64 cmd_dma; 1314 dma_addr_t cmd_dequeue_dma; 1315 u32 cmd_comp_code; 1316 union xhci_trb *cmd_trb; 1317 struct xhci_command *cmd; 1318 u32 cmd_type; 1319 1320 cmd_dma = le64_to_cpu(event->cmd_trb); 1321 cmd_trb = xhci->cmd_ring->dequeue; 1322 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1323 cmd_trb); 1324 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1325 if (cmd_dequeue_dma == 0) { 1326 xhci->error_bitmask |= 1 << 4; 1327 return; 1328 } 1329 /* Does the DMA address match our internal dequeue pointer address? */ 1330 if (cmd_dma != (u64) cmd_dequeue_dma) { 1331 xhci->error_bitmask |= 1 << 5; 1332 return; 1333 } 1334 1335 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1336 1337 del_timer(&xhci->cmd_timer); 1338 1339 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1340 1341 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1342 1343 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1344 if (cmd_comp_code == COMP_CMD_STOP) { 1345 xhci_handle_stopped_cmd_ring(xhci, cmd); 1346 return; 1347 } 1348 1349 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1350 xhci_err(xhci, 1351 "Command completion event does not match command\n"); 1352 return; 1353 } 1354 1355 /* 1356 * Host aborted the command ring, check if the current command was 1357 * supposed to be aborted, otherwise continue normally. 1358 * The command ring is stopped now, but the xHC will issue a Command 1359 * Ring Stopped event which will cause us to restart it. 1360 */ 1361 if (cmd_comp_code == COMP_CMD_ABORT) { 1362 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1363 if (cmd->status == COMP_CMD_ABORT) 1364 goto event_handled; 1365 } 1366 1367 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1368 switch (cmd_type) { 1369 case TRB_ENABLE_SLOT: 1370 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1371 break; 1372 case TRB_DISABLE_SLOT: 1373 xhci_handle_cmd_disable_slot(xhci, slot_id); 1374 break; 1375 case TRB_CONFIG_EP: 1376 if (!cmd->completion) 1377 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1378 cmd_comp_code); 1379 break; 1380 case TRB_EVAL_CONTEXT: 1381 break; 1382 case TRB_ADDR_DEV: 1383 break; 1384 case TRB_STOP_RING: 1385 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1386 le32_to_cpu(cmd_trb->generic.field[3]))); 1387 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1388 break; 1389 case TRB_SET_DEQ: 1390 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1391 le32_to_cpu(cmd_trb->generic.field[3]))); 1392 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1393 break; 1394 case TRB_CMD_NOOP: 1395 /* Is this an aborted command turned to NO-OP? */ 1396 if (cmd->status == COMP_CMD_STOP) 1397 cmd_comp_code = COMP_CMD_STOP; 1398 break; 1399 case TRB_RESET_EP: 1400 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1401 le32_to_cpu(cmd_trb->generic.field[3]))); 1402 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1403 break; 1404 case TRB_RESET_DEV: 1405 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1406 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1407 */ 1408 slot_id = TRB_TO_SLOT_ID( 1409 le32_to_cpu(cmd_trb->generic.field[3])); 1410 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1411 break; 1412 case TRB_NEC_GET_FW: 1413 xhci_handle_cmd_nec_get_fw(xhci, event); 1414 break; 1415 default: 1416 /* Skip over unknown commands on the event ring */ 1417 xhci->error_bitmask |= 1 << 6; 1418 break; 1419 } 1420 1421 /* restart timer if this wasn't the last command */ 1422 if (cmd->cmd_list.next != &xhci->cmd_list) { 1423 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1424 struct xhci_command, cmd_list); 1425 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1426 } 1427 1428 event_handled: 1429 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1430 1431 inc_deq(xhci, xhci->cmd_ring); 1432 } 1433 1434 static void handle_vendor_event(struct xhci_hcd *xhci, 1435 union xhci_trb *event) 1436 { 1437 u32 trb_type; 1438 1439 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1440 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1441 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1442 handle_cmd_completion(xhci, &event->event_cmd); 1443 } 1444 1445 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1446 * port registers -- USB 3.0 and USB 2.0). 1447 * 1448 * Returns a zero-based port number, which is suitable for indexing into each of 1449 * the split roothubs' port arrays and bus state arrays. 1450 * Add one to it in order to call xhci_find_slot_id_by_port. 1451 */ 1452 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1453 struct xhci_hcd *xhci, u32 port_id) 1454 { 1455 unsigned int i; 1456 unsigned int num_similar_speed_ports = 0; 1457 1458 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1459 * and usb2_ports are 0-based indexes. Count the number of similar 1460 * speed ports, up to 1 port before this port. 1461 */ 1462 for (i = 0; i < (port_id - 1); i++) { 1463 u8 port_speed = xhci->port_array[i]; 1464 1465 /* 1466 * Skip ports that don't have known speeds, or have duplicate 1467 * Extended Capabilities port speed entries. 1468 */ 1469 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1470 continue; 1471 1472 /* 1473 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1474 * 1.1 ports are under the USB 2.0 hub. If the port speed 1475 * matches the device speed, it's a similar speed port. 1476 */ 1477 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1478 num_similar_speed_ports++; 1479 } 1480 return num_similar_speed_ports; 1481 } 1482 1483 static void handle_device_notification(struct xhci_hcd *xhci, 1484 union xhci_trb *event) 1485 { 1486 u32 slot_id; 1487 struct usb_device *udev; 1488 1489 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1490 if (!xhci->devs[slot_id]) { 1491 xhci_warn(xhci, "Device Notification event for " 1492 "unused slot %u\n", slot_id); 1493 return; 1494 } 1495 1496 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1497 slot_id); 1498 udev = xhci->devs[slot_id]->udev; 1499 if (udev && udev->parent) 1500 usb_wakeup_notification(udev->parent, udev->portnum); 1501 } 1502 1503 static void handle_port_status(struct xhci_hcd *xhci, 1504 union xhci_trb *event) 1505 { 1506 struct usb_hcd *hcd; 1507 u32 port_id; 1508 u32 temp, temp1; 1509 int max_ports; 1510 int slot_id; 1511 unsigned int faked_port_index; 1512 u8 major_revision; 1513 struct xhci_bus_state *bus_state; 1514 __le32 __iomem **port_array; 1515 bool bogus_port_status = false; 1516 1517 /* Port status change events always have a successful completion code */ 1518 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1519 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1520 xhci->error_bitmask |= 1 << 8; 1521 } 1522 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1523 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1524 1525 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1526 if ((port_id <= 0) || (port_id > max_ports)) { 1527 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1528 inc_deq(xhci, xhci->event_ring); 1529 return; 1530 } 1531 1532 /* Figure out which usb_hcd this port is attached to: 1533 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1534 */ 1535 major_revision = xhci->port_array[port_id - 1]; 1536 1537 /* Find the right roothub. */ 1538 hcd = xhci_to_hcd(xhci); 1539 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1540 hcd = xhci->shared_hcd; 1541 1542 if (major_revision == 0) { 1543 xhci_warn(xhci, "Event for port %u not in " 1544 "Extended Capabilities, ignoring.\n", 1545 port_id); 1546 bogus_port_status = true; 1547 goto cleanup; 1548 } 1549 if (major_revision == DUPLICATE_ENTRY) { 1550 xhci_warn(xhci, "Event for port %u duplicated in" 1551 "Extended Capabilities, ignoring.\n", 1552 port_id); 1553 bogus_port_status = true; 1554 goto cleanup; 1555 } 1556 1557 /* 1558 * Hardware port IDs reported by a Port Status Change Event include USB 1559 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1560 * resume event, but we first need to translate the hardware port ID 1561 * into the index into the ports on the correct split roothub, and the 1562 * correct bus_state structure. 1563 */ 1564 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1565 if (hcd->speed >= HCD_USB3) 1566 port_array = xhci->usb3_ports; 1567 else 1568 port_array = xhci->usb2_ports; 1569 /* Find the faked port hub number */ 1570 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1571 port_id); 1572 1573 temp = readl(port_array[faked_port_index]); 1574 if (hcd->state == HC_STATE_SUSPENDED) { 1575 xhci_dbg(xhci, "resume root hub\n"); 1576 usb_hcd_resume_root_hub(hcd); 1577 } 1578 1579 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1580 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1581 1582 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1583 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1584 1585 temp1 = readl(&xhci->op_regs->command); 1586 if (!(temp1 & CMD_RUN)) { 1587 xhci_warn(xhci, "xHC is not running.\n"); 1588 goto cleanup; 1589 } 1590 1591 if (DEV_SUPERSPEED_ANY(temp)) { 1592 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1593 /* Set a flag to say the port signaled remote wakeup, 1594 * so we can tell the difference between the end of 1595 * device and host initiated resume. 1596 */ 1597 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1598 xhci_test_and_clear_bit(xhci, port_array, 1599 faked_port_index, PORT_PLC); 1600 xhci_set_link_state(xhci, port_array, faked_port_index, 1601 XDEV_U0); 1602 /* Need to wait until the next link state change 1603 * indicates the device is actually in U0. 1604 */ 1605 bogus_port_status = true; 1606 goto cleanup; 1607 } else if (!test_bit(faked_port_index, 1608 &bus_state->resuming_ports)) { 1609 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1610 bus_state->resume_done[faked_port_index] = jiffies + 1611 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1612 set_bit(faked_port_index, &bus_state->resuming_ports); 1613 mod_timer(&hcd->rh_timer, 1614 bus_state->resume_done[faked_port_index]); 1615 /* Do the rest in GetPortStatus */ 1616 } 1617 } 1618 1619 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1620 DEV_SUPERSPEED_ANY(temp)) { 1621 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1622 /* We've just brought the device into U0 through either the 1623 * Resume state after a device remote wakeup, or through the 1624 * U3Exit state after a host-initiated resume. If it's a device 1625 * initiated remote wake, don't pass up the link state change, 1626 * so the roothub behavior is consistent with external 1627 * USB 3.0 hub behavior. 1628 */ 1629 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1630 faked_port_index + 1); 1631 if (slot_id && xhci->devs[slot_id]) 1632 xhci_ring_device(xhci, slot_id); 1633 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1634 bus_state->port_remote_wakeup &= 1635 ~(1 << faked_port_index); 1636 xhci_test_and_clear_bit(xhci, port_array, 1637 faked_port_index, PORT_PLC); 1638 usb_wakeup_notification(hcd->self.root_hub, 1639 faked_port_index + 1); 1640 bogus_port_status = true; 1641 goto cleanup; 1642 } 1643 } 1644 1645 /* 1646 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1647 * RExit to a disconnect state). If so, let the the driver know it's 1648 * out of the RExit state. 1649 */ 1650 if (!DEV_SUPERSPEED_ANY(temp) && 1651 test_and_clear_bit(faked_port_index, 1652 &bus_state->rexit_ports)) { 1653 complete(&bus_state->rexit_done[faked_port_index]); 1654 bogus_port_status = true; 1655 goto cleanup; 1656 } 1657 1658 if (hcd->speed < HCD_USB3) 1659 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1660 PORT_PLC); 1661 1662 cleanup: 1663 /* Update event ring dequeue pointer before dropping the lock */ 1664 inc_deq(xhci, xhci->event_ring); 1665 1666 /* Don't make the USB core poll the roothub if we got a bad port status 1667 * change event. Besides, at that point we can't tell which roothub 1668 * (USB 2.0 or USB 3.0) to kick. 1669 */ 1670 if (bogus_port_status) 1671 return; 1672 1673 /* 1674 * xHCI port-status-change events occur when the "or" of all the 1675 * status-change bits in the portsc register changes from 0 to 1. 1676 * New status changes won't cause an event if any other change 1677 * bits are still set. When an event occurs, switch over to 1678 * polling to avoid losing status changes. 1679 */ 1680 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1681 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1682 spin_unlock(&xhci->lock); 1683 /* Pass this up to the core */ 1684 usb_hcd_poll_rh_status(hcd); 1685 spin_lock(&xhci->lock); 1686 } 1687 1688 /* 1689 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1690 * at end_trb, which may be in another segment. If the suspect DMA address is a 1691 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1692 * returns 0. 1693 */ 1694 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1695 struct xhci_segment *start_seg, 1696 union xhci_trb *start_trb, 1697 union xhci_trb *end_trb, 1698 dma_addr_t suspect_dma, 1699 bool debug) 1700 { 1701 dma_addr_t start_dma; 1702 dma_addr_t end_seg_dma; 1703 dma_addr_t end_trb_dma; 1704 struct xhci_segment *cur_seg; 1705 1706 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1707 cur_seg = start_seg; 1708 1709 do { 1710 if (start_dma == 0) 1711 return NULL; 1712 /* We may get an event for a Link TRB in the middle of a TD */ 1713 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1714 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1715 /* If the end TRB isn't in this segment, this is set to 0 */ 1716 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1717 1718 if (debug) 1719 xhci_warn(xhci, 1720 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1721 (unsigned long long)suspect_dma, 1722 (unsigned long long)start_dma, 1723 (unsigned long long)end_trb_dma, 1724 (unsigned long long)cur_seg->dma, 1725 (unsigned long long)end_seg_dma); 1726 1727 if (end_trb_dma > 0) { 1728 /* The end TRB is in this segment, so suspect should be here */ 1729 if (start_dma <= end_trb_dma) { 1730 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1731 return cur_seg; 1732 } else { 1733 /* Case for one segment with 1734 * a TD wrapped around to the top 1735 */ 1736 if ((suspect_dma >= start_dma && 1737 suspect_dma <= end_seg_dma) || 1738 (suspect_dma >= cur_seg->dma && 1739 suspect_dma <= end_trb_dma)) 1740 return cur_seg; 1741 } 1742 return NULL; 1743 } else { 1744 /* Might still be somewhere in this segment */ 1745 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1746 return cur_seg; 1747 } 1748 cur_seg = cur_seg->next; 1749 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1750 } while (cur_seg != start_seg); 1751 1752 return NULL; 1753 } 1754 1755 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1756 unsigned int slot_id, unsigned int ep_index, 1757 unsigned int stream_id, 1758 struct xhci_td *td, union xhci_trb *event_trb) 1759 { 1760 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1761 struct xhci_command *command; 1762 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1763 if (!command) 1764 return; 1765 1766 ep->ep_state |= EP_HALTED; 1767 ep->stopped_stream = stream_id; 1768 1769 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1770 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1771 1772 ep->stopped_stream = 0; 1773 1774 xhci_ring_cmd_db(xhci); 1775 } 1776 1777 /* Check if an error has halted the endpoint ring. The class driver will 1778 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1779 * However, a babble and other errors also halt the endpoint ring, and the class 1780 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1781 * Ring Dequeue Pointer command manually. 1782 */ 1783 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1784 struct xhci_ep_ctx *ep_ctx, 1785 unsigned int trb_comp_code) 1786 { 1787 /* TRB completion codes that may require a manual halt cleanup */ 1788 if (trb_comp_code == COMP_TX_ERR || 1789 trb_comp_code == COMP_BABBLE || 1790 trb_comp_code == COMP_SPLIT_ERR) 1791 /* The 0.95 spec says a babbling control endpoint 1792 * is not halted. The 0.96 spec says it is. Some HW 1793 * claims to be 0.95 compliant, but it halts the control 1794 * endpoint anyway. Check if a babble halted the 1795 * endpoint. 1796 */ 1797 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1798 cpu_to_le32(EP_STATE_HALTED)) 1799 return 1; 1800 1801 return 0; 1802 } 1803 1804 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1805 { 1806 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1807 /* Vendor defined "informational" completion code, 1808 * treat as not-an-error. 1809 */ 1810 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1811 trb_comp_code); 1812 xhci_dbg(xhci, "Treating code as success.\n"); 1813 return 1; 1814 } 1815 return 0; 1816 } 1817 1818 /* 1819 * Finish the td processing, remove the td from td list; 1820 * Return 1 if the urb can be given back. 1821 */ 1822 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1823 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1824 struct xhci_virt_ep *ep, int *status, bool skip) 1825 { 1826 struct xhci_virt_device *xdev; 1827 struct xhci_ring *ep_ring; 1828 unsigned int slot_id; 1829 int ep_index; 1830 struct urb *urb = NULL; 1831 struct xhci_ep_ctx *ep_ctx; 1832 int ret = 0; 1833 struct urb_priv *urb_priv; 1834 u32 trb_comp_code; 1835 1836 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1837 xdev = xhci->devs[slot_id]; 1838 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1839 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1840 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1841 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1842 1843 if (skip) 1844 goto td_cleanup; 1845 1846 if (trb_comp_code == COMP_STOP_INVAL || 1847 trb_comp_code == COMP_STOP || 1848 trb_comp_code == COMP_STOP_SHORT) { 1849 /* The Endpoint Stop Command completion will take care of any 1850 * stopped TDs. A stopped TD may be restarted, so don't update 1851 * the ring dequeue pointer or take this TD off any lists yet. 1852 */ 1853 ep->stopped_td = td; 1854 return 0; 1855 } 1856 if (trb_comp_code == COMP_STALL || 1857 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1858 trb_comp_code)) { 1859 /* Issue a reset endpoint command to clear the host side 1860 * halt, followed by a set dequeue command to move the 1861 * dequeue pointer past the TD. 1862 * The class driver clears the device side halt later. 1863 */ 1864 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1865 ep_ring->stream_id, td, event_trb); 1866 } else { 1867 /* Update ring dequeue pointer */ 1868 while (ep_ring->dequeue != td->last_trb) 1869 inc_deq(xhci, ep_ring); 1870 inc_deq(xhci, ep_ring); 1871 } 1872 1873 td_cleanup: 1874 /* Clean up the endpoint's TD list */ 1875 urb = td->urb; 1876 urb_priv = urb->hcpriv; 1877 1878 /* if a bounce buffer was used to align this td then unmap it */ 1879 if (td->bounce_seg) 1880 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1881 1882 /* Do one last check of the actual transfer length. 1883 * If the host controller said we transferred more data than the buffer 1884 * length, urb->actual_length will be a very big number (since it's 1885 * unsigned). Play it safe and say we didn't transfer anything. 1886 */ 1887 if (urb->actual_length > urb->transfer_buffer_length) { 1888 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1889 urb->transfer_buffer_length, 1890 urb->actual_length); 1891 urb->actual_length = 0; 1892 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1893 *status = -EREMOTEIO; 1894 else 1895 *status = 0; 1896 } 1897 list_del_init(&td->td_list); 1898 /* Was this TD slated to be cancelled but completed anyway? */ 1899 if (!list_empty(&td->cancelled_td_list)) 1900 list_del_init(&td->cancelled_td_list); 1901 1902 urb_priv->td_cnt++; 1903 /* Giveback the urb when all the tds are completed */ 1904 if (urb_priv->td_cnt == urb_priv->length) { 1905 ret = 1; 1906 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1907 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1908 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1909 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1910 usb_amd_quirk_pll_enable(); 1911 } 1912 } 1913 } 1914 1915 return ret; 1916 } 1917 1918 /* 1919 * Process control tds, update urb status and actual_length. 1920 */ 1921 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1922 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1923 struct xhci_virt_ep *ep, int *status) 1924 { 1925 struct xhci_virt_device *xdev; 1926 struct xhci_ring *ep_ring; 1927 unsigned int slot_id; 1928 int ep_index; 1929 struct xhci_ep_ctx *ep_ctx; 1930 u32 trb_comp_code; 1931 1932 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1933 xdev = xhci->devs[slot_id]; 1934 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1935 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1936 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1937 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1938 1939 switch (trb_comp_code) { 1940 case COMP_SUCCESS: 1941 if (event_trb == ep_ring->dequeue) { 1942 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1943 "without IOC set??\n"); 1944 *status = -ESHUTDOWN; 1945 } else if (event_trb != td->last_trb) { 1946 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1947 "without IOC set??\n"); 1948 *status = -ESHUTDOWN; 1949 } else { 1950 *status = 0; 1951 } 1952 break; 1953 case COMP_SHORT_TX: 1954 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1955 *status = -EREMOTEIO; 1956 else 1957 *status = 0; 1958 break; 1959 case COMP_STOP_SHORT: 1960 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb) 1961 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1962 else 1963 td->urb->actual_length = 1964 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1965 1966 return finish_td(xhci, td, event_trb, event, ep, status, false); 1967 case COMP_STOP: 1968 /* Did we stop at data stage? */ 1969 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) 1970 td->urb->actual_length = 1971 td->urb->transfer_buffer_length - 1972 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1973 /* fall through */ 1974 case COMP_STOP_INVAL: 1975 return finish_td(xhci, td, event_trb, event, ep, status, false); 1976 default: 1977 if (!xhci_requires_manual_halt_cleanup(xhci, 1978 ep_ctx, trb_comp_code)) 1979 break; 1980 xhci_dbg(xhci, "TRB error code %u, " 1981 "halted endpoint index = %u\n", 1982 trb_comp_code, ep_index); 1983 /* else fall through */ 1984 case COMP_STALL: 1985 /* Did we transfer part of the data (middle) phase? */ 1986 if (event_trb != ep_ring->dequeue && 1987 event_trb != td->last_trb) 1988 td->urb->actual_length = 1989 td->urb->transfer_buffer_length - 1990 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1991 else if (!td->urb_length_set) 1992 td->urb->actual_length = 0; 1993 1994 return finish_td(xhci, td, event_trb, event, ep, status, false); 1995 } 1996 /* 1997 * Did we transfer any data, despite the errors that might have 1998 * happened? I.e. did we get past the setup stage? 1999 */ 2000 if (event_trb != ep_ring->dequeue) { 2001 /* The event was for the status stage */ 2002 if (event_trb == td->last_trb) { 2003 if (td->urb_length_set) { 2004 /* Don't overwrite a previously set error code 2005 */ 2006 if ((*status == -EINPROGRESS || *status == 0) && 2007 (td->urb->transfer_flags 2008 & URB_SHORT_NOT_OK)) 2009 /* Did we already see a short data 2010 * stage? */ 2011 *status = -EREMOTEIO; 2012 } else { 2013 td->urb->actual_length = 2014 td->urb->transfer_buffer_length; 2015 } 2016 } else { 2017 /* 2018 * Maybe the event was for the data stage? If so, update 2019 * already the actual_length of the URB and flag it as 2020 * set, so that it is not overwritten in the event for 2021 * the last TRB. 2022 */ 2023 td->urb_length_set = true; 2024 td->urb->actual_length = 2025 td->urb->transfer_buffer_length - 2026 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2027 xhci_dbg(xhci, "Waiting for status " 2028 "stage event\n"); 2029 return 0; 2030 } 2031 } 2032 2033 return finish_td(xhci, td, event_trb, event, ep, status, false); 2034 } 2035 2036 /* 2037 * Process isochronous tds, update urb packet status and actual_length. 2038 */ 2039 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2040 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2041 struct xhci_virt_ep *ep, int *status) 2042 { 2043 struct xhci_ring *ep_ring; 2044 struct urb_priv *urb_priv; 2045 int idx; 2046 int len = 0; 2047 union xhci_trb *cur_trb; 2048 struct xhci_segment *cur_seg; 2049 struct usb_iso_packet_descriptor *frame; 2050 u32 trb_comp_code; 2051 bool skip_td = false; 2052 2053 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2054 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2055 urb_priv = td->urb->hcpriv; 2056 idx = urb_priv->td_cnt; 2057 frame = &td->urb->iso_frame_desc[idx]; 2058 2059 /* handle completion code */ 2060 switch (trb_comp_code) { 2061 case COMP_SUCCESS: 2062 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2063 frame->status = 0; 2064 break; 2065 } 2066 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2067 trb_comp_code = COMP_SHORT_TX; 2068 /* fallthrough */ 2069 case COMP_STOP_SHORT: 2070 case COMP_SHORT_TX: 2071 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2072 -EREMOTEIO : 0; 2073 break; 2074 case COMP_BW_OVER: 2075 frame->status = -ECOMM; 2076 skip_td = true; 2077 break; 2078 case COMP_BUFF_OVER: 2079 case COMP_BABBLE: 2080 frame->status = -EOVERFLOW; 2081 skip_td = true; 2082 break; 2083 case COMP_DEV_ERR: 2084 case COMP_STALL: 2085 frame->status = -EPROTO; 2086 skip_td = true; 2087 break; 2088 case COMP_TX_ERR: 2089 frame->status = -EPROTO; 2090 if (event_trb != td->last_trb) 2091 return 0; 2092 skip_td = true; 2093 break; 2094 case COMP_STOP: 2095 case COMP_STOP_INVAL: 2096 break; 2097 default: 2098 frame->status = -1; 2099 break; 2100 } 2101 2102 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2103 frame->actual_length = frame->length; 2104 td->urb->actual_length += frame->length; 2105 } else if (trb_comp_code == COMP_STOP_SHORT) { 2106 frame->actual_length = 2107 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2108 td->urb->actual_length += frame->actual_length; 2109 } else { 2110 for (cur_trb = ep_ring->dequeue, 2111 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2112 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2113 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2114 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2115 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2116 } 2117 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2118 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2119 2120 if (trb_comp_code != COMP_STOP_INVAL) { 2121 frame->actual_length = len; 2122 td->urb->actual_length += len; 2123 } 2124 } 2125 2126 return finish_td(xhci, td, event_trb, event, ep, status, false); 2127 } 2128 2129 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2130 struct xhci_transfer_event *event, 2131 struct xhci_virt_ep *ep, int *status) 2132 { 2133 struct xhci_ring *ep_ring; 2134 struct urb_priv *urb_priv; 2135 struct usb_iso_packet_descriptor *frame; 2136 int idx; 2137 2138 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2139 urb_priv = td->urb->hcpriv; 2140 idx = urb_priv->td_cnt; 2141 frame = &td->urb->iso_frame_desc[idx]; 2142 2143 /* The transfer is partly done. */ 2144 frame->status = -EXDEV; 2145 2146 /* calc actual length */ 2147 frame->actual_length = 0; 2148 2149 /* Update ring dequeue pointer */ 2150 while (ep_ring->dequeue != td->last_trb) 2151 inc_deq(xhci, ep_ring); 2152 inc_deq(xhci, ep_ring); 2153 2154 return finish_td(xhci, td, NULL, event, ep, status, true); 2155 } 2156 2157 /* 2158 * Process bulk and interrupt tds, update urb status and actual_length. 2159 */ 2160 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2161 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2162 struct xhci_virt_ep *ep, int *status) 2163 { 2164 struct xhci_ring *ep_ring; 2165 union xhci_trb *cur_trb; 2166 struct xhci_segment *cur_seg; 2167 u32 trb_comp_code; 2168 2169 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2170 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2171 2172 switch (trb_comp_code) { 2173 case COMP_SUCCESS: 2174 /* Double check that the HW transferred everything. */ 2175 if (event_trb != td->last_trb || 2176 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2177 xhci_warn(xhci, "WARN Successful completion " 2178 "on short TX\n"); 2179 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2180 *status = -EREMOTEIO; 2181 else 2182 *status = 0; 2183 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2184 trb_comp_code = COMP_SHORT_TX; 2185 } else { 2186 *status = 0; 2187 } 2188 break; 2189 case COMP_STOP_SHORT: 2190 case COMP_SHORT_TX: 2191 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2192 *status = -EREMOTEIO; 2193 else 2194 *status = 0; 2195 break; 2196 default: 2197 /* Others already handled above */ 2198 break; 2199 } 2200 if (trb_comp_code == COMP_SHORT_TX) 2201 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2202 "%d bytes untransferred\n", 2203 td->urb->ep->desc.bEndpointAddress, 2204 td->urb->transfer_buffer_length, 2205 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2206 /* Stopped - short packet completion */ 2207 if (trb_comp_code == COMP_STOP_SHORT) { 2208 td->urb->actual_length = 2209 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2210 2211 if (td->urb->transfer_buffer_length < 2212 td->urb->actual_length) { 2213 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n", 2214 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2215 td->urb->actual_length = 0; 2216 /* status will be set by usb core for canceled urbs */ 2217 } 2218 /* Fast path - was this the last TRB in the TD for this URB? */ 2219 } else if (event_trb == td->last_trb) { 2220 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2221 td->urb->actual_length = 2222 td->urb->transfer_buffer_length - 2223 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2224 if (td->urb->transfer_buffer_length < 2225 td->urb->actual_length) { 2226 xhci_warn(xhci, "HC gave bad length " 2227 "of %d bytes left\n", 2228 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2229 td->urb->actual_length = 0; 2230 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2231 *status = -EREMOTEIO; 2232 else 2233 *status = 0; 2234 } 2235 /* Don't overwrite a previously set error code */ 2236 if (*status == -EINPROGRESS) { 2237 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2238 *status = -EREMOTEIO; 2239 else 2240 *status = 0; 2241 } 2242 } else { 2243 td->urb->actual_length = 2244 td->urb->transfer_buffer_length; 2245 /* Ignore a short packet completion if the 2246 * untransferred length was zero. 2247 */ 2248 if (*status == -EREMOTEIO) 2249 *status = 0; 2250 } 2251 } else { 2252 /* Slow path - walk the list, starting from the dequeue 2253 * pointer, to get the actual length transferred. 2254 */ 2255 td->urb->actual_length = 0; 2256 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2257 cur_trb != event_trb; 2258 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2259 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2260 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2261 td->urb->actual_length += 2262 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2263 } 2264 /* If the ring didn't stop on a Link or No-op TRB, add 2265 * in the actual bytes transferred from the Normal TRB 2266 */ 2267 if (trb_comp_code != COMP_STOP_INVAL) 2268 td->urb->actual_length += 2269 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2270 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2271 } 2272 2273 return finish_td(xhci, td, event_trb, event, ep, status, false); 2274 } 2275 2276 /* 2277 * If this function returns an error condition, it means it got a Transfer 2278 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2279 * At this point, the host controller is probably hosed and should be reset. 2280 */ 2281 static int handle_tx_event(struct xhci_hcd *xhci, 2282 struct xhci_transfer_event *event) 2283 __releases(&xhci->lock) 2284 __acquires(&xhci->lock) 2285 { 2286 struct xhci_virt_device *xdev; 2287 struct xhci_virt_ep *ep; 2288 struct xhci_ring *ep_ring; 2289 unsigned int slot_id; 2290 int ep_index; 2291 struct xhci_td *td = NULL; 2292 dma_addr_t event_dma; 2293 struct xhci_segment *event_seg; 2294 union xhci_trb *event_trb; 2295 struct urb *urb = NULL; 2296 int status = -EINPROGRESS; 2297 struct urb_priv *urb_priv; 2298 struct xhci_ep_ctx *ep_ctx; 2299 struct list_head *tmp; 2300 u32 trb_comp_code; 2301 int ret = 0; 2302 int td_num = 0; 2303 bool handling_skipped_tds = false; 2304 2305 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2306 xdev = xhci->devs[slot_id]; 2307 if (!xdev) { 2308 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2309 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2310 (unsigned long long) xhci_trb_virt_to_dma( 2311 xhci->event_ring->deq_seg, 2312 xhci->event_ring->dequeue), 2313 lower_32_bits(le64_to_cpu(event->buffer)), 2314 upper_32_bits(le64_to_cpu(event->buffer)), 2315 le32_to_cpu(event->transfer_len), 2316 le32_to_cpu(event->flags)); 2317 xhci_dbg(xhci, "Event ring:\n"); 2318 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2319 return -ENODEV; 2320 } 2321 2322 /* Endpoint ID is 1 based, our index is zero based */ 2323 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2324 ep = &xdev->eps[ep_index]; 2325 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2326 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2327 if (!ep_ring || 2328 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2329 EP_STATE_DISABLED) { 2330 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2331 "or incorrect stream ring\n"); 2332 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2333 (unsigned long long) xhci_trb_virt_to_dma( 2334 xhci->event_ring->deq_seg, 2335 xhci->event_ring->dequeue), 2336 lower_32_bits(le64_to_cpu(event->buffer)), 2337 upper_32_bits(le64_to_cpu(event->buffer)), 2338 le32_to_cpu(event->transfer_len), 2339 le32_to_cpu(event->flags)); 2340 xhci_dbg(xhci, "Event ring:\n"); 2341 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2342 return -ENODEV; 2343 } 2344 2345 /* Count current td numbers if ep->skip is set */ 2346 if (ep->skip) { 2347 list_for_each(tmp, &ep_ring->td_list) 2348 td_num++; 2349 } 2350 2351 event_dma = le64_to_cpu(event->buffer); 2352 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2353 /* Look for common error cases */ 2354 switch (trb_comp_code) { 2355 /* Skip codes that require special handling depending on 2356 * transfer type 2357 */ 2358 case COMP_SUCCESS: 2359 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2360 break; 2361 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2362 trb_comp_code = COMP_SHORT_TX; 2363 else 2364 xhci_warn_ratelimited(xhci, 2365 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2366 case COMP_SHORT_TX: 2367 break; 2368 case COMP_STOP: 2369 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2370 break; 2371 case COMP_STOP_INVAL: 2372 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2373 break; 2374 case COMP_STOP_SHORT: 2375 xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); 2376 break; 2377 case COMP_STALL: 2378 xhci_dbg(xhci, "Stalled endpoint\n"); 2379 ep->ep_state |= EP_HALTED; 2380 status = -EPIPE; 2381 break; 2382 case COMP_TRB_ERR: 2383 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2384 status = -EILSEQ; 2385 break; 2386 case COMP_SPLIT_ERR: 2387 case COMP_TX_ERR: 2388 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2389 status = -EPROTO; 2390 break; 2391 case COMP_BABBLE: 2392 xhci_dbg(xhci, "Babble error on endpoint\n"); 2393 status = -EOVERFLOW; 2394 break; 2395 case COMP_DB_ERR: 2396 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2397 status = -ENOSR; 2398 break; 2399 case COMP_BW_OVER: 2400 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2401 break; 2402 case COMP_BUFF_OVER: 2403 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2404 break; 2405 case COMP_UNDERRUN: 2406 /* 2407 * When the Isoch ring is empty, the xHC will generate 2408 * a Ring Overrun Event for IN Isoch endpoint or Ring 2409 * Underrun Event for OUT Isoch endpoint. 2410 */ 2411 xhci_dbg(xhci, "underrun event on endpoint\n"); 2412 if (!list_empty(&ep_ring->td_list)) 2413 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2414 "still with TDs queued?\n", 2415 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2416 ep_index); 2417 goto cleanup; 2418 case COMP_OVERRUN: 2419 xhci_dbg(xhci, "overrun event on endpoint\n"); 2420 if (!list_empty(&ep_ring->td_list)) 2421 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2422 "still with TDs queued?\n", 2423 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2424 ep_index); 2425 goto cleanup; 2426 case COMP_DEV_ERR: 2427 xhci_warn(xhci, "WARN: detect an incompatible device"); 2428 status = -EPROTO; 2429 break; 2430 case COMP_MISSED_INT: 2431 /* 2432 * When encounter missed service error, one or more isoc tds 2433 * may be missed by xHC. 2434 * Set skip flag of the ep_ring; Complete the missed tds as 2435 * short transfer when process the ep_ring next time. 2436 */ 2437 ep->skip = true; 2438 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2439 goto cleanup; 2440 case COMP_PING_ERR: 2441 ep->skip = true; 2442 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n"); 2443 goto cleanup; 2444 default: 2445 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2446 status = 0; 2447 break; 2448 } 2449 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2450 trb_comp_code); 2451 goto cleanup; 2452 } 2453 2454 do { 2455 /* This TRB should be in the TD at the head of this ring's 2456 * TD list. 2457 */ 2458 if (list_empty(&ep_ring->td_list)) { 2459 /* 2460 * A stopped endpoint may generate an extra completion 2461 * event if the device was suspended. Don't print 2462 * warnings. 2463 */ 2464 if (!(trb_comp_code == COMP_STOP || 2465 trb_comp_code == COMP_STOP_INVAL)) { 2466 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2467 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2468 ep_index); 2469 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2470 (le32_to_cpu(event->flags) & 2471 TRB_TYPE_BITMASK)>>10); 2472 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2473 } 2474 if (ep->skip) { 2475 ep->skip = false; 2476 xhci_dbg(xhci, "td_list is empty while skip " 2477 "flag set. Clear skip flag.\n"); 2478 } 2479 ret = 0; 2480 goto cleanup; 2481 } 2482 2483 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2484 if (ep->skip && td_num == 0) { 2485 ep->skip = false; 2486 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2487 "Clear skip flag.\n"); 2488 ret = 0; 2489 goto cleanup; 2490 } 2491 2492 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2493 if (ep->skip) 2494 td_num--; 2495 2496 /* Is this a TRB in the currently executing TD? */ 2497 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2498 td->last_trb, event_dma, false); 2499 2500 /* 2501 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2502 * is not in the current TD pointed by ep_ring->dequeue because 2503 * that the hardware dequeue pointer still at the previous TRB 2504 * of the current TD. The previous TRB maybe a Link TD or the 2505 * last TRB of the previous TD. The command completion handle 2506 * will take care the rest. 2507 */ 2508 if (!event_seg && (trb_comp_code == COMP_STOP || 2509 trb_comp_code == COMP_STOP_INVAL)) { 2510 ret = 0; 2511 goto cleanup; 2512 } 2513 2514 if (!event_seg) { 2515 if (!ep->skip || 2516 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2517 /* Some host controllers give a spurious 2518 * successful event after a short transfer. 2519 * Ignore it. 2520 */ 2521 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2522 ep_ring->last_td_was_short) { 2523 ep_ring->last_td_was_short = false; 2524 ret = 0; 2525 goto cleanup; 2526 } 2527 /* HC is busted, give up! */ 2528 xhci_err(xhci, 2529 "ERROR Transfer event TRB DMA ptr not " 2530 "part of current TD ep_index %d " 2531 "comp_code %u\n", ep_index, 2532 trb_comp_code); 2533 trb_in_td(xhci, ep_ring->deq_seg, 2534 ep_ring->dequeue, td->last_trb, 2535 event_dma, true); 2536 return -ESHUTDOWN; 2537 } 2538 2539 ret = skip_isoc_td(xhci, td, event, ep, &status); 2540 goto cleanup; 2541 } 2542 if (trb_comp_code == COMP_SHORT_TX) 2543 ep_ring->last_td_was_short = true; 2544 else 2545 ep_ring->last_td_was_short = false; 2546 2547 if (ep->skip) { 2548 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2549 ep->skip = false; 2550 } 2551 2552 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2553 sizeof(*event_trb)]; 2554 /* 2555 * No-op TRB should not trigger interrupts. 2556 * If event_trb is a no-op TRB, it means the 2557 * corresponding TD has been cancelled. Just ignore 2558 * the TD. 2559 */ 2560 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2561 xhci_dbg(xhci, 2562 "event_trb is a no-op TRB. Skip it\n"); 2563 goto cleanup; 2564 } 2565 2566 /* Now update the urb's actual_length and give back to 2567 * the core 2568 */ 2569 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2570 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2571 &status); 2572 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2573 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2574 &status); 2575 else 2576 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2577 ep, &status); 2578 2579 cleanup: 2580 2581 2582 handling_skipped_tds = ep->skip && 2583 trb_comp_code != COMP_MISSED_INT && 2584 trb_comp_code != COMP_PING_ERR; 2585 2586 /* 2587 * Do not update event ring dequeue pointer if we're in a loop 2588 * processing missed tds. 2589 */ 2590 if (!handling_skipped_tds) 2591 inc_deq(xhci, xhci->event_ring); 2592 2593 if (ret) { 2594 urb = td->urb; 2595 urb_priv = urb->hcpriv; 2596 2597 xhci_urb_free_priv(urb_priv); 2598 2599 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2600 if ((urb->actual_length != urb->transfer_buffer_length && 2601 (urb->transfer_flags & 2602 URB_SHORT_NOT_OK)) || 2603 (status != 0 && 2604 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2605 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2606 "expected = %d, status = %d\n", 2607 urb, urb->actual_length, 2608 urb->transfer_buffer_length, 2609 status); 2610 spin_unlock(&xhci->lock); 2611 /* EHCI, UHCI, and OHCI always unconditionally set the 2612 * urb->status of an isochronous endpoint to 0. 2613 */ 2614 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2615 status = 0; 2616 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2617 spin_lock(&xhci->lock); 2618 } 2619 2620 /* 2621 * If ep->skip is set, it means there are missed tds on the 2622 * endpoint ring need to take care of. 2623 * Process them as short transfer until reach the td pointed by 2624 * the event. 2625 */ 2626 } while (handling_skipped_tds); 2627 2628 return 0; 2629 } 2630 2631 /* 2632 * This function handles all OS-owned events on the event ring. It may drop 2633 * xhci->lock between event processing (e.g. to pass up port status changes). 2634 * Returns >0 for "possibly more events to process" (caller should call again), 2635 * otherwise 0 if done. In future, <0 returns should indicate error code. 2636 */ 2637 static int xhci_handle_event(struct xhci_hcd *xhci) 2638 { 2639 union xhci_trb *event; 2640 int update_ptrs = 1; 2641 int ret; 2642 2643 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2644 xhci->error_bitmask |= 1 << 1; 2645 return 0; 2646 } 2647 2648 event = xhci->event_ring->dequeue; 2649 /* Does the HC or OS own the TRB? */ 2650 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2651 xhci->event_ring->cycle_state) { 2652 xhci->error_bitmask |= 1 << 2; 2653 return 0; 2654 } 2655 2656 /* 2657 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2658 * speculative reads of the event's flags/data below. 2659 */ 2660 rmb(); 2661 /* FIXME: Handle more event types. */ 2662 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2663 case TRB_TYPE(TRB_COMPLETION): 2664 handle_cmd_completion(xhci, &event->event_cmd); 2665 break; 2666 case TRB_TYPE(TRB_PORT_STATUS): 2667 handle_port_status(xhci, event); 2668 update_ptrs = 0; 2669 break; 2670 case TRB_TYPE(TRB_TRANSFER): 2671 ret = handle_tx_event(xhci, &event->trans_event); 2672 if (ret < 0) 2673 xhci->error_bitmask |= 1 << 9; 2674 else 2675 update_ptrs = 0; 2676 break; 2677 case TRB_TYPE(TRB_DEV_NOTE): 2678 handle_device_notification(xhci, event); 2679 break; 2680 default: 2681 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2682 TRB_TYPE(48)) 2683 handle_vendor_event(xhci, event); 2684 else 2685 xhci->error_bitmask |= 1 << 3; 2686 } 2687 /* Any of the above functions may drop and re-acquire the lock, so check 2688 * to make sure a watchdog timer didn't mark the host as non-responsive. 2689 */ 2690 if (xhci->xhc_state & XHCI_STATE_DYING) { 2691 xhci_dbg(xhci, "xHCI host dying, returning from " 2692 "event handler.\n"); 2693 return 0; 2694 } 2695 2696 if (update_ptrs) 2697 /* Update SW event ring dequeue pointer */ 2698 inc_deq(xhci, xhci->event_ring); 2699 2700 /* Are there more items on the event ring? Caller will call us again to 2701 * check. 2702 */ 2703 return 1; 2704 } 2705 2706 /* 2707 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2708 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2709 * indicators of an event TRB error, but we check the status *first* to be safe. 2710 */ 2711 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2712 { 2713 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2714 u32 status; 2715 u64 temp_64; 2716 union xhci_trb *event_ring_deq; 2717 dma_addr_t deq; 2718 2719 spin_lock(&xhci->lock); 2720 /* Check if the xHC generated the interrupt, or the irq is shared */ 2721 status = readl(&xhci->op_regs->status); 2722 if (status == 0xffffffff) 2723 goto hw_died; 2724 2725 if (!(status & STS_EINT)) { 2726 spin_unlock(&xhci->lock); 2727 return IRQ_NONE; 2728 } 2729 if (status & STS_FATAL) { 2730 xhci_warn(xhci, "WARNING: Host System Error\n"); 2731 xhci_halt(xhci); 2732 hw_died: 2733 spin_unlock(&xhci->lock); 2734 return IRQ_HANDLED; 2735 } 2736 2737 /* 2738 * Clear the op reg interrupt status first, 2739 * so we can receive interrupts from other MSI-X interrupters. 2740 * Write 1 to clear the interrupt status. 2741 */ 2742 status |= STS_EINT; 2743 writel(status, &xhci->op_regs->status); 2744 /* FIXME when MSI-X is supported and there are multiple vectors */ 2745 /* Clear the MSI-X event interrupt status */ 2746 2747 if (hcd->irq) { 2748 u32 irq_pending; 2749 /* Acknowledge the PCI interrupt */ 2750 irq_pending = readl(&xhci->ir_set->irq_pending); 2751 irq_pending |= IMAN_IP; 2752 writel(irq_pending, &xhci->ir_set->irq_pending); 2753 } 2754 2755 if (xhci->xhc_state & XHCI_STATE_DYING || 2756 xhci->xhc_state & XHCI_STATE_HALTED) { 2757 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2758 "Shouldn't IRQs be disabled?\n"); 2759 /* Clear the event handler busy flag (RW1C); 2760 * the event ring should be empty. 2761 */ 2762 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2763 xhci_write_64(xhci, temp_64 | ERST_EHB, 2764 &xhci->ir_set->erst_dequeue); 2765 spin_unlock(&xhci->lock); 2766 2767 return IRQ_HANDLED; 2768 } 2769 2770 event_ring_deq = xhci->event_ring->dequeue; 2771 /* FIXME this should be a delayed service routine 2772 * that clears the EHB. 2773 */ 2774 while (xhci_handle_event(xhci) > 0) {} 2775 2776 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2777 /* If necessary, update the HW's version of the event ring deq ptr. */ 2778 if (event_ring_deq != xhci->event_ring->dequeue) { 2779 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2780 xhci->event_ring->dequeue); 2781 if (deq == 0) 2782 xhci_warn(xhci, "WARN something wrong with SW event " 2783 "ring dequeue ptr.\n"); 2784 /* Update HC event ring dequeue pointer */ 2785 temp_64 &= ERST_PTR_MASK; 2786 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2787 } 2788 2789 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2790 temp_64 |= ERST_EHB; 2791 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2792 2793 spin_unlock(&xhci->lock); 2794 2795 return IRQ_HANDLED; 2796 } 2797 2798 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2799 { 2800 return xhci_irq(hcd); 2801 } 2802 2803 /**** Endpoint Ring Operations ****/ 2804 2805 /* 2806 * Generic function for queueing a TRB on a ring. 2807 * The caller must have checked to make sure there's room on the ring. 2808 * 2809 * @more_trbs_coming: Will you enqueue more TRBs before calling 2810 * prepare_transfer()? 2811 */ 2812 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2813 bool more_trbs_coming, 2814 u32 field1, u32 field2, u32 field3, u32 field4) 2815 { 2816 struct xhci_generic_trb *trb; 2817 2818 trb = &ring->enqueue->generic; 2819 trb->field[0] = cpu_to_le32(field1); 2820 trb->field[1] = cpu_to_le32(field2); 2821 trb->field[2] = cpu_to_le32(field3); 2822 trb->field[3] = cpu_to_le32(field4); 2823 inc_enq(xhci, ring, more_trbs_coming); 2824 } 2825 2826 /* 2827 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2828 * FIXME allocate segments if the ring is full. 2829 */ 2830 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2831 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2832 { 2833 unsigned int num_trbs_needed; 2834 2835 /* Make sure the endpoint has been added to xHC schedule */ 2836 switch (ep_state) { 2837 case EP_STATE_DISABLED: 2838 /* 2839 * USB core changed config/interfaces without notifying us, 2840 * or hardware is reporting the wrong state. 2841 */ 2842 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2843 return -ENOENT; 2844 case EP_STATE_ERROR: 2845 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2846 /* FIXME event handling code for error needs to clear it */ 2847 /* XXX not sure if this should be -ENOENT or not */ 2848 return -EINVAL; 2849 case EP_STATE_HALTED: 2850 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2851 case EP_STATE_STOPPED: 2852 case EP_STATE_RUNNING: 2853 break; 2854 default: 2855 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2856 /* 2857 * FIXME issue Configure Endpoint command to try to get the HC 2858 * back into a known state. 2859 */ 2860 return -EINVAL; 2861 } 2862 2863 while (1) { 2864 if (room_on_ring(xhci, ep_ring, num_trbs)) 2865 break; 2866 2867 if (ep_ring == xhci->cmd_ring) { 2868 xhci_err(xhci, "Do not support expand command ring\n"); 2869 return -ENOMEM; 2870 } 2871 2872 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2873 "ERROR no room on ep ring, try ring expansion"); 2874 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2875 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2876 mem_flags)) { 2877 xhci_err(xhci, "Ring expansion failed\n"); 2878 return -ENOMEM; 2879 } 2880 } 2881 2882 while (trb_is_link(ep_ring->enqueue)) { 2883 /* If we're not dealing with 0.95 hardware or isoc rings 2884 * on AMD 0.96 host, clear the chain bit. 2885 */ 2886 if (!xhci_link_trb_quirk(xhci) && 2887 !(ep_ring->type == TYPE_ISOC && 2888 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2889 ep_ring->enqueue->link.control &= 2890 cpu_to_le32(~TRB_CHAIN); 2891 else 2892 ep_ring->enqueue->link.control |= 2893 cpu_to_le32(TRB_CHAIN); 2894 2895 wmb(); 2896 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2897 2898 /* Toggle the cycle bit after the last ring segment. */ 2899 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2900 ep_ring->cycle_state ^= 1; 2901 2902 ep_ring->enq_seg = ep_ring->enq_seg->next; 2903 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2904 } 2905 return 0; 2906 } 2907 2908 static int prepare_transfer(struct xhci_hcd *xhci, 2909 struct xhci_virt_device *xdev, 2910 unsigned int ep_index, 2911 unsigned int stream_id, 2912 unsigned int num_trbs, 2913 struct urb *urb, 2914 unsigned int td_index, 2915 gfp_t mem_flags) 2916 { 2917 int ret; 2918 struct urb_priv *urb_priv; 2919 struct xhci_td *td; 2920 struct xhci_ring *ep_ring; 2921 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2922 2923 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2924 if (!ep_ring) { 2925 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2926 stream_id); 2927 return -EINVAL; 2928 } 2929 2930 ret = prepare_ring(xhci, ep_ring, 2931 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2932 num_trbs, mem_flags); 2933 if (ret) 2934 return ret; 2935 2936 urb_priv = urb->hcpriv; 2937 td = urb_priv->td[td_index]; 2938 2939 INIT_LIST_HEAD(&td->td_list); 2940 INIT_LIST_HEAD(&td->cancelled_td_list); 2941 2942 if (td_index == 0) { 2943 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2944 if (unlikely(ret)) 2945 return ret; 2946 } 2947 2948 td->urb = urb; 2949 /* Add this TD to the tail of the endpoint ring's TD list */ 2950 list_add_tail(&td->td_list, &ep_ring->td_list); 2951 td->start_seg = ep_ring->enq_seg; 2952 td->first_trb = ep_ring->enqueue; 2953 2954 urb_priv->td[td_index] = td; 2955 2956 return 0; 2957 } 2958 2959 static unsigned int count_trbs(u64 addr, u64 len) 2960 { 2961 unsigned int num_trbs; 2962 2963 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2964 TRB_MAX_BUFF_SIZE); 2965 if (num_trbs == 0) 2966 num_trbs++; 2967 2968 return num_trbs; 2969 } 2970 2971 static inline unsigned int count_trbs_needed(struct urb *urb) 2972 { 2973 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2974 } 2975 2976 static unsigned int count_sg_trbs_needed(struct urb *urb) 2977 { 2978 struct scatterlist *sg; 2979 unsigned int i, len, full_len, num_trbs = 0; 2980 2981 full_len = urb->transfer_buffer_length; 2982 2983 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2984 len = sg_dma_len(sg); 2985 num_trbs += count_trbs(sg_dma_address(sg), len); 2986 len = min_t(unsigned int, len, full_len); 2987 full_len -= len; 2988 if (full_len == 0) 2989 break; 2990 } 2991 2992 return num_trbs; 2993 } 2994 2995 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2996 { 2997 u64 addr, len; 2998 2999 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3000 len = urb->iso_frame_desc[i].length; 3001 3002 return count_trbs(addr, len); 3003 } 3004 3005 static void check_trb_math(struct urb *urb, int running_total) 3006 { 3007 if (unlikely(running_total != urb->transfer_buffer_length)) 3008 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3009 "queued %#x (%d), asked for %#x (%d)\n", 3010 __func__, 3011 urb->ep->desc.bEndpointAddress, 3012 running_total, running_total, 3013 urb->transfer_buffer_length, 3014 urb->transfer_buffer_length); 3015 } 3016 3017 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3018 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3019 struct xhci_generic_trb *start_trb) 3020 { 3021 /* 3022 * Pass all the TRBs to the hardware at once and make sure this write 3023 * isn't reordered. 3024 */ 3025 wmb(); 3026 if (start_cycle) 3027 start_trb->field[3] |= cpu_to_le32(start_cycle); 3028 else 3029 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3030 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3031 } 3032 3033 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3034 struct xhci_ep_ctx *ep_ctx) 3035 { 3036 int xhci_interval; 3037 int ep_interval; 3038 3039 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3040 ep_interval = urb->interval; 3041 3042 /* Convert to microframes */ 3043 if (urb->dev->speed == USB_SPEED_LOW || 3044 urb->dev->speed == USB_SPEED_FULL) 3045 ep_interval *= 8; 3046 3047 /* FIXME change this to a warning and a suggestion to use the new API 3048 * to set the polling interval (once the API is added). 3049 */ 3050 if (xhci_interval != ep_interval) { 3051 dev_dbg_ratelimited(&urb->dev->dev, 3052 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3053 ep_interval, ep_interval == 1 ? "" : "s", 3054 xhci_interval, xhci_interval == 1 ? "" : "s"); 3055 urb->interval = xhci_interval; 3056 /* Convert back to frames for LS/FS devices */ 3057 if (urb->dev->speed == USB_SPEED_LOW || 3058 urb->dev->speed == USB_SPEED_FULL) 3059 urb->interval /= 8; 3060 } 3061 } 3062 3063 /* 3064 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3065 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3066 * (comprised of sg list entries) can take several service intervals to 3067 * transmit. 3068 */ 3069 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3070 struct urb *urb, int slot_id, unsigned int ep_index) 3071 { 3072 struct xhci_ep_ctx *ep_ctx; 3073 3074 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3075 check_interval(xhci, urb, ep_ctx); 3076 3077 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3078 } 3079 3080 /* 3081 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3082 * packets remaining in the TD (*not* including this TRB). 3083 * 3084 * Total TD packet count = total_packet_count = 3085 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3086 * 3087 * Packets transferred up to and including this TRB = packets_transferred = 3088 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3089 * 3090 * TD size = total_packet_count - packets_transferred 3091 * 3092 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3093 * including this TRB, right shifted by 10 3094 * 3095 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3096 * This is taken care of in the TRB_TD_SIZE() macro 3097 * 3098 * The last TRB in a TD must have the TD size set to zero. 3099 */ 3100 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3101 int trb_buff_len, unsigned int td_total_len, 3102 struct urb *urb, bool more_trbs_coming) 3103 { 3104 u32 maxp, total_packet_count; 3105 3106 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3107 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3108 return ((td_total_len - transferred) >> 10); 3109 3110 /* One TRB with a zero-length data packet. */ 3111 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3112 trb_buff_len == td_total_len) 3113 return 0; 3114 3115 /* for MTK xHCI, TD size doesn't include this TRB */ 3116 if (xhci->quirks & XHCI_MTK_HOST) 3117 trb_buff_len = 0; 3118 3119 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3120 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3121 3122 /* Queueing functions don't count the current TRB into transferred */ 3123 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3124 } 3125 3126 3127 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3128 u32 *trb_buff_len, struct xhci_segment *seg) 3129 { 3130 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3131 unsigned int unalign; 3132 unsigned int max_pkt; 3133 u32 new_buff_len; 3134 3135 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3136 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3137 3138 /* we got lucky, last normal TRB data on segment is packet aligned */ 3139 if (unalign == 0) 3140 return 0; 3141 3142 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3143 unalign, *trb_buff_len); 3144 3145 /* is the last nornal TRB alignable by splitting it */ 3146 if (*trb_buff_len > unalign) { 3147 *trb_buff_len -= unalign; 3148 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3149 return 0; 3150 } 3151 3152 /* 3153 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3154 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3155 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3156 */ 3157 new_buff_len = max_pkt - (enqd_len % max_pkt); 3158 3159 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3160 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3161 3162 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3163 if (usb_urb_dir_out(urb)) { 3164 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3165 seg->bounce_buf, new_buff_len, enqd_len); 3166 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3167 max_pkt, DMA_TO_DEVICE); 3168 } else { 3169 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3170 max_pkt, DMA_FROM_DEVICE); 3171 } 3172 3173 if (dma_mapping_error(dev, seg->bounce_dma)) { 3174 /* try without aligning. Some host controllers survive */ 3175 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3176 return 0; 3177 } 3178 *trb_buff_len = new_buff_len; 3179 seg->bounce_len = new_buff_len; 3180 seg->bounce_offs = enqd_len; 3181 3182 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3183 3184 return 1; 3185 } 3186 3187 /* This is very similar to what ehci-q.c qtd_fill() does */ 3188 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3189 struct urb *urb, int slot_id, unsigned int ep_index) 3190 { 3191 struct xhci_ring *ring; 3192 struct urb_priv *urb_priv; 3193 struct xhci_td *td; 3194 struct xhci_generic_trb *start_trb; 3195 struct scatterlist *sg = NULL; 3196 bool more_trbs_coming = true; 3197 bool need_zero_pkt = false; 3198 bool first_trb = true; 3199 unsigned int num_trbs; 3200 unsigned int start_cycle, num_sgs = 0; 3201 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3202 int sent_len, ret; 3203 u32 field, length_field, remainder; 3204 u64 addr, send_addr; 3205 3206 ring = xhci_urb_to_transfer_ring(xhci, urb); 3207 if (!ring) 3208 return -EINVAL; 3209 3210 full_len = urb->transfer_buffer_length; 3211 /* If we have scatter/gather list, we use it. */ 3212 if (urb->num_sgs) { 3213 num_sgs = urb->num_mapped_sgs; 3214 sg = urb->sg; 3215 addr = (u64) sg_dma_address(sg); 3216 block_len = sg_dma_len(sg); 3217 num_trbs = count_sg_trbs_needed(urb); 3218 } else { 3219 num_trbs = count_trbs_needed(urb); 3220 addr = (u64) urb->transfer_dma; 3221 block_len = full_len; 3222 } 3223 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3224 ep_index, urb->stream_id, 3225 num_trbs, urb, 0, mem_flags); 3226 if (unlikely(ret < 0)) 3227 return ret; 3228 3229 urb_priv = urb->hcpriv; 3230 3231 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3232 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length > 1) 3233 need_zero_pkt = true; 3234 3235 td = urb_priv->td[0]; 3236 3237 /* 3238 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3239 * until we've finished creating all the other TRBs. The ring's cycle 3240 * state may change as we enqueue the other TRBs, so save it too. 3241 */ 3242 start_trb = &ring->enqueue->generic; 3243 start_cycle = ring->cycle_state; 3244 send_addr = addr; 3245 3246 /* Queue the TRBs, even if they are zero-length */ 3247 for (enqd_len = 0; first_trb || enqd_len < full_len; 3248 enqd_len += trb_buff_len) { 3249 field = TRB_TYPE(TRB_NORMAL); 3250 3251 /* TRB buffer should not cross 64KB boundaries */ 3252 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3253 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3254 3255 if (enqd_len + trb_buff_len > full_len) 3256 trb_buff_len = full_len - enqd_len; 3257 3258 /* Don't change the cycle bit of the first TRB until later */ 3259 if (first_trb) { 3260 first_trb = false; 3261 if (start_cycle == 0) 3262 field |= TRB_CYCLE; 3263 } else 3264 field |= ring->cycle_state; 3265 3266 /* Chain all the TRBs together; clear the chain bit in the last 3267 * TRB to indicate it's the last TRB in the chain. 3268 */ 3269 if (enqd_len + trb_buff_len < full_len) { 3270 field |= TRB_CHAIN; 3271 if (trb_is_link(ring->enqueue + 1)) { 3272 if (xhci_align_td(xhci, urb, enqd_len, 3273 &trb_buff_len, 3274 ring->enq_seg)) { 3275 send_addr = ring->enq_seg->bounce_dma; 3276 /* assuming TD won't span 2 segs */ 3277 td->bounce_seg = ring->enq_seg; 3278 } 3279 } 3280 } 3281 if (enqd_len + trb_buff_len >= full_len) { 3282 field &= ~TRB_CHAIN; 3283 field |= TRB_IOC; 3284 more_trbs_coming = false; 3285 td->last_trb = ring->enqueue; 3286 } 3287 3288 /* Only set interrupt on short packet for IN endpoints */ 3289 if (usb_urb_dir_in(urb)) 3290 field |= TRB_ISP; 3291 3292 /* Set the TRB length, TD size, and interrupter fields. */ 3293 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3294 full_len, urb, more_trbs_coming); 3295 3296 length_field = TRB_LEN(trb_buff_len) | 3297 TRB_TD_SIZE(remainder) | 3298 TRB_INTR_TARGET(0); 3299 3300 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3301 lower_32_bits(send_addr), 3302 upper_32_bits(send_addr), 3303 length_field, 3304 field); 3305 3306 addr += trb_buff_len; 3307 sent_len = trb_buff_len; 3308 3309 while (sg && sent_len >= block_len) { 3310 /* New sg entry */ 3311 --num_sgs; 3312 sent_len -= block_len; 3313 if (num_sgs != 0) { 3314 sg = sg_next(sg); 3315 block_len = sg_dma_len(sg); 3316 addr = (u64) sg_dma_address(sg); 3317 addr += sent_len; 3318 } 3319 } 3320 block_len -= sent_len; 3321 send_addr = addr; 3322 } 3323 3324 if (need_zero_pkt) { 3325 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3326 ep_index, urb->stream_id, 3327 1, urb, 1, mem_flags); 3328 urb_priv->td[1]->last_trb = ring->enqueue; 3329 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3330 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3331 } 3332 3333 check_trb_math(urb, enqd_len); 3334 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3335 start_cycle, start_trb); 3336 return 0; 3337 } 3338 3339 /* Caller must have locked xhci->lock */ 3340 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3341 struct urb *urb, int slot_id, unsigned int ep_index) 3342 { 3343 struct xhci_ring *ep_ring; 3344 int num_trbs; 3345 int ret; 3346 struct usb_ctrlrequest *setup; 3347 struct xhci_generic_trb *start_trb; 3348 int start_cycle; 3349 u32 field, length_field, remainder; 3350 struct urb_priv *urb_priv; 3351 struct xhci_td *td; 3352 3353 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3354 if (!ep_ring) 3355 return -EINVAL; 3356 3357 /* 3358 * Need to copy setup packet into setup TRB, so we can't use the setup 3359 * DMA address. 3360 */ 3361 if (!urb->setup_packet) 3362 return -EINVAL; 3363 3364 /* 1 TRB for setup, 1 for status */ 3365 num_trbs = 2; 3366 /* 3367 * Don't need to check if we need additional event data and normal TRBs, 3368 * since data in control transfers will never get bigger than 16MB 3369 * XXX: can we get a buffer that crosses 64KB boundaries? 3370 */ 3371 if (urb->transfer_buffer_length > 0) 3372 num_trbs++; 3373 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3374 ep_index, urb->stream_id, 3375 num_trbs, urb, 0, mem_flags); 3376 if (ret < 0) 3377 return ret; 3378 3379 urb_priv = urb->hcpriv; 3380 td = urb_priv->td[0]; 3381 3382 /* 3383 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3384 * until we've finished creating all the other TRBs. The ring's cycle 3385 * state may change as we enqueue the other TRBs, so save it too. 3386 */ 3387 start_trb = &ep_ring->enqueue->generic; 3388 start_cycle = ep_ring->cycle_state; 3389 3390 /* Queue setup TRB - see section 6.4.1.2.1 */ 3391 /* FIXME better way to translate setup_packet into two u32 fields? */ 3392 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3393 field = 0; 3394 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3395 if (start_cycle == 0) 3396 field |= 0x1; 3397 3398 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3399 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3400 if (urb->transfer_buffer_length > 0) { 3401 if (setup->bRequestType & USB_DIR_IN) 3402 field |= TRB_TX_TYPE(TRB_DATA_IN); 3403 else 3404 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3405 } 3406 } 3407 3408 queue_trb(xhci, ep_ring, true, 3409 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3410 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3411 TRB_LEN(8) | TRB_INTR_TARGET(0), 3412 /* Immediate data in pointer */ 3413 field); 3414 3415 /* If there's data, queue data TRBs */ 3416 /* Only set interrupt on short packet for IN endpoints */ 3417 if (usb_urb_dir_in(urb)) 3418 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3419 else 3420 field = TRB_TYPE(TRB_DATA); 3421 3422 remainder = xhci_td_remainder(xhci, 0, 3423 urb->transfer_buffer_length, 3424 urb->transfer_buffer_length, 3425 urb, 1); 3426 3427 length_field = TRB_LEN(urb->transfer_buffer_length) | 3428 TRB_TD_SIZE(remainder) | 3429 TRB_INTR_TARGET(0); 3430 3431 if (urb->transfer_buffer_length > 0) { 3432 if (setup->bRequestType & USB_DIR_IN) 3433 field |= TRB_DIR_IN; 3434 queue_trb(xhci, ep_ring, true, 3435 lower_32_bits(urb->transfer_dma), 3436 upper_32_bits(urb->transfer_dma), 3437 length_field, 3438 field | ep_ring->cycle_state); 3439 } 3440 3441 /* Save the DMA address of the last TRB in the TD */ 3442 td->last_trb = ep_ring->enqueue; 3443 3444 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3445 /* If the device sent data, the status stage is an OUT transfer */ 3446 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3447 field = 0; 3448 else 3449 field = TRB_DIR_IN; 3450 queue_trb(xhci, ep_ring, false, 3451 0, 3452 0, 3453 TRB_INTR_TARGET(0), 3454 /* Event on completion */ 3455 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3456 3457 giveback_first_trb(xhci, slot_id, ep_index, 0, 3458 start_cycle, start_trb); 3459 return 0; 3460 } 3461 3462 /* 3463 * The transfer burst count field of the isochronous TRB defines the number of 3464 * bursts that are required to move all packets in this TD. Only SuperSpeed 3465 * devices can burst up to bMaxBurst number of packets per service interval. 3466 * This field is zero based, meaning a value of zero in the field means one 3467 * burst. Basically, for everything but SuperSpeed devices, this field will be 3468 * zero. Only xHCI 1.0 host controllers support this field. 3469 */ 3470 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3471 struct urb *urb, unsigned int total_packet_count) 3472 { 3473 unsigned int max_burst; 3474 3475 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3476 return 0; 3477 3478 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3479 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3480 } 3481 3482 /* 3483 * Returns the number of packets in the last "burst" of packets. This field is 3484 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3485 * the last burst packet count is equal to the total number of packets in the 3486 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3487 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3488 * contain 1 to (bMaxBurst + 1) packets. 3489 */ 3490 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3491 struct urb *urb, unsigned int total_packet_count) 3492 { 3493 unsigned int max_burst; 3494 unsigned int residue; 3495 3496 if (xhci->hci_version < 0x100) 3497 return 0; 3498 3499 if (urb->dev->speed >= USB_SPEED_SUPER) { 3500 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3501 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3502 residue = total_packet_count % (max_burst + 1); 3503 /* If residue is zero, the last burst contains (max_burst + 1) 3504 * number of packets, but the TLBPC field is zero-based. 3505 */ 3506 if (residue == 0) 3507 return max_burst; 3508 return residue - 1; 3509 } 3510 if (total_packet_count == 0) 3511 return 0; 3512 return total_packet_count - 1; 3513 } 3514 3515 /* 3516 * Calculates Frame ID field of the isochronous TRB identifies the 3517 * target frame that the Interval associated with this Isochronous 3518 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3519 * 3520 * Returns actual frame id on success, negative value on error. 3521 */ 3522 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3523 struct urb *urb, int index) 3524 { 3525 int start_frame, ist, ret = 0; 3526 int start_frame_id, end_frame_id, current_frame_id; 3527 3528 if (urb->dev->speed == USB_SPEED_LOW || 3529 urb->dev->speed == USB_SPEED_FULL) 3530 start_frame = urb->start_frame + index * urb->interval; 3531 else 3532 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3533 3534 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3535 * 3536 * If bit [3] of IST is cleared to '0', software can add a TRB no 3537 * later than IST[2:0] Microframes before that TRB is scheduled to 3538 * be executed. 3539 * If bit [3] of IST is set to '1', software can add a TRB no later 3540 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3541 */ 3542 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3543 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3544 ist <<= 3; 3545 3546 /* Software shall not schedule an Isoch TD with a Frame ID value that 3547 * is less than the Start Frame ID or greater than the End Frame ID, 3548 * where: 3549 * 3550 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3551 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3552 * 3553 * Both the End Frame ID and Start Frame ID values are calculated 3554 * in microframes. When software determines the valid Frame ID value; 3555 * The End Frame ID value should be rounded down to the nearest Frame 3556 * boundary, and the Start Frame ID value should be rounded up to the 3557 * nearest Frame boundary. 3558 */ 3559 current_frame_id = readl(&xhci->run_regs->microframe_index); 3560 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3561 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3562 3563 start_frame &= 0x7ff; 3564 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3565 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3566 3567 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3568 __func__, index, readl(&xhci->run_regs->microframe_index), 3569 start_frame_id, end_frame_id, start_frame); 3570 3571 if (start_frame_id < end_frame_id) { 3572 if (start_frame > end_frame_id || 3573 start_frame < start_frame_id) 3574 ret = -EINVAL; 3575 } else if (start_frame_id > end_frame_id) { 3576 if ((start_frame > end_frame_id && 3577 start_frame < start_frame_id)) 3578 ret = -EINVAL; 3579 } else { 3580 ret = -EINVAL; 3581 } 3582 3583 if (index == 0) { 3584 if (ret == -EINVAL || start_frame == start_frame_id) { 3585 start_frame = start_frame_id + 1; 3586 if (urb->dev->speed == USB_SPEED_LOW || 3587 urb->dev->speed == USB_SPEED_FULL) 3588 urb->start_frame = start_frame; 3589 else 3590 urb->start_frame = start_frame << 3; 3591 ret = 0; 3592 } 3593 } 3594 3595 if (ret) { 3596 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3597 start_frame, current_frame_id, index, 3598 start_frame_id, end_frame_id); 3599 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3600 return ret; 3601 } 3602 3603 return start_frame; 3604 } 3605 3606 /* This is for isoc transfer */ 3607 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3608 struct urb *urb, int slot_id, unsigned int ep_index) 3609 { 3610 struct xhci_ring *ep_ring; 3611 struct urb_priv *urb_priv; 3612 struct xhci_td *td; 3613 int num_tds, trbs_per_td; 3614 struct xhci_generic_trb *start_trb; 3615 bool first_trb; 3616 int start_cycle; 3617 u32 field, length_field; 3618 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3619 u64 start_addr, addr; 3620 int i, j; 3621 bool more_trbs_coming; 3622 struct xhci_virt_ep *xep; 3623 int frame_id; 3624 3625 xep = &xhci->devs[slot_id]->eps[ep_index]; 3626 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3627 3628 num_tds = urb->number_of_packets; 3629 if (num_tds < 1) { 3630 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3631 return -EINVAL; 3632 } 3633 start_addr = (u64) urb->transfer_dma; 3634 start_trb = &ep_ring->enqueue->generic; 3635 start_cycle = ep_ring->cycle_state; 3636 3637 urb_priv = urb->hcpriv; 3638 /* Queue the TRBs for each TD, even if they are zero-length */ 3639 for (i = 0; i < num_tds; i++) { 3640 unsigned int total_pkt_count, max_pkt; 3641 unsigned int burst_count, last_burst_pkt_count; 3642 u32 sia_frame_id; 3643 3644 first_trb = true; 3645 running_total = 0; 3646 addr = start_addr + urb->iso_frame_desc[i].offset; 3647 td_len = urb->iso_frame_desc[i].length; 3648 td_remain_len = td_len; 3649 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3650 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3651 3652 /* A zero-length transfer still involves at least one packet. */ 3653 if (total_pkt_count == 0) 3654 total_pkt_count++; 3655 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3656 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3657 urb, total_pkt_count); 3658 3659 trbs_per_td = count_isoc_trbs_needed(urb, i); 3660 3661 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3662 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3663 if (ret < 0) { 3664 if (i == 0) 3665 return ret; 3666 goto cleanup; 3667 } 3668 td = urb_priv->td[i]; 3669 3670 /* use SIA as default, if frame id is used overwrite it */ 3671 sia_frame_id = TRB_SIA; 3672 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3673 HCC_CFC(xhci->hcc_params)) { 3674 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3675 if (frame_id >= 0) 3676 sia_frame_id = TRB_FRAME_ID(frame_id); 3677 } 3678 /* 3679 * Set isoc specific data for the first TRB in a TD. 3680 * Prevent HW from getting the TRBs by keeping the cycle state 3681 * inverted in the first TDs isoc TRB. 3682 */ 3683 field = TRB_TYPE(TRB_ISOC) | 3684 TRB_TLBPC(last_burst_pkt_count) | 3685 sia_frame_id | 3686 (i ? ep_ring->cycle_state : !start_cycle); 3687 3688 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3689 if (!xep->use_extended_tbc) 3690 field |= TRB_TBC(burst_count); 3691 3692 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3693 for (j = 0; j < trbs_per_td; j++) { 3694 u32 remainder = 0; 3695 3696 /* only first TRB is isoc, overwrite otherwise */ 3697 if (!first_trb) 3698 field = TRB_TYPE(TRB_NORMAL) | 3699 ep_ring->cycle_state; 3700 3701 /* Only set interrupt on short packet for IN EPs */ 3702 if (usb_urb_dir_in(urb)) 3703 field |= TRB_ISP; 3704 3705 /* Set the chain bit for all except the last TRB */ 3706 if (j < trbs_per_td - 1) { 3707 more_trbs_coming = true; 3708 field |= TRB_CHAIN; 3709 } else { 3710 more_trbs_coming = false; 3711 td->last_trb = ep_ring->enqueue; 3712 field |= TRB_IOC; 3713 /* set BEI, except for the last TD */ 3714 if (xhci->hci_version >= 0x100 && 3715 !(xhci->quirks & XHCI_AVOID_BEI) && 3716 i < num_tds - 1) 3717 field |= TRB_BEI; 3718 } 3719 /* Calculate TRB length */ 3720 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3721 if (trb_buff_len > td_remain_len) 3722 trb_buff_len = td_remain_len; 3723 3724 /* Set the TRB length, TD size, & interrupter fields. */ 3725 remainder = xhci_td_remainder(xhci, running_total, 3726 trb_buff_len, td_len, 3727 urb, more_trbs_coming); 3728 3729 length_field = TRB_LEN(trb_buff_len) | 3730 TRB_INTR_TARGET(0); 3731 3732 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3733 if (first_trb && xep->use_extended_tbc) 3734 length_field |= TRB_TD_SIZE_TBC(burst_count); 3735 else 3736 length_field |= TRB_TD_SIZE(remainder); 3737 first_trb = false; 3738 3739 queue_trb(xhci, ep_ring, more_trbs_coming, 3740 lower_32_bits(addr), 3741 upper_32_bits(addr), 3742 length_field, 3743 field); 3744 running_total += trb_buff_len; 3745 3746 addr += trb_buff_len; 3747 td_remain_len -= trb_buff_len; 3748 } 3749 3750 /* Check TD length */ 3751 if (running_total != td_len) { 3752 xhci_err(xhci, "ISOC TD length unmatch\n"); 3753 ret = -EINVAL; 3754 goto cleanup; 3755 } 3756 } 3757 3758 /* store the next frame id */ 3759 if (HCC_CFC(xhci->hcc_params)) 3760 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3761 3762 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3763 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3764 usb_amd_quirk_pll_disable(); 3765 } 3766 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3767 3768 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3769 start_cycle, start_trb); 3770 return 0; 3771 cleanup: 3772 /* Clean up a partially enqueued isoc transfer. */ 3773 3774 for (i--; i >= 0; i--) 3775 list_del_init(&urb_priv->td[i]->td_list); 3776 3777 /* Use the first TD as a temporary variable to turn the TDs we've queued 3778 * into No-ops with a software-owned cycle bit. That way the hardware 3779 * won't accidentally start executing bogus TDs when we partially 3780 * overwrite them. td->first_trb and td->start_seg are already set. 3781 */ 3782 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3783 /* Every TRB except the first & last will have its cycle bit flipped. */ 3784 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3785 3786 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3787 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3788 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3789 ep_ring->cycle_state = start_cycle; 3790 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3791 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3792 return ret; 3793 } 3794 3795 /* 3796 * Check transfer ring to guarantee there is enough room for the urb. 3797 * Update ISO URB start_frame and interval. 3798 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3799 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3800 * Contiguous Frame ID is not supported by HC. 3801 */ 3802 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3803 struct urb *urb, int slot_id, unsigned int ep_index) 3804 { 3805 struct xhci_virt_device *xdev; 3806 struct xhci_ring *ep_ring; 3807 struct xhci_ep_ctx *ep_ctx; 3808 int start_frame; 3809 int num_tds, num_trbs, i; 3810 int ret; 3811 struct xhci_virt_ep *xep; 3812 int ist; 3813 3814 xdev = xhci->devs[slot_id]; 3815 xep = &xhci->devs[slot_id]->eps[ep_index]; 3816 ep_ring = xdev->eps[ep_index].ring; 3817 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3818 3819 num_trbs = 0; 3820 num_tds = urb->number_of_packets; 3821 for (i = 0; i < num_tds; i++) 3822 num_trbs += count_isoc_trbs_needed(urb, i); 3823 3824 /* Check the ring to guarantee there is enough room for the whole urb. 3825 * Do not insert any td of the urb to the ring if the check failed. 3826 */ 3827 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3828 num_trbs, mem_flags); 3829 if (ret) 3830 return ret; 3831 3832 /* 3833 * Check interval value. This should be done before we start to 3834 * calculate the start frame value. 3835 */ 3836 check_interval(xhci, urb, ep_ctx); 3837 3838 /* Calculate the start frame and put it in urb->start_frame. */ 3839 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3840 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 3841 EP_STATE_RUNNING) { 3842 urb->start_frame = xep->next_frame_id; 3843 goto skip_start_over; 3844 } 3845 } 3846 3847 start_frame = readl(&xhci->run_regs->microframe_index); 3848 start_frame &= 0x3fff; 3849 /* 3850 * Round up to the next frame and consider the time before trb really 3851 * gets scheduled by hardare. 3852 */ 3853 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3854 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3855 ist <<= 3; 3856 start_frame += ist + XHCI_CFC_DELAY; 3857 start_frame = roundup(start_frame, 8); 3858 3859 /* 3860 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3861 * is greate than 8 microframes. 3862 */ 3863 if (urb->dev->speed == USB_SPEED_LOW || 3864 urb->dev->speed == USB_SPEED_FULL) { 3865 start_frame = roundup(start_frame, urb->interval << 3); 3866 urb->start_frame = start_frame >> 3; 3867 } else { 3868 start_frame = roundup(start_frame, urb->interval); 3869 urb->start_frame = start_frame; 3870 } 3871 3872 skip_start_over: 3873 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3874 3875 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3876 } 3877 3878 /**** Command Ring Operations ****/ 3879 3880 /* Generic function for queueing a command TRB on the command ring. 3881 * Check to make sure there's room on the command ring for one command TRB. 3882 * Also check that there's room reserved for commands that must not fail. 3883 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3884 * then only check for the number of reserved spots. 3885 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3886 * because the command event handler may want to resubmit a failed command. 3887 */ 3888 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3889 u32 field1, u32 field2, 3890 u32 field3, u32 field4, bool command_must_succeed) 3891 { 3892 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3893 int ret; 3894 3895 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3896 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3897 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3898 return -ESHUTDOWN; 3899 } 3900 3901 if (!command_must_succeed) 3902 reserved_trbs++; 3903 3904 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3905 reserved_trbs, GFP_ATOMIC); 3906 if (ret < 0) { 3907 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3908 if (command_must_succeed) 3909 xhci_err(xhci, "ERR: Reserved TRB counting for " 3910 "unfailable commands failed.\n"); 3911 return ret; 3912 } 3913 3914 cmd->command_trb = xhci->cmd_ring->enqueue; 3915 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3916 3917 /* if there are no other commands queued we start the timeout timer */ 3918 if (xhci->cmd_list.next == &cmd->cmd_list && 3919 !timer_pending(&xhci->cmd_timer)) { 3920 xhci->current_cmd = cmd; 3921 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3922 } 3923 3924 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3925 field4 | xhci->cmd_ring->cycle_state); 3926 return 0; 3927 } 3928 3929 /* Queue a slot enable or disable request on the command ring */ 3930 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3931 u32 trb_type, u32 slot_id) 3932 { 3933 return queue_command(xhci, cmd, 0, 0, 0, 3934 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3935 } 3936 3937 /* Queue an address device command TRB */ 3938 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3939 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3940 { 3941 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3942 upper_32_bits(in_ctx_ptr), 0, 3943 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3944 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3945 } 3946 3947 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3948 u32 field1, u32 field2, u32 field3, u32 field4) 3949 { 3950 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3951 } 3952 3953 /* Queue a reset device command TRB */ 3954 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3955 u32 slot_id) 3956 { 3957 return queue_command(xhci, cmd, 0, 0, 0, 3958 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3959 false); 3960 } 3961 3962 /* Queue a configure endpoint command TRB */ 3963 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3964 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3965 u32 slot_id, bool command_must_succeed) 3966 { 3967 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3968 upper_32_bits(in_ctx_ptr), 0, 3969 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3970 command_must_succeed); 3971 } 3972 3973 /* Queue an evaluate context command TRB */ 3974 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3975 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3976 { 3977 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3978 upper_32_bits(in_ctx_ptr), 0, 3979 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3980 command_must_succeed); 3981 } 3982 3983 /* 3984 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3985 * activity on an endpoint that is about to be suspended. 3986 */ 3987 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3988 int slot_id, unsigned int ep_index, int suspend) 3989 { 3990 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3991 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3992 u32 type = TRB_TYPE(TRB_STOP_RING); 3993 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3994 3995 return queue_command(xhci, cmd, 0, 0, 0, 3996 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3997 } 3998 3999 /* Set Transfer Ring Dequeue Pointer command */ 4000 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4001 unsigned int slot_id, unsigned int ep_index, 4002 unsigned int stream_id, 4003 struct xhci_dequeue_state *deq_state) 4004 { 4005 dma_addr_t addr; 4006 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4007 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4008 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4009 u32 trb_sct = 0; 4010 u32 type = TRB_TYPE(TRB_SET_DEQ); 4011 struct xhci_virt_ep *ep; 4012 struct xhci_command *cmd; 4013 int ret; 4014 4015 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4016 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4017 deq_state->new_deq_seg, 4018 (unsigned long long)deq_state->new_deq_seg->dma, 4019 deq_state->new_deq_ptr, 4020 (unsigned long long)xhci_trb_virt_to_dma( 4021 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4022 deq_state->new_cycle_state); 4023 4024 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4025 deq_state->new_deq_ptr); 4026 if (addr == 0) { 4027 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4028 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4029 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4030 return; 4031 } 4032 ep = &xhci->devs[slot_id]->eps[ep_index]; 4033 if ((ep->ep_state & SET_DEQ_PENDING)) { 4034 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4035 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4036 return; 4037 } 4038 4039 /* This function gets called from contexts where it cannot sleep */ 4040 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4041 if (!cmd) { 4042 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 4043 return; 4044 } 4045 4046 ep->queued_deq_seg = deq_state->new_deq_seg; 4047 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4048 if (stream_id) 4049 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4050 ret = queue_command(xhci, cmd, 4051 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4052 upper_32_bits(addr), trb_stream_id, 4053 trb_slot_id | trb_ep_index | type, false); 4054 if (ret < 0) { 4055 xhci_free_command(xhci, cmd); 4056 return; 4057 } 4058 4059 /* Stop the TD queueing code from ringing the doorbell until 4060 * this command completes. The HC won't set the dequeue pointer 4061 * if the ring is running, and ringing the doorbell starts the 4062 * ring running. 4063 */ 4064 ep->ep_state |= SET_DEQ_PENDING; 4065 } 4066 4067 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4068 int slot_id, unsigned int ep_index) 4069 { 4070 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4071 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4072 u32 type = TRB_TYPE(TRB_RESET_EP); 4073 4074 return queue_command(xhci, cmd, 0, 0, 0, 4075 trb_slot_id | trb_ep_index | type, false); 4076 } 4077