xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 /*
12  * Ring initialization rules:
13  * 1. Each segment is initialized to zero, except for link TRBs.
14  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
15  *    Consumer Cycle State (CCS), depending on ring function.
16  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17  *
18  * Ring behavior rules:
19  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
20  *    least one free TRB in the ring.  This is useful if you want to turn that
21  *    into a link TRB and expand the ring.
22  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23  *    link TRB, then load the pointer with the address in the link TRB.  If the
24  *    link TRB had its toggle bit set, you may need to update the ring cycle
25  *    state (see cycle bit rules).  You may have to do this multiple times
26  *    until you reach a non-link TRB.
27  * 3. A ring is full if enqueue++ (for the definition of increment above)
28  *    equals the dequeue pointer.
29  *
30  * Cycle bit rules:
31  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32  *    in a link TRB, it must toggle the ring cycle state.
33  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34  *    in a link TRB, it must toggle the ring cycle state.
35  *
36  * Producer rules:
37  * 1. Check if ring is full before you enqueue.
38  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39  *    Update enqueue pointer between each write (which may update the ring
40  *    cycle state).
41  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
42  *    and endpoint rings.  If HC is the producer for the event ring,
43  *    and it generates an interrupt according to interrupt modulation rules.
44  *
45  * Consumer rules:
46  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
47  *    the TRB is owned by the consumer.
48  * 2. Update dequeue pointer (which may update the ring cycle state) and
49  *    continue processing TRBs until you reach a TRB which is not owned by you.
50  * 3. Notify the producer.  SW is the consumer for the event ring, and it
51  *   updates event ring dequeue pointer.  HC is the consumer for the command and
52  *   endpoint rings; it generates events on the event ring for these.
53  */
54 
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61 
62 /*
63  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64  * address of the TRB.
65  */
66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 		union xhci_trb *trb)
68 {
69 	unsigned long segment_offset;
70 
71 	if (!seg || !trb || trb < seg->trbs)
72 		return 0;
73 	/* offset in TRBs */
74 	segment_offset = trb - seg->trbs;
75 	if (segment_offset >= TRBS_PER_SEGMENT)
76 		return 0;
77 	return seg->dma + (segment_offset * sizeof(*trb));
78 }
79 
80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84 
85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 	return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89 
90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94 
95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 			struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100 
101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 	struct urb_priv *urb_priv = td->urb->hcpriv;
109 
110 	return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112 
113 static void inc_td_cnt(struct urb *urb)
114 {
115 	struct urb_priv *urb_priv = urb->hcpriv;
116 
117 	urb_priv->num_tds_done++;
118 }
119 
120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 	if (trb_is_link(trb)) {
123 		/* unchain chained link TRBs */
124 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 	} else {
126 		trb->generic.field[0] = 0;
127 		trb->generic.field[1] = 0;
128 		trb->generic.field[2] = 0;
129 		/* Preserve only the cycle bit of this TRB */
130 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 	}
133 }
134 
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
137  * effect the ring dequeue or enqueue pointers.
138  */
139 static void next_trb(struct xhci_hcd *xhci,
140 		struct xhci_ring *ring,
141 		struct xhci_segment **seg,
142 		union xhci_trb **trb)
143 {
144 	if (trb_is_link(*trb)) {
145 		*seg = (*seg)->next;
146 		*trb = ((*seg)->trbs);
147 	} else {
148 		(*trb)++;
149 	}
150 }
151 
152 /*
153  * See Cycle bit rules. SW is the consumer for the event ring only.
154  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
155  */
156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 	/* event ring doesn't have link trbs, check for last trb */
159 	if (ring->type == TYPE_EVENT) {
160 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 			ring->dequeue++;
162 			goto out;
163 		}
164 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 			ring->cycle_state ^= 1;
166 		ring->deq_seg = ring->deq_seg->next;
167 		ring->dequeue = ring->deq_seg->trbs;
168 		goto out;
169 	}
170 
171 	/* All other rings have link trbs */
172 	if (!trb_is_link(ring->dequeue)) {
173 		ring->dequeue++;
174 		ring->num_trbs_free++;
175 	}
176 	while (trb_is_link(ring->dequeue)) {
177 		ring->deq_seg = ring->deq_seg->next;
178 		ring->dequeue = ring->deq_seg->trbs;
179 	}
180 
181 out:
182 	trace_xhci_inc_deq(ring);
183 
184 	return;
185 }
186 
187 /*
188  * See Cycle bit rules. SW is the consumer for the event ring only.
189  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
190  *
191  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192  * chain bit is set), then set the chain bit in all the following link TRBs.
193  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194  * have their chain bit cleared (so that each Link TRB is a separate TD).
195  *
196  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197  * set, but other sections talk about dealing with the chain bit set.  This was
198  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200  *
201  * @more_trbs_coming:	Will you enqueue more TRBs before calling
202  *			prepare_transfer()?
203  */
204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 			bool more_trbs_coming)
206 {
207 	u32 chain;
208 	union xhci_trb *next;
209 
210 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 	/* If this is not event ring, there is one less usable TRB */
212 	if (!trb_is_link(ring->enqueue))
213 		ring->num_trbs_free--;
214 	next = ++(ring->enqueue);
215 
216 	/* Update the dequeue pointer further if that was a link TRB */
217 	while (trb_is_link(next)) {
218 
219 		/*
220 		 * If the caller doesn't plan on enqueueing more TDs before
221 		 * ringing the doorbell, then we don't want to give the link TRB
222 		 * to the hardware just yet. We'll give the link TRB back in
223 		 * prepare_ring() just before we enqueue the TD at the top of
224 		 * the ring.
225 		 */
226 		if (!chain && !more_trbs_coming)
227 			break;
228 
229 		/* If we're not dealing with 0.95 hardware or isoc rings on
230 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 		 * (which may mean the chain bit is cleared).
232 		 */
233 		if (!(ring->type == TYPE_ISOC &&
234 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 		    !xhci_link_trb_quirk(xhci)) {
236 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 			next->link.control |= cpu_to_le32(chain);
238 		}
239 		/* Give this link TRB to the hardware */
240 		wmb();
241 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
242 
243 		/* Toggle the cycle bit after the last ring segment. */
244 		if (link_trb_toggles_cycle(next))
245 			ring->cycle_state ^= 1;
246 
247 		ring->enq_seg = ring->enq_seg->next;
248 		ring->enqueue = ring->enq_seg->trbs;
249 		next = ring->enqueue;
250 	}
251 
252 	trace_xhci_inc_enq(ring);
253 }
254 
255 /*
256  * Check to see if there's room to enqueue num_trbs on the ring and make sure
257  * enqueue pointer will not advance into dequeue segment. See rules above.
258  */
259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 		unsigned int num_trbs)
261 {
262 	int num_trbs_in_deq_seg;
263 
264 	if (ring->num_trbs_free < num_trbs)
265 		return 0;
266 
267 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 			return 0;
271 	}
272 
273 	return 1;
274 }
275 
276 /* Ring the host controller doorbell after placing a command on the ring */
277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 		return;
281 
282 	xhci_dbg(xhci, "// Ding dong!\n");
283 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 	/* Flush PCI posted writes */
285 	readl(&xhci->dba->doorbell[0]);
286 }
287 
288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
289 {
290 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
291 }
292 
293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
294 {
295 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 					cmd_list);
297 }
298 
299 /*
300  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301  * If there are other commands waiting then restart the ring and kick the timer.
302  * This must be called with command ring stopped and xhci->lock held.
303  */
304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 					 struct xhci_command *cur_cmd)
306 {
307 	struct xhci_command *i_cmd;
308 
309 	/* Turn all aborted commands in list to no-ops, then restart */
310 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
311 
312 		if (i_cmd->status != COMP_COMMAND_ABORTED)
313 			continue;
314 
315 		i_cmd->status = COMP_COMMAND_RING_STOPPED;
316 
317 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 			 i_cmd->command_trb);
319 
320 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
321 
322 		/*
323 		 * caller waiting for completion is called when command
324 		 *  completion event is received for these no-op commands
325 		 */
326 	}
327 
328 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
329 
330 	/* ring command ring doorbell to restart the command ring */
331 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 		xhci->current_cmd = cur_cmd;
334 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 		xhci_ring_cmd_db(xhci);
336 	}
337 }
338 
339 /* Must be called with xhci->lock held, releases and aquires lock back */
340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
341 {
342 	u64 temp_64;
343 	int ret;
344 
345 	xhci_dbg(xhci, "Abort command ring\n");
346 
347 	reinit_completion(&xhci->cmd_ring_stop_completion);
348 
349 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 			&xhci->op_regs->cmd_ring);
352 
353 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 	 * completion of the Command Abort operation. If CRR is not negated in 5
355 	 * seconds then driver handles it as if host died (-ENODEV).
356 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 	 * and try to recover a -ETIMEDOUT with a host controller reset.
358 	 */
359 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 	if (ret < 0) {
362 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 		xhci_halt(xhci);
364 		xhci_hc_died(xhci);
365 		return ret;
366 	}
367 	/*
368 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 	 * but the completion event in never sent. Wait 2 secs (arbitrary
371 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
372 	 */
373 	spin_unlock_irqrestore(&xhci->lock, flags);
374 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 					  msecs_to_jiffies(2000));
376 	spin_lock_irqsave(&xhci->lock, flags);
377 	if (!ret) {
378 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 		xhci_cleanup_command_queue(xhci);
380 	} else {
381 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
382 	}
383 	return 0;
384 }
385 
386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 		unsigned int slot_id,
388 		unsigned int ep_index,
389 		unsigned int stream_id)
390 {
391 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 	unsigned int ep_state = ep->ep_state;
394 
395 	/* Don't ring the doorbell for this endpoint if there are pending
396 	 * cancellations because we don't want to interrupt processing.
397 	 * We don't want to restart any stream rings if there's a set dequeue
398 	 * pointer command pending because the device can choose to start any
399 	 * stream once the endpoint is on the HW schedule.
400 	 */
401 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 	    (ep_state & EP_HALTED))
403 		return;
404 	writel(DB_VALUE(ep_index, stream_id), db_addr);
405 	/* The CPU has better things to do at this point than wait for a
406 	 * write-posting flush.  It'll get there soon enough.
407 	 */
408 }
409 
410 /* Ring the doorbell for any rings with pending URBs */
411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 		unsigned int slot_id,
413 		unsigned int ep_index)
414 {
415 	unsigned int stream_id;
416 	struct xhci_virt_ep *ep;
417 
418 	ep = &xhci->devs[slot_id]->eps[ep_index];
419 
420 	/* A ring has pending URBs if its TD list is not empty */
421 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 		return;
425 	}
426 
427 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 			stream_id++) {
429 		struct xhci_stream_info *stream_info = ep->stream_info;
430 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 						stream_id);
433 	}
434 }
435 
436 /* Get the right ring for the given slot_id, ep_index and stream_id.
437  * If the endpoint supports streams, boundary check the URB's stream ID.
438  * If the endpoint doesn't support streams, return the singular endpoint ring.
439  */
440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
441 		unsigned int slot_id, unsigned int ep_index,
442 		unsigned int stream_id)
443 {
444 	struct xhci_virt_ep *ep;
445 
446 	ep = &xhci->devs[slot_id]->eps[ep_index];
447 	/* Common case: no streams */
448 	if (!(ep->ep_state & EP_HAS_STREAMS))
449 		return ep->ring;
450 
451 	if (stream_id == 0) {
452 		xhci_warn(xhci,
453 				"WARN: Slot ID %u, ep index %u has streams, "
454 				"but URB has no stream ID.\n",
455 				slot_id, ep_index);
456 		return NULL;
457 	}
458 
459 	if (stream_id < ep->stream_info->num_streams)
460 		return ep->stream_info->stream_rings[stream_id];
461 
462 	xhci_warn(xhci,
463 			"WARN: Slot ID %u, ep index %u has "
464 			"stream IDs 1 to %u allocated, "
465 			"but stream ID %u is requested.\n",
466 			slot_id, ep_index,
467 			ep->stream_info->num_streams - 1,
468 			stream_id);
469 	return NULL;
470 }
471 
472 
473 /*
474  * Get the hw dequeue pointer xHC stopped on, either directly from the
475  * endpoint context, or if streams are in use from the stream context.
476  * The returned hw_dequeue contains the lowest four bits with cycle state
477  * and possbile stream context type.
478  */
479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
480 			   unsigned int ep_index, unsigned int stream_id)
481 {
482 	struct xhci_ep_ctx *ep_ctx;
483 	struct xhci_stream_ctx *st_ctx;
484 	struct xhci_virt_ep *ep;
485 
486 	ep = &vdev->eps[ep_index];
487 
488 	if (ep->ep_state & EP_HAS_STREAMS) {
489 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
490 		return le64_to_cpu(st_ctx->stream_ring);
491 	}
492 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
493 	return le64_to_cpu(ep_ctx->deq);
494 }
495 
496 /*
497  * Move the xHC's endpoint ring dequeue pointer past cur_td.
498  * Record the new state of the xHC's endpoint ring dequeue segment,
499  * dequeue pointer, stream id, and new consumer cycle state in state.
500  * Update our internal representation of the ring's dequeue pointer.
501  *
502  * We do this in three jumps:
503  *  - First we update our new ring state to be the same as when the xHC stopped.
504  *  - Then we traverse the ring to find the segment that contains
505  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
506  *    any link TRBs with the toggle cycle bit set.
507  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
508  *    if we've moved it past a link TRB with the toggle cycle bit set.
509  *
510  * Some of the uses of xhci_generic_trb are grotty, but if they're done
511  * with correct __le32 accesses they should work fine.  Only users of this are
512  * in here.
513  */
514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
515 		unsigned int slot_id, unsigned int ep_index,
516 		unsigned int stream_id, struct xhci_td *cur_td,
517 		struct xhci_dequeue_state *state)
518 {
519 	struct xhci_virt_device *dev = xhci->devs[slot_id];
520 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
521 	struct xhci_ring *ep_ring;
522 	struct xhci_segment *new_seg;
523 	union xhci_trb *new_deq;
524 	dma_addr_t addr;
525 	u64 hw_dequeue;
526 	bool cycle_found = false;
527 	bool td_last_trb_found = false;
528 
529 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
530 			ep_index, stream_id);
531 	if (!ep_ring) {
532 		xhci_warn(xhci, "WARN can't find new dequeue state "
533 				"for invalid stream ID %u.\n",
534 				stream_id);
535 		return;
536 	}
537 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
539 			"Finding endpoint context");
540 
541 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
542 	new_seg = ep_ring->deq_seg;
543 	new_deq = ep_ring->dequeue;
544 	state->new_cycle_state = hw_dequeue & 0x1;
545 	state->stream_id = stream_id;
546 
547 	/*
548 	 * We want to find the pointer, segment and cycle state of the new trb
549 	 * (the one after current TD's last_trb). We know the cycle state at
550 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
551 	 * found.
552 	 */
553 	do {
554 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
555 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
556 			cycle_found = true;
557 			if (td_last_trb_found)
558 				break;
559 		}
560 		if (new_deq == cur_td->last_trb)
561 			td_last_trb_found = true;
562 
563 		if (cycle_found && trb_is_link(new_deq) &&
564 		    link_trb_toggles_cycle(new_deq))
565 			state->new_cycle_state ^= 0x1;
566 
567 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
568 
569 		/* Search wrapped around, bail out */
570 		if (new_deq == ep->ring->dequeue) {
571 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
572 			state->new_deq_seg = NULL;
573 			state->new_deq_ptr = NULL;
574 			return;
575 		}
576 
577 	} while (!cycle_found || !td_last_trb_found);
578 
579 	state->new_deq_seg = new_seg;
580 	state->new_deq_ptr = new_deq;
581 
582 	/* Don't update the ring cycle state for the producer (us). */
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
584 			"Cycle state = 0x%x", state->new_cycle_state);
585 
586 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 			"New dequeue segment = %p (virtual)",
588 			state->new_deq_seg);
589 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
590 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 			"New dequeue pointer = 0x%llx (DMA)",
592 			(unsigned long long) addr);
593 }
594 
595 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
596  * (The last TRB actually points to the ring enqueue pointer, which is not part
597  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
598  */
599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
600 		       struct xhci_td *td, bool flip_cycle)
601 {
602 	struct xhci_segment *seg	= td->start_seg;
603 	union xhci_trb *trb		= td->first_trb;
604 
605 	while (1) {
606 		trb_to_noop(trb, TRB_TR_NOOP);
607 
608 		/* flip cycle if asked to */
609 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
610 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
611 
612 		if (trb == td->last_trb)
613 			break;
614 
615 		next_trb(xhci, ep_ring, &seg, &trb);
616 	}
617 }
618 
619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
620 		struct xhci_virt_ep *ep)
621 {
622 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
623 	/* Can't del_timer_sync in interrupt */
624 	del_timer(&ep->stop_cmd_timer);
625 }
626 
627 /*
628  * Must be called with xhci->lock held in interrupt context,
629  * releases and re-acquires xhci->lock
630  */
631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
632 				     struct xhci_td *cur_td, int status)
633 {
634 	struct urb	*urb		= cur_td->urb;
635 	struct urb_priv	*urb_priv	= urb->hcpriv;
636 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
637 
638 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
639 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
640 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
641 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 				usb_amd_quirk_pll_enable();
643 		}
644 	}
645 	xhci_urb_free_priv(urb_priv);
646 	usb_hcd_unlink_urb_from_ep(hcd, urb);
647 	spin_unlock(&xhci->lock);
648 	trace_xhci_urb_giveback(urb);
649 	usb_hcd_giveback_urb(hcd, urb, status);
650 	spin_lock(&xhci->lock);
651 }
652 
653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
654 		struct xhci_ring *ring, struct xhci_td *td)
655 {
656 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
657 	struct xhci_segment *seg = td->bounce_seg;
658 	struct urb *urb = td->urb;
659 
660 	if (!ring || !seg || !urb)
661 		return;
662 
663 	if (usb_urb_dir_out(urb)) {
664 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
665 				 DMA_TO_DEVICE);
666 		return;
667 	}
668 
669 	/* for in tranfers we need to copy the data from bounce to sg */
670 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
671 			     seg->bounce_len, seg->bounce_offs);
672 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 			 DMA_FROM_DEVICE);
674 	seg->bounce_len = 0;
675 	seg->bounce_offs = 0;
676 }
677 
678 /*
679  * When we get a command completion for a Stop Endpoint Command, we need to
680  * unlink any cancelled TDs from the ring.  There are two ways to do that:
681  *
682  *  1. If the HW was in the middle of processing the TD that needs to be
683  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
684  *     in the TD with a Set Dequeue Pointer Command.
685  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
686  *     bit cleared) so that the HW will skip over them.
687  */
688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
689 		union xhci_trb *trb, struct xhci_event_cmd *event)
690 {
691 	unsigned int ep_index;
692 	struct xhci_ring *ep_ring;
693 	struct xhci_virt_ep *ep;
694 	struct xhci_td *cur_td = NULL;
695 	struct xhci_td *last_unlinked_td;
696 	struct xhci_ep_ctx *ep_ctx;
697 	struct xhci_virt_device *vdev;
698 	u64 hw_deq;
699 	struct xhci_dequeue_state deq_state;
700 
701 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
702 		if (!xhci->devs[slot_id])
703 			xhci_warn(xhci, "Stop endpoint command "
704 				"completion for disabled slot %u\n",
705 				slot_id);
706 		return;
707 	}
708 
709 	memset(&deq_state, 0, sizeof(deq_state));
710 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
711 
712 	vdev = xhci->devs[slot_id];
713 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
714 	trace_xhci_handle_cmd_stop_ep(ep_ctx);
715 
716 	ep = &xhci->devs[slot_id]->eps[ep_index];
717 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
718 			struct xhci_td, cancelled_td_list);
719 
720 	if (list_empty(&ep->cancelled_td_list)) {
721 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
722 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
723 		return;
724 	}
725 
726 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
727 	 * We have the xHCI lock, so nothing can modify this list until we drop
728 	 * it.  We're also in the event handler, so we can't get re-interrupted
729 	 * if another Stop Endpoint command completes
730 	 */
731 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
732 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
733 				"Removing canceled TD starting at 0x%llx (dma).",
734 				(unsigned long long)xhci_trb_virt_to_dma(
735 					cur_td->start_seg, cur_td->first_trb));
736 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
737 		if (!ep_ring) {
738 			/* This shouldn't happen unless a driver is mucking
739 			 * with the stream ID after submission.  This will
740 			 * leave the TD on the hardware ring, and the hardware
741 			 * will try to execute it, and may access a buffer
742 			 * that has already been freed.  In the best case, the
743 			 * hardware will execute it, and the event handler will
744 			 * ignore the completion event for that TD, since it was
745 			 * removed from the td_list for that endpoint.  In
746 			 * short, don't muck with the stream ID after
747 			 * submission.
748 			 */
749 			xhci_warn(xhci, "WARN Cancelled URB %p "
750 					"has invalid stream ID %u.\n",
751 					cur_td->urb,
752 					cur_td->urb->stream_id);
753 			goto remove_finished_td;
754 		}
755 		/*
756 		 * If we stopped on the TD we need to cancel, then we have to
757 		 * move the xHC endpoint ring dequeue pointer past this TD.
758 		 */
759 		hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
760 					 cur_td->urb->stream_id);
761 		hw_deq &= ~0xf;
762 
763 		if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
764 			      cur_td->last_trb, hw_deq, false)) {
765 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
766 						    cur_td->urb->stream_id,
767 						    cur_td, &deq_state);
768 		} else {
769 			td_to_noop(xhci, ep_ring, cur_td, false);
770 		}
771 
772 remove_finished_td:
773 		/*
774 		 * The event handler won't see a completion for this TD anymore,
775 		 * so remove it from the endpoint ring's TD list.  Keep it in
776 		 * the cancelled TD list for URB completion later.
777 		 */
778 		list_del_init(&cur_td->td_list);
779 	}
780 
781 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
782 
783 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
784 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
785 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
786 					     &deq_state);
787 		xhci_ring_cmd_db(xhci);
788 	} else {
789 		/* Otherwise ring the doorbell(s) to restart queued transfers */
790 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
791 	}
792 
793 	/*
794 	 * Drop the lock and complete the URBs in the cancelled TD list.
795 	 * New TDs to be cancelled might be added to the end of the list before
796 	 * we can complete all the URBs for the TDs we already unlinked.
797 	 * So stop when we've completed the URB for the last TD we unlinked.
798 	 */
799 	do {
800 		cur_td = list_first_entry(&ep->cancelled_td_list,
801 				struct xhci_td, cancelled_td_list);
802 		list_del_init(&cur_td->cancelled_td_list);
803 
804 		/* Clean up the cancelled URB */
805 		/* Doesn't matter what we pass for status, since the core will
806 		 * just overwrite it (because the URB has been unlinked).
807 		 */
808 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
809 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
810 		inc_td_cnt(cur_td->urb);
811 		if (last_td_in_urb(cur_td))
812 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
813 
814 		/* Stop processing the cancelled list if the watchdog timer is
815 		 * running.
816 		 */
817 		if (xhci->xhc_state & XHCI_STATE_DYING)
818 			return;
819 	} while (cur_td != last_unlinked_td);
820 
821 	/* Return to the event handler with xhci->lock re-acquired */
822 }
823 
824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
825 {
826 	struct xhci_td *cur_td;
827 	struct xhci_td *tmp;
828 
829 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
830 		list_del_init(&cur_td->td_list);
831 
832 		if (!list_empty(&cur_td->cancelled_td_list))
833 			list_del_init(&cur_td->cancelled_td_list);
834 
835 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
836 
837 		inc_td_cnt(cur_td->urb);
838 		if (last_td_in_urb(cur_td))
839 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
840 	}
841 }
842 
843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
844 		int slot_id, int ep_index)
845 {
846 	struct xhci_td *cur_td;
847 	struct xhci_td *tmp;
848 	struct xhci_virt_ep *ep;
849 	struct xhci_ring *ring;
850 
851 	ep = &xhci->devs[slot_id]->eps[ep_index];
852 	if ((ep->ep_state & EP_HAS_STREAMS) ||
853 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
854 		int stream_id;
855 
856 		for (stream_id = 1; stream_id < ep->stream_info->num_streams;
857 				stream_id++) {
858 			ring = ep->stream_info->stream_rings[stream_id];
859 			if (!ring)
860 				continue;
861 
862 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
863 					"Killing URBs for slot ID %u, ep index %u, stream %u",
864 					slot_id, ep_index, stream_id);
865 			xhci_kill_ring_urbs(xhci, ring);
866 		}
867 	} else {
868 		ring = ep->ring;
869 		if (!ring)
870 			return;
871 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
872 				"Killing URBs for slot ID %u, ep index %u",
873 				slot_id, ep_index);
874 		xhci_kill_ring_urbs(xhci, ring);
875 	}
876 
877 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
878 			cancelled_td_list) {
879 		list_del_init(&cur_td->cancelled_td_list);
880 		inc_td_cnt(cur_td->urb);
881 
882 		if (last_td_in_urb(cur_td))
883 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
884 	}
885 }
886 
887 /*
888  * host controller died, register read returns 0xffffffff
889  * Complete pending commands, mark them ABORTED.
890  * URBs need to be given back as usb core might be waiting with device locks
891  * held for the URBs to finish during device disconnect, blocking host remove.
892  *
893  * Call with xhci->lock held.
894  * lock is relased and re-acquired while giving back urb.
895  */
896 void xhci_hc_died(struct xhci_hcd *xhci)
897 {
898 	int i, j;
899 
900 	if (xhci->xhc_state & XHCI_STATE_DYING)
901 		return;
902 
903 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
904 	xhci->xhc_state |= XHCI_STATE_DYING;
905 
906 	xhci_cleanup_command_queue(xhci);
907 
908 	/* return any pending urbs, remove may be waiting for them */
909 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
910 		if (!xhci->devs[i])
911 			continue;
912 		for (j = 0; j < 31; j++)
913 			xhci_kill_endpoint_urbs(xhci, i, j);
914 	}
915 
916 	/* inform usb core hc died if PCI remove isn't already handling it */
917 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
918 		usb_hc_died(xhci_to_hcd(xhci));
919 }
920 
921 /* Watchdog timer function for when a stop endpoint command fails to complete.
922  * In this case, we assume the host controller is broken or dying or dead.  The
923  * host may still be completing some other events, so we have to be careful to
924  * let the event ring handler and the URB dequeueing/enqueueing functions know
925  * through xhci->state.
926  *
927  * The timer may also fire if the host takes a very long time to respond to the
928  * command, and the stop endpoint command completion handler cannot delete the
929  * timer before the timer function is called.  Another endpoint cancellation may
930  * sneak in before the timer function can grab the lock, and that may queue
931  * another stop endpoint command and add the timer back.  So we cannot use a
932  * simple flag to say whether there is a pending stop endpoint command for a
933  * particular endpoint.
934  *
935  * Instead we use a combination of that flag and checking if a new timer is
936  * pending.
937  */
938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
939 {
940 	struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
941 	struct xhci_hcd *xhci = ep->xhci;
942 	unsigned long flags;
943 
944 	spin_lock_irqsave(&xhci->lock, flags);
945 
946 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
947 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
948 	    timer_pending(&ep->stop_cmd_timer)) {
949 		spin_unlock_irqrestore(&xhci->lock, flags);
950 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
951 		return;
952 	}
953 
954 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
955 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
956 
957 	xhci_halt(xhci);
958 
959 	/*
960 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
961 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
962 	 * and try to recover a -ETIMEDOUT with a host controller reset
963 	 */
964 	xhci_hc_died(xhci);
965 
966 	spin_unlock_irqrestore(&xhci->lock, flags);
967 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
968 			"xHCI host controller is dead.");
969 }
970 
971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
972 		struct xhci_virt_device *dev,
973 		struct xhci_ring *ep_ring,
974 		unsigned int ep_index)
975 {
976 	union xhci_trb *dequeue_temp;
977 	int num_trbs_free_temp;
978 	bool revert = false;
979 
980 	num_trbs_free_temp = ep_ring->num_trbs_free;
981 	dequeue_temp = ep_ring->dequeue;
982 
983 	/* If we get two back-to-back stalls, and the first stalled transfer
984 	 * ends just before a link TRB, the dequeue pointer will be left on
985 	 * the link TRB by the code in the while loop.  So we have to update
986 	 * the dequeue pointer one segment further, or we'll jump off
987 	 * the segment into la-la-land.
988 	 */
989 	if (trb_is_link(ep_ring->dequeue)) {
990 		ep_ring->deq_seg = ep_ring->deq_seg->next;
991 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
992 	}
993 
994 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
995 		/* We have more usable TRBs */
996 		ep_ring->num_trbs_free++;
997 		ep_ring->dequeue++;
998 		if (trb_is_link(ep_ring->dequeue)) {
999 			if (ep_ring->dequeue ==
1000 					dev->eps[ep_index].queued_deq_ptr)
1001 				break;
1002 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1003 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1004 		}
1005 		if (ep_ring->dequeue == dequeue_temp) {
1006 			revert = true;
1007 			break;
1008 		}
1009 	}
1010 
1011 	if (revert) {
1012 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1013 		ep_ring->num_trbs_free = num_trbs_free_temp;
1014 	}
1015 }
1016 
1017 /*
1018  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1019  * we need to clear the set deq pending flag in the endpoint ring state, so that
1020  * the TD queueing code can ring the doorbell again.  We also need to ring the
1021  * endpoint doorbell to restart the ring, but only if there aren't more
1022  * cancellations pending.
1023  */
1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1025 		union xhci_trb *trb, u32 cmd_comp_code)
1026 {
1027 	unsigned int ep_index;
1028 	unsigned int stream_id;
1029 	struct xhci_ring *ep_ring;
1030 	struct xhci_virt_device *dev;
1031 	struct xhci_virt_ep *ep;
1032 	struct xhci_ep_ctx *ep_ctx;
1033 	struct xhci_slot_ctx *slot_ctx;
1034 
1035 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1036 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1037 	dev = xhci->devs[slot_id];
1038 	ep = &dev->eps[ep_index];
1039 
1040 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1041 	if (!ep_ring) {
1042 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1043 				stream_id);
1044 		/* XXX: Harmless??? */
1045 		goto cleanup;
1046 	}
1047 
1048 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1049 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1050 	trace_xhci_handle_cmd_set_deq(slot_ctx);
1051 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1052 
1053 	if (cmd_comp_code != COMP_SUCCESS) {
1054 		unsigned int ep_state;
1055 		unsigned int slot_state;
1056 
1057 		switch (cmd_comp_code) {
1058 		case COMP_TRB_ERROR:
1059 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1060 			break;
1061 		case COMP_CONTEXT_STATE_ERROR:
1062 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1063 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1064 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1065 			slot_state = GET_SLOT_STATE(slot_state);
1066 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1067 					"Slot state = %u, EP state = %u",
1068 					slot_state, ep_state);
1069 			break;
1070 		case COMP_SLOT_NOT_ENABLED_ERROR:
1071 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1072 					slot_id);
1073 			break;
1074 		default:
1075 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1076 					cmd_comp_code);
1077 			break;
1078 		}
1079 		/* OK what do we do now?  The endpoint state is hosed, and we
1080 		 * should never get to this point if the synchronization between
1081 		 * queueing, and endpoint state are correct.  This might happen
1082 		 * if the device gets disconnected after we've finished
1083 		 * cancelling URBs, which might not be an error...
1084 		 */
1085 	} else {
1086 		u64 deq;
1087 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1088 		if (ep->ep_state & EP_HAS_STREAMS) {
1089 			struct xhci_stream_ctx *ctx =
1090 				&ep->stream_info->stream_ctx_array[stream_id];
1091 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1092 		} else {
1093 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1094 		}
1095 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1096 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1097 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1098 					 ep->queued_deq_ptr) == deq) {
1099 			/* Update the ring's dequeue segment and dequeue pointer
1100 			 * to reflect the new position.
1101 			 */
1102 			update_ring_for_set_deq_completion(xhci, dev,
1103 				ep_ring, ep_index);
1104 		} else {
1105 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1106 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1107 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1108 		}
1109 	}
1110 
1111 cleanup:
1112 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1113 	dev->eps[ep_index].queued_deq_seg = NULL;
1114 	dev->eps[ep_index].queued_deq_ptr = NULL;
1115 	/* Restart any rings with pending URBs */
1116 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1117 }
1118 
1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1120 		union xhci_trb *trb, u32 cmd_comp_code)
1121 {
1122 	struct xhci_virt_device *vdev;
1123 	struct xhci_ep_ctx *ep_ctx;
1124 	unsigned int ep_index;
1125 
1126 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1127 	vdev = xhci->devs[slot_id];
1128 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1129 	trace_xhci_handle_cmd_reset_ep(ep_ctx);
1130 
1131 	/* This command will only fail if the endpoint wasn't halted,
1132 	 * but we don't care.
1133 	 */
1134 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1135 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1136 
1137 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1138 	 * command complete before the endpoint can be used.  Queue that here
1139 	 * because the HW can't handle two commands being queued in a row.
1140 	 */
1141 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1142 		struct xhci_command *command;
1143 
1144 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1145 		if (!command)
1146 			return;
1147 
1148 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 				"Queueing configure endpoint command");
1150 		xhci_queue_configure_endpoint(xhci, command,
1151 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1152 				false);
1153 		xhci_ring_cmd_db(xhci);
1154 	} else {
1155 		/* Clear our internal halted state */
1156 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1157 	}
1158 }
1159 
1160 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1161 		struct xhci_command *command, u32 cmd_comp_code)
1162 {
1163 	if (cmd_comp_code == COMP_SUCCESS)
1164 		command->slot_id = slot_id;
1165 	else
1166 		command->slot_id = 0;
1167 }
1168 
1169 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1170 {
1171 	struct xhci_virt_device *virt_dev;
1172 	struct xhci_slot_ctx *slot_ctx;
1173 
1174 	virt_dev = xhci->devs[slot_id];
1175 	if (!virt_dev)
1176 		return;
1177 
1178 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1179 	trace_xhci_handle_cmd_disable_slot(slot_ctx);
1180 
1181 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1182 		/* Delete default control endpoint resources */
1183 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1184 	xhci_free_virt_device(xhci, slot_id);
1185 }
1186 
1187 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1188 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1189 {
1190 	struct xhci_virt_device *virt_dev;
1191 	struct xhci_input_control_ctx *ctrl_ctx;
1192 	struct xhci_ep_ctx *ep_ctx;
1193 	unsigned int ep_index;
1194 	unsigned int ep_state;
1195 	u32 add_flags, drop_flags;
1196 
1197 	/*
1198 	 * Configure endpoint commands can come from the USB core
1199 	 * configuration or alt setting changes, or because the HW
1200 	 * needed an extra configure endpoint command after a reset
1201 	 * endpoint command or streams were being configured.
1202 	 * If the command was for a halted endpoint, the xHCI driver
1203 	 * is not waiting on the configure endpoint command.
1204 	 */
1205 	virt_dev = xhci->devs[slot_id];
1206 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1207 	if (!ctrl_ctx) {
1208 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1209 		return;
1210 	}
1211 
1212 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1213 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1214 	/* Input ctx add_flags are the endpoint index plus one */
1215 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1216 
1217 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1218 	trace_xhci_handle_cmd_config_ep(ep_ctx);
1219 
1220 	/* A usb_set_interface() call directly after clearing a halted
1221 	 * condition may race on this quirky hardware.  Not worth
1222 	 * worrying about, since this is prototype hardware.  Not sure
1223 	 * if this will work for streams, but streams support was
1224 	 * untested on this prototype.
1225 	 */
1226 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1227 			ep_index != (unsigned int) -1 &&
1228 			add_flags - SLOT_FLAG == drop_flags) {
1229 		ep_state = virt_dev->eps[ep_index].ep_state;
1230 		if (!(ep_state & EP_HALTED))
1231 			return;
1232 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1233 				"Completed config ep cmd - "
1234 				"last ep index = %d, state = %d",
1235 				ep_index, ep_state);
1236 		/* Clear internal halted state and restart ring(s) */
1237 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1238 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1239 		return;
1240 	}
1241 	return;
1242 }
1243 
1244 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1245 {
1246 	struct xhci_virt_device *vdev;
1247 	struct xhci_slot_ctx *slot_ctx;
1248 
1249 	vdev = xhci->devs[slot_id];
1250 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1251 	trace_xhci_handle_cmd_addr_dev(slot_ctx);
1252 }
1253 
1254 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1255 		struct xhci_event_cmd *event)
1256 {
1257 	struct xhci_virt_device *vdev;
1258 	struct xhci_slot_ctx *slot_ctx;
1259 
1260 	vdev = xhci->devs[slot_id];
1261 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1262 	trace_xhci_handle_cmd_reset_dev(slot_ctx);
1263 
1264 	xhci_dbg(xhci, "Completed reset device command.\n");
1265 	if (!xhci->devs[slot_id])
1266 		xhci_warn(xhci, "Reset device command completion "
1267 				"for disabled slot %u\n", slot_id);
1268 }
1269 
1270 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1271 		struct xhci_event_cmd *event)
1272 {
1273 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1274 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1275 		return;
1276 	}
1277 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1278 			"NEC firmware version %2x.%02x",
1279 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1280 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1281 }
1282 
1283 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1284 {
1285 	list_del(&cmd->cmd_list);
1286 
1287 	if (cmd->completion) {
1288 		cmd->status = status;
1289 		complete(cmd->completion);
1290 	} else {
1291 		kfree(cmd);
1292 	}
1293 }
1294 
1295 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1296 {
1297 	struct xhci_command *cur_cmd, *tmp_cmd;
1298 	xhci->current_cmd = NULL;
1299 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1300 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1301 }
1302 
1303 void xhci_handle_command_timeout(struct work_struct *work)
1304 {
1305 	struct xhci_hcd *xhci;
1306 	unsigned long flags;
1307 	u64 hw_ring_state;
1308 
1309 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1310 
1311 	spin_lock_irqsave(&xhci->lock, flags);
1312 
1313 	/*
1314 	 * If timeout work is pending, or current_cmd is NULL, it means we
1315 	 * raced with command completion. Command is handled so just return.
1316 	 */
1317 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1318 		spin_unlock_irqrestore(&xhci->lock, flags);
1319 		return;
1320 	}
1321 	/* mark this command to be cancelled */
1322 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1323 
1324 	/* Make sure command ring is running before aborting it */
1325 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1326 	if (hw_ring_state == ~(u64)0) {
1327 		xhci_hc_died(xhci);
1328 		goto time_out_completed;
1329 	}
1330 
1331 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1332 	    (hw_ring_state & CMD_RING_RUNNING))  {
1333 		/* Prevent new doorbell, and start command abort */
1334 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1335 		xhci_dbg(xhci, "Command timeout\n");
1336 		xhci_abort_cmd_ring(xhci, flags);
1337 		goto time_out_completed;
1338 	}
1339 
1340 	/* host removed. Bail out */
1341 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1342 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1343 		xhci_cleanup_command_queue(xhci);
1344 
1345 		goto time_out_completed;
1346 	}
1347 
1348 	/* command timeout on stopped ring, ring can't be aborted */
1349 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1350 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1351 
1352 time_out_completed:
1353 	spin_unlock_irqrestore(&xhci->lock, flags);
1354 	return;
1355 }
1356 
1357 static void handle_cmd_completion(struct xhci_hcd *xhci,
1358 		struct xhci_event_cmd *event)
1359 {
1360 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1361 	u64 cmd_dma;
1362 	dma_addr_t cmd_dequeue_dma;
1363 	u32 cmd_comp_code;
1364 	union xhci_trb *cmd_trb;
1365 	struct xhci_command *cmd;
1366 	u32 cmd_type;
1367 
1368 	cmd_dma = le64_to_cpu(event->cmd_trb);
1369 	cmd_trb = xhci->cmd_ring->dequeue;
1370 
1371 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1372 
1373 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1374 			cmd_trb);
1375 	/*
1376 	 * Check whether the completion event is for our internal kept
1377 	 * command.
1378 	 */
1379 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1380 		xhci_warn(xhci,
1381 			  "ERROR mismatched command completion event\n");
1382 		return;
1383 	}
1384 
1385 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1386 
1387 	cancel_delayed_work(&xhci->cmd_timer);
1388 
1389 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1390 
1391 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1392 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1393 		complete_all(&xhci->cmd_ring_stop_completion);
1394 		return;
1395 	}
1396 
1397 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1398 		xhci_err(xhci,
1399 			 "Command completion event does not match command\n");
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * Host aborted the command ring, check if the current command was
1405 	 * supposed to be aborted, otherwise continue normally.
1406 	 * The command ring is stopped now, but the xHC will issue a Command
1407 	 * Ring Stopped event which will cause us to restart it.
1408 	 */
1409 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1410 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1411 		if (cmd->status == COMP_COMMAND_ABORTED) {
1412 			if (xhci->current_cmd == cmd)
1413 				xhci->current_cmd = NULL;
1414 			goto event_handled;
1415 		}
1416 	}
1417 
1418 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1419 	switch (cmd_type) {
1420 	case TRB_ENABLE_SLOT:
1421 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1422 		break;
1423 	case TRB_DISABLE_SLOT:
1424 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1425 		break;
1426 	case TRB_CONFIG_EP:
1427 		if (!cmd->completion)
1428 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1429 						  cmd_comp_code);
1430 		break;
1431 	case TRB_EVAL_CONTEXT:
1432 		break;
1433 	case TRB_ADDR_DEV:
1434 		xhci_handle_cmd_addr_dev(xhci, slot_id);
1435 		break;
1436 	case TRB_STOP_RING:
1437 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1438 				le32_to_cpu(cmd_trb->generic.field[3])));
1439 		if (!cmd->completion)
1440 			xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1441 		break;
1442 	case TRB_SET_DEQ:
1443 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1444 				le32_to_cpu(cmd_trb->generic.field[3])));
1445 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1446 		break;
1447 	case TRB_CMD_NOOP:
1448 		/* Is this an aborted command turned to NO-OP? */
1449 		if (cmd->status == COMP_COMMAND_RING_STOPPED)
1450 			cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1451 		break;
1452 	case TRB_RESET_EP:
1453 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1454 				le32_to_cpu(cmd_trb->generic.field[3])));
1455 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1456 		break;
1457 	case TRB_RESET_DEV:
1458 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1459 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1460 		 */
1461 		slot_id = TRB_TO_SLOT_ID(
1462 				le32_to_cpu(cmd_trb->generic.field[3]));
1463 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1464 		break;
1465 	case TRB_NEC_GET_FW:
1466 		xhci_handle_cmd_nec_get_fw(xhci, event);
1467 		break;
1468 	default:
1469 		/* Skip over unknown commands on the event ring */
1470 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1471 		break;
1472 	}
1473 
1474 	/* restart timer if this wasn't the last command */
1475 	if (!list_is_singular(&xhci->cmd_list)) {
1476 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1477 						struct xhci_command, cmd_list);
1478 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1479 	} else if (xhci->current_cmd == cmd) {
1480 		xhci->current_cmd = NULL;
1481 	}
1482 
1483 event_handled:
1484 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1485 
1486 	inc_deq(xhci, xhci->cmd_ring);
1487 }
1488 
1489 static void handle_vendor_event(struct xhci_hcd *xhci,
1490 		union xhci_trb *event)
1491 {
1492 	u32 trb_type;
1493 
1494 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1495 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1496 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1497 		handle_cmd_completion(xhci, &event->event_cmd);
1498 }
1499 
1500 static void handle_device_notification(struct xhci_hcd *xhci,
1501 		union xhci_trb *event)
1502 {
1503 	u32 slot_id;
1504 	struct usb_device *udev;
1505 
1506 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1507 	if (!xhci->devs[slot_id]) {
1508 		xhci_warn(xhci, "Device Notification event for "
1509 				"unused slot %u\n", slot_id);
1510 		return;
1511 	}
1512 
1513 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1514 			slot_id);
1515 	udev = xhci->devs[slot_id]->udev;
1516 	if (udev && udev->parent)
1517 		usb_wakeup_notification(udev->parent, udev->portnum);
1518 }
1519 
1520 static void handle_port_status(struct xhci_hcd *xhci,
1521 		union xhci_trb *event)
1522 {
1523 	struct usb_hcd *hcd;
1524 	u32 port_id;
1525 	u32 portsc, cmd_reg;
1526 	int max_ports;
1527 	int slot_id;
1528 	unsigned int hcd_portnum;
1529 	struct xhci_bus_state *bus_state;
1530 	bool bogus_port_status = false;
1531 	struct xhci_port *port;
1532 
1533 	/* Port status change events always have a successful completion code */
1534 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1535 		xhci_warn(xhci,
1536 			  "WARN: xHC returned failed port status event\n");
1537 
1538 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1539 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1540 
1541 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1542 	if ((port_id <= 0) || (port_id > max_ports)) {
1543 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1544 		inc_deq(xhci, xhci->event_ring);
1545 		return;
1546 	}
1547 
1548 	port = &xhci->hw_ports[port_id - 1];
1549 	if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1550 		xhci_warn(xhci, "Event for invalid port %u\n", port_id);
1551 		bogus_port_status = true;
1552 		goto cleanup;
1553 	}
1554 
1555 	hcd = port->rhub->hcd;
1556 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1557 	hcd_portnum = port->hcd_portnum;
1558 	portsc = readl(port->addr);
1559 
1560 	trace_xhci_handle_port_status(hcd_portnum, portsc);
1561 
1562 	if (hcd->state == HC_STATE_SUSPENDED) {
1563 		xhci_dbg(xhci, "resume root hub\n");
1564 		usb_hcd_resume_root_hub(hcd);
1565 	}
1566 
1567 	if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1568 		bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1569 
1570 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1571 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1572 
1573 		cmd_reg = readl(&xhci->op_regs->command);
1574 		if (!(cmd_reg & CMD_RUN)) {
1575 			xhci_warn(xhci, "xHC is not running.\n");
1576 			goto cleanup;
1577 		}
1578 
1579 		if (DEV_SUPERSPEED_ANY(portsc)) {
1580 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1581 			/* Set a flag to say the port signaled remote wakeup,
1582 			 * so we can tell the difference between the end of
1583 			 * device and host initiated resume.
1584 			 */
1585 			bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1586 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1587 			xhci_set_link_state(xhci, port, XDEV_U0);
1588 			/* Need to wait until the next link state change
1589 			 * indicates the device is actually in U0.
1590 			 */
1591 			bogus_port_status = true;
1592 			goto cleanup;
1593 		} else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1594 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1595 			bus_state->resume_done[hcd_portnum] = jiffies +
1596 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1597 			set_bit(hcd_portnum, &bus_state->resuming_ports);
1598 			/* Do the rest in GetPortStatus after resume time delay.
1599 			 * Avoid polling roothub status before that so that a
1600 			 * usb device auto-resume latency around ~40ms.
1601 			 */
1602 			set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1603 			mod_timer(&hcd->rh_timer,
1604 				  bus_state->resume_done[hcd_portnum]);
1605 			bogus_port_status = true;
1606 		}
1607 	}
1608 
1609 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1610 			DEV_SUPERSPEED_ANY(portsc)) {
1611 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1612 		/* We've just brought the device into U0 through either the
1613 		 * Resume state after a device remote wakeup, or through the
1614 		 * U3Exit state after a host-initiated resume.  If it's a device
1615 		 * initiated remote wake, don't pass up the link state change,
1616 		 * so the roothub behavior is consistent with external
1617 		 * USB 3.0 hub behavior.
1618 		 */
1619 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1620 		if (slot_id && xhci->devs[slot_id])
1621 			xhci_ring_device(xhci, slot_id);
1622 		if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1623 			bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1624 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1625 			usb_wakeup_notification(hcd->self.root_hub,
1626 					hcd_portnum + 1);
1627 			bogus_port_status = true;
1628 			goto cleanup;
1629 		}
1630 	}
1631 
1632 	/*
1633 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1634 	 * RExit to a disconnect state).  If so, let the the driver know it's
1635 	 * out of the RExit state.
1636 	 */
1637 	if (!DEV_SUPERSPEED_ANY(portsc) &&
1638 			test_and_clear_bit(hcd_portnum,
1639 				&bus_state->rexit_ports)) {
1640 		complete(&bus_state->rexit_done[hcd_portnum]);
1641 		bogus_port_status = true;
1642 		goto cleanup;
1643 	}
1644 
1645 	if (hcd->speed < HCD_USB3)
1646 		xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1647 
1648 cleanup:
1649 	/* Update event ring dequeue pointer before dropping the lock */
1650 	inc_deq(xhci, xhci->event_ring);
1651 
1652 	/* Don't make the USB core poll the roothub if we got a bad port status
1653 	 * change event.  Besides, at that point we can't tell which roothub
1654 	 * (USB 2.0 or USB 3.0) to kick.
1655 	 */
1656 	if (bogus_port_status)
1657 		return;
1658 
1659 	/*
1660 	 * xHCI port-status-change events occur when the "or" of all the
1661 	 * status-change bits in the portsc register changes from 0 to 1.
1662 	 * New status changes won't cause an event if any other change
1663 	 * bits are still set.  When an event occurs, switch over to
1664 	 * polling to avoid losing status changes.
1665 	 */
1666 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1667 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1668 	spin_unlock(&xhci->lock);
1669 	/* Pass this up to the core */
1670 	usb_hcd_poll_rh_status(hcd);
1671 	spin_lock(&xhci->lock);
1672 }
1673 
1674 /*
1675  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1676  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1677  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1678  * returns 0.
1679  */
1680 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1681 		struct xhci_segment *start_seg,
1682 		union xhci_trb	*start_trb,
1683 		union xhci_trb	*end_trb,
1684 		dma_addr_t	suspect_dma,
1685 		bool		debug)
1686 {
1687 	dma_addr_t start_dma;
1688 	dma_addr_t end_seg_dma;
1689 	dma_addr_t end_trb_dma;
1690 	struct xhci_segment *cur_seg;
1691 
1692 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1693 	cur_seg = start_seg;
1694 
1695 	do {
1696 		if (start_dma == 0)
1697 			return NULL;
1698 		/* We may get an event for a Link TRB in the middle of a TD */
1699 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1700 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1701 		/* If the end TRB isn't in this segment, this is set to 0 */
1702 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1703 
1704 		if (debug)
1705 			xhci_warn(xhci,
1706 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1707 				(unsigned long long)suspect_dma,
1708 				(unsigned long long)start_dma,
1709 				(unsigned long long)end_trb_dma,
1710 				(unsigned long long)cur_seg->dma,
1711 				(unsigned long long)end_seg_dma);
1712 
1713 		if (end_trb_dma > 0) {
1714 			/* The end TRB is in this segment, so suspect should be here */
1715 			if (start_dma <= end_trb_dma) {
1716 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1717 					return cur_seg;
1718 			} else {
1719 				/* Case for one segment with
1720 				 * a TD wrapped around to the top
1721 				 */
1722 				if ((suspect_dma >= start_dma &&
1723 							suspect_dma <= end_seg_dma) ||
1724 						(suspect_dma >= cur_seg->dma &&
1725 						 suspect_dma <= end_trb_dma))
1726 					return cur_seg;
1727 			}
1728 			return NULL;
1729 		} else {
1730 			/* Might still be somewhere in this segment */
1731 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1732 				return cur_seg;
1733 		}
1734 		cur_seg = cur_seg->next;
1735 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1736 	} while (cur_seg != start_seg);
1737 
1738 	return NULL;
1739 }
1740 
1741 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1742 		unsigned int slot_id, unsigned int ep_index,
1743 		unsigned int stream_id, struct xhci_td *td,
1744 		enum xhci_ep_reset_type reset_type)
1745 {
1746 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1747 	struct xhci_command *command;
1748 	command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1749 	if (!command)
1750 		return;
1751 
1752 	ep->ep_state |= EP_HALTED;
1753 
1754 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1755 
1756 	if (reset_type == EP_HARD_RESET) {
1757 		ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1758 		xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1759 	}
1760 	xhci_ring_cmd_db(xhci);
1761 }
1762 
1763 /* Check if an error has halted the endpoint ring.  The class driver will
1764  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1765  * However, a babble and other errors also halt the endpoint ring, and the class
1766  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1767  * Ring Dequeue Pointer command manually.
1768  */
1769 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1770 		struct xhci_ep_ctx *ep_ctx,
1771 		unsigned int trb_comp_code)
1772 {
1773 	/* TRB completion codes that may require a manual halt cleanup */
1774 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1775 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1776 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1777 		/* The 0.95 spec says a babbling control endpoint
1778 		 * is not halted. The 0.96 spec says it is.  Some HW
1779 		 * claims to be 0.95 compliant, but it halts the control
1780 		 * endpoint anyway.  Check if a babble halted the
1781 		 * endpoint.
1782 		 */
1783 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1784 			return 1;
1785 
1786 	return 0;
1787 }
1788 
1789 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1790 {
1791 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1792 		/* Vendor defined "informational" completion code,
1793 		 * treat as not-an-error.
1794 		 */
1795 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1796 				trb_comp_code);
1797 		xhci_dbg(xhci, "Treating code as success.\n");
1798 		return 1;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1804 		struct xhci_ring *ep_ring, int *status)
1805 {
1806 	struct urb *urb = NULL;
1807 
1808 	/* Clean up the endpoint's TD list */
1809 	urb = td->urb;
1810 
1811 	/* if a bounce buffer was used to align this td then unmap it */
1812 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1813 
1814 	/* Do one last check of the actual transfer length.
1815 	 * If the host controller said we transferred more data than the buffer
1816 	 * length, urb->actual_length will be a very big number (since it's
1817 	 * unsigned).  Play it safe and say we didn't transfer anything.
1818 	 */
1819 	if (urb->actual_length > urb->transfer_buffer_length) {
1820 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1821 			  urb->transfer_buffer_length, urb->actual_length);
1822 		urb->actual_length = 0;
1823 		*status = 0;
1824 	}
1825 	list_del_init(&td->td_list);
1826 	/* Was this TD slated to be cancelled but completed anyway? */
1827 	if (!list_empty(&td->cancelled_td_list))
1828 		list_del_init(&td->cancelled_td_list);
1829 
1830 	inc_td_cnt(urb);
1831 	/* Giveback the urb when all the tds are completed */
1832 	if (last_td_in_urb(td)) {
1833 		if ((urb->actual_length != urb->transfer_buffer_length &&
1834 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1835 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1836 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1837 				 urb, urb->actual_length,
1838 				 urb->transfer_buffer_length, *status);
1839 
1840 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1841 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1842 			*status = 0;
1843 		xhci_giveback_urb_in_irq(xhci, td, *status);
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1850 	struct xhci_transfer_event *event,
1851 	struct xhci_virt_ep *ep, int *status)
1852 {
1853 	struct xhci_virt_device *xdev;
1854 	struct xhci_ep_ctx *ep_ctx;
1855 	struct xhci_ring *ep_ring;
1856 	unsigned int slot_id;
1857 	u32 trb_comp_code;
1858 	int ep_index;
1859 
1860 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1861 	xdev = xhci->devs[slot_id];
1862 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1863 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1864 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1865 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1866 
1867 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1868 			trb_comp_code == COMP_STOPPED ||
1869 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1870 		/* The Endpoint Stop Command completion will take care of any
1871 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1872 		 * the ring dequeue pointer or take this TD off any lists yet.
1873 		 */
1874 		return 0;
1875 	}
1876 	if (trb_comp_code == COMP_STALL_ERROR ||
1877 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1878 						trb_comp_code)) {
1879 		/* Issue a reset endpoint command to clear the host side
1880 		 * halt, followed by a set dequeue command to move the
1881 		 * dequeue pointer past the TD.
1882 		 * The class driver clears the device side halt later.
1883 		 */
1884 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1885 					ep_ring->stream_id, td, EP_HARD_RESET);
1886 	} else {
1887 		/* Update ring dequeue pointer */
1888 		while (ep_ring->dequeue != td->last_trb)
1889 			inc_deq(xhci, ep_ring);
1890 		inc_deq(xhci, ep_ring);
1891 	}
1892 
1893 	return xhci_td_cleanup(xhci, td, ep_ring, status);
1894 }
1895 
1896 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1897 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1898 			   union xhci_trb *stop_trb)
1899 {
1900 	u32 sum;
1901 	union xhci_trb *trb = ring->dequeue;
1902 	struct xhci_segment *seg = ring->deq_seg;
1903 
1904 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1905 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1906 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1907 	}
1908 	return sum;
1909 }
1910 
1911 /*
1912  * Process control tds, update urb status and actual_length.
1913  */
1914 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1915 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1916 	struct xhci_virt_ep *ep, int *status)
1917 {
1918 	struct xhci_virt_device *xdev;
1919 	unsigned int slot_id;
1920 	int ep_index;
1921 	struct xhci_ep_ctx *ep_ctx;
1922 	u32 trb_comp_code;
1923 	u32 remaining, requested;
1924 	u32 trb_type;
1925 
1926 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
1927 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1928 	xdev = xhci->devs[slot_id];
1929 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1930 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1931 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1932 	requested = td->urb->transfer_buffer_length;
1933 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1934 
1935 	switch (trb_comp_code) {
1936 	case COMP_SUCCESS:
1937 		if (trb_type != TRB_STATUS) {
1938 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
1939 				  (trb_type == TRB_DATA) ? "data" : "setup");
1940 			*status = -ESHUTDOWN;
1941 			break;
1942 		}
1943 		*status = 0;
1944 		break;
1945 	case COMP_SHORT_PACKET:
1946 		*status = 0;
1947 		break;
1948 	case COMP_STOPPED_SHORT_PACKET:
1949 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1950 			td->urb->actual_length = remaining;
1951 		else
1952 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1953 		goto finish_td;
1954 	case COMP_STOPPED:
1955 		switch (trb_type) {
1956 		case TRB_SETUP:
1957 			td->urb->actual_length = 0;
1958 			goto finish_td;
1959 		case TRB_DATA:
1960 		case TRB_NORMAL:
1961 			td->urb->actual_length = requested - remaining;
1962 			goto finish_td;
1963 		case TRB_STATUS:
1964 			td->urb->actual_length = requested;
1965 			goto finish_td;
1966 		default:
1967 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
1968 				  trb_type);
1969 			goto finish_td;
1970 		}
1971 	case COMP_STOPPED_LENGTH_INVALID:
1972 		goto finish_td;
1973 	default:
1974 		if (!xhci_requires_manual_halt_cleanup(xhci,
1975 						       ep_ctx, trb_comp_code))
1976 			break;
1977 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
1978 			 trb_comp_code, ep_index);
1979 		/* else fall through */
1980 	case COMP_STALL_ERROR:
1981 		/* Did we transfer part of the data (middle) phase? */
1982 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1983 			td->urb->actual_length = requested - remaining;
1984 		else if (!td->urb_length_set)
1985 			td->urb->actual_length = 0;
1986 		goto finish_td;
1987 	}
1988 
1989 	/* stopped at setup stage, no data transferred */
1990 	if (trb_type == TRB_SETUP)
1991 		goto finish_td;
1992 
1993 	/*
1994 	 * if on data stage then update the actual_length of the URB and flag it
1995 	 * as set, so it won't be overwritten in the event for the last TRB.
1996 	 */
1997 	if (trb_type == TRB_DATA ||
1998 		trb_type == TRB_NORMAL) {
1999 		td->urb_length_set = true;
2000 		td->urb->actual_length = requested - remaining;
2001 		xhci_dbg(xhci, "Waiting for status stage event\n");
2002 		return 0;
2003 	}
2004 
2005 	/* at status stage */
2006 	if (!td->urb_length_set)
2007 		td->urb->actual_length = requested;
2008 
2009 finish_td:
2010 	return finish_td(xhci, td, event, ep, status);
2011 }
2012 
2013 /*
2014  * Process isochronous tds, update urb packet status and actual_length.
2015  */
2016 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2017 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2018 	struct xhci_virt_ep *ep, int *status)
2019 {
2020 	struct xhci_ring *ep_ring;
2021 	struct urb_priv *urb_priv;
2022 	int idx;
2023 	struct usb_iso_packet_descriptor *frame;
2024 	u32 trb_comp_code;
2025 	bool sum_trbs_for_length = false;
2026 	u32 remaining, requested, ep_trb_len;
2027 	int short_framestatus;
2028 
2029 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2030 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2031 	urb_priv = td->urb->hcpriv;
2032 	idx = urb_priv->num_tds_done;
2033 	frame = &td->urb->iso_frame_desc[idx];
2034 	requested = frame->length;
2035 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2036 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2037 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2038 		-EREMOTEIO : 0;
2039 
2040 	/* handle completion code */
2041 	switch (trb_comp_code) {
2042 	case COMP_SUCCESS:
2043 		if (remaining) {
2044 			frame->status = short_framestatus;
2045 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2046 				sum_trbs_for_length = true;
2047 			break;
2048 		}
2049 		frame->status = 0;
2050 		break;
2051 	case COMP_SHORT_PACKET:
2052 		frame->status = short_framestatus;
2053 		sum_trbs_for_length = true;
2054 		break;
2055 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2056 		frame->status = -ECOMM;
2057 		break;
2058 	case COMP_ISOCH_BUFFER_OVERRUN:
2059 	case COMP_BABBLE_DETECTED_ERROR:
2060 		frame->status = -EOVERFLOW;
2061 		break;
2062 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2063 	case COMP_STALL_ERROR:
2064 		frame->status = -EPROTO;
2065 		break;
2066 	case COMP_USB_TRANSACTION_ERROR:
2067 		frame->status = -EPROTO;
2068 		if (ep_trb != td->last_trb)
2069 			return 0;
2070 		break;
2071 	case COMP_STOPPED:
2072 		sum_trbs_for_length = true;
2073 		break;
2074 	case COMP_STOPPED_SHORT_PACKET:
2075 		/* field normally containing residue now contains tranferred */
2076 		frame->status = short_framestatus;
2077 		requested = remaining;
2078 		break;
2079 	case COMP_STOPPED_LENGTH_INVALID:
2080 		requested = 0;
2081 		remaining = 0;
2082 		break;
2083 	default:
2084 		sum_trbs_for_length = true;
2085 		frame->status = -1;
2086 		break;
2087 	}
2088 
2089 	if (sum_trbs_for_length)
2090 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2091 			ep_trb_len - remaining;
2092 	else
2093 		frame->actual_length = requested;
2094 
2095 	td->urb->actual_length += frame->actual_length;
2096 
2097 	return finish_td(xhci, td, event, ep, status);
2098 }
2099 
2100 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2101 			struct xhci_transfer_event *event,
2102 			struct xhci_virt_ep *ep, int *status)
2103 {
2104 	struct xhci_ring *ep_ring;
2105 	struct urb_priv *urb_priv;
2106 	struct usb_iso_packet_descriptor *frame;
2107 	int idx;
2108 
2109 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2110 	urb_priv = td->urb->hcpriv;
2111 	idx = urb_priv->num_tds_done;
2112 	frame = &td->urb->iso_frame_desc[idx];
2113 
2114 	/* The transfer is partly done. */
2115 	frame->status = -EXDEV;
2116 
2117 	/* calc actual length */
2118 	frame->actual_length = 0;
2119 
2120 	/* Update ring dequeue pointer */
2121 	while (ep_ring->dequeue != td->last_trb)
2122 		inc_deq(xhci, ep_ring);
2123 	inc_deq(xhci, ep_ring);
2124 
2125 	return xhci_td_cleanup(xhci, td, ep_ring, status);
2126 }
2127 
2128 /*
2129  * Process bulk and interrupt tds, update urb status and actual_length.
2130  */
2131 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2132 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2133 	struct xhci_virt_ep *ep, int *status)
2134 {
2135 	struct xhci_ring *ep_ring;
2136 	u32 trb_comp_code;
2137 	u32 remaining, requested, ep_trb_len;
2138 
2139 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2140 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2141 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2142 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2143 	requested = td->urb->transfer_buffer_length;
2144 
2145 	switch (trb_comp_code) {
2146 	case COMP_SUCCESS:
2147 		/* handle success with untransferred data as short packet */
2148 		if (ep_trb != td->last_trb || remaining) {
2149 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2150 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2151 				 td->urb->ep->desc.bEndpointAddress,
2152 				 requested, remaining);
2153 		}
2154 		*status = 0;
2155 		break;
2156 	case COMP_SHORT_PACKET:
2157 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2158 			 td->urb->ep->desc.bEndpointAddress,
2159 			 requested, remaining);
2160 		*status = 0;
2161 		break;
2162 	case COMP_STOPPED_SHORT_PACKET:
2163 		td->urb->actual_length = remaining;
2164 		goto finish_td;
2165 	case COMP_STOPPED_LENGTH_INVALID:
2166 		/* stopped on ep trb with invalid length, exclude it */
2167 		ep_trb_len	= 0;
2168 		remaining	= 0;
2169 		break;
2170 	default:
2171 		/* do nothing */
2172 		break;
2173 	}
2174 
2175 	if (ep_trb == td->last_trb)
2176 		td->urb->actual_length = requested - remaining;
2177 	else
2178 		td->urb->actual_length =
2179 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2180 			ep_trb_len - remaining;
2181 finish_td:
2182 	if (remaining > requested) {
2183 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2184 			  remaining);
2185 		td->urb->actual_length = 0;
2186 	}
2187 	return finish_td(xhci, td, event, ep, status);
2188 }
2189 
2190 /*
2191  * If this function returns an error condition, it means it got a Transfer
2192  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2193  * At this point, the host controller is probably hosed and should be reset.
2194  */
2195 static int handle_tx_event(struct xhci_hcd *xhci,
2196 		struct xhci_transfer_event *event)
2197 {
2198 	struct xhci_virt_device *xdev;
2199 	struct xhci_virt_ep *ep;
2200 	struct xhci_ring *ep_ring;
2201 	unsigned int slot_id;
2202 	int ep_index;
2203 	struct xhci_td *td = NULL;
2204 	dma_addr_t ep_trb_dma;
2205 	struct xhci_segment *ep_seg;
2206 	union xhci_trb *ep_trb;
2207 	int status = -EINPROGRESS;
2208 	struct xhci_ep_ctx *ep_ctx;
2209 	struct list_head *tmp;
2210 	u32 trb_comp_code;
2211 	int td_num = 0;
2212 	bool handling_skipped_tds = false;
2213 
2214 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2215 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2216 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2217 	ep_trb_dma = le64_to_cpu(event->buffer);
2218 
2219 	xdev = xhci->devs[slot_id];
2220 	if (!xdev) {
2221 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2222 			 slot_id);
2223 		goto err_out;
2224 	}
2225 
2226 	ep = &xdev->eps[ep_index];
2227 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2228 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2229 
2230 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2231 		xhci_err(xhci,
2232 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2233 			  slot_id, ep_index);
2234 		goto err_out;
2235 	}
2236 
2237 	/* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2238 	if (!ep_ring) {
2239 		switch (trb_comp_code) {
2240 		case COMP_STALL_ERROR:
2241 		case COMP_USB_TRANSACTION_ERROR:
2242 		case COMP_INVALID_STREAM_TYPE_ERROR:
2243 		case COMP_INVALID_STREAM_ID_ERROR:
2244 			xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2245 						     NULL, EP_SOFT_RESET);
2246 			goto cleanup;
2247 		case COMP_RING_UNDERRUN:
2248 		case COMP_RING_OVERRUN:
2249 			goto cleanup;
2250 		default:
2251 			xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2252 				 slot_id, ep_index);
2253 			goto err_out;
2254 		}
2255 	}
2256 
2257 	/* Count current td numbers if ep->skip is set */
2258 	if (ep->skip) {
2259 		list_for_each(tmp, &ep_ring->td_list)
2260 			td_num++;
2261 	}
2262 
2263 	/* Look for common error cases */
2264 	switch (trb_comp_code) {
2265 	/* Skip codes that require special handling depending on
2266 	 * transfer type
2267 	 */
2268 	case COMP_SUCCESS:
2269 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2270 			break;
2271 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2272 			trb_comp_code = COMP_SHORT_PACKET;
2273 		else
2274 			xhci_warn_ratelimited(xhci,
2275 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2276 					      slot_id, ep_index);
2277 	case COMP_SHORT_PACKET:
2278 		break;
2279 	/* Completion codes for endpoint stopped state */
2280 	case COMP_STOPPED:
2281 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2282 			 slot_id, ep_index);
2283 		break;
2284 	case COMP_STOPPED_LENGTH_INVALID:
2285 		xhci_dbg(xhci,
2286 			 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2287 			 slot_id, ep_index);
2288 		break;
2289 	case COMP_STOPPED_SHORT_PACKET:
2290 		xhci_dbg(xhci,
2291 			 "Stopped with short packet transfer detected for slot %u ep %u\n",
2292 			 slot_id, ep_index);
2293 		break;
2294 	/* Completion codes for endpoint halted state */
2295 	case COMP_STALL_ERROR:
2296 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2297 			 ep_index);
2298 		ep->ep_state |= EP_HALTED;
2299 		status = -EPIPE;
2300 		break;
2301 	case COMP_SPLIT_TRANSACTION_ERROR:
2302 	case COMP_USB_TRANSACTION_ERROR:
2303 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2304 			 slot_id, ep_index);
2305 		status = -EPROTO;
2306 		break;
2307 	case COMP_BABBLE_DETECTED_ERROR:
2308 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2309 			 slot_id, ep_index);
2310 		status = -EOVERFLOW;
2311 		break;
2312 	/* Completion codes for endpoint error state */
2313 	case COMP_TRB_ERROR:
2314 		xhci_warn(xhci,
2315 			  "WARN: TRB error for slot %u ep %u on endpoint\n",
2316 			  slot_id, ep_index);
2317 		status = -EILSEQ;
2318 		break;
2319 	/* completion codes not indicating endpoint state change */
2320 	case COMP_DATA_BUFFER_ERROR:
2321 		xhci_warn(xhci,
2322 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2323 			  slot_id, ep_index);
2324 		status = -ENOSR;
2325 		break;
2326 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2327 		xhci_warn(xhci,
2328 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2329 			  slot_id, ep_index);
2330 		break;
2331 	case COMP_ISOCH_BUFFER_OVERRUN:
2332 		xhci_warn(xhci,
2333 			  "WARN: buffer overrun event for slot %u ep %u on endpoint",
2334 			  slot_id, ep_index);
2335 		break;
2336 	case COMP_RING_UNDERRUN:
2337 		/*
2338 		 * When the Isoch ring is empty, the xHC will generate
2339 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2340 		 * Underrun Event for OUT Isoch endpoint.
2341 		 */
2342 		xhci_dbg(xhci, "underrun event on endpoint\n");
2343 		if (!list_empty(&ep_ring->td_list))
2344 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2345 					"still with TDs queued?\n",
2346 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2347 				 ep_index);
2348 		goto cleanup;
2349 	case COMP_RING_OVERRUN:
2350 		xhci_dbg(xhci, "overrun event on endpoint\n");
2351 		if (!list_empty(&ep_ring->td_list))
2352 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2353 					"still with TDs queued?\n",
2354 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2355 				 ep_index);
2356 		goto cleanup;
2357 	case COMP_MISSED_SERVICE_ERROR:
2358 		/*
2359 		 * When encounter missed service error, one or more isoc tds
2360 		 * may be missed by xHC.
2361 		 * Set skip flag of the ep_ring; Complete the missed tds as
2362 		 * short transfer when process the ep_ring next time.
2363 		 */
2364 		ep->skip = true;
2365 		xhci_dbg(xhci,
2366 			 "Miss service interval error for slot %u ep %u, set skip flag\n",
2367 			 slot_id, ep_index);
2368 		goto cleanup;
2369 	case COMP_NO_PING_RESPONSE_ERROR:
2370 		ep->skip = true;
2371 		xhci_dbg(xhci,
2372 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2373 			 slot_id, ep_index);
2374 		goto cleanup;
2375 
2376 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2377 		/* needs disable slot command to recover */
2378 		xhci_warn(xhci,
2379 			  "WARN: detect an incompatible device for slot %u ep %u",
2380 			  slot_id, ep_index);
2381 		status = -EPROTO;
2382 		break;
2383 	default:
2384 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2385 			status = 0;
2386 			break;
2387 		}
2388 		xhci_warn(xhci,
2389 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2390 			  trb_comp_code, slot_id, ep_index);
2391 		goto cleanup;
2392 	}
2393 
2394 	do {
2395 		/* This TRB should be in the TD at the head of this ring's
2396 		 * TD list.
2397 		 */
2398 		if (list_empty(&ep_ring->td_list)) {
2399 			/*
2400 			 * Don't print wanings if it's due to a stopped endpoint
2401 			 * generating an extra completion event if the device
2402 			 * was suspended. Or, a event for the last TRB of a
2403 			 * short TD we already got a short event for.
2404 			 * The short TD is already removed from the TD list.
2405 			 */
2406 
2407 			if (!(trb_comp_code == COMP_STOPPED ||
2408 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2409 			      ep_ring->last_td_was_short)) {
2410 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2411 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2412 						ep_index);
2413 			}
2414 			if (ep->skip) {
2415 				ep->skip = false;
2416 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2417 					 slot_id, ep_index);
2418 			}
2419 			goto cleanup;
2420 		}
2421 
2422 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2423 		if (ep->skip && td_num == 0) {
2424 			ep->skip = false;
2425 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2426 				 slot_id, ep_index);
2427 			goto cleanup;
2428 		}
2429 
2430 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2431 				      td_list);
2432 		if (ep->skip)
2433 			td_num--;
2434 
2435 		/* Is this a TRB in the currently executing TD? */
2436 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2437 				td->last_trb, ep_trb_dma, false);
2438 
2439 		/*
2440 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2441 		 * is not in the current TD pointed by ep_ring->dequeue because
2442 		 * that the hardware dequeue pointer still at the previous TRB
2443 		 * of the current TD. The previous TRB maybe a Link TD or the
2444 		 * last TRB of the previous TD. The command completion handle
2445 		 * will take care the rest.
2446 		 */
2447 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2448 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2449 			goto cleanup;
2450 		}
2451 
2452 		if (!ep_seg) {
2453 			if (!ep->skip ||
2454 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2455 				/* Some host controllers give a spurious
2456 				 * successful event after a short transfer.
2457 				 * Ignore it.
2458 				 */
2459 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2460 						ep_ring->last_td_was_short) {
2461 					ep_ring->last_td_was_short = false;
2462 					goto cleanup;
2463 				}
2464 				/* HC is busted, give up! */
2465 				xhci_err(xhci,
2466 					"ERROR Transfer event TRB DMA ptr not "
2467 					"part of current TD ep_index %d "
2468 					"comp_code %u\n", ep_index,
2469 					trb_comp_code);
2470 				trb_in_td(xhci, ep_ring->deq_seg,
2471 					  ep_ring->dequeue, td->last_trb,
2472 					  ep_trb_dma, true);
2473 				return -ESHUTDOWN;
2474 			}
2475 
2476 			skip_isoc_td(xhci, td, event, ep, &status);
2477 			goto cleanup;
2478 		}
2479 		if (trb_comp_code == COMP_SHORT_PACKET)
2480 			ep_ring->last_td_was_short = true;
2481 		else
2482 			ep_ring->last_td_was_short = false;
2483 
2484 		if (ep->skip) {
2485 			xhci_dbg(xhci,
2486 				 "Found td. Clear skip flag for slot %u ep %u.\n",
2487 				 slot_id, ep_index);
2488 			ep->skip = false;
2489 		}
2490 
2491 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2492 						sizeof(*ep_trb)];
2493 
2494 		trace_xhci_handle_transfer(ep_ring,
2495 				(struct xhci_generic_trb *) ep_trb);
2496 
2497 		/*
2498 		 * No-op TRB could trigger interrupts in a case where
2499 		 * a URB was killed and a STALL_ERROR happens right
2500 		 * after the endpoint ring stopped. Reset the halted
2501 		 * endpoint. Otherwise, the endpoint remains stalled
2502 		 * indefinitely.
2503 		 */
2504 		if (trb_is_noop(ep_trb)) {
2505 			if (trb_comp_code == COMP_STALL_ERROR ||
2506 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2507 							      trb_comp_code))
2508 				xhci_cleanup_halted_endpoint(xhci, slot_id,
2509 							     ep_index,
2510 							     ep_ring->stream_id,
2511 							     td, EP_HARD_RESET);
2512 			goto cleanup;
2513 		}
2514 
2515 		/* update the urb's actual_length and give back to the core */
2516 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2517 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2518 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2519 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2520 		else
2521 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2522 					     &status);
2523 cleanup:
2524 		handling_skipped_tds = ep->skip &&
2525 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2526 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2527 
2528 		/*
2529 		 * Do not update event ring dequeue pointer if we're in a loop
2530 		 * processing missed tds.
2531 		 */
2532 		if (!handling_skipped_tds)
2533 			inc_deq(xhci, xhci->event_ring);
2534 
2535 	/*
2536 	 * If ep->skip is set, it means there are missed tds on the
2537 	 * endpoint ring need to take care of.
2538 	 * Process them as short transfer until reach the td pointed by
2539 	 * the event.
2540 	 */
2541 	} while (handling_skipped_tds);
2542 
2543 	return 0;
2544 
2545 err_out:
2546 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2547 		 (unsigned long long) xhci_trb_virt_to_dma(
2548 			 xhci->event_ring->deq_seg,
2549 			 xhci->event_ring->dequeue),
2550 		 lower_32_bits(le64_to_cpu(event->buffer)),
2551 		 upper_32_bits(le64_to_cpu(event->buffer)),
2552 		 le32_to_cpu(event->transfer_len),
2553 		 le32_to_cpu(event->flags));
2554 	return -ENODEV;
2555 }
2556 
2557 /*
2558  * This function handles all OS-owned events on the event ring.  It may drop
2559  * xhci->lock between event processing (e.g. to pass up port status changes).
2560  * Returns >0 for "possibly more events to process" (caller should call again),
2561  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2562  */
2563 static int xhci_handle_event(struct xhci_hcd *xhci)
2564 {
2565 	union xhci_trb *event;
2566 	int update_ptrs = 1;
2567 	int ret;
2568 
2569 	/* Event ring hasn't been allocated yet. */
2570 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2571 		xhci_err(xhci, "ERROR event ring not ready\n");
2572 		return -ENOMEM;
2573 	}
2574 
2575 	event = xhci->event_ring->dequeue;
2576 	/* Does the HC or OS own the TRB? */
2577 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2578 	    xhci->event_ring->cycle_state)
2579 		return 0;
2580 
2581 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2582 
2583 	/*
2584 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2585 	 * speculative reads of the event's flags/data below.
2586 	 */
2587 	rmb();
2588 	/* FIXME: Handle more event types. */
2589 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2590 	case TRB_TYPE(TRB_COMPLETION):
2591 		handle_cmd_completion(xhci, &event->event_cmd);
2592 		break;
2593 	case TRB_TYPE(TRB_PORT_STATUS):
2594 		handle_port_status(xhci, event);
2595 		update_ptrs = 0;
2596 		break;
2597 	case TRB_TYPE(TRB_TRANSFER):
2598 		ret = handle_tx_event(xhci, &event->trans_event);
2599 		if (ret >= 0)
2600 			update_ptrs = 0;
2601 		break;
2602 	case TRB_TYPE(TRB_DEV_NOTE):
2603 		handle_device_notification(xhci, event);
2604 		break;
2605 	default:
2606 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2607 		    TRB_TYPE(48))
2608 			handle_vendor_event(xhci, event);
2609 		else
2610 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2611 				  TRB_FIELD_TO_TYPE(
2612 				  le32_to_cpu(event->event_cmd.flags)));
2613 	}
2614 	/* Any of the above functions may drop and re-acquire the lock, so check
2615 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2616 	 */
2617 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2618 		xhci_dbg(xhci, "xHCI host dying, returning from "
2619 				"event handler.\n");
2620 		return 0;
2621 	}
2622 
2623 	if (update_ptrs)
2624 		/* Update SW event ring dequeue pointer */
2625 		inc_deq(xhci, xhci->event_ring);
2626 
2627 	/* Are there more items on the event ring?  Caller will call us again to
2628 	 * check.
2629 	 */
2630 	return 1;
2631 }
2632 
2633 /*
2634  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2635  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2636  * indicators of an event TRB error, but we check the status *first* to be safe.
2637  */
2638 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2639 {
2640 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2641 	union xhci_trb *event_ring_deq;
2642 	irqreturn_t ret = IRQ_NONE;
2643 	unsigned long flags;
2644 	dma_addr_t deq;
2645 	u64 temp_64;
2646 	u32 status;
2647 
2648 	spin_lock_irqsave(&xhci->lock, flags);
2649 	/* Check if the xHC generated the interrupt, or the irq is shared */
2650 	status = readl(&xhci->op_regs->status);
2651 	if (status == ~(u32)0) {
2652 		xhci_hc_died(xhci);
2653 		ret = IRQ_HANDLED;
2654 		goto out;
2655 	}
2656 
2657 	if (!(status & STS_EINT))
2658 		goto out;
2659 
2660 	if (status & STS_FATAL) {
2661 		xhci_warn(xhci, "WARNING: Host System Error\n");
2662 		xhci_halt(xhci);
2663 		ret = IRQ_HANDLED;
2664 		goto out;
2665 	}
2666 
2667 	/*
2668 	 * Clear the op reg interrupt status first,
2669 	 * so we can receive interrupts from other MSI-X interrupters.
2670 	 * Write 1 to clear the interrupt status.
2671 	 */
2672 	status |= STS_EINT;
2673 	writel(status, &xhci->op_regs->status);
2674 
2675 	if (!hcd->msi_enabled) {
2676 		u32 irq_pending;
2677 		irq_pending = readl(&xhci->ir_set->irq_pending);
2678 		irq_pending |= IMAN_IP;
2679 		writel(irq_pending, &xhci->ir_set->irq_pending);
2680 	}
2681 
2682 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2683 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2684 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2685 				"Shouldn't IRQs be disabled?\n");
2686 		/* Clear the event handler busy flag (RW1C);
2687 		 * the event ring should be empty.
2688 		 */
2689 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2690 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2691 				&xhci->ir_set->erst_dequeue);
2692 		ret = IRQ_HANDLED;
2693 		goto out;
2694 	}
2695 
2696 	event_ring_deq = xhci->event_ring->dequeue;
2697 	/* FIXME this should be a delayed service routine
2698 	 * that clears the EHB.
2699 	 */
2700 	while (xhci_handle_event(xhci) > 0) {}
2701 
2702 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2703 	/* If necessary, update the HW's version of the event ring deq ptr. */
2704 	if (event_ring_deq != xhci->event_ring->dequeue) {
2705 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2706 				xhci->event_ring->dequeue);
2707 		if (deq == 0)
2708 			xhci_warn(xhci, "WARN something wrong with SW event "
2709 					"ring dequeue ptr.\n");
2710 		/* Update HC event ring dequeue pointer */
2711 		temp_64 &= ERST_PTR_MASK;
2712 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2713 	}
2714 
2715 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2716 	temp_64 |= ERST_EHB;
2717 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2718 	ret = IRQ_HANDLED;
2719 
2720 out:
2721 	spin_unlock_irqrestore(&xhci->lock, flags);
2722 
2723 	return ret;
2724 }
2725 
2726 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2727 {
2728 	return xhci_irq(hcd);
2729 }
2730 
2731 /****		Endpoint Ring Operations	****/
2732 
2733 /*
2734  * Generic function for queueing a TRB on a ring.
2735  * The caller must have checked to make sure there's room on the ring.
2736  *
2737  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2738  *			prepare_transfer()?
2739  */
2740 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2741 		bool more_trbs_coming,
2742 		u32 field1, u32 field2, u32 field3, u32 field4)
2743 {
2744 	struct xhci_generic_trb *trb;
2745 
2746 	trb = &ring->enqueue->generic;
2747 	trb->field[0] = cpu_to_le32(field1);
2748 	trb->field[1] = cpu_to_le32(field2);
2749 	trb->field[2] = cpu_to_le32(field3);
2750 	trb->field[3] = cpu_to_le32(field4);
2751 
2752 	trace_xhci_queue_trb(ring, trb);
2753 
2754 	inc_enq(xhci, ring, more_trbs_coming);
2755 }
2756 
2757 /*
2758  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2759  * FIXME allocate segments if the ring is full.
2760  */
2761 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2762 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2763 {
2764 	unsigned int num_trbs_needed;
2765 
2766 	/* Make sure the endpoint has been added to xHC schedule */
2767 	switch (ep_state) {
2768 	case EP_STATE_DISABLED:
2769 		/*
2770 		 * USB core changed config/interfaces without notifying us,
2771 		 * or hardware is reporting the wrong state.
2772 		 */
2773 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2774 		return -ENOENT;
2775 	case EP_STATE_ERROR:
2776 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2777 		/* FIXME event handling code for error needs to clear it */
2778 		/* XXX not sure if this should be -ENOENT or not */
2779 		return -EINVAL;
2780 	case EP_STATE_HALTED:
2781 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2782 	case EP_STATE_STOPPED:
2783 	case EP_STATE_RUNNING:
2784 		break;
2785 	default:
2786 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2787 		/*
2788 		 * FIXME issue Configure Endpoint command to try to get the HC
2789 		 * back into a known state.
2790 		 */
2791 		return -EINVAL;
2792 	}
2793 
2794 	while (1) {
2795 		if (room_on_ring(xhci, ep_ring, num_trbs))
2796 			break;
2797 
2798 		if (ep_ring == xhci->cmd_ring) {
2799 			xhci_err(xhci, "Do not support expand command ring\n");
2800 			return -ENOMEM;
2801 		}
2802 
2803 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2804 				"ERROR no room on ep ring, try ring expansion");
2805 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2806 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2807 					mem_flags)) {
2808 			xhci_err(xhci, "Ring expansion failed\n");
2809 			return -ENOMEM;
2810 		}
2811 	}
2812 
2813 	while (trb_is_link(ep_ring->enqueue)) {
2814 		/* If we're not dealing with 0.95 hardware or isoc rings
2815 		 * on AMD 0.96 host, clear the chain bit.
2816 		 */
2817 		if (!xhci_link_trb_quirk(xhci) &&
2818 		    !(ep_ring->type == TYPE_ISOC &&
2819 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2820 			ep_ring->enqueue->link.control &=
2821 				cpu_to_le32(~TRB_CHAIN);
2822 		else
2823 			ep_ring->enqueue->link.control |=
2824 				cpu_to_le32(TRB_CHAIN);
2825 
2826 		wmb();
2827 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2828 
2829 		/* Toggle the cycle bit after the last ring segment. */
2830 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2831 			ep_ring->cycle_state ^= 1;
2832 
2833 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2834 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2835 	}
2836 	return 0;
2837 }
2838 
2839 static int prepare_transfer(struct xhci_hcd *xhci,
2840 		struct xhci_virt_device *xdev,
2841 		unsigned int ep_index,
2842 		unsigned int stream_id,
2843 		unsigned int num_trbs,
2844 		struct urb *urb,
2845 		unsigned int td_index,
2846 		gfp_t mem_flags)
2847 {
2848 	int ret;
2849 	struct urb_priv *urb_priv;
2850 	struct xhci_td	*td;
2851 	struct xhci_ring *ep_ring;
2852 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2853 
2854 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2855 	if (!ep_ring) {
2856 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2857 				stream_id);
2858 		return -EINVAL;
2859 	}
2860 
2861 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2862 			   num_trbs, mem_flags);
2863 	if (ret)
2864 		return ret;
2865 
2866 	urb_priv = urb->hcpriv;
2867 	td = &urb_priv->td[td_index];
2868 
2869 	INIT_LIST_HEAD(&td->td_list);
2870 	INIT_LIST_HEAD(&td->cancelled_td_list);
2871 
2872 	if (td_index == 0) {
2873 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2874 		if (unlikely(ret))
2875 			return ret;
2876 	}
2877 
2878 	td->urb = urb;
2879 	/* Add this TD to the tail of the endpoint ring's TD list */
2880 	list_add_tail(&td->td_list, &ep_ring->td_list);
2881 	td->start_seg = ep_ring->enq_seg;
2882 	td->first_trb = ep_ring->enqueue;
2883 
2884 	return 0;
2885 }
2886 
2887 unsigned int count_trbs(u64 addr, u64 len)
2888 {
2889 	unsigned int num_trbs;
2890 
2891 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2892 			TRB_MAX_BUFF_SIZE);
2893 	if (num_trbs == 0)
2894 		num_trbs++;
2895 
2896 	return num_trbs;
2897 }
2898 
2899 static inline unsigned int count_trbs_needed(struct urb *urb)
2900 {
2901 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2902 }
2903 
2904 static unsigned int count_sg_trbs_needed(struct urb *urb)
2905 {
2906 	struct scatterlist *sg;
2907 	unsigned int i, len, full_len, num_trbs = 0;
2908 
2909 	full_len = urb->transfer_buffer_length;
2910 
2911 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2912 		len = sg_dma_len(sg);
2913 		num_trbs += count_trbs(sg_dma_address(sg), len);
2914 		len = min_t(unsigned int, len, full_len);
2915 		full_len -= len;
2916 		if (full_len == 0)
2917 			break;
2918 	}
2919 
2920 	return num_trbs;
2921 }
2922 
2923 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2924 {
2925 	u64 addr, len;
2926 
2927 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2928 	len = urb->iso_frame_desc[i].length;
2929 
2930 	return count_trbs(addr, len);
2931 }
2932 
2933 static void check_trb_math(struct urb *urb, int running_total)
2934 {
2935 	if (unlikely(running_total != urb->transfer_buffer_length))
2936 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2937 				"queued %#x (%d), asked for %#x (%d)\n",
2938 				__func__,
2939 				urb->ep->desc.bEndpointAddress,
2940 				running_total, running_total,
2941 				urb->transfer_buffer_length,
2942 				urb->transfer_buffer_length);
2943 }
2944 
2945 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2946 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2947 		struct xhci_generic_trb *start_trb)
2948 {
2949 	/*
2950 	 * Pass all the TRBs to the hardware at once and make sure this write
2951 	 * isn't reordered.
2952 	 */
2953 	wmb();
2954 	if (start_cycle)
2955 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2956 	else
2957 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2958 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2959 }
2960 
2961 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
2962 						struct xhci_ep_ctx *ep_ctx)
2963 {
2964 	int xhci_interval;
2965 	int ep_interval;
2966 
2967 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2968 	ep_interval = urb->interval;
2969 
2970 	/* Convert to microframes */
2971 	if (urb->dev->speed == USB_SPEED_LOW ||
2972 			urb->dev->speed == USB_SPEED_FULL)
2973 		ep_interval *= 8;
2974 
2975 	/* FIXME change this to a warning and a suggestion to use the new API
2976 	 * to set the polling interval (once the API is added).
2977 	 */
2978 	if (xhci_interval != ep_interval) {
2979 		dev_dbg_ratelimited(&urb->dev->dev,
2980 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2981 				ep_interval, ep_interval == 1 ? "" : "s",
2982 				xhci_interval, xhci_interval == 1 ? "" : "s");
2983 		urb->interval = xhci_interval;
2984 		/* Convert back to frames for LS/FS devices */
2985 		if (urb->dev->speed == USB_SPEED_LOW ||
2986 				urb->dev->speed == USB_SPEED_FULL)
2987 			urb->interval /= 8;
2988 	}
2989 }
2990 
2991 /*
2992  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2993  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2994  * (comprised of sg list entries) can take several service intervals to
2995  * transmit.
2996  */
2997 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2998 		struct urb *urb, int slot_id, unsigned int ep_index)
2999 {
3000 	struct xhci_ep_ctx *ep_ctx;
3001 
3002 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3003 	check_interval(xhci, urb, ep_ctx);
3004 
3005 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3006 }
3007 
3008 /*
3009  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3010  * packets remaining in the TD (*not* including this TRB).
3011  *
3012  * Total TD packet count = total_packet_count =
3013  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3014  *
3015  * Packets transferred up to and including this TRB = packets_transferred =
3016  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3017  *
3018  * TD size = total_packet_count - packets_transferred
3019  *
3020  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3021  * including this TRB, right shifted by 10
3022  *
3023  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3024  * This is taken care of in the TRB_TD_SIZE() macro
3025  *
3026  * The last TRB in a TD must have the TD size set to zero.
3027  */
3028 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3029 			      int trb_buff_len, unsigned int td_total_len,
3030 			      struct urb *urb, bool more_trbs_coming)
3031 {
3032 	u32 maxp, total_packet_count;
3033 
3034 	/* MTK xHCI 0.96 contains some features from 1.0 */
3035 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3036 		return ((td_total_len - transferred) >> 10);
3037 
3038 	/* One TRB with a zero-length data packet. */
3039 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3040 	    trb_buff_len == td_total_len)
3041 		return 0;
3042 
3043 	/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3044 	if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3045 		trb_buff_len = 0;
3046 
3047 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3048 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3049 
3050 	/* Queueing functions don't count the current TRB into transferred */
3051 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3052 }
3053 
3054 
3055 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3056 			 u32 *trb_buff_len, struct xhci_segment *seg)
3057 {
3058 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3059 	unsigned int unalign;
3060 	unsigned int max_pkt;
3061 	u32 new_buff_len;
3062 
3063 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3064 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3065 
3066 	/* we got lucky, last normal TRB data on segment is packet aligned */
3067 	if (unalign == 0)
3068 		return 0;
3069 
3070 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3071 		 unalign, *trb_buff_len);
3072 
3073 	/* is the last nornal TRB alignable by splitting it */
3074 	if (*trb_buff_len > unalign) {
3075 		*trb_buff_len -= unalign;
3076 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3077 		return 0;
3078 	}
3079 
3080 	/*
3081 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3082 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3083 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3084 	 */
3085 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3086 
3087 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3088 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3089 
3090 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3091 	if (usb_urb_dir_out(urb)) {
3092 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3093 				   seg->bounce_buf, new_buff_len, enqd_len);
3094 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3095 						 max_pkt, DMA_TO_DEVICE);
3096 	} else {
3097 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3098 						 max_pkt, DMA_FROM_DEVICE);
3099 	}
3100 
3101 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3102 		/* try without aligning. Some host controllers survive */
3103 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3104 		return 0;
3105 	}
3106 	*trb_buff_len = new_buff_len;
3107 	seg->bounce_len = new_buff_len;
3108 	seg->bounce_offs = enqd_len;
3109 
3110 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3111 
3112 	return 1;
3113 }
3114 
3115 /* This is very similar to what ehci-q.c qtd_fill() does */
3116 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3117 		struct urb *urb, int slot_id, unsigned int ep_index)
3118 {
3119 	struct xhci_ring *ring;
3120 	struct urb_priv *urb_priv;
3121 	struct xhci_td *td;
3122 	struct xhci_generic_trb *start_trb;
3123 	struct scatterlist *sg = NULL;
3124 	bool more_trbs_coming = true;
3125 	bool need_zero_pkt = false;
3126 	bool first_trb = true;
3127 	unsigned int num_trbs;
3128 	unsigned int start_cycle, num_sgs = 0;
3129 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3130 	int sent_len, ret;
3131 	u32 field, length_field, remainder;
3132 	u64 addr, send_addr;
3133 
3134 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3135 	if (!ring)
3136 		return -EINVAL;
3137 
3138 	full_len = urb->transfer_buffer_length;
3139 	/* If we have scatter/gather list, we use it. */
3140 	if (urb->num_sgs) {
3141 		num_sgs = urb->num_mapped_sgs;
3142 		sg = urb->sg;
3143 		addr = (u64) sg_dma_address(sg);
3144 		block_len = sg_dma_len(sg);
3145 		num_trbs = count_sg_trbs_needed(urb);
3146 	} else {
3147 		num_trbs = count_trbs_needed(urb);
3148 		addr = (u64) urb->transfer_dma;
3149 		block_len = full_len;
3150 	}
3151 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3152 			ep_index, urb->stream_id,
3153 			num_trbs, urb, 0, mem_flags);
3154 	if (unlikely(ret < 0))
3155 		return ret;
3156 
3157 	urb_priv = urb->hcpriv;
3158 
3159 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3160 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3161 		need_zero_pkt = true;
3162 
3163 	td = &urb_priv->td[0];
3164 
3165 	/*
3166 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3167 	 * until we've finished creating all the other TRBs.  The ring's cycle
3168 	 * state may change as we enqueue the other TRBs, so save it too.
3169 	 */
3170 	start_trb = &ring->enqueue->generic;
3171 	start_cycle = ring->cycle_state;
3172 	send_addr = addr;
3173 
3174 	/* Queue the TRBs, even if they are zero-length */
3175 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3176 			enqd_len += trb_buff_len) {
3177 		field = TRB_TYPE(TRB_NORMAL);
3178 
3179 		/* TRB buffer should not cross 64KB boundaries */
3180 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3181 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3182 
3183 		if (enqd_len + trb_buff_len > full_len)
3184 			trb_buff_len = full_len - enqd_len;
3185 
3186 		/* Don't change the cycle bit of the first TRB until later */
3187 		if (first_trb) {
3188 			first_trb = false;
3189 			if (start_cycle == 0)
3190 				field |= TRB_CYCLE;
3191 		} else
3192 			field |= ring->cycle_state;
3193 
3194 		/* Chain all the TRBs together; clear the chain bit in the last
3195 		 * TRB to indicate it's the last TRB in the chain.
3196 		 */
3197 		if (enqd_len + trb_buff_len < full_len) {
3198 			field |= TRB_CHAIN;
3199 			if (trb_is_link(ring->enqueue + 1)) {
3200 				if (xhci_align_td(xhci, urb, enqd_len,
3201 						  &trb_buff_len,
3202 						  ring->enq_seg)) {
3203 					send_addr = ring->enq_seg->bounce_dma;
3204 					/* assuming TD won't span 2 segs */
3205 					td->bounce_seg = ring->enq_seg;
3206 				}
3207 			}
3208 		}
3209 		if (enqd_len + trb_buff_len >= full_len) {
3210 			field &= ~TRB_CHAIN;
3211 			field |= TRB_IOC;
3212 			more_trbs_coming = false;
3213 			td->last_trb = ring->enqueue;
3214 		}
3215 
3216 		/* Only set interrupt on short packet for IN endpoints */
3217 		if (usb_urb_dir_in(urb))
3218 			field |= TRB_ISP;
3219 
3220 		/* Set the TRB length, TD size, and interrupter fields. */
3221 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3222 					      full_len, urb, more_trbs_coming);
3223 
3224 		length_field = TRB_LEN(trb_buff_len) |
3225 			TRB_TD_SIZE(remainder) |
3226 			TRB_INTR_TARGET(0);
3227 
3228 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3229 				lower_32_bits(send_addr),
3230 				upper_32_bits(send_addr),
3231 				length_field,
3232 				field);
3233 
3234 		addr += trb_buff_len;
3235 		sent_len = trb_buff_len;
3236 
3237 		while (sg && sent_len >= block_len) {
3238 			/* New sg entry */
3239 			--num_sgs;
3240 			sent_len -= block_len;
3241 			if (num_sgs != 0) {
3242 				sg = sg_next(sg);
3243 				block_len = sg_dma_len(sg);
3244 				addr = (u64) sg_dma_address(sg);
3245 				addr += sent_len;
3246 			}
3247 		}
3248 		block_len -= sent_len;
3249 		send_addr = addr;
3250 	}
3251 
3252 	if (need_zero_pkt) {
3253 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3254 				       ep_index, urb->stream_id,
3255 				       1, urb, 1, mem_flags);
3256 		urb_priv->td[1].last_trb = ring->enqueue;
3257 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3258 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3259 	}
3260 
3261 	check_trb_math(urb, enqd_len);
3262 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3263 			start_cycle, start_trb);
3264 	return 0;
3265 }
3266 
3267 /* Caller must have locked xhci->lock */
3268 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3269 		struct urb *urb, int slot_id, unsigned int ep_index)
3270 {
3271 	struct xhci_ring *ep_ring;
3272 	int num_trbs;
3273 	int ret;
3274 	struct usb_ctrlrequest *setup;
3275 	struct xhci_generic_trb *start_trb;
3276 	int start_cycle;
3277 	u32 field;
3278 	struct urb_priv *urb_priv;
3279 	struct xhci_td *td;
3280 
3281 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3282 	if (!ep_ring)
3283 		return -EINVAL;
3284 
3285 	/*
3286 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3287 	 * DMA address.
3288 	 */
3289 	if (!urb->setup_packet)
3290 		return -EINVAL;
3291 
3292 	/* 1 TRB for setup, 1 for status */
3293 	num_trbs = 2;
3294 	/*
3295 	 * Don't need to check if we need additional event data and normal TRBs,
3296 	 * since data in control transfers will never get bigger than 16MB
3297 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3298 	 */
3299 	if (urb->transfer_buffer_length > 0)
3300 		num_trbs++;
3301 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3302 			ep_index, urb->stream_id,
3303 			num_trbs, urb, 0, mem_flags);
3304 	if (ret < 0)
3305 		return ret;
3306 
3307 	urb_priv = urb->hcpriv;
3308 	td = &urb_priv->td[0];
3309 
3310 	/*
3311 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3312 	 * until we've finished creating all the other TRBs.  The ring's cycle
3313 	 * state may change as we enqueue the other TRBs, so save it too.
3314 	 */
3315 	start_trb = &ep_ring->enqueue->generic;
3316 	start_cycle = ep_ring->cycle_state;
3317 
3318 	/* Queue setup TRB - see section 6.4.1.2.1 */
3319 	/* FIXME better way to translate setup_packet into two u32 fields? */
3320 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3321 	field = 0;
3322 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3323 	if (start_cycle == 0)
3324 		field |= 0x1;
3325 
3326 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3327 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3328 		if (urb->transfer_buffer_length > 0) {
3329 			if (setup->bRequestType & USB_DIR_IN)
3330 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3331 			else
3332 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3333 		}
3334 	}
3335 
3336 	queue_trb(xhci, ep_ring, true,
3337 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3338 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3339 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3340 		  /* Immediate data in pointer */
3341 		  field);
3342 
3343 	/* If there's data, queue data TRBs */
3344 	/* Only set interrupt on short packet for IN endpoints */
3345 	if (usb_urb_dir_in(urb))
3346 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3347 	else
3348 		field = TRB_TYPE(TRB_DATA);
3349 
3350 	if (urb->transfer_buffer_length > 0) {
3351 		u32 length_field, remainder;
3352 
3353 		remainder = xhci_td_remainder(xhci, 0,
3354 				urb->transfer_buffer_length,
3355 				urb->transfer_buffer_length,
3356 				urb, 1);
3357 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3358 				TRB_TD_SIZE(remainder) |
3359 				TRB_INTR_TARGET(0);
3360 		if (setup->bRequestType & USB_DIR_IN)
3361 			field |= TRB_DIR_IN;
3362 		queue_trb(xhci, ep_ring, true,
3363 				lower_32_bits(urb->transfer_dma),
3364 				upper_32_bits(urb->transfer_dma),
3365 				length_field,
3366 				field | ep_ring->cycle_state);
3367 	}
3368 
3369 	/* Save the DMA address of the last TRB in the TD */
3370 	td->last_trb = ep_ring->enqueue;
3371 
3372 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3373 	/* If the device sent data, the status stage is an OUT transfer */
3374 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3375 		field = 0;
3376 	else
3377 		field = TRB_DIR_IN;
3378 	queue_trb(xhci, ep_ring, false,
3379 			0,
3380 			0,
3381 			TRB_INTR_TARGET(0),
3382 			/* Event on completion */
3383 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3384 
3385 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3386 			start_cycle, start_trb);
3387 	return 0;
3388 }
3389 
3390 /*
3391  * The transfer burst count field of the isochronous TRB defines the number of
3392  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3393  * devices can burst up to bMaxBurst number of packets per service interval.
3394  * This field is zero based, meaning a value of zero in the field means one
3395  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3396  * zero.  Only xHCI 1.0 host controllers support this field.
3397  */
3398 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3399 		struct urb *urb, unsigned int total_packet_count)
3400 {
3401 	unsigned int max_burst;
3402 
3403 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3404 		return 0;
3405 
3406 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3407 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3408 }
3409 
3410 /*
3411  * Returns the number of packets in the last "burst" of packets.  This field is
3412  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3413  * the last burst packet count is equal to the total number of packets in the
3414  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3415  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3416  * contain 1 to (bMaxBurst + 1) packets.
3417  */
3418 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3419 		struct urb *urb, unsigned int total_packet_count)
3420 {
3421 	unsigned int max_burst;
3422 	unsigned int residue;
3423 
3424 	if (xhci->hci_version < 0x100)
3425 		return 0;
3426 
3427 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3428 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3429 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3430 		residue = total_packet_count % (max_burst + 1);
3431 		/* If residue is zero, the last burst contains (max_burst + 1)
3432 		 * number of packets, but the TLBPC field is zero-based.
3433 		 */
3434 		if (residue == 0)
3435 			return max_burst;
3436 		return residue - 1;
3437 	}
3438 	if (total_packet_count == 0)
3439 		return 0;
3440 	return total_packet_count - 1;
3441 }
3442 
3443 /*
3444  * Calculates Frame ID field of the isochronous TRB identifies the
3445  * target frame that the Interval associated with this Isochronous
3446  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3447  *
3448  * Returns actual frame id on success, negative value on error.
3449  */
3450 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3451 		struct urb *urb, int index)
3452 {
3453 	int start_frame, ist, ret = 0;
3454 	int start_frame_id, end_frame_id, current_frame_id;
3455 
3456 	if (urb->dev->speed == USB_SPEED_LOW ||
3457 			urb->dev->speed == USB_SPEED_FULL)
3458 		start_frame = urb->start_frame + index * urb->interval;
3459 	else
3460 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3461 
3462 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3463 	 *
3464 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3465 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3466 	 * be executed.
3467 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3468 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3469 	 */
3470 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3471 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3472 		ist <<= 3;
3473 
3474 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3475 	 * is less than the Start Frame ID or greater than the End Frame ID,
3476 	 * where:
3477 	 *
3478 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3479 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3480 	 *
3481 	 * Both the End Frame ID and Start Frame ID values are calculated
3482 	 * in microframes. When software determines the valid Frame ID value;
3483 	 * The End Frame ID value should be rounded down to the nearest Frame
3484 	 * boundary, and the Start Frame ID value should be rounded up to the
3485 	 * nearest Frame boundary.
3486 	 */
3487 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3488 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3489 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3490 
3491 	start_frame &= 0x7ff;
3492 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3493 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3494 
3495 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3496 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3497 		 start_frame_id, end_frame_id, start_frame);
3498 
3499 	if (start_frame_id < end_frame_id) {
3500 		if (start_frame > end_frame_id ||
3501 				start_frame < start_frame_id)
3502 			ret = -EINVAL;
3503 	} else if (start_frame_id > end_frame_id) {
3504 		if ((start_frame > end_frame_id &&
3505 				start_frame < start_frame_id))
3506 			ret = -EINVAL;
3507 	} else {
3508 			ret = -EINVAL;
3509 	}
3510 
3511 	if (index == 0) {
3512 		if (ret == -EINVAL || start_frame == start_frame_id) {
3513 			start_frame = start_frame_id + 1;
3514 			if (urb->dev->speed == USB_SPEED_LOW ||
3515 					urb->dev->speed == USB_SPEED_FULL)
3516 				urb->start_frame = start_frame;
3517 			else
3518 				urb->start_frame = start_frame << 3;
3519 			ret = 0;
3520 		}
3521 	}
3522 
3523 	if (ret) {
3524 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3525 				start_frame, current_frame_id, index,
3526 				start_frame_id, end_frame_id);
3527 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3528 		return ret;
3529 	}
3530 
3531 	return start_frame;
3532 }
3533 
3534 /* This is for isoc transfer */
3535 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3536 		struct urb *urb, int slot_id, unsigned int ep_index)
3537 {
3538 	struct xhci_ring *ep_ring;
3539 	struct urb_priv *urb_priv;
3540 	struct xhci_td *td;
3541 	int num_tds, trbs_per_td;
3542 	struct xhci_generic_trb *start_trb;
3543 	bool first_trb;
3544 	int start_cycle;
3545 	u32 field, length_field;
3546 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3547 	u64 start_addr, addr;
3548 	int i, j;
3549 	bool more_trbs_coming;
3550 	struct xhci_virt_ep *xep;
3551 	int frame_id;
3552 
3553 	xep = &xhci->devs[slot_id]->eps[ep_index];
3554 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3555 
3556 	num_tds = urb->number_of_packets;
3557 	if (num_tds < 1) {
3558 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3559 		return -EINVAL;
3560 	}
3561 	start_addr = (u64) urb->transfer_dma;
3562 	start_trb = &ep_ring->enqueue->generic;
3563 	start_cycle = ep_ring->cycle_state;
3564 
3565 	urb_priv = urb->hcpriv;
3566 	/* Queue the TRBs for each TD, even if they are zero-length */
3567 	for (i = 0; i < num_tds; i++) {
3568 		unsigned int total_pkt_count, max_pkt;
3569 		unsigned int burst_count, last_burst_pkt_count;
3570 		u32 sia_frame_id;
3571 
3572 		first_trb = true;
3573 		running_total = 0;
3574 		addr = start_addr + urb->iso_frame_desc[i].offset;
3575 		td_len = urb->iso_frame_desc[i].length;
3576 		td_remain_len = td_len;
3577 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3578 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3579 
3580 		/* A zero-length transfer still involves at least one packet. */
3581 		if (total_pkt_count == 0)
3582 			total_pkt_count++;
3583 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3584 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3585 							urb, total_pkt_count);
3586 
3587 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3588 
3589 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3590 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3591 		if (ret < 0) {
3592 			if (i == 0)
3593 				return ret;
3594 			goto cleanup;
3595 		}
3596 		td = &urb_priv->td[i];
3597 
3598 		/* use SIA as default, if frame id is used overwrite it */
3599 		sia_frame_id = TRB_SIA;
3600 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3601 		    HCC_CFC(xhci->hcc_params)) {
3602 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3603 			if (frame_id >= 0)
3604 				sia_frame_id = TRB_FRAME_ID(frame_id);
3605 		}
3606 		/*
3607 		 * Set isoc specific data for the first TRB in a TD.
3608 		 * Prevent HW from getting the TRBs by keeping the cycle state
3609 		 * inverted in the first TDs isoc TRB.
3610 		 */
3611 		field = TRB_TYPE(TRB_ISOC) |
3612 			TRB_TLBPC(last_burst_pkt_count) |
3613 			sia_frame_id |
3614 			(i ? ep_ring->cycle_state : !start_cycle);
3615 
3616 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3617 		if (!xep->use_extended_tbc)
3618 			field |= TRB_TBC(burst_count);
3619 
3620 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3621 		for (j = 0; j < trbs_per_td; j++) {
3622 			u32 remainder = 0;
3623 
3624 			/* only first TRB is isoc, overwrite otherwise */
3625 			if (!first_trb)
3626 				field = TRB_TYPE(TRB_NORMAL) |
3627 					ep_ring->cycle_state;
3628 
3629 			/* Only set interrupt on short packet for IN EPs */
3630 			if (usb_urb_dir_in(urb))
3631 				field |= TRB_ISP;
3632 
3633 			/* Set the chain bit for all except the last TRB  */
3634 			if (j < trbs_per_td - 1) {
3635 				more_trbs_coming = true;
3636 				field |= TRB_CHAIN;
3637 			} else {
3638 				more_trbs_coming = false;
3639 				td->last_trb = ep_ring->enqueue;
3640 				field |= TRB_IOC;
3641 				/* set BEI, except for the last TD */
3642 				if (xhci->hci_version >= 0x100 &&
3643 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3644 				    i < num_tds - 1)
3645 					field |= TRB_BEI;
3646 			}
3647 			/* Calculate TRB length */
3648 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3649 			if (trb_buff_len > td_remain_len)
3650 				trb_buff_len = td_remain_len;
3651 
3652 			/* Set the TRB length, TD size, & interrupter fields. */
3653 			remainder = xhci_td_remainder(xhci, running_total,
3654 						   trb_buff_len, td_len,
3655 						   urb, more_trbs_coming);
3656 
3657 			length_field = TRB_LEN(trb_buff_len) |
3658 				TRB_INTR_TARGET(0);
3659 
3660 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3661 			if (first_trb && xep->use_extended_tbc)
3662 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3663 			else
3664 				length_field |= TRB_TD_SIZE(remainder);
3665 			first_trb = false;
3666 
3667 			queue_trb(xhci, ep_ring, more_trbs_coming,
3668 				lower_32_bits(addr),
3669 				upper_32_bits(addr),
3670 				length_field,
3671 				field);
3672 			running_total += trb_buff_len;
3673 
3674 			addr += trb_buff_len;
3675 			td_remain_len -= trb_buff_len;
3676 		}
3677 
3678 		/* Check TD length */
3679 		if (running_total != td_len) {
3680 			xhci_err(xhci, "ISOC TD length unmatch\n");
3681 			ret = -EINVAL;
3682 			goto cleanup;
3683 		}
3684 	}
3685 
3686 	/* store the next frame id */
3687 	if (HCC_CFC(xhci->hcc_params))
3688 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3689 
3690 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3691 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3692 			usb_amd_quirk_pll_disable();
3693 	}
3694 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3695 
3696 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3697 			start_cycle, start_trb);
3698 	return 0;
3699 cleanup:
3700 	/* Clean up a partially enqueued isoc transfer. */
3701 
3702 	for (i--; i >= 0; i--)
3703 		list_del_init(&urb_priv->td[i].td_list);
3704 
3705 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3706 	 * into No-ops with a software-owned cycle bit. That way the hardware
3707 	 * won't accidentally start executing bogus TDs when we partially
3708 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3709 	 */
3710 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3711 	/* Every TRB except the first & last will have its cycle bit flipped. */
3712 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3713 
3714 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3715 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3716 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3717 	ep_ring->cycle_state = start_cycle;
3718 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3719 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3720 	return ret;
3721 }
3722 
3723 /*
3724  * Check transfer ring to guarantee there is enough room for the urb.
3725  * Update ISO URB start_frame and interval.
3726  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3727  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3728  * Contiguous Frame ID is not supported by HC.
3729  */
3730 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3731 		struct urb *urb, int slot_id, unsigned int ep_index)
3732 {
3733 	struct xhci_virt_device *xdev;
3734 	struct xhci_ring *ep_ring;
3735 	struct xhci_ep_ctx *ep_ctx;
3736 	int start_frame;
3737 	int num_tds, num_trbs, i;
3738 	int ret;
3739 	struct xhci_virt_ep *xep;
3740 	int ist;
3741 
3742 	xdev = xhci->devs[slot_id];
3743 	xep = &xhci->devs[slot_id]->eps[ep_index];
3744 	ep_ring = xdev->eps[ep_index].ring;
3745 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3746 
3747 	num_trbs = 0;
3748 	num_tds = urb->number_of_packets;
3749 	for (i = 0; i < num_tds; i++)
3750 		num_trbs += count_isoc_trbs_needed(urb, i);
3751 
3752 	/* Check the ring to guarantee there is enough room for the whole urb.
3753 	 * Do not insert any td of the urb to the ring if the check failed.
3754 	 */
3755 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3756 			   num_trbs, mem_flags);
3757 	if (ret)
3758 		return ret;
3759 
3760 	/*
3761 	 * Check interval value. This should be done before we start to
3762 	 * calculate the start frame value.
3763 	 */
3764 	check_interval(xhci, urb, ep_ctx);
3765 
3766 	/* Calculate the start frame and put it in urb->start_frame. */
3767 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3768 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3769 			urb->start_frame = xep->next_frame_id;
3770 			goto skip_start_over;
3771 		}
3772 	}
3773 
3774 	start_frame = readl(&xhci->run_regs->microframe_index);
3775 	start_frame &= 0x3fff;
3776 	/*
3777 	 * Round up to the next frame and consider the time before trb really
3778 	 * gets scheduled by hardare.
3779 	 */
3780 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3781 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3782 		ist <<= 3;
3783 	start_frame += ist + XHCI_CFC_DELAY;
3784 	start_frame = roundup(start_frame, 8);
3785 
3786 	/*
3787 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3788 	 * is greate than 8 microframes.
3789 	 */
3790 	if (urb->dev->speed == USB_SPEED_LOW ||
3791 			urb->dev->speed == USB_SPEED_FULL) {
3792 		start_frame = roundup(start_frame, urb->interval << 3);
3793 		urb->start_frame = start_frame >> 3;
3794 	} else {
3795 		start_frame = roundup(start_frame, urb->interval);
3796 		urb->start_frame = start_frame;
3797 	}
3798 
3799 skip_start_over:
3800 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3801 
3802 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3803 }
3804 
3805 /****		Command Ring Operations		****/
3806 
3807 /* Generic function for queueing a command TRB on the command ring.
3808  * Check to make sure there's room on the command ring for one command TRB.
3809  * Also check that there's room reserved for commands that must not fail.
3810  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3811  * then only check for the number of reserved spots.
3812  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3813  * because the command event handler may want to resubmit a failed command.
3814  */
3815 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3816 			 u32 field1, u32 field2,
3817 			 u32 field3, u32 field4, bool command_must_succeed)
3818 {
3819 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3820 	int ret;
3821 
3822 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3823 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3824 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3825 		return -ESHUTDOWN;
3826 	}
3827 
3828 	if (!command_must_succeed)
3829 		reserved_trbs++;
3830 
3831 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3832 			reserved_trbs, GFP_ATOMIC);
3833 	if (ret < 0) {
3834 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3835 		if (command_must_succeed)
3836 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3837 					"unfailable commands failed.\n");
3838 		return ret;
3839 	}
3840 
3841 	cmd->command_trb = xhci->cmd_ring->enqueue;
3842 
3843 	/* if there are no other commands queued we start the timeout timer */
3844 	if (list_empty(&xhci->cmd_list)) {
3845 		xhci->current_cmd = cmd;
3846 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3847 	}
3848 
3849 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3850 
3851 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3852 			field4 | xhci->cmd_ring->cycle_state);
3853 	return 0;
3854 }
3855 
3856 /* Queue a slot enable or disable request on the command ring */
3857 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3858 		u32 trb_type, u32 slot_id)
3859 {
3860 	return queue_command(xhci, cmd, 0, 0, 0,
3861 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3862 }
3863 
3864 /* Queue an address device command TRB */
3865 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3866 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3867 {
3868 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3869 			upper_32_bits(in_ctx_ptr), 0,
3870 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3871 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3872 }
3873 
3874 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3875 		u32 field1, u32 field2, u32 field3, u32 field4)
3876 {
3877 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3878 }
3879 
3880 /* Queue a reset device command TRB */
3881 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3882 		u32 slot_id)
3883 {
3884 	return queue_command(xhci, cmd, 0, 0, 0,
3885 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3886 			false);
3887 }
3888 
3889 /* Queue a configure endpoint command TRB */
3890 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3891 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3892 		u32 slot_id, bool command_must_succeed)
3893 {
3894 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3895 			upper_32_bits(in_ctx_ptr), 0,
3896 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3897 			command_must_succeed);
3898 }
3899 
3900 /* Queue an evaluate context command TRB */
3901 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3902 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3903 {
3904 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3905 			upper_32_bits(in_ctx_ptr), 0,
3906 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3907 			command_must_succeed);
3908 }
3909 
3910 /*
3911  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3912  * activity on an endpoint that is about to be suspended.
3913  */
3914 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3915 			     int slot_id, unsigned int ep_index, int suspend)
3916 {
3917 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3918 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3919 	u32 type = TRB_TYPE(TRB_STOP_RING);
3920 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3921 
3922 	return queue_command(xhci, cmd, 0, 0, 0,
3923 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3924 }
3925 
3926 /* Set Transfer Ring Dequeue Pointer command */
3927 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3928 		unsigned int slot_id, unsigned int ep_index,
3929 		struct xhci_dequeue_state *deq_state)
3930 {
3931 	dma_addr_t addr;
3932 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3933 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3934 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
3935 	u32 trb_sct = 0;
3936 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3937 	struct xhci_virt_ep *ep;
3938 	struct xhci_command *cmd;
3939 	int ret;
3940 
3941 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3942 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3943 		deq_state->new_deq_seg,
3944 		(unsigned long long)deq_state->new_deq_seg->dma,
3945 		deq_state->new_deq_ptr,
3946 		(unsigned long long)xhci_trb_virt_to_dma(
3947 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3948 		deq_state->new_cycle_state);
3949 
3950 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3951 				    deq_state->new_deq_ptr);
3952 	if (addr == 0) {
3953 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3954 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3955 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3956 		return;
3957 	}
3958 	ep = &xhci->devs[slot_id]->eps[ep_index];
3959 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3960 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3961 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3962 		return;
3963 	}
3964 
3965 	/* This function gets called from contexts where it cannot sleep */
3966 	cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
3967 	if (!cmd)
3968 		return;
3969 
3970 	ep->queued_deq_seg = deq_state->new_deq_seg;
3971 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3972 	if (deq_state->stream_id)
3973 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3974 	ret = queue_command(xhci, cmd,
3975 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3976 		upper_32_bits(addr), trb_stream_id,
3977 		trb_slot_id | trb_ep_index | type, false);
3978 	if (ret < 0) {
3979 		xhci_free_command(xhci, cmd);
3980 		return;
3981 	}
3982 
3983 	/* Stop the TD queueing code from ringing the doorbell until
3984 	 * this command completes.  The HC won't set the dequeue pointer
3985 	 * if the ring is running, and ringing the doorbell starts the
3986 	 * ring running.
3987 	 */
3988 	ep->ep_state |= SET_DEQ_PENDING;
3989 }
3990 
3991 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 			int slot_id, unsigned int ep_index,
3993 			enum xhci_ep_reset_type reset_type)
3994 {
3995 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3996 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3997 	u32 type = TRB_TYPE(TRB_RESET_EP);
3998 
3999 	if (reset_type == EP_SOFT_RESET)
4000 		type |= TRB_TSP;
4001 
4002 	return queue_command(xhci, cmd, 0, 0, 0,
4003 			trb_slot_id | trb_ep_index | type, false);
4004 }
4005