1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset >= TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state ^= 1; 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 /* we are about to kill xhci, give it one more chance */ 306 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 307 &xhci->op_regs->cmd_ring); 308 udelay(1000); 309 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 310 CMD_RING_RUNNING, 0, 3 * 1000 * 1000); 311 if (ret == 0) 312 return 0; 313 314 xhci_err(xhci, "Stopped the command ring failed, " 315 "maybe the host is dead\n"); 316 xhci->xhc_state |= XHCI_STATE_DYING; 317 xhci_quiesce(xhci); 318 xhci_halt(xhci); 319 return -ESHUTDOWN; 320 } 321 322 return 0; 323 } 324 325 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 326 unsigned int slot_id, 327 unsigned int ep_index, 328 unsigned int stream_id) 329 { 330 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 331 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 332 unsigned int ep_state = ep->ep_state; 333 334 /* Don't ring the doorbell for this endpoint if there are pending 335 * cancellations because we don't want to interrupt processing. 336 * We don't want to restart any stream rings if there's a set dequeue 337 * pointer command pending because the device can choose to start any 338 * stream once the endpoint is on the HW schedule. 339 */ 340 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 341 (ep_state & EP_HALTED)) 342 return; 343 writel(DB_VALUE(ep_index, stream_id), db_addr); 344 /* The CPU has better things to do at this point than wait for a 345 * write-posting flush. It'll get there soon enough. 346 */ 347 } 348 349 /* Ring the doorbell for any rings with pending URBs */ 350 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 351 unsigned int slot_id, 352 unsigned int ep_index) 353 { 354 unsigned int stream_id; 355 struct xhci_virt_ep *ep; 356 357 ep = &xhci->devs[slot_id]->eps[ep_index]; 358 359 /* A ring has pending URBs if its TD list is not empty */ 360 if (!(ep->ep_state & EP_HAS_STREAMS)) { 361 if (ep->ring && !(list_empty(&ep->ring->td_list))) 362 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 363 return; 364 } 365 366 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 367 stream_id++) { 368 struct xhci_stream_info *stream_info = ep->stream_info; 369 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 370 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 371 stream_id); 372 } 373 } 374 375 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 376 unsigned int slot_id, unsigned int ep_index, 377 unsigned int stream_id) 378 { 379 struct xhci_virt_ep *ep; 380 381 ep = &xhci->devs[slot_id]->eps[ep_index]; 382 /* Common case: no streams */ 383 if (!(ep->ep_state & EP_HAS_STREAMS)) 384 return ep->ring; 385 386 if (stream_id == 0) { 387 xhci_warn(xhci, 388 "WARN: Slot ID %u, ep index %u has streams, " 389 "but URB has no stream ID.\n", 390 slot_id, ep_index); 391 return NULL; 392 } 393 394 if (stream_id < ep->stream_info->num_streams) 395 return ep->stream_info->stream_rings[stream_id]; 396 397 xhci_warn(xhci, 398 "WARN: Slot ID %u, ep index %u has " 399 "stream IDs 1 to %u allocated, " 400 "but stream ID %u is requested.\n", 401 slot_id, ep_index, 402 ep->stream_info->num_streams - 1, 403 stream_id); 404 return NULL; 405 } 406 407 /* Get the right ring for the given URB. 408 * If the endpoint supports streams, boundary check the URB's stream ID. 409 * If the endpoint doesn't support streams, return the singular endpoint ring. 410 */ 411 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 412 struct urb *urb) 413 { 414 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 415 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 416 } 417 418 /* 419 * Move the xHC's endpoint ring dequeue pointer past cur_td. 420 * Record the new state of the xHC's endpoint ring dequeue segment, 421 * dequeue pointer, and new consumer cycle state in state. 422 * Update our internal representation of the ring's dequeue pointer. 423 * 424 * We do this in three jumps: 425 * - First we update our new ring state to be the same as when the xHC stopped. 426 * - Then we traverse the ring to find the segment that contains 427 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 428 * any link TRBs with the toggle cycle bit set. 429 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 430 * if we've moved it past a link TRB with the toggle cycle bit set. 431 * 432 * Some of the uses of xhci_generic_trb are grotty, but if they're done 433 * with correct __le32 accesses they should work fine. Only users of this are 434 * in here. 435 */ 436 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 437 unsigned int slot_id, unsigned int ep_index, 438 unsigned int stream_id, struct xhci_td *cur_td, 439 struct xhci_dequeue_state *state) 440 { 441 struct xhci_virt_device *dev = xhci->devs[slot_id]; 442 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 443 struct xhci_ring *ep_ring; 444 struct xhci_segment *new_seg; 445 union xhci_trb *new_deq; 446 dma_addr_t addr; 447 u64 hw_dequeue; 448 bool cycle_found = false; 449 bool td_last_trb_found = false; 450 451 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 452 ep_index, stream_id); 453 if (!ep_ring) { 454 xhci_warn(xhci, "WARN can't find new dequeue state " 455 "for invalid stream ID %u.\n", 456 stream_id); 457 return; 458 } 459 460 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 461 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 462 "Finding endpoint context"); 463 /* 4.6.9 the css flag is written to the stream context for streams */ 464 if (ep->ep_state & EP_HAS_STREAMS) { 465 struct xhci_stream_ctx *ctx = 466 &ep->stream_info->stream_ctx_array[stream_id]; 467 hw_dequeue = le64_to_cpu(ctx->stream_ring); 468 } else { 469 struct xhci_ep_ctx *ep_ctx 470 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 471 hw_dequeue = le64_to_cpu(ep_ctx->deq); 472 } 473 474 new_seg = ep_ring->deq_seg; 475 new_deq = ep_ring->dequeue; 476 state->new_cycle_state = hw_dequeue & 0x1; 477 478 /* 479 * We want to find the pointer, segment and cycle state of the new trb 480 * (the one after current TD's last_trb). We know the cycle state at 481 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 482 * found. 483 */ 484 do { 485 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 486 == (dma_addr_t)(hw_dequeue & ~0xf)) { 487 cycle_found = true; 488 if (td_last_trb_found) 489 break; 490 } 491 if (new_deq == cur_td->last_trb) 492 td_last_trb_found = true; 493 494 if (cycle_found && 495 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 496 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 497 state->new_cycle_state ^= 0x1; 498 499 next_trb(xhci, ep_ring, &new_seg, &new_deq); 500 501 /* Search wrapped around, bail out */ 502 if (new_deq == ep->ring->dequeue) { 503 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 504 state->new_deq_seg = NULL; 505 state->new_deq_ptr = NULL; 506 return; 507 } 508 509 } while (!cycle_found || !td_last_trb_found); 510 511 state->new_deq_seg = new_seg; 512 state->new_deq_ptr = new_deq; 513 514 /* Don't update the ring cycle state for the producer (us). */ 515 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 516 "Cycle state = 0x%x", state->new_cycle_state); 517 518 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 519 "New dequeue segment = %p (virtual)", 520 state->new_deq_seg); 521 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 522 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 523 "New dequeue pointer = 0x%llx (DMA)", 524 (unsigned long long) addr); 525 } 526 527 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 528 * (The last TRB actually points to the ring enqueue pointer, which is not part 529 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 530 */ 531 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 532 struct xhci_td *cur_td, bool flip_cycle) 533 { 534 struct xhci_segment *cur_seg; 535 union xhci_trb *cur_trb; 536 537 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 538 true; 539 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 540 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 541 /* Unchain any chained Link TRBs, but 542 * leave the pointers intact. 543 */ 544 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 545 /* Flip the cycle bit (link TRBs can't be the first 546 * or last TRB). 547 */ 548 if (flip_cycle) 549 cur_trb->generic.field[3] ^= 550 cpu_to_le32(TRB_CYCLE); 551 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 552 "Cancel (unchain) link TRB"); 553 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 554 "Address = %p (0x%llx dma); " 555 "in seg %p (0x%llx dma)", 556 cur_trb, 557 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 558 cur_seg, 559 (unsigned long long)cur_seg->dma); 560 } else { 561 cur_trb->generic.field[0] = 0; 562 cur_trb->generic.field[1] = 0; 563 cur_trb->generic.field[2] = 0; 564 /* Preserve only the cycle bit of this TRB */ 565 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 566 /* Flip the cycle bit except on the first or last TRB */ 567 if (flip_cycle && cur_trb != cur_td->first_trb && 568 cur_trb != cur_td->last_trb) 569 cur_trb->generic.field[3] ^= 570 cpu_to_le32(TRB_CYCLE); 571 cur_trb->generic.field[3] |= cpu_to_le32( 572 TRB_TYPE(TRB_TR_NOOP)); 573 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 574 "TRB to noop at offset 0x%llx", 575 (unsigned long long) 576 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 577 } 578 if (cur_trb == cur_td->last_trb) 579 break; 580 } 581 } 582 583 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 584 struct xhci_virt_ep *ep) 585 { 586 ep->ep_state &= ~EP_HALT_PENDING; 587 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 588 * timer is running on another CPU, we don't decrement stop_cmds_pending 589 * (since we didn't successfully stop the watchdog timer). 590 */ 591 if (del_timer(&ep->stop_cmd_timer)) 592 ep->stop_cmds_pending--; 593 } 594 595 /* Must be called with xhci->lock held in interrupt context */ 596 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 597 struct xhci_td *cur_td, int status) 598 { 599 struct usb_hcd *hcd; 600 struct urb *urb; 601 struct urb_priv *urb_priv; 602 603 urb = cur_td->urb; 604 urb_priv = urb->hcpriv; 605 urb_priv->td_cnt++; 606 hcd = bus_to_hcd(urb->dev->bus); 607 608 /* Only giveback urb when this is the last td in urb */ 609 if (urb_priv->td_cnt == urb_priv->length) { 610 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 611 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 612 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 613 if (xhci->quirks & XHCI_AMD_PLL_FIX) 614 usb_amd_quirk_pll_enable(); 615 } 616 } 617 usb_hcd_unlink_urb_from_ep(hcd, urb); 618 619 spin_unlock(&xhci->lock); 620 usb_hcd_giveback_urb(hcd, urb, status); 621 xhci_urb_free_priv(urb_priv); 622 spin_lock(&xhci->lock); 623 } 624 } 625 626 /* 627 * When we get a command completion for a Stop Endpoint Command, we need to 628 * unlink any cancelled TDs from the ring. There are two ways to do that: 629 * 630 * 1. If the HW was in the middle of processing the TD that needs to be 631 * cancelled, then we must move the ring's dequeue pointer past the last TRB 632 * in the TD with a Set Dequeue Pointer Command. 633 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 634 * bit cleared) so that the HW will skip over them. 635 */ 636 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 637 union xhci_trb *trb, struct xhci_event_cmd *event) 638 { 639 unsigned int ep_index; 640 struct xhci_ring *ep_ring; 641 struct xhci_virt_ep *ep; 642 struct list_head *entry; 643 struct xhci_td *cur_td = NULL; 644 struct xhci_td *last_unlinked_td; 645 646 struct xhci_dequeue_state deq_state; 647 648 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 649 if (!xhci->devs[slot_id]) 650 xhci_warn(xhci, "Stop endpoint command " 651 "completion for disabled slot %u\n", 652 slot_id); 653 return; 654 } 655 656 memset(&deq_state, 0, sizeof(deq_state)); 657 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 658 ep = &xhci->devs[slot_id]->eps[ep_index]; 659 660 if (list_empty(&ep->cancelled_td_list)) { 661 xhci_stop_watchdog_timer_in_irq(xhci, ep); 662 ep->stopped_td = NULL; 663 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 664 return; 665 } 666 667 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 668 * We have the xHCI lock, so nothing can modify this list until we drop 669 * it. We're also in the event handler, so we can't get re-interrupted 670 * if another Stop Endpoint command completes 671 */ 672 list_for_each(entry, &ep->cancelled_td_list) { 673 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 674 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 675 "Removing canceled TD starting at 0x%llx (dma).", 676 (unsigned long long)xhci_trb_virt_to_dma( 677 cur_td->start_seg, cur_td->first_trb)); 678 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 679 if (!ep_ring) { 680 /* This shouldn't happen unless a driver is mucking 681 * with the stream ID after submission. This will 682 * leave the TD on the hardware ring, and the hardware 683 * will try to execute it, and may access a buffer 684 * that has already been freed. In the best case, the 685 * hardware will execute it, and the event handler will 686 * ignore the completion event for that TD, since it was 687 * removed from the td_list for that endpoint. In 688 * short, don't muck with the stream ID after 689 * submission. 690 */ 691 xhci_warn(xhci, "WARN Cancelled URB %p " 692 "has invalid stream ID %u.\n", 693 cur_td->urb, 694 cur_td->urb->stream_id); 695 goto remove_finished_td; 696 } 697 /* 698 * If we stopped on the TD we need to cancel, then we have to 699 * move the xHC endpoint ring dequeue pointer past this TD. 700 */ 701 if (cur_td == ep->stopped_td) 702 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 703 cur_td->urb->stream_id, 704 cur_td, &deq_state); 705 else 706 td_to_noop(xhci, ep_ring, cur_td, false); 707 remove_finished_td: 708 /* 709 * The event handler won't see a completion for this TD anymore, 710 * so remove it from the endpoint ring's TD list. Keep it in 711 * the cancelled TD list for URB completion later. 712 */ 713 list_del_init(&cur_td->td_list); 714 } 715 last_unlinked_td = cur_td; 716 xhci_stop_watchdog_timer_in_irq(xhci, ep); 717 718 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 719 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 720 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 721 ep->stopped_td->urb->stream_id, &deq_state); 722 xhci_ring_cmd_db(xhci); 723 } else { 724 /* Otherwise ring the doorbell(s) to restart queued transfers */ 725 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 726 } 727 728 ep->stopped_td = NULL; 729 730 /* 731 * Drop the lock and complete the URBs in the cancelled TD list. 732 * New TDs to be cancelled might be added to the end of the list before 733 * we can complete all the URBs for the TDs we already unlinked. 734 * So stop when we've completed the URB for the last TD we unlinked. 735 */ 736 do { 737 cur_td = list_entry(ep->cancelled_td_list.next, 738 struct xhci_td, cancelled_td_list); 739 list_del_init(&cur_td->cancelled_td_list); 740 741 /* Clean up the cancelled URB */ 742 /* Doesn't matter what we pass for status, since the core will 743 * just overwrite it (because the URB has been unlinked). 744 */ 745 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 746 747 /* Stop processing the cancelled list if the watchdog timer is 748 * running. 749 */ 750 if (xhci->xhc_state & XHCI_STATE_DYING) 751 return; 752 } while (cur_td != last_unlinked_td); 753 754 /* Return to the event handler with xhci->lock re-acquired */ 755 } 756 757 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 758 { 759 struct xhci_td *cur_td; 760 761 while (!list_empty(&ring->td_list)) { 762 cur_td = list_first_entry(&ring->td_list, 763 struct xhci_td, td_list); 764 list_del_init(&cur_td->td_list); 765 if (!list_empty(&cur_td->cancelled_td_list)) 766 list_del_init(&cur_td->cancelled_td_list); 767 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 768 } 769 } 770 771 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 772 int slot_id, int ep_index) 773 { 774 struct xhci_td *cur_td; 775 struct xhci_virt_ep *ep; 776 struct xhci_ring *ring; 777 778 ep = &xhci->devs[slot_id]->eps[ep_index]; 779 if ((ep->ep_state & EP_HAS_STREAMS) || 780 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 781 int stream_id; 782 783 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 784 stream_id++) { 785 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 786 "Killing URBs for slot ID %u, ep index %u, stream %u", 787 slot_id, ep_index, stream_id + 1); 788 xhci_kill_ring_urbs(xhci, 789 ep->stream_info->stream_rings[stream_id]); 790 } 791 } else { 792 ring = ep->ring; 793 if (!ring) 794 return; 795 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 796 "Killing URBs for slot ID %u, ep index %u", 797 slot_id, ep_index); 798 xhci_kill_ring_urbs(xhci, ring); 799 } 800 while (!list_empty(&ep->cancelled_td_list)) { 801 cur_td = list_first_entry(&ep->cancelled_td_list, 802 struct xhci_td, cancelled_td_list); 803 list_del_init(&cur_td->cancelled_td_list); 804 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 805 } 806 } 807 808 /* Watchdog timer function for when a stop endpoint command fails to complete. 809 * In this case, we assume the host controller is broken or dying or dead. The 810 * host may still be completing some other events, so we have to be careful to 811 * let the event ring handler and the URB dequeueing/enqueueing functions know 812 * through xhci->state. 813 * 814 * The timer may also fire if the host takes a very long time to respond to the 815 * command, and the stop endpoint command completion handler cannot delete the 816 * timer before the timer function is called. Another endpoint cancellation may 817 * sneak in before the timer function can grab the lock, and that may queue 818 * another stop endpoint command and add the timer back. So we cannot use a 819 * simple flag to say whether there is a pending stop endpoint command for a 820 * particular endpoint. 821 * 822 * Instead we use a combination of that flag and a counter for the number of 823 * pending stop endpoint commands. If the timer is the tail end of the last 824 * stop endpoint command, and the endpoint's command is still pending, we assume 825 * the host is dying. 826 */ 827 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 828 { 829 struct xhci_hcd *xhci; 830 struct xhci_virt_ep *ep; 831 int ret, i, j; 832 unsigned long flags; 833 834 ep = (struct xhci_virt_ep *) arg; 835 xhci = ep->xhci; 836 837 spin_lock_irqsave(&xhci->lock, flags); 838 839 ep->stop_cmds_pending--; 840 if (xhci->xhc_state & XHCI_STATE_DYING) { 841 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 842 "Stop EP timer ran, but another timer marked " 843 "xHCI as DYING, exiting."); 844 spin_unlock_irqrestore(&xhci->lock, flags); 845 return; 846 } 847 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 848 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 849 "Stop EP timer ran, but no command pending, " 850 "exiting."); 851 spin_unlock_irqrestore(&xhci->lock, flags); 852 return; 853 } 854 855 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 856 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 857 /* Oops, HC is dead or dying or at least not responding to the stop 858 * endpoint command. 859 */ 860 xhci->xhc_state |= XHCI_STATE_DYING; 861 /* Disable interrupts from the host controller and start halting it */ 862 xhci_quiesce(xhci); 863 spin_unlock_irqrestore(&xhci->lock, flags); 864 865 ret = xhci_halt(xhci); 866 867 spin_lock_irqsave(&xhci->lock, flags); 868 if (ret < 0) { 869 /* This is bad; the host is not responding to commands and it's 870 * not allowing itself to be halted. At least interrupts are 871 * disabled. If we call usb_hc_died(), it will attempt to 872 * disconnect all device drivers under this host. Those 873 * disconnect() methods will wait for all URBs to be unlinked, 874 * so we must complete them. 875 */ 876 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 877 xhci_warn(xhci, "Completing active URBs anyway.\n"); 878 /* We could turn all TDs on the rings to no-ops. This won't 879 * help if the host has cached part of the ring, and is slow if 880 * we want to preserve the cycle bit. Skip it and hope the host 881 * doesn't touch the memory. 882 */ 883 } 884 for (i = 0; i < MAX_HC_SLOTS; i++) { 885 if (!xhci->devs[i]) 886 continue; 887 for (j = 0; j < 31; j++) 888 xhci_kill_endpoint_urbs(xhci, i, j); 889 } 890 spin_unlock_irqrestore(&xhci->lock, flags); 891 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 892 "Calling usb_hc_died()"); 893 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 894 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 895 "xHCI host controller is dead."); 896 } 897 898 899 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 900 struct xhci_virt_device *dev, 901 struct xhci_ring *ep_ring, 902 unsigned int ep_index) 903 { 904 union xhci_trb *dequeue_temp; 905 int num_trbs_free_temp; 906 bool revert = false; 907 908 num_trbs_free_temp = ep_ring->num_trbs_free; 909 dequeue_temp = ep_ring->dequeue; 910 911 /* If we get two back-to-back stalls, and the first stalled transfer 912 * ends just before a link TRB, the dequeue pointer will be left on 913 * the link TRB by the code in the while loop. So we have to update 914 * the dequeue pointer one segment further, or we'll jump off 915 * the segment into la-la-land. 916 */ 917 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 918 ep_ring->deq_seg = ep_ring->deq_seg->next; 919 ep_ring->dequeue = ep_ring->deq_seg->trbs; 920 } 921 922 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 923 /* We have more usable TRBs */ 924 ep_ring->num_trbs_free++; 925 ep_ring->dequeue++; 926 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 927 ep_ring->dequeue)) { 928 if (ep_ring->dequeue == 929 dev->eps[ep_index].queued_deq_ptr) 930 break; 931 ep_ring->deq_seg = ep_ring->deq_seg->next; 932 ep_ring->dequeue = ep_ring->deq_seg->trbs; 933 } 934 if (ep_ring->dequeue == dequeue_temp) { 935 revert = true; 936 break; 937 } 938 } 939 940 if (revert) { 941 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 942 ep_ring->num_trbs_free = num_trbs_free_temp; 943 } 944 } 945 946 /* 947 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 948 * we need to clear the set deq pending flag in the endpoint ring state, so that 949 * the TD queueing code can ring the doorbell again. We also need to ring the 950 * endpoint doorbell to restart the ring, but only if there aren't more 951 * cancellations pending. 952 */ 953 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 954 union xhci_trb *trb, u32 cmd_comp_code) 955 { 956 unsigned int ep_index; 957 unsigned int stream_id; 958 struct xhci_ring *ep_ring; 959 struct xhci_virt_device *dev; 960 struct xhci_virt_ep *ep; 961 struct xhci_ep_ctx *ep_ctx; 962 struct xhci_slot_ctx *slot_ctx; 963 964 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 965 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 966 dev = xhci->devs[slot_id]; 967 ep = &dev->eps[ep_index]; 968 969 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 970 if (!ep_ring) { 971 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 972 stream_id); 973 /* XXX: Harmless??? */ 974 goto cleanup; 975 } 976 977 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 978 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 979 980 if (cmd_comp_code != COMP_SUCCESS) { 981 unsigned int ep_state; 982 unsigned int slot_state; 983 984 switch (cmd_comp_code) { 985 case COMP_TRB_ERR: 986 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 987 break; 988 case COMP_CTX_STATE: 989 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 990 ep_state = le32_to_cpu(ep_ctx->ep_info); 991 ep_state &= EP_STATE_MASK; 992 slot_state = le32_to_cpu(slot_ctx->dev_state); 993 slot_state = GET_SLOT_STATE(slot_state); 994 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 995 "Slot state = %u, EP state = %u", 996 slot_state, ep_state); 997 break; 998 case COMP_EBADSLT: 999 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1000 slot_id); 1001 break; 1002 default: 1003 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1004 cmd_comp_code); 1005 break; 1006 } 1007 /* OK what do we do now? The endpoint state is hosed, and we 1008 * should never get to this point if the synchronization between 1009 * queueing, and endpoint state are correct. This might happen 1010 * if the device gets disconnected after we've finished 1011 * cancelling URBs, which might not be an error... 1012 */ 1013 } else { 1014 u64 deq; 1015 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1016 if (ep->ep_state & EP_HAS_STREAMS) { 1017 struct xhci_stream_ctx *ctx = 1018 &ep->stream_info->stream_ctx_array[stream_id]; 1019 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1020 } else { 1021 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1022 } 1023 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1024 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1025 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1026 ep->queued_deq_ptr) == deq) { 1027 /* Update the ring's dequeue segment and dequeue pointer 1028 * to reflect the new position. 1029 */ 1030 update_ring_for_set_deq_completion(xhci, dev, 1031 ep_ring, ep_index); 1032 } else { 1033 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1034 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1035 ep->queued_deq_seg, ep->queued_deq_ptr); 1036 } 1037 } 1038 1039 cleanup: 1040 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1041 dev->eps[ep_index].queued_deq_seg = NULL; 1042 dev->eps[ep_index].queued_deq_ptr = NULL; 1043 /* Restart any rings with pending URBs */ 1044 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1045 } 1046 1047 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1048 union xhci_trb *trb, u32 cmd_comp_code) 1049 { 1050 unsigned int ep_index; 1051 1052 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1053 /* This command will only fail if the endpoint wasn't halted, 1054 * but we don't care. 1055 */ 1056 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1057 "Ignoring reset ep completion code of %u", cmd_comp_code); 1058 1059 /* HW with the reset endpoint quirk needs to have a configure endpoint 1060 * command complete before the endpoint can be used. Queue that here 1061 * because the HW can't handle two commands being queued in a row. 1062 */ 1063 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1064 struct xhci_command *command; 1065 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1066 if (!command) { 1067 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1068 return; 1069 } 1070 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1071 "Queueing configure endpoint command"); 1072 xhci_queue_configure_endpoint(xhci, command, 1073 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1074 false); 1075 xhci_ring_cmd_db(xhci); 1076 } else { 1077 /* Clear our internal halted state */ 1078 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1079 } 1080 } 1081 1082 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1083 u32 cmd_comp_code) 1084 { 1085 if (cmd_comp_code == COMP_SUCCESS) 1086 xhci->slot_id = slot_id; 1087 else 1088 xhci->slot_id = 0; 1089 } 1090 1091 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1092 { 1093 struct xhci_virt_device *virt_dev; 1094 1095 virt_dev = xhci->devs[slot_id]; 1096 if (!virt_dev) 1097 return; 1098 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1099 /* Delete default control endpoint resources */ 1100 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1101 xhci_free_virt_device(xhci, slot_id); 1102 } 1103 1104 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1105 struct xhci_event_cmd *event, u32 cmd_comp_code) 1106 { 1107 struct xhci_virt_device *virt_dev; 1108 struct xhci_input_control_ctx *ctrl_ctx; 1109 unsigned int ep_index; 1110 unsigned int ep_state; 1111 u32 add_flags, drop_flags; 1112 1113 /* 1114 * Configure endpoint commands can come from the USB core 1115 * configuration or alt setting changes, or because the HW 1116 * needed an extra configure endpoint command after a reset 1117 * endpoint command or streams were being configured. 1118 * If the command was for a halted endpoint, the xHCI driver 1119 * is not waiting on the configure endpoint command. 1120 */ 1121 virt_dev = xhci->devs[slot_id]; 1122 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1123 if (!ctrl_ctx) { 1124 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1125 return; 1126 } 1127 1128 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1129 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1130 /* Input ctx add_flags are the endpoint index plus one */ 1131 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1132 1133 /* A usb_set_interface() call directly after clearing a halted 1134 * condition may race on this quirky hardware. Not worth 1135 * worrying about, since this is prototype hardware. Not sure 1136 * if this will work for streams, but streams support was 1137 * untested on this prototype. 1138 */ 1139 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1140 ep_index != (unsigned int) -1 && 1141 add_flags - SLOT_FLAG == drop_flags) { 1142 ep_state = virt_dev->eps[ep_index].ep_state; 1143 if (!(ep_state & EP_HALTED)) 1144 return; 1145 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1146 "Completed config ep cmd - " 1147 "last ep index = %d, state = %d", 1148 ep_index, ep_state); 1149 /* Clear internal halted state and restart ring(s) */ 1150 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1151 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1152 return; 1153 } 1154 return; 1155 } 1156 1157 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1158 struct xhci_event_cmd *event) 1159 { 1160 xhci_dbg(xhci, "Completed reset device command.\n"); 1161 if (!xhci->devs[slot_id]) 1162 xhci_warn(xhci, "Reset device command completion " 1163 "for disabled slot %u\n", slot_id); 1164 } 1165 1166 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1167 struct xhci_event_cmd *event) 1168 { 1169 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1170 xhci->error_bitmask |= 1 << 6; 1171 return; 1172 } 1173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1174 "NEC firmware version %2x.%02x", 1175 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1176 NEC_FW_MINOR(le32_to_cpu(event->status))); 1177 } 1178 1179 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1180 { 1181 list_del(&cmd->cmd_list); 1182 1183 if (cmd->completion) { 1184 cmd->status = status; 1185 complete(cmd->completion); 1186 } else { 1187 kfree(cmd); 1188 } 1189 } 1190 1191 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1192 { 1193 struct xhci_command *cur_cmd, *tmp_cmd; 1194 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1195 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1196 } 1197 1198 /* 1199 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1200 * If there are other commands waiting then restart the ring and kick the timer. 1201 * This must be called with command ring stopped and xhci->lock held. 1202 */ 1203 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1204 struct xhci_command *cur_cmd) 1205 { 1206 struct xhci_command *i_cmd, *tmp_cmd; 1207 u32 cycle_state; 1208 1209 /* Turn all aborted commands in list to no-ops, then restart */ 1210 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1211 cmd_list) { 1212 1213 if (i_cmd->status != COMP_CMD_ABORT) 1214 continue; 1215 1216 i_cmd->status = COMP_CMD_STOP; 1217 1218 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1219 i_cmd->command_trb); 1220 /* get cycle state from the original cmd trb */ 1221 cycle_state = le32_to_cpu( 1222 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1223 /* modify the command trb to no-op command */ 1224 i_cmd->command_trb->generic.field[0] = 0; 1225 i_cmd->command_trb->generic.field[1] = 0; 1226 i_cmd->command_trb->generic.field[2] = 0; 1227 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1228 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1229 1230 /* 1231 * caller waiting for completion is called when command 1232 * completion event is received for these no-op commands 1233 */ 1234 } 1235 1236 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1237 1238 /* ring command ring doorbell to restart the command ring */ 1239 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1240 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1241 xhci->current_cmd = cur_cmd; 1242 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1243 xhci_ring_cmd_db(xhci); 1244 } 1245 return; 1246 } 1247 1248 1249 void xhci_handle_command_timeout(unsigned long data) 1250 { 1251 struct xhci_hcd *xhci; 1252 int ret; 1253 unsigned long flags; 1254 u64 hw_ring_state; 1255 struct xhci_command *cur_cmd = NULL; 1256 xhci = (struct xhci_hcd *) data; 1257 1258 /* mark this command to be cancelled */ 1259 spin_lock_irqsave(&xhci->lock, flags); 1260 if (xhci->current_cmd) { 1261 cur_cmd = xhci->current_cmd; 1262 cur_cmd->status = COMP_CMD_ABORT; 1263 } 1264 1265 1266 /* Make sure command ring is running before aborting it */ 1267 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1268 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1269 (hw_ring_state & CMD_RING_RUNNING)) { 1270 1271 spin_unlock_irqrestore(&xhci->lock, flags); 1272 xhci_dbg(xhci, "Command timeout\n"); 1273 ret = xhci_abort_cmd_ring(xhci); 1274 if (unlikely(ret == -ESHUTDOWN)) { 1275 xhci_err(xhci, "Abort command ring failed\n"); 1276 xhci_cleanup_command_queue(xhci); 1277 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1278 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1279 } 1280 return; 1281 } 1282 /* command timeout on stopped ring, ring can't be aborted */ 1283 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1284 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1285 spin_unlock_irqrestore(&xhci->lock, flags); 1286 return; 1287 } 1288 1289 static void handle_cmd_completion(struct xhci_hcd *xhci, 1290 struct xhci_event_cmd *event) 1291 { 1292 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1293 u64 cmd_dma; 1294 dma_addr_t cmd_dequeue_dma; 1295 u32 cmd_comp_code; 1296 union xhci_trb *cmd_trb; 1297 struct xhci_command *cmd; 1298 u32 cmd_type; 1299 1300 cmd_dma = le64_to_cpu(event->cmd_trb); 1301 cmd_trb = xhci->cmd_ring->dequeue; 1302 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1303 cmd_trb); 1304 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1305 if (cmd_dequeue_dma == 0) { 1306 xhci->error_bitmask |= 1 << 4; 1307 return; 1308 } 1309 /* Does the DMA address match our internal dequeue pointer address? */ 1310 if (cmd_dma != (u64) cmd_dequeue_dma) { 1311 xhci->error_bitmask |= 1 << 5; 1312 return; 1313 } 1314 1315 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1316 1317 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1318 xhci_err(xhci, 1319 "Command completion event does not match command\n"); 1320 return; 1321 } 1322 1323 del_timer(&xhci->cmd_timer); 1324 1325 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1326 1327 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1328 1329 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1330 if (cmd_comp_code == COMP_CMD_STOP) { 1331 xhci_handle_stopped_cmd_ring(xhci, cmd); 1332 return; 1333 } 1334 /* 1335 * Host aborted the command ring, check if the current command was 1336 * supposed to be aborted, otherwise continue normally. 1337 * The command ring is stopped now, but the xHC will issue a Command 1338 * Ring Stopped event which will cause us to restart it. 1339 */ 1340 if (cmd_comp_code == COMP_CMD_ABORT) { 1341 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1342 if (cmd->status == COMP_CMD_ABORT) 1343 goto event_handled; 1344 } 1345 1346 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1347 switch (cmd_type) { 1348 case TRB_ENABLE_SLOT: 1349 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1350 break; 1351 case TRB_DISABLE_SLOT: 1352 xhci_handle_cmd_disable_slot(xhci, slot_id); 1353 break; 1354 case TRB_CONFIG_EP: 1355 if (!cmd->completion) 1356 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1357 cmd_comp_code); 1358 break; 1359 case TRB_EVAL_CONTEXT: 1360 break; 1361 case TRB_ADDR_DEV: 1362 break; 1363 case TRB_STOP_RING: 1364 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1365 le32_to_cpu(cmd_trb->generic.field[3]))); 1366 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1367 break; 1368 case TRB_SET_DEQ: 1369 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1370 le32_to_cpu(cmd_trb->generic.field[3]))); 1371 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1372 break; 1373 case TRB_CMD_NOOP: 1374 /* Is this an aborted command turned to NO-OP? */ 1375 if (cmd->status == COMP_CMD_STOP) 1376 cmd_comp_code = COMP_CMD_STOP; 1377 break; 1378 case TRB_RESET_EP: 1379 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1380 le32_to_cpu(cmd_trb->generic.field[3]))); 1381 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1382 break; 1383 case TRB_RESET_DEV: 1384 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1385 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1386 */ 1387 slot_id = TRB_TO_SLOT_ID( 1388 le32_to_cpu(cmd_trb->generic.field[3])); 1389 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1390 break; 1391 case TRB_NEC_GET_FW: 1392 xhci_handle_cmd_nec_get_fw(xhci, event); 1393 break; 1394 default: 1395 /* Skip over unknown commands on the event ring */ 1396 xhci->error_bitmask |= 1 << 6; 1397 break; 1398 } 1399 1400 /* restart timer if this wasn't the last command */ 1401 if (cmd->cmd_list.next != &xhci->cmd_list) { 1402 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1403 struct xhci_command, cmd_list); 1404 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1405 } 1406 1407 event_handled: 1408 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1409 1410 inc_deq(xhci, xhci->cmd_ring); 1411 } 1412 1413 static void handle_vendor_event(struct xhci_hcd *xhci, 1414 union xhci_trb *event) 1415 { 1416 u32 trb_type; 1417 1418 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1419 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1420 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1421 handle_cmd_completion(xhci, &event->event_cmd); 1422 } 1423 1424 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1425 * port registers -- USB 3.0 and USB 2.0). 1426 * 1427 * Returns a zero-based port number, which is suitable for indexing into each of 1428 * the split roothubs' port arrays and bus state arrays. 1429 * Add one to it in order to call xhci_find_slot_id_by_port. 1430 */ 1431 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1432 struct xhci_hcd *xhci, u32 port_id) 1433 { 1434 unsigned int i; 1435 unsigned int num_similar_speed_ports = 0; 1436 1437 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1438 * and usb2_ports are 0-based indexes. Count the number of similar 1439 * speed ports, up to 1 port before this port. 1440 */ 1441 for (i = 0; i < (port_id - 1); i++) { 1442 u8 port_speed = xhci->port_array[i]; 1443 1444 /* 1445 * Skip ports that don't have known speeds, or have duplicate 1446 * Extended Capabilities port speed entries. 1447 */ 1448 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1449 continue; 1450 1451 /* 1452 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1453 * 1.1 ports are under the USB 2.0 hub. If the port speed 1454 * matches the device speed, it's a similar speed port. 1455 */ 1456 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1457 num_similar_speed_ports++; 1458 } 1459 return num_similar_speed_ports; 1460 } 1461 1462 static void handle_device_notification(struct xhci_hcd *xhci, 1463 union xhci_trb *event) 1464 { 1465 u32 slot_id; 1466 struct usb_device *udev; 1467 1468 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1469 if (!xhci->devs[slot_id]) { 1470 xhci_warn(xhci, "Device Notification event for " 1471 "unused slot %u\n", slot_id); 1472 return; 1473 } 1474 1475 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1476 slot_id); 1477 udev = xhci->devs[slot_id]->udev; 1478 if (udev && udev->parent) 1479 usb_wakeup_notification(udev->parent, udev->portnum); 1480 } 1481 1482 static void handle_port_status(struct xhci_hcd *xhci, 1483 union xhci_trb *event) 1484 { 1485 struct usb_hcd *hcd; 1486 u32 port_id; 1487 u32 temp, temp1; 1488 int max_ports; 1489 int slot_id; 1490 unsigned int faked_port_index; 1491 u8 major_revision; 1492 struct xhci_bus_state *bus_state; 1493 __le32 __iomem **port_array; 1494 bool bogus_port_status = false; 1495 1496 /* Port status change events always have a successful completion code */ 1497 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1498 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1499 xhci->error_bitmask |= 1 << 8; 1500 } 1501 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1502 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1503 1504 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1505 if ((port_id <= 0) || (port_id > max_ports)) { 1506 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1507 inc_deq(xhci, xhci->event_ring); 1508 return; 1509 } 1510 1511 /* Figure out which usb_hcd this port is attached to: 1512 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1513 */ 1514 major_revision = xhci->port_array[port_id - 1]; 1515 1516 /* Find the right roothub. */ 1517 hcd = xhci_to_hcd(xhci); 1518 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1519 hcd = xhci->shared_hcd; 1520 1521 if (major_revision == 0) { 1522 xhci_warn(xhci, "Event for port %u not in " 1523 "Extended Capabilities, ignoring.\n", 1524 port_id); 1525 bogus_port_status = true; 1526 goto cleanup; 1527 } 1528 if (major_revision == DUPLICATE_ENTRY) { 1529 xhci_warn(xhci, "Event for port %u duplicated in" 1530 "Extended Capabilities, ignoring.\n", 1531 port_id); 1532 bogus_port_status = true; 1533 goto cleanup; 1534 } 1535 1536 /* 1537 * Hardware port IDs reported by a Port Status Change Event include USB 1538 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1539 * resume event, but we first need to translate the hardware port ID 1540 * into the index into the ports on the correct split roothub, and the 1541 * correct bus_state structure. 1542 */ 1543 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1544 if (hcd->speed == HCD_USB3) 1545 port_array = xhci->usb3_ports; 1546 else 1547 port_array = xhci->usb2_ports; 1548 /* Find the faked port hub number */ 1549 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1550 port_id); 1551 1552 temp = readl(port_array[faked_port_index]); 1553 if (hcd->state == HC_STATE_SUSPENDED) { 1554 xhci_dbg(xhci, "resume root hub\n"); 1555 usb_hcd_resume_root_hub(hcd); 1556 } 1557 1558 if (hcd->speed == HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1559 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1560 1561 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1562 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1563 1564 temp1 = readl(&xhci->op_regs->command); 1565 if (!(temp1 & CMD_RUN)) { 1566 xhci_warn(xhci, "xHC is not running.\n"); 1567 goto cleanup; 1568 } 1569 1570 if (DEV_SUPERSPEED(temp)) { 1571 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1572 /* Set a flag to say the port signaled remote wakeup, 1573 * so we can tell the difference between the end of 1574 * device and host initiated resume. 1575 */ 1576 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1577 xhci_test_and_clear_bit(xhci, port_array, 1578 faked_port_index, PORT_PLC); 1579 xhci_set_link_state(xhci, port_array, faked_port_index, 1580 XDEV_U0); 1581 /* Need to wait until the next link state change 1582 * indicates the device is actually in U0. 1583 */ 1584 bogus_port_status = true; 1585 goto cleanup; 1586 } else { 1587 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1588 bus_state->resume_done[faked_port_index] = jiffies + 1589 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1590 set_bit(faked_port_index, &bus_state->resuming_ports); 1591 mod_timer(&hcd->rh_timer, 1592 bus_state->resume_done[faked_port_index]); 1593 /* Do the rest in GetPortStatus */ 1594 } 1595 } 1596 1597 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1598 DEV_SUPERSPEED(temp)) { 1599 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1600 /* We've just brought the device into U0 through either the 1601 * Resume state after a device remote wakeup, or through the 1602 * U3Exit state after a host-initiated resume. If it's a device 1603 * initiated remote wake, don't pass up the link state change, 1604 * so the roothub behavior is consistent with external 1605 * USB 3.0 hub behavior. 1606 */ 1607 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1608 faked_port_index + 1); 1609 if (slot_id && xhci->devs[slot_id]) 1610 xhci_ring_device(xhci, slot_id); 1611 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1612 bus_state->port_remote_wakeup &= 1613 ~(1 << faked_port_index); 1614 xhci_test_and_clear_bit(xhci, port_array, 1615 faked_port_index, PORT_PLC); 1616 usb_wakeup_notification(hcd->self.root_hub, 1617 faked_port_index + 1); 1618 bogus_port_status = true; 1619 goto cleanup; 1620 } 1621 } 1622 1623 /* 1624 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1625 * RExit to a disconnect state). If so, let the the driver know it's 1626 * out of the RExit state. 1627 */ 1628 if (!DEV_SUPERSPEED(temp) && 1629 test_and_clear_bit(faked_port_index, 1630 &bus_state->rexit_ports)) { 1631 complete(&bus_state->rexit_done[faked_port_index]); 1632 bogus_port_status = true; 1633 goto cleanup; 1634 } 1635 1636 if (hcd->speed != HCD_USB3) 1637 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1638 PORT_PLC); 1639 1640 cleanup: 1641 /* Update event ring dequeue pointer before dropping the lock */ 1642 inc_deq(xhci, xhci->event_ring); 1643 1644 /* Don't make the USB core poll the roothub if we got a bad port status 1645 * change event. Besides, at that point we can't tell which roothub 1646 * (USB 2.0 or USB 3.0) to kick. 1647 */ 1648 if (bogus_port_status) 1649 return; 1650 1651 /* 1652 * xHCI port-status-change events occur when the "or" of all the 1653 * status-change bits in the portsc register changes from 0 to 1. 1654 * New status changes won't cause an event if any other change 1655 * bits are still set. When an event occurs, switch over to 1656 * polling to avoid losing status changes. 1657 */ 1658 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1659 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1660 spin_unlock(&xhci->lock); 1661 /* Pass this up to the core */ 1662 usb_hcd_poll_rh_status(hcd); 1663 spin_lock(&xhci->lock); 1664 } 1665 1666 /* 1667 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1668 * at end_trb, which may be in another segment. If the suspect DMA address is a 1669 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1670 * returns 0. 1671 */ 1672 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1673 struct xhci_segment *start_seg, 1674 union xhci_trb *start_trb, 1675 union xhci_trb *end_trb, 1676 dma_addr_t suspect_dma, 1677 bool debug) 1678 { 1679 dma_addr_t start_dma; 1680 dma_addr_t end_seg_dma; 1681 dma_addr_t end_trb_dma; 1682 struct xhci_segment *cur_seg; 1683 1684 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1685 cur_seg = start_seg; 1686 1687 do { 1688 if (start_dma == 0) 1689 return NULL; 1690 /* We may get an event for a Link TRB in the middle of a TD */ 1691 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1692 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1693 /* If the end TRB isn't in this segment, this is set to 0 */ 1694 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1695 1696 if (debug) 1697 xhci_warn(xhci, 1698 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1699 (unsigned long long)suspect_dma, 1700 (unsigned long long)start_dma, 1701 (unsigned long long)end_trb_dma, 1702 (unsigned long long)cur_seg->dma, 1703 (unsigned long long)end_seg_dma); 1704 1705 if (end_trb_dma > 0) { 1706 /* The end TRB is in this segment, so suspect should be here */ 1707 if (start_dma <= end_trb_dma) { 1708 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1709 return cur_seg; 1710 } else { 1711 /* Case for one segment with 1712 * a TD wrapped around to the top 1713 */ 1714 if ((suspect_dma >= start_dma && 1715 suspect_dma <= end_seg_dma) || 1716 (suspect_dma >= cur_seg->dma && 1717 suspect_dma <= end_trb_dma)) 1718 return cur_seg; 1719 } 1720 return NULL; 1721 } else { 1722 /* Might still be somewhere in this segment */ 1723 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1724 return cur_seg; 1725 } 1726 cur_seg = cur_seg->next; 1727 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1728 } while (cur_seg != start_seg); 1729 1730 return NULL; 1731 } 1732 1733 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1734 unsigned int slot_id, unsigned int ep_index, 1735 unsigned int stream_id, 1736 struct xhci_td *td, union xhci_trb *event_trb) 1737 { 1738 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1739 struct xhci_command *command; 1740 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1741 if (!command) 1742 return; 1743 1744 ep->ep_state |= EP_HALTED; 1745 ep->stopped_stream = stream_id; 1746 1747 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1748 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1749 1750 ep->stopped_stream = 0; 1751 1752 xhci_ring_cmd_db(xhci); 1753 } 1754 1755 /* Check if an error has halted the endpoint ring. The class driver will 1756 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1757 * However, a babble and other errors also halt the endpoint ring, and the class 1758 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1759 * Ring Dequeue Pointer command manually. 1760 */ 1761 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1762 struct xhci_ep_ctx *ep_ctx, 1763 unsigned int trb_comp_code) 1764 { 1765 /* TRB completion codes that may require a manual halt cleanup */ 1766 if (trb_comp_code == COMP_TX_ERR || 1767 trb_comp_code == COMP_BABBLE || 1768 trb_comp_code == COMP_SPLIT_ERR) 1769 /* The 0.96 spec says a babbling control endpoint 1770 * is not halted. The 0.96 spec says it is. Some HW 1771 * claims to be 0.95 compliant, but it halts the control 1772 * endpoint anyway. Check if a babble halted the 1773 * endpoint. 1774 */ 1775 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1776 cpu_to_le32(EP_STATE_HALTED)) 1777 return 1; 1778 1779 return 0; 1780 } 1781 1782 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1783 { 1784 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1785 /* Vendor defined "informational" completion code, 1786 * treat as not-an-error. 1787 */ 1788 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1789 trb_comp_code); 1790 xhci_dbg(xhci, "Treating code as success.\n"); 1791 return 1; 1792 } 1793 return 0; 1794 } 1795 1796 /* 1797 * Finish the td processing, remove the td from td list; 1798 * Return 1 if the urb can be given back. 1799 */ 1800 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1801 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1802 struct xhci_virt_ep *ep, int *status, bool skip) 1803 { 1804 struct xhci_virt_device *xdev; 1805 struct xhci_ring *ep_ring; 1806 unsigned int slot_id; 1807 int ep_index; 1808 struct urb *urb = NULL; 1809 struct xhci_ep_ctx *ep_ctx; 1810 int ret = 0; 1811 struct urb_priv *urb_priv; 1812 u32 trb_comp_code; 1813 1814 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1815 xdev = xhci->devs[slot_id]; 1816 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1817 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1818 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1819 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1820 1821 if (skip) 1822 goto td_cleanup; 1823 1824 if (trb_comp_code == COMP_STOP_INVAL || 1825 trb_comp_code == COMP_STOP || 1826 trb_comp_code == COMP_STOP_SHORT) { 1827 /* The Endpoint Stop Command completion will take care of any 1828 * stopped TDs. A stopped TD may be restarted, so don't update 1829 * the ring dequeue pointer or take this TD off any lists yet. 1830 */ 1831 ep->stopped_td = td; 1832 return 0; 1833 } 1834 if (trb_comp_code == COMP_STALL || 1835 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1836 trb_comp_code)) { 1837 /* Issue a reset endpoint command to clear the host side 1838 * halt, followed by a set dequeue command to move the 1839 * dequeue pointer past the TD. 1840 * The class driver clears the device side halt later. 1841 */ 1842 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1843 ep_ring->stream_id, td, event_trb); 1844 } else { 1845 /* Update ring dequeue pointer */ 1846 while (ep_ring->dequeue != td->last_trb) 1847 inc_deq(xhci, ep_ring); 1848 inc_deq(xhci, ep_ring); 1849 } 1850 1851 td_cleanup: 1852 /* Clean up the endpoint's TD list */ 1853 urb = td->urb; 1854 urb_priv = urb->hcpriv; 1855 1856 /* Do one last check of the actual transfer length. 1857 * If the host controller said we transferred more data than the buffer 1858 * length, urb->actual_length will be a very big number (since it's 1859 * unsigned). Play it safe and say we didn't transfer anything. 1860 */ 1861 if (urb->actual_length > urb->transfer_buffer_length) { 1862 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1863 urb->transfer_buffer_length, 1864 urb->actual_length); 1865 urb->actual_length = 0; 1866 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1867 *status = -EREMOTEIO; 1868 else 1869 *status = 0; 1870 } 1871 list_del_init(&td->td_list); 1872 /* Was this TD slated to be cancelled but completed anyway? */ 1873 if (!list_empty(&td->cancelled_td_list)) 1874 list_del_init(&td->cancelled_td_list); 1875 1876 urb_priv->td_cnt++; 1877 /* Giveback the urb when all the tds are completed */ 1878 if (urb_priv->td_cnt == urb_priv->length) { 1879 ret = 1; 1880 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1881 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1882 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1883 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1884 usb_amd_quirk_pll_enable(); 1885 } 1886 } 1887 } 1888 1889 return ret; 1890 } 1891 1892 /* 1893 * Process control tds, update urb status and actual_length. 1894 */ 1895 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1896 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1897 struct xhci_virt_ep *ep, int *status) 1898 { 1899 struct xhci_virt_device *xdev; 1900 struct xhci_ring *ep_ring; 1901 unsigned int slot_id; 1902 int ep_index; 1903 struct xhci_ep_ctx *ep_ctx; 1904 u32 trb_comp_code; 1905 1906 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1907 xdev = xhci->devs[slot_id]; 1908 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1909 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1910 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1911 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1912 1913 switch (trb_comp_code) { 1914 case COMP_SUCCESS: 1915 if (event_trb == ep_ring->dequeue) { 1916 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1917 "without IOC set??\n"); 1918 *status = -ESHUTDOWN; 1919 } else if (event_trb != td->last_trb) { 1920 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1921 "without IOC set??\n"); 1922 *status = -ESHUTDOWN; 1923 } else { 1924 *status = 0; 1925 } 1926 break; 1927 case COMP_SHORT_TX: 1928 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1929 *status = -EREMOTEIO; 1930 else 1931 *status = 0; 1932 break; 1933 case COMP_STOP_SHORT: 1934 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb) 1935 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1936 else 1937 td->urb->actual_length = 1938 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1939 1940 return finish_td(xhci, td, event_trb, event, ep, status, false); 1941 case COMP_STOP: 1942 /* Did we stop at data stage? */ 1943 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) 1944 td->urb->actual_length = 1945 td->urb->transfer_buffer_length - 1946 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1947 /* fall through */ 1948 case COMP_STOP_INVAL: 1949 return finish_td(xhci, td, event_trb, event, ep, status, false); 1950 default: 1951 if (!xhci_requires_manual_halt_cleanup(xhci, 1952 ep_ctx, trb_comp_code)) 1953 break; 1954 xhci_dbg(xhci, "TRB error code %u, " 1955 "halted endpoint index = %u\n", 1956 trb_comp_code, ep_index); 1957 /* else fall through */ 1958 case COMP_STALL: 1959 /* Did we transfer part of the data (middle) phase? */ 1960 if (event_trb != ep_ring->dequeue && 1961 event_trb != td->last_trb) 1962 td->urb->actual_length = 1963 td->urb->transfer_buffer_length - 1964 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1965 else if (!td->urb_length_set) 1966 td->urb->actual_length = 0; 1967 1968 return finish_td(xhci, td, event_trb, event, ep, status, false); 1969 } 1970 /* 1971 * Did we transfer any data, despite the errors that might have 1972 * happened? I.e. did we get past the setup stage? 1973 */ 1974 if (event_trb != ep_ring->dequeue) { 1975 /* The event was for the status stage */ 1976 if (event_trb == td->last_trb) { 1977 if (td->urb_length_set) { 1978 /* Don't overwrite a previously set error code 1979 */ 1980 if ((*status == -EINPROGRESS || *status == 0) && 1981 (td->urb->transfer_flags 1982 & URB_SHORT_NOT_OK)) 1983 /* Did we already see a short data 1984 * stage? */ 1985 *status = -EREMOTEIO; 1986 } else { 1987 td->urb->actual_length = 1988 td->urb->transfer_buffer_length; 1989 } 1990 } else { 1991 /* 1992 * Maybe the event was for the data stage? If so, update 1993 * already the actual_length of the URB and flag it as 1994 * set, so that it is not overwritten in the event for 1995 * the last TRB. 1996 */ 1997 td->urb_length_set = true; 1998 td->urb->actual_length = 1999 td->urb->transfer_buffer_length - 2000 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2001 xhci_dbg(xhci, "Waiting for status " 2002 "stage event\n"); 2003 return 0; 2004 } 2005 } 2006 2007 return finish_td(xhci, td, event_trb, event, ep, status, false); 2008 } 2009 2010 /* 2011 * Process isochronous tds, update urb packet status and actual_length. 2012 */ 2013 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2014 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2015 struct xhci_virt_ep *ep, int *status) 2016 { 2017 struct xhci_ring *ep_ring; 2018 struct urb_priv *urb_priv; 2019 int idx; 2020 int len = 0; 2021 union xhci_trb *cur_trb; 2022 struct xhci_segment *cur_seg; 2023 struct usb_iso_packet_descriptor *frame; 2024 u32 trb_comp_code; 2025 bool skip_td = false; 2026 2027 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2028 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2029 urb_priv = td->urb->hcpriv; 2030 idx = urb_priv->td_cnt; 2031 frame = &td->urb->iso_frame_desc[idx]; 2032 2033 /* handle completion code */ 2034 switch (trb_comp_code) { 2035 case COMP_SUCCESS: 2036 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2037 frame->status = 0; 2038 break; 2039 } 2040 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2041 trb_comp_code = COMP_SHORT_TX; 2042 /* fallthrough */ 2043 case COMP_STOP_SHORT: 2044 case COMP_SHORT_TX: 2045 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2046 -EREMOTEIO : 0; 2047 break; 2048 case COMP_BW_OVER: 2049 frame->status = -ECOMM; 2050 skip_td = true; 2051 break; 2052 case COMP_BUFF_OVER: 2053 case COMP_BABBLE: 2054 frame->status = -EOVERFLOW; 2055 skip_td = true; 2056 break; 2057 case COMP_DEV_ERR: 2058 case COMP_STALL: 2059 frame->status = -EPROTO; 2060 skip_td = true; 2061 break; 2062 case COMP_TX_ERR: 2063 frame->status = -EPROTO; 2064 if (event_trb != td->last_trb) 2065 return 0; 2066 skip_td = true; 2067 break; 2068 case COMP_STOP: 2069 case COMP_STOP_INVAL: 2070 break; 2071 default: 2072 frame->status = -1; 2073 break; 2074 } 2075 2076 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2077 frame->actual_length = frame->length; 2078 td->urb->actual_length += frame->length; 2079 } else if (trb_comp_code == COMP_STOP_SHORT) { 2080 frame->actual_length = 2081 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2082 td->urb->actual_length += frame->actual_length; 2083 } else { 2084 for (cur_trb = ep_ring->dequeue, 2085 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2086 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2087 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2088 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2089 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2090 } 2091 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2092 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2093 2094 if (trb_comp_code != COMP_STOP_INVAL) { 2095 frame->actual_length = len; 2096 td->urb->actual_length += len; 2097 } 2098 } 2099 2100 return finish_td(xhci, td, event_trb, event, ep, status, false); 2101 } 2102 2103 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2104 struct xhci_transfer_event *event, 2105 struct xhci_virt_ep *ep, int *status) 2106 { 2107 struct xhci_ring *ep_ring; 2108 struct urb_priv *urb_priv; 2109 struct usb_iso_packet_descriptor *frame; 2110 int idx; 2111 2112 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2113 urb_priv = td->urb->hcpriv; 2114 idx = urb_priv->td_cnt; 2115 frame = &td->urb->iso_frame_desc[idx]; 2116 2117 /* The transfer is partly done. */ 2118 frame->status = -EXDEV; 2119 2120 /* calc actual length */ 2121 frame->actual_length = 0; 2122 2123 /* Update ring dequeue pointer */ 2124 while (ep_ring->dequeue != td->last_trb) 2125 inc_deq(xhci, ep_ring); 2126 inc_deq(xhci, ep_ring); 2127 2128 return finish_td(xhci, td, NULL, event, ep, status, true); 2129 } 2130 2131 /* 2132 * Process bulk and interrupt tds, update urb status and actual_length. 2133 */ 2134 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2135 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2136 struct xhci_virt_ep *ep, int *status) 2137 { 2138 struct xhci_ring *ep_ring; 2139 union xhci_trb *cur_trb; 2140 struct xhci_segment *cur_seg; 2141 u32 trb_comp_code; 2142 2143 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2144 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2145 2146 switch (trb_comp_code) { 2147 case COMP_SUCCESS: 2148 /* Double check that the HW transferred everything. */ 2149 if (event_trb != td->last_trb || 2150 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2151 xhci_warn(xhci, "WARN Successful completion " 2152 "on short TX\n"); 2153 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2154 *status = -EREMOTEIO; 2155 else 2156 *status = 0; 2157 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2158 trb_comp_code = COMP_SHORT_TX; 2159 } else { 2160 *status = 0; 2161 } 2162 break; 2163 case COMP_STOP_SHORT: 2164 case COMP_SHORT_TX: 2165 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2166 *status = -EREMOTEIO; 2167 else 2168 *status = 0; 2169 break; 2170 default: 2171 /* Others already handled above */ 2172 break; 2173 } 2174 if (trb_comp_code == COMP_SHORT_TX) 2175 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2176 "%d bytes untransferred\n", 2177 td->urb->ep->desc.bEndpointAddress, 2178 td->urb->transfer_buffer_length, 2179 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2180 /* Stopped - short packet completion */ 2181 if (trb_comp_code == COMP_STOP_SHORT) { 2182 td->urb->actual_length = 2183 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2184 2185 if (td->urb->transfer_buffer_length < 2186 td->urb->actual_length) { 2187 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n", 2188 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2189 td->urb->actual_length = 0; 2190 /* status will be set by usb core for canceled urbs */ 2191 } 2192 /* Fast path - was this the last TRB in the TD for this URB? */ 2193 } else if (event_trb == td->last_trb) { 2194 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2195 td->urb->actual_length = 2196 td->urb->transfer_buffer_length - 2197 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2198 if (td->urb->transfer_buffer_length < 2199 td->urb->actual_length) { 2200 xhci_warn(xhci, "HC gave bad length " 2201 "of %d bytes left\n", 2202 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2203 td->urb->actual_length = 0; 2204 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2205 *status = -EREMOTEIO; 2206 else 2207 *status = 0; 2208 } 2209 /* Don't overwrite a previously set error code */ 2210 if (*status == -EINPROGRESS) { 2211 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2212 *status = -EREMOTEIO; 2213 else 2214 *status = 0; 2215 } 2216 } else { 2217 td->urb->actual_length = 2218 td->urb->transfer_buffer_length; 2219 /* Ignore a short packet completion if the 2220 * untransferred length was zero. 2221 */ 2222 if (*status == -EREMOTEIO) 2223 *status = 0; 2224 } 2225 } else { 2226 /* Slow path - walk the list, starting from the dequeue 2227 * pointer, to get the actual length transferred. 2228 */ 2229 td->urb->actual_length = 0; 2230 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2231 cur_trb != event_trb; 2232 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2233 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2234 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2235 td->urb->actual_length += 2236 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2237 } 2238 /* If the ring didn't stop on a Link or No-op TRB, add 2239 * in the actual bytes transferred from the Normal TRB 2240 */ 2241 if (trb_comp_code != COMP_STOP_INVAL) 2242 td->urb->actual_length += 2243 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2244 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2245 } 2246 2247 return finish_td(xhci, td, event_trb, event, ep, status, false); 2248 } 2249 2250 /* 2251 * If this function returns an error condition, it means it got a Transfer 2252 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2253 * At this point, the host controller is probably hosed and should be reset. 2254 */ 2255 static int handle_tx_event(struct xhci_hcd *xhci, 2256 struct xhci_transfer_event *event) 2257 __releases(&xhci->lock) 2258 __acquires(&xhci->lock) 2259 { 2260 struct xhci_virt_device *xdev; 2261 struct xhci_virt_ep *ep; 2262 struct xhci_ring *ep_ring; 2263 unsigned int slot_id; 2264 int ep_index; 2265 struct xhci_td *td = NULL; 2266 dma_addr_t event_dma; 2267 struct xhci_segment *event_seg; 2268 union xhci_trb *event_trb; 2269 struct urb *urb = NULL; 2270 int status = -EINPROGRESS; 2271 struct urb_priv *urb_priv; 2272 struct xhci_ep_ctx *ep_ctx; 2273 struct list_head *tmp; 2274 u32 trb_comp_code; 2275 int ret = 0; 2276 int td_num = 0; 2277 2278 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2279 xdev = xhci->devs[slot_id]; 2280 if (!xdev) { 2281 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2282 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2283 (unsigned long long) xhci_trb_virt_to_dma( 2284 xhci->event_ring->deq_seg, 2285 xhci->event_ring->dequeue), 2286 lower_32_bits(le64_to_cpu(event->buffer)), 2287 upper_32_bits(le64_to_cpu(event->buffer)), 2288 le32_to_cpu(event->transfer_len), 2289 le32_to_cpu(event->flags)); 2290 xhci_dbg(xhci, "Event ring:\n"); 2291 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2292 return -ENODEV; 2293 } 2294 2295 /* Endpoint ID is 1 based, our index is zero based */ 2296 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2297 ep = &xdev->eps[ep_index]; 2298 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2299 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2300 if (!ep_ring || 2301 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2302 EP_STATE_DISABLED) { 2303 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2304 "or incorrect stream ring\n"); 2305 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2306 (unsigned long long) xhci_trb_virt_to_dma( 2307 xhci->event_ring->deq_seg, 2308 xhci->event_ring->dequeue), 2309 lower_32_bits(le64_to_cpu(event->buffer)), 2310 upper_32_bits(le64_to_cpu(event->buffer)), 2311 le32_to_cpu(event->transfer_len), 2312 le32_to_cpu(event->flags)); 2313 xhci_dbg(xhci, "Event ring:\n"); 2314 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2315 return -ENODEV; 2316 } 2317 2318 /* Count current td numbers if ep->skip is set */ 2319 if (ep->skip) { 2320 list_for_each(tmp, &ep_ring->td_list) 2321 td_num++; 2322 } 2323 2324 event_dma = le64_to_cpu(event->buffer); 2325 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2326 /* Look for common error cases */ 2327 switch (trb_comp_code) { 2328 /* Skip codes that require special handling depending on 2329 * transfer type 2330 */ 2331 case COMP_SUCCESS: 2332 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2333 break; 2334 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2335 trb_comp_code = COMP_SHORT_TX; 2336 else 2337 xhci_warn_ratelimited(xhci, 2338 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2339 case COMP_SHORT_TX: 2340 break; 2341 case COMP_STOP: 2342 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2343 break; 2344 case COMP_STOP_INVAL: 2345 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2346 break; 2347 case COMP_STOP_SHORT: 2348 xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); 2349 break; 2350 case COMP_STALL: 2351 xhci_dbg(xhci, "Stalled endpoint\n"); 2352 ep->ep_state |= EP_HALTED; 2353 status = -EPIPE; 2354 break; 2355 case COMP_TRB_ERR: 2356 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2357 status = -EILSEQ; 2358 break; 2359 case COMP_SPLIT_ERR: 2360 case COMP_TX_ERR: 2361 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2362 status = -EPROTO; 2363 break; 2364 case COMP_BABBLE: 2365 xhci_dbg(xhci, "Babble error on endpoint\n"); 2366 status = -EOVERFLOW; 2367 break; 2368 case COMP_DB_ERR: 2369 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2370 status = -ENOSR; 2371 break; 2372 case COMP_BW_OVER: 2373 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2374 break; 2375 case COMP_BUFF_OVER: 2376 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2377 break; 2378 case COMP_UNDERRUN: 2379 /* 2380 * When the Isoch ring is empty, the xHC will generate 2381 * a Ring Overrun Event for IN Isoch endpoint or Ring 2382 * Underrun Event for OUT Isoch endpoint. 2383 */ 2384 xhci_dbg(xhci, "underrun event on endpoint\n"); 2385 if (!list_empty(&ep_ring->td_list)) 2386 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2387 "still with TDs queued?\n", 2388 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2389 ep_index); 2390 goto cleanup; 2391 case COMP_OVERRUN: 2392 xhci_dbg(xhci, "overrun event on endpoint\n"); 2393 if (!list_empty(&ep_ring->td_list)) 2394 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2395 "still with TDs queued?\n", 2396 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2397 ep_index); 2398 goto cleanup; 2399 case COMP_DEV_ERR: 2400 xhci_warn(xhci, "WARN: detect an incompatible device"); 2401 status = -EPROTO; 2402 break; 2403 case COMP_MISSED_INT: 2404 /* 2405 * When encounter missed service error, one or more isoc tds 2406 * may be missed by xHC. 2407 * Set skip flag of the ep_ring; Complete the missed tds as 2408 * short transfer when process the ep_ring next time. 2409 */ 2410 ep->skip = true; 2411 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2412 goto cleanup; 2413 default: 2414 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2415 status = 0; 2416 break; 2417 } 2418 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2419 trb_comp_code); 2420 goto cleanup; 2421 } 2422 2423 do { 2424 /* This TRB should be in the TD at the head of this ring's 2425 * TD list. 2426 */ 2427 if (list_empty(&ep_ring->td_list)) { 2428 /* 2429 * A stopped endpoint may generate an extra completion 2430 * event if the device was suspended. Don't print 2431 * warnings. 2432 */ 2433 if (!(trb_comp_code == COMP_STOP || 2434 trb_comp_code == COMP_STOP_INVAL)) { 2435 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2436 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2437 ep_index); 2438 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2439 (le32_to_cpu(event->flags) & 2440 TRB_TYPE_BITMASK)>>10); 2441 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2442 } 2443 if (ep->skip) { 2444 ep->skip = false; 2445 xhci_dbg(xhci, "td_list is empty while skip " 2446 "flag set. Clear skip flag.\n"); 2447 } 2448 ret = 0; 2449 goto cleanup; 2450 } 2451 2452 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2453 if (ep->skip && td_num == 0) { 2454 ep->skip = false; 2455 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2456 "Clear skip flag.\n"); 2457 ret = 0; 2458 goto cleanup; 2459 } 2460 2461 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2462 if (ep->skip) 2463 td_num--; 2464 2465 /* Is this a TRB in the currently executing TD? */ 2466 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2467 td->last_trb, event_dma, false); 2468 2469 /* 2470 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2471 * is not in the current TD pointed by ep_ring->dequeue because 2472 * that the hardware dequeue pointer still at the previous TRB 2473 * of the current TD. The previous TRB maybe a Link TD or the 2474 * last TRB of the previous TD. The command completion handle 2475 * will take care the rest. 2476 */ 2477 if (!event_seg && (trb_comp_code == COMP_STOP || 2478 trb_comp_code == COMP_STOP_INVAL)) { 2479 ret = 0; 2480 goto cleanup; 2481 } 2482 2483 if (!event_seg) { 2484 if (!ep->skip || 2485 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2486 /* Some host controllers give a spurious 2487 * successful event after a short transfer. 2488 * Ignore it. 2489 */ 2490 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2491 ep_ring->last_td_was_short) { 2492 ep_ring->last_td_was_short = false; 2493 ret = 0; 2494 goto cleanup; 2495 } 2496 /* HC is busted, give up! */ 2497 xhci_err(xhci, 2498 "ERROR Transfer event TRB DMA ptr not " 2499 "part of current TD ep_index %d " 2500 "comp_code %u\n", ep_index, 2501 trb_comp_code); 2502 trb_in_td(xhci, ep_ring->deq_seg, 2503 ep_ring->dequeue, td->last_trb, 2504 event_dma, true); 2505 return -ESHUTDOWN; 2506 } 2507 2508 ret = skip_isoc_td(xhci, td, event, ep, &status); 2509 goto cleanup; 2510 } 2511 if (trb_comp_code == COMP_SHORT_TX) 2512 ep_ring->last_td_was_short = true; 2513 else 2514 ep_ring->last_td_was_short = false; 2515 2516 if (ep->skip) { 2517 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2518 ep->skip = false; 2519 } 2520 2521 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2522 sizeof(*event_trb)]; 2523 /* 2524 * No-op TRB should not trigger interrupts. 2525 * If event_trb is a no-op TRB, it means the 2526 * corresponding TD has been cancelled. Just ignore 2527 * the TD. 2528 */ 2529 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2530 xhci_dbg(xhci, 2531 "event_trb is a no-op TRB. Skip it\n"); 2532 goto cleanup; 2533 } 2534 2535 /* Now update the urb's actual_length and give back to 2536 * the core 2537 */ 2538 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2539 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2540 &status); 2541 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2542 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2543 &status); 2544 else 2545 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2546 ep, &status); 2547 2548 cleanup: 2549 /* 2550 * Do not update event ring dequeue pointer if ep->skip is set. 2551 * Will roll back to continue process missed tds. 2552 */ 2553 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2554 inc_deq(xhci, xhci->event_ring); 2555 } 2556 2557 if (ret) { 2558 urb = td->urb; 2559 urb_priv = urb->hcpriv; 2560 2561 xhci_urb_free_priv(urb_priv); 2562 2563 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2564 if ((urb->actual_length != urb->transfer_buffer_length && 2565 (urb->transfer_flags & 2566 URB_SHORT_NOT_OK)) || 2567 (status != 0 && 2568 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2569 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2570 "expected = %d, status = %d\n", 2571 urb, urb->actual_length, 2572 urb->transfer_buffer_length, 2573 status); 2574 spin_unlock(&xhci->lock); 2575 /* EHCI, UHCI, and OHCI always unconditionally set the 2576 * urb->status of an isochronous endpoint to 0. 2577 */ 2578 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2579 status = 0; 2580 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2581 spin_lock(&xhci->lock); 2582 } 2583 2584 /* 2585 * If ep->skip is set, it means there are missed tds on the 2586 * endpoint ring need to take care of. 2587 * Process them as short transfer until reach the td pointed by 2588 * the event. 2589 */ 2590 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2591 2592 return 0; 2593 } 2594 2595 /* 2596 * This function handles all OS-owned events on the event ring. It may drop 2597 * xhci->lock between event processing (e.g. to pass up port status changes). 2598 * Returns >0 for "possibly more events to process" (caller should call again), 2599 * otherwise 0 if done. In future, <0 returns should indicate error code. 2600 */ 2601 static int xhci_handle_event(struct xhci_hcd *xhci) 2602 { 2603 union xhci_trb *event; 2604 int update_ptrs = 1; 2605 int ret; 2606 2607 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2608 xhci->error_bitmask |= 1 << 1; 2609 return 0; 2610 } 2611 2612 event = xhci->event_ring->dequeue; 2613 /* Does the HC or OS own the TRB? */ 2614 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2615 xhci->event_ring->cycle_state) { 2616 xhci->error_bitmask |= 1 << 2; 2617 return 0; 2618 } 2619 2620 /* 2621 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2622 * speculative reads of the event's flags/data below. 2623 */ 2624 rmb(); 2625 /* FIXME: Handle more event types. */ 2626 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2627 case TRB_TYPE(TRB_COMPLETION): 2628 handle_cmd_completion(xhci, &event->event_cmd); 2629 break; 2630 case TRB_TYPE(TRB_PORT_STATUS): 2631 handle_port_status(xhci, event); 2632 update_ptrs = 0; 2633 break; 2634 case TRB_TYPE(TRB_TRANSFER): 2635 ret = handle_tx_event(xhci, &event->trans_event); 2636 if (ret < 0) 2637 xhci->error_bitmask |= 1 << 9; 2638 else 2639 update_ptrs = 0; 2640 break; 2641 case TRB_TYPE(TRB_DEV_NOTE): 2642 handle_device_notification(xhci, event); 2643 break; 2644 default: 2645 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2646 TRB_TYPE(48)) 2647 handle_vendor_event(xhci, event); 2648 else 2649 xhci->error_bitmask |= 1 << 3; 2650 } 2651 /* Any of the above functions may drop and re-acquire the lock, so check 2652 * to make sure a watchdog timer didn't mark the host as non-responsive. 2653 */ 2654 if (xhci->xhc_state & XHCI_STATE_DYING) { 2655 xhci_dbg(xhci, "xHCI host dying, returning from " 2656 "event handler.\n"); 2657 return 0; 2658 } 2659 2660 if (update_ptrs) 2661 /* Update SW event ring dequeue pointer */ 2662 inc_deq(xhci, xhci->event_ring); 2663 2664 /* Are there more items on the event ring? Caller will call us again to 2665 * check. 2666 */ 2667 return 1; 2668 } 2669 2670 /* 2671 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2672 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2673 * indicators of an event TRB error, but we check the status *first* to be safe. 2674 */ 2675 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2676 { 2677 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2678 u32 status; 2679 u64 temp_64; 2680 union xhci_trb *event_ring_deq; 2681 dma_addr_t deq; 2682 2683 spin_lock(&xhci->lock); 2684 /* Check if the xHC generated the interrupt, or the irq is shared */ 2685 status = readl(&xhci->op_regs->status); 2686 if (status == 0xffffffff) 2687 goto hw_died; 2688 2689 if (!(status & STS_EINT)) { 2690 spin_unlock(&xhci->lock); 2691 return IRQ_NONE; 2692 } 2693 if (status & STS_FATAL) { 2694 xhci_warn(xhci, "WARNING: Host System Error\n"); 2695 xhci_halt(xhci); 2696 hw_died: 2697 spin_unlock(&xhci->lock); 2698 return IRQ_HANDLED; 2699 } 2700 2701 /* 2702 * Clear the op reg interrupt status first, 2703 * so we can receive interrupts from other MSI-X interrupters. 2704 * Write 1 to clear the interrupt status. 2705 */ 2706 status |= STS_EINT; 2707 writel(status, &xhci->op_regs->status); 2708 /* FIXME when MSI-X is supported and there are multiple vectors */ 2709 /* Clear the MSI-X event interrupt status */ 2710 2711 if (hcd->irq) { 2712 u32 irq_pending; 2713 /* Acknowledge the PCI interrupt */ 2714 irq_pending = readl(&xhci->ir_set->irq_pending); 2715 irq_pending |= IMAN_IP; 2716 writel(irq_pending, &xhci->ir_set->irq_pending); 2717 } 2718 2719 if (xhci->xhc_state & XHCI_STATE_DYING) { 2720 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2721 "Shouldn't IRQs be disabled?\n"); 2722 /* Clear the event handler busy flag (RW1C); 2723 * the event ring should be empty. 2724 */ 2725 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2726 xhci_write_64(xhci, temp_64 | ERST_EHB, 2727 &xhci->ir_set->erst_dequeue); 2728 spin_unlock(&xhci->lock); 2729 2730 return IRQ_HANDLED; 2731 } 2732 2733 event_ring_deq = xhci->event_ring->dequeue; 2734 /* FIXME this should be a delayed service routine 2735 * that clears the EHB. 2736 */ 2737 while (xhci_handle_event(xhci) > 0) {} 2738 2739 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2740 /* If necessary, update the HW's version of the event ring deq ptr. */ 2741 if (event_ring_deq != xhci->event_ring->dequeue) { 2742 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2743 xhci->event_ring->dequeue); 2744 if (deq == 0) 2745 xhci_warn(xhci, "WARN something wrong with SW event " 2746 "ring dequeue ptr.\n"); 2747 /* Update HC event ring dequeue pointer */ 2748 temp_64 &= ERST_PTR_MASK; 2749 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2750 } 2751 2752 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2753 temp_64 |= ERST_EHB; 2754 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2755 2756 spin_unlock(&xhci->lock); 2757 2758 return IRQ_HANDLED; 2759 } 2760 2761 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2762 { 2763 return xhci_irq(hcd); 2764 } 2765 2766 /**** Endpoint Ring Operations ****/ 2767 2768 /* 2769 * Generic function for queueing a TRB on a ring. 2770 * The caller must have checked to make sure there's room on the ring. 2771 * 2772 * @more_trbs_coming: Will you enqueue more TRBs before calling 2773 * prepare_transfer()? 2774 */ 2775 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2776 bool more_trbs_coming, 2777 u32 field1, u32 field2, u32 field3, u32 field4) 2778 { 2779 struct xhci_generic_trb *trb; 2780 2781 trb = &ring->enqueue->generic; 2782 trb->field[0] = cpu_to_le32(field1); 2783 trb->field[1] = cpu_to_le32(field2); 2784 trb->field[2] = cpu_to_le32(field3); 2785 trb->field[3] = cpu_to_le32(field4); 2786 inc_enq(xhci, ring, more_trbs_coming); 2787 } 2788 2789 /* 2790 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2791 * FIXME allocate segments if the ring is full. 2792 */ 2793 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2794 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2795 { 2796 unsigned int num_trbs_needed; 2797 2798 /* Make sure the endpoint has been added to xHC schedule */ 2799 switch (ep_state) { 2800 case EP_STATE_DISABLED: 2801 /* 2802 * USB core changed config/interfaces without notifying us, 2803 * or hardware is reporting the wrong state. 2804 */ 2805 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2806 return -ENOENT; 2807 case EP_STATE_ERROR: 2808 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2809 /* FIXME event handling code for error needs to clear it */ 2810 /* XXX not sure if this should be -ENOENT or not */ 2811 return -EINVAL; 2812 case EP_STATE_HALTED: 2813 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2814 case EP_STATE_STOPPED: 2815 case EP_STATE_RUNNING: 2816 break; 2817 default: 2818 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2819 /* 2820 * FIXME issue Configure Endpoint command to try to get the HC 2821 * back into a known state. 2822 */ 2823 return -EINVAL; 2824 } 2825 2826 while (1) { 2827 if (room_on_ring(xhci, ep_ring, num_trbs)) 2828 break; 2829 2830 if (ep_ring == xhci->cmd_ring) { 2831 xhci_err(xhci, "Do not support expand command ring\n"); 2832 return -ENOMEM; 2833 } 2834 2835 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2836 "ERROR no room on ep ring, try ring expansion"); 2837 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2838 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2839 mem_flags)) { 2840 xhci_err(xhci, "Ring expansion failed\n"); 2841 return -ENOMEM; 2842 } 2843 } 2844 2845 if (enqueue_is_link_trb(ep_ring)) { 2846 struct xhci_ring *ring = ep_ring; 2847 union xhci_trb *next; 2848 2849 next = ring->enqueue; 2850 2851 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2852 /* If we're not dealing with 0.95 hardware or isoc rings 2853 * on AMD 0.96 host, clear the chain bit. 2854 */ 2855 if (!xhci_link_trb_quirk(xhci) && 2856 !(ring->type == TYPE_ISOC && 2857 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2858 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2859 else 2860 next->link.control |= cpu_to_le32(TRB_CHAIN); 2861 2862 wmb(); 2863 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2864 2865 /* Toggle the cycle bit after the last ring segment. */ 2866 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2867 ring->cycle_state ^= 1; 2868 } 2869 ring->enq_seg = ring->enq_seg->next; 2870 ring->enqueue = ring->enq_seg->trbs; 2871 next = ring->enqueue; 2872 } 2873 } 2874 2875 return 0; 2876 } 2877 2878 static int prepare_transfer(struct xhci_hcd *xhci, 2879 struct xhci_virt_device *xdev, 2880 unsigned int ep_index, 2881 unsigned int stream_id, 2882 unsigned int num_trbs, 2883 struct urb *urb, 2884 unsigned int td_index, 2885 gfp_t mem_flags) 2886 { 2887 int ret; 2888 struct urb_priv *urb_priv; 2889 struct xhci_td *td; 2890 struct xhci_ring *ep_ring; 2891 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2892 2893 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2894 if (!ep_ring) { 2895 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2896 stream_id); 2897 return -EINVAL; 2898 } 2899 2900 ret = prepare_ring(xhci, ep_ring, 2901 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2902 num_trbs, mem_flags); 2903 if (ret) 2904 return ret; 2905 2906 urb_priv = urb->hcpriv; 2907 td = urb_priv->td[td_index]; 2908 2909 INIT_LIST_HEAD(&td->td_list); 2910 INIT_LIST_HEAD(&td->cancelled_td_list); 2911 2912 if (td_index == 0) { 2913 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2914 if (unlikely(ret)) 2915 return ret; 2916 } 2917 2918 td->urb = urb; 2919 /* Add this TD to the tail of the endpoint ring's TD list */ 2920 list_add_tail(&td->td_list, &ep_ring->td_list); 2921 td->start_seg = ep_ring->enq_seg; 2922 td->first_trb = ep_ring->enqueue; 2923 2924 urb_priv->td[td_index] = td; 2925 2926 return 0; 2927 } 2928 2929 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2930 { 2931 int num_sgs, num_trbs, running_total, temp, i; 2932 struct scatterlist *sg; 2933 2934 sg = NULL; 2935 num_sgs = urb->num_mapped_sgs; 2936 temp = urb->transfer_buffer_length; 2937 2938 num_trbs = 0; 2939 for_each_sg(urb->sg, sg, num_sgs, i) { 2940 unsigned int len = sg_dma_len(sg); 2941 2942 /* Scatter gather list entries may cross 64KB boundaries */ 2943 running_total = TRB_MAX_BUFF_SIZE - 2944 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2945 running_total &= TRB_MAX_BUFF_SIZE - 1; 2946 if (running_total != 0) 2947 num_trbs++; 2948 2949 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2950 while (running_total < sg_dma_len(sg) && running_total < temp) { 2951 num_trbs++; 2952 running_total += TRB_MAX_BUFF_SIZE; 2953 } 2954 len = min_t(int, len, temp); 2955 temp -= len; 2956 if (temp == 0) 2957 break; 2958 } 2959 return num_trbs; 2960 } 2961 2962 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2963 { 2964 if (num_trbs != 0) 2965 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2966 "TRBs, %d left\n", __func__, 2967 urb->ep->desc.bEndpointAddress, num_trbs); 2968 if (running_total != urb->transfer_buffer_length) 2969 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2970 "queued %#x (%d), asked for %#x (%d)\n", 2971 __func__, 2972 urb->ep->desc.bEndpointAddress, 2973 running_total, running_total, 2974 urb->transfer_buffer_length, 2975 urb->transfer_buffer_length); 2976 } 2977 2978 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2979 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2980 struct xhci_generic_trb *start_trb) 2981 { 2982 /* 2983 * Pass all the TRBs to the hardware at once and make sure this write 2984 * isn't reordered. 2985 */ 2986 wmb(); 2987 if (start_cycle) 2988 start_trb->field[3] |= cpu_to_le32(start_cycle); 2989 else 2990 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2991 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2992 } 2993 2994 /* 2995 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2996 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2997 * (comprised of sg list entries) can take several service intervals to 2998 * transmit. 2999 */ 3000 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3001 struct urb *urb, int slot_id, unsigned int ep_index) 3002 { 3003 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3004 xhci->devs[slot_id]->out_ctx, ep_index); 3005 int xhci_interval; 3006 int ep_interval; 3007 3008 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3009 ep_interval = urb->interval; 3010 /* Convert to microframes */ 3011 if (urb->dev->speed == USB_SPEED_LOW || 3012 urb->dev->speed == USB_SPEED_FULL) 3013 ep_interval *= 8; 3014 /* FIXME change this to a warning and a suggestion to use the new API 3015 * to set the polling interval (once the API is added). 3016 */ 3017 if (xhci_interval != ep_interval) { 3018 dev_dbg_ratelimited(&urb->dev->dev, 3019 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3020 ep_interval, ep_interval == 1 ? "" : "s", 3021 xhci_interval, xhci_interval == 1 ? "" : "s"); 3022 urb->interval = xhci_interval; 3023 /* Convert back to frames for LS/FS devices */ 3024 if (urb->dev->speed == USB_SPEED_LOW || 3025 urb->dev->speed == USB_SPEED_FULL) 3026 urb->interval /= 8; 3027 } 3028 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3029 } 3030 3031 /* 3032 * The TD size is the number of bytes remaining in the TD (including this TRB), 3033 * right shifted by 10. 3034 * It must fit in bits 21:17, so it can't be bigger than 31. 3035 */ 3036 static u32 xhci_td_remainder(unsigned int remainder) 3037 { 3038 u32 max = (1 << (21 - 17 + 1)) - 1; 3039 3040 if ((remainder >> 10) >= max) 3041 return max << 17; 3042 else 3043 return (remainder >> 10) << 17; 3044 } 3045 3046 /* 3047 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3048 * packets remaining in the TD (*not* including this TRB). 3049 * 3050 * Total TD packet count = total_packet_count = 3051 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3052 * 3053 * Packets transferred up to and including this TRB = packets_transferred = 3054 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3055 * 3056 * TD size = total_packet_count - packets_transferred 3057 * 3058 * It must fit in bits 21:17, so it can't be bigger than 31. 3059 * The last TRB in a TD must have the TD size set to zero. 3060 */ 3061 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3062 unsigned int total_packet_count, struct urb *urb, 3063 unsigned int num_trbs_left) 3064 { 3065 int packets_transferred; 3066 3067 /* One TRB with a zero-length data packet. */ 3068 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3069 return 0; 3070 3071 /* All the TRB queueing functions don't count the current TRB in 3072 * running_total. 3073 */ 3074 packets_transferred = (running_total + trb_buff_len) / 3075 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3076 3077 if ((total_packet_count - packets_transferred) > 31) 3078 return 31 << 17; 3079 return (total_packet_count - packets_transferred) << 17; 3080 } 3081 3082 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3083 struct urb *urb, int slot_id, unsigned int ep_index) 3084 { 3085 struct xhci_ring *ep_ring; 3086 unsigned int num_trbs; 3087 struct urb_priv *urb_priv; 3088 struct xhci_td *td; 3089 struct scatterlist *sg; 3090 int num_sgs; 3091 int trb_buff_len, this_sg_len, running_total, ret; 3092 unsigned int total_packet_count; 3093 bool zero_length_needed; 3094 bool first_trb; 3095 int last_trb_num; 3096 u64 addr; 3097 bool more_trbs_coming; 3098 3099 struct xhci_generic_trb *start_trb; 3100 int start_cycle; 3101 3102 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3103 if (!ep_ring) 3104 return -EINVAL; 3105 3106 num_trbs = count_sg_trbs_needed(xhci, urb); 3107 num_sgs = urb->num_mapped_sgs; 3108 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3109 usb_endpoint_maxp(&urb->ep->desc)); 3110 3111 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3112 ep_index, urb->stream_id, 3113 num_trbs, urb, 0, mem_flags); 3114 if (ret < 0) 3115 return ret; 3116 3117 urb_priv = urb->hcpriv; 3118 3119 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3120 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && 3121 urb_priv->length == 2; 3122 if (zero_length_needed) { 3123 num_trbs++; 3124 xhci_dbg(xhci, "Creating zero length td.\n"); 3125 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3126 ep_index, urb->stream_id, 3127 1, urb, 1, mem_flags); 3128 if (ret < 0) 3129 return ret; 3130 } 3131 3132 td = urb_priv->td[0]; 3133 3134 /* 3135 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3136 * until we've finished creating all the other TRBs. The ring's cycle 3137 * state may change as we enqueue the other TRBs, so save it too. 3138 */ 3139 start_trb = &ep_ring->enqueue->generic; 3140 start_cycle = ep_ring->cycle_state; 3141 3142 running_total = 0; 3143 /* 3144 * How much data is in the first TRB? 3145 * 3146 * There are three forces at work for TRB buffer pointers and lengths: 3147 * 1. We don't want to walk off the end of this sg-list entry buffer. 3148 * 2. The transfer length that the driver requested may be smaller than 3149 * the amount of memory allocated for this scatter-gather list. 3150 * 3. TRBs buffers can't cross 64KB boundaries. 3151 */ 3152 sg = urb->sg; 3153 addr = (u64) sg_dma_address(sg); 3154 this_sg_len = sg_dma_len(sg); 3155 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3156 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3157 if (trb_buff_len > urb->transfer_buffer_length) 3158 trb_buff_len = urb->transfer_buffer_length; 3159 3160 first_trb = true; 3161 last_trb_num = zero_length_needed ? 2 : 1; 3162 /* Queue the first TRB, even if it's zero-length */ 3163 do { 3164 u32 field = 0; 3165 u32 length_field = 0; 3166 u32 remainder = 0; 3167 3168 /* Don't change the cycle bit of the first TRB until later */ 3169 if (first_trb) { 3170 first_trb = false; 3171 if (start_cycle == 0) 3172 field |= 0x1; 3173 } else 3174 field |= ep_ring->cycle_state; 3175 3176 /* Chain all the TRBs together; clear the chain bit in the last 3177 * TRB to indicate it's the last TRB in the chain. 3178 */ 3179 if (num_trbs > last_trb_num) { 3180 field |= TRB_CHAIN; 3181 } else if (num_trbs == last_trb_num) { 3182 td->last_trb = ep_ring->enqueue; 3183 field |= TRB_IOC; 3184 } else if (zero_length_needed && num_trbs == 1) { 3185 trb_buff_len = 0; 3186 urb_priv->td[1]->last_trb = ep_ring->enqueue; 3187 field |= TRB_IOC; 3188 } 3189 3190 /* Only set interrupt on short packet for IN endpoints */ 3191 if (usb_urb_dir_in(urb)) 3192 field |= TRB_ISP; 3193 3194 if (TRB_MAX_BUFF_SIZE - 3195 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3196 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3197 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3198 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3199 (unsigned int) addr + trb_buff_len); 3200 } 3201 3202 /* Set the TRB length, TD size, and interrupter fields. */ 3203 if (xhci->hci_version < 0x100) { 3204 remainder = xhci_td_remainder( 3205 urb->transfer_buffer_length - 3206 running_total); 3207 } else { 3208 remainder = xhci_v1_0_td_remainder(running_total, 3209 trb_buff_len, total_packet_count, urb, 3210 num_trbs - 1); 3211 } 3212 length_field = TRB_LEN(trb_buff_len) | 3213 remainder | 3214 TRB_INTR_TARGET(0); 3215 3216 if (num_trbs > 1) 3217 more_trbs_coming = true; 3218 else 3219 more_trbs_coming = false; 3220 queue_trb(xhci, ep_ring, more_trbs_coming, 3221 lower_32_bits(addr), 3222 upper_32_bits(addr), 3223 length_field, 3224 field | TRB_TYPE(TRB_NORMAL)); 3225 --num_trbs; 3226 running_total += trb_buff_len; 3227 3228 /* Calculate length for next transfer -- 3229 * Are we done queueing all the TRBs for this sg entry? 3230 */ 3231 this_sg_len -= trb_buff_len; 3232 if (this_sg_len == 0) { 3233 --num_sgs; 3234 if (num_sgs == 0) 3235 break; 3236 sg = sg_next(sg); 3237 addr = (u64) sg_dma_address(sg); 3238 this_sg_len = sg_dma_len(sg); 3239 } else { 3240 addr += trb_buff_len; 3241 } 3242 3243 trb_buff_len = TRB_MAX_BUFF_SIZE - 3244 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3245 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3246 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3247 trb_buff_len = 3248 urb->transfer_buffer_length - running_total; 3249 } while (num_trbs > 0); 3250 3251 check_trb_math(urb, num_trbs, running_total); 3252 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3253 start_cycle, start_trb); 3254 return 0; 3255 } 3256 3257 /* This is very similar to what ehci-q.c qtd_fill() does */ 3258 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3259 struct urb *urb, int slot_id, unsigned int ep_index) 3260 { 3261 struct xhci_ring *ep_ring; 3262 struct urb_priv *urb_priv; 3263 struct xhci_td *td; 3264 int num_trbs; 3265 struct xhci_generic_trb *start_trb; 3266 bool first_trb; 3267 int last_trb_num; 3268 bool more_trbs_coming; 3269 bool zero_length_needed; 3270 int start_cycle; 3271 u32 field, length_field; 3272 3273 int running_total, trb_buff_len, ret; 3274 unsigned int total_packet_count; 3275 u64 addr; 3276 3277 if (urb->num_sgs) 3278 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3279 3280 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3281 if (!ep_ring) 3282 return -EINVAL; 3283 3284 num_trbs = 0; 3285 /* How much data is (potentially) left before the 64KB boundary? */ 3286 running_total = TRB_MAX_BUFF_SIZE - 3287 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3288 running_total &= TRB_MAX_BUFF_SIZE - 1; 3289 3290 /* If there's some data on this 64KB chunk, or we have to send a 3291 * zero-length transfer, we need at least one TRB 3292 */ 3293 if (running_total != 0 || urb->transfer_buffer_length == 0) 3294 num_trbs++; 3295 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3296 while (running_total < urb->transfer_buffer_length) { 3297 num_trbs++; 3298 running_total += TRB_MAX_BUFF_SIZE; 3299 } 3300 3301 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3302 ep_index, urb->stream_id, 3303 num_trbs, urb, 0, mem_flags); 3304 if (ret < 0) 3305 return ret; 3306 3307 urb_priv = urb->hcpriv; 3308 3309 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3310 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && 3311 urb_priv->length == 2; 3312 if (zero_length_needed) { 3313 num_trbs++; 3314 xhci_dbg(xhci, "Creating zero length td.\n"); 3315 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3316 ep_index, urb->stream_id, 3317 1, urb, 1, mem_flags); 3318 if (ret < 0) 3319 return ret; 3320 } 3321 3322 td = urb_priv->td[0]; 3323 3324 /* 3325 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3326 * until we've finished creating all the other TRBs. The ring's cycle 3327 * state may change as we enqueue the other TRBs, so save it too. 3328 */ 3329 start_trb = &ep_ring->enqueue->generic; 3330 start_cycle = ep_ring->cycle_state; 3331 3332 running_total = 0; 3333 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3334 usb_endpoint_maxp(&urb->ep->desc)); 3335 /* How much data is in the first TRB? */ 3336 addr = (u64) urb->transfer_dma; 3337 trb_buff_len = TRB_MAX_BUFF_SIZE - 3338 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3339 if (trb_buff_len > urb->transfer_buffer_length) 3340 trb_buff_len = urb->transfer_buffer_length; 3341 3342 first_trb = true; 3343 last_trb_num = zero_length_needed ? 2 : 1; 3344 /* Queue the first TRB, even if it's zero-length */ 3345 do { 3346 u32 remainder = 0; 3347 field = 0; 3348 3349 /* Don't change the cycle bit of the first TRB until later */ 3350 if (first_trb) { 3351 first_trb = false; 3352 if (start_cycle == 0) 3353 field |= 0x1; 3354 } else 3355 field |= ep_ring->cycle_state; 3356 3357 /* Chain all the TRBs together; clear the chain bit in the last 3358 * TRB to indicate it's the last TRB in the chain. 3359 */ 3360 if (num_trbs > last_trb_num) { 3361 field |= TRB_CHAIN; 3362 } else if (num_trbs == last_trb_num) { 3363 td->last_trb = ep_ring->enqueue; 3364 field |= TRB_IOC; 3365 } else if (zero_length_needed && num_trbs == 1) { 3366 trb_buff_len = 0; 3367 urb_priv->td[1]->last_trb = ep_ring->enqueue; 3368 field |= TRB_IOC; 3369 } 3370 3371 /* Only set interrupt on short packet for IN endpoints */ 3372 if (usb_urb_dir_in(urb)) 3373 field |= TRB_ISP; 3374 3375 /* Set the TRB length, TD size, and interrupter fields. */ 3376 if (xhci->hci_version < 0x100) { 3377 remainder = xhci_td_remainder( 3378 urb->transfer_buffer_length - 3379 running_total); 3380 } else { 3381 remainder = xhci_v1_0_td_remainder(running_total, 3382 trb_buff_len, total_packet_count, urb, 3383 num_trbs - 1); 3384 } 3385 length_field = TRB_LEN(trb_buff_len) | 3386 remainder | 3387 TRB_INTR_TARGET(0); 3388 3389 if (num_trbs > 1) 3390 more_trbs_coming = true; 3391 else 3392 more_trbs_coming = false; 3393 queue_trb(xhci, ep_ring, more_trbs_coming, 3394 lower_32_bits(addr), 3395 upper_32_bits(addr), 3396 length_field, 3397 field | TRB_TYPE(TRB_NORMAL)); 3398 --num_trbs; 3399 running_total += trb_buff_len; 3400 3401 /* Calculate length for next transfer */ 3402 addr += trb_buff_len; 3403 trb_buff_len = urb->transfer_buffer_length - running_total; 3404 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3405 trb_buff_len = TRB_MAX_BUFF_SIZE; 3406 } while (num_trbs > 0); 3407 3408 check_trb_math(urb, num_trbs, running_total); 3409 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3410 start_cycle, start_trb); 3411 return 0; 3412 } 3413 3414 /* Caller must have locked xhci->lock */ 3415 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3416 struct urb *urb, int slot_id, unsigned int ep_index) 3417 { 3418 struct xhci_ring *ep_ring; 3419 int num_trbs; 3420 int ret; 3421 struct usb_ctrlrequest *setup; 3422 struct xhci_generic_trb *start_trb; 3423 int start_cycle; 3424 u32 field, length_field; 3425 struct urb_priv *urb_priv; 3426 struct xhci_td *td; 3427 3428 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3429 if (!ep_ring) 3430 return -EINVAL; 3431 3432 /* 3433 * Need to copy setup packet into setup TRB, so we can't use the setup 3434 * DMA address. 3435 */ 3436 if (!urb->setup_packet) 3437 return -EINVAL; 3438 3439 /* 1 TRB for setup, 1 for status */ 3440 num_trbs = 2; 3441 /* 3442 * Don't need to check if we need additional event data and normal TRBs, 3443 * since data in control transfers will never get bigger than 16MB 3444 * XXX: can we get a buffer that crosses 64KB boundaries? 3445 */ 3446 if (urb->transfer_buffer_length > 0) 3447 num_trbs++; 3448 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3449 ep_index, urb->stream_id, 3450 num_trbs, urb, 0, mem_flags); 3451 if (ret < 0) 3452 return ret; 3453 3454 urb_priv = urb->hcpriv; 3455 td = urb_priv->td[0]; 3456 3457 /* 3458 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3459 * until we've finished creating all the other TRBs. The ring's cycle 3460 * state may change as we enqueue the other TRBs, so save it too. 3461 */ 3462 start_trb = &ep_ring->enqueue->generic; 3463 start_cycle = ep_ring->cycle_state; 3464 3465 /* Queue setup TRB - see section 6.4.1.2.1 */ 3466 /* FIXME better way to translate setup_packet into two u32 fields? */ 3467 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3468 field = 0; 3469 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3470 if (start_cycle == 0) 3471 field |= 0x1; 3472 3473 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3474 if (xhci->hci_version >= 0x100) { 3475 if (urb->transfer_buffer_length > 0) { 3476 if (setup->bRequestType & USB_DIR_IN) 3477 field |= TRB_TX_TYPE(TRB_DATA_IN); 3478 else 3479 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3480 } 3481 } 3482 3483 queue_trb(xhci, ep_ring, true, 3484 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3485 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3486 TRB_LEN(8) | TRB_INTR_TARGET(0), 3487 /* Immediate data in pointer */ 3488 field); 3489 3490 /* If there's data, queue data TRBs */ 3491 /* Only set interrupt on short packet for IN endpoints */ 3492 if (usb_urb_dir_in(urb)) 3493 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3494 else 3495 field = TRB_TYPE(TRB_DATA); 3496 3497 length_field = TRB_LEN(urb->transfer_buffer_length) | 3498 xhci_td_remainder(urb->transfer_buffer_length) | 3499 TRB_INTR_TARGET(0); 3500 if (urb->transfer_buffer_length > 0) { 3501 if (setup->bRequestType & USB_DIR_IN) 3502 field |= TRB_DIR_IN; 3503 queue_trb(xhci, ep_ring, true, 3504 lower_32_bits(urb->transfer_dma), 3505 upper_32_bits(urb->transfer_dma), 3506 length_field, 3507 field | ep_ring->cycle_state); 3508 } 3509 3510 /* Save the DMA address of the last TRB in the TD */ 3511 td->last_trb = ep_ring->enqueue; 3512 3513 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3514 /* If the device sent data, the status stage is an OUT transfer */ 3515 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3516 field = 0; 3517 else 3518 field = TRB_DIR_IN; 3519 queue_trb(xhci, ep_ring, false, 3520 0, 3521 0, 3522 TRB_INTR_TARGET(0), 3523 /* Event on completion */ 3524 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3525 3526 giveback_first_trb(xhci, slot_id, ep_index, 0, 3527 start_cycle, start_trb); 3528 return 0; 3529 } 3530 3531 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3532 struct urb *urb, int i) 3533 { 3534 int num_trbs = 0; 3535 u64 addr, td_len; 3536 3537 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3538 td_len = urb->iso_frame_desc[i].length; 3539 3540 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3541 TRB_MAX_BUFF_SIZE); 3542 if (num_trbs == 0) 3543 num_trbs++; 3544 3545 return num_trbs; 3546 } 3547 3548 /* 3549 * The transfer burst count field of the isochronous TRB defines the number of 3550 * bursts that are required to move all packets in this TD. Only SuperSpeed 3551 * devices can burst up to bMaxBurst number of packets per service interval. 3552 * This field is zero based, meaning a value of zero in the field means one 3553 * burst. Basically, for everything but SuperSpeed devices, this field will be 3554 * zero. Only xHCI 1.0 host controllers support this field. 3555 */ 3556 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3557 struct usb_device *udev, 3558 struct urb *urb, unsigned int total_packet_count) 3559 { 3560 unsigned int max_burst; 3561 3562 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3563 return 0; 3564 3565 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3566 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3567 } 3568 3569 /* 3570 * Returns the number of packets in the last "burst" of packets. This field is 3571 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3572 * the last burst packet count is equal to the total number of packets in the 3573 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3574 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3575 * contain 1 to (bMaxBurst + 1) packets. 3576 */ 3577 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3578 struct usb_device *udev, 3579 struct urb *urb, unsigned int total_packet_count) 3580 { 3581 unsigned int max_burst; 3582 unsigned int residue; 3583 3584 if (xhci->hci_version < 0x100) 3585 return 0; 3586 3587 switch (udev->speed) { 3588 case USB_SPEED_SUPER: 3589 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3590 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3591 residue = total_packet_count % (max_burst + 1); 3592 /* If residue is zero, the last burst contains (max_burst + 1) 3593 * number of packets, but the TLBPC field is zero-based. 3594 */ 3595 if (residue == 0) 3596 return max_burst; 3597 return residue - 1; 3598 default: 3599 if (total_packet_count == 0) 3600 return 0; 3601 return total_packet_count - 1; 3602 } 3603 } 3604 3605 /* 3606 * Calculates Frame ID field of the isochronous TRB identifies the 3607 * target frame that the Interval associated with this Isochronous 3608 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3609 * 3610 * Returns actual frame id on success, negative value on error. 3611 */ 3612 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3613 struct urb *urb, int index) 3614 { 3615 int start_frame, ist, ret = 0; 3616 int start_frame_id, end_frame_id, current_frame_id; 3617 3618 if (urb->dev->speed == USB_SPEED_LOW || 3619 urb->dev->speed == USB_SPEED_FULL) 3620 start_frame = urb->start_frame + index * urb->interval; 3621 else 3622 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3623 3624 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3625 * 3626 * If bit [3] of IST is cleared to '0', software can add a TRB no 3627 * later than IST[2:0] Microframes before that TRB is scheduled to 3628 * be executed. 3629 * If bit [3] of IST is set to '1', software can add a TRB no later 3630 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3631 */ 3632 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3633 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3634 ist <<= 3; 3635 3636 /* Software shall not schedule an Isoch TD with a Frame ID value that 3637 * is less than the Start Frame ID or greater than the End Frame ID, 3638 * where: 3639 * 3640 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3641 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3642 * 3643 * Both the End Frame ID and Start Frame ID values are calculated 3644 * in microframes. When software determines the valid Frame ID value; 3645 * The End Frame ID value should be rounded down to the nearest Frame 3646 * boundary, and the Start Frame ID value should be rounded up to the 3647 * nearest Frame boundary. 3648 */ 3649 current_frame_id = readl(&xhci->run_regs->microframe_index); 3650 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3651 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3652 3653 start_frame &= 0x7ff; 3654 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3655 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3656 3657 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3658 __func__, index, readl(&xhci->run_regs->microframe_index), 3659 start_frame_id, end_frame_id, start_frame); 3660 3661 if (start_frame_id < end_frame_id) { 3662 if (start_frame > end_frame_id || 3663 start_frame < start_frame_id) 3664 ret = -EINVAL; 3665 } else if (start_frame_id > end_frame_id) { 3666 if ((start_frame > end_frame_id && 3667 start_frame < start_frame_id)) 3668 ret = -EINVAL; 3669 } else { 3670 ret = -EINVAL; 3671 } 3672 3673 if (index == 0) { 3674 if (ret == -EINVAL || start_frame == start_frame_id) { 3675 start_frame = start_frame_id + 1; 3676 if (urb->dev->speed == USB_SPEED_LOW || 3677 urb->dev->speed == USB_SPEED_FULL) 3678 urb->start_frame = start_frame; 3679 else 3680 urb->start_frame = start_frame << 3; 3681 ret = 0; 3682 } 3683 } 3684 3685 if (ret) { 3686 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3687 start_frame, current_frame_id, index, 3688 start_frame_id, end_frame_id); 3689 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3690 return ret; 3691 } 3692 3693 return start_frame; 3694 } 3695 3696 /* This is for isoc transfer */ 3697 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3698 struct urb *urb, int slot_id, unsigned int ep_index) 3699 { 3700 struct xhci_ring *ep_ring; 3701 struct urb_priv *urb_priv; 3702 struct xhci_td *td; 3703 int num_tds, trbs_per_td; 3704 struct xhci_generic_trb *start_trb; 3705 bool first_trb; 3706 int start_cycle; 3707 u32 field, length_field; 3708 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3709 u64 start_addr, addr; 3710 int i, j; 3711 bool more_trbs_coming; 3712 struct xhci_virt_ep *xep; 3713 3714 xep = &xhci->devs[slot_id]->eps[ep_index]; 3715 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3716 3717 num_tds = urb->number_of_packets; 3718 if (num_tds < 1) { 3719 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3720 return -EINVAL; 3721 } 3722 3723 start_addr = (u64) urb->transfer_dma; 3724 start_trb = &ep_ring->enqueue->generic; 3725 start_cycle = ep_ring->cycle_state; 3726 3727 urb_priv = urb->hcpriv; 3728 /* Queue the first TRB, even if it's zero-length */ 3729 for (i = 0; i < num_tds; i++) { 3730 unsigned int total_packet_count; 3731 unsigned int burst_count; 3732 unsigned int residue; 3733 3734 first_trb = true; 3735 running_total = 0; 3736 addr = start_addr + urb->iso_frame_desc[i].offset; 3737 td_len = urb->iso_frame_desc[i].length; 3738 td_remain_len = td_len; 3739 total_packet_count = DIV_ROUND_UP(td_len, 3740 GET_MAX_PACKET( 3741 usb_endpoint_maxp(&urb->ep->desc))); 3742 /* A zero-length transfer still involves at least one packet. */ 3743 if (total_packet_count == 0) 3744 total_packet_count++; 3745 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3746 total_packet_count); 3747 residue = xhci_get_last_burst_packet_count(xhci, 3748 urb->dev, urb, total_packet_count); 3749 3750 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3751 3752 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3753 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3754 if (ret < 0) { 3755 if (i == 0) 3756 return ret; 3757 goto cleanup; 3758 } 3759 3760 td = urb_priv->td[i]; 3761 for (j = 0; j < trbs_per_td; j++) { 3762 int frame_id = 0; 3763 u32 remainder = 0; 3764 field = 0; 3765 3766 if (first_trb) { 3767 field = TRB_TBC(burst_count) | 3768 TRB_TLBPC(residue); 3769 /* Queue the isoc TRB */ 3770 field |= TRB_TYPE(TRB_ISOC); 3771 3772 /* Calculate Frame ID and SIA fields */ 3773 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3774 HCC_CFC(xhci->hcc_params)) { 3775 frame_id = xhci_get_isoc_frame_id(xhci, 3776 urb, 3777 i); 3778 if (frame_id >= 0) 3779 field |= TRB_FRAME_ID(frame_id); 3780 else 3781 field |= TRB_SIA; 3782 } else 3783 field |= TRB_SIA; 3784 3785 if (i == 0) { 3786 if (start_cycle == 0) 3787 field |= 0x1; 3788 } else 3789 field |= ep_ring->cycle_state; 3790 first_trb = false; 3791 } else { 3792 /* Queue other normal TRBs */ 3793 field |= TRB_TYPE(TRB_NORMAL); 3794 field |= ep_ring->cycle_state; 3795 } 3796 3797 /* Only set interrupt on short packet for IN EPs */ 3798 if (usb_urb_dir_in(urb)) 3799 field |= TRB_ISP; 3800 3801 /* Chain all the TRBs together; clear the chain bit in 3802 * the last TRB to indicate it's the last TRB in the 3803 * chain. 3804 */ 3805 if (j < trbs_per_td - 1) { 3806 field |= TRB_CHAIN; 3807 more_trbs_coming = true; 3808 } else { 3809 td->last_trb = ep_ring->enqueue; 3810 field |= TRB_IOC; 3811 if (xhci->hci_version == 0x100 && 3812 !(xhci->quirks & 3813 XHCI_AVOID_BEI)) { 3814 /* Set BEI bit except for the last td */ 3815 if (i < num_tds - 1) 3816 field |= TRB_BEI; 3817 } 3818 more_trbs_coming = false; 3819 } 3820 3821 /* Calculate TRB length */ 3822 trb_buff_len = TRB_MAX_BUFF_SIZE - 3823 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3824 if (trb_buff_len > td_remain_len) 3825 trb_buff_len = td_remain_len; 3826 3827 /* Set the TRB length, TD size, & interrupter fields. */ 3828 if (xhci->hci_version < 0x100) { 3829 remainder = xhci_td_remainder( 3830 td_len - running_total); 3831 } else { 3832 remainder = xhci_v1_0_td_remainder( 3833 running_total, trb_buff_len, 3834 total_packet_count, urb, 3835 (trbs_per_td - j - 1)); 3836 } 3837 length_field = TRB_LEN(trb_buff_len) | 3838 remainder | 3839 TRB_INTR_TARGET(0); 3840 3841 queue_trb(xhci, ep_ring, more_trbs_coming, 3842 lower_32_bits(addr), 3843 upper_32_bits(addr), 3844 length_field, 3845 field); 3846 running_total += trb_buff_len; 3847 3848 addr += trb_buff_len; 3849 td_remain_len -= trb_buff_len; 3850 } 3851 3852 /* Check TD length */ 3853 if (running_total != td_len) { 3854 xhci_err(xhci, "ISOC TD length unmatch\n"); 3855 ret = -EINVAL; 3856 goto cleanup; 3857 } 3858 } 3859 3860 /* store the next frame id */ 3861 if (HCC_CFC(xhci->hcc_params)) 3862 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3863 3864 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3865 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3866 usb_amd_quirk_pll_disable(); 3867 } 3868 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3869 3870 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3871 start_cycle, start_trb); 3872 return 0; 3873 cleanup: 3874 /* Clean up a partially enqueued isoc transfer. */ 3875 3876 for (i--; i >= 0; i--) 3877 list_del_init(&urb_priv->td[i]->td_list); 3878 3879 /* Use the first TD as a temporary variable to turn the TDs we've queued 3880 * into No-ops with a software-owned cycle bit. That way the hardware 3881 * won't accidentally start executing bogus TDs when we partially 3882 * overwrite them. td->first_trb and td->start_seg are already set. 3883 */ 3884 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3885 /* Every TRB except the first & last will have its cycle bit flipped. */ 3886 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3887 3888 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3889 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3890 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3891 ep_ring->cycle_state = start_cycle; 3892 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3893 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3894 return ret; 3895 } 3896 3897 static int ep_ring_is_processing(struct xhci_hcd *xhci, 3898 int slot_id, unsigned int ep_index) 3899 { 3900 struct xhci_virt_device *xdev; 3901 struct xhci_ring *ep_ring; 3902 struct xhci_ep_ctx *ep_ctx; 3903 struct xhci_virt_ep *xep; 3904 dma_addr_t hw_deq; 3905 3906 xdev = xhci->devs[slot_id]; 3907 xep = &xhci->devs[slot_id]->eps[ep_index]; 3908 ep_ring = xep->ring; 3909 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3910 3911 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) != EP_STATE_RUNNING) 3912 return 0; 3913 3914 hw_deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 3915 return (hw_deq != 3916 xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue)); 3917 } 3918 3919 /* 3920 * Check transfer ring to guarantee there is enough room for the urb. 3921 * Update ISO URB start_frame and interval. 3922 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3923 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3924 * Contiguous Frame ID is not supported by HC. 3925 */ 3926 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3927 struct urb *urb, int slot_id, unsigned int ep_index) 3928 { 3929 struct xhci_virt_device *xdev; 3930 struct xhci_ring *ep_ring; 3931 struct xhci_ep_ctx *ep_ctx; 3932 int start_frame; 3933 int xhci_interval; 3934 int ep_interval; 3935 int num_tds, num_trbs, i; 3936 int ret; 3937 struct xhci_virt_ep *xep; 3938 int ist; 3939 3940 xdev = xhci->devs[slot_id]; 3941 xep = &xhci->devs[slot_id]->eps[ep_index]; 3942 ep_ring = xdev->eps[ep_index].ring; 3943 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3944 3945 num_trbs = 0; 3946 num_tds = urb->number_of_packets; 3947 for (i = 0; i < num_tds; i++) 3948 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3949 3950 /* Check the ring to guarantee there is enough room for the whole urb. 3951 * Do not insert any td of the urb to the ring if the check failed. 3952 */ 3953 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3954 num_trbs, mem_flags); 3955 if (ret) 3956 return ret; 3957 3958 /* 3959 * Check interval value. This should be done before we start to 3960 * calculate the start frame value. 3961 */ 3962 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3963 ep_interval = urb->interval; 3964 /* Convert to microframes */ 3965 if (urb->dev->speed == USB_SPEED_LOW || 3966 urb->dev->speed == USB_SPEED_FULL) 3967 ep_interval *= 8; 3968 /* FIXME change this to a warning and a suggestion to use the new API 3969 * to set the polling interval (once the API is added). 3970 */ 3971 if (xhci_interval != ep_interval) { 3972 dev_dbg_ratelimited(&urb->dev->dev, 3973 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3974 ep_interval, ep_interval == 1 ? "" : "s", 3975 xhci_interval, xhci_interval == 1 ? "" : "s"); 3976 urb->interval = xhci_interval; 3977 /* Convert back to frames for LS/FS devices */ 3978 if (urb->dev->speed == USB_SPEED_LOW || 3979 urb->dev->speed == USB_SPEED_FULL) 3980 urb->interval /= 8; 3981 } 3982 3983 /* Calculate the start frame and put it in urb->start_frame. */ 3984 if (HCC_CFC(xhci->hcc_params) && 3985 ep_ring_is_processing(xhci, slot_id, ep_index)) { 3986 urb->start_frame = xep->next_frame_id; 3987 goto skip_start_over; 3988 } 3989 3990 start_frame = readl(&xhci->run_regs->microframe_index); 3991 start_frame &= 0x3fff; 3992 /* 3993 * Round up to the next frame and consider the time before trb really 3994 * gets scheduled by hardare. 3995 */ 3996 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3997 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3998 ist <<= 3; 3999 start_frame += ist + XHCI_CFC_DELAY; 4000 start_frame = roundup(start_frame, 8); 4001 4002 /* 4003 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4004 * is greate than 8 microframes. 4005 */ 4006 if (urb->dev->speed == USB_SPEED_LOW || 4007 urb->dev->speed == USB_SPEED_FULL) { 4008 start_frame = roundup(start_frame, urb->interval << 3); 4009 urb->start_frame = start_frame >> 3; 4010 } else { 4011 start_frame = roundup(start_frame, urb->interval); 4012 urb->start_frame = start_frame; 4013 } 4014 4015 skip_start_over: 4016 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4017 4018 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4019 } 4020 4021 /**** Command Ring Operations ****/ 4022 4023 /* Generic function for queueing a command TRB on the command ring. 4024 * Check to make sure there's room on the command ring for one command TRB. 4025 * Also check that there's room reserved for commands that must not fail. 4026 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4027 * then only check for the number of reserved spots. 4028 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4029 * because the command event handler may want to resubmit a failed command. 4030 */ 4031 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4032 u32 field1, u32 field2, 4033 u32 field3, u32 field4, bool command_must_succeed) 4034 { 4035 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4036 int ret; 4037 4038 if (xhci->xhc_state) { 4039 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4040 return -ESHUTDOWN; 4041 } 4042 4043 if (!command_must_succeed) 4044 reserved_trbs++; 4045 4046 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4047 reserved_trbs, GFP_ATOMIC); 4048 if (ret < 0) { 4049 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4050 if (command_must_succeed) 4051 xhci_err(xhci, "ERR: Reserved TRB counting for " 4052 "unfailable commands failed.\n"); 4053 return ret; 4054 } 4055 4056 cmd->command_trb = xhci->cmd_ring->enqueue; 4057 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4058 4059 /* if there are no other commands queued we start the timeout timer */ 4060 if (xhci->cmd_list.next == &cmd->cmd_list && 4061 !timer_pending(&xhci->cmd_timer)) { 4062 xhci->current_cmd = cmd; 4063 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 4064 } 4065 4066 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4067 field4 | xhci->cmd_ring->cycle_state); 4068 return 0; 4069 } 4070 4071 /* Queue a slot enable or disable request on the command ring */ 4072 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4073 u32 trb_type, u32 slot_id) 4074 { 4075 return queue_command(xhci, cmd, 0, 0, 0, 4076 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4077 } 4078 4079 /* Queue an address device command TRB */ 4080 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4081 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4082 { 4083 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4084 upper_32_bits(in_ctx_ptr), 0, 4085 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4086 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4087 } 4088 4089 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4090 u32 field1, u32 field2, u32 field3, u32 field4) 4091 { 4092 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4093 } 4094 4095 /* Queue a reset device command TRB */ 4096 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4097 u32 slot_id) 4098 { 4099 return queue_command(xhci, cmd, 0, 0, 0, 4100 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4101 false); 4102 } 4103 4104 /* Queue a configure endpoint command TRB */ 4105 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4106 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4107 u32 slot_id, bool command_must_succeed) 4108 { 4109 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4110 upper_32_bits(in_ctx_ptr), 0, 4111 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4112 command_must_succeed); 4113 } 4114 4115 /* Queue an evaluate context command TRB */ 4116 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4117 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4118 { 4119 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4120 upper_32_bits(in_ctx_ptr), 0, 4121 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4122 command_must_succeed); 4123 } 4124 4125 /* 4126 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4127 * activity on an endpoint that is about to be suspended. 4128 */ 4129 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4130 int slot_id, unsigned int ep_index, int suspend) 4131 { 4132 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4133 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4134 u32 type = TRB_TYPE(TRB_STOP_RING); 4135 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4136 4137 return queue_command(xhci, cmd, 0, 0, 0, 4138 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4139 } 4140 4141 /* Set Transfer Ring Dequeue Pointer command */ 4142 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4143 unsigned int slot_id, unsigned int ep_index, 4144 unsigned int stream_id, 4145 struct xhci_dequeue_state *deq_state) 4146 { 4147 dma_addr_t addr; 4148 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4149 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4150 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4151 u32 trb_sct = 0; 4152 u32 type = TRB_TYPE(TRB_SET_DEQ); 4153 struct xhci_virt_ep *ep; 4154 struct xhci_command *cmd; 4155 int ret; 4156 4157 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4158 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4159 deq_state->new_deq_seg, 4160 (unsigned long long)deq_state->new_deq_seg->dma, 4161 deq_state->new_deq_ptr, 4162 (unsigned long long)xhci_trb_virt_to_dma( 4163 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4164 deq_state->new_cycle_state); 4165 4166 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4167 deq_state->new_deq_ptr); 4168 if (addr == 0) { 4169 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4170 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4171 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4172 return; 4173 } 4174 ep = &xhci->devs[slot_id]->eps[ep_index]; 4175 if ((ep->ep_state & SET_DEQ_PENDING)) { 4176 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4177 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4178 return; 4179 } 4180 4181 /* This function gets called from contexts where it cannot sleep */ 4182 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4183 if (!cmd) { 4184 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 4185 return; 4186 } 4187 4188 ep->queued_deq_seg = deq_state->new_deq_seg; 4189 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4190 if (stream_id) 4191 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4192 ret = queue_command(xhci, cmd, 4193 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4194 upper_32_bits(addr), trb_stream_id, 4195 trb_slot_id | trb_ep_index | type, false); 4196 if (ret < 0) { 4197 xhci_free_command(xhci, cmd); 4198 return; 4199 } 4200 4201 /* Stop the TD queueing code from ringing the doorbell until 4202 * this command completes. The HC won't set the dequeue pointer 4203 * if the ring is running, and ringing the doorbell starts the 4204 * ring running. 4205 */ 4206 ep->ep_state |= SET_DEQ_PENDING; 4207 } 4208 4209 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4210 int slot_id, unsigned int ep_index) 4211 { 4212 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4213 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4214 u32 type = TRB_TYPE(TRB_RESET_EP); 4215 4216 return queue_command(xhci, cmd, 0, 0, 0, 4217 trb_slot_id | trb_ep_index | type, false); 4218 } 4219