1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 if (trbs_past_seg <= 0) 330 return 0; 331 332 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 333 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 334 return 0; 335 336 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 337 seg = ring->enq_seg; 338 339 while (new_segs > 0) { 340 seg = seg->next; 341 if (seg == ring->deq_seg) { 342 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 343 new_segs); 344 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 345 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 346 return new_segs; 347 } 348 new_segs--; 349 } 350 351 return 0; 352 } 353 354 /* Ring the host controller doorbell after placing a command on the ring */ 355 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 356 { 357 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 358 return; 359 360 xhci_dbg(xhci, "// Ding dong!\n"); 361 362 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 363 364 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 365 /* Flush PCI posted writes */ 366 readl(&xhci->dba->doorbell[0]); 367 } 368 369 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 370 { 371 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 372 } 373 374 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 375 { 376 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 377 cmd_list); 378 } 379 380 /* 381 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 382 * If there are other commands waiting then restart the ring and kick the timer. 383 * This must be called with command ring stopped and xhci->lock held. 384 */ 385 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 386 struct xhci_command *cur_cmd) 387 { 388 struct xhci_command *i_cmd; 389 390 /* Turn all aborted commands in list to no-ops, then restart */ 391 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 392 393 if (i_cmd->status != COMP_COMMAND_ABORTED) 394 continue; 395 396 i_cmd->status = COMP_COMMAND_RING_STOPPED; 397 398 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 399 i_cmd->command_trb); 400 401 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 402 403 /* 404 * caller waiting for completion is called when command 405 * completion event is received for these no-op commands 406 */ 407 } 408 409 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 410 411 /* ring command ring doorbell to restart the command ring */ 412 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 413 !(xhci->xhc_state & XHCI_STATE_DYING)) { 414 xhci->current_cmd = cur_cmd; 415 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 416 xhci_ring_cmd_db(xhci); 417 } 418 } 419 420 /* Must be called with xhci->lock held, releases and aquires lock back */ 421 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 422 { 423 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 424 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 425 u64 crcr; 426 int ret; 427 428 xhci_dbg(xhci, "Abort command ring\n"); 429 430 reinit_completion(&xhci->cmd_ring_stop_completion); 431 432 /* 433 * The control bits like command stop, abort are located in lower 434 * dword of the command ring control register. 435 * Some controllers require all 64 bits to be written to abort the ring. 436 * Make sure the upper dword is valid, pointing to the next command, 437 * avoiding corrupting the command ring pointer in case the command ring 438 * is stopped by the time the upper dword is written. 439 */ 440 next_trb(xhci, NULL, &new_seg, &new_deq); 441 if (trb_is_link(new_deq)) 442 next_trb(xhci, NULL, &new_seg, &new_deq); 443 444 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 445 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 446 447 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 448 * completion of the Command Abort operation. If CRR is not negated in 5 449 * seconds then driver handles it as if host died (-ENODEV). 450 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 451 * and try to recover a -ETIMEDOUT with a host controller reset. 452 */ 453 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 454 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 455 if (ret < 0) { 456 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 457 xhci_halt(xhci); 458 xhci_hc_died(xhci); 459 return ret; 460 } 461 /* 462 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 463 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 464 * but the completion event in never sent. Wait 2 secs (arbitrary 465 * number) to handle those cases after negation of CMD_RING_RUNNING. 466 */ 467 spin_unlock_irqrestore(&xhci->lock, flags); 468 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 469 msecs_to_jiffies(2000)); 470 spin_lock_irqsave(&xhci->lock, flags); 471 if (!ret) { 472 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 473 xhci_cleanup_command_queue(xhci); 474 } else { 475 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 476 } 477 return 0; 478 } 479 480 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 481 unsigned int slot_id, 482 unsigned int ep_index, 483 unsigned int stream_id) 484 { 485 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 486 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 487 unsigned int ep_state = ep->ep_state; 488 489 /* Don't ring the doorbell for this endpoint if there are pending 490 * cancellations because we don't want to interrupt processing. 491 * We don't want to restart any stream rings if there's a set dequeue 492 * pointer command pending because the device can choose to start any 493 * stream once the endpoint is on the HW schedule. 494 */ 495 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 496 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 497 return; 498 499 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 500 501 writel(DB_VALUE(ep_index, stream_id), db_addr); 502 /* flush the write */ 503 readl(db_addr); 504 } 505 506 /* Ring the doorbell for any rings with pending URBs */ 507 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 508 unsigned int slot_id, 509 unsigned int ep_index) 510 { 511 unsigned int stream_id; 512 struct xhci_virt_ep *ep; 513 514 ep = &xhci->devs[slot_id]->eps[ep_index]; 515 516 /* A ring has pending URBs if its TD list is not empty */ 517 if (!(ep->ep_state & EP_HAS_STREAMS)) { 518 if (ep->ring && !(list_empty(&ep->ring->td_list))) 519 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 520 return; 521 } 522 523 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 524 stream_id++) { 525 struct xhci_stream_info *stream_info = ep->stream_info; 526 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 527 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 528 stream_id); 529 } 530 } 531 532 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 533 unsigned int slot_id, 534 unsigned int ep_index) 535 { 536 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 537 } 538 539 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 540 unsigned int slot_id, 541 unsigned int ep_index) 542 { 543 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 544 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 545 return NULL; 546 } 547 if (ep_index >= EP_CTX_PER_DEV) { 548 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 549 return NULL; 550 } 551 if (!xhci->devs[slot_id]) { 552 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 553 return NULL; 554 } 555 556 return &xhci->devs[slot_id]->eps[ep_index]; 557 } 558 559 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 560 struct xhci_virt_ep *ep, 561 unsigned int stream_id) 562 { 563 /* common case, no streams */ 564 if (!(ep->ep_state & EP_HAS_STREAMS)) 565 return ep->ring; 566 567 if (!ep->stream_info) 568 return NULL; 569 570 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 571 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 572 stream_id, ep->vdev->slot_id, ep->ep_index); 573 return NULL; 574 } 575 576 return ep->stream_info->stream_rings[stream_id]; 577 } 578 579 /* Get the right ring for the given slot_id, ep_index and stream_id. 580 * If the endpoint supports streams, boundary check the URB's stream ID. 581 * If the endpoint doesn't support streams, return the singular endpoint ring. 582 */ 583 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 584 unsigned int slot_id, unsigned int ep_index, 585 unsigned int stream_id) 586 { 587 struct xhci_virt_ep *ep; 588 589 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 590 if (!ep) 591 return NULL; 592 593 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 594 } 595 596 597 /* 598 * Get the hw dequeue pointer xHC stopped on, either directly from the 599 * endpoint context, or if streams are in use from the stream context. 600 * The returned hw_dequeue contains the lowest four bits with cycle state 601 * and possbile stream context type. 602 */ 603 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 604 unsigned int ep_index, unsigned int stream_id) 605 { 606 struct xhci_ep_ctx *ep_ctx; 607 struct xhci_stream_ctx *st_ctx; 608 struct xhci_virt_ep *ep; 609 610 ep = &vdev->eps[ep_index]; 611 612 if (ep->ep_state & EP_HAS_STREAMS) { 613 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 614 return le64_to_cpu(st_ctx->stream_ring); 615 } 616 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 617 return le64_to_cpu(ep_ctx->deq); 618 } 619 620 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 621 unsigned int slot_id, unsigned int ep_index, 622 unsigned int stream_id, struct xhci_td *td) 623 { 624 struct xhci_virt_device *dev = xhci->devs[slot_id]; 625 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 626 struct xhci_ring *ep_ring; 627 struct xhci_command *cmd; 628 struct xhci_segment *new_seg; 629 union xhci_trb *new_deq; 630 int new_cycle; 631 dma_addr_t addr; 632 u64 hw_dequeue; 633 bool cycle_found = false; 634 bool td_last_trb_found = false; 635 u32 trb_sct = 0; 636 int ret; 637 638 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 639 ep_index, stream_id); 640 if (!ep_ring) { 641 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 642 stream_id); 643 return -ENODEV; 644 } 645 /* 646 * A cancelled TD can complete with a stall if HW cached the trb. 647 * In this case driver can't find td, but if the ring is empty we 648 * can move the dequeue pointer to the current enqueue position. 649 * We shouldn't hit this anymore as cached cancelled TRBs are given back 650 * after clearing the cache, but be on the safe side and keep it anyway 651 */ 652 if (!td) { 653 if (list_empty(&ep_ring->td_list)) { 654 new_seg = ep_ring->enq_seg; 655 new_deq = ep_ring->enqueue; 656 new_cycle = ep_ring->cycle_state; 657 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 658 goto deq_found; 659 } else { 660 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 661 return -EINVAL; 662 } 663 } 664 665 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 666 new_seg = ep_ring->deq_seg; 667 new_deq = ep_ring->dequeue; 668 new_cycle = hw_dequeue & 0x1; 669 670 /* 671 * We want to find the pointer, segment and cycle state of the new trb 672 * (the one after current TD's last_trb). We know the cycle state at 673 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 674 * found. 675 */ 676 do { 677 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 678 == (dma_addr_t)(hw_dequeue & ~0xf)) { 679 cycle_found = true; 680 if (td_last_trb_found) 681 break; 682 } 683 if (new_deq == td->last_trb) 684 td_last_trb_found = true; 685 686 if (cycle_found && trb_is_link(new_deq) && 687 link_trb_toggles_cycle(new_deq)) 688 new_cycle ^= 0x1; 689 690 next_trb(xhci, ep_ring, &new_seg, &new_deq); 691 692 /* Search wrapped around, bail out */ 693 if (new_deq == ep->ring->dequeue) { 694 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 695 return -EINVAL; 696 } 697 698 } while (!cycle_found || !td_last_trb_found); 699 700 deq_found: 701 702 /* Don't update the ring cycle state for the producer (us). */ 703 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 704 if (addr == 0) { 705 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 706 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 707 return -EINVAL; 708 } 709 710 if ((ep->ep_state & SET_DEQ_PENDING)) { 711 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 712 &addr); 713 return -EBUSY; 714 } 715 716 /* This function gets called from contexts where it cannot sleep */ 717 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 718 if (!cmd) { 719 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 720 return -ENOMEM; 721 } 722 723 if (stream_id) 724 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 725 ret = queue_command(xhci, cmd, 726 lower_32_bits(addr) | trb_sct | new_cycle, 727 upper_32_bits(addr), 728 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 729 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 730 if (ret < 0) { 731 xhci_free_command(xhci, cmd); 732 return ret; 733 } 734 ep->queued_deq_seg = new_seg; 735 ep->queued_deq_ptr = new_deq; 736 737 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 738 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 739 740 /* Stop the TD queueing code from ringing the doorbell until 741 * this command completes. The HC won't set the dequeue pointer 742 * if the ring is running, and ringing the doorbell starts the 743 * ring running. 744 */ 745 ep->ep_state |= SET_DEQ_PENDING; 746 xhci_ring_cmd_db(xhci); 747 return 0; 748 } 749 750 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 751 * (The last TRB actually points to the ring enqueue pointer, which is not part 752 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 753 */ 754 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 755 struct xhci_td *td, bool flip_cycle) 756 { 757 struct xhci_segment *seg = td->start_seg; 758 union xhci_trb *trb = td->first_trb; 759 760 while (1) { 761 trb_to_noop(trb, TRB_TR_NOOP); 762 763 /* flip cycle if asked to */ 764 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 765 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 766 767 if (trb == td->last_trb) 768 break; 769 770 next_trb(xhci, ep_ring, &seg, &trb); 771 } 772 } 773 774 /* 775 * Must be called with xhci->lock held in interrupt context, 776 * releases and re-acquires xhci->lock 777 */ 778 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 779 struct xhci_td *cur_td, int status) 780 { 781 struct urb *urb = cur_td->urb; 782 struct urb_priv *urb_priv = urb->hcpriv; 783 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 784 785 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 786 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 787 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 788 if (xhci->quirks & XHCI_AMD_PLL_FIX) 789 usb_amd_quirk_pll_enable(); 790 } 791 } 792 xhci_urb_free_priv(urb_priv); 793 usb_hcd_unlink_urb_from_ep(hcd, urb); 794 trace_xhci_urb_giveback(urb); 795 usb_hcd_giveback_urb(hcd, urb, status); 796 } 797 798 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 799 struct xhci_ring *ring, struct xhci_td *td) 800 { 801 struct device *dev = xhci_to_hcd(xhci)->self.controller; 802 struct xhci_segment *seg = td->bounce_seg; 803 struct urb *urb = td->urb; 804 size_t len; 805 806 if (!ring || !seg || !urb) 807 return; 808 809 if (usb_urb_dir_out(urb)) { 810 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 811 DMA_TO_DEVICE); 812 return; 813 } 814 815 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 816 DMA_FROM_DEVICE); 817 /* for in tranfers we need to copy the data from bounce to sg */ 818 if (urb->num_sgs) { 819 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 820 seg->bounce_len, seg->bounce_offs); 821 if (len != seg->bounce_len) 822 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 823 len, seg->bounce_len); 824 } else { 825 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 826 seg->bounce_len); 827 } 828 seg->bounce_len = 0; 829 seg->bounce_offs = 0; 830 } 831 832 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 833 struct xhci_ring *ep_ring, int status) 834 { 835 struct urb *urb = NULL; 836 837 /* Clean up the endpoint's TD list */ 838 urb = td->urb; 839 840 /* if a bounce buffer was used to align this td then unmap it */ 841 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 842 843 /* Do one last check of the actual transfer length. 844 * If the host controller said we transferred more data than the buffer 845 * length, urb->actual_length will be a very big number (since it's 846 * unsigned). Play it safe and say we didn't transfer anything. 847 */ 848 if (urb->actual_length > urb->transfer_buffer_length) { 849 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 850 urb->transfer_buffer_length, urb->actual_length); 851 urb->actual_length = 0; 852 status = 0; 853 } 854 /* TD might be removed from td_list if we are giving back a cancelled URB */ 855 if (!list_empty(&td->td_list)) 856 list_del_init(&td->td_list); 857 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 858 if (!list_empty(&td->cancelled_td_list)) 859 list_del_init(&td->cancelled_td_list); 860 861 inc_td_cnt(urb); 862 /* Giveback the urb when all the tds are completed */ 863 if (last_td_in_urb(td)) { 864 if ((urb->actual_length != urb->transfer_buffer_length && 865 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 866 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 867 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 868 urb, urb->actual_length, 869 urb->transfer_buffer_length, status); 870 871 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 872 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 873 status = 0; 874 xhci_giveback_urb_in_irq(xhci, td, status); 875 } 876 877 return 0; 878 } 879 880 881 /* Complete the cancelled URBs we unlinked from td_list. */ 882 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 883 { 884 struct xhci_ring *ring; 885 struct xhci_td *td, *tmp_td; 886 887 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 888 cancelled_td_list) { 889 890 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 891 892 if (td->cancel_status == TD_CLEARED) { 893 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 894 __func__, td->urb); 895 xhci_td_cleanup(ep->xhci, td, ring, td->status); 896 } else { 897 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 898 __func__, td->urb, td->cancel_status); 899 } 900 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 901 return; 902 } 903 } 904 905 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 906 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 907 { 908 struct xhci_command *command; 909 int ret = 0; 910 911 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 912 if (!command) { 913 ret = -ENOMEM; 914 goto done; 915 } 916 917 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 918 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 919 ep_index, slot_id); 920 921 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 922 done: 923 if (ret) 924 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 925 slot_id, ep_index, ret); 926 return ret; 927 } 928 929 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 930 struct xhci_virt_ep *ep, 931 struct xhci_td *td, 932 enum xhci_ep_reset_type reset_type) 933 { 934 unsigned int slot_id = ep->vdev->slot_id; 935 int err; 936 937 /* 938 * Avoid resetting endpoint if link is inactive. Can cause host hang. 939 * Device will be reset soon to recover the link so don't do anything 940 */ 941 if (ep->vdev->flags & VDEV_PORT_ERROR) 942 return -ENODEV; 943 944 /* add td to cancelled list and let reset ep handler take care of it */ 945 if (reset_type == EP_HARD_RESET) { 946 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 947 if (td && list_empty(&td->cancelled_td_list)) { 948 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 949 td->cancel_status = TD_HALTED; 950 } 951 } 952 953 if (ep->ep_state & EP_HALTED) { 954 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 955 ep->ep_index); 956 return 0; 957 } 958 959 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 960 if (err) 961 return err; 962 963 ep->ep_state |= EP_HALTED; 964 965 xhci_ring_cmd_db(xhci); 966 967 return 0; 968 } 969 970 /* 971 * Fix up the ep ring first, so HW stops executing cancelled TDs. 972 * We have the xHCI lock, so nothing can modify this list until we drop it. 973 * We're also in the event handler, so we can't get re-interrupted if another 974 * Stop Endpoint command completes. 975 * 976 * only call this when ring is not in a running state 977 */ 978 979 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 980 { 981 struct xhci_hcd *xhci; 982 struct xhci_td *td = NULL; 983 struct xhci_td *tmp_td = NULL; 984 struct xhci_td *cached_td = NULL; 985 struct xhci_ring *ring; 986 u64 hw_deq; 987 unsigned int slot_id = ep->vdev->slot_id; 988 int err; 989 990 xhci = ep->xhci; 991 992 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 994 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 995 (unsigned long long)xhci_trb_virt_to_dma( 996 td->start_seg, td->first_trb), 997 td->urb->stream_id, td->urb); 998 list_del_init(&td->td_list); 999 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1000 if (!ring) { 1001 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1002 td->urb, td->urb->stream_id); 1003 continue; 1004 } 1005 /* 1006 * If a ring stopped on the TD we need to cancel then we have to 1007 * move the xHC endpoint ring dequeue pointer past this TD. 1008 * Rings halted due to STALL may show hw_deq is past the stalled 1009 * TD, but still require a set TR Deq command to flush xHC cache. 1010 */ 1011 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1012 td->urb->stream_id); 1013 hw_deq &= ~0xf; 1014 1015 if (td->cancel_status == TD_HALTED || 1016 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1017 switch (td->cancel_status) { 1018 case TD_CLEARED: /* TD is already no-op */ 1019 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1020 break; 1021 case TD_DIRTY: /* TD is cached, clear it */ 1022 case TD_HALTED: 1023 td->cancel_status = TD_CLEARING_CACHE; 1024 if (cached_td) 1025 /* FIXME stream case, several stopped rings */ 1026 xhci_dbg(xhci, 1027 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1028 td->urb->stream_id, td->urb, 1029 cached_td->urb->stream_id, cached_td->urb); 1030 cached_td = td; 1031 break; 1032 } 1033 } else { 1034 td_to_noop(xhci, ring, td, false); 1035 td->cancel_status = TD_CLEARED; 1036 } 1037 } 1038 1039 /* If there's no need to move the dequeue pointer then we're done */ 1040 if (!cached_td) 1041 return 0; 1042 1043 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1044 cached_td->urb->stream_id, 1045 cached_td); 1046 if (err) { 1047 /* Failed to move past cached td, just set cached TDs to no-op */ 1048 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1049 if (td->cancel_status != TD_CLEARING_CACHE) 1050 continue; 1051 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1052 td->urb); 1053 td_to_noop(xhci, ring, td, false); 1054 td->cancel_status = TD_CLEARED; 1055 } 1056 } 1057 return 0; 1058 } 1059 1060 /* 1061 * Returns the TD the endpoint ring halted on. 1062 * Only call for non-running rings without streams. 1063 */ 1064 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1065 { 1066 struct xhci_td *td; 1067 u64 hw_deq; 1068 1069 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1070 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1071 hw_deq &= ~0xf; 1072 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1073 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1074 td->last_trb, hw_deq, false)) 1075 return td; 1076 } 1077 return NULL; 1078 } 1079 1080 /* 1081 * When we get a command completion for a Stop Endpoint Command, we need to 1082 * unlink any cancelled TDs from the ring. There are two ways to do that: 1083 * 1084 * 1. If the HW was in the middle of processing the TD that needs to be 1085 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1086 * in the TD with a Set Dequeue Pointer Command. 1087 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1088 * bit cleared) so that the HW will skip over them. 1089 */ 1090 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1091 union xhci_trb *trb, u32 comp_code) 1092 { 1093 unsigned int ep_index; 1094 struct xhci_virt_ep *ep; 1095 struct xhci_ep_ctx *ep_ctx; 1096 struct xhci_td *td = NULL; 1097 enum xhci_ep_reset_type reset_type; 1098 struct xhci_command *command; 1099 int err; 1100 1101 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1102 if (!xhci->devs[slot_id]) 1103 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1104 slot_id); 1105 return; 1106 } 1107 1108 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1109 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1110 if (!ep) 1111 return; 1112 1113 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1114 1115 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1116 1117 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1118 /* 1119 * If stop endpoint command raced with a halting endpoint we need to 1120 * reset the host side endpoint first. 1121 * If the TD we halted on isn't cancelled the TD should be given back 1122 * with a proper error code, and the ring dequeue moved past the TD. 1123 * If streams case we can't find hw_deq, or the TD we halted on so do a 1124 * soft reset. 1125 * 1126 * Proper error code is unknown here, it would be -EPIPE if device side 1127 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1128 * We use -EPROTO, if device is stalled it should return a stall error on 1129 * next transfer, which then will return -EPIPE, and device side stall is 1130 * noted and cleared by class driver. 1131 */ 1132 switch (GET_EP_CTX_STATE(ep_ctx)) { 1133 case EP_STATE_HALTED: 1134 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1135 if (ep->ep_state & EP_HAS_STREAMS) { 1136 reset_type = EP_SOFT_RESET; 1137 } else { 1138 reset_type = EP_HARD_RESET; 1139 td = find_halted_td(ep); 1140 if (td) 1141 td->status = -EPROTO; 1142 } 1143 /* reset ep, reset handler cleans up cancelled tds */ 1144 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1145 if (err) 1146 break; 1147 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1148 return; 1149 case EP_STATE_RUNNING: 1150 /* Race, HW handled stop ep cmd before ep was running */ 1151 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1152 1153 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1154 if (!command) { 1155 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1156 return; 1157 } 1158 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1159 xhci_ring_cmd_db(xhci); 1160 1161 return; 1162 default: 1163 break; 1164 } 1165 } 1166 1167 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1168 xhci_invalidate_cancelled_tds(ep); 1169 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1170 1171 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1172 xhci_giveback_invalidated_tds(ep); 1173 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1174 } 1175 1176 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1177 { 1178 struct xhci_td *cur_td; 1179 struct xhci_td *tmp; 1180 1181 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1182 list_del_init(&cur_td->td_list); 1183 1184 if (!list_empty(&cur_td->cancelled_td_list)) 1185 list_del_init(&cur_td->cancelled_td_list); 1186 1187 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1188 1189 inc_td_cnt(cur_td->urb); 1190 if (last_td_in_urb(cur_td)) 1191 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1192 } 1193 } 1194 1195 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1196 int slot_id, int ep_index) 1197 { 1198 struct xhci_td *cur_td; 1199 struct xhci_td *tmp; 1200 struct xhci_virt_ep *ep; 1201 struct xhci_ring *ring; 1202 1203 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1204 if (!ep) 1205 return; 1206 1207 if ((ep->ep_state & EP_HAS_STREAMS) || 1208 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1209 int stream_id; 1210 1211 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1212 stream_id++) { 1213 ring = ep->stream_info->stream_rings[stream_id]; 1214 if (!ring) 1215 continue; 1216 1217 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1218 "Killing URBs for slot ID %u, ep index %u, stream %u", 1219 slot_id, ep_index, stream_id); 1220 xhci_kill_ring_urbs(xhci, ring); 1221 } 1222 } else { 1223 ring = ep->ring; 1224 if (!ring) 1225 return; 1226 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1227 "Killing URBs for slot ID %u, ep index %u", 1228 slot_id, ep_index); 1229 xhci_kill_ring_urbs(xhci, ring); 1230 } 1231 1232 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1233 cancelled_td_list) { 1234 list_del_init(&cur_td->cancelled_td_list); 1235 inc_td_cnt(cur_td->urb); 1236 1237 if (last_td_in_urb(cur_td)) 1238 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1239 } 1240 } 1241 1242 /* 1243 * host controller died, register read returns 0xffffffff 1244 * Complete pending commands, mark them ABORTED. 1245 * URBs need to be given back as usb core might be waiting with device locks 1246 * held for the URBs to finish during device disconnect, blocking host remove. 1247 * 1248 * Call with xhci->lock held. 1249 * lock is relased and re-acquired while giving back urb. 1250 */ 1251 void xhci_hc_died(struct xhci_hcd *xhci) 1252 { 1253 int i, j; 1254 1255 if (xhci->xhc_state & XHCI_STATE_DYING) 1256 return; 1257 1258 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1259 xhci->xhc_state |= XHCI_STATE_DYING; 1260 1261 xhci_cleanup_command_queue(xhci); 1262 1263 /* return any pending urbs, remove may be waiting for them */ 1264 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1265 if (!xhci->devs[i]) 1266 continue; 1267 for (j = 0; j < 31; j++) 1268 xhci_kill_endpoint_urbs(xhci, i, j); 1269 } 1270 1271 /* inform usb core hc died if PCI remove isn't already handling it */ 1272 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1273 usb_hc_died(xhci_to_hcd(xhci)); 1274 } 1275 1276 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1277 struct xhci_virt_device *dev, 1278 struct xhci_ring *ep_ring, 1279 unsigned int ep_index) 1280 { 1281 union xhci_trb *dequeue_temp; 1282 1283 dequeue_temp = ep_ring->dequeue; 1284 1285 /* If we get two back-to-back stalls, and the first stalled transfer 1286 * ends just before a link TRB, the dequeue pointer will be left on 1287 * the link TRB by the code in the while loop. So we have to update 1288 * the dequeue pointer one segment further, or we'll jump off 1289 * the segment into la-la-land. 1290 */ 1291 if (trb_is_link(ep_ring->dequeue)) { 1292 ep_ring->deq_seg = ep_ring->deq_seg->next; 1293 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1294 } 1295 1296 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1297 /* We have more usable TRBs */ 1298 ep_ring->dequeue++; 1299 if (trb_is_link(ep_ring->dequeue)) { 1300 if (ep_ring->dequeue == 1301 dev->eps[ep_index].queued_deq_ptr) 1302 break; 1303 ep_ring->deq_seg = ep_ring->deq_seg->next; 1304 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1305 } 1306 if (ep_ring->dequeue == dequeue_temp) { 1307 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1308 break; 1309 } 1310 } 1311 } 1312 1313 /* 1314 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1315 * we need to clear the set deq pending flag in the endpoint ring state, so that 1316 * the TD queueing code can ring the doorbell again. We also need to ring the 1317 * endpoint doorbell to restart the ring, but only if there aren't more 1318 * cancellations pending. 1319 */ 1320 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1321 union xhci_trb *trb, u32 cmd_comp_code) 1322 { 1323 unsigned int ep_index; 1324 unsigned int stream_id; 1325 struct xhci_ring *ep_ring; 1326 struct xhci_virt_ep *ep; 1327 struct xhci_ep_ctx *ep_ctx; 1328 struct xhci_slot_ctx *slot_ctx; 1329 struct xhci_td *td, *tmp_td; 1330 1331 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1332 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1333 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1334 if (!ep) 1335 return; 1336 1337 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1338 if (!ep_ring) { 1339 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1340 stream_id); 1341 /* XXX: Harmless??? */ 1342 goto cleanup; 1343 } 1344 1345 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1346 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1347 trace_xhci_handle_cmd_set_deq(slot_ctx); 1348 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1349 1350 if (cmd_comp_code != COMP_SUCCESS) { 1351 unsigned int ep_state; 1352 unsigned int slot_state; 1353 1354 switch (cmd_comp_code) { 1355 case COMP_TRB_ERROR: 1356 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1357 break; 1358 case COMP_CONTEXT_STATE_ERROR: 1359 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1360 ep_state = GET_EP_CTX_STATE(ep_ctx); 1361 slot_state = le32_to_cpu(slot_ctx->dev_state); 1362 slot_state = GET_SLOT_STATE(slot_state); 1363 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1364 "Slot state = %u, EP state = %u", 1365 slot_state, ep_state); 1366 break; 1367 case COMP_SLOT_NOT_ENABLED_ERROR: 1368 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1369 slot_id); 1370 break; 1371 default: 1372 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1373 cmd_comp_code); 1374 break; 1375 } 1376 /* OK what do we do now? The endpoint state is hosed, and we 1377 * should never get to this point if the synchronization between 1378 * queueing, and endpoint state are correct. This might happen 1379 * if the device gets disconnected after we've finished 1380 * cancelling URBs, which might not be an error... 1381 */ 1382 } else { 1383 u64 deq; 1384 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1385 if (ep->ep_state & EP_HAS_STREAMS) { 1386 struct xhci_stream_ctx *ctx = 1387 &ep->stream_info->stream_ctx_array[stream_id]; 1388 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1389 } else { 1390 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1391 } 1392 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1393 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1394 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1395 ep->queued_deq_ptr) == deq) { 1396 /* Update the ring's dequeue segment and dequeue pointer 1397 * to reflect the new position. 1398 */ 1399 update_ring_for_set_deq_completion(xhci, ep->vdev, 1400 ep_ring, ep_index); 1401 } else { 1402 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1403 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1404 ep->queued_deq_seg, ep->queued_deq_ptr); 1405 } 1406 } 1407 /* HW cached TDs cleared from cache, give them back */ 1408 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1409 cancelled_td_list) { 1410 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1411 if (td->cancel_status == TD_CLEARING_CACHE) { 1412 td->cancel_status = TD_CLEARED; 1413 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1414 __func__, td->urb); 1415 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1416 } else { 1417 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1418 __func__, td->urb, td->cancel_status); 1419 } 1420 } 1421 cleanup: 1422 ep->ep_state &= ~SET_DEQ_PENDING; 1423 ep->queued_deq_seg = NULL; 1424 ep->queued_deq_ptr = NULL; 1425 /* Restart any rings with pending URBs */ 1426 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1427 } 1428 1429 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1430 union xhci_trb *trb, u32 cmd_comp_code) 1431 { 1432 struct xhci_virt_ep *ep; 1433 struct xhci_ep_ctx *ep_ctx; 1434 unsigned int ep_index; 1435 1436 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1437 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1438 if (!ep) 1439 return; 1440 1441 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1442 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1443 1444 /* This command will only fail if the endpoint wasn't halted, 1445 * but we don't care. 1446 */ 1447 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1448 "Ignoring reset ep completion code of %u", cmd_comp_code); 1449 1450 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1451 xhci_invalidate_cancelled_tds(ep); 1452 1453 /* Clear our internal halted state */ 1454 ep->ep_state &= ~EP_HALTED; 1455 1456 xhci_giveback_invalidated_tds(ep); 1457 1458 /* if this was a soft reset, then restart */ 1459 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1460 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1461 } 1462 1463 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1464 struct xhci_command *command, u32 cmd_comp_code) 1465 { 1466 if (cmd_comp_code == COMP_SUCCESS) 1467 command->slot_id = slot_id; 1468 else 1469 command->slot_id = 0; 1470 } 1471 1472 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1473 { 1474 struct xhci_virt_device *virt_dev; 1475 struct xhci_slot_ctx *slot_ctx; 1476 1477 virt_dev = xhci->devs[slot_id]; 1478 if (!virt_dev) 1479 return; 1480 1481 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1482 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1483 1484 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1485 /* Delete default control endpoint resources */ 1486 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1487 } 1488 1489 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1490 u32 cmd_comp_code) 1491 { 1492 struct xhci_virt_device *virt_dev; 1493 struct xhci_input_control_ctx *ctrl_ctx; 1494 struct xhci_ep_ctx *ep_ctx; 1495 unsigned int ep_index; 1496 u32 add_flags; 1497 1498 /* 1499 * Configure endpoint commands can come from the USB core configuration 1500 * or alt setting changes, or when streams were being configured. 1501 */ 1502 1503 virt_dev = xhci->devs[slot_id]; 1504 if (!virt_dev) 1505 return; 1506 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1507 if (!ctrl_ctx) { 1508 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1509 return; 1510 } 1511 1512 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1513 1514 /* Input ctx add_flags are the endpoint index plus one */ 1515 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1516 1517 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1518 trace_xhci_handle_cmd_config_ep(ep_ctx); 1519 1520 return; 1521 } 1522 1523 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1524 { 1525 struct xhci_virt_device *vdev; 1526 struct xhci_slot_ctx *slot_ctx; 1527 1528 vdev = xhci->devs[slot_id]; 1529 if (!vdev) 1530 return; 1531 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1532 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1533 } 1534 1535 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1536 { 1537 struct xhci_virt_device *vdev; 1538 struct xhci_slot_ctx *slot_ctx; 1539 1540 vdev = xhci->devs[slot_id]; 1541 if (!vdev) { 1542 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1543 slot_id); 1544 return; 1545 } 1546 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1547 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1548 1549 xhci_dbg(xhci, "Completed reset device command.\n"); 1550 } 1551 1552 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1553 struct xhci_event_cmd *event) 1554 { 1555 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1556 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1557 return; 1558 } 1559 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1560 "NEC firmware version %2x.%02x", 1561 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1562 NEC_FW_MINOR(le32_to_cpu(event->status))); 1563 } 1564 1565 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1566 { 1567 list_del(&cmd->cmd_list); 1568 1569 if (cmd->completion) { 1570 cmd->status = status; 1571 complete(cmd->completion); 1572 } else { 1573 kfree(cmd); 1574 } 1575 } 1576 1577 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1578 { 1579 struct xhci_command *cur_cmd, *tmp_cmd; 1580 xhci->current_cmd = NULL; 1581 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1582 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1583 } 1584 1585 void xhci_handle_command_timeout(struct work_struct *work) 1586 { 1587 struct xhci_hcd *xhci; 1588 unsigned long flags; 1589 char str[XHCI_MSG_MAX]; 1590 u64 hw_ring_state; 1591 u32 cmd_field3; 1592 u32 usbsts; 1593 1594 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1595 1596 spin_lock_irqsave(&xhci->lock, flags); 1597 1598 /* 1599 * If timeout work is pending, or current_cmd is NULL, it means we 1600 * raced with command completion. Command is handled so just return. 1601 */ 1602 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1603 spin_unlock_irqrestore(&xhci->lock, flags); 1604 return; 1605 } 1606 1607 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1608 usbsts = readl(&xhci->op_regs->status); 1609 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1610 1611 /* Bail out and tear down xhci if a stop endpoint command failed */ 1612 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1613 struct xhci_virt_ep *ep; 1614 1615 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1616 1617 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1618 TRB_TO_EP_INDEX(cmd_field3)); 1619 if (ep) 1620 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1621 1622 xhci_halt(xhci); 1623 xhci_hc_died(xhci); 1624 goto time_out_completed; 1625 } 1626 1627 /* mark this command to be cancelled */ 1628 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1629 1630 /* Make sure command ring is running before aborting it */ 1631 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1632 if (hw_ring_state == ~(u64)0) { 1633 xhci_hc_died(xhci); 1634 goto time_out_completed; 1635 } 1636 1637 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1638 (hw_ring_state & CMD_RING_RUNNING)) { 1639 /* Prevent new doorbell, and start command abort */ 1640 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1641 xhci_dbg(xhci, "Command timeout\n"); 1642 xhci_abort_cmd_ring(xhci, flags); 1643 goto time_out_completed; 1644 } 1645 1646 /* host removed. Bail out */ 1647 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1648 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1649 xhci_cleanup_command_queue(xhci); 1650 1651 goto time_out_completed; 1652 } 1653 1654 /* command timeout on stopped ring, ring can't be aborted */ 1655 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1656 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1657 1658 time_out_completed: 1659 spin_unlock_irqrestore(&xhci->lock, flags); 1660 return; 1661 } 1662 1663 static void handle_cmd_completion(struct xhci_hcd *xhci, 1664 struct xhci_event_cmd *event) 1665 { 1666 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1667 u64 cmd_dma; 1668 dma_addr_t cmd_dequeue_dma; 1669 u32 cmd_comp_code; 1670 union xhci_trb *cmd_trb; 1671 struct xhci_command *cmd; 1672 u32 cmd_type; 1673 1674 if (slot_id >= MAX_HC_SLOTS) { 1675 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1676 return; 1677 } 1678 1679 cmd_dma = le64_to_cpu(event->cmd_trb); 1680 cmd_trb = xhci->cmd_ring->dequeue; 1681 1682 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1683 1684 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1685 cmd_trb); 1686 /* 1687 * Check whether the completion event is for our internal kept 1688 * command. 1689 */ 1690 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1691 xhci_warn(xhci, 1692 "ERROR mismatched command completion event\n"); 1693 return; 1694 } 1695 1696 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1697 1698 cancel_delayed_work(&xhci->cmd_timer); 1699 1700 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1701 1702 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1703 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1704 complete_all(&xhci->cmd_ring_stop_completion); 1705 return; 1706 } 1707 1708 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1709 xhci_err(xhci, 1710 "Command completion event does not match command\n"); 1711 return; 1712 } 1713 1714 /* 1715 * Host aborted the command ring, check if the current command was 1716 * supposed to be aborted, otherwise continue normally. 1717 * The command ring is stopped now, but the xHC will issue a Command 1718 * Ring Stopped event which will cause us to restart it. 1719 */ 1720 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1721 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1722 if (cmd->status == COMP_COMMAND_ABORTED) { 1723 if (xhci->current_cmd == cmd) 1724 xhci->current_cmd = NULL; 1725 goto event_handled; 1726 } 1727 } 1728 1729 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1730 switch (cmd_type) { 1731 case TRB_ENABLE_SLOT: 1732 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1733 break; 1734 case TRB_DISABLE_SLOT: 1735 xhci_handle_cmd_disable_slot(xhci, slot_id); 1736 break; 1737 case TRB_CONFIG_EP: 1738 if (!cmd->completion) 1739 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1740 break; 1741 case TRB_EVAL_CONTEXT: 1742 break; 1743 case TRB_ADDR_DEV: 1744 xhci_handle_cmd_addr_dev(xhci, slot_id); 1745 break; 1746 case TRB_STOP_RING: 1747 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1748 le32_to_cpu(cmd_trb->generic.field[3]))); 1749 if (!cmd->completion) 1750 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1751 cmd_comp_code); 1752 break; 1753 case TRB_SET_DEQ: 1754 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1755 le32_to_cpu(cmd_trb->generic.field[3]))); 1756 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1757 break; 1758 case TRB_CMD_NOOP: 1759 /* Is this an aborted command turned to NO-OP? */ 1760 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1761 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1762 break; 1763 case TRB_RESET_EP: 1764 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1765 le32_to_cpu(cmd_trb->generic.field[3]))); 1766 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1767 break; 1768 case TRB_RESET_DEV: 1769 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1770 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1771 */ 1772 slot_id = TRB_TO_SLOT_ID( 1773 le32_to_cpu(cmd_trb->generic.field[3])); 1774 xhci_handle_cmd_reset_dev(xhci, slot_id); 1775 break; 1776 case TRB_NEC_GET_FW: 1777 xhci_handle_cmd_nec_get_fw(xhci, event); 1778 break; 1779 default: 1780 /* Skip over unknown commands on the event ring */ 1781 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1782 break; 1783 } 1784 1785 /* restart timer if this wasn't the last command */ 1786 if (!list_is_singular(&xhci->cmd_list)) { 1787 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1788 struct xhci_command, cmd_list); 1789 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1790 } else if (xhci->current_cmd == cmd) { 1791 xhci->current_cmd = NULL; 1792 } 1793 1794 event_handled: 1795 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1796 1797 inc_deq(xhci, xhci->cmd_ring); 1798 } 1799 1800 static void handle_vendor_event(struct xhci_hcd *xhci, 1801 union xhci_trb *event, u32 trb_type) 1802 { 1803 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1804 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1805 handle_cmd_completion(xhci, &event->event_cmd); 1806 } 1807 1808 static void handle_device_notification(struct xhci_hcd *xhci, 1809 union xhci_trb *event) 1810 { 1811 u32 slot_id; 1812 struct usb_device *udev; 1813 1814 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1815 if (!xhci->devs[slot_id]) { 1816 xhci_warn(xhci, "Device Notification event for " 1817 "unused slot %u\n", slot_id); 1818 return; 1819 } 1820 1821 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1822 slot_id); 1823 udev = xhci->devs[slot_id]->udev; 1824 if (udev && udev->parent) 1825 usb_wakeup_notification(udev->parent, udev->portnum); 1826 } 1827 1828 /* 1829 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1830 * Controller. 1831 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1832 * If a connection to a USB 1 device is followed by another connection 1833 * to a USB 2 device. 1834 * 1835 * Reset the PHY after the USB device is disconnected if device speed 1836 * is less than HCD_USB3. 1837 * Retry the reset sequence max of 4 times checking the PLL lock status. 1838 * 1839 */ 1840 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1841 { 1842 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1843 u32 pll_lock_check; 1844 u32 retry_count = 4; 1845 1846 do { 1847 /* Assert PHY reset */ 1848 writel(0x6F, hcd->regs + 0x1048); 1849 udelay(10); 1850 /* De-assert the PHY reset */ 1851 writel(0x7F, hcd->regs + 0x1048); 1852 udelay(200); 1853 pll_lock_check = readl(hcd->regs + 0x1070); 1854 } while (!(pll_lock_check & 0x1) && --retry_count); 1855 } 1856 1857 static void handle_port_status(struct xhci_hcd *xhci, 1858 struct xhci_interrupter *ir, 1859 union xhci_trb *event) 1860 { 1861 struct usb_hcd *hcd; 1862 u32 port_id; 1863 u32 portsc, cmd_reg; 1864 int max_ports; 1865 int slot_id; 1866 unsigned int hcd_portnum; 1867 struct xhci_bus_state *bus_state; 1868 bool bogus_port_status = false; 1869 struct xhci_port *port; 1870 1871 /* Port status change events always have a successful completion code */ 1872 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1873 xhci_warn(xhci, 1874 "WARN: xHC returned failed port status event\n"); 1875 1876 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1877 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1878 1879 if ((port_id <= 0) || (port_id > max_ports)) { 1880 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1881 port_id); 1882 inc_deq(xhci, ir->event_ring); 1883 return; 1884 } 1885 1886 port = &xhci->hw_ports[port_id - 1]; 1887 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1888 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1889 port_id); 1890 bogus_port_status = true; 1891 goto cleanup; 1892 } 1893 1894 /* We might get interrupts after shared_hcd is removed */ 1895 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1896 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1897 bogus_port_status = true; 1898 goto cleanup; 1899 } 1900 1901 hcd = port->rhub->hcd; 1902 bus_state = &port->rhub->bus_state; 1903 hcd_portnum = port->hcd_portnum; 1904 portsc = readl(port->addr); 1905 1906 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1907 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1908 1909 trace_xhci_handle_port_status(hcd_portnum, portsc); 1910 1911 if (hcd->state == HC_STATE_SUSPENDED) { 1912 xhci_dbg(xhci, "resume root hub\n"); 1913 usb_hcd_resume_root_hub(hcd); 1914 } 1915 1916 if (hcd->speed >= HCD_USB3 && 1917 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1918 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1919 if (slot_id && xhci->devs[slot_id]) 1920 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1921 } 1922 1923 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1924 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1925 1926 cmd_reg = readl(&xhci->op_regs->command); 1927 if (!(cmd_reg & CMD_RUN)) { 1928 xhci_warn(xhci, "xHC is not running.\n"); 1929 goto cleanup; 1930 } 1931 1932 if (DEV_SUPERSPEED_ANY(portsc)) { 1933 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1934 /* Set a flag to say the port signaled remote wakeup, 1935 * so we can tell the difference between the end of 1936 * device and host initiated resume. 1937 */ 1938 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1939 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1940 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1941 xhci_set_link_state(xhci, port, XDEV_U0); 1942 /* Need to wait until the next link state change 1943 * indicates the device is actually in U0. 1944 */ 1945 bogus_port_status = true; 1946 goto cleanup; 1947 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1948 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1949 port->resume_timestamp = jiffies + 1950 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1951 set_bit(hcd_portnum, &bus_state->resuming_ports); 1952 /* Do the rest in GetPortStatus after resume time delay. 1953 * Avoid polling roothub status before that so that a 1954 * usb device auto-resume latency around ~40ms. 1955 */ 1956 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1957 mod_timer(&hcd->rh_timer, 1958 port->resume_timestamp); 1959 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1960 bogus_port_status = true; 1961 } 1962 } 1963 1964 if ((portsc & PORT_PLC) && 1965 DEV_SUPERSPEED_ANY(portsc) && 1966 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1967 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1968 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1969 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1970 complete(&port->u3exit_done); 1971 /* We've just brought the device into U0/1/2 through either the 1972 * Resume state after a device remote wakeup, or through the 1973 * U3Exit state after a host-initiated resume. If it's a device 1974 * initiated remote wake, don't pass up the link state change, 1975 * so the roothub behavior is consistent with external 1976 * USB 3.0 hub behavior. 1977 */ 1978 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1979 if (slot_id && xhci->devs[slot_id]) 1980 xhci_ring_device(xhci, slot_id); 1981 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1982 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1983 usb_wakeup_notification(hcd->self.root_hub, 1984 hcd_portnum + 1); 1985 bogus_port_status = true; 1986 goto cleanup; 1987 } 1988 } 1989 1990 /* 1991 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1992 * RExit to a disconnect state). If so, let the driver know it's 1993 * out of the RExit state. 1994 */ 1995 if (hcd->speed < HCD_USB3 && port->rexit_active) { 1996 complete(&port->rexit_done); 1997 port->rexit_active = false; 1998 bogus_port_status = true; 1999 goto cleanup; 2000 } 2001 2002 if (hcd->speed < HCD_USB3) { 2003 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2004 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2005 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2006 xhci_cavium_reset_phy_quirk(xhci); 2007 } 2008 2009 cleanup: 2010 /* Update event ring dequeue pointer before dropping the lock */ 2011 inc_deq(xhci, ir->event_ring); 2012 2013 /* Don't make the USB core poll the roothub if we got a bad port status 2014 * change event. Besides, at that point we can't tell which roothub 2015 * (USB 2.0 or USB 3.0) to kick. 2016 */ 2017 if (bogus_port_status) 2018 return; 2019 2020 /* 2021 * xHCI port-status-change events occur when the "or" of all the 2022 * status-change bits in the portsc register changes from 0 to 1. 2023 * New status changes won't cause an event if any other change 2024 * bits are still set. When an event occurs, switch over to 2025 * polling to avoid losing status changes. 2026 */ 2027 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2028 __func__, hcd->self.busnum); 2029 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2030 spin_unlock(&xhci->lock); 2031 /* Pass this up to the core */ 2032 usb_hcd_poll_rh_status(hcd); 2033 spin_lock(&xhci->lock); 2034 } 2035 2036 /* 2037 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2038 * at end_trb, which may be in another segment. If the suspect DMA address is a 2039 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2040 * returns 0. 2041 */ 2042 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2043 struct xhci_segment *start_seg, 2044 union xhci_trb *start_trb, 2045 union xhci_trb *end_trb, 2046 dma_addr_t suspect_dma, 2047 bool debug) 2048 { 2049 dma_addr_t start_dma; 2050 dma_addr_t end_seg_dma; 2051 dma_addr_t end_trb_dma; 2052 struct xhci_segment *cur_seg; 2053 2054 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2055 cur_seg = start_seg; 2056 2057 do { 2058 if (start_dma == 0) 2059 return NULL; 2060 /* We may get an event for a Link TRB in the middle of a TD */ 2061 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2062 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2063 /* If the end TRB isn't in this segment, this is set to 0 */ 2064 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2065 2066 if (debug) 2067 xhci_warn(xhci, 2068 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2069 (unsigned long long)suspect_dma, 2070 (unsigned long long)start_dma, 2071 (unsigned long long)end_trb_dma, 2072 (unsigned long long)cur_seg->dma, 2073 (unsigned long long)end_seg_dma); 2074 2075 if (end_trb_dma > 0) { 2076 /* The end TRB is in this segment, so suspect should be here */ 2077 if (start_dma <= end_trb_dma) { 2078 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2079 return cur_seg; 2080 } else { 2081 /* Case for one segment with 2082 * a TD wrapped around to the top 2083 */ 2084 if ((suspect_dma >= start_dma && 2085 suspect_dma <= end_seg_dma) || 2086 (suspect_dma >= cur_seg->dma && 2087 suspect_dma <= end_trb_dma)) 2088 return cur_seg; 2089 } 2090 return NULL; 2091 } else { 2092 /* Might still be somewhere in this segment */ 2093 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2094 return cur_seg; 2095 } 2096 cur_seg = cur_seg->next; 2097 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2098 } while (cur_seg != start_seg); 2099 2100 return NULL; 2101 } 2102 2103 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2104 struct xhci_virt_ep *ep) 2105 { 2106 /* 2107 * As part of low/full-speed endpoint-halt processing 2108 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2109 */ 2110 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2111 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2112 !(ep->ep_state & EP_CLEARING_TT)) { 2113 ep->ep_state |= EP_CLEARING_TT; 2114 td->urb->ep->hcpriv = td->urb->dev; 2115 if (usb_hub_clear_tt_buffer(td->urb)) 2116 ep->ep_state &= ~EP_CLEARING_TT; 2117 } 2118 } 2119 2120 /* Check if an error has halted the endpoint ring. The class driver will 2121 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2122 * However, a babble and other errors also halt the endpoint ring, and the class 2123 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2124 * Ring Dequeue Pointer command manually. 2125 */ 2126 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2127 struct xhci_ep_ctx *ep_ctx, 2128 unsigned int trb_comp_code) 2129 { 2130 /* TRB completion codes that may require a manual halt cleanup */ 2131 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2132 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2133 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2134 /* The 0.95 spec says a babbling control endpoint 2135 * is not halted. The 0.96 spec says it is. Some HW 2136 * claims to be 0.95 compliant, but it halts the control 2137 * endpoint anyway. Check if a babble halted the 2138 * endpoint. 2139 */ 2140 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2141 return 1; 2142 2143 return 0; 2144 } 2145 2146 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2147 { 2148 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2149 /* Vendor defined "informational" completion code, 2150 * treat as not-an-error. 2151 */ 2152 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2153 trb_comp_code); 2154 xhci_dbg(xhci, "Treating code as success.\n"); 2155 return 1; 2156 } 2157 return 0; 2158 } 2159 2160 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2161 struct xhci_ring *ep_ring, struct xhci_td *td, 2162 u32 trb_comp_code) 2163 { 2164 struct xhci_ep_ctx *ep_ctx; 2165 2166 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2167 2168 switch (trb_comp_code) { 2169 case COMP_STOPPED_LENGTH_INVALID: 2170 case COMP_STOPPED_SHORT_PACKET: 2171 case COMP_STOPPED: 2172 /* 2173 * The "Stop Endpoint" completion will take care of any 2174 * stopped TDs. A stopped TD may be restarted, so don't update 2175 * the ring dequeue pointer or take this TD off any lists yet. 2176 */ 2177 return 0; 2178 case COMP_USB_TRANSACTION_ERROR: 2179 case COMP_BABBLE_DETECTED_ERROR: 2180 case COMP_SPLIT_TRANSACTION_ERROR: 2181 /* 2182 * If endpoint context state is not halted we might be 2183 * racing with a reset endpoint command issued by a unsuccessful 2184 * stop endpoint completion (context error). In that case the 2185 * td should be on the cancelled list, and EP_HALTED flag set. 2186 * 2187 * Or then it's not halted due to the 0.95 spec stating that a 2188 * babbling control endpoint should not halt. The 0.96 spec 2189 * again says it should. Some HW claims to be 0.95 compliant, 2190 * but it halts the control endpoint anyway. 2191 */ 2192 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2193 /* 2194 * If EP_HALTED is set and TD is on the cancelled list 2195 * the TD and dequeue pointer will be handled by reset 2196 * ep command completion 2197 */ 2198 if ((ep->ep_state & EP_HALTED) && 2199 !list_empty(&td->cancelled_td_list)) { 2200 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2201 (unsigned long long)xhci_trb_virt_to_dma( 2202 td->start_seg, td->first_trb)); 2203 return 0; 2204 } 2205 /* endpoint not halted, don't reset it */ 2206 break; 2207 } 2208 /* Almost same procedure as for STALL_ERROR below */ 2209 xhci_clear_hub_tt_buffer(xhci, td, ep); 2210 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2211 return 0; 2212 case COMP_STALL_ERROR: 2213 /* 2214 * xhci internal endpoint state will go to a "halt" state for 2215 * any stall, including default control pipe protocol stall. 2216 * To clear the host side halt we need to issue a reset endpoint 2217 * command, followed by a set dequeue command to move past the 2218 * TD. 2219 * Class drivers clear the device side halt from a functional 2220 * stall later. Hub TT buffer should only be cleared for FS/LS 2221 * devices behind HS hubs for functional stalls. 2222 */ 2223 if (ep->ep_index != 0) 2224 xhci_clear_hub_tt_buffer(xhci, td, ep); 2225 2226 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2227 2228 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2229 default: 2230 break; 2231 } 2232 2233 /* Update ring dequeue pointer */ 2234 ep_ring->dequeue = td->last_trb; 2235 ep_ring->deq_seg = td->last_trb_seg; 2236 inc_deq(xhci, ep_ring); 2237 2238 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2239 } 2240 2241 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2242 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2243 union xhci_trb *stop_trb) 2244 { 2245 u32 sum; 2246 union xhci_trb *trb = ring->dequeue; 2247 struct xhci_segment *seg = ring->deq_seg; 2248 2249 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2250 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2251 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2252 } 2253 return sum; 2254 } 2255 2256 /* 2257 * Process control tds, update urb status and actual_length. 2258 */ 2259 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2260 struct xhci_ring *ep_ring, struct xhci_td *td, 2261 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2262 { 2263 struct xhci_ep_ctx *ep_ctx; 2264 u32 trb_comp_code; 2265 u32 remaining, requested; 2266 u32 trb_type; 2267 2268 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2269 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2270 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2271 requested = td->urb->transfer_buffer_length; 2272 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2273 2274 switch (trb_comp_code) { 2275 case COMP_SUCCESS: 2276 if (trb_type != TRB_STATUS) { 2277 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2278 (trb_type == TRB_DATA) ? "data" : "setup"); 2279 td->status = -ESHUTDOWN; 2280 break; 2281 } 2282 td->status = 0; 2283 break; 2284 case COMP_SHORT_PACKET: 2285 td->status = 0; 2286 break; 2287 case COMP_STOPPED_SHORT_PACKET: 2288 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2289 td->urb->actual_length = remaining; 2290 else 2291 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2292 goto finish_td; 2293 case COMP_STOPPED: 2294 switch (trb_type) { 2295 case TRB_SETUP: 2296 td->urb->actual_length = 0; 2297 goto finish_td; 2298 case TRB_DATA: 2299 case TRB_NORMAL: 2300 td->urb->actual_length = requested - remaining; 2301 goto finish_td; 2302 case TRB_STATUS: 2303 td->urb->actual_length = requested; 2304 goto finish_td; 2305 default: 2306 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2307 trb_type); 2308 goto finish_td; 2309 } 2310 case COMP_STOPPED_LENGTH_INVALID: 2311 goto finish_td; 2312 default: 2313 if (!xhci_requires_manual_halt_cleanup(xhci, 2314 ep_ctx, trb_comp_code)) 2315 break; 2316 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2317 trb_comp_code, ep->ep_index); 2318 fallthrough; 2319 case COMP_STALL_ERROR: 2320 /* Did we transfer part of the data (middle) phase? */ 2321 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2322 td->urb->actual_length = requested - remaining; 2323 else if (!td->urb_length_set) 2324 td->urb->actual_length = 0; 2325 goto finish_td; 2326 } 2327 2328 /* stopped at setup stage, no data transferred */ 2329 if (trb_type == TRB_SETUP) 2330 goto finish_td; 2331 2332 /* 2333 * if on data stage then update the actual_length of the URB and flag it 2334 * as set, so it won't be overwritten in the event for the last TRB. 2335 */ 2336 if (trb_type == TRB_DATA || 2337 trb_type == TRB_NORMAL) { 2338 td->urb_length_set = true; 2339 td->urb->actual_length = requested - remaining; 2340 xhci_dbg(xhci, "Waiting for status stage event\n"); 2341 return 0; 2342 } 2343 2344 /* at status stage */ 2345 if (!td->urb_length_set) 2346 td->urb->actual_length = requested; 2347 2348 finish_td: 2349 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2350 } 2351 2352 /* 2353 * Process isochronous tds, update urb packet status and actual_length. 2354 */ 2355 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2356 struct xhci_ring *ep_ring, struct xhci_td *td, 2357 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2358 { 2359 struct urb_priv *urb_priv; 2360 int idx; 2361 struct usb_iso_packet_descriptor *frame; 2362 u32 trb_comp_code; 2363 bool sum_trbs_for_length = false; 2364 u32 remaining, requested, ep_trb_len; 2365 int short_framestatus; 2366 2367 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2368 urb_priv = td->urb->hcpriv; 2369 idx = urb_priv->num_tds_done; 2370 frame = &td->urb->iso_frame_desc[idx]; 2371 requested = frame->length; 2372 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2373 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2374 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2375 -EREMOTEIO : 0; 2376 2377 /* handle completion code */ 2378 switch (trb_comp_code) { 2379 case COMP_SUCCESS: 2380 if (remaining) { 2381 frame->status = short_framestatus; 2382 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2383 sum_trbs_for_length = true; 2384 break; 2385 } 2386 frame->status = 0; 2387 break; 2388 case COMP_SHORT_PACKET: 2389 frame->status = short_framestatus; 2390 sum_trbs_for_length = true; 2391 break; 2392 case COMP_BANDWIDTH_OVERRUN_ERROR: 2393 frame->status = -ECOMM; 2394 break; 2395 case COMP_ISOCH_BUFFER_OVERRUN: 2396 case COMP_BABBLE_DETECTED_ERROR: 2397 frame->status = -EOVERFLOW; 2398 break; 2399 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2400 case COMP_STALL_ERROR: 2401 frame->status = -EPROTO; 2402 break; 2403 case COMP_USB_TRANSACTION_ERROR: 2404 frame->status = -EPROTO; 2405 if (ep_trb != td->last_trb) 2406 return 0; 2407 break; 2408 case COMP_STOPPED: 2409 sum_trbs_for_length = true; 2410 break; 2411 case COMP_STOPPED_SHORT_PACKET: 2412 /* field normally containing residue now contains tranferred */ 2413 frame->status = short_framestatus; 2414 requested = remaining; 2415 break; 2416 case COMP_STOPPED_LENGTH_INVALID: 2417 requested = 0; 2418 remaining = 0; 2419 break; 2420 default: 2421 sum_trbs_for_length = true; 2422 frame->status = -1; 2423 break; 2424 } 2425 2426 if (sum_trbs_for_length) 2427 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2428 ep_trb_len - remaining; 2429 else 2430 frame->actual_length = requested; 2431 2432 td->urb->actual_length += frame->actual_length; 2433 2434 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2435 } 2436 2437 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2438 struct xhci_virt_ep *ep, int status) 2439 { 2440 struct urb_priv *urb_priv; 2441 struct usb_iso_packet_descriptor *frame; 2442 int idx; 2443 2444 urb_priv = td->urb->hcpriv; 2445 idx = urb_priv->num_tds_done; 2446 frame = &td->urb->iso_frame_desc[idx]; 2447 2448 /* The transfer is partly done. */ 2449 frame->status = -EXDEV; 2450 2451 /* calc actual length */ 2452 frame->actual_length = 0; 2453 2454 /* Update ring dequeue pointer */ 2455 ep->ring->dequeue = td->last_trb; 2456 ep->ring->deq_seg = td->last_trb_seg; 2457 inc_deq(xhci, ep->ring); 2458 2459 return xhci_td_cleanup(xhci, td, ep->ring, status); 2460 } 2461 2462 /* 2463 * Process bulk and interrupt tds, update urb status and actual_length. 2464 */ 2465 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2466 struct xhci_ring *ep_ring, struct xhci_td *td, 2467 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2468 { 2469 struct xhci_slot_ctx *slot_ctx; 2470 u32 trb_comp_code; 2471 u32 remaining, requested, ep_trb_len; 2472 2473 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2474 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2475 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2476 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2477 requested = td->urb->transfer_buffer_length; 2478 2479 switch (trb_comp_code) { 2480 case COMP_SUCCESS: 2481 ep->err_count = 0; 2482 /* handle success with untransferred data as short packet */ 2483 if (ep_trb != td->last_trb || remaining) { 2484 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2485 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2486 td->urb->ep->desc.bEndpointAddress, 2487 requested, remaining); 2488 } 2489 td->status = 0; 2490 break; 2491 case COMP_SHORT_PACKET: 2492 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2493 td->urb->ep->desc.bEndpointAddress, 2494 requested, remaining); 2495 td->status = 0; 2496 break; 2497 case COMP_STOPPED_SHORT_PACKET: 2498 td->urb->actual_length = remaining; 2499 goto finish_td; 2500 case COMP_STOPPED_LENGTH_INVALID: 2501 /* stopped on ep trb with invalid length, exclude it */ 2502 ep_trb_len = 0; 2503 remaining = 0; 2504 break; 2505 case COMP_USB_TRANSACTION_ERROR: 2506 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2507 (ep->err_count++ > MAX_SOFT_RETRY) || 2508 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2509 break; 2510 2511 td->status = 0; 2512 2513 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2514 return 0; 2515 default: 2516 /* do nothing */ 2517 break; 2518 } 2519 2520 if (ep_trb == td->last_trb) 2521 td->urb->actual_length = requested - remaining; 2522 else 2523 td->urb->actual_length = 2524 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2525 ep_trb_len - remaining; 2526 finish_td: 2527 if (remaining > requested) { 2528 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2529 remaining); 2530 td->urb->actual_length = 0; 2531 } 2532 2533 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2534 } 2535 2536 /* 2537 * If this function returns an error condition, it means it got a Transfer 2538 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2539 * At this point, the host controller is probably hosed and should be reset. 2540 */ 2541 static int handle_tx_event(struct xhci_hcd *xhci, 2542 struct xhci_interrupter *ir, 2543 struct xhci_transfer_event *event) 2544 { 2545 struct xhci_virt_ep *ep; 2546 struct xhci_ring *ep_ring; 2547 unsigned int slot_id; 2548 int ep_index; 2549 struct xhci_td *td = NULL; 2550 dma_addr_t ep_trb_dma; 2551 struct xhci_segment *ep_seg; 2552 union xhci_trb *ep_trb; 2553 int status = -EINPROGRESS; 2554 struct xhci_ep_ctx *ep_ctx; 2555 u32 trb_comp_code; 2556 int td_num = 0; 2557 bool handling_skipped_tds = false; 2558 2559 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2560 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2561 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2562 ep_trb_dma = le64_to_cpu(event->buffer); 2563 2564 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2565 if (!ep) { 2566 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2567 goto err_out; 2568 } 2569 2570 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2571 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2572 2573 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2574 xhci_err(xhci, 2575 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2576 slot_id, ep_index); 2577 goto err_out; 2578 } 2579 2580 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2581 if (!ep_ring) { 2582 switch (trb_comp_code) { 2583 case COMP_STALL_ERROR: 2584 case COMP_USB_TRANSACTION_ERROR: 2585 case COMP_INVALID_STREAM_TYPE_ERROR: 2586 case COMP_INVALID_STREAM_ID_ERROR: 2587 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2588 ep_index); 2589 if (ep->err_count++ > MAX_SOFT_RETRY) 2590 xhci_handle_halted_endpoint(xhci, ep, NULL, 2591 EP_HARD_RESET); 2592 else 2593 xhci_handle_halted_endpoint(xhci, ep, NULL, 2594 EP_SOFT_RESET); 2595 goto cleanup; 2596 case COMP_RING_UNDERRUN: 2597 case COMP_RING_OVERRUN: 2598 case COMP_STOPPED_LENGTH_INVALID: 2599 goto cleanup; 2600 default: 2601 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2602 slot_id, ep_index); 2603 goto err_out; 2604 } 2605 } 2606 2607 /* Count current td numbers if ep->skip is set */ 2608 if (ep->skip) 2609 td_num += list_count_nodes(&ep_ring->td_list); 2610 2611 /* Look for common error cases */ 2612 switch (trb_comp_code) { 2613 /* Skip codes that require special handling depending on 2614 * transfer type 2615 */ 2616 case COMP_SUCCESS: 2617 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2618 break; 2619 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2620 ep_ring->last_td_was_short) 2621 trb_comp_code = COMP_SHORT_PACKET; 2622 else 2623 xhci_warn_ratelimited(xhci, 2624 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2625 slot_id, ep_index); 2626 break; 2627 case COMP_SHORT_PACKET: 2628 break; 2629 /* Completion codes for endpoint stopped state */ 2630 case COMP_STOPPED: 2631 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2632 slot_id, ep_index); 2633 break; 2634 case COMP_STOPPED_LENGTH_INVALID: 2635 xhci_dbg(xhci, 2636 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2637 slot_id, ep_index); 2638 break; 2639 case COMP_STOPPED_SHORT_PACKET: 2640 xhci_dbg(xhci, 2641 "Stopped with short packet transfer detected for slot %u ep %u\n", 2642 slot_id, ep_index); 2643 break; 2644 /* Completion codes for endpoint halted state */ 2645 case COMP_STALL_ERROR: 2646 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2647 ep_index); 2648 status = -EPIPE; 2649 break; 2650 case COMP_SPLIT_TRANSACTION_ERROR: 2651 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2652 slot_id, ep_index); 2653 status = -EPROTO; 2654 break; 2655 case COMP_USB_TRANSACTION_ERROR: 2656 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2657 slot_id, ep_index); 2658 status = -EPROTO; 2659 break; 2660 case COMP_BABBLE_DETECTED_ERROR: 2661 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2662 slot_id, ep_index); 2663 status = -EOVERFLOW; 2664 break; 2665 /* Completion codes for endpoint error state */ 2666 case COMP_TRB_ERROR: 2667 xhci_warn(xhci, 2668 "WARN: TRB error for slot %u ep %u on endpoint\n", 2669 slot_id, ep_index); 2670 status = -EILSEQ; 2671 break; 2672 /* completion codes not indicating endpoint state change */ 2673 case COMP_DATA_BUFFER_ERROR: 2674 xhci_warn(xhci, 2675 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2676 slot_id, ep_index); 2677 status = -ENOSR; 2678 break; 2679 case COMP_BANDWIDTH_OVERRUN_ERROR: 2680 xhci_warn(xhci, 2681 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2682 slot_id, ep_index); 2683 break; 2684 case COMP_ISOCH_BUFFER_OVERRUN: 2685 xhci_warn(xhci, 2686 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2687 slot_id, ep_index); 2688 break; 2689 case COMP_RING_UNDERRUN: 2690 /* 2691 * When the Isoch ring is empty, the xHC will generate 2692 * a Ring Overrun Event for IN Isoch endpoint or Ring 2693 * Underrun Event for OUT Isoch endpoint. 2694 */ 2695 xhci_dbg(xhci, "underrun event on endpoint\n"); 2696 if (!list_empty(&ep_ring->td_list)) 2697 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2698 "still with TDs queued?\n", 2699 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2700 ep_index); 2701 goto cleanup; 2702 case COMP_RING_OVERRUN: 2703 xhci_dbg(xhci, "overrun event on endpoint\n"); 2704 if (!list_empty(&ep_ring->td_list)) 2705 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2706 "still with TDs queued?\n", 2707 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2708 ep_index); 2709 goto cleanup; 2710 case COMP_MISSED_SERVICE_ERROR: 2711 /* 2712 * When encounter missed service error, one or more isoc tds 2713 * may be missed by xHC. 2714 * Set skip flag of the ep_ring; Complete the missed tds as 2715 * short transfer when process the ep_ring next time. 2716 */ 2717 ep->skip = true; 2718 xhci_dbg(xhci, 2719 "Miss service interval error for slot %u ep %u, set skip flag\n", 2720 slot_id, ep_index); 2721 goto cleanup; 2722 case COMP_NO_PING_RESPONSE_ERROR: 2723 ep->skip = true; 2724 xhci_dbg(xhci, 2725 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2726 slot_id, ep_index); 2727 goto cleanup; 2728 2729 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2730 /* needs disable slot command to recover */ 2731 xhci_warn(xhci, 2732 "WARN: detect an incompatible device for slot %u ep %u", 2733 slot_id, ep_index); 2734 status = -EPROTO; 2735 break; 2736 default: 2737 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2738 status = 0; 2739 break; 2740 } 2741 xhci_warn(xhci, 2742 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2743 trb_comp_code, slot_id, ep_index); 2744 goto cleanup; 2745 } 2746 2747 do { 2748 /* This TRB should be in the TD at the head of this ring's 2749 * TD list. 2750 */ 2751 if (list_empty(&ep_ring->td_list)) { 2752 /* 2753 * Don't print wanings if it's due to a stopped endpoint 2754 * generating an extra completion event if the device 2755 * was suspended. Or, a event for the last TRB of a 2756 * short TD we already got a short event for. 2757 * The short TD is already removed from the TD list. 2758 */ 2759 2760 if (!(trb_comp_code == COMP_STOPPED || 2761 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2762 ep_ring->last_td_was_short)) { 2763 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2764 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2765 ep_index); 2766 } 2767 if (ep->skip) { 2768 ep->skip = false; 2769 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2770 slot_id, ep_index); 2771 } 2772 if (trb_comp_code == COMP_STALL_ERROR || 2773 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2774 trb_comp_code)) { 2775 xhci_handle_halted_endpoint(xhci, ep, NULL, 2776 EP_HARD_RESET); 2777 } 2778 goto cleanup; 2779 } 2780 2781 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2782 if (ep->skip && td_num == 0) { 2783 ep->skip = false; 2784 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2785 slot_id, ep_index); 2786 goto cleanup; 2787 } 2788 2789 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2790 td_list); 2791 if (ep->skip) 2792 td_num--; 2793 2794 /* Is this a TRB in the currently executing TD? */ 2795 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2796 td->last_trb, ep_trb_dma, false); 2797 2798 /* 2799 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2800 * is not in the current TD pointed by ep_ring->dequeue because 2801 * that the hardware dequeue pointer still at the previous TRB 2802 * of the current TD. The previous TRB maybe a Link TD or the 2803 * last TRB of the previous TD. The command completion handle 2804 * will take care the rest. 2805 */ 2806 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2807 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2808 goto cleanup; 2809 } 2810 2811 if (!ep_seg) { 2812 if (!ep->skip || 2813 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2814 /* Some host controllers give a spurious 2815 * successful event after a short transfer. 2816 * Ignore it. 2817 */ 2818 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2819 ep_ring->last_td_was_short) { 2820 ep_ring->last_td_was_short = false; 2821 goto cleanup; 2822 } 2823 /* HC is busted, give up! */ 2824 xhci_err(xhci, 2825 "ERROR Transfer event TRB DMA ptr not " 2826 "part of current TD ep_index %d " 2827 "comp_code %u\n", ep_index, 2828 trb_comp_code); 2829 trb_in_td(xhci, ep_ring->deq_seg, 2830 ep_ring->dequeue, td->last_trb, 2831 ep_trb_dma, true); 2832 return -ESHUTDOWN; 2833 } 2834 2835 skip_isoc_td(xhci, td, ep, status); 2836 goto cleanup; 2837 } 2838 if (trb_comp_code == COMP_SHORT_PACKET) 2839 ep_ring->last_td_was_short = true; 2840 else 2841 ep_ring->last_td_was_short = false; 2842 2843 if (ep->skip) { 2844 xhci_dbg(xhci, 2845 "Found td. Clear skip flag for slot %u ep %u.\n", 2846 slot_id, ep_index); 2847 ep->skip = false; 2848 } 2849 2850 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2851 sizeof(*ep_trb)]; 2852 2853 trace_xhci_handle_transfer(ep_ring, 2854 (struct xhci_generic_trb *) ep_trb); 2855 2856 /* 2857 * No-op TRB could trigger interrupts in a case where 2858 * a URB was killed and a STALL_ERROR happens right 2859 * after the endpoint ring stopped. Reset the halted 2860 * endpoint. Otherwise, the endpoint remains stalled 2861 * indefinitely. 2862 */ 2863 2864 if (trb_is_noop(ep_trb)) { 2865 if (trb_comp_code == COMP_STALL_ERROR || 2866 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2867 trb_comp_code)) 2868 xhci_handle_halted_endpoint(xhci, ep, td, 2869 EP_HARD_RESET); 2870 goto cleanup; 2871 } 2872 2873 td->status = status; 2874 2875 /* update the urb's actual_length and give back to the core */ 2876 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2877 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2878 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2879 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2880 else 2881 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2882 cleanup: 2883 handling_skipped_tds = ep->skip && 2884 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2885 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2886 2887 /* 2888 * Do not update event ring dequeue pointer if we're in a loop 2889 * processing missed tds. 2890 */ 2891 if (!handling_skipped_tds) 2892 inc_deq(xhci, ir->event_ring); 2893 2894 /* 2895 * If ep->skip is set, it means there are missed tds on the 2896 * endpoint ring need to take care of. 2897 * Process them as short transfer until reach the td pointed by 2898 * the event. 2899 */ 2900 } while (handling_skipped_tds); 2901 2902 return 0; 2903 2904 err_out: 2905 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2906 (unsigned long long) xhci_trb_virt_to_dma( 2907 ir->event_ring->deq_seg, 2908 ir->event_ring->dequeue), 2909 lower_32_bits(le64_to_cpu(event->buffer)), 2910 upper_32_bits(le64_to_cpu(event->buffer)), 2911 le32_to_cpu(event->transfer_len), 2912 le32_to_cpu(event->flags)); 2913 return -ENODEV; 2914 } 2915 2916 /* 2917 * This function handles all OS-owned events on the event ring. It may drop 2918 * xhci->lock between event processing (e.g. to pass up port status changes). 2919 * Returns >0 for "possibly more events to process" (caller should call again), 2920 * otherwise 0 if done. In future, <0 returns should indicate error code. 2921 */ 2922 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2923 { 2924 union xhci_trb *event; 2925 int update_ptrs = 1; 2926 u32 trb_type; 2927 int ret; 2928 2929 /* Event ring hasn't been allocated yet. */ 2930 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2931 xhci_err(xhci, "ERROR interrupter not ready\n"); 2932 return -ENOMEM; 2933 } 2934 2935 event = ir->event_ring->dequeue; 2936 /* Does the HC or OS own the TRB? */ 2937 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2938 ir->event_ring->cycle_state) 2939 return 0; 2940 2941 trace_xhci_handle_event(ir->event_ring, &event->generic); 2942 2943 /* 2944 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2945 * speculative reads of the event's flags/data below. 2946 */ 2947 rmb(); 2948 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2949 /* FIXME: Handle more event types. */ 2950 2951 switch (trb_type) { 2952 case TRB_COMPLETION: 2953 handle_cmd_completion(xhci, &event->event_cmd); 2954 break; 2955 case TRB_PORT_STATUS: 2956 handle_port_status(xhci, ir, event); 2957 update_ptrs = 0; 2958 break; 2959 case TRB_TRANSFER: 2960 ret = handle_tx_event(xhci, ir, &event->trans_event); 2961 if (ret >= 0) 2962 update_ptrs = 0; 2963 break; 2964 case TRB_DEV_NOTE: 2965 handle_device_notification(xhci, event); 2966 break; 2967 default: 2968 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2969 handle_vendor_event(xhci, event, trb_type); 2970 else 2971 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2972 } 2973 /* Any of the above functions may drop and re-acquire the lock, so check 2974 * to make sure a watchdog timer didn't mark the host as non-responsive. 2975 */ 2976 if (xhci->xhc_state & XHCI_STATE_DYING) { 2977 xhci_dbg(xhci, "xHCI host dying, returning from " 2978 "event handler.\n"); 2979 return 0; 2980 } 2981 2982 if (update_ptrs) 2983 /* Update SW event ring dequeue pointer */ 2984 inc_deq(xhci, ir->event_ring); 2985 2986 /* Are there more items on the event ring? Caller will call us again to 2987 * check. 2988 */ 2989 return 1; 2990 } 2991 2992 /* 2993 * Update Event Ring Dequeue Pointer: 2994 * - When all events have finished 2995 * - To avoid "Event Ring Full Error" condition 2996 */ 2997 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2998 struct xhci_interrupter *ir, 2999 union xhci_trb *event_ring_deq) 3000 { 3001 u64 temp_64; 3002 dma_addr_t deq; 3003 3004 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3005 /* If necessary, update the HW's version of the event ring deq ptr. */ 3006 if (event_ring_deq != ir->event_ring->dequeue) { 3007 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3008 ir->event_ring->dequeue); 3009 if (deq == 0) 3010 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3011 /* 3012 * Per 4.9.4, Software writes to the ERDP register shall 3013 * always advance the Event Ring Dequeue Pointer value. 3014 */ 3015 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3016 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3017 return; 3018 3019 /* Update HC event ring dequeue pointer */ 3020 temp_64 &= ERST_PTR_MASK; 3021 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3022 } 3023 3024 /* Clear the event handler busy flag (RW1C) */ 3025 temp_64 |= ERST_EHB; 3026 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3027 } 3028 3029 /* 3030 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3031 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3032 * indicators of an event TRB error, but we check the status *first* to be safe. 3033 */ 3034 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3035 { 3036 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3037 union xhci_trb *event_ring_deq; 3038 struct xhci_interrupter *ir; 3039 irqreturn_t ret = IRQ_NONE; 3040 u64 temp_64; 3041 u32 status; 3042 int event_loop = 0; 3043 3044 spin_lock(&xhci->lock); 3045 /* Check if the xHC generated the interrupt, or the irq is shared */ 3046 status = readl(&xhci->op_regs->status); 3047 if (status == ~(u32)0) { 3048 xhci_hc_died(xhci); 3049 ret = IRQ_HANDLED; 3050 goto out; 3051 } 3052 3053 if (!(status & STS_EINT)) 3054 goto out; 3055 3056 if (status & STS_HCE) { 3057 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3058 goto out; 3059 } 3060 3061 if (status & STS_FATAL) { 3062 xhci_warn(xhci, "WARNING: Host System Error\n"); 3063 xhci_halt(xhci); 3064 ret = IRQ_HANDLED; 3065 goto out; 3066 } 3067 3068 /* 3069 * Clear the op reg interrupt status first, 3070 * so we can receive interrupts from other MSI-X interrupters. 3071 * Write 1 to clear the interrupt status. 3072 */ 3073 status |= STS_EINT; 3074 writel(status, &xhci->op_regs->status); 3075 3076 /* This is the handler of the primary interrupter */ 3077 ir = xhci->interrupter; 3078 if (!hcd->msi_enabled) { 3079 u32 irq_pending; 3080 irq_pending = readl(&ir->ir_set->irq_pending); 3081 irq_pending |= IMAN_IP; 3082 writel(irq_pending, &ir->ir_set->irq_pending); 3083 } 3084 3085 if (xhci->xhc_state & XHCI_STATE_DYING || 3086 xhci->xhc_state & XHCI_STATE_HALTED) { 3087 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3088 "Shouldn't IRQs be disabled?\n"); 3089 /* Clear the event handler busy flag (RW1C); 3090 * the event ring should be empty. 3091 */ 3092 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3093 xhci_write_64(xhci, temp_64 | ERST_EHB, 3094 &ir->ir_set->erst_dequeue); 3095 ret = IRQ_HANDLED; 3096 goto out; 3097 } 3098 3099 event_ring_deq = ir->event_ring->dequeue; 3100 /* FIXME this should be a delayed service routine 3101 * that clears the EHB. 3102 */ 3103 while (xhci_handle_event(xhci, ir) > 0) { 3104 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3105 continue; 3106 xhci_update_erst_dequeue(xhci, ir, event_ring_deq); 3107 event_ring_deq = ir->event_ring->dequeue; 3108 3109 /* ring is half-full, force isoc trbs to interrupt more often */ 3110 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3111 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3112 3113 event_loop = 0; 3114 } 3115 3116 xhci_update_erst_dequeue(xhci, ir, event_ring_deq); 3117 ret = IRQ_HANDLED; 3118 3119 out: 3120 spin_unlock(&xhci->lock); 3121 3122 return ret; 3123 } 3124 3125 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3126 { 3127 return xhci_irq(hcd); 3128 } 3129 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3130 3131 /**** Endpoint Ring Operations ****/ 3132 3133 /* 3134 * Generic function for queueing a TRB on a ring. 3135 * The caller must have checked to make sure there's room on the ring. 3136 * 3137 * @more_trbs_coming: Will you enqueue more TRBs before calling 3138 * prepare_transfer()? 3139 */ 3140 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3141 bool more_trbs_coming, 3142 u32 field1, u32 field2, u32 field3, u32 field4) 3143 { 3144 struct xhci_generic_trb *trb; 3145 3146 trb = &ring->enqueue->generic; 3147 trb->field[0] = cpu_to_le32(field1); 3148 trb->field[1] = cpu_to_le32(field2); 3149 trb->field[2] = cpu_to_le32(field3); 3150 /* make sure TRB is fully written before giving it to the controller */ 3151 wmb(); 3152 trb->field[3] = cpu_to_le32(field4); 3153 3154 trace_xhci_queue_trb(ring, trb); 3155 3156 inc_enq(xhci, ring, more_trbs_coming); 3157 } 3158 3159 /* 3160 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3161 * expand ring if it start to be full. 3162 */ 3163 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3164 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3165 { 3166 unsigned int link_trb_count = 0; 3167 unsigned int new_segs = 0; 3168 3169 /* Make sure the endpoint has been added to xHC schedule */ 3170 switch (ep_state) { 3171 case EP_STATE_DISABLED: 3172 /* 3173 * USB core changed config/interfaces without notifying us, 3174 * or hardware is reporting the wrong state. 3175 */ 3176 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3177 return -ENOENT; 3178 case EP_STATE_ERROR: 3179 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3180 /* FIXME event handling code for error needs to clear it */ 3181 /* XXX not sure if this should be -ENOENT or not */ 3182 return -EINVAL; 3183 case EP_STATE_HALTED: 3184 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3185 break; 3186 case EP_STATE_STOPPED: 3187 case EP_STATE_RUNNING: 3188 break; 3189 default: 3190 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3191 /* 3192 * FIXME issue Configure Endpoint command to try to get the HC 3193 * back into a known state. 3194 */ 3195 return -EINVAL; 3196 } 3197 3198 if (ep_ring != xhci->cmd_ring) { 3199 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3200 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3201 xhci_err(xhci, "Do not support expand command ring\n"); 3202 return -ENOMEM; 3203 } 3204 3205 if (new_segs) { 3206 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3207 "ERROR no room on ep ring, try ring expansion"); 3208 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3209 xhci_err(xhci, "Ring expansion failed\n"); 3210 return -ENOMEM; 3211 } 3212 } 3213 3214 while (trb_is_link(ep_ring->enqueue)) { 3215 /* If we're not dealing with 0.95 hardware or isoc rings 3216 * on AMD 0.96 host, clear the chain bit. 3217 */ 3218 if (!xhci_link_trb_quirk(xhci) && 3219 !(ep_ring->type == TYPE_ISOC && 3220 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3221 ep_ring->enqueue->link.control &= 3222 cpu_to_le32(~TRB_CHAIN); 3223 else 3224 ep_ring->enqueue->link.control |= 3225 cpu_to_le32(TRB_CHAIN); 3226 3227 wmb(); 3228 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3229 3230 /* Toggle the cycle bit after the last ring segment. */ 3231 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3232 ep_ring->cycle_state ^= 1; 3233 3234 ep_ring->enq_seg = ep_ring->enq_seg->next; 3235 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3236 3237 /* prevent infinite loop if all first trbs are link trbs */ 3238 if (link_trb_count++ > ep_ring->num_segs) { 3239 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3240 return -EINVAL; 3241 } 3242 } 3243 3244 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3245 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3246 return -EINVAL; 3247 } 3248 3249 return 0; 3250 } 3251 3252 static int prepare_transfer(struct xhci_hcd *xhci, 3253 struct xhci_virt_device *xdev, 3254 unsigned int ep_index, 3255 unsigned int stream_id, 3256 unsigned int num_trbs, 3257 struct urb *urb, 3258 unsigned int td_index, 3259 gfp_t mem_flags) 3260 { 3261 int ret; 3262 struct urb_priv *urb_priv; 3263 struct xhci_td *td; 3264 struct xhci_ring *ep_ring; 3265 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3266 3267 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3268 stream_id); 3269 if (!ep_ring) { 3270 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3271 stream_id); 3272 return -EINVAL; 3273 } 3274 3275 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3276 num_trbs, mem_flags); 3277 if (ret) 3278 return ret; 3279 3280 urb_priv = urb->hcpriv; 3281 td = &urb_priv->td[td_index]; 3282 3283 INIT_LIST_HEAD(&td->td_list); 3284 INIT_LIST_HEAD(&td->cancelled_td_list); 3285 3286 if (td_index == 0) { 3287 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3288 if (unlikely(ret)) 3289 return ret; 3290 } 3291 3292 td->urb = urb; 3293 /* Add this TD to the tail of the endpoint ring's TD list */ 3294 list_add_tail(&td->td_list, &ep_ring->td_list); 3295 td->start_seg = ep_ring->enq_seg; 3296 td->first_trb = ep_ring->enqueue; 3297 3298 return 0; 3299 } 3300 3301 unsigned int count_trbs(u64 addr, u64 len) 3302 { 3303 unsigned int num_trbs; 3304 3305 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3306 TRB_MAX_BUFF_SIZE); 3307 if (num_trbs == 0) 3308 num_trbs++; 3309 3310 return num_trbs; 3311 } 3312 3313 static inline unsigned int count_trbs_needed(struct urb *urb) 3314 { 3315 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3316 } 3317 3318 static unsigned int count_sg_trbs_needed(struct urb *urb) 3319 { 3320 struct scatterlist *sg; 3321 unsigned int i, len, full_len, num_trbs = 0; 3322 3323 full_len = urb->transfer_buffer_length; 3324 3325 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3326 len = sg_dma_len(sg); 3327 num_trbs += count_trbs(sg_dma_address(sg), len); 3328 len = min_t(unsigned int, len, full_len); 3329 full_len -= len; 3330 if (full_len == 0) 3331 break; 3332 } 3333 3334 return num_trbs; 3335 } 3336 3337 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3338 { 3339 u64 addr, len; 3340 3341 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3342 len = urb->iso_frame_desc[i].length; 3343 3344 return count_trbs(addr, len); 3345 } 3346 3347 static void check_trb_math(struct urb *urb, int running_total) 3348 { 3349 if (unlikely(running_total != urb->transfer_buffer_length)) 3350 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3351 "queued %#x (%d), asked for %#x (%d)\n", 3352 __func__, 3353 urb->ep->desc.bEndpointAddress, 3354 running_total, running_total, 3355 urb->transfer_buffer_length, 3356 urb->transfer_buffer_length); 3357 } 3358 3359 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3360 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3361 struct xhci_generic_trb *start_trb) 3362 { 3363 /* 3364 * Pass all the TRBs to the hardware at once and make sure this write 3365 * isn't reordered. 3366 */ 3367 wmb(); 3368 if (start_cycle) 3369 start_trb->field[3] |= cpu_to_le32(start_cycle); 3370 else 3371 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3372 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3373 } 3374 3375 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3376 struct xhci_ep_ctx *ep_ctx) 3377 { 3378 int xhci_interval; 3379 int ep_interval; 3380 3381 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3382 ep_interval = urb->interval; 3383 3384 /* Convert to microframes */ 3385 if (urb->dev->speed == USB_SPEED_LOW || 3386 urb->dev->speed == USB_SPEED_FULL) 3387 ep_interval *= 8; 3388 3389 /* FIXME change this to a warning and a suggestion to use the new API 3390 * to set the polling interval (once the API is added). 3391 */ 3392 if (xhci_interval != ep_interval) { 3393 dev_dbg_ratelimited(&urb->dev->dev, 3394 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3395 ep_interval, ep_interval == 1 ? "" : "s", 3396 xhci_interval, xhci_interval == 1 ? "" : "s"); 3397 urb->interval = xhci_interval; 3398 /* Convert back to frames for LS/FS devices */ 3399 if (urb->dev->speed == USB_SPEED_LOW || 3400 urb->dev->speed == USB_SPEED_FULL) 3401 urb->interval /= 8; 3402 } 3403 } 3404 3405 /* 3406 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3407 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3408 * (comprised of sg list entries) can take several service intervals to 3409 * transmit. 3410 */ 3411 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3412 struct urb *urb, int slot_id, unsigned int ep_index) 3413 { 3414 struct xhci_ep_ctx *ep_ctx; 3415 3416 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3417 check_interval(xhci, urb, ep_ctx); 3418 3419 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3420 } 3421 3422 /* 3423 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3424 * packets remaining in the TD (*not* including this TRB). 3425 * 3426 * Total TD packet count = total_packet_count = 3427 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3428 * 3429 * Packets transferred up to and including this TRB = packets_transferred = 3430 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3431 * 3432 * TD size = total_packet_count - packets_transferred 3433 * 3434 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3435 * including this TRB, right shifted by 10 3436 * 3437 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3438 * This is taken care of in the TRB_TD_SIZE() macro 3439 * 3440 * The last TRB in a TD must have the TD size set to zero. 3441 */ 3442 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3443 int trb_buff_len, unsigned int td_total_len, 3444 struct urb *urb, bool more_trbs_coming) 3445 { 3446 u32 maxp, total_packet_count; 3447 3448 /* MTK xHCI 0.96 contains some features from 1.0 */ 3449 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3450 return ((td_total_len - transferred) >> 10); 3451 3452 /* One TRB with a zero-length data packet. */ 3453 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3454 trb_buff_len == td_total_len) 3455 return 0; 3456 3457 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3458 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3459 trb_buff_len = 0; 3460 3461 maxp = usb_endpoint_maxp(&urb->ep->desc); 3462 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3463 3464 /* Queueing functions don't count the current TRB into transferred */ 3465 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3466 } 3467 3468 3469 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3470 u32 *trb_buff_len, struct xhci_segment *seg) 3471 { 3472 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3473 unsigned int unalign; 3474 unsigned int max_pkt; 3475 u32 new_buff_len; 3476 size_t len; 3477 3478 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3479 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3480 3481 /* we got lucky, last normal TRB data on segment is packet aligned */ 3482 if (unalign == 0) 3483 return 0; 3484 3485 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3486 unalign, *trb_buff_len); 3487 3488 /* is the last nornal TRB alignable by splitting it */ 3489 if (*trb_buff_len > unalign) { 3490 *trb_buff_len -= unalign; 3491 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3492 return 0; 3493 } 3494 3495 /* 3496 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3497 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3498 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3499 */ 3500 new_buff_len = max_pkt - (enqd_len % max_pkt); 3501 3502 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3503 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3504 3505 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3506 if (usb_urb_dir_out(urb)) { 3507 if (urb->num_sgs) { 3508 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3509 seg->bounce_buf, new_buff_len, enqd_len); 3510 if (len != new_buff_len) 3511 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3512 len, new_buff_len); 3513 } else { 3514 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3515 } 3516 3517 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3518 max_pkt, DMA_TO_DEVICE); 3519 } else { 3520 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3521 max_pkt, DMA_FROM_DEVICE); 3522 } 3523 3524 if (dma_mapping_error(dev, seg->bounce_dma)) { 3525 /* try without aligning. Some host controllers survive */ 3526 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3527 return 0; 3528 } 3529 *trb_buff_len = new_buff_len; 3530 seg->bounce_len = new_buff_len; 3531 seg->bounce_offs = enqd_len; 3532 3533 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3534 3535 return 1; 3536 } 3537 3538 /* This is very similar to what ehci-q.c qtd_fill() does */ 3539 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3540 struct urb *urb, int slot_id, unsigned int ep_index) 3541 { 3542 struct xhci_ring *ring; 3543 struct urb_priv *urb_priv; 3544 struct xhci_td *td; 3545 struct xhci_generic_trb *start_trb; 3546 struct scatterlist *sg = NULL; 3547 bool more_trbs_coming = true; 3548 bool need_zero_pkt = false; 3549 bool first_trb = true; 3550 unsigned int num_trbs; 3551 unsigned int start_cycle, num_sgs = 0; 3552 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3553 int sent_len, ret; 3554 u32 field, length_field, remainder; 3555 u64 addr, send_addr; 3556 3557 ring = xhci_urb_to_transfer_ring(xhci, urb); 3558 if (!ring) 3559 return -EINVAL; 3560 3561 full_len = urb->transfer_buffer_length; 3562 /* If we have scatter/gather list, we use it. */ 3563 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3564 num_sgs = urb->num_mapped_sgs; 3565 sg = urb->sg; 3566 addr = (u64) sg_dma_address(sg); 3567 block_len = sg_dma_len(sg); 3568 num_trbs = count_sg_trbs_needed(urb); 3569 } else { 3570 num_trbs = count_trbs_needed(urb); 3571 addr = (u64) urb->transfer_dma; 3572 block_len = full_len; 3573 } 3574 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3575 ep_index, urb->stream_id, 3576 num_trbs, urb, 0, mem_flags); 3577 if (unlikely(ret < 0)) 3578 return ret; 3579 3580 urb_priv = urb->hcpriv; 3581 3582 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3583 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3584 need_zero_pkt = true; 3585 3586 td = &urb_priv->td[0]; 3587 3588 /* 3589 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3590 * until we've finished creating all the other TRBs. The ring's cycle 3591 * state may change as we enqueue the other TRBs, so save it too. 3592 */ 3593 start_trb = &ring->enqueue->generic; 3594 start_cycle = ring->cycle_state; 3595 send_addr = addr; 3596 3597 /* Queue the TRBs, even if they are zero-length */ 3598 for (enqd_len = 0; first_trb || enqd_len < full_len; 3599 enqd_len += trb_buff_len) { 3600 field = TRB_TYPE(TRB_NORMAL); 3601 3602 /* TRB buffer should not cross 64KB boundaries */ 3603 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3604 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3605 3606 if (enqd_len + trb_buff_len > full_len) 3607 trb_buff_len = full_len - enqd_len; 3608 3609 /* Don't change the cycle bit of the first TRB until later */ 3610 if (first_trb) { 3611 first_trb = false; 3612 if (start_cycle == 0) 3613 field |= TRB_CYCLE; 3614 } else 3615 field |= ring->cycle_state; 3616 3617 /* Chain all the TRBs together; clear the chain bit in the last 3618 * TRB to indicate it's the last TRB in the chain. 3619 */ 3620 if (enqd_len + trb_buff_len < full_len) { 3621 field |= TRB_CHAIN; 3622 if (trb_is_link(ring->enqueue + 1)) { 3623 if (xhci_align_td(xhci, urb, enqd_len, 3624 &trb_buff_len, 3625 ring->enq_seg)) { 3626 send_addr = ring->enq_seg->bounce_dma; 3627 /* assuming TD won't span 2 segs */ 3628 td->bounce_seg = ring->enq_seg; 3629 } 3630 } 3631 } 3632 if (enqd_len + trb_buff_len >= full_len) { 3633 field &= ~TRB_CHAIN; 3634 field |= TRB_IOC; 3635 more_trbs_coming = false; 3636 td->last_trb = ring->enqueue; 3637 td->last_trb_seg = ring->enq_seg; 3638 if (xhci_urb_suitable_for_idt(urb)) { 3639 memcpy(&send_addr, urb->transfer_buffer, 3640 trb_buff_len); 3641 le64_to_cpus(&send_addr); 3642 field |= TRB_IDT; 3643 } 3644 } 3645 3646 /* Only set interrupt on short packet for IN endpoints */ 3647 if (usb_urb_dir_in(urb)) 3648 field |= TRB_ISP; 3649 3650 /* Set the TRB length, TD size, and interrupter fields. */ 3651 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3652 full_len, urb, more_trbs_coming); 3653 3654 length_field = TRB_LEN(trb_buff_len) | 3655 TRB_TD_SIZE(remainder) | 3656 TRB_INTR_TARGET(0); 3657 3658 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3659 lower_32_bits(send_addr), 3660 upper_32_bits(send_addr), 3661 length_field, 3662 field); 3663 td->num_trbs++; 3664 addr += trb_buff_len; 3665 sent_len = trb_buff_len; 3666 3667 while (sg && sent_len >= block_len) { 3668 /* New sg entry */ 3669 --num_sgs; 3670 sent_len -= block_len; 3671 sg = sg_next(sg); 3672 if (num_sgs != 0 && sg) { 3673 block_len = sg_dma_len(sg); 3674 addr = (u64) sg_dma_address(sg); 3675 addr += sent_len; 3676 } 3677 } 3678 block_len -= sent_len; 3679 send_addr = addr; 3680 } 3681 3682 if (need_zero_pkt) { 3683 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3684 ep_index, urb->stream_id, 3685 1, urb, 1, mem_flags); 3686 urb_priv->td[1].last_trb = ring->enqueue; 3687 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3688 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3689 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3690 urb_priv->td[1].num_trbs++; 3691 } 3692 3693 check_trb_math(urb, enqd_len); 3694 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3695 start_cycle, start_trb); 3696 return 0; 3697 } 3698 3699 /* Caller must have locked xhci->lock */ 3700 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3701 struct urb *urb, int slot_id, unsigned int ep_index) 3702 { 3703 struct xhci_ring *ep_ring; 3704 int num_trbs; 3705 int ret; 3706 struct usb_ctrlrequest *setup; 3707 struct xhci_generic_trb *start_trb; 3708 int start_cycle; 3709 u32 field; 3710 struct urb_priv *urb_priv; 3711 struct xhci_td *td; 3712 3713 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3714 if (!ep_ring) 3715 return -EINVAL; 3716 3717 /* 3718 * Need to copy setup packet into setup TRB, so we can't use the setup 3719 * DMA address. 3720 */ 3721 if (!urb->setup_packet) 3722 return -EINVAL; 3723 3724 /* 1 TRB for setup, 1 for status */ 3725 num_trbs = 2; 3726 /* 3727 * Don't need to check if we need additional event data and normal TRBs, 3728 * since data in control transfers will never get bigger than 16MB 3729 * XXX: can we get a buffer that crosses 64KB boundaries? 3730 */ 3731 if (urb->transfer_buffer_length > 0) 3732 num_trbs++; 3733 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3734 ep_index, urb->stream_id, 3735 num_trbs, urb, 0, mem_flags); 3736 if (ret < 0) 3737 return ret; 3738 3739 urb_priv = urb->hcpriv; 3740 td = &urb_priv->td[0]; 3741 td->num_trbs = num_trbs; 3742 3743 /* 3744 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3745 * until we've finished creating all the other TRBs. The ring's cycle 3746 * state may change as we enqueue the other TRBs, so save it too. 3747 */ 3748 start_trb = &ep_ring->enqueue->generic; 3749 start_cycle = ep_ring->cycle_state; 3750 3751 /* Queue setup TRB - see section 6.4.1.2.1 */ 3752 /* FIXME better way to translate setup_packet into two u32 fields? */ 3753 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3754 field = 0; 3755 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3756 if (start_cycle == 0) 3757 field |= 0x1; 3758 3759 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3760 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3761 if (urb->transfer_buffer_length > 0) { 3762 if (setup->bRequestType & USB_DIR_IN) 3763 field |= TRB_TX_TYPE(TRB_DATA_IN); 3764 else 3765 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3766 } 3767 } 3768 3769 queue_trb(xhci, ep_ring, true, 3770 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3771 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3772 TRB_LEN(8) | TRB_INTR_TARGET(0), 3773 /* Immediate data in pointer */ 3774 field); 3775 3776 /* If there's data, queue data TRBs */ 3777 /* Only set interrupt on short packet for IN endpoints */ 3778 if (usb_urb_dir_in(urb)) 3779 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3780 else 3781 field = TRB_TYPE(TRB_DATA); 3782 3783 if (urb->transfer_buffer_length > 0) { 3784 u32 length_field, remainder; 3785 u64 addr; 3786 3787 if (xhci_urb_suitable_for_idt(urb)) { 3788 memcpy(&addr, urb->transfer_buffer, 3789 urb->transfer_buffer_length); 3790 le64_to_cpus(&addr); 3791 field |= TRB_IDT; 3792 } else { 3793 addr = (u64) urb->transfer_dma; 3794 } 3795 3796 remainder = xhci_td_remainder(xhci, 0, 3797 urb->transfer_buffer_length, 3798 urb->transfer_buffer_length, 3799 urb, 1); 3800 length_field = TRB_LEN(urb->transfer_buffer_length) | 3801 TRB_TD_SIZE(remainder) | 3802 TRB_INTR_TARGET(0); 3803 if (setup->bRequestType & USB_DIR_IN) 3804 field |= TRB_DIR_IN; 3805 queue_trb(xhci, ep_ring, true, 3806 lower_32_bits(addr), 3807 upper_32_bits(addr), 3808 length_field, 3809 field | ep_ring->cycle_state); 3810 } 3811 3812 /* Save the DMA address of the last TRB in the TD */ 3813 td->last_trb = ep_ring->enqueue; 3814 td->last_trb_seg = ep_ring->enq_seg; 3815 3816 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3817 /* If the device sent data, the status stage is an OUT transfer */ 3818 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3819 field = 0; 3820 else 3821 field = TRB_DIR_IN; 3822 queue_trb(xhci, ep_ring, false, 3823 0, 3824 0, 3825 TRB_INTR_TARGET(0), 3826 /* Event on completion */ 3827 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3828 3829 giveback_first_trb(xhci, slot_id, ep_index, 0, 3830 start_cycle, start_trb); 3831 return 0; 3832 } 3833 3834 /* 3835 * The transfer burst count field of the isochronous TRB defines the number of 3836 * bursts that are required to move all packets in this TD. Only SuperSpeed 3837 * devices can burst up to bMaxBurst number of packets per service interval. 3838 * This field is zero based, meaning a value of zero in the field means one 3839 * burst. Basically, for everything but SuperSpeed devices, this field will be 3840 * zero. Only xHCI 1.0 host controllers support this field. 3841 */ 3842 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3843 struct urb *urb, unsigned int total_packet_count) 3844 { 3845 unsigned int max_burst; 3846 3847 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3848 return 0; 3849 3850 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3851 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3852 } 3853 3854 /* 3855 * Returns the number of packets in the last "burst" of packets. This field is 3856 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3857 * the last burst packet count is equal to the total number of packets in the 3858 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3859 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3860 * contain 1 to (bMaxBurst + 1) packets. 3861 */ 3862 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3863 struct urb *urb, unsigned int total_packet_count) 3864 { 3865 unsigned int max_burst; 3866 unsigned int residue; 3867 3868 if (xhci->hci_version < 0x100) 3869 return 0; 3870 3871 if (urb->dev->speed >= USB_SPEED_SUPER) { 3872 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3873 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3874 residue = total_packet_count % (max_burst + 1); 3875 /* If residue is zero, the last burst contains (max_burst + 1) 3876 * number of packets, but the TLBPC field is zero-based. 3877 */ 3878 if (residue == 0) 3879 return max_burst; 3880 return residue - 1; 3881 } 3882 if (total_packet_count == 0) 3883 return 0; 3884 return total_packet_count - 1; 3885 } 3886 3887 /* 3888 * Calculates Frame ID field of the isochronous TRB identifies the 3889 * target frame that the Interval associated with this Isochronous 3890 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3891 * 3892 * Returns actual frame id on success, negative value on error. 3893 */ 3894 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3895 struct urb *urb, int index) 3896 { 3897 int start_frame, ist, ret = 0; 3898 int start_frame_id, end_frame_id, current_frame_id; 3899 3900 if (urb->dev->speed == USB_SPEED_LOW || 3901 urb->dev->speed == USB_SPEED_FULL) 3902 start_frame = urb->start_frame + index * urb->interval; 3903 else 3904 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3905 3906 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3907 * 3908 * If bit [3] of IST is cleared to '0', software can add a TRB no 3909 * later than IST[2:0] Microframes before that TRB is scheduled to 3910 * be executed. 3911 * If bit [3] of IST is set to '1', software can add a TRB no later 3912 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3913 */ 3914 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3915 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3916 ist <<= 3; 3917 3918 /* Software shall not schedule an Isoch TD with a Frame ID value that 3919 * is less than the Start Frame ID or greater than the End Frame ID, 3920 * where: 3921 * 3922 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3923 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3924 * 3925 * Both the End Frame ID and Start Frame ID values are calculated 3926 * in microframes. When software determines the valid Frame ID value; 3927 * The End Frame ID value should be rounded down to the nearest Frame 3928 * boundary, and the Start Frame ID value should be rounded up to the 3929 * nearest Frame boundary. 3930 */ 3931 current_frame_id = readl(&xhci->run_regs->microframe_index); 3932 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3933 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3934 3935 start_frame &= 0x7ff; 3936 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3937 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3938 3939 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3940 __func__, index, readl(&xhci->run_regs->microframe_index), 3941 start_frame_id, end_frame_id, start_frame); 3942 3943 if (start_frame_id < end_frame_id) { 3944 if (start_frame > end_frame_id || 3945 start_frame < start_frame_id) 3946 ret = -EINVAL; 3947 } else if (start_frame_id > end_frame_id) { 3948 if ((start_frame > end_frame_id && 3949 start_frame < start_frame_id)) 3950 ret = -EINVAL; 3951 } else { 3952 ret = -EINVAL; 3953 } 3954 3955 if (index == 0) { 3956 if (ret == -EINVAL || start_frame == start_frame_id) { 3957 start_frame = start_frame_id + 1; 3958 if (urb->dev->speed == USB_SPEED_LOW || 3959 urb->dev->speed == USB_SPEED_FULL) 3960 urb->start_frame = start_frame; 3961 else 3962 urb->start_frame = start_frame << 3; 3963 ret = 0; 3964 } 3965 } 3966 3967 if (ret) { 3968 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3969 start_frame, current_frame_id, index, 3970 start_frame_id, end_frame_id); 3971 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3972 return ret; 3973 } 3974 3975 return start_frame; 3976 } 3977 3978 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3979 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3980 { 3981 if (xhci->hci_version < 0x100) 3982 return false; 3983 /* always generate an event interrupt for the last TD */ 3984 if (i == num_tds - 1) 3985 return false; 3986 /* 3987 * If AVOID_BEI is set the host handles full event rings poorly, 3988 * generate an event at least every 8th TD to clear the event ring 3989 */ 3990 if (i && xhci->quirks & XHCI_AVOID_BEI) 3991 return !!(i % xhci->isoc_bei_interval); 3992 3993 return true; 3994 } 3995 3996 /* This is for isoc transfer */ 3997 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3998 struct urb *urb, int slot_id, unsigned int ep_index) 3999 { 4000 struct xhci_ring *ep_ring; 4001 struct urb_priv *urb_priv; 4002 struct xhci_td *td; 4003 int num_tds, trbs_per_td; 4004 struct xhci_generic_trb *start_trb; 4005 bool first_trb; 4006 int start_cycle; 4007 u32 field, length_field; 4008 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4009 u64 start_addr, addr; 4010 int i, j; 4011 bool more_trbs_coming; 4012 struct xhci_virt_ep *xep; 4013 int frame_id; 4014 4015 xep = &xhci->devs[slot_id]->eps[ep_index]; 4016 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4017 4018 num_tds = urb->number_of_packets; 4019 if (num_tds < 1) { 4020 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4021 return -EINVAL; 4022 } 4023 start_addr = (u64) urb->transfer_dma; 4024 start_trb = &ep_ring->enqueue->generic; 4025 start_cycle = ep_ring->cycle_state; 4026 4027 urb_priv = urb->hcpriv; 4028 /* Queue the TRBs for each TD, even if they are zero-length */ 4029 for (i = 0; i < num_tds; i++) { 4030 unsigned int total_pkt_count, max_pkt; 4031 unsigned int burst_count, last_burst_pkt_count; 4032 u32 sia_frame_id; 4033 4034 first_trb = true; 4035 running_total = 0; 4036 addr = start_addr + urb->iso_frame_desc[i].offset; 4037 td_len = urb->iso_frame_desc[i].length; 4038 td_remain_len = td_len; 4039 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4040 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4041 4042 /* A zero-length transfer still involves at least one packet. */ 4043 if (total_pkt_count == 0) 4044 total_pkt_count++; 4045 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4046 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4047 urb, total_pkt_count); 4048 4049 trbs_per_td = count_isoc_trbs_needed(urb, i); 4050 4051 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4052 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4053 if (ret < 0) { 4054 if (i == 0) 4055 return ret; 4056 goto cleanup; 4057 } 4058 td = &urb_priv->td[i]; 4059 td->num_trbs = trbs_per_td; 4060 /* use SIA as default, if frame id is used overwrite it */ 4061 sia_frame_id = TRB_SIA; 4062 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4063 HCC_CFC(xhci->hcc_params)) { 4064 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4065 if (frame_id >= 0) 4066 sia_frame_id = TRB_FRAME_ID(frame_id); 4067 } 4068 /* 4069 * Set isoc specific data for the first TRB in a TD. 4070 * Prevent HW from getting the TRBs by keeping the cycle state 4071 * inverted in the first TDs isoc TRB. 4072 */ 4073 field = TRB_TYPE(TRB_ISOC) | 4074 TRB_TLBPC(last_burst_pkt_count) | 4075 sia_frame_id | 4076 (i ? ep_ring->cycle_state : !start_cycle); 4077 4078 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4079 if (!xep->use_extended_tbc) 4080 field |= TRB_TBC(burst_count); 4081 4082 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4083 for (j = 0; j < trbs_per_td; j++) { 4084 u32 remainder = 0; 4085 4086 /* only first TRB is isoc, overwrite otherwise */ 4087 if (!first_trb) 4088 field = TRB_TYPE(TRB_NORMAL) | 4089 ep_ring->cycle_state; 4090 4091 /* Only set interrupt on short packet for IN EPs */ 4092 if (usb_urb_dir_in(urb)) 4093 field |= TRB_ISP; 4094 4095 /* Set the chain bit for all except the last TRB */ 4096 if (j < trbs_per_td - 1) { 4097 more_trbs_coming = true; 4098 field |= TRB_CHAIN; 4099 } else { 4100 more_trbs_coming = false; 4101 td->last_trb = ep_ring->enqueue; 4102 td->last_trb_seg = ep_ring->enq_seg; 4103 field |= TRB_IOC; 4104 if (trb_block_event_intr(xhci, num_tds, i)) 4105 field |= TRB_BEI; 4106 } 4107 /* Calculate TRB length */ 4108 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4109 if (trb_buff_len > td_remain_len) 4110 trb_buff_len = td_remain_len; 4111 4112 /* Set the TRB length, TD size, & interrupter fields. */ 4113 remainder = xhci_td_remainder(xhci, running_total, 4114 trb_buff_len, td_len, 4115 urb, more_trbs_coming); 4116 4117 length_field = TRB_LEN(trb_buff_len) | 4118 TRB_INTR_TARGET(0); 4119 4120 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4121 if (first_trb && xep->use_extended_tbc) 4122 length_field |= TRB_TD_SIZE_TBC(burst_count); 4123 else 4124 length_field |= TRB_TD_SIZE(remainder); 4125 first_trb = false; 4126 4127 queue_trb(xhci, ep_ring, more_trbs_coming, 4128 lower_32_bits(addr), 4129 upper_32_bits(addr), 4130 length_field, 4131 field); 4132 running_total += trb_buff_len; 4133 4134 addr += trb_buff_len; 4135 td_remain_len -= trb_buff_len; 4136 } 4137 4138 /* Check TD length */ 4139 if (running_total != td_len) { 4140 xhci_err(xhci, "ISOC TD length unmatch\n"); 4141 ret = -EINVAL; 4142 goto cleanup; 4143 } 4144 } 4145 4146 /* store the next frame id */ 4147 if (HCC_CFC(xhci->hcc_params)) 4148 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4149 4150 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4151 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4152 usb_amd_quirk_pll_disable(); 4153 } 4154 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4155 4156 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4157 start_cycle, start_trb); 4158 return 0; 4159 cleanup: 4160 /* Clean up a partially enqueued isoc transfer. */ 4161 4162 for (i--; i >= 0; i--) 4163 list_del_init(&urb_priv->td[i].td_list); 4164 4165 /* Use the first TD as a temporary variable to turn the TDs we've queued 4166 * into No-ops with a software-owned cycle bit. That way the hardware 4167 * won't accidentally start executing bogus TDs when we partially 4168 * overwrite them. td->first_trb and td->start_seg are already set. 4169 */ 4170 urb_priv->td[0].last_trb = ep_ring->enqueue; 4171 /* Every TRB except the first & last will have its cycle bit flipped. */ 4172 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4173 4174 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4175 ep_ring->enqueue = urb_priv->td[0].first_trb; 4176 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4177 ep_ring->cycle_state = start_cycle; 4178 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4179 return ret; 4180 } 4181 4182 /* 4183 * Check transfer ring to guarantee there is enough room for the urb. 4184 * Update ISO URB start_frame and interval. 4185 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4186 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4187 * Contiguous Frame ID is not supported by HC. 4188 */ 4189 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4190 struct urb *urb, int slot_id, unsigned int ep_index) 4191 { 4192 struct xhci_virt_device *xdev; 4193 struct xhci_ring *ep_ring; 4194 struct xhci_ep_ctx *ep_ctx; 4195 int start_frame; 4196 int num_tds, num_trbs, i; 4197 int ret; 4198 struct xhci_virt_ep *xep; 4199 int ist; 4200 4201 xdev = xhci->devs[slot_id]; 4202 xep = &xhci->devs[slot_id]->eps[ep_index]; 4203 ep_ring = xdev->eps[ep_index].ring; 4204 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4205 4206 num_trbs = 0; 4207 num_tds = urb->number_of_packets; 4208 for (i = 0; i < num_tds; i++) 4209 num_trbs += count_isoc_trbs_needed(urb, i); 4210 4211 /* Check the ring to guarantee there is enough room for the whole urb. 4212 * Do not insert any td of the urb to the ring if the check failed. 4213 */ 4214 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4215 num_trbs, mem_flags); 4216 if (ret) 4217 return ret; 4218 4219 /* 4220 * Check interval value. This should be done before we start to 4221 * calculate the start frame value. 4222 */ 4223 check_interval(xhci, urb, ep_ctx); 4224 4225 /* Calculate the start frame and put it in urb->start_frame. */ 4226 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4227 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4228 urb->start_frame = xep->next_frame_id; 4229 goto skip_start_over; 4230 } 4231 } 4232 4233 start_frame = readl(&xhci->run_regs->microframe_index); 4234 start_frame &= 0x3fff; 4235 /* 4236 * Round up to the next frame and consider the time before trb really 4237 * gets scheduled by hardare. 4238 */ 4239 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4240 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4241 ist <<= 3; 4242 start_frame += ist + XHCI_CFC_DELAY; 4243 start_frame = roundup(start_frame, 8); 4244 4245 /* 4246 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4247 * is greate than 8 microframes. 4248 */ 4249 if (urb->dev->speed == USB_SPEED_LOW || 4250 urb->dev->speed == USB_SPEED_FULL) { 4251 start_frame = roundup(start_frame, urb->interval << 3); 4252 urb->start_frame = start_frame >> 3; 4253 } else { 4254 start_frame = roundup(start_frame, urb->interval); 4255 urb->start_frame = start_frame; 4256 } 4257 4258 skip_start_over: 4259 4260 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4261 } 4262 4263 /**** Command Ring Operations ****/ 4264 4265 /* Generic function for queueing a command TRB on the command ring. 4266 * Check to make sure there's room on the command ring for one command TRB. 4267 * Also check that there's room reserved for commands that must not fail. 4268 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4269 * then only check for the number of reserved spots. 4270 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4271 * because the command event handler may want to resubmit a failed command. 4272 */ 4273 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4274 u32 field1, u32 field2, 4275 u32 field3, u32 field4, bool command_must_succeed) 4276 { 4277 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4278 int ret; 4279 4280 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4281 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4282 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4283 return -ESHUTDOWN; 4284 } 4285 4286 if (!command_must_succeed) 4287 reserved_trbs++; 4288 4289 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4290 reserved_trbs, GFP_ATOMIC); 4291 if (ret < 0) { 4292 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4293 if (command_must_succeed) 4294 xhci_err(xhci, "ERR: Reserved TRB counting for " 4295 "unfailable commands failed.\n"); 4296 return ret; 4297 } 4298 4299 cmd->command_trb = xhci->cmd_ring->enqueue; 4300 4301 /* if there are no other commands queued we start the timeout timer */ 4302 if (list_empty(&xhci->cmd_list)) { 4303 xhci->current_cmd = cmd; 4304 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4305 } 4306 4307 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4308 4309 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4310 field4 | xhci->cmd_ring->cycle_state); 4311 return 0; 4312 } 4313 4314 /* Queue a slot enable or disable request on the command ring */ 4315 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4316 u32 trb_type, u32 slot_id) 4317 { 4318 return queue_command(xhci, cmd, 0, 0, 0, 4319 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4320 } 4321 4322 /* Queue an address device command TRB */ 4323 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4324 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4325 { 4326 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4327 upper_32_bits(in_ctx_ptr), 0, 4328 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4329 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4330 } 4331 4332 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4333 u32 field1, u32 field2, u32 field3, u32 field4) 4334 { 4335 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4336 } 4337 4338 /* Queue a reset device command TRB */ 4339 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4340 u32 slot_id) 4341 { 4342 return queue_command(xhci, cmd, 0, 0, 0, 4343 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4344 false); 4345 } 4346 4347 /* Queue a configure endpoint command TRB */ 4348 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4349 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4350 u32 slot_id, bool command_must_succeed) 4351 { 4352 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4353 upper_32_bits(in_ctx_ptr), 0, 4354 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4355 command_must_succeed); 4356 } 4357 4358 /* Queue an evaluate context command TRB */ 4359 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4360 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4361 { 4362 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4363 upper_32_bits(in_ctx_ptr), 0, 4364 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4365 command_must_succeed); 4366 } 4367 4368 /* 4369 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4370 * activity on an endpoint that is about to be suspended. 4371 */ 4372 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4373 int slot_id, unsigned int ep_index, int suspend) 4374 { 4375 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4376 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4377 u32 type = TRB_TYPE(TRB_STOP_RING); 4378 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4379 4380 return queue_command(xhci, cmd, 0, 0, 0, 4381 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4382 } 4383 4384 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4385 int slot_id, unsigned int ep_index, 4386 enum xhci_ep_reset_type reset_type) 4387 { 4388 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4389 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4390 u32 type = TRB_TYPE(TRB_RESET_EP); 4391 4392 if (reset_type == EP_SOFT_RESET) 4393 type |= TRB_TSP; 4394 4395 return queue_command(xhci, cmd, 0, 0, 0, 4396 trb_slot_id | trb_ep_index | type, false); 4397 } 4398