1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 63 u32 field1, u32 field2, 64 u32 field3, u32 field4, bool command_must_succeed); 65 66 /* 67 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 68 * address of the TRB. 69 */ 70 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 71 union xhci_trb *trb) 72 { 73 unsigned long segment_offset; 74 75 if (!seg || !trb || trb < seg->trbs) 76 return 0; 77 /* offset in TRBs */ 78 segment_offset = trb - seg->trbs; 79 if (segment_offset >= TRBS_PER_SEGMENT) 80 return 0; 81 return seg->dma + (segment_offset * sizeof(*trb)); 82 } 83 84 static bool trb_is_noop(union xhci_trb *trb) 85 { 86 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 87 } 88 89 static bool trb_is_link(union xhci_trb *trb) 90 { 91 return TRB_TYPE_LINK_LE32(trb->link.control); 92 } 93 94 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 97 } 98 99 static bool last_trb_on_ring(struct xhci_ring *ring, 100 struct xhci_segment *seg, union xhci_trb *trb) 101 { 102 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 103 } 104 105 static bool link_trb_toggles_cycle(union xhci_trb *trb) 106 { 107 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 108 } 109 110 static bool last_td_in_urb(struct xhci_td *td) 111 { 112 struct urb_priv *urb_priv = td->urb->hcpriv; 113 114 return urb_priv->num_tds_done == urb_priv->num_tds; 115 } 116 117 static void inc_td_cnt(struct urb *urb) 118 { 119 struct urb_priv *urb_priv = urb->hcpriv; 120 121 urb_priv->num_tds_done++; 122 } 123 124 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 125 { 126 if (trb_is_link(trb)) { 127 /* unchain chained link TRBs */ 128 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 129 } else { 130 trb->generic.field[0] = 0; 131 trb->generic.field[1] = 0; 132 trb->generic.field[2] = 0; 133 /* Preserve only the cycle bit of this TRB */ 134 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 135 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 136 } 137 } 138 139 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 140 * TRB is in a new segment. This does not skip over link TRBs, and it does not 141 * effect the ring dequeue or enqueue pointers. 142 */ 143 static void next_trb(struct xhci_hcd *xhci, 144 struct xhci_ring *ring, 145 struct xhci_segment **seg, 146 union xhci_trb **trb) 147 { 148 if (trb_is_link(*trb)) { 149 *seg = (*seg)->next; 150 *trb = ((*seg)->trbs); 151 } else { 152 (*trb)++; 153 } 154 } 155 156 /* 157 * See Cycle bit rules. SW is the consumer for the event ring only. 158 */ 159 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 160 { 161 unsigned int link_trb_count = 0; 162 163 /* event ring doesn't have link trbs, check for last trb */ 164 if (ring->type == TYPE_EVENT) { 165 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 166 ring->dequeue++; 167 goto out; 168 } 169 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 170 ring->cycle_state ^= 1; 171 ring->deq_seg = ring->deq_seg->next; 172 ring->dequeue = ring->deq_seg->trbs; 173 goto out; 174 } 175 176 /* All other rings have link trbs */ 177 if (!trb_is_link(ring->dequeue)) { 178 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 179 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 180 } else { 181 ring->dequeue++; 182 ring->num_trbs_free++; 183 } 184 } 185 186 while (trb_is_link(ring->dequeue)) { 187 ring->deq_seg = ring->deq_seg->next; 188 ring->dequeue = ring->deq_seg->trbs; 189 190 if (link_trb_count++ > ring->num_segs) { 191 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 192 break; 193 } 194 } 195 out: 196 trace_xhci_inc_deq(ring); 197 198 return; 199 } 200 201 /* 202 * See Cycle bit rules. SW is the consumer for the event ring only. 203 * 204 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 205 * chain bit is set), then set the chain bit in all the following link TRBs. 206 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 207 * have their chain bit cleared (so that each Link TRB is a separate TD). 208 * 209 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 210 * set, but other sections talk about dealing with the chain bit set. This was 211 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 212 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 213 * 214 * @more_trbs_coming: Will you enqueue more TRBs before calling 215 * prepare_transfer()? 216 */ 217 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 218 bool more_trbs_coming) 219 { 220 u32 chain; 221 union xhci_trb *next; 222 unsigned int link_trb_count = 0; 223 224 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 225 /* If this is not event ring, there is one less usable TRB */ 226 if (!trb_is_link(ring->enqueue)) 227 ring->num_trbs_free--; 228 229 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 230 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 231 return; 232 } 233 234 next = ++(ring->enqueue); 235 236 /* Update the dequeue pointer further if that was a link TRB */ 237 while (trb_is_link(next)) { 238 239 /* 240 * If the caller doesn't plan on enqueueing more TDs before 241 * ringing the doorbell, then we don't want to give the link TRB 242 * to the hardware just yet. We'll give the link TRB back in 243 * prepare_ring() just before we enqueue the TD at the top of 244 * the ring. 245 */ 246 if (!chain && !more_trbs_coming) 247 break; 248 249 /* If we're not dealing with 0.95 hardware or isoc rings on 250 * AMD 0.96 host, carry over the chain bit of the previous TRB 251 * (which may mean the chain bit is cleared). 252 */ 253 if (!(ring->type == TYPE_ISOC && 254 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 255 !xhci_link_trb_quirk(xhci)) { 256 next->link.control &= cpu_to_le32(~TRB_CHAIN); 257 next->link.control |= cpu_to_le32(chain); 258 } 259 /* Give this link TRB to the hardware */ 260 wmb(); 261 next->link.control ^= cpu_to_le32(TRB_CYCLE); 262 263 /* Toggle the cycle bit after the last ring segment. */ 264 if (link_trb_toggles_cycle(next)) 265 ring->cycle_state ^= 1; 266 267 ring->enq_seg = ring->enq_seg->next; 268 ring->enqueue = ring->enq_seg->trbs; 269 next = ring->enqueue; 270 271 if (link_trb_count++ > ring->num_segs) { 272 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 273 break; 274 } 275 } 276 277 trace_xhci_inc_enq(ring); 278 } 279 280 /* 281 * Check to see if there's room to enqueue num_trbs on the ring and make sure 282 * enqueue pointer will not advance into dequeue segment. See rules above. 283 */ 284 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 285 unsigned int num_trbs) 286 { 287 int num_trbs_in_deq_seg; 288 289 if (ring->num_trbs_free < num_trbs) 290 return 0; 291 292 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 293 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 294 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 295 return 0; 296 } 297 298 return 1; 299 } 300 301 /* Ring the host controller doorbell after placing a command on the ring */ 302 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 303 { 304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 305 return; 306 307 xhci_dbg(xhci, "// Ding dong!\n"); 308 309 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 310 311 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 312 /* Flush PCI posted writes */ 313 readl(&xhci->dba->doorbell[0]); 314 } 315 316 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 317 { 318 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 319 } 320 321 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 322 { 323 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 324 cmd_list); 325 } 326 327 /* 328 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 329 * If there are other commands waiting then restart the ring and kick the timer. 330 * This must be called with command ring stopped and xhci->lock held. 331 */ 332 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 333 struct xhci_command *cur_cmd) 334 { 335 struct xhci_command *i_cmd; 336 337 /* Turn all aborted commands in list to no-ops, then restart */ 338 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 339 340 if (i_cmd->status != COMP_COMMAND_ABORTED) 341 continue; 342 343 i_cmd->status = COMP_COMMAND_RING_STOPPED; 344 345 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 346 i_cmd->command_trb); 347 348 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 349 350 /* 351 * caller waiting for completion is called when command 352 * completion event is received for these no-op commands 353 */ 354 } 355 356 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 357 358 /* ring command ring doorbell to restart the command ring */ 359 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 360 !(xhci->xhc_state & XHCI_STATE_DYING)) { 361 xhci->current_cmd = cur_cmd; 362 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 363 xhci_ring_cmd_db(xhci); 364 } 365 } 366 367 /* Must be called with xhci->lock held, releases and aquires lock back */ 368 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 369 { 370 u64 temp_64; 371 int ret; 372 373 xhci_dbg(xhci, "Abort command ring\n"); 374 375 reinit_completion(&xhci->cmd_ring_stop_completion); 376 377 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 378 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 379 &xhci->op_regs->cmd_ring); 380 381 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 382 * completion of the Command Abort operation. If CRR is not negated in 5 383 * seconds then driver handles it as if host died (-ENODEV). 384 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 385 * and try to recover a -ETIMEDOUT with a host controller reset. 386 */ 387 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 388 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 389 if (ret < 0) { 390 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 391 xhci_halt(xhci); 392 xhci_hc_died(xhci); 393 return ret; 394 } 395 /* 396 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 397 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 398 * but the completion event in never sent. Wait 2 secs (arbitrary 399 * number) to handle those cases after negation of CMD_RING_RUNNING. 400 */ 401 spin_unlock_irqrestore(&xhci->lock, flags); 402 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 403 msecs_to_jiffies(2000)); 404 spin_lock_irqsave(&xhci->lock, flags); 405 if (!ret) { 406 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 407 xhci_cleanup_command_queue(xhci); 408 } else { 409 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 410 } 411 return 0; 412 } 413 414 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 415 unsigned int slot_id, 416 unsigned int ep_index, 417 unsigned int stream_id) 418 { 419 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 420 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 421 unsigned int ep_state = ep->ep_state; 422 423 /* Don't ring the doorbell for this endpoint if there are pending 424 * cancellations because we don't want to interrupt processing. 425 * We don't want to restart any stream rings if there's a set dequeue 426 * pointer command pending because the device can choose to start any 427 * stream once the endpoint is on the HW schedule. 428 */ 429 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 430 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 431 return; 432 433 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 434 435 writel(DB_VALUE(ep_index, stream_id), db_addr); 436 /* flush the write */ 437 readl(db_addr); 438 } 439 440 /* Ring the doorbell for any rings with pending URBs */ 441 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 442 unsigned int slot_id, 443 unsigned int ep_index) 444 { 445 unsigned int stream_id; 446 struct xhci_virt_ep *ep; 447 448 ep = &xhci->devs[slot_id]->eps[ep_index]; 449 450 /* A ring has pending URBs if its TD list is not empty */ 451 if (!(ep->ep_state & EP_HAS_STREAMS)) { 452 if (ep->ring && !(list_empty(&ep->ring->td_list))) 453 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 454 return; 455 } 456 457 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 458 stream_id++) { 459 struct xhci_stream_info *stream_info = ep->stream_info; 460 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 461 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 462 stream_id); 463 } 464 } 465 466 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 467 unsigned int slot_id, 468 unsigned int ep_index) 469 { 470 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 471 } 472 473 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 474 unsigned int slot_id, 475 unsigned int ep_index) 476 { 477 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 478 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 479 return NULL; 480 } 481 if (ep_index >= EP_CTX_PER_DEV) { 482 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 483 return NULL; 484 } 485 if (!xhci->devs[slot_id]) { 486 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 487 return NULL; 488 } 489 490 return &xhci->devs[slot_id]->eps[ep_index]; 491 } 492 493 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 494 struct xhci_virt_ep *ep, 495 unsigned int stream_id) 496 { 497 /* common case, no streams */ 498 if (!(ep->ep_state & EP_HAS_STREAMS)) 499 return ep->ring; 500 501 if (!ep->stream_info) 502 return NULL; 503 504 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 505 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 506 stream_id, ep->vdev->slot_id, ep->ep_index); 507 return NULL; 508 } 509 510 return ep->stream_info->stream_rings[stream_id]; 511 } 512 513 /* Get the right ring for the given slot_id, ep_index and stream_id. 514 * If the endpoint supports streams, boundary check the URB's stream ID. 515 * If the endpoint doesn't support streams, return the singular endpoint ring. 516 */ 517 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 518 unsigned int slot_id, unsigned int ep_index, 519 unsigned int stream_id) 520 { 521 struct xhci_virt_ep *ep; 522 523 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 524 if (!ep) 525 return NULL; 526 527 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 528 } 529 530 531 /* 532 * Get the hw dequeue pointer xHC stopped on, either directly from the 533 * endpoint context, or if streams are in use from the stream context. 534 * The returned hw_dequeue contains the lowest four bits with cycle state 535 * and possbile stream context type. 536 */ 537 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 538 unsigned int ep_index, unsigned int stream_id) 539 { 540 struct xhci_ep_ctx *ep_ctx; 541 struct xhci_stream_ctx *st_ctx; 542 struct xhci_virt_ep *ep; 543 544 ep = &vdev->eps[ep_index]; 545 546 if (ep->ep_state & EP_HAS_STREAMS) { 547 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 548 return le64_to_cpu(st_ctx->stream_ring); 549 } 550 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 551 return le64_to_cpu(ep_ctx->deq); 552 } 553 554 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 555 unsigned int slot_id, unsigned int ep_index, 556 unsigned int stream_id, struct xhci_td *td) 557 { 558 struct xhci_virt_device *dev = xhci->devs[slot_id]; 559 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 560 struct xhci_ring *ep_ring; 561 struct xhci_command *cmd; 562 struct xhci_segment *new_seg; 563 union xhci_trb *new_deq; 564 int new_cycle; 565 dma_addr_t addr; 566 u64 hw_dequeue; 567 bool cycle_found = false; 568 bool td_last_trb_found = false; 569 u32 trb_sct = 0; 570 int ret; 571 572 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 573 ep_index, stream_id); 574 if (!ep_ring) { 575 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 576 stream_id); 577 return -ENODEV; 578 } 579 /* 580 * A cancelled TD can complete with a stall if HW cached the trb. 581 * In this case driver can't find td, but if the ring is empty we 582 * can move the dequeue pointer to the current enqueue position. 583 * We shouldn't hit this anymore as cached cancelled TRBs are given back 584 * after clearing the cache, but be on the safe side and keep it anyway 585 */ 586 if (!td) { 587 if (list_empty(&ep_ring->td_list)) { 588 new_seg = ep_ring->enq_seg; 589 new_deq = ep_ring->enqueue; 590 new_cycle = ep_ring->cycle_state; 591 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 592 goto deq_found; 593 } else { 594 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 595 return -EINVAL; 596 } 597 } 598 599 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 600 new_seg = ep_ring->deq_seg; 601 new_deq = ep_ring->dequeue; 602 new_cycle = hw_dequeue & 0x1; 603 604 /* 605 * We want to find the pointer, segment and cycle state of the new trb 606 * (the one after current TD's last_trb). We know the cycle state at 607 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 608 * found. 609 */ 610 do { 611 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 612 == (dma_addr_t)(hw_dequeue & ~0xf)) { 613 cycle_found = true; 614 if (td_last_trb_found) 615 break; 616 } 617 if (new_deq == td->last_trb) 618 td_last_trb_found = true; 619 620 if (cycle_found && trb_is_link(new_deq) && 621 link_trb_toggles_cycle(new_deq)) 622 new_cycle ^= 0x1; 623 624 next_trb(xhci, ep_ring, &new_seg, &new_deq); 625 626 /* Search wrapped around, bail out */ 627 if (new_deq == ep->ring->dequeue) { 628 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 629 return -EINVAL; 630 } 631 632 } while (!cycle_found || !td_last_trb_found); 633 634 deq_found: 635 636 /* Don't update the ring cycle state for the producer (us). */ 637 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 638 if (addr == 0) { 639 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 640 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 641 return -EINVAL; 642 } 643 644 if ((ep->ep_state & SET_DEQ_PENDING)) { 645 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 646 &addr); 647 return -EBUSY; 648 } 649 650 /* This function gets called from contexts where it cannot sleep */ 651 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 652 if (!cmd) { 653 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 654 return -ENOMEM; 655 } 656 657 if (stream_id) 658 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 659 ret = queue_command(xhci, cmd, 660 lower_32_bits(addr) | trb_sct | new_cycle, 661 upper_32_bits(addr), 662 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 663 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 664 if (ret < 0) { 665 xhci_free_command(xhci, cmd); 666 return ret; 667 } 668 ep->queued_deq_seg = new_seg; 669 ep->queued_deq_ptr = new_deq; 670 671 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 672 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 673 674 /* Stop the TD queueing code from ringing the doorbell until 675 * this command completes. The HC won't set the dequeue pointer 676 * if the ring is running, and ringing the doorbell starts the 677 * ring running. 678 */ 679 ep->ep_state |= SET_DEQ_PENDING; 680 xhci_ring_cmd_db(xhci); 681 return 0; 682 } 683 684 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 685 * (The last TRB actually points to the ring enqueue pointer, which is not part 686 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 687 */ 688 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 689 struct xhci_td *td, bool flip_cycle) 690 { 691 struct xhci_segment *seg = td->start_seg; 692 union xhci_trb *trb = td->first_trb; 693 694 while (1) { 695 trb_to_noop(trb, TRB_TR_NOOP); 696 697 /* flip cycle if asked to */ 698 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 699 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 700 701 if (trb == td->last_trb) 702 break; 703 704 next_trb(xhci, ep_ring, &seg, &trb); 705 } 706 } 707 708 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 709 struct xhci_virt_ep *ep) 710 { 711 ep->ep_state &= ~EP_STOP_CMD_PENDING; 712 /* Can't del_timer_sync in interrupt */ 713 del_timer(&ep->stop_cmd_timer); 714 } 715 716 /* 717 * Must be called with xhci->lock held in interrupt context, 718 * releases and re-acquires xhci->lock 719 */ 720 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 721 struct xhci_td *cur_td, int status) 722 { 723 struct urb *urb = cur_td->urb; 724 struct urb_priv *urb_priv = urb->hcpriv; 725 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 726 727 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 728 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 729 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 730 if (xhci->quirks & XHCI_AMD_PLL_FIX) 731 usb_amd_quirk_pll_enable(); 732 } 733 } 734 xhci_urb_free_priv(urb_priv); 735 usb_hcd_unlink_urb_from_ep(hcd, urb); 736 trace_xhci_urb_giveback(urb); 737 usb_hcd_giveback_urb(hcd, urb, status); 738 } 739 740 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 741 struct xhci_ring *ring, struct xhci_td *td) 742 { 743 struct device *dev = xhci_to_hcd(xhci)->self.controller; 744 struct xhci_segment *seg = td->bounce_seg; 745 struct urb *urb = td->urb; 746 size_t len; 747 748 if (!ring || !seg || !urb) 749 return; 750 751 if (usb_urb_dir_out(urb)) { 752 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 753 DMA_TO_DEVICE); 754 return; 755 } 756 757 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 758 DMA_FROM_DEVICE); 759 /* for in tranfers we need to copy the data from bounce to sg */ 760 if (urb->num_sgs) { 761 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 762 seg->bounce_len, seg->bounce_offs); 763 if (len != seg->bounce_len) 764 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 765 len, seg->bounce_len); 766 } else { 767 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 768 seg->bounce_len); 769 } 770 seg->bounce_len = 0; 771 seg->bounce_offs = 0; 772 } 773 774 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 775 struct xhci_ring *ep_ring, int status) 776 { 777 struct urb *urb = NULL; 778 779 /* Clean up the endpoint's TD list */ 780 urb = td->urb; 781 782 /* if a bounce buffer was used to align this td then unmap it */ 783 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 784 785 /* Do one last check of the actual transfer length. 786 * If the host controller said we transferred more data than the buffer 787 * length, urb->actual_length will be a very big number (since it's 788 * unsigned). Play it safe and say we didn't transfer anything. 789 */ 790 if (urb->actual_length > urb->transfer_buffer_length) { 791 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 792 urb->transfer_buffer_length, urb->actual_length); 793 urb->actual_length = 0; 794 status = 0; 795 } 796 /* TD might be removed from td_list if we are giving back a cancelled URB */ 797 if (!list_empty(&td->td_list)) 798 list_del_init(&td->td_list); 799 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 800 if (!list_empty(&td->cancelled_td_list)) 801 list_del_init(&td->cancelled_td_list); 802 803 inc_td_cnt(urb); 804 /* Giveback the urb when all the tds are completed */ 805 if (last_td_in_urb(td)) { 806 if ((urb->actual_length != urb->transfer_buffer_length && 807 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 808 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 809 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 810 urb, urb->actual_length, 811 urb->transfer_buffer_length, status); 812 813 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 814 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 815 status = 0; 816 xhci_giveback_urb_in_irq(xhci, td, status); 817 } 818 819 return 0; 820 } 821 822 823 /* Complete the cancelled URBs we unlinked from td_list. */ 824 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 825 { 826 struct xhci_ring *ring; 827 struct xhci_td *td, *tmp_td; 828 829 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 830 cancelled_td_list) { 831 832 /* 833 * Doesn't matter what we pass for status, since the core will 834 * just overwrite it (because the URB has been unlinked). 835 */ 836 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 837 838 if (td->cancel_status == TD_CLEARED) 839 xhci_td_cleanup(ep->xhci, td, ring, 0); 840 841 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 842 return; 843 } 844 } 845 846 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 847 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 848 { 849 struct xhci_command *command; 850 int ret = 0; 851 852 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 853 if (!command) { 854 ret = -ENOMEM; 855 goto done; 856 } 857 858 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 859 done: 860 if (ret) 861 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 862 slot_id, ep_index, ret); 863 return ret; 864 } 865 866 static void xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 867 struct xhci_virt_ep *ep, unsigned int stream_id, 868 struct xhci_td *td, 869 enum xhci_ep_reset_type reset_type) 870 { 871 unsigned int slot_id = ep->vdev->slot_id; 872 int err; 873 874 /* 875 * Avoid resetting endpoint if link is inactive. Can cause host hang. 876 * Device will be reset soon to recover the link so don't do anything 877 */ 878 if (ep->vdev->flags & VDEV_PORT_ERROR) 879 return; 880 881 /* add td to cancelled list and let reset ep handler take care of it */ 882 if (reset_type == EP_HARD_RESET) { 883 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 884 if (td && list_empty(&td->cancelled_td_list)) { 885 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 886 td->cancel_status = TD_HALTED; 887 } 888 } 889 890 if (ep->ep_state & EP_HALTED) { 891 xhci_dbg(xhci, "Reset ep command already pending\n"); 892 return; 893 } 894 895 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 896 if (err) 897 return; 898 899 ep->ep_state |= EP_HALTED; 900 901 xhci_ring_cmd_db(xhci); 902 } 903 904 /* 905 * Fix up the ep ring first, so HW stops executing cancelled TDs. 906 * We have the xHCI lock, so nothing can modify this list until we drop it. 907 * We're also in the event handler, so we can't get re-interrupted if another 908 * Stop Endpoint command completes. 909 * 910 * only call this when ring is not in a running state 911 */ 912 913 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 914 { 915 struct xhci_hcd *xhci; 916 struct xhci_td *td = NULL; 917 struct xhci_td *tmp_td = NULL; 918 struct xhci_td *cached_td = NULL; 919 struct xhci_ring *ring; 920 u64 hw_deq; 921 unsigned int slot_id = ep->vdev->slot_id; 922 int err; 923 924 xhci = ep->xhci; 925 926 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 927 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 928 "Removing canceled TD starting at 0x%llx (dma).", 929 (unsigned long long)xhci_trb_virt_to_dma( 930 td->start_seg, td->first_trb)); 931 list_del_init(&td->td_list); 932 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 933 if (!ring) { 934 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 935 td->urb, td->urb->stream_id); 936 continue; 937 } 938 /* 939 * If ring stopped on the TD we need to cancel, then we have to 940 * move the xHC endpoint ring dequeue pointer past this TD. 941 */ 942 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 943 td->urb->stream_id); 944 hw_deq &= ~0xf; 945 946 if (trb_in_td(xhci, td->start_seg, td->first_trb, 947 td->last_trb, hw_deq, false)) { 948 switch (td->cancel_status) { 949 case TD_CLEARED: /* TD is already no-op */ 950 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 951 break; 952 case TD_DIRTY: /* TD is cached, clear it */ 953 case TD_HALTED: 954 /* FIXME stream case, several stopped rings */ 955 cached_td = td; 956 break; 957 } 958 } else { 959 td_to_noop(xhci, ring, td, false); 960 td->cancel_status = TD_CLEARED; 961 } 962 } 963 if (cached_td) { 964 cached_td->cancel_status = TD_CLEARING_CACHE; 965 966 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 967 cached_td->urb->stream_id, 968 cached_td); 969 /* Failed to move past cached td, try just setting it noop */ 970 if (err) { 971 td_to_noop(xhci, ring, cached_td, false); 972 cached_td->cancel_status = TD_CLEARED; 973 } 974 cached_td = NULL; 975 } 976 return 0; 977 } 978 979 /* 980 * Returns the TD the endpoint ring halted on. 981 * Only call for non-running rings without streams. 982 */ 983 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 984 { 985 struct xhci_td *td; 986 u64 hw_deq; 987 988 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 989 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 990 hw_deq &= ~0xf; 991 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 992 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 993 td->last_trb, hw_deq, false)) 994 return td; 995 } 996 return NULL; 997 } 998 999 /* 1000 * When we get a command completion for a Stop Endpoint Command, we need to 1001 * unlink any cancelled TDs from the ring. There are two ways to do that: 1002 * 1003 * 1. If the HW was in the middle of processing the TD that needs to be 1004 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1005 * in the TD with a Set Dequeue Pointer Command. 1006 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1007 * bit cleared) so that the HW will skip over them. 1008 */ 1009 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1010 union xhci_trb *trb, u32 comp_code) 1011 { 1012 unsigned int ep_index; 1013 struct xhci_virt_ep *ep; 1014 struct xhci_ep_ctx *ep_ctx; 1015 struct xhci_td *td = NULL; 1016 enum xhci_ep_reset_type reset_type; 1017 struct xhci_command *command; 1018 1019 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1020 if (!xhci->devs[slot_id]) 1021 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1022 slot_id); 1023 return; 1024 } 1025 1026 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1027 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1028 if (!ep) 1029 return; 1030 1031 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1032 1033 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1034 1035 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1036 /* 1037 * If stop endpoint command raced with a halting endpoint we need to 1038 * reset the host side endpoint first. 1039 * If the TD we halted on isn't cancelled the TD should be given back 1040 * with a proper error code, and the ring dequeue moved past the TD. 1041 * If streams case we can't find hw_deq, or the TD we halted on so do a 1042 * soft reset. 1043 * 1044 * Proper error code is unknown here, it would be -EPIPE if device side 1045 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1046 * We use -EPROTO, if device is stalled it should return a stall error on 1047 * next transfer, which then will return -EPIPE, and device side stall is 1048 * noted and cleared by class driver. 1049 */ 1050 switch (GET_EP_CTX_STATE(ep_ctx)) { 1051 case EP_STATE_HALTED: 1052 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1053 if (ep->ep_state & EP_HAS_STREAMS) { 1054 reset_type = EP_SOFT_RESET; 1055 } else { 1056 reset_type = EP_HARD_RESET; 1057 td = find_halted_td(ep); 1058 if (td) 1059 td->status = -EPROTO; 1060 } 1061 /* reset ep, reset handler cleans up cancelled tds */ 1062 xhci_handle_halted_endpoint(xhci, ep, 0, td, reset_type); 1063 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1064 return; 1065 case EP_STATE_RUNNING: 1066 /* Race, HW handled stop ep cmd before ep was running */ 1067 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1068 if (!command) 1069 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1070 1071 mod_timer(&ep->stop_cmd_timer, 1072 jiffies + XHCI_STOP_EP_CMD_TIMEOUT * HZ); 1073 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1074 xhci_ring_cmd_db(xhci); 1075 1076 return; 1077 default: 1078 break; 1079 } 1080 } 1081 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1082 xhci_invalidate_cancelled_tds(ep); 1083 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1084 1085 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1086 xhci_giveback_invalidated_tds(ep); 1087 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1088 } 1089 1090 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1091 { 1092 struct xhci_td *cur_td; 1093 struct xhci_td *tmp; 1094 1095 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1096 list_del_init(&cur_td->td_list); 1097 1098 if (!list_empty(&cur_td->cancelled_td_list)) 1099 list_del_init(&cur_td->cancelled_td_list); 1100 1101 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1102 1103 inc_td_cnt(cur_td->urb); 1104 if (last_td_in_urb(cur_td)) 1105 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1106 } 1107 } 1108 1109 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1110 int slot_id, int ep_index) 1111 { 1112 struct xhci_td *cur_td; 1113 struct xhci_td *tmp; 1114 struct xhci_virt_ep *ep; 1115 struct xhci_ring *ring; 1116 1117 ep = &xhci->devs[slot_id]->eps[ep_index]; 1118 if ((ep->ep_state & EP_HAS_STREAMS) || 1119 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1120 int stream_id; 1121 1122 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1123 stream_id++) { 1124 ring = ep->stream_info->stream_rings[stream_id]; 1125 if (!ring) 1126 continue; 1127 1128 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1129 "Killing URBs for slot ID %u, ep index %u, stream %u", 1130 slot_id, ep_index, stream_id); 1131 xhci_kill_ring_urbs(xhci, ring); 1132 } 1133 } else { 1134 ring = ep->ring; 1135 if (!ring) 1136 return; 1137 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1138 "Killing URBs for slot ID %u, ep index %u", 1139 slot_id, ep_index); 1140 xhci_kill_ring_urbs(xhci, ring); 1141 } 1142 1143 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1144 cancelled_td_list) { 1145 list_del_init(&cur_td->cancelled_td_list); 1146 inc_td_cnt(cur_td->urb); 1147 1148 if (last_td_in_urb(cur_td)) 1149 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1150 } 1151 } 1152 1153 /* 1154 * host controller died, register read returns 0xffffffff 1155 * Complete pending commands, mark them ABORTED. 1156 * URBs need to be given back as usb core might be waiting with device locks 1157 * held for the URBs to finish during device disconnect, blocking host remove. 1158 * 1159 * Call with xhci->lock held. 1160 * lock is relased and re-acquired while giving back urb. 1161 */ 1162 void xhci_hc_died(struct xhci_hcd *xhci) 1163 { 1164 int i, j; 1165 1166 if (xhci->xhc_state & XHCI_STATE_DYING) 1167 return; 1168 1169 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1170 xhci->xhc_state |= XHCI_STATE_DYING; 1171 1172 xhci_cleanup_command_queue(xhci); 1173 1174 /* return any pending urbs, remove may be waiting for them */ 1175 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1176 if (!xhci->devs[i]) 1177 continue; 1178 for (j = 0; j < 31; j++) 1179 xhci_kill_endpoint_urbs(xhci, i, j); 1180 } 1181 1182 /* inform usb core hc died if PCI remove isn't already handling it */ 1183 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1184 usb_hc_died(xhci_to_hcd(xhci)); 1185 } 1186 1187 /* Watchdog timer function for when a stop endpoint command fails to complete. 1188 * In this case, we assume the host controller is broken or dying or dead. The 1189 * host may still be completing some other events, so we have to be careful to 1190 * let the event ring handler and the URB dequeueing/enqueueing functions know 1191 * through xhci->state. 1192 * 1193 * The timer may also fire if the host takes a very long time to respond to the 1194 * command, and the stop endpoint command completion handler cannot delete the 1195 * timer before the timer function is called. Another endpoint cancellation may 1196 * sneak in before the timer function can grab the lock, and that may queue 1197 * another stop endpoint command and add the timer back. So we cannot use a 1198 * simple flag to say whether there is a pending stop endpoint command for a 1199 * particular endpoint. 1200 * 1201 * Instead we use a combination of that flag and checking if a new timer is 1202 * pending. 1203 */ 1204 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 1205 { 1206 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 1207 struct xhci_hcd *xhci = ep->xhci; 1208 unsigned long flags; 1209 u32 usbsts; 1210 1211 spin_lock_irqsave(&xhci->lock, flags); 1212 1213 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 1214 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 1215 timer_pending(&ep->stop_cmd_timer)) { 1216 spin_unlock_irqrestore(&xhci->lock, flags); 1217 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 1218 return; 1219 } 1220 usbsts = readl(&xhci->op_regs->status); 1221 1222 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 1223 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts)); 1224 1225 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1226 1227 xhci_halt(xhci); 1228 1229 /* 1230 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 1231 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 1232 * and try to recover a -ETIMEDOUT with a host controller reset 1233 */ 1234 xhci_hc_died(xhci); 1235 1236 spin_unlock_irqrestore(&xhci->lock, flags); 1237 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1238 "xHCI host controller is dead."); 1239 } 1240 1241 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1242 struct xhci_virt_device *dev, 1243 struct xhci_ring *ep_ring, 1244 unsigned int ep_index) 1245 { 1246 union xhci_trb *dequeue_temp; 1247 int num_trbs_free_temp; 1248 bool revert = false; 1249 1250 num_trbs_free_temp = ep_ring->num_trbs_free; 1251 dequeue_temp = ep_ring->dequeue; 1252 1253 /* If we get two back-to-back stalls, and the first stalled transfer 1254 * ends just before a link TRB, the dequeue pointer will be left on 1255 * the link TRB by the code in the while loop. So we have to update 1256 * the dequeue pointer one segment further, or we'll jump off 1257 * the segment into la-la-land. 1258 */ 1259 if (trb_is_link(ep_ring->dequeue)) { 1260 ep_ring->deq_seg = ep_ring->deq_seg->next; 1261 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1262 } 1263 1264 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1265 /* We have more usable TRBs */ 1266 ep_ring->num_trbs_free++; 1267 ep_ring->dequeue++; 1268 if (trb_is_link(ep_ring->dequeue)) { 1269 if (ep_ring->dequeue == 1270 dev->eps[ep_index].queued_deq_ptr) 1271 break; 1272 ep_ring->deq_seg = ep_ring->deq_seg->next; 1273 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1274 } 1275 if (ep_ring->dequeue == dequeue_temp) { 1276 revert = true; 1277 break; 1278 } 1279 } 1280 1281 if (revert) { 1282 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1283 ep_ring->num_trbs_free = num_trbs_free_temp; 1284 } 1285 } 1286 1287 /* 1288 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1289 * we need to clear the set deq pending flag in the endpoint ring state, so that 1290 * the TD queueing code can ring the doorbell again. We also need to ring the 1291 * endpoint doorbell to restart the ring, but only if there aren't more 1292 * cancellations pending. 1293 */ 1294 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1295 union xhci_trb *trb, u32 cmd_comp_code) 1296 { 1297 unsigned int ep_index; 1298 unsigned int stream_id; 1299 struct xhci_ring *ep_ring; 1300 struct xhci_virt_ep *ep; 1301 struct xhci_ep_ctx *ep_ctx; 1302 struct xhci_slot_ctx *slot_ctx; 1303 struct xhci_td *td, *tmp_td; 1304 1305 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1306 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1307 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1308 if (!ep) 1309 return; 1310 1311 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1312 if (!ep_ring) { 1313 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1314 stream_id); 1315 /* XXX: Harmless??? */ 1316 goto cleanup; 1317 } 1318 1319 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1320 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1321 trace_xhci_handle_cmd_set_deq(slot_ctx); 1322 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1323 1324 if (cmd_comp_code != COMP_SUCCESS) { 1325 unsigned int ep_state; 1326 unsigned int slot_state; 1327 1328 switch (cmd_comp_code) { 1329 case COMP_TRB_ERROR: 1330 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1331 break; 1332 case COMP_CONTEXT_STATE_ERROR: 1333 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1334 ep_state = GET_EP_CTX_STATE(ep_ctx); 1335 slot_state = le32_to_cpu(slot_ctx->dev_state); 1336 slot_state = GET_SLOT_STATE(slot_state); 1337 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1338 "Slot state = %u, EP state = %u", 1339 slot_state, ep_state); 1340 break; 1341 case COMP_SLOT_NOT_ENABLED_ERROR: 1342 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1343 slot_id); 1344 break; 1345 default: 1346 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1347 cmd_comp_code); 1348 break; 1349 } 1350 /* OK what do we do now? The endpoint state is hosed, and we 1351 * should never get to this point if the synchronization between 1352 * queueing, and endpoint state are correct. This might happen 1353 * if the device gets disconnected after we've finished 1354 * cancelling URBs, which might not be an error... 1355 */ 1356 } else { 1357 u64 deq; 1358 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1359 if (ep->ep_state & EP_HAS_STREAMS) { 1360 struct xhci_stream_ctx *ctx = 1361 &ep->stream_info->stream_ctx_array[stream_id]; 1362 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1363 } else { 1364 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1365 } 1366 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1367 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1368 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1369 ep->queued_deq_ptr) == deq) { 1370 /* Update the ring's dequeue segment and dequeue pointer 1371 * to reflect the new position. 1372 */ 1373 update_ring_for_set_deq_completion(xhci, ep->vdev, 1374 ep_ring, ep_index); 1375 } else { 1376 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1377 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1378 ep->queued_deq_seg, ep->queued_deq_ptr); 1379 } 1380 } 1381 /* HW cached TDs cleared from cache, give them back */ 1382 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1383 cancelled_td_list) { 1384 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1385 if (td->cancel_status == TD_CLEARING_CACHE) { 1386 td->cancel_status = TD_CLEARED; 1387 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1388 } 1389 } 1390 cleanup: 1391 ep->ep_state &= ~SET_DEQ_PENDING; 1392 ep->queued_deq_seg = NULL; 1393 ep->queued_deq_ptr = NULL; 1394 /* Restart any rings with pending URBs */ 1395 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1396 } 1397 1398 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1399 union xhci_trb *trb, u32 cmd_comp_code) 1400 { 1401 struct xhci_virt_ep *ep; 1402 struct xhci_ep_ctx *ep_ctx; 1403 unsigned int ep_index; 1404 1405 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1406 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1407 if (!ep) 1408 return; 1409 1410 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1411 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1412 1413 /* This command will only fail if the endpoint wasn't halted, 1414 * but we don't care. 1415 */ 1416 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1417 "Ignoring reset ep completion code of %u", cmd_comp_code); 1418 1419 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1420 xhci_invalidate_cancelled_tds(ep); 1421 1422 if (xhci->quirks & XHCI_RESET_EP_QUIRK) 1423 xhci_dbg(xhci, "Note: Removed workaround to queue config ep for this hw"); 1424 /* Clear our internal halted state */ 1425 ep->ep_state &= ~EP_HALTED; 1426 1427 xhci_giveback_invalidated_tds(ep); 1428 1429 /* if this was a soft reset, then restart */ 1430 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1431 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1432 } 1433 1434 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1435 struct xhci_command *command, u32 cmd_comp_code) 1436 { 1437 if (cmd_comp_code == COMP_SUCCESS) 1438 command->slot_id = slot_id; 1439 else 1440 command->slot_id = 0; 1441 } 1442 1443 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1444 { 1445 struct xhci_virt_device *virt_dev; 1446 struct xhci_slot_ctx *slot_ctx; 1447 1448 virt_dev = xhci->devs[slot_id]; 1449 if (!virt_dev) 1450 return; 1451 1452 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1453 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1454 1455 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1456 /* Delete default control endpoint resources */ 1457 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1458 xhci_free_virt_device(xhci, slot_id); 1459 } 1460 1461 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1462 u32 cmd_comp_code) 1463 { 1464 struct xhci_virt_device *virt_dev; 1465 struct xhci_input_control_ctx *ctrl_ctx; 1466 struct xhci_ep_ctx *ep_ctx; 1467 unsigned int ep_index; 1468 unsigned int ep_state; 1469 u32 add_flags, drop_flags; 1470 1471 /* 1472 * Configure endpoint commands can come from the USB core 1473 * configuration or alt setting changes, or because the HW 1474 * needed an extra configure endpoint command after a reset 1475 * endpoint command or streams were being configured. 1476 * If the command was for a halted endpoint, the xHCI driver 1477 * is not waiting on the configure endpoint command. 1478 */ 1479 virt_dev = xhci->devs[slot_id]; 1480 if (!virt_dev) 1481 return; 1482 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1483 if (!ctrl_ctx) { 1484 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1485 return; 1486 } 1487 1488 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1489 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1490 /* Input ctx add_flags are the endpoint index plus one */ 1491 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1492 1493 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1494 trace_xhci_handle_cmd_config_ep(ep_ctx); 1495 1496 /* A usb_set_interface() call directly after clearing a halted 1497 * condition may race on this quirky hardware. Not worth 1498 * worrying about, since this is prototype hardware. Not sure 1499 * if this will work for streams, but streams support was 1500 * untested on this prototype. 1501 */ 1502 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1503 ep_index != (unsigned int) -1 && 1504 add_flags - SLOT_FLAG == drop_flags) { 1505 ep_state = virt_dev->eps[ep_index].ep_state; 1506 if (!(ep_state & EP_HALTED)) 1507 return; 1508 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1509 "Completed config ep cmd - " 1510 "last ep index = %d, state = %d", 1511 ep_index, ep_state); 1512 /* Clear internal halted state and restart ring(s) */ 1513 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1514 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1515 return; 1516 } 1517 return; 1518 } 1519 1520 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1521 { 1522 struct xhci_virt_device *vdev; 1523 struct xhci_slot_ctx *slot_ctx; 1524 1525 vdev = xhci->devs[slot_id]; 1526 if (!vdev) 1527 return; 1528 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1529 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1530 } 1531 1532 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1533 { 1534 struct xhci_virt_device *vdev; 1535 struct xhci_slot_ctx *slot_ctx; 1536 1537 vdev = xhci->devs[slot_id]; 1538 if (!vdev) { 1539 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1540 slot_id); 1541 return; 1542 } 1543 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1544 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1545 1546 xhci_dbg(xhci, "Completed reset device command.\n"); 1547 } 1548 1549 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1550 struct xhci_event_cmd *event) 1551 { 1552 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1553 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1554 return; 1555 } 1556 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1557 "NEC firmware version %2x.%02x", 1558 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1559 NEC_FW_MINOR(le32_to_cpu(event->status))); 1560 } 1561 1562 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1563 { 1564 list_del(&cmd->cmd_list); 1565 1566 if (cmd->completion) { 1567 cmd->status = status; 1568 complete(cmd->completion); 1569 } else { 1570 kfree(cmd); 1571 } 1572 } 1573 1574 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1575 { 1576 struct xhci_command *cur_cmd, *tmp_cmd; 1577 xhci->current_cmd = NULL; 1578 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1579 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1580 } 1581 1582 void xhci_handle_command_timeout(struct work_struct *work) 1583 { 1584 struct xhci_hcd *xhci; 1585 unsigned long flags; 1586 u64 hw_ring_state; 1587 1588 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1589 1590 spin_lock_irqsave(&xhci->lock, flags); 1591 1592 /* 1593 * If timeout work is pending, or current_cmd is NULL, it means we 1594 * raced with command completion. Command is handled so just return. 1595 */ 1596 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1597 spin_unlock_irqrestore(&xhci->lock, flags); 1598 return; 1599 } 1600 /* mark this command to be cancelled */ 1601 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1602 1603 /* Make sure command ring is running before aborting it */ 1604 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1605 if (hw_ring_state == ~(u64)0) { 1606 xhci_hc_died(xhci); 1607 goto time_out_completed; 1608 } 1609 1610 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1611 (hw_ring_state & CMD_RING_RUNNING)) { 1612 /* Prevent new doorbell, and start command abort */ 1613 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1614 xhci_dbg(xhci, "Command timeout\n"); 1615 xhci_abort_cmd_ring(xhci, flags); 1616 goto time_out_completed; 1617 } 1618 1619 /* host removed. Bail out */ 1620 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1621 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1622 xhci_cleanup_command_queue(xhci); 1623 1624 goto time_out_completed; 1625 } 1626 1627 /* command timeout on stopped ring, ring can't be aborted */ 1628 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1629 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1630 1631 time_out_completed: 1632 spin_unlock_irqrestore(&xhci->lock, flags); 1633 return; 1634 } 1635 1636 static void handle_cmd_completion(struct xhci_hcd *xhci, 1637 struct xhci_event_cmd *event) 1638 { 1639 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1640 u64 cmd_dma; 1641 dma_addr_t cmd_dequeue_dma; 1642 u32 cmd_comp_code; 1643 union xhci_trb *cmd_trb; 1644 struct xhci_command *cmd; 1645 u32 cmd_type; 1646 1647 if (slot_id >= MAX_HC_SLOTS) { 1648 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1649 return; 1650 } 1651 1652 cmd_dma = le64_to_cpu(event->cmd_trb); 1653 cmd_trb = xhci->cmd_ring->dequeue; 1654 1655 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1656 1657 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1658 cmd_trb); 1659 /* 1660 * Check whether the completion event is for our internal kept 1661 * command. 1662 */ 1663 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1664 xhci_warn(xhci, 1665 "ERROR mismatched command completion event\n"); 1666 return; 1667 } 1668 1669 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1670 1671 cancel_delayed_work(&xhci->cmd_timer); 1672 1673 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1674 1675 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1676 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1677 complete_all(&xhci->cmd_ring_stop_completion); 1678 return; 1679 } 1680 1681 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1682 xhci_err(xhci, 1683 "Command completion event does not match command\n"); 1684 return; 1685 } 1686 1687 /* 1688 * Host aborted the command ring, check if the current command was 1689 * supposed to be aborted, otherwise continue normally. 1690 * The command ring is stopped now, but the xHC will issue a Command 1691 * Ring Stopped event which will cause us to restart it. 1692 */ 1693 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1694 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1695 if (cmd->status == COMP_COMMAND_ABORTED) { 1696 if (xhci->current_cmd == cmd) 1697 xhci->current_cmd = NULL; 1698 goto event_handled; 1699 } 1700 } 1701 1702 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1703 switch (cmd_type) { 1704 case TRB_ENABLE_SLOT: 1705 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1706 break; 1707 case TRB_DISABLE_SLOT: 1708 xhci_handle_cmd_disable_slot(xhci, slot_id); 1709 break; 1710 case TRB_CONFIG_EP: 1711 if (!cmd->completion) 1712 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1713 break; 1714 case TRB_EVAL_CONTEXT: 1715 break; 1716 case TRB_ADDR_DEV: 1717 xhci_handle_cmd_addr_dev(xhci, slot_id); 1718 break; 1719 case TRB_STOP_RING: 1720 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1721 le32_to_cpu(cmd_trb->generic.field[3]))); 1722 if (!cmd->completion) 1723 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1724 cmd_comp_code); 1725 break; 1726 case TRB_SET_DEQ: 1727 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1728 le32_to_cpu(cmd_trb->generic.field[3]))); 1729 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1730 break; 1731 case TRB_CMD_NOOP: 1732 /* Is this an aborted command turned to NO-OP? */ 1733 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1734 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1735 break; 1736 case TRB_RESET_EP: 1737 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1738 le32_to_cpu(cmd_trb->generic.field[3]))); 1739 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1740 break; 1741 case TRB_RESET_DEV: 1742 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1743 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1744 */ 1745 slot_id = TRB_TO_SLOT_ID( 1746 le32_to_cpu(cmd_trb->generic.field[3])); 1747 xhci_handle_cmd_reset_dev(xhci, slot_id); 1748 break; 1749 case TRB_NEC_GET_FW: 1750 xhci_handle_cmd_nec_get_fw(xhci, event); 1751 break; 1752 default: 1753 /* Skip over unknown commands on the event ring */ 1754 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1755 break; 1756 } 1757 1758 /* restart timer if this wasn't the last command */ 1759 if (!list_is_singular(&xhci->cmd_list)) { 1760 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1761 struct xhci_command, cmd_list); 1762 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1763 } else if (xhci->current_cmd == cmd) { 1764 xhci->current_cmd = NULL; 1765 } 1766 1767 event_handled: 1768 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1769 1770 inc_deq(xhci, xhci->cmd_ring); 1771 } 1772 1773 static void handle_vendor_event(struct xhci_hcd *xhci, 1774 union xhci_trb *event, u32 trb_type) 1775 { 1776 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1777 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1778 handle_cmd_completion(xhci, &event->event_cmd); 1779 } 1780 1781 static void handle_device_notification(struct xhci_hcd *xhci, 1782 union xhci_trb *event) 1783 { 1784 u32 slot_id; 1785 struct usb_device *udev; 1786 1787 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1788 if (!xhci->devs[slot_id]) { 1789 xhci_warn(xhci, "Device Notification event for " 1790 "unused slot %u\n", slot_id); 1791 return; 1792 } 1793 1794 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1795 slot_id); 1796 udev = xhci->devs[slot_id]->udev; 1797 if (udev && udev->parent) 1798 usb_wakeup_notification(udev->parent, udev->portnum); 1799 } 1800 1801 /* 1802 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1803 * Controller. 1804 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1805 * If a connection to a USB 1 device is followed by another connection 1806 * to a USB 2 device. 1807 * 1808 * Reset the PHY after the USB device is disconnected if device speed 1809 * is less than HCD_USB3. 1810 * Retry the reset sequence max of 4 times checking the PLL lock status. 1811 * 1812 */ 1813 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1814 { 1815 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1816 u32 pll_lock_check; 1817 u32 retry_count = 4; 1818 1819 do { 1820 /* Assert PHY reset */ 1821 writel(0x6F, hcd->regs + 0x1048); 1822 udelay(10); 1823 /* De-assert the PHY reset */ 1824 writel(0x7F, hcd->regs + 0x1048); 1825 udelay(200); 1826 pll_lock_check = readl(hcd->regs + 0x1070); 1827 } while (!(pll_lock_check & 0x1) && --retry_count); 1828 } 1829 1830 static void handle_port_status(struct xhci_hcd *xhci, 1831 union xhci_trb *event) 1832 { 1833 struct usb_hcd *hcd; 1834 u32 port_id; 1835 u32 portsc, cmd_reg; 1836 int max_ports; 1837 int slot_id; 1838 unsigned int hcd_portnum; 1839 struct xhci_bus_state *bus_state; 1840 bool bogus_port_status = false; 1841 struct xhci_port *port; 1842 1843 /* Port status change events always have a successful completion code */ 1844 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1845 xhci_warn(xhci, 1846 "WARN: xHC returned failed port status event\n"); 1847 1848 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1849 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1850 1851 if ((port_id <= 0) || (port_id > max_ports)) { 1852 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1853 port_id); 1854 inc_deq(xhci, xhci->event_ring); 1855 return; 1856 } 1857 1858 port = &xhci->hw_ports[port_id - 1]; 1859 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1860 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1861 port_id); 1862 bogus_port_status = true; 1863 goto cleanup; 1864 } 1865 1866 /* We might get interrupts after shared_hcd is removed */ 1867 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1868 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1869 bogus_port_status = true; 1870 goto cleanup; 1871 } 1872 1873 hcd = port->rhub->hcd; 1874 bus_state = &port->rhub->bus_state; 1875 hcd_portnum = port->hcd_portnum; 1876 portsc = readl(port->addr); 1877 1878 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1879 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1880 1881 trace_xhci_handle_port_status(hcd_portnum, portsc); 1882 1883 if (hcd->state == HC_STATE_SUSPENDED) { 1884 xhci_dbg(xhci, "resume root hub\n"); 1885 usb_hcd_resume_root_hub(hcd); 1886 } 1887 1888 if (hcd->speed >= HCD_USB3 && 1889 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1890 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1891 if (slot_id && xhci->devs[slot_id]) 1892 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1893 } 1894 1895 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1896 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1897 1898 cmd_reg = readl(&xhci->op_regs->command); 1899 if (!(cmd_reg & CMD_RUN)) { 1900 xhci_warn(xhci, "xHC is not running.\n"); 1901 goto cleanup; 1902 } 1903 1904 if (DEV_SUPERSPEED_ANY(portsc)) { 1905 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1906 /* Set a flag to say the port signaled remote wakeup, 1907 * so we can tell the difference between the end of 1908 * device and host initiated resume. 1909 */ 1910 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1911 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1912 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1913 xhci_set_link_state(xhci, port, XDEV_U0); 1914 /* Need to wait until the next link state change 1915 * indicates the device is actually in U0. 1916 */ 1917 bogus_port_status = true; 1918 goto cleanup; 1919 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1920 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1921 bus_state->resume_done[hcd_portnum] = jiffies + 1922 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1923 set_bit(hcd_portnum, &bus_state->resuming_ports); 1924 /* Do the rest in GetPortStatus after resume time delay. 1925 * Avoid polling roothub status before that so that a 1926 * usb device auto-resume latency around ~40ms. 1927 */ 1928 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1929 mod_timer(&hcd->rh_timer, 1930 bus_state->resume_done[hcd_portnum]); 1931 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1932 bogus_port_status = true; 1933 } 1934 } 1935 1936 if ((portsc & PORT_PLC) && 1937 DEV_SUPERSPEED_ANY(portsc) && 1938 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1939 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1940 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1941 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1942 complete(&bus_state->u3exit_done[hcd_portnum]); 1943 /* We've just brought the device into U0/1/2 through either the 1944 * Resume state after a device remote wakeup, or through the 1945 * U3Exit state after a host-initiated resume. If it's a device 1946 * initiated remote wake, don't pass up the link state change, 1947 * so the roothub behavior is consistent with external 1948 * USB 3.0 hub behavior. 1949 */ 1950 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1951 if (slot_id && xhci->devs[slot_id]) 1952 xhci_ring_device(xhci, slot_id); 1953 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1954 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1955 usb_wakeup_notification(hcd->self.root_hub, 1956 hcd_portnum + 1); 1957 bogus_port_status = true; 1958 goto cleanup; 1959 } 1960 } 1961 1962 /* 1963 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1964 * RExit to a disconnect state). If so, let the the driver know it's 1965 * out of the RExit state. 1966 */ 1967 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1968 test_and_clear_bit(hcd_portnum, 1969 &bus_state->rexit_ports)) { 1970 complete(&bus_state->rexit_done[hcd_portnum]); 1971 bogus_port_status = true; 1972 goto cleanup; 1973 } 1974 1975 if (hcd->speed < HCD_USB3) { 1976 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1977 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1978 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1979 xhci_cavium_reset_phy_quirk(xhci); 1980 } 1981 1982 cleanup: 1983 /* Update event ring dequeue pointer before dropping the lock */ 1984 inc_deq(xhci, xhci->event_ring); 1985 1986 /* Don't make the USB core poll the roothub if we got a bad port status 1987 * change event. Besides, at that point we can't tell which roothub 1988 * (USB 2.0 or USB 3.0) to kick. 1989 */ 1990 if (bogus_port_status) 1991 return; 1992 1993 /* 1994 * xHCI port-status-change events occur when the "or" of all the 1995 * status-change bits in the portsc register changes from 0 to 1. 1996 * New status changes won't cause an event if any other change 1997 * bits are still set. When an event occurs, switch over to 1998 * polling to avoid losing status changes. 1999 */ 2000 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 2001 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2002 spin_unlock(&xhci->lock); 2003 /* Pass this up to the core */ 2004 usb_hcd_poll_rh_status(hcd); 2005 spin_lock(&xhci->lock); 2006 } 2007 2008 /* 2009 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2010 * at end_trb, which may be in another segment. If the suspect DMA address is a 2011 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2012 * returns 0. 2013 */ 2014 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2015 struct xhci_segment *start_seg, 2016 union xhci_trb *start_trb, 2017 union xhci_trb *end_trb, 2018 dma_addr_t suspect_dma, 2019 bool debug) 2020 { 2021 dma_addr_t start_dma; 2022 dma_addr_t end_seg_dma; 2023 dma_addr_t end_trb_dma; 2024 struct xhci_segment *cur_seg; 2025 2026 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2027 cur_seg = start_seg; 2028 2029 do { 2030 if (start_dma == 0) 2031 return NULL; 2032 /* We may get an event for a Link TRB in the middle of a TD */ 2033 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2034 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2035 /* If the end TRB isn't in this segment, this is set to 0 */ 2036 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2037 2038 if (debug) 2039 xhci_warn(xhci, 2040 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2041 (unsigned long long)suspect_dma, 2042 (unsigned long long)start_dma, 2043 (unsigned long long)end_trb_dma, 2044 (unsigned long long)cur_seg->dma, 2045 (unsigned long long)end_seg_dma); 2046 2047 if (end_trb_dma > 0) { 2048 /* The end TRB is in this segment, so suspect should be here */ 2049 if (start_dma <= end_trb_dma) { 2050 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2051 return cur_seg; 2052 } else { 2053 /* Case for one segment with 2054 * a TD wrapped around to the top 2055 */ 2056 if ((suspect_dma >= start_dma && 2057 suspect_dma <= end_seg_dma) || 2058 (suspect_dma >= cur_seg->dma && 2059 suspect_dma <= end_trb_dma)) 2060 return cur_seg; 2061 } 2062 return NULL; 2063 } else { 2064 /* Might still be somewhere in this segment */ 2065 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2066 return cur_seg; 2067 } 2068 cur_seg = cur_seg->next; 2069 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2070 } while (cur_seg != start_seg); 2071 2072 return NULL; 2073 } 2074 2075 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2076 struct xhci_virt_ep *ep) 2077 { 2078 /* 2079 * As part of low/full-speed endpoint-halt processing 2080 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2081 */ 2082 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2083 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2084 !(ep->ep_state & EP_CLEARING_TT)) { 2085 ep->ep_state |= EP_CLEARING_TT; 2086 td->urb->ep->hcpriv = td->urb->dev; 2087 if (usb_hub_clear_tt_buffer(td->urb)) 2088 ep->ep_state &= ~EP_CLEARING_TT; 2089 } 2090 } 2091 2092 /* Check if an error has halted the endpoint ring. The class driver will 2093 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2094 * However, a babble and other errors also halt the endpoint ring, and the class 2095 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2096 * Ring Dequeue Pointer command manually. 2097 */ 2098 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2099 struct xhci_ep_ctx *ep_ctx, 2100 unsigned int trb_comp_code) 2101 { 2102 /* TRB completion codes that may require a manual halt cleanup */ 2103 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2104 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2105 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2106 /* The 0.95 spec says a babbling control endpoint 2107 * is not halted. The 0.96 spec says it is. Some HW 2108 * claims to be 0.95 compliant, but it halts the control 2109 * endpoint anyway. Check if a babble halted the 2110 * endpoint. 2111 */ 2112 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2113 return 1; 2114 2115 return 0; 2116 } 2117 2118 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2119 { 2120 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2121 /* Vendor defined "informational" completion code, 2122 * treat as not-an-error. 2123 */ 2124 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2125 trb_comp_code); 2126 xhci_dbg(xhci, "Treating code as success.\n"); 2127 return 1; 2128 } 2129 return 0; 2130 } 2131 2132 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 2133 struct xhci_transfer_event *event, struct xhci_virt_ep *ep) 2134 { 2135 struct xhci_ep_ctx *ep_ctx; 2136 struct xhci_ring *ep_ring; 2137 u32 trb_comp_code; 2138 2139 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2140 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2141 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2142 2143 switch (trb_comp_code) { 2144 case COMP_STOPPED_LENGTH_INVALID: 2145 case COMP_STOPPED_SHORT_PACKET: 2146 case COMP_STOPPED: 2147 /* 2148 * The "Stop Endpoint" completion will take care of any 2149 * stopped TDs. A stopped TD may be restarted, so don't update 2150 * the ring dequeue pointer or take this TD off any lists yet. 2151 */ 2152 return 0; 2153 case COMP_USB_TRANSACTION_ERROR: 2154 case COMP_BABBLE_DETECTED_ERROR: 2155 case COMP_SPLIT_TRANSACTION_ERROR: 2156 /* 2157 * If endpoint context state is not halted we might be 2158 * racing with a reset endpoint command issued by a unsuccessful 2159 * stop endpoint completion (context error). In that case the 2160 * td should be on the cancelled list, and EP_HALTED flag set. 2161 * 2162 * Or then it's not halted due to the 0.95 spec stating that a 2163 * babbling control endpoint should not halt. The 0.96 spec 2164 * again says it should. Some HW claims to be 0.95 compliant, 2165 * but it halts the control endpoint anyway. 2166 */ 2167 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2168 /* 2169 * If EP_HALTED is set and TD is on the cancelled list 2170 * the TD and dequeue pointer will be handled by reset 2171 * ep command completion 2172 */ 2173 if ((ep->ep_state & EP_HALTED) && 2174 !list_empty(&td->cancelled_td_list)) { 2175 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2176 (unsigned long long)xhci_trb_virt_to_dma( 2177 td->start_seg, td->first_trb)); 2178 return 0; 2179 } 2180 /* endpoint not halted, don't reset it */ 2181 break; 2182 } 2183 /* Almost same procedure as for STALL_ERROR below */ 2184 xhci_clear_hub_tt_buffer(xhci, td, ep); 2185 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2186 EP_HARD_RESET); 2187 return 0; 2188 case COMP_STALL_ERROR: 2189 /* 2190 * xhci internal endpoint state will go to a "halt" state for 2191 * any stall, including default control pipe protocol stall. 2192 * To clear the host side halt we need to issue a reset endpoint 2193 * command, followed by a set dequeue command to move past the 2194 * TD. 2195 * Class drivers clear the device side halt from a functional 2196 * stall later. Hub TT buffer should only be cleared for FS/LS 2197 * devices behind HS hubs for functional stalls. 2198 */ 2199 if (ep->ep_index != 0) 2200 xhci_clear_hub_tt_buffer(xhci, td, ep); 2201 2202 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2203 EP_HARD_RESET); 2204 2205 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2206 default: 2207 break; 2208 } 2209 2210 /* Update ring dequeue pointer */ 2211 ep_ring->dequeue = td->last_trb; 2212 ep_ring->deq_seg = td->last_trb_seg; 2213 ep_ring->num_trbs_free += td->num_trbs - 1; 2214 inc_deq(xhci, ep_ring); 2215 2216 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2217 } 2218 2219 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2220 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2221 union xhci_trb *stop_trb) 2222 { 2223 u32 sum; 2224 union xhci_trb *trb = ring->dequeue; 2225 struct xhci_segment *seg = ring->deq_seg; 2226 2227 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2228 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2229 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2230 } 2231 return sum; 2232 } 2233 2234 /* 2235 * Process control tds, update urb status and actual_length. 2236 */ 2237 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2238 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2239 struct xhci_virt_ep *ep) 2240 { 2241 struct xhci_ep_ctx *ep_ctx; 2242 u32 trb_comp_code; 2243 u32 remaining, requested; 2244 u32 trb_type; 2245 2246 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2247 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2248 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2249 requested = td->urb->transfer_buffer_length; 2250 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2251 2252 switch (trb_comp_code) { 2253 case COMP_SUCCESS: 2254 if (trb_type != TRB_STATUS) { 2255 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2256 (trb_type == TRB_DATA) ? "data" : "setup"); 2257 td->status = -ESHUTDOWN; 2258 break; 2259 } 2260 td->status = 0; 2261 break; 2262 case COMP_SHORT_PACKET: 2263 td->status = 0; 2264 break; 2265 case COMP_STOPPED_SHORT_PACKET: 2266 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2267 td->urb->actual_length = remaining; 2268 else 2269 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2270 goto finish_td; 2271 case COMP_STOPPED: 2272 switch (trb_type) { 2273 case TRB_SETUP: 2274 td->urb->actual_length = 0; 2275 goto finish_td; 2276 case TRB_DATA: 2277 case TRB_NORMAL: 2278 td->urb->actual_length = requested - remaining; 2279 goto finish_td; 2280 case TRB_STATUS: 2281 td->urb->actual_length = requested; 2282 goto finish_td; 2283 default: 2284 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2285 trb_type); 2286 goto finish_td; 2287 } 2288 case COMP_STOPPED_LENGTH_INVALID: 2289 goto finish_td; 2290 default: 2291 if (!xhci_requires_manual_halt_cleanup(xhci, 2292 ep_ctx, trb_comp_code)) 2293 break; 2294 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2295 trb_comp_code, ep->ep_index); 2296 fallthrough; 2297 case COMP_STALL_ERROR: 2298 /* Did we transfer part of the data (middle) phase? */ 2299 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2300 td->urb->actual_length = requested - remaining; 2301 else if (!td->urb_length_set) 2302 td->urb->actual_length = 0; 2303 goto finish_td; 2304 } 2305 2306 /* stopped at setup stage, no data transferred */ 2307 if (trb_type == TRB_SETUP) 2308 goto finish_td; 2309 2310 /* 2311 * if on data stage then update the actual_length of the URB and flag it 2312 * as set, so it won't be overwritten in the event for the last TRB. 2313 */ 2314 if (trb_type == TRB_DATA || 2315 trb_type == TRB_NORMAL) { 2316 td->urb_length_set = true; 2317 td->urb->actual_length = requested - remaining; 2318 xhci_dbg(xhci, "Waiting for status stage event\n"); 2319 return 0; 2320 } 2321 2322 /* at status stage */ 2323 if (!td->urb_length_set) 2324 td->urb->actual_length = requested; 2325 2326 finish_td: 2327 return finish_td(xhci, td, event, ep); 2328 } 2329 2330 /* 2331 * Process isochronous tds, update urb packet status and actual_length. 2332 */ 2333 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2334 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2335 struct xhci_virt_ep *ep) 2336 { 2337 struct urb_priv *urb_priv; 2338 int idx; 2339 struct usb_iso_packet_descriptor *frame; 2340 u32 trb_comp_code; 2341 bool sum_trbs_for_length = false; 2342 u32 remaining, requested, ep_trb_len; 2343 int short_framestatus; 2344 2345 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2346 urb_priv = td->urb->hcpriv; 2347 idx = urb_priv->num_tds_done; 2348 frame = &td->urb->iso_frame_desc[idx]; 2349 requested = frame->length; 2350 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2351 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2352 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2353 -EREMOTEIO : 0; 2354 2355 /* handle completion code */ 2356 switch (trb_comp_code) { 2357 case COMP_SUCCESS: 2358 if (remaining) { 2359 frame->status = short_framestatus; 2360 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2361 sum_trbs_for_length = true; 2362 break; 2363 } 2364 frame->status = 0; 2365 break; 2366 case COMP_SHORT_PACKET: 2367 frame->status = short_framestatus; 2368 sum_trbs_for_length = true; 2369 break; 2370 case COMP_BANDWIDTH_OVERRUN_ERROR: 2371 frame->status = -ECOMM; 2372 break; 2373 case COMP_ISOCH_BUFFER_OVERRUN: 2374 case COMP_BABBLE_DETECTED_ERROR: 2375 frame->status = -EOVERFLOW; 2376 break; 2377 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2378 case COMP_STALL_ERROR: 2379 frame->status = -EPROTO; 2380 break; 2381 case COMP_USB_TRANSACTION_ERROR: 2382 frame->status = -EPROTO; 2383 if (ep_trb != td->last_trb) 2384 return 0; 2385 break; 2386 case COMP_STOPPED: 2387 sum_trbs_for_length = true; 2388 break; 2389 case COMP_STOPPED_SHORT_PACKET: 2390 /* field normally containing residue now contains tranferred */ 2391 frame->status = short_framestatus; 2392 requested = remaining; 2393 break; 2394 case COMP_STOPPED_LENGTH_INVALID: 2395 requested = 0; 2396 remaining = 0; 2397 break; 2398 default: 2399 sum_trbs_for_length = true; 2400 frame->status = -1; 2401 break; 2402 } 2403 2404 if (sum_trbs_for_length) 2405 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2406 ep_trb_len - remaining; 2407 else 2408 frame->actual_length = requested; 2409 2410 td->urb->actual_length += frame->actual_length; 2411 2412 return finish_td(xhci, td, event, ep); 2413 } 2414 2415 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2416 struct xhci_virt_ep *ep, int status) 2417 { 2418 struct urb_priv *urb_priv; 2419 struct usb_iso_packet_descriptor *frame; 2420 int idx; 2421 2422 urb_priv = td->urb->hcpriv; 2423 idx = urb_priv->num_tds_done; 2424 frame = &td->urb->iso_frame_desc[idx]; 2425 2426 /* The transfer is partly done. */ 2427 frame->status = -EXDEV; 2428 2429 /* calc actual length */ 2430 frame->actual_length = 0; 2431 2432 /* Update ring dequeue pointer */ 2433 ep->ring->dequeue = td->last_trb; 2434 ep->ring->deq_seg = td->last_trb_seg; 2435 ep->ring->num_trbs_free += td->num_trbs - 1; 2436 inc_deq(xhci, ep->ring); 2437 2438 return xhci_td_cleanup(xhci, td, ep->ring, status); 2439 } 2440 2441 /* 2442 * Process bulk and interrupt tds, update urb status and actual_length. 2443 */ 2444 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2445 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2446 struct xhci_virt_ep *ep) 2447 { 2448 struct xhci_slot_ctx *slot_ctx; 2449 struct xhci_ring *ep_ring; 2450 u32 trb_comp_code; 2451 u32 remaining, requested, ep_trb_len; 2452 2453 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2454 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2455 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2456 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2457 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2458 requested = td->urb->transfer_buffer_length; 2459 2460 switch (trb_comp_code) { 2461 case COMP_SUCCESS: 2462 ep_ring->err_count = 0; 2463 /* handle success with untransferred data as short packet */ 2464 if (ep_trb != td->last_trb || remaining) { 2465 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2466 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2467 td->urb->ep->desc.bEndpointAddress, 2468 requested, remaining); 2469 } 2470 td->status = 0; 2471 break; 2472 case COMP_SHORT_PACKET: 2473 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2474 td->urb->ep->desc.bEndpointAddress, 2475 requested, remaining); 2476 td->status = 0; 2477 break; 2478 case COMP_STOPPED_SHORT_PACKET: 2479 td->urb->actual_length = remaining; 2480 goto finish_td; 2481 case COMP_STOPPED_LENGTH_INVALID: 2482 /* stopped on ep trb with invalid length, exclude it */ 2483 ep_trb_len = 0; 2484 remaining = 0; 2485 break; 2486 case COMP_USB_TRANSACTION_ERROR: 2487 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2488 (ep_ring->err_count++ > MAX_SOFT_RETRY) || 2489 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2490 break; 2491 2492 td->status = 0; 2493 2494 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2495 EP_SOFT_RESET); 2496 return 0; 2497 default: 2498 /* do nothing */ 2499 break; 2500 } 2501 2502 if (ep_trb == td->last_trb) 2503 td->urb->actual_length = requested - remaining; 2504 else 2505 td->urb->actual_length = 2506 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2507 ep_trb_len - remaining; 2508 finish_td: 2509 if (remaining > requested) { 2510 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2511 remaining); 2512 td->urb->actual_length = 0; 2513 } 2514 return finish_td(xhci, td, event, ep); 2515 } 2516 2517 /* 2518 * If this function returns an error condition, it means it got a Transfer 2519 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2520 * At this point, the host controller is probably hosed and should be reset. 2521 */ 2522 static int handle_tx_event(struct xhci_hcd *xhci, 2523 struct xhci_transfer_event *event) 2524 { 2525 struct xhci_virt_ep *ep; 2526 struct xhci_ring *ep_ring; 2527 unsigned int slot_id; 2528 int ep_index; 2529 struct xhci_td *td = NULL; 2530 dma_addr_t ep_trb_dma; 2531 struct xhci_segment *ep_seg; 2532 union xhci_trb *ep_trb; 2533 int status = -EINPROGRESS; 2534 struct xhci_ep_ctx *ep_ctx; 2535 struct list_head *tmp; 2536 u32 trb_comp_code; 2537 int td_num = 0; 2538 bool handling_skipped_tds = false; 2539 2540 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2541 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2542 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2543 ep_trb_dma = le64_to_cpu(event->buffer); 2544 2545 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2546 if (!ep) { 2547 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2548 goto err_out; 2549 } 2550 2551 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2552 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2553 2554 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2555 xhci_err(xhci, 2556 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2557 slot_id, ep_index); 2558 goto err_out; 2559 } 2560 2561 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2562 if (!ep_ring) { 2563 switch (trb_comp_code) { 2564 case COMP_STALL_ERROR: 2565 case COMP_USB_TRANSACTION_ERROR: 2566 case COMP_INVALID_STREAM_TYPE_ERROR: 2567 case COMP_INVALID_STREAM_ID_ERROR: 2568 xhci_handle_halted_endpoint(xhci, ep, 0, NULL, 2569 EP_SOFT_RESET); 2570 goto cleanup; 2571 case COMP_RING_UNDERRUN: 2572 case COMP_RING_OVERRUN: 2573 case COMP_STOPPED_LENGTH_INVALID: 2574 goto cleanup; 2575 default: 2576 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2577 slot_id, ep_index); 2578 goto err_out; 2579 } 2580 } 2581 2582 /* Count current td numbers if ep->skip is set */ 2583 if (ep->skip) { 2584 list_for_each(tmp, &ep_ring->td_list) 2585 td_num++; 2586 } 2587 2588 /* Look for common error cases */ 2589 switch (trb_comp_code) { 2590 /* Skip codes that require special handling depending on 2591 * transfer type 2592 */ 2593 case COMP_SUCCESS: 2594 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2595 break; 2596 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2597 ep_ring->last_td_was_short) 2598 trb_comp_code = COMP_SHORT_PACKET; 2599 else 2600 xhci_warn_ratelimited(xhci, 2601 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2602 slot_id, ep_index); 2603 break; 2604 case COMP_SHORT_PACKET: 2605 break; 2606 /* Completion codes for endpoint stopped state */ 2607 case COMP_STOPPED: 2608 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2609 slot_id, ep_index); 2610 break; 2611 case COMP_STOPPED_LENGTH_INVALID: 2612 xhci_dbg(xhci, 2613 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2614 slot_id, ep_index); 2615 break; 2616 case COMP_STOPPED_SHORT_PACKET: 2617 xhci_dbg(xhci, 2618 "Stopped with short packet transfer detected for slot %u ep %u\n", 2619 slot_id, ep_index); 2620 break; 2621 /* Completion codes for endpoint halted state */ 2622 case COMP_STALL_ERROR: 2623 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2624 ep_index); 2625 status = -EPIPE; 2626 break; 2627 case COMP_SPLIT_TRANSACTION_ERROR: 2628 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2629 slot_id, ep_index); 2630 status = -EPROTO; 2631 break; 2632 case COMP_USB_TRANSACTION_ERROR: 2633 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2634 slot_id, ep_index); 2635 status = -EPROTO; 2636 break; 2637 case COMP_BABBLE_DETECTED_ERROR: 2638 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2639 slot_id, ep_index); 2640 status = -EOVERFLOW; 2641 break; 2642 /* Completion codes for endpoint error state */ 2643 case COMP_TRB_ERROR: 2644 xhci_warn(xhci, 2645 "WARN: TRB error for slot %u ep %u on endpoint\n", 2646 slot_id, ep_index); 2647 status = -EILSEQ; 2648 break; 2649 /* completion codes not indicating endpoint state change */ 2650 case COMP_DATA_BUFFER_ERROR: 2651 xhci_warn(xhci, 2652 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2653 slot_id, ep_index); 2654 status = -ENOSR; 2655 break; 2656 case COMP_BANDWIDTH_OVERRUN_ERROR: 2657 xhci_warn(xhci, 2658 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2659 slot_id, ep_index); 2660 break; 2661 case COMP_ISOCH_BUFFER_OVERRUN: 2662 xhci_warn(xhci, 2663 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2664 slot_id, ep_index); 2665 break; 2666 case COMP_RING_UNDERRUN: 2667 /* 2668 * When the Isoch ring is empty, the xHC will generate 2669 * a Ring Overrun Event for IN Isoch endpoint or Ring 2670 * Underrun Event for OUT Isoch endpoint. 2671 */ 2672 xhci_dbg(xhci, "underrun event on endpoint\n"); 2673 if (!list_empty(&ep_ring->td_list)) 2674 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2675 "still with TDs queued?\n", 2676 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2677 ep_index); 2678 goto cleanup; 2679 case COMP_RING_OVERRUN: 2680 xhci_dbg(xhci, "overrun event on endpoint\n"); 2681 if (!list_empty(&ep_ring->td_list)) 2682 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2683 "still with TDs queued?\n", 2684 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2685 ep_index); 2686 goto cleanup; 2687 case COMP_MISSED_SERVICE_ERROR: 2688 /* 2689 * When encounter missed service error, one or more isoc tds 2690 * may be missed by xHC. 2691 * Set skip flag of the ep_ring; Complete the missed tds as 2692 * short transfer when process the ep_ring next time. 2693 */ 2694 ep->skip = true; 2695 xhci_dbg(xhci, 2696 "Miss service interval error for slot %u ep %u, set skip flag\n", 2697 slot_id, ep_index); 2698 goto cleanup; 2699 case COMP_NO_PING_RESPONSE_ERROR: 2700 ep->skip = true; 2701 xhci_dbg(xhci, 2702 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2703 slot_id, ep_index); 2704 goto cleanup; 2705 2706 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2707 /* needs disable slot command to recover */ 2708 xhci_warn(xhci, 2709 "WARN: detect an incompatible device for slot %u ep %u", 2710 slot_id, ep_index); 2711 status = -EPROTO; 2712 break; 2713 default: 2714 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2715 status = 0; 2716 break; 2717 } 2718 xhci_warn(xhci, 2719 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2720 trb_comp_code, slot_id, ep_index); 2721 goto cleanup; 2722 } 2723 2724 do { 2725 /* This TRB should be in the TD at the head of this ring's 2726 * TD list. 2727 */ 2728 if (list_empty(&ep_ring->td_list)) { 2729 /* 2730 * Don't print wanings if it's due to a stopped endpoint 2731 * generating an extra completion event if the device 2732 * was suspended. Or, a event for the last TRB of a 2733 * short TD we already got a short event for. 2734 * The short TD is already removed from the TD list. 2735 */ 2736 2737 if (!(trb_comp_code == COMP_STOPPED || 2738 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2739 ep_ring->last_td_was_short)) { 2740 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2741 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2742 ep_index); 2743 } 2744 if (ep->skip) { 2745 ep->skip = false; 2746 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2747 slot_id, ep_index); 2748 } 2749 if (trb_comp_code == COMP_STALL_ERROR || 2750 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2751 trb_comp_code)) { 2752 xhci_handle_halted_endpoint(xhci, ep, 2753 ep_ring->stream_id, 2754 NULL, 2755 EP_HARD_RESET); 2756 } 2757 goto cleanup; 2758 } 2759 2760 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2761 if (ep->skip && td_num == 0) { 2762 ep->skip = false; 2763 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2764 slot_id, ep_index); 2765 goto cleanup; 2766 } 2767 2768 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2769 td_list); 2770 if (ep->skip) 2771 td_num--; 2772 2773 /* Is this a TRB in the currently executing TD? */ 2774 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2775 td->last_trb, ep_trb_dma, false); 2776 2777 /* 2778 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2779 * is not in the current TD pointed by ep_ring->dequeue because 2780 * that the hardware dequeue pointer still at the previous TRB 2781 * of the current TD. The previous TRB maybe a Link TD or the 2782 * last TRB of the previous TD. The command completion handle 2783 * will take care the rest. 2784 */ 2785 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2786 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2787 goto cleanup; 2788 } 2789 2790 if (!ep_seg) { 2791 if (!ep->skip || 2792 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2793 /* Some host controllers give a spurious 2794 * successful event after a short transfer. 2795 * Ignore it. 2796 */ 2797 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2798 ep_ring->last_td_was_short) { 2799 ep_ring->last_td_was_short = false; 2800 goto cleanup; 2801 } 2802 /* HC is busted, give up! */ 2803 xhci_err(xhci, 2804 "ERROR Transfer event TRB DMA ptr not " 2805 "part of current TD ep_index %d " 2806 "comp_code %u\n", ep_index, 2807 trb_comp_code); 2808 trb_in_td(xhci, ep_ring->deq_seg, 2809 ep_ring->dequeue, td->last_trb, 2810 ep_trb_dma, true); 2811 return -ESHUTDOWN; 2812 } 2813 2814 skip_isoc_td(xhci, td, ep, status); 2815 goto cleanup; 2816 } 2817 if (trb_comp_code == COMP_SHORT_PACKET) 2818 ep_ring->last_td_was_short = true; 2819 else 2820 ep_ring->last_td_was_short = false; 2821 2822 if (ep->skip) { 2823 xhci_dbg(xhci, 2824 "Found td. Clear skip flag for slot %u ep %u.\n", 2825 slot_id, ep_index); 2826 ep->skip = false; 2827 } 2828 2829 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2830 sizeof(*ep_trb)]; 2831 2832 trace_xhci_handle_transfer(ep_ring, 2833 (struct xhci_generic_trb *) ep_trb); 2834 2835 /* 2836 * No-op TRB could trigger interrupts in a case where 2837 * a URB was killed and a STALL_ERROR happens right 2838 * after the endpoint ring stopped. Reset the halted 2839 * endpoint. Otherwise, the endpoint remains stalled 2840 * indefinitely. 2841 */ 2842 2843 if (trb_is_noop(ep_trb)) { 2844 if (trb_comp_code == COMP_STALL_ERROR || 2845 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2846 trb_comp_code)) 2847 xhci_handle_halted_endpoint(xhci, ep, 2848 ep_ring->stream_id, 2849 td, EP_HARD_RESET); 2850 goto cleanup; 2851 } 2852 2853 td->status = status; 2854 2855 /* update the urb's actual_length and give back to the core */ 2856 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2857 process_ctrl_td(xhci, td, ep_trb, event, ep); 2858 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2859 process_isoc_td(xhci, td, ep_trb, event, ep); 2860 else 2861 process_bulk_intr_td(xhci, td, ep_trb, event, ep); 2862 cleanup: 2863 handling_skipped_tds = ep->skip && 2864 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2865 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2866 2867 /* 2868 * Do not update event ring dequeue pointer if we're in a loop 2869 * processing missed tds. 2870 */ 2871 if (!handling_skipped_tds) 2872 inc_deq(xhci, xhci->event_ring); 2873 2874 /* 2875 * If ep->skip is set, it means there are missed tds on the 2876 * endpoint ring need to take care of. 2877 * Process them as short transfer until reach the td pointed by 2878 * the event. 2879 */ 2880 } while (handling_skipped_tds); 2881 2882 return 0; 2883 2884 err_out: 2885 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2886 (unsigned long long) xhci_trb_virt_to_dma( 2887 xhci->event_ring->deq_seg, 2888 xhci->event_ring->dequeue), 2889 lower_32_bits(le64_to_cpu(event->buffer)), 2890 upper_32_bits(le64_to_cpu(event->buffer)), 2891 le32_to_cpu(event->transfer_len), 2892 le32_to_cpu(event->flags)); 2893 return -ENODEV; 2894 } 2895 2896 /* 2897 * This function handles all OS-owned events on the event ring. It may drop 2898 * xhci->lock between event processing (e.g. to pass up port status changes). 2899 * Returns >0 for "possibly more events to process" (caller should call again), 2900 * otherwise 0 if done. In future, <0 returns should indicate error code. 2901 */ 2902 static int xhci_handle_event(struct xhci_hcd *xhci) 2903 { 2904 union xhci_trb *event; 2905 int update_ptrs = 1; 2906 u32 trb_type; 2907 int ret; 2908 2909 /* Event ring hasn't been allocated yet. */ 2910 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2911 xhci_err(xhci, "ERROR event ring not ready\n"); 2912 return -ENOMEM; 2913 } 2914 2915 event = xhci->event_ring->dequeue; 2916 /* Does the HC or OS own the TRB? */ 2917 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2918 xhci->event_ring->cycle_state) 2919 return 0; 2920 2921 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2922 2923 /* 2924 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2925 * speculative reads of the event's flags/data below. 2926 */ 2927 rmb(); 2928 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2929 /* FIXME: Handle more event types. */ 2930 2931 switch (trb_type) { 2932 case TRB_COMPLETION: 2933 handle_cmd_completion(xhci, &event->event_cmd); 2934 break; 2935 case TRB_PORT_STATUS: 2936 handle_port_status(xhci, event); 2937 update_ptrs = 0; 2938 break; 2939 case TRB_TRANSFER: 2940 ret = handle_tx_event(xhci, &event->trans_event); 2941 if (ret >= 0) 2942 update_ptrs = 0; 2943 break; 2944 case TRB_DEV_NOTE: 2945 handle_device_notification(xhci, event); 2946 break; 2947 default: 2948 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2949 handle_vendor_event(xhci, event, trb_type); 2950 else 2951 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2952 } 2953 /* Any of the above functions may drop and re-acquire the lock, so check 2954 * to make sure a watchdog timer didn't mark the host as non-responsive. 2955 */ 2956 if (xhci->xhc_state & XHCI_STATE_DYING) { 2957 xhci_dbg(xhci, "xHCI host dying, returning from " 2958 "event handler.\n"); 2959 return 0; 2960 } 2961 2962 if (update_ptrs) 2963 /* Update SW event ring dequeue pointer */ 2964 inc_deq(xhci, xhci->event_ring); 2965 2966 /* Are there more items on the event ring? Caller will call us again to 2967 * check. 2968 */ 2969 return 1; 2970 } 2971 2972 /* 2973 * Update Event Ring Dequeue Pointer: 2974 * - When all events have finished 2975 * - To avoid "Event Ring Full Error" condition 2976 */ 2977 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2978 union xhci_trb *event_ring_deq) 2979 { 2980 u64 temp_64; 2981 dma_addr_t deq; 2982 2983 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2984 /* If necessary, update the HW's version of the event ring deq ptr. */ 2985 if (event_ring_deq != xhci->event_ring->dequeue) { 2986 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2987 xhci->event_ring->dequeue); 2988 if (deq == 0) 2989 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2990 /* 2991 * Per 4.9.4, Software writes to the ERDP register shall 2992 * always advance the Event Ring Dequeue Pointer value. 2993 */ 2994 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2995 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2996 return; 2997 2998 /* Update HC event ring dequeue pointer */ 2999 temp_64 &= ERST_PTR_MASK; 3000 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3001 } 3002 3003 /* Clear the event handler busy flag (RW1C) */ 3004 temp_64 |= ERST_EHB; 3005 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 3006 } 3007 3008 /* 3009 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3010 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3011 * indicators of an event TRB error, but we check the status *first* to be safe. 3012 */ 3013 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3014 { 3015 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3016 union xhci_trb *event_ring_deq; 3017 irqreturn_t ret = IRQ_NONE; 3018 unsigned long flags; 3019 u64 temp_64; 3020 u32 status; 3021 int event_loop = 0; 3022 3023 spin_lock_irqsave(&xhci->lock, flags); 3024 /* Check if the xHC generated the interrupt, or the irq is shared */ 3025 status = readl(&xhci->op_regs->status); 3026 if (status == ~(u32)0) { 3027 xhci_hc_died(xhci); 3028 ret = IRQ_HANDLED; 3029 goto out; 3030 } 3031 3032 if (!(status & STS_EINT)) 3033 goto out; 3034 3035 if (status & STS_FATAL) { 3036 xhci_warn(xhci, "WARNING: Host System Error\n"); 3037 xhci_halt(xhci); 3038 ret = IRQ_HANDLED; 3039 goto out; 3040 } 3041 3042 /* 3043 * Clear the op reg interrupt status first, 3044 * so we can receive interrupts from other MSI-X interrupters. 3045 * Write 1 to clear the interrupt status. 3046 */ 3047 status |= STS_EINT; 3048 writel(status, &xhci->op_regs->status); 3049 3050 if (!hcd->msi_enabled) { 3051 u32 irq_pending; 3052 irq_pending = readl(&xhci->ir_set->irq_pending); 3053 irq_pending |= IMAN_IP; 3054 writel(irq_pending, &xhci->ir_set->irq_pending); 3055 } 3056 3057 if (xhci->xhc_state & XHCI_STATE_DYING || 3058 xhci->xhc_state & XHCI_STATE_HALTED) { 3059 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3060 "Shouldn't IRQs be disabled?\n"); 3061 /* Clear the event handler busy flag (RW1C); 3062 * the event ring should be empty. 3063 */ 3064 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3065 xhci_write_64(xhci, temp_64 | ERST_EHB, 3066 &xhci->ir_set->erst_dequeue); 3067 ret = IRQ_HANDLED; 3068 goto out; 3069 } 3070 3071 event_ring_deq = xhci->event_ring->dequeue; 3072 /* FIXME this should be a delayed service routine 3073 * that clears the EHB. 3074 */ 3075 while (xhci_handle_event(xhci) > 0) { 3076 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3077 continue; 3078 xhci_update_erst_dequeue(xhci, event_ring_deq); 3079 event_loop = 0; 3080 } 3081 3082 xhci_update_erst_dequeue(xhci, event_ring_deq); 3083 ret = IRQ_HANDLED; 3084 3085 out: 3086 spin_unlock_irqrestore(&xhci->lock, flags); 3087 3088 return ret; 3089 } 3090 3091 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3092 { 3093 return xhci_irq(hcd); 3094 } 3095 3096 /**** Endpoint Ring Operations ****/ 3097 3098 /* 3099 * Generic function for queueing a TRB on a ring. 3100 * The caller must have checked to make sure there's room on the ring. 3101 * 3102 * @more_trbs_coming: Will you enqueue more TRBs before calling 3103 * prepare_transfer()? 3104 */ 3105 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3106 bool more_trbs_coming, 3107 u32 field1, u32 field2, u32 field3, u32 field4) 3108 { 3109 struct xhci_generic_trb *trb; 3110 3111 trb = &ring->enqueue->generic; 3112 trb->field[0] = cpu_to_le32(field1); 3113 trb->field[1] = cpu_to_le32(field2); 3114 trb->field[2] = cpu_to_le32(field3); 3115 /* make sure TRB is fully written before giving it to the controller */ 3116 wmb(); 3117 trb->field[3] = cpu_to_le32(field4); 3118 3119 trace_xhci_queue_trb(ring, trb); 3120 3121 inc_enq(xhci, ring, more_trbs_coming); 3122 } 3123 3124 /* 3125 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3126 * FIXME allocate segments if the ring is full. 3127 */ 3128 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3129 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3130 { 3131 unsigned int num_trbs_needed; 3132 unsigned int link_trb_count = 0; 3133 3134 /* Make sure the endpoint has been added to xHC schedule */ 3135 switch (ep_state) { 3136 case EP_STATE_DISABLED: 3137 /* 3138 * USB core changed config/interfaces without notifying us, 3139 * or hardware is reporting the wrong state. 3140 */ 3141 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3142 return -ENOENT; 3143 case EP_STATE_ERROR: 3144 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3145 /* FIXME event handling code for error needs to clear it */ 3146 /* XXX not sure if this should be -ENOENT or not */ 3147 return -EINVAL; 3148 case EP_STATE_HALTED: 3149 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3150 break; 3151 case EP_STATE_STOPPED: 3152 case EP_STATE_RUNNING: 3153 break; 3154 default: 3155 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3156 /* 3157 * FIXME issue Configure Endpoint command to try to get the HC 3158 * back into a known state. 3159 */ 3160 return -EINVAL; 3161 } 3162 3163 while (1) { 3164 if (room_on_ring(xhci, ep_ring, num_trbs)) 3165 break; 3166 3167 if (ep_ring == xhci->cmd_ring) { 3168 xhci_err(xhci, "Do not support expand command ring\n"); 3169 return -ENOMEM; 3170 } 3171 3172 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3173 "ERROR no room on ep ring, try ring expansion"); 3174 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3175 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3176 mem_flags)) { 3177 xhci_err(xhci, "Ring expansion failed\n"); 3178 return -ENOMEM; 3179 } 3180 } 3181 3182 while (trb_is_link(ep_ring->enqueue)) { 3183 /* If we're not dealing with 0.95 hardware or isoc rings 3184 * on AMD 0.96 host, clear the chain bit. 3185 */ 3186 if (!xhci_link_trb_quirk(xhci) && 3187 !(ep_ring->type == TYPE_ISOC && 3188 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3189 ep_ring->enqueue->link.control &= 3190 cpu_to_le32(~TRB_CHAIN); 3191 else 3192 ep_ring->enqueue->link.control |= 3193 cpu_to_le32(TRB_CHAIN); 3194 3195 wmb(); 3196 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3197 3198 /* Toggle the cycle bit after the last ring segment. */ 3199 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3200 ep_ring->cycle_state ^= 1; 3201 3202 ep_ring->enq_seg = ep_ring->enq_seg->next; 3203 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3204 3205 /* prevent infinite loop if all first trbs are link trbs */ 3206 if (link_trb_count++ > ep_ring->num_segs) { 3207 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3208 return -EINVAL; 3209 } 3210 } 3211 3212 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3213 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3214 return -EINVAL; 3215 } 3216 3217 return 0; 3218 } 3219 3220 static int prepare_transfer(struct xhci_hcd *xhci, 3221 struct xhci_virt_device *xdev, 3222 unsigned int ep_index, 3223 unsigned int stream_id, 3224 unsigned int num_trbs, 3225 struct urb *urb, 3226 unsigned int td_index, 3227 gfp_t mem_flags) 3228 { 3229 int ret; 3230 struct urb_priv *urb_priv; 3231 struct xhci_td *td; 3232 struct xhci_ring *ep_ring; 3233 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3234 3235 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3236 stream_id); 3237 if (!ep_ring) { 3238 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3239 stream_id); 3240 return -EINVAL; 3241 } 3242 3243 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3244 num_trbs, mem_flags); 3245 if (ret) 3246 return ret; 3247 3248 urb_priv = urb->hcpriv; 3249 td = &urb_priv->td[td_index]; 3250 3251 INIT_LIST_HEAD(&td->td_list); 3252 INIT_LIST_HEAD(&td->cancelled_td_list); 3253 3254 if (td_index == 0) { 3255 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3256 if (unlikely(ret)) 3257 return ret; 3258 } 3259 3260 td->urb = urb; 3261 /* Add this TD to the tail of the endpoint ring's TD list */ 3262 list_add_tail(&td->td_list, &ep_ring->td_list); 3263 td->start_seg = ep_ring->enq_seg; 3264 td->first_trb = ep_ring->enqueue; 3265 3266 return 0; 3267 } 3268 3269 unsigned int count_trbs(u64 addr, u64 len) 3270 { 3271 unsigned int num_trbs; 3272 3273 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3274 TRB_MAX_BUFF_SIZE); 3275 if (num_trbs == 0) 3276 num_trbs++; 3277 3278 return num_trbs; 3279 } 3280 3281 static inline unsigned int count_trbs_needed(struct urb *urb) 3282 { 3283 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3284 } 3285 3286 static unsigned int count_sg_trbs_needed(struct urb *urb) 3287 { 3288 struct scatterlist *sg; 3289 unsigned int i, len, full_len, num_trbs = 0; 3290 3291 full_len = urb->transfer_buffer_length; 3292 3293 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3294 len = sg_dma_len(sg); 3295 num_trbs += count_trbs(sg_dma_address(sg), len); 3296 len = min_t(unsigned int, len, full_len); 3297 full_len -= len; 3298 if (full_len == 0) 3299 break; 3300 } 3301 3302 return num_trbs; 3303 } 3304 3305 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3306 { 3307 u64 addr, len; 3308 3309 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3310 len = urb->iso_frame_desc[i].length; 3311 3312 return count_trbs(addr, len); 3313 } 3314 3315 static void check_trb_math(struct urb *urb, int running_total) 3316 { 3317 if (unlikely(running_total != urb->transfer_buffer_length)) 3318 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3319 "queued %#x (%d), asked for %#x (%d)\n", 3320 __func__, 3321 urb->ep->desc.bEndpointAddress, 3322 running_total, running_total, 3323 urb->transfer_buffer_length, 3324 urb->transfer_buffer_length); 3325 } 3326 3327 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3328 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3329 struct xhci_generic_trb *start_trb) 3330 { 3331 /* 3332 * Pass all the TRBs to the hardware at once and make sure this write 3333 * isn't reordered. 3334 */ 3335 wmb(); 3336 if (start_cycle) 3337 start_trb->field[3] |= cpu_to_le32(start_cycle); 3338 else 3339 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3340 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3341 } 3342 3343 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3344 struct xhci_ep_ctx *ep_ctx) 3345 { 3346 int xhci_interval; 3347 int ep_interval; 3348 3349 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3350 ep_interval = urb->interval; 3351 3352 /* Convert to microframes */ 3353 if (urb->dev->speed == USB_SPEED_LOW || 3354 urb->dev->speed == USB_SPEED_FULL) 3355 ep_interval *= 8; 3356 3357 /* FIXME change this to a warning and a suggestion to use the new API 3358 * to set the polling interval (once the API is added). 3359 */ 3360 if (xhci_interval != ep_interval) { 3361 dev_dbg_ratelimited(&urb->dev->dev, 3362 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3363 ep_interval, ep_interval == 1 ? "" : "s", 3364 xhci_interval, xhci_interval == 1 ? "" : "s"); 3365 urb->interval = xhci_interval; 3366 /* Convert back to frames for LS/FS devices */ 3367 if (urb->dev->speed == USB_SPEED_LOW || 3368 urb->dev->speed == USB_SPEED_FULL) 3369 urb->interval /= 8; 3370 } 3371 } 3372 3373 /* 3374 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3375 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3376 * (comprised of sg list entries) can take several service intervals to 3377 * transmit. 3378 */ 3379 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3380 struct urb *urb, int slot_id, unsigned int ep_index) 3381 { 3382 struct xhci_ep_ctx *ep_ctx; 3383 3384 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3385 check_interval(xhci, urb, ep_ctx); 3386 3387 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3388 } 3389 3390 /* 3391 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3392 * packets remaining in the TD (*not* including this TRB). 3393 * 3394 * Total TD packet count = total_packet_count = 3395 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3396 * 3397 * Packets transferred up to and including this TRB = packets_transferred = 3398 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3399 * 3400 * TD size = total_packet_count - packets_transferred 3401 * 3402 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3403 * including this TRB, right shifted by 10 3404 * 3405 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3406 * This is taken care of in the TRB_TD_SIZE() macro 3407 * 3408 * The last TRB in a TD must have the TD size set to zero. 3409 */ 3410 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3411 int trb_buff_len, unsigned int td_total_len, 3412 struct urb *urb, bool more_trbs_coming) 3413 { 3414 u32 maxp, total_packet_count; 3415 3416 /* MTK xHCI 0.96 contains some features from 1.0 */ 3417 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3418 return ((td_total_len - transferred) >> 10); 3419 3420 /* One TRB with a zero-length data packet. */ 3421 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3422 trb_buff_len == td_total_len) 3423 return 0; 3424 3425 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3426 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3427 trb_buff_len = 0; 3428 3429 maxp = usb_endpoint_maxp(&urb->ep->desc); 3430 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3431 3432 /* Queueing functions don't count the current TRB into transferred */ 3433 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3434 } 3435 3436 3437 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3438 u32 *trb_buff_len, struct xhci_segment *seg) 3439 { 3440 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3441 unsigned int unalign; 3442 unsigned int max_pkt; 3443 u32 new_buff_len; 3444 size_t len; 3445 3446 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3447 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3448 3449 /* we got lucky, last normal TRB data on segment is packet aligned */ 3450 if (unalign == 0) 3451 return 0; 3452 3453 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3454 unalign, *trb_buff_len); 3455 3456 /* is the last nornal TRB alignable by splitting it */ 3457 if (*trb_buff_len > unalign) { 3458 *trb_buff_len -= unalign; 3459 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3460 return 0; 3461 } 3462 3463 /* 3464 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3465 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3466 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3467 */ 3468 new_buff_len = max_pkt - (enqd_len % max_pkt); 3469 3470 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3471 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3472 3473 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3474 if (usb_urb_dir_out(urb)) { 3475 if (urb->num_sgs) { 3476 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3477 seg->bounce_buf, new_buff_len, enqd_len); 3478 if (len != new_buff_len) 3479 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3480 len, new_buff_len); 3481 } else { 3482 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3483 } 3484 3485 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3486 max_pkt, DMA_TO_DEVICE); 3487 } else { 3488 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3489 max_pkt, DMA_FROM_DEVICE); 3490 } 3491 3492 if (dma_mapping_error(dev, seg->bounce_dma)) { 3493 /* try without aligning. Some host controllers survive */ 3494 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3495 return 0; 3496 } 3497 *trb_buff_len = new_buff_len; 3498 seg->bounce_len = new_buff_len; 3499 seg->bounce_offs = enqd_len; 3500 3501 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3502 3503 return 1; 3504 } 3505 3506 /* This is very similar to what ehci-q.c qtd_fill() does */ 3507 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3508 struct urb *urb, int slot_id, unsigned int ep_index) 3509 { 3510 struct xhci_ring *ring; 3511 struct urb_priv *urb_priv; 3512 struct xhci_td *td; 3513 struct xhci_generic_trb *start_trb; 3514 struct scatterlist *sg = NULL; 3515 bool more_trbs_coming = true; 3516 bool need_zero_pkt = false; 3517 bool first_trb = true; 3518 unsigned int num_trbs; 3519 unsigned int start_cycle, num_sgs = 0; 3520 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3521 int sent_len, ret; 3522 u32 field, length_field, remainder; 3523 u64 addr, send_addr; 3524 3525 ring = xhci_urb_to_transfer_ring(xhci, urb); 3526 if (!ring) 3527 return -EINVAL; 3528 3529 full_len = urb->transfer_buffer_length; 3530 /* If we have scatter/gather list, we use it. */ 3531 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3532 num_sgs = urb->num_mapped_sgs; 3533 sg = urb->sg; 3534 addr = (u64) sg_dma_address(sg); 3535 block_len = sg_dma_len(sg); 3536 num_trbs = count_sg_trbs_needed(urb); 3537 } else { 3538 num_trbs = count_trbs_needed(urb); 3539 addr = (u64) urb->transfer_dma; 3540 block_len = full_len; 3541 } 3542 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3543 ep_index, urb->stream_id, 3544 num_trbs, urb, 0, mem_flags); 3545 if (unlikely(ret < 0)) 3546 return ret; 3547 3548 urb_priv = urb->hcpriv; 3549 3550 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3551 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3552 need_zero_pkt = true; 3553 3554 td = &urb_priv->td[0]; 3555 3556 /* 3557 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3558 * until we've finished creating all the other TRBs. The ring's cycle 3559 * state may change as we enqueue the other TRBs, so save it too. 3560 */ 3561 start_trb = &ring->enqueue->generic; 3562 start_cycle = ring->cycle_state; 3563 send_addr = addr; 3564 3565 /* Queue the TRBs, even if they are zero-length */ 3566 for (enqd_len = 0; first_trb || enqd_len < full_len; 3567 enqd_len += trb_buff_len) { 3568 field = TRB_TYPE(TRB_NORMAL); 3569 3570 /* TRB buffer should not cross 64KB boundaries */ 3571 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3572 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3573 3574 if (enqd_len + trb_buff_len > full_len) 3575 trb_buff_len = full_len - enqd_len; 3576 3577 /* Don't change the cycle bit of the first TRB until later */ 3578 if (first_trb) { 3579 first_trb = false; 3580 if (start_cycle == 0) 3581 field |= TRB_CYCLE; 3582 } else 3583 field |= ring->cycle_state; 3584 3585 /* Chain all the TRBs together; clear the chain bit in the last 3586 * TRB to indicate it's the last TRB in the chain. 3587 */ 3588 if (enqd_len + trb_buff_len < full_len) { 3589 field |= TRB_CHAIN; 3590 if (trb_is_link(ring->enqueue + 1)) { 3591 if (xhci_align_td(xhci, urb, enqd_len, 3592 &trb_buff_len, 3593 ring->enq_seg)) { 3594 send_addr = ring->enq_seg->bounce_dma; 3595 /* assuming TD won't span 2 segs */ 3596 td->bounce_seg = ring->enq_seg; 3597 } 3598 } 3599 } 3600 if (enqd_len + trb_buff_len >= full_len) { 3601 field &= ~TRB_CHAIN; 3602 field |= TRB_IOC; 3603 more_trbs_coming = false; 3604 td->last_trb = ring->enqueue; 3605 td->last_trb_seg = ring->enq_seg; 3606 if (xhci_urb_suitable_for_idt(urb)) { 3607 memcpy(&send_addr, urb->transfer_buffer, 3608 trb_buff_len); 3609 le64_to_cpus(&send_addr); 3610 field |= TRB_IDT; 3611 } 3612 } 3613 3614 /* Only set interrupt on short packet for IN endpoints */ 3615 if (usb_urb_dir_in(urb)) 3616 field |= TRB_ISP; 3617 3618 /* Set the TRB length, TD size, and interrupter fields. */ 3619 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3620 full_len, urb, more_trbs_coming); 3621 3622 length_field = TRB_LEN(trb_buff_len) | 3623 TRB_TD_SIZE(remainder) | 3624 TRB_INTR_TARGET(0); 3625 3626 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3627 lower_32_bits(send_addr), 3628 upper_32_bits(send_addr), 3629 length_field, 3630 field); 3631 td->num_trbs++; 3632 addr += trb_buff_len; 3633 sent_len = trb_buff_len; 3634 3635 while (sg && sent_len >= block_len) { 3636 /* New sg entry */ 3637 --num_sgs; 3638 sent_len -= block_len; 3639 sg = sg_next(sg); 3640 if (num_sgs != 0 && sg) { 3641 block_len = sg_dma_len(sg); 3642 addr = (u64) sg_dma_address(sg); 3643 addr += sent_len; 3644 } 3645 } 3646 block_len -= sent_len; 3647 send_addr = addr; 3648 } 3649 3650 if (need_zero_pkt) { 3651 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3652 ep_index, urb->stream_id, 3653 1, urb, 1, mem_flags); 3654 urb_priv->td[1].last_trb = ring->enqueue; 3655 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3656 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3657 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3658 urb_priv->td[1].num_trbs++; 3659 } 3660 3661 check_trb_math(urb, enqd_len); 3662 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3663 start_cycle, start_trb); 3664 return 0; 3665 } 3666 3667 /* Caller must have locked xhci->lock */ 3668 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3669 struct urb *urb, int slot_id, unsigned int ep_index) 3670 { 3671 struct xhci_ring *ep_ring; 3672 int num_trbs; 3673 int ret; 3674 struct usb_ctrlrequest *setup; 3675 struct xhci_generic_trb *start_trb; 3676 int start_cycle; 3677 u32 field; 3678 struct urb_priv *urb_priv; 3679 struct xhci_td *td; 3680 3681 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3682 if (!ep_ring) 3683 return -EINVAL; 3684 3685 /* 3686 * Need to copy setup packet into setup TRB, so we can't use the setup 3687 * DMA address. 3688 */ 3689 if (!urb->setup_packet) 3690 return -EINVAL; 3691 3692 /* 1 TRB for setup, 1 for status */ 3693 num_trbs = 2; 3694 /* 3695 * Don't need to check if we need additional event data and normal TRBs, 3696 * since data in control transfers will never get bigger than 16MB 3697 * XXX: can we get a buffer that crosses 64KB boundaries? 3698 */ 3699 if (urb->transfer_buffer_length > 0) 3700 num_trbs++; 3701 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3702 ep_index, urb->stream_id, 3703 num_trbs, urb, 0, mem_flags); 3704 if (ret < 0) 3705 return ret; 3706 3707 urb_priv = urb->hcpriv; 3708 td = &urb_priv->td[0]; 3709 td->num_trbs = num_trbs; 3710 3711 /* 3712 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3713 * until we've finished creating all the other TRBs. The ring's cycle 3714 * state may change as we enqueue the other TRBs, so save it too. 3715 */ 3716 start_trb = &ep_ring->enqueue->generic; 3717 start_cycle = ep_ring->cycle_state; 3718 3719 /* Queue setup TRB - see section 6.4.1.2.1 */ 3720 /* FIXME better way to translate setup_packet into two u32 fields? */ 3721 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3722 field = 0; 3723 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3724 if (start_cycle == 0) 3725 field |= 0x1; 3726 3727 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3728 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3729 if (urb->transfer_buffer_length > 0) { 3730 if (setup->bRequestType & USB_DIR_IN) 3731 field |= TRB_TX_TYPE(TRB_DATA_IN); 3732 else 3733 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3734 } 3735 } 3736 3737 queue_trb(xhci, ep_ring, true, 3738 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3739 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3740 TRB_LEN(8) | TRB_INTR_TARGET(0), 3741 /* Immediate data in pointer */ 3742 field); 3743 3744 /* If there's data, queue data TRBs */ 3745 /* Only set interrupt on short packet for IN endpoints */ 3746 if (usb_urb_dir_in(urb)) 3747 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3748 else 3749 field = TRB_TYPE(TRB_DATA); 3750 3751 if (urb->transfer_buffer_length > 0) { 3752 u32 length_field, remainder; 3753 u64 addr; 3754 3755 if (xhci_urb_suitable_for_idt(urb)) { 3756 memcpy(&addr, urb->transfer_buffer, 3757 urb->transfer_buffer_length); 3758 le64_to_cpus(&addr); 3759 field |= TRB_IDT; 3760 } else { 3761 addr = (u64) urb->transfer_dma; 3762 } 3763 3764 remainder = xhci_td_remainder(xhci, 0, 3765 urb->transfer_buffer_length, 3766 urb->transfer_buffer_length, 3767 urb, 1); 3768 length_field = TRB_LEN(urb->transfer_buffer_length) | 3769 TRB_TD_SIZE(remainder) | 3770 TRB_INTR_TARGET(0); 3771 if (setup->bRequestType & USB_DIR_IN) 3772 field |= TRB_DIR_IN; 3773 queue_trb(xhci, ep_ring, true, 3774 lower_32_bits(addr), 3775 upper_32_bits(addr), 3776 length_field, 3777 field | ep_ring->cycle_state); 3778 } 3779 3780 /* Save the DMA address of the last TRB in the TD */ 3781 td->last_trb = ep_ring->enqueue; 3782 td->last_trb_seg = ep_ring->enq_seg; 3783 3784 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3785 /* If the device sent data, the status stage is an OUT transfer */ 3786 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3787 field = 0; 3788 else 3789 field = TRB_DIR_IN; 3790 queue_trb(xhci, ep_ring, false, 3791 0, 3792 0, 3793 TRB_INTR_TARGET(0), 3794 /* Event on completion */ 3795 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3796 3797 giveback_first_trb(xhci, slot_id, ep_index, 0, 3798 start_cycle, start_trb); 3799 return 0; 3800 } 3801 3802 /* 3803 * The transfer burst count field of the isochronous TRB defines the number of 3804 * bursts that are required to move all packets in this TD. Only SuperSpeed 3805 * devices can burst up to bMaxBurst number of packets per service interval. 3806 * This field is zero based, meaning a value of zero in the field means one 3807 * burst. Basically, for everything but SuperSpeed devices, this field will be 3808 * zero. Only xHCI 1.0 host controllers support this field. 3809 */ 3810 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3811 struct urb *urb, unsigned int total_packet_count) 3812 { 3813 unsigned int max_burst; 3814 3815 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3816 return 0; 3817 3818 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3819 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3820 } 3821 3822 /* 3823 * Returns the number of packets in the last "burst" of packets. This field is 3824 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3825 * the last burst packet count is equal to the total number of packets in the 3826 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3827 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3828 * contain 1 to (bMaxBurst + 1) packets. 3829 */ 3830 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3831 struct urb *urb, unsigned int total_packet_count) 3832 { 3833 unsigned int max_burst; 3834 unsigned int residue; 3835 3836 if (xhci->hci_version < 0x100) 3837 return 0; 3838 3839 if (urb->dev->speed >= USB_SPEED_SUPER) { 3840 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3841 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3842 residue = total_packet_count % (max_burst + 1); 3843 /* If residue is zero, the last burst contains (max_burst + 1) 3844 * number of packets, but the TLBPC field is zero-based. 3845 */ 3846 if (residue == 0) 3847 return max_burst; 3848 return residue - 1; 3849 } 3850 if (total_packet_count == 0) 3851 return 0; 3852 return total_packet_count - 1; 3853 } 3854 3855 /* 3856 * Calculates Frame ID field of the isochronous TRB identifies the 3857 * target frame that the Interval associated with this Isochronous 3858 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3859 * 3860 * Returns actual frame id on success, negative value on error. 3861 */ 3862 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3863 struct urb *urb, int index) 3864 { 3865 int start_frame, ist, ret = 0; 3866 int start_frame_id, end_frame_id, current_frame_id; 3867 3868 if (urb->dev->speed == USB_SPEED_LOW || 3869 urb->dev->speed == USB_SPEED_FULL) 3870 start_frame = urb->start_frame + index * urb->interval; 3871 else 3872 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3873 3874 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3875 * 3876 * If bit [3] of IST is cleared to '0', software can add a TRB no 3877 * later than IST[2:0] Microframes before that TRB is scheduled to 3878 * be executed. 3879 * If bit [3] of IST is set to '1', software can add a TRB no later 3880 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3881 */ 3882 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3883 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3884 ist <<= 3; 3885 3886 /* Software shall not schedule an Isoch TD with a Frame ID value that 3887 * is less than the Start Frame ID or greater than the End Frame ID, 3888 * where: 3889 * 3890 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3891 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3892 * 3893 * Both the End Frame ID and Start Frame ID values are calculated 3894 * in microframes. When software determines the valid Frame ID value; 3895 * The End Frame ID value should be rounded down to the nearest Frame 3896 * boundary, and the Start Frame ID value should be rounded up to the 3897 * nearest Frame boundary. 3898 */ 3899 current_frame_id = readl(&xhci->run_regs->microframe_index); 3900 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3901 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3902 3903 start_frame &= 0x7ff; 3904 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3905 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3906 3907 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3908 __func__, index, readl(&xhci->run_regs->microframe_index), 3909 start_frame_id, end_frame_id, start_frame); 3910 3911 if (start_frame_id < end_frame_id) { 3912 if (start_frame > end_frame_id || 3913 start_frame < start_frame_id) 3914 ret = -EINVAL; 3915 } else if (start_frame_id > end_frame_id) { 3916 if ((start_frame > end_frame_id && 3917 start_frame < start_frame_id)) 3918 ret = -EINVAL; 3919 } else { 3920 ret = -EINVAL; 3921 } 3922 3923 if (index == 0) { 3924 if (ret == -EINVAL || start_frame == start_frame_id) { 3925 start_frame = start_frame_id + 1; 3926 if (urb->dev->speed == USB_SPEED_LOW || 3927 urb->dev->speed == USB_SPEED_FULL) 3928 urb->start_frame = start_frame; 3929 else 3930 urb->start_frame = start_frame << 3; 3931 ret = 0; 3932 } 3933 } 3934 3935 if (ret) { 3936 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3937 start_frame, current_frame_id, index, 3938 start_frame_id, end_frame_id); 3939 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3940 return ret; 3941 } 3942 3943 return start_frame; 3944 } 3945 3946 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3947 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3948 { 3949 if (xhci->hci_version < 0x100) 3950 return false; 3951 /* always generate an event interrupt for the last TD */ 3952 if (i == num_tds - 1) 3953 return false; 3954 /* 3955 * If AVOID_BEI is set the host handles full event rings poorly, 3956 * generate an event at least every 8th TD to clear the event ring 3957 */ 3958 if (i && xhci->quirks & XHCI_AVOID_BEI) 3959 return !!(i % 8); 3960 3961 return true; 3962 } 3963 3964 /* This is for isoc transfer */ 3965 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3966 struct urb *urb, int slot_id, unsigned int ep_index) 3967 { 3968 struct xhci_ring *ep_ring; 3969 struct urb_priv *urb_priv; 3970 struct xhci_td *td; 3971 int num_tds, trbs_per_td; 3972 struct xhci_generic_trb *start_trb; 3973 bool first_trb; 3974 int start_cycle; 3975 u32 field, length_field; 3976 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3977 u64 start_addr, addr; 3978 int i, j; 3979 bool more_trbs_coming; 3980 struct xhci_virt_ep *xep; 3981 int frame_id; 3982 3983 xep = &xhci->devs[slot_id]->eps[ep_index]; 3984 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3985 3986 num_tds = urb->number_of_packets; 3987 if (num_tds < 1) { 3988 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3989 return -EINVAL; 3990 } 3991 start_addr = (u64) urb->transfer_dma; 3992 start_trb = &ep_ring->enqueue->generic; 3993 start_cycle = ep_ring->cycle_state; 3994 3995 urb_priv = urb->hcpriv; 3996 /* Queue the TRBs for each TD, even if they are zero-length */ 3997 for (i = 0; i < num_tds; i++) { 3998 unsigned int total_pkt_count, max_pkt; 3999 unsigned int burst_count, last_burst_pkt_count; 4000 u32 sia_frame_id; 4001 4002 first_trb = true; 4003 running_total = 0; 4004 addr = start_addr + urb->iso_frame_desc[i].offset; 4005 td_len = urb->iso_frame_desc[i].length; 4006 td_remain_len = td_len; 4007 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4008 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4009 4010 /* A zero-length transfer still involves at least one packet. */ 4011 if (total_pkt_count == 0) 4012 total_pkt_count++; 4013 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4014 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4015 urb, total_pkt_count); 4016 4017 trbs_per_td = count_isoc_trbs_needed(urb, i); 4018 4019 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4020 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4021 if (ret < 0) { 4022 if (i == 0) 4023 return ret; 4024 goto cleanup; 4025 } 4026 td = &urb_priv->td[i]; 4027 td->num_trbs = trbs_per_td; 4028 /* use SIA as default, if frame id is used overwrite it */ 4029 sia_frame_id = TRB_SIA; 4030 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4031 HCC_CFC(xhci->hcc_params)) { 4032 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4033 if (frame_id >= 0) 4034 sia_frame_id = TRB_FRAME_ID(frame_id); 4035 } 4036 /* 4037 * Set isoc specific data for the first TRB in a TD. 4038 * Prevent HW from getting the TRBs by keeping the cycle state 4039 * inverted in the first TDs isoc TRB. 4040 */ 4041 field = TRB_TYPE(TRB_ISOC) | 4042 TRB_TLBPC(last_burst_pkt_count) | 4043 sia_frame_id | 4044 (i ? ep_ring->cycle_state : !start_cycle); 4045 4046 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4047 if (!xep->use_extended_tbc) 4048 field |= TRB_TBC(burst_count); 4049 4050 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4051 for (j = 0; j < trbs_per_td; j++) { 4052 u32 remainder = 0; 4053 4054 /* only first TRB is isoc, overwrite otherwise */ 4055 if (!first_trb) 4056 field = TRB_TYPE(TRB_NORMAL) | 4057 ep_ring->cycle_state; 4058 4059 /* Only set interrupt on short packet for IN EPs */ 4060 if (usb_urb_dir_in(urb)) 4061 field |= TRB_ISP; 4062 4063 /* Set the chain bit for all except the last TRB */ 4064 if (j < trbs_per_td - 1) { 4065 more_trbs_coming = true; 4066 field |= TRB_CHAIN; 4067 } else { 4068 more_trbs_coming = false; 4069 td->last_trb = ep_ring->enqueue; 4070 td->last_trb_seg = ep_ring->enq_seg; 4071 field |= TRB_IOC; 4072 if (trb_block_event_intr(xhci, num_tds, i)) 4073 field |= TRB_BEI; 4074 } 4075 /* Calculate TRB length */ 4076 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4077 if (trb_buff_len > td_remain_len) 4078 trb_buff_len = td_remain_len; 4079 4080 /* Set the TRB length, TD size, & interrupter fields. */ 4081 remainder = xhci_td_remainder(xhci, running_total, 4082 trb_buff_len, td_len, 4083 urb, more_trbs_coming); 4084 4085 length_field = TRB_LEN(trb_buff_len) | 4086 TRB_INTR_TARGET(0); 4087 4088 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4089 if (first_trb && xep->use_extended_tbc) 4090 length_field |= TRB_TD_SIZE_TBC(burst_count); 4091 else 4092 length_field |= TRB_TD_SIZE(remainder); 4093 first_trb = false; 4094 4095 queue_trb(xhci, ep_ring, more_trbs_coming, 4096 lower_32_bits(addr), 4097 upper_32_bits(addr), 4098 length_field, 4099 field); 4100 running_total += trb_buff_len; 4101 4102 addr += trb_buff_len; 4103 td_remain_len -= trb_buff_len; 4104 } 4105 4106 /* Check TD length */ 4107 if (running_total != td_len) { 4108 xhci_err(xhci, "ISOC TD length unmatch\n"); 4109 ret = -EINVAL; 4110 goto cleanup; 4111 } 4112 } 4113 4114 /* store the next frame id */ 4115 if (HCC_CFC(xhci->hcc_params)) 4116 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4117 4118 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4119 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4120 usb_amd_quirk_pll_disable(); 4121 } 4122 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4123 4124 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4125 start_cycle, start_trb); 4126 return 0; 4127 cleanup: 4128 /* Clean up a partially enqueued isoc transfer. */ 4129 4130 for (i--; i >= 0; i--) 4131 list_del_init(&urb_priv->td[i].td_list); 4132 4133 /* Use the first TD as a temporary variable to turn the TDs we've queued 4134 * into No-ops with a software-owned cycle bit. That way the hardware 4135 * won't accidentally start executing bogus TDs when we partially 4136 * overwrite them. td->first_trb and td->start_seg are already set. 4137 */ 4138 urb_priv->td[0].last_trb = ep_ring->enqueue; 4139 /* Every TRB except the first & last will have its cycle bit flipped. */ 4140 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4141 4142 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4143 ep_ring->enqueue = urb_priv->td[0].first_trb; 4144 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4145 ep_ring->cycle_state = start_cycle; 4146 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4147 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4148 return ret; 4149 } 4150 4151 /* 4152 * Check transfer ring to guarantee there is enough room for the urb. 4153 * Update ISO URB start_frame and interval. 4154 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4155 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4156 * Contiguous Frame ID is not supported by HC. 4157 */ 4158 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4159 struct urb *urb, int slot_id, unsigned int ep_index) 4160 { 4161 struct xhci_virt_device *xdev; 4162 struct xhci_ring *ep_ring; 4163 struct xhci_ep_ctx *ep_ctx; 4164 int start_frame; 4165 int num_tds, num_trbs, i; 4166 int ret; 4167 struct xhci_virt_ep *xep; 4168 int ist; 4169 4170 xdev = xhci->devs[slot_id]; 4171 xep = &xhci->devs[slot_id]->eps[ep_index]; 4172 ep_ring = xdev->eps[ep_index].ring; 4173 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4174 4175 num_trbs = 0; 4176 num_tds = urb->number_of_packets; 4177 for (i = 0; i < num_tds; i++) 4178 num_trbs += count_isoc_trbs_needed(urb, i); 4179 4180 /* Check the ring to guarantee there is enough room for the whole urb. 4181 * Do not insert any td of the urb to the ring if the check failed. 4182 */ 4183 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4184 num_trbs, mem_flags); 4185 if (ret) 4186 return ret; 4187 4188 /* 4189 * Check interval value. This should be done before we start to 4190 * calculate the start frame value. 4191 */ 4192 check_interval(xhci, urb, ep_ctx); 4193 4194 /* Calculate the start frame and put it in urb->start_frame. */ 4195 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4196 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4197 urb->start_frame = xep->next_frame_id; 4198 goto skip_start_over; 4199 } 4200 } 4201 4202 start_frame = readl(&xhci->run_regs->microframe_index); 4203 start_frame &= 0x3fff; 4204 /* 4205 * Round up to the next frame and consider the time before trb really 4206 * gets scheduled by hardare. 4207 */ 4208 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4209 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4210 ist <<= 3; 4211 start_frame += ist + XHCI_CFC_DELAY; 4212 start_frame = roundup(start_frame, 8); 4213 4214 /* 4215 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4216 * is greate than 8 microframes. 4217 */ 4218 if (urb->dev->speed == USB_SPEED_LOW || 4219 urb->dev->speed == USB_SPEED_FULL) { 4220 start_frame = roundup(start_frame, urb->interval << 3); 4221 urb->start_frame = start_frame >> 3; 4222 } else { 4223 start_frame = roundup(start_frame, urb->interval); 4224 urb->start_frame = start_frame; 4225 } 4226 4227 skip_start_over: 4228 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4229 4230 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4231 } 4232 4233 /**** Command Ring Operations ****/ 4234 4235 /* Generic function for queueing a command TRB on the command ring. 4236 * Check to make sure there's room on the command ring for one command TRB. 4237 * Also check that there's room reserved for commands that must not fail. 4238 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4239 * then only check for the number of reserved spots. 4240 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4241 * because the command event handler may want to resubmit a failed command. 4242 */ 4243 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4244 u32 field1, u32 field2, 4245 u32 field3, u32 field4, bool command_must_succeed) 4246 { 4247 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4248 int ret; 4249 4250 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4251 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4252 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4253 return -ESHUTDOWN; 4254 } 4255 4256 if (!command_must_succeed) 4257 reserved_trbs++; 4258 4259 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4260 reserved_trbs, GFP_ATOMIC); 4261 if (ret < 0) { 4262 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4263 if (command_must_succeed) 4264 xhci_err(xhci, "ERR: Reserved TRB counting for " 4265 "unfailable commands failed.\n"); 4266 return ret; 4267 } 4268 4269 cmd->command_trb = xhci->cmd_ring->enqueue; 4270 4271 /* if there are no other commands queued we start the timeout timer */ 4272 if (list_empty(&xhci->cmd_list)) { 4273 xhci->current_cmd = cmd; 4274 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4275 } 4276 4277 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4278 4279 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4280 field4 | xhci->cmd_ring->cycle_state); 4281 return 0; 4282 } 4283 4284 /* Queue a slot enable or disable request on the command ring */ 4285 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4286 u32 trb_type, u32 slot_id) 4287 { 4288 return queue_command(xhci, cmd, 0, 0, 0, 4289 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4290 } 4291 4292 /* Queue an address device command TRB */ 4293 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4294 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4295 { 4296 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4297 upper_32_bits(in_ctx_ptr), 0, 4298 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4299 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4300 } 4301 4302 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4303 u32 field1, u32 field2, u32 field3, u32 field4) 4304 { 4305 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4306 } 4307 4308 /* Queue a reset device command TRB */ 4309 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4310 u32 slot_id) 4311 { 4312 return queue_command(xhci, cmd, 0, 0, 0, 4313 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4314 false); 4315 } 4316 4317 /* Queue a configure endpoint command TRB */ 4318 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4319 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4320 u32 slot_id, bool command_must_succeed) 4321 { 4322 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4323 upper_32_bits(in_ctx_ptr), 0, 4324 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4325 command_must_succeed); 4326 } 4327 4328 /* Queue an evaluate context command TRB */ 4329 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4330 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4331 { 4332 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4333 upper_32_bits(in_ctx_ptr), 0, 4334 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4335 command_must_succeed); 4336 } 4337 4338 /* 4339 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4340 * activity on an endpoint that is about to be suspended. 4341 */ 4342 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4343 int slot_id, unsigned int ep_index, int suspend) 4344 { 4345 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4346 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4347 u32 type = TRB_TYPE(TRB_STOP_RING); 4348 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4349 4350 return queue_command(xhci, cmd, 0, 0, 0, 4351 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4352 } 4353 4354 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4355 int slot_id, unsigned int ep_index, 4356 enum xhci_ep_reset_type reset_type) 4357 { 4358 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4359 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4360 u32 type = TRB_TYPE(TRB_RESET_EP); 4361 4362 if (reset_type == EP_SOFT_RESET) 4363 type |= TRB_TSP; 4364 4365 return queue_command(xhci, cmd, 0, 0, 0, 4366 trb_slot_id | trb_ep_index | type, false); 4367 } 4368