1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 284 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 285 286 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 287 /* Flush PCI posted writes */ 288 readl(&xhci->dba->doorbell[0]); 289 } 290 291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 292 { 293 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 294 } 295 296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 297 { 298 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 299 cmd_list); 300 } 301 302 /* 303 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 304 * If there are other commands waiting then restart the ring and kick the timer. 305 * This must be called with command ring stopped and xhci->lock held. 306 */ 307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 308 struct xhci_command *cur_cmd) 309 { 310 struct xhci_command *i_cmd; 311 312 /* Turn all aborted commands in list to no-ops, then restart */ 313 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 314 315 if (i_cmd->status != COMP_COMMAND_ABORTED) 316 continue; 317 318 i_cmd->status = COMP_COMMAND_RING_STOPPED; 319 320 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 321 i_cmd->command_trb); 322 323 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 324 325 /* 326 * caller waiting for completion is called when command 327 * completion event is received for these no-op commands 328 */ 329 } 330 331 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 332 333 /* ring command ring doorbell to restart the command ring */ 334 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 335 !(xhci->xhc_state & XHCI_STATE_DYING)) { 336 xhci->current_cmd = cur_cmd; 337 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 338 xhci_ring_cmd_db(xhci); 339 } 340 } 341 342 /* Must be called with xhci->lock held, releases and aquires lock back */ 343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 344 { 345 u64 temp_64; 346 int ret; 347 348 xhci_dbg(xhci, "Abort command ring\n"); 349 350 reinit_completion(&xhci->cmd_ring_stop_completion); 351 352 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 353 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 354 &xhci->op_regs->cmd_ring); 355 356 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 357 * completion of the Command Abort operation. If CRR is not negated in 5 358 * seconds then driver handles it as if host died (-ENODEV). 359 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 360 * and try to recover a -ETIMEDOUT with a host controller reset. 361 */ 362 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 363 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 364 if (ret < 0) { 365 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 366 xhci_halt(xhci); 367 xhci_hc_died(xhci); 368 return ret; 369 } 370 /* 371 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 372 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 373 * but the completion event in never sent. Wait 2 secs (arbitrary 374 * number) to handle those cases after negation of CMD_RING_RUNNING. 375 */ 376 spin_unlock_irqrestore(&xhci->lock, flags); 377 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 378 msecs_to_jiffies(2000)); 379 spin_lock_irqsave(&xhci->lock, flags); 380 if (!ret) { 381 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 382 xhci_cleanup_command_queue(xhci); 383 } else { 384 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 385 } 386 return 0; 387 } 388 389 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 390 unsigned int slot_id, 391 unsigned int ep_index, 392 unsigned int stream_id) 393 { 394 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 395 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 396 unsigned int ep_state = ep->ep_state; 397 398 /* Don't ring the doorbell for this endpoint if there are pending 399 * cancellations because we don't want to interrupt processing. 400 * We don't want to restart any stream rings if there's a set dequeue 401 * pointer command pending because the device can choose to start any 402 * stream once the endpoint is on the HW schedule. 403 */ 404 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 405 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 406 return; 407 408 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 409 410 writel(DB_VALUE(ep_index, stream_id), db_addr); 411 /* The CPU has better things to do at this point than wait for a 412 * write-posting flush. It'll get there soon enough. 413 */ 414 } 415 416 /* Ring the doorbell for any rings with pending URBs */ 417 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 418 unsigned int slot_id, 419 unsigned int ep_index) 420 { 421 unsigned int stream_id; 422 struct xhci_virt_ep *ep; 423 424 ep = &xhci->devs[slot_id]->eps[ep_index]; 425 426 /* A ring has pending URBs if its TD list is not empty */ 427 if (!(ep->ep_state & EP_HAS_STREAMS)) { 428 if (ep->ring && !(list_empty(&ep->ring->td_list))) 429 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 430 return; 431 } 432 433 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 434 stream_id++) { 435 struct xhci_stream_info *stream_info = ep->stream_info; 436 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 437 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 438 stream_id); 439 } 440 } 441 442 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 443 unsigned int slot_id, 444 unsigned int ep_index) 445 { 446 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 447 } 448 449 /* Get the right ring for the given slot_id, ep_index and stream_id. 450 * If the endpoint supports streams, boundary check the URB's stream ID. 451 * If the endpoint doesn't support streams, return the singular endpoint ring. 452 */ 453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 454 unsigned int slot_id, unsigned int ep_index, 455 unsigned int stream_id) 456 { 457 struct xhci_virt_ep *ep; 458 459 ep = &xhci->devs[slot_id]->eps[ep_index]; 460 /* Common case: no streams */ 461 if (!(ep->ep_state & EP_HAS_STREAMS)) 462 return ep->ring; 463 464 if (stream_id == 0) { 465 xhci_warn(xhci, 466 "WARN: Slot ID %u, ep index %u has streams, " 467 "but URB has no stream ID.\n", 468 slot_id, ep_index); 469 return NULL; 470 } 471 472 if (stream_id < ep->stream_info->num_streams) 473 return ep->stream_info->stream_rings[stream_id]; 474 475 xhci_warn(xhci, 476 "WARN: Slot ID %u, ep index %u has " 477 "stream IDs 1 to %u allocated, " 478 "but stream ID %u is requested.\n", 479 slot_id, ep_index, 480 ep->stream_info->num_streams - 1, 481 stream_id); 482 return NULL; 483 } 484 485 486 /* 487 * Get the hw dequeue pointer xHC stopped on, either directly from the 488 * endpoint context, or if streams are in use from the stream context. 489 * The returned hw_dequeue contains the lowest four bits with cycle state 490 * and possbile stream context type. 491 */ 492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 493 unsigned int ep_index, unsigned int stream_id) 494 { 495 struct xhci_ep_ctx *ep_ctx; 496 struct xhci_stream_ctx *st_ctx; 497 struct xhci_virt_ep *ep; 498 499 ep = &vdev->eps[ep_index]; 500 501 if (ep->ep_state & EP_HAS_STREAMS) { 502 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 503 return le64_to_cpu(st_ctx->stream_ring); 504 } 505 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 506 return le64_to_cpu(ep_ctx->deq); 507 } 508 509 /* 510 * Move the xHC's endpoint ring dequeue pointer past cur_td. 511 * Record the new state of the xHC's endpoint ring dequeue segment, 512 * dequeue pointer, stream id, and new consumer cycle state in state. 513 * Update our internal representation of the ring's dequeue pointer. 514 * 515 * We do this in three jumps: 516 * - First we update our new ring state to be the same as when the xHC stopped. 517 * - Then we traverse the ring to find the segment that contains 518 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 519 * any link TRBs with the toggle cycle bit set. 520 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 521 * if we've moved it past a link TRB with the toggle cycle bit set. 522 * 523 * Some of the uses of xhci_generic_trb are grotty, but if they're done 524 * with correct __le32 accesses they should work fine. Only users of this are 525 * in here. 526 */ 527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 528 unsigned int slot_id, unsigned int ep_index, 529 unsigned int stream_id, struct xhci_td *cur_td, 530 struct xhci_dequeue_state *state) 531 { 532 struct xhci_virt_device *dev = xhci->devs[slot_id]; 533 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 534 struct xhci_ring *ep_ring; 535 struct xhci_segment *new_seg; 536 union xhci_trb *new_deq; 537 dma_addr_t addr; 538 u64 hw_dequeue; 539 bool cycle_found = false; 540 bool td_last_trb_found = false; 541 542 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 543 ep_index, stream_id); 544 if (!ep_ring) { 545 xhci_warn(xhci, "WARN can't find new dequeue state " 546 "for invalid stream ID %u.\n", 547 stream_id); 548 return; 549 } 550 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 551 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 552 "Finding endpoint context"); 553 554 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 555 new_seg = ep_ring->deq_seg; 556 new_deq = ep_ring->dequeue; 557 state->new_cycle_state = hw_dequeue & 0x1; 558 state->stream_id = stream_id; 559 560 /* 561 * We want to find the pointer, segment and cycle state of the new trb 562 * (the one after current TD's last_trb). We know the cycle state at 563 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 564 * found. 565 */ 566 do { 567 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 568 == (dma_addr_t)(hw_dequeue & ~0xf)) { 569 cycle_found = true; 570 if (td_last_trb_found) 571 break; 572 } 573 if (new_deq == cur_td->last_trb) 574 td_last_trb_found = true; 575 576 if (cycle_found && trb_is_link(new_deq) && 577 link_trb_toggles_cycle(new_deq)) 578 state->new_cycle_state ^= 0x1; 579 580 next_trb(xhci, ep_ring, &new_seg, &new_deq); 581 582 /* Search wrapped around, bail out */ 583 if (new_deq == ep->ring->dequeue) { 584 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 585 state->new_deq_seg = NULL; 586 state->new_deq_ptr = NULL; 587 return; 588 } 589 590 } while (!cycle_found || !td_last_trb_found); 591 592 state->new_deq_seg = new_seg; 593 state->new_deq_ptr = new_deq; 594 595 /* Don't update the ring cycle state for the producer (us). */ 596 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 597 "Cycle state = 0x%x", state->new_cycle_state); 598 599 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 600 "New dequeue segment = %p (virtual)", 601 state->new_deq_seg); 602 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 603 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 604 "New dequeue pointer = 0x%llx (DMA)", 605 (unsigned long long) addr); 606 } 607 608 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 609 * (The last TRB actually points to the ring enqueue pointer, which is not part 610 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 611 */ 612 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 613 struct xhci_td *td, bool flip_cycle) 614 { 615 struct xhci_segment *seg = td->start_seg; 616 union xhci_trb *trb = td->first_trb; 617 618 while (1) { 619 trb_to_noop(trb, TRB_TR_NOOP); 620 621 /* flip cycle if asked to */ 622 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 623 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 624 625 if (trb == td->last_trb) 626 break; 627 628 next_trb(xhci, ep_ring, &seg, &trb); 629 } 630 } 631 632 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 633 struct xhci_virt_ep *ep) 634 { 635 ep->ep_state &= ~EP_STOP_CMD_PENDING; 636 /* Can't del_timer_sync in interrupt */ 637 del_timer(&ep->stop_cmd_timer); 638 } 639 640 /* 641 * Must be called with xhci->lock held in interrupt context, 642 * releases and re-acquires xhci->lock 643 */ 644 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 645 struct xhci_td *cur_td, int status) 646 { 647 struct urb *urb = cur_td->urb; 648 struct urb_priv *urb_priv = urb->hcpriv; 649 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 650 651 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 652 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 653 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 654 if (xhci->quirks & XHCI_AMD_PLL_FIX) 655 usb_amd_quirk_pll_enable(); 656 } 657 } 658 xhci_urb_free_priv(urb_priv); 659 usb_hcd_unlink_urb_from_ep(hcd, urb); 660 trace_xhci_urb_giveback(urb); 661 usb_hcd_giveback_urb(hcd, urb, status); 662 } 663 664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 665 struct xhci_ring *ring, struct xhci_td *td) 666 { 667 struct device *dev = xhci_to_hcd(xhci)->self.controller; 668 struct xhci_segment *seg = td->bounce_seg; 669 struct urb *urb = td->urb; 670 size_t len; 671 672 if (!ring || !seg || !urb) 673 return; 674 675 if (usb_urb_dir_out(urb)) { 676 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 677 DMA_TO_DEVICE); 678 return; 679 } 680 681 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 682 DMA_FROM_DEVICE); 683 /* for in tranfers we need to copy the data from bounce to sg */ 684 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 685 seg->bounce_len, seg->bounce_offs); 686 if (len != seg->bounce_len) 687 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 688 len, seg->bounce_len); 689 seg->bounce_len = 0; 690 seg->bounce_offs = 0; 691 } 692 693 /* 694 * When we get a command completion for a Stop Endpoint Command, we need to 695 * unlink any cancelled TDs from the ring. There are two ways to do that: 696 * 697 * 1. If the HW was in the middle of processing the TD that needs to be 698 * cancelled, then we must move the ring's dequeue pointer past the last TRB 699 * in the TD with a Set Dequeue Pointer Command. 700 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 701 * bit cleared) so that the HW will skip over them. 702 */ 703 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 704 union xhci_trb *trb, struct xhci_event_cmd *event) 705 { 706 unsigned int ep_index; 707 struct xhci_ring *ep_ring; 708 struct xhci_virt_ep *ep; 709 struct xhci_td *cur_td = NULL; 710 struct xhci_td *last_unlinked_td; 711 struct xhci_ep_ctx *ep_ctx; 712 struct xhci_virt_device *vdev; 713 u64 hw_deq; 714 struct xhci_dequeue_state deq_state; 715 716 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 717 if (!xhci->devs[slot_id]) 718 xhci_warn(xhci, "Stop endpoint command " 719 "completion for disabled slot %u\n", 720 slot_id); 721 return; 722 } 723 724 memset(&deq_state, 0, sizeof(deq_state)); 725 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 726 727 vdev = xhci->devs[slot_id]; 728 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 729 trace_xhci_handle_cmd_stop_ep(ep_ctx); 730 731 ep = &xhci->devs[slot_id]->eps[ep_index]; 732 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 733 struct xhci_td, cancelled_td_list); 734 735 if (list_empty(&ep->cancelled_td_list)) { 736 xhci_stop_watchdog_timer_in_irq(xhci, ep); 737 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 738 return; 739 } 740 741 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 742 * We have the xHCI lock, so nothing can modify this list until we drop 743 * it. We're also in the event handler, so we can't get re-interrupted 744 * if another Stop Endpoint command completes 745 */ 746 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 747 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 748 "Removing canceled TD starting at 0x%llx (dma).", 749 (unsigned long long)xhci_trb_virt_to_dma( 750 cur_td->start_seg, cur_td->first_trb)); 751 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 752 if (!ep_ring) { 753 /* This shouldn't happen unless a driver is mucking 754 * with the stream ID after submission. This will 755 * leave the TD on the hardware ring, and the hardware 756 * will try to execute it, and may access a buffer 757 * that has already been freed. In the best case, the 758 * hardware will execute it, and the event handler will 759 * ignore the completion event for that TD, since it was 760 * removed from the td_list for that endpoint. In 761 * short, don't muck with the stream ID after 762 * submission. 763 */ 764 xhci_warn(xhci, "WARN Cancelled URB %p " 765 "has invalid stream ID %u.\n", 766 cur_td->urb, 767 cur_td->urb->stream_id); 768 goto remove_finished_td; 769 } 770 /* 771 * If we stopped on the TD we need to cancel, then we have to 772 * move the xHC endpoint ring dequeue pointer past this TD. 773 */ 774 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 775 cur_td->urb->stream_id); 776 hw_deq &= ~0xf; 777 778 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 779 cur_td->last_trb, hw_deq, false)) { 780 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 781 cur_td->urb->stream_id, 782 cur_td, &deq_state); 783 } else { 784 td_to_noop(xhci, ep_ring, cur_td, false); 785 } 786 787 remove_finished_td: 788 /* 789 * The event handler won't see a completion for this TD anymore, 790 * so remove it from the endpoint ring's TD list. Keep it in 791 * the cancelled TD list for URB completion later. 792 */ 793 list_del_init(&cur_td->td_list); 794 } 795 796 xhci_stop_watchdog_timer_in_irq(xhci, ep); 797 798 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 799 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 800 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 801 &deq_state); 802 xhci_ring_cmd_db(xhci); 803 } else { 804 /* Otherwise ring the doorbell(s) to restart queued transfers */ 805 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 806 } 807 808 /* 809 * Drop the lock and complete the URBs in the cancelled TD list. 810 * New TDs to be cancelled might be added to the end of the list before 811 * we can complete all the URBs for the TDs we already unlinked. 812 * So stop when we've completed the URB for the last TD we unlinked. 813 */ 814 do { 815 cur_td = list_first_entry(&ep->cancelled_td_list, 816 struct xhci_td, cancelled_td_list); 817 list_del_init(&cur_td->cancelled_td_list); 818 819 /* Clean up the cancelled URB */ 820 /* Doesn't matter what we pass for status, since the core will 821 * just overwrite it (because the URB has been unlinked). 822 */ 823 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 824 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 825 inc_td_cnt(cur_td->urb); 826 if (last_td_in_urb(cur_td)) 827 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 828 829 /* Stop processing the cancelled list if the watchdog timer is 830 * running. 831 */ 832 if (xhci->xhc_state & XHCI_STATE_DYING) 833 return; 834 } while (cur_td != last_unlinked_td); 835 836 /* Return to the event handler with xhci->lock re-acquired */ 837 } 838 839 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 840 { 841 struct xhci_td *cur_td; 842 struct xhci_td *tmp; 843 844 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 845 list_del_init(&cur_td->td_list); 846 847 if (!list_empty(&cur_td->cancelled_td_list)) 848 list_del_init(&cur_td->cancelled_td_list); 849 850 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 851 852 inc_td_cnt(cur_td->urb); 853 if (last_td_in_urb(cur_td)) 854 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 855 } 856 } 857 858 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 859 int slot_id, int ep_index) 860 { 861 struct xhci_td *cur_td; 862 struct xhci_td *tmp; 863 struct xhci_virt_ep *ep; 864 struct xhci_ring *ring; 865 866 ep = &xhci->devs[slot_id]->eps[ep_index]; 867 if ((ep->ep_state & EP_HAS_STREAMS) || 868 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 869 int stream_id; 870 871 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 872 stream_id++) { 873 ring = ep->stream_info->stream_rings[stream_id]; 874 if (!ring) 875 continue; 876 877 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 878 "Killing URBs for slot ID %u, ep index %u, stream %u", 879 slot_id, ep_index, stream_id); 880 xhci_kill_ring_urbs(xhci, ring); 881 } 882 } else { 883 ring = ep->ring; 884 if (!ring) 885 return; 886 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 887 "Killing URBs for slot ID %u, ep index %u", 888 slot_id, ep_index); 889 xhci_kill_ring_urbs(xhci, ring); 890 } 891 892 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 893 cancelled_td_list) { 894 list_del_init(&cur_td->cancelled_td_list); 895 inc_td_cnt(cur_td->urb); 896 897 if (last_td_in_urb(cur_td)) 898 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 899 } 900 } 901 902 /* 903 * host controller died, register read returns 0xffffffff 904 * Complete pending commands, mark them ABORTED. 905 * URBs need to be given back as usb core might be waiting with device locks 906 * held for the URBs to finish during device disconnect, blocking host remove. 907 * 908 * Call with xhci->lock held. 909 * lock is relased and re-acquired while giving back urb. 910 */ 911 void xhci_hc_died(struct xhci_hcd *xhci) 912 { 913 int i, j; 914 915 if (xhci->xhc_state & XHCI_STATE_DYING) 916 return; 917 918 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 919 xhci->xhc_state |= XHCI_STATE_DYING; 920 921 xhci_cleanup_command_queue(xhci); 922 923 /* return any pending urbs, remove may be waiting for them */ 924 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 925 if (!xhci->devs[i]) 926 continue; 927 for (j = 0; j < 31; j++) 928 xhci_kill_endpoint_urbs(xhci, i, j); 929 } 930 931 /* inform usb core hc died if PCI remove isn't already handling it */ 932 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 933 usb_hc_died(xhci_to_hcd(xhci)); 934 } 935 936 /* Watchdog timer function for when a stop endpoint command fails to complete. 937 * In this case, we assume the host controller is broken or dying or dead. The 938 * host may still be completing some other events, so we have to be careful to 939 * let the event ring handler and the URB dequeueing/enqueueing functions know 940 * through xhci->state. 941 * 942 * The timer may also fire if the host takes a very long time to respond to the 943 * command, and the stop endpoint command completion handler cannot delete the 944 * timer before the timer function is called. Another endpoint cancellation may 945 * sneak in before the timer function can grab the lock, and that may queue 946 * another stop endpoint command and add the timer back. So we cannot use a 947 * simple flag to say whether there is a pending stop endpoint command for a 948 * particular endpoint. 949 * 950 * Instead we use a combination of that flag and checking if a new timer is 951 * pending. 952 */ 953 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 954 { 955 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 956 struct xhci_hcd *xhci = ep->xhci; 957 unsigned long flags; 958 959 spin_lock_irqsave(&xhci->lock, flags); 960 961 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 962 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 963 timer_pending(&ep->stop_cmd_timer)) { 964 spin_unlock_irqrestore(&xhci->lock, flags); 965 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 966 return; 967 } 968 969 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 970 ep->ep_state &= ~EP_STOP_CMD_PENDING; 971 972 xhci_halt(xhci); 973 974 /* 975 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 976 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 977 * and try to recover a -ETIMEDOUT with a host controller reset 978 */ 979 xhci_hc_died(xhci); 980 981 spin_unlock_irqrestore(&xhci->lock, flags); 982 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 983 "xHCI host controller is dead."); 984 } 985 986 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 987 struct xhci_virt_device *dev, 988 struct xhci_ring *ep_ring, 989 unsigned int ep_index) 990 { 991 union xhci_trb *dequeue_temp; 992 int num_trbs_free_temp; 993 bool revert = false; 994 995 num_trbs_free_temp = ep_ring->num_trbs_free; 996 dequeue_temp = ep_ring->dequeue; 997 998 /* If we get two back-to-back stalls, and the first stalled transfer 999 * ends just before a link TRB, the dequeue pointer will be left on 1000 * the link TRB by the code in the while loop. So we have to update 1001 * the dequeue pointer one segment further, or we'll jump off 1002 * the segment into la-la-land. 1003 */ 1004 if (trb_is_link(ep_ring->dequeue)) { 1005 ep_ring->deq_seg = ep_ring->deq_seg->next; 1006 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1007 } 1008 1009 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1010 /* We have more usable TRBs */ 1011 ep_ring->num_trbs_free++; 1012 ep_ring->dequeue++; 1013 if (trb_is_link(ep_ring->dequeue)) { 1014 if (ep_ring->dequeue == 1015 dev->eps[ep_index].queued_deq_ptr) 1016 break; 1017 ep_ring->deq_seg = ep_ring->deq_seg->next; 1018 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1019 } 1020 if (ep_ring->dequeue == dequeue_temp) { 1021 revert = true; 1022 break; 1023 } 1024 } 1025 1026 if (revert) { 1027 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1028 ep_ring->num_trbs_free = num_trbs_free_temp; 1029 } 1030 } 1031 1032 /* 1033 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1034 * we need to clear the set deq pending flag in the endpoint ring state, so that 1035 * the TD queueing code can ring the doorbell again. We also need to ring the 1036 * endpoint doorbell to restart the ring, but only if there aren't more 1037 * cancellations pending. 1038 */ 1039 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1040 union xhci_trb *trb, u32 cmd_comp_code) 1041 { 1042 unsigned int ep_index; 1043 unsigned int stream_id; 1044 struct xhci_ring *ep_ring; 1045 struct xhci_virt_device *dev; 1046 struct xhci_virt_ep *ep; 1047 struct xhci_ep_ctx *ep_ctx; 1048 struct xhci_slot_ctx *slot_ctx; 1049 1050 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1051 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1052 dev = xhci->devs[slot_id]; 1053 ep = &dev->eps[ep_index]; 1054 1055 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1056 if (!ep_ring) { 1057 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1058 stream_id); 1059 /* XXX: Harmless??? */ 1060 goto cleanup; 1061 } 1062 1063 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1064 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1065 trace_xhci_handle_cmd_set_deq(slot_ctx); 1066 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1067 1068 if (cmd_comp_code != COMP_SUCCESS) { 1069 unsigned int ep_state; 1070 unsigned int slot_state; 1071 1072 switch (cmd_comp_code) { 1073 case COMP_TRB_ERROR: 1074 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1075 break; 1076 case COMP_CONTEXT_STATE_ERROR: 1077 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1078 ep_state = GET_EP_CTX_STATE(ep_ctx); 1079 slot_state = le32_to_cpu(slot_ctx->dev_state); 1080 slot_state = GET_SLOT_STATE(slot_state); 1081 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1082 "Slot state = %u, EP state = %u", 1083 slot_state, ep_state); 1084 break; 1085 case COMP_SLOT_NOT_ENABLED_ERROR: 1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1087 slot_id); 1088 break; 1089 default: 1090 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1091 cmd_comp_code); 1092 break; 1093 } 1094 /* OK what do we do now? The endpoint state is hosed, and we 1095 * should never get to this point if the synchronization between 1096 * queueing, and endpoint state are correct. This might happen 1097 * if the device gets disconnected after we've finished 1098 * cancelling URBs, which might not be an error... 1099 */ 1100 } else { 1101 u64 deq; 1102 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1103 if (ep->ep_state & EP_HAS_STREAMS) { 1104 struct xhci_stream_ctx *ctx = 1105 &ep->stream_info->stream_ctx_array[stream_id]; 1106 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1107 } else { 1108 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1109 } 1110 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1111 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1112 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1113 ep->queued_deq_ptr) == deq) { 1114 /* Update the ring's dequeue segment and dequeue pointer 1115 * to reflect the new position. 1116 */ 1117 update_ring_for_set_deq_completion(xhci, dev, 1118 ep_ring, ep_index); 1119 } else { 1120 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1121 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1122 ep->queued_deq_seg, ep->queued_deq_ptr); 1123 } 1124 } 1125 1126 cleanup: 1127 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1128 dev->eps[ep_index].queued_deq_seg = NULL; 1129 dev->eps[ep_index].queued_deq_ptr = NULL; 1130 /* Restart any rings with pending URBs */ 1131 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1132 } 1133 1134 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1135 union xhci_trb *trb, u32 cmd_comp_code) 1136 { 1137 struct xhci_virt_device *vdev; 1138 struct xhci_ep_ctx *ep_ctx; 1139 unsigned int ep_index; 1140 1141 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1142 vdev = xhci->devs[slot_id]; 1143 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1144 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1145 1146 /* This command will only fail if the endpoint wasn't halted, 1147 * but we don't care. 1148 */ 1149 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1150 "Ignoring reset ep completion code of %u", cmd_comp_code); 1151 1152 /* HW with the reset endpoint quirk needs to have a configure endpoint 1153 * command complete before the endpoint can be used. Queue that here 1154 * because the HW can't handle two commands being queued in a row. 1155 */ 1156 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1157 struct xhci_command *command; 1158 1159 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1160 if (!command) 1161 return; 1162 1163 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1164 "Queueing configure endpoint command"); 1165 xhci_queue_configure_endpoint(xhci, command, 1166 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1167 false); 1168 xhci_ring_cmd_db(xhci); 1169 } else { 1170 /* Clear our internal halted state */ 1171 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1172 } 1173 1174 /* if this was a soft reset, then restart */ 1175 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1176 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1177 } 1178 1179 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1180 struct xhci_command *command, u32 cmd_comp_code) 1181 { 1182 if (cmd_comp_code == COMP_SUCCESS) 1183 command->slot_id = slot_id; 1184 else 1185 command->slot_id = 0; 1186 } 1187 1188 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1189 { 1190 struct xhci_virt_device *virt_dev; 1191 struct xhci_slot_ctx *slot_ctx; 1192 1193 virt_dev = xhci->devs[slot_id]; 1194 if (!virt_dev) 1195 return; 1196 1197 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1198 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1199 1200 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1201 /* Delete default control endpoint resources */ 1202 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1203 xhci_free_virt_device(xhci, slot_id); 1204 } 1205 1206 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1207 struct xhci_event_cmd *event, u32 cmd_comp_code) 1208 { 1209 struct xhci_virt_device *virt_dev; 1210 struct xhci_input_control_ctx *ctrl_ctx; 1211 struct xhci_ep_ctx *ep_ctx; 1212 unsigned int ep_index; 1213 unsigned int ep_state; 1214 u32 add_flags, drop_flags; 1215 1216 /* 1217 * Configure endpoint commands can come from the USB core 1218 * configuration or alt setting changes, or because the HW 1219 * needed an extra configure endpoint command after a reset 1220 * endpoint command or streams were being configured. 1221 * If the command was for a halted endpoint, the xHCI driver 1222 * is not waiting on the configure endpoint command. 1223 */ 1224 virt_dev = xhci->devs[slot_id]; 1225 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1226 if (!ctrl_ctx) { 1227 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1228 return; 1229 } 1230 1231 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1232 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1233 /* Input ctx add_flags are the endpoint index plus one */ 1234 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1235 1236 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1237 trace_xhci_handle_cmd_config_ep(ep_ctx); 1238 1239 /* A usb_set_interface() call directly after clearing a halted 1240 * condition may race on this quirky hardware. Not worth 1241 * worrying about, since this is prototype hardware. Not sure 1242 * if this will work for streams, but streams support was 1243 * untested on this prototype. 1244 */ 1245 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1246 ep_index != (unsigned int) -1 && 1247 add_flags - SLOT_FLAG == drop_flags) { 1248 ep_state = virt_dev->eps[ep_index].ep_state; 1249 if (!(ep_state & EP_HALTED)) 1250 return; 1251 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1252 "Completed config ep cmd - " 1253 "last ep index = %d, state = %d", 1254 ep_index, ep_state); 1255 /* Clear internal halted state and restart ring(s) */ 1256 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1257 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1258 return; 1259 } 1260 return; 1261 } 1262 1263 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1264 { 1265 struct xhci_virt_device *vdev; 1266 struct xhci_slot_ctx *slot_ctx; 1267 1268 vdev = xhci->devs[slot_id]; 1269 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1270 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1271 } 1272 1273 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1274 struct xhci_event_cmd *event) 1275 { 1276 struct xhci_virt_device *vdev; 1277 struct xhci_slot_ctx *slot_ctx; 1278 1279 vdev = xhci->devs[slot_id]; 1280 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1281 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1282 1283 xhci_dbg(xhci, "Completed reset device command.\n"); 1284 if (!xhci->devs[slot_id]) 1285 xhci_warn(xhci, "Reset device command completion " 1286 "for disabled slot %u\n", slot_id); 1287 } 1288 1289 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1290 struct xhci_event_cmd *event) 1291 { 1292 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1293 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1294 return; 1295 } 1296 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1297 "NEC firmware version %2x.%02x", 1298 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1299 NEC_FW_MINOR(le32_to_cpu(event->status))); 1300 } 1301 1302 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1303 { 1304 list_del(&cmd->cmd_list); 1305 1306 if (cmd->completion) { 1307 cmd->status = status; 1308 complete(cmd->completion); 1309 } else { 1310 kfree(cmd); 1311 } 1312 } 1313 1314 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1315 { 1316 struct xhci_command *cur_cmd, *tmp_cmd; 1317 xhci->current_cmd = NULL; 1318 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1319 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1320 } 1321 1322 void xhci_handle_command_timeout(struct work_struct *work) 1323 { 1324 struct xhci_hcd *xhci; 1325 unsigned long flags; 1326 u64 hw_ring_state; 1327 1328 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1329 1330 spin_lock_irqsave(&xhci->lock, flags); 1331 1332 /* 1333 * If timeout work is pending, or current_cmd is NULL, it means we 1334 * raced with command completion. Command is handled so just return. 1335 */ 1336 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1337 spin_unlock_irqrestore(&xhci->lock, flags); 1338 return; 1339 } 1340 /* mark this command to be cancelled */ 1341 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1342 1343 /* Make sure command ring is running before aborting it */ 1344 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1345 if (hw_ring_state == ~(u64)0) { 1346 xhci_hc_died(xhci); 1347 goto time_out_completed; 1348 } 1349 1350 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1351 (hw_ring_state & CMD_RING_RUNNING)) { 1352 /* Prevent new doorbell, and start command abort */ 1353 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1354 xhci_dbg(xhci, "Command timeout\n"); 1355 xhci_abort_cmd_ring(xhci, flags); 1356 goto time_out_completed; 1357 } 1358 1359 /* host removed. Bail out */ 1360 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1361 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1362 xhci_cleanup_command_queue(xhci); 1363 1364 goto time_out_completed; 1365 } 1366 1367 /* command timeout on stopped ring, ring can't be aborted */ 1368 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1369 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1370 1371 time_out_completed: 1372 spin_unlock_irqrestore(&xhci->lock, flags); 1373 return; 1374 } 1375 1376 static void handle_cmd_completion(struct xhci_hcd *xhci, 1377 struct xhci_event_cmd *event) 1378 { 1379 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1380 u64 cmd_dma; 1381 dma_addr_t cmd_dequeue_dma; 1382 u32 cmd_comp_code; 1383 union xhci_trb *cmd_trb; 1384 struct xhci_command *cmd; 1385 u32 cmd_type; 1386 1387 cmd_dma = le64_to_cpu(event->cmd_trb); 1388 cmd_trb = xhci->cmd_ring->dequeue; 1389 1390 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1391 1392 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1393 cmd_trb); 1394 /* 1395 * Check whether the completion event is for our internal kept 1396 * command. 1397 */ 1398 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1399 xhci_warn(xhci, 1400 "ERROR mismatched command completion event\n"); 1401 return; 1402 } 1403 1404 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1405 1406 cancel_delayed_work(&xhci->cmd_timer); 1407 1408 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1409 1410 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1411 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1412 complete_all(&xhci->cmd_ring_stop_completion); 1413 return; 1414 } 1415 1416 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1417 xhci_err(xhci, 1418 "Command completion event does not match command\n"); 1419 return; 1420 } 1421 1422 /* 1423 * Host aborted the command ring, check if the current command was 1424 * supposed to be aborted, otherwise continue normally. 1425 * The command ring is stopped now, but the xHC will issue a Command 1426 * Ring Stopped event which will cause us to restart it. 1427 */ 1428 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1429 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1430 if (cmd->status == COMP_COMMAND_ABORTED) { 1431 if (xhci->current_cmd == cmd) 1432 xhci->current_cmd = NULL; 1433 goto event_handled; 1434 } 1435 } 1436 1437 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1438 switch (cmd_type) { 1439 case TRB_ENABLE_SLOT: 1440 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1441 break; 1442 case TRB_DISABLE_SLOT: 1443 xhci_handle_cmd_disable_slot(xhci, slot_id); 1444 break; 1445 case TRB_CONFIG_EP: 1446 if (!cmd->completion) 1447 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1448 cmd_comp_code); 1449 break; 1450 case TRB_EVAL_CONTEXT: 1451 break; 1452 case TRB_ADDR_DEV: 1453 xhci_handle_cmd_addr_dev(xhci, slot_id); 1454 break; 1455 case TRB_STOP_RING: 1456 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1457 le32_to_cpu(cmd_trb->generic.field[3]))); 1458 if (!cmd->completion) 1459 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1460 break; 1461 case TRB_SET_DEQ: 1462 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1463 le32_to_cpu(cmd_trb->generic.field[3]))); 1464 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1465 break; 1466 case TRB_CMD_NOOP: 1467 /* Is this an aborted command turned to NO-OP? */ 1468 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1469 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1470 break; 1471 case TRB_RESET_EP: 1472 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1473 le32_to_cpu(cmd_trb->generic.field[3]))); 1474 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1475 break; 1476 case TRB_RESET_DEV: 1477 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1478 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1479 */ 1480 slot_id = TRB_TO_SLOT_ID( 1481 le32_to_cpu(cmd_trb->generic.field[3])); 1482 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1483 break; 1484 case TRB_NEC_GET_FW: 1485 xhci_handle_cmd_nec_get_fw(xhci, event); 1486 break; 1487 default: 1488 /* Skip over unknown commands on the event ring */ 1489 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1490 break; 1491 } 1492 1493 /* restart timer if this wasn't the last command */ 1494 if (!list_is_singular(&xhci->cmd_list)) { 1495 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1496 struct xhci_command, cmd_list); 1497 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1498 } else if (xhci->current_cmd == cmd) { 1499 xhci->current_cmd = NULL; 1500 } 1501 1502 event_handled: 1503 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1504 1505 inc_deq(xhci, xhci->cmd_ring); 1506 } 1507 1508 static void handle_vendor_event(struct xhci_hcd *xhci, 1509 union xhci_trb *event) 1510 { 1511 u32 trb_type; 1512 1513 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1514 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1515 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1516 handle_cmd_completion(xhci, &event->event_cmd); 1517 } 1518 1519 static void handle_device_notification(struct xhci_hcd *xhci, 1520 union xhci_trb *event) 1521 { 1522 u32 slot_id; 1523 struct usb_device *udev; 1524 1525 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1526 if (!xhci->devs[slot_id]) { 1527 xhci_warn(xhci, "Device Notification event for " 1528 "unused slot %u\n", slot_id); 1529 return; 1530 } 1531 1532 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1533 slot_id); 1534 udev = xhci->devs[slot_id]->udev; 1535 if (udev && udev->parent) 1536 usb_wakeup_notification(udev->parent, udev->portnum); 1537 } 1538 1539 /* 1540 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1541 * Controller. 1542 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1543 * If a connection to a USB 1 device is followed by another connection 1544 * to a USB 2 device. 1545 * 1546 * Reset the PHY after the USB device is disconnected if device speed 1547 * is less than HCD_USB3. 1548 * Retry the reset sequence max of 4 times checking the PLL lock status. 1549 * 1550 */ 1551 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1552 { 1553 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1554 u32 pll_lock_check; 1555 u32 retry_count = 4; 1556 1557 do { 1558 /* Assert PHY reset */ 1559 writel(0x6F, hcd->regs + 0x1048); 1560 udelay(10); 1561 /* De-assert the PHY reset */ 1562 writel(0x7F, hcd->regs + 0x1048); 1563 udelay(200); 1564 pll_lock_check = readl(hcd->regs + 0x1070); 1565 } while (!(pll_lock_check & 0x1) && --retry_count); 1566 } 1567 1568 static void handle_port_status(struct xhci_hcd *xhci, 1569 union xhci_trb *event) 1570 { 1571 struct usb_hcd *hcd; 1572 u32 port_id; 1573 u32 portsc, cmd_reg; 1574 int max_ports; 1575 int slot_id; 1576 unsigned int hcd_portnum; 1577 struct xhci_bus_state *bus_state; 1578 bool bogus_port_status = false; 1579 struct xhci_port *port; 1580 1581 /* Port status change events always have a successful completion code */ 1582 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1583 xhci_warn(xhci, 1584 "WARN: xHC returned failed port status event\n"); 1585 1586 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1587 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1588 1589 if ((port_id <= 0) || (port_id > max_ports)) { 1590 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1591 port_id); 1592 inc_deq(xhci, xhci->event_ring); 1593 return; 1594 } 1595 1596 port = &xhci->hw_ports[port_id - 1]; 1597 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1598 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1599 port_id); 1600 bogus_port_status = true; 1601 goto cleanup; 1602 } 1603 1604 /* We might get interrupts after shared_hcd is removed */ 1605 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1606 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1607 bogus_port_status = true; 1608 goto cleanup; 1609 } 1610 1611 hcd = port->rhub->hcd; 1612 bus_state = &port->rhub->bus_state; 1613 hcd_portnum = port->hcd_portnum; 1614 portsc = readl(port->addr); 1615 1616 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1617 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1618 1619 trace_xhci_handle_port_status(hcd_portnum, portsc); 1620 1621 if (hcd->state == HC_STATE_SUSPENDED) { 1622 xhci_dbg(xhci, "resume root hub\n"); 1623 usb_hcd_resume_root_hub(hcd); 1624 } 1625 1626 if (hcd->speed >= HCD_USB3 && 1627 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1628 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1629 if (slot_id && xhci->devs[slot_id]) 1630 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1631 } 1632 1633 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1634 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1635 1636 cmd_reg = readl(&xhci->op_regs->command); 1637 if (!(cmd_reg & CMD_RUN)) { 1638 xhci_warn(xhci, "xHC is not running.\n"); 1639 goto cleanup; 1640 } 1641 1642 if (DEV_SUPERSPEED_ANY(portsc)) { 1643 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1644 /* Set a flag to say the port signaled remote wakeup, 1645 * so we can tell the difference between the end of 1646 * device and host initiated resume. 1647 */ 1648 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1649 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1650 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1651 xhci_set_link_state(xhci, port, XDEV_U0); 1652 /* Need to wait until the next link state change 1653 * indicates the device is actually in U0. 1654 */ 1655 bogus_port_status = true; 1656 goto cleanup; 1657 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1658 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1659 bus_state->resume_done[hcd_portnum] = jiffies + 1660 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1661 set_bit(hcd_portnum, &bus_state->resuming_ports); 1662 /* Do the rest in GetPortStatus after resume time delay. 1663 * Avoid polling roothub status before that so that a 1664 * usb device auto-resume latency around ~40ms. 1665 */ 1666 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1667 mod_timer(&hcd->rh_timer, 1668 bus_state->resume_done[hcd_portnum]); 1669 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1670 bogus_port_status = true; 1671 } 1672 } 1673 1674 if ((portsc & PORT_PLC) && 1675 DEV_SUPERSPEED_ANY(portsc) && 1676 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1677 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1678 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1679 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1680 /* We've just brought the device into U0/1/2 through either the 1681 * Resume state after a device remote wakeup, or through the 1682 * U3Exit state after a host-initiated resume. If it's a device 1683 * initiated remote wake, don't pass up the link state change, 1684 * so the roothub behavior is consistent with external 1685 * USB 3.0 hub behavior. 1686 */ 1687 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1688 if (slot_id && xhci->devs[slot_id]) 1689 xhci_ring_device(xhci, slot_id); 1690 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1691 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1692 usb_wakeup_notification(hcd->self.root_hub, 1693 hcd_portnum + 1); 1694 bogus_port_status = true; 1695 goto cleanup; 1696 } 1697 } 1698 1699 /* 1700 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1701 * RExit to a disconnect state). If so, let the the driver know it's 1702 * out of the RExit state. 1703 */ 1704 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1705 test_and_clear_bit(hcd_portnum, 1706 &bus_state->rexit_ports)) { 1707 complete(&bus_state->rexit_done[hcd_portnum]); 1708 bogus_port_status = true; 1709 goto cleanup; 1710 } 1711 1712 if (hcd->speed < HCD_USB3) { 1713 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1714 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1715 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1716 xhci_cavium_reset_phy_quirk(xhci); 1717 } 1718 1719 cleanup: 1720 /* Update event ring dequeue pointer before dropping the lock */ 1721 inc_deq(xhci, xhci->event_ring); 1722 1723 /* Don't make the USB core poll the roothub if we got a bad port status 1724 * change event. Besides, at that point we can't tell which roothub 1725 * (USB 2.0 or USB 3.0) to kick. 1726 */ 1727 if (bogus_port_status) 1728 return; 1729 1730 /* 1731 * xHCI port-status-change events occur when the "or" of all the 1732 * status-change bits in the portsc register changes from 0 to 1. 1733 * New status changes won't cause an event if any other change 1734 * bits are still set. When an event occurs, switch over to 1735 * polling to avoid losing status changes. 1736 */ 1737 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1738 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1739 spin_unlock(&xhci->lock); 1740 /* Pass this up to the core */ 1741 usb_hcd_poll_rh_status(hcd); 1742 spin_lock(&xhci->lock); 1743 } 1744 1745 /* 1746 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1747 * at end_trb, which may be in another segment. If the suspect DMA address is a 1748 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1749 * returns 0. 1750 */ 1751 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1752 struct xhci_segment *start_seg, 1753 union xhci_trb *start_trb, 1754 union xhci_trb *end_trb, 1755 dma_addr_t suspect_dma, 1756 bool debug) 1757 { 1758 dma_addr_t start_dma; 1759 dma_addr_t end_seg_dma; 1760 dma_addr_t end_trb_dma; 1761 struct xhci_segment *cur_seg; 1762 1763 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1764 cur_seg = start_seg; 1765 1766 do { 1767 if (start_dma == 0) 1768 return NULL; 1769 /* We may get an event for a Link TRB in the middle of a TD */ 1770 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1771 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1772 /* If the end TRB isn't in this segment, this is set to 0 */ 1773 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1774 1775 if (debug) 1776 xhci_warn(xhci, 1777 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1778 (unsigned long long)suspect_dma, 1779 (unsigned long long)start_dma, 1780 (unsigned long long)end_trb_dma, 1781 (unsigned long long)cur_seg->dma, 1782 (unsigned long long)end_seg_dma); 1783 1784 if (end_trb_dma > 0) { 1785 /* The end TRB is in this segment, so suspect should be here */ 1786 if (start_dma <= end_trb_dma) { 1787 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1788 return cur_seg; 1789 } else { 1790 /* Case for one segment with 1791 * a TD wrapped around to the top 1792 */ 1793 if ((suspect_dma >= start_dma && 1794 suspect_dma <= end_seg_dma) || 1795 (suspect_dma >= cur_seg->dma && 1796 suspect_dma <= end_trb_dma)) 1797 return cur_seg; 1798 } 1799 return NULL; 1800 } else { 1801 /* Might still be somewhere in this segment */ 1802 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1803 return cur_seg; 1804 } 1805 cur_seg = cur_seg->next; 1806 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1807 } while (cur_seg != start_seg); 1808 1809 return NULL; 1810 } 1811 1812 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 1813 struct xhci_virt_ep *ep) 1814 { 1815 /* 1816 * As part of low/full-speed endpoint-halt processing 1817 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 1818 */ 1819 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 1820 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 1821 !(ep->ep_state & EP_CLEARING_TT)) { 1822 ep->ep_state |= EP_CLEARING_TT; 1823 td->urb->ep->hcpriv = td->urb->dev; 1824 if (usb_hub_clear_tt_buffer(td->urb)) 1825 ep->ep_state &= ~EP_CLEARING_TT; 1826 } 1827 } 1828 1829 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1830 unsigned int slot_id, unsigned int ep_index, 1831 unsigned int stream_id, struct xhci_td *td, 1832 enum xhci_ep_reset_type reset_type) 1833 { 1834 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1835 struct xhci_command *command; 1836 1837 /* 1838 * Avoid resetting endpoint if link is inactive. Can cause host hang. 1839 * Device will be reset soon to recover the link so don't do anything 1840 */ 1841 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) 1842 return; 1843 1844 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1845 if (!command) 1846 return; 1847 1848 ep->ep_state |= EP_HALTED; 1849 1850 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1851 1852 if (reset_type == EP_HARD_RESET) { 1853 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1854 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1855 xhci_clear_hub_tt_buffer(xhci, td, ep); 1856 } 1857 xhci_ring_cmd_db(xhci); 1858 } 1859 1860 /* Check if an error has halted the endpoint ring. The class driver will 1861 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1862 * However, a babble and other errors also halt the endpoint ring, and the class 1863 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1864 * Ring Dequeue Pointer command manually. 1865 */ 1866 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1867 struct xhci_ep_ctx *ep_ctx, 1868 unsigned int trb_comp_code) 1869 { 1870 /* TRB completion codes that may require a manual halt cleanup */ 1871 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1872 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1873 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1874 /* The 0.95 spec says a babbling control endpoint 1875 * is not halted. The 0.96 spec says it is. Some HW 1876 * claims to be 0.95 compliant, but it halts the control 1877 * endpoint anyway. Check if a babble halted the 1878 * endpoint. 1879 */ 1880 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1881 return 1; 1882 1883 return 0; 1884 } 1885 1886 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1887 { 1888 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1889 /* Vendor defined "informational" completion code, 1890 * treat as not-an-error. 1891 */ 1892 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1893 trb_comp_code); 1894 xhci_dbg(xhci, "Treating code as success.\n"); 1895 return 1; 1896 } 1897 return 0; 1898 } 1899 1900 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1901 struct xhci_ring *ep_ring, int *status) 1902 { 1903 struct urb *urb = NULL; 1904 1905 /* Clean up the endpoint's TD list */ 1906 urb = td->urb; 1907 1908 /* if a bounce buffer was used to align this td then unmap it */ 1909 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1910 1911 /* Do one last check of the actual transfer length. 1912 * If the host controller said we transferred more data than the buffer 1913 * length, urb->actual_length will be a very big number (since it's 1914 * unsigned). Play it safe and say we didn't transfer anything. 1915 */ 1916 if (urb->actual_length > urb->transfer_buffer_length) { 1917 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1918 urb->transfer_buffer_length, urb->actual_length); 1919 urb->actual_length = 0; 1920 *status = 0; 1921 } 1922 list_del_init(&td->td_list); 1923 /* Was this TD slated to be cancelled but completed anyway? */ 1924 if (!list_empty(&td->cancelled_td_list)) 1925 list_del_init(&td->cancelled_td_list); 1926 1927 inc_td_cnt(urb); 1928 /* Giveback the urb when all the tds are completed */ 1929 if (last_td_in_urb(td)) { 1930 if ((urb->actual_length != urb->transfer_buffer_length && 1931 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1932 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1933 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1934 urb, urb->actual_length, 1935 urb->transfer_buffer_length, *status); 1936 1937 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1938 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1939 *status = 0; 1940 xhci_giveback_urb_in_irq(xhci, td, *status); 1941 } 1942 1943 return 0; 1944 } 1945 1946 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1947 struct xhci_transfer_event *event, 1948 struct xhci_virt_ep *ep, int *status) 1949 { 1950 struct xhci_virt_device *xdev; 1951 struct xhci_ep_ctx *ep_ctx; 1952 struct xhci_ring *ep_ring; 1953 unsigned int slot_id; 1954 u32 trb_comp_code; 1955 int ep_index; 1956 1957 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1958 xdev = xhci->devs[slot_id]; 1959 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1960 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1961 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1962 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1963 1964 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1965 trb_comp_code == COMP_STOPPED || 1966 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1967 /* The Endpoint Stop Command completion will take care of any 1968 * stopped TDs. A stopped TD may be restarted, so don't update 1969 * the ring dequeue pointer or take this TD off any lists yet. 1970 */ 1971 return 0; 1972 } 1973 if (trb_comp_code == COMP_STALL_ERROR || 1974 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1975 trb_comp_code)) { 1976 /* Issue a reset endpoint command to clear the host side 1977 * halt, followed by a set dequeue command to move the 1978 * dequeue pointer past the TD. 1979 * The class driver clears the device side halt later. 1980 */ 1981 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1982 ep_ring->stream_id, td, EP_HARD_RESET); 1983 } else { 1984 /* Update ring dequeue pointer */ 1985 while (ep_ring->dequeue != td->last_trb) 1986 inc_deq(xhci, ep_ring); 1987 inc_deq(xhci, ep_ring); 1988 } 1989 1990 return xhci_td_cleanup(xhci, td, ep_ring, status); 1991 } 1992 1993 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1994 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1995 union xhci_trb *stop_trb) 1996 { 1997 u32 sum; 1998 union xhci_trb *trb = ring->dequeue; 1999 struct xhci_segment *seg = ring->deq_seg; 2000 2001 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2002 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2003 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2004 } 2005 return sum; 2006 } 2007 2008 /* 2009 * Process control tds, update urb status and actual_length. 2010 */ 2011 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2012 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2013 struct xhci_virt_ep *ep, int *status) 2014 { 2015 struct xhci_virt_device *xdev; 2016 unsigned int slot_id; 2017 int ep_index; 2018 struct xhci_ep_ctx *ep_ctx; 2019 u32 trb_comp_code; 2020 u32 remaining, requested; 2021 u32 trb_type; 2022 2023 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2024 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2025 xdev = xhci->devs[slot_id]; 2026 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2027 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2028 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2029 requested = td->urb->transfer_buffer_length; 2030 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2031 2032 switch (trb_comp_code) { 2033 case COMP_SUCCESS: 2034 if (trb_type != TRB_STATUS) { 2035 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2036 (trb_type == TRB_DATA) ? "data" : "setup"); 2037 *status = -ESHUTDOWN; 2038 break; 2039 } 2040 *status = 0; 2041 break; 2042 case COMP_SHORT_PACKET: 2043 *status = 0; 2044 break; 2045 case COMP_STOPPED_SHORT_PACKET: 2046 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2047 td->urb->actual_length = remaining; 2048 else 2049 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2050 goto finish_td; 2051 case COMP_STOPPED: 2052 switch (trb_type) { 2053 case TRB_SETUP: 2054 td->urb->actual_length = 0; 2055 goto finish_td; 2056 case TRB_DATA: 2057 case TRB_NORMAL: 2058 td->urb->actual_length = requested - remaining; 2059 goto finish_td; 2060 case TRB_STATUS: 2061 td->urb->actual_length = requested; 2062 goto finish_td; 2063 default: 2064 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2065 trb_type); 2066 goto finish_td; 2067 } 2068 case COMP_STOPPED_LENGTH_INVALID: 2069 goto finish_td; 2070 default: 2071 if (!xhci_requires_manual_halt_cleanup(xhci, 2072 ep_ctx, trb_comp_code)) 2073 break; 2074 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2075 trb_comp_code, ep_index); 2076 /* else fall through */ 2077 case COMP_STALL_ERROR: 2078 /* Did we transfer part of the data (middle) phase? */ 2079 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2080 td->urb->actual_length = requested - remaining; 2081 else if (!td->urb_length_set) 2082 td->urb->actual_length = 0; 2083 goto finish_td; 2084 } 2085 2086 /* stopped at setup stage, no data transferred */ 2087 if (trb_type == TRB_SETUP) 2088 goto finish_td; 2089 2090 /* 2091 * if on data stage then update the actual_length of the URB and flag it 2092 * as set, so it won't be overwritten in the event for the last TRB. 2093 */ 2094 if (trb_type == TRB_DATA || 2095 trb_type == TRB_NORMAL) { 2096 td->urb_length_set = true; 2097 td->urb->actual_length = requested - remaining; 2098 xhci_dbg(xhci, "Waiting for status stage event\n"); 2099 return 0; 2100 } 2101 2102 /* at status stage */ 2103 if (!td->urb_length_set) 2104 td->urb->actual_length = requested; 2105 2106 finish_td: 2107 return finish_td(xhci, td, event, ep, status); 2108 } 2109 2110 /* 2111 * Process isochronous tds, update urb packet status and actual_length. 2112 */ 2113 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2114 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2115 struct xhci_virt_ep *ep, int *status) 2116 { 2117 struct xhci_ring *ep_ring; 2118 struct urb_priv *urb_priv; 2119 int idx; 2120 struct usb_iso_packet_descriptor *frame; 2121 u32 trb_comp_code; 2122 bool sum_trbs_for_length = false; 2123 u32 remaining, requested, ep_trb_len; 2124 int short_framestatus; 2125 2126 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2127 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2128 urb_priv = td->urb->hcpriv; 2129 idx = urb_priv->num_tds_done; 2130 frame = &td->urb->iso_frame_desc[idx]; 2131 requested = frame->length; 2132 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2133 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2134 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2135 -EREMOTEIO : 0; 2136 2137 /* handle completion code */ 2138 switch (trb_comp_code) { 2139 case COMP_SUCCESS: 2140 if (remaining) { 2141 frame->status = short_framestatus; 2142 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2143 sum_trbs_for_length = true; 2144 break; 2145 } 2146 frame->status = 0; 2147 break; 2148 case COMP_SHORT_PACKET: 2149 frame->status = short_framestatus; 2150 sum_trbs_for_length = true; 2151 break; 2152 case COMP_BANDWIDTH_OVERRUN_ERROR: 2153 frame->status = -ECOMM; 2154 break; 2155 case COMP_ISOCH_BUFFER_OVERRUN: 2156 case COMP_BABBLE_DETECTED_ERROR: 2157 frame->status = -EOVERFLOW; 2158 break; 2159 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2160 case COMP_STALL_ERROR: 2161 frame->status = -EPROTO; 2162 break; 2163 case COMP_USB_TRANSACTION_ERROR: 2164 frame->status = -EPROTO; 2165 if (ep_trb != td->last_trb) 2166 return 0; 2167 break; 2168 case COMP_STOPPED: 2169 sum_trbs_for_length = true; 2170 break; 2171 case COMP_STOPPED_SHORT_PACKET: 2172 /* field normally containing residue now contains tranferred */ 2173 frame->status = short_framestatus; 2174 requested = remaining; 2175 break; 2176 case COMP_STOPPED_LENGTH_INVALID: 2177 requested = 0; 2178 remaining = 0; 2179 break; 2180 default: 2181 sum_trbs_for_length = true; 2182 frame->status = -1; 2183 break; 2184 } 2185 2186 if (sum_trbs_for_length) 2187 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2188 ep_trb_len - remaining; 2189 else 2190 frame->actual_length = requested; 2191 2192 td->urb->actual_length += frame->actual_length; 2193 2194 return finish_td(xhci, td, event, ep, status); 2195 } 2196 2197 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2198 struct xhci_transfer_event *event, 2199 struct xhci_virt_ep *ep, int *status) 2200 { 2201 struct xhci_ring *ep_ring; 2202 struct urb_priv *urb_priv; 2203 struct usb_iso_packet_descriptor *frame; 2204 int idx; 2205 2206 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2207 urb_priv = td->urb->hcpriv; 2208 idx = urb_priv->num_tds_done; 2209 frame = &td->urb->iso_frame_desc[idx]; 2210 2211 /* The transfer is partly done. */ 2212 frame->status = -EXDEV; 2213 2214 /* calc actual length */ 2215 frame->actual_length = 0; 2216 2217 /* Update ring dequeue pointer */ 2218 while (ep_ring->dequeue != td->last_trb) 2219 inc_deq(xhci, ep_ring); 2220 inc_deq(xhci, ep_ring); 2221 2222 return xhci_td_cleanup(xhci, td, ep_ring, status); 2223 } 2224 2225 /* 2226 * Process bulk and interrupt tds, update urb status and actual_length. 2227 */ 2228 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2229 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2230 struct xhci_virt_ep *ep, int *status) 2231 { 2232 struct xhci_slot_ctx *slot_ctx; 2233 struct xhci_ring *ep_ring; 2234 u32 trb_comp_code; 2235 u32 remaining, requested, ep_trb_len; 2236 unsigned int slot_id; 2237 int ep_index; 2238 2239 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2240 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2241 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2242 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2243 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2244 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2245 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2246 requested = td->urb->transfer_buffer_length; 2247 2248 switch (trb_comp_code) { 2249 case COMP_SUCCESS: 2250 ep_ring->err_count = 0; 2251 /* handle success with untransferred data as short packet */ 2252 if (ep_trb != td->last_trb || remaining) { 2253 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2254 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2255 td->urb->ep->desc.bEndpointAddress, 2256 requested, remaining); 2257 } 2258 *status = 0; 2259 break; 2260 case COMP_SHORT_PACKET: 2261 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2262 td->urb->ep->desc.bEndpointAddress, 2263 requested, remaining); 2264 *status = 0; 2265 break; 2266 case COMP_STOPPED_SHORT_PACKET: 2267 td->urb->actual_length = remaining; 2268 goto finish_td; 2269 case COMP_STOPPED_LENGTH_INVALID: 2270 /* stopped on ep trb with invalid length, exclude it */ 2271 ep_trb_len = 0; 2272 remaining = 0; 2273 break; 2274 case COMP_USB_TRANSACTION_ERROR: 2275 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2276 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2277 break; 2278 *status = 0; 2279 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2280 ep_ring->stream_id, td, EP_SOFT_RESET); 2281 return 0; 2282 default: 2283 /* do nothing */ 2284 break; 2285 } 2286 2287 if (ep_trb == td->last_trb) 2288 td->urb->actual_length = requested - remaining; 2289 else 2290 td->urb->actual_length = 2291 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2292 ep_trb_len - remaining; 2293 finish_td: 2294 if (remaining > requested) { 2295 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2296 remaining); 2297 td->urb->actual_length = 0; 2298 } 2299 return finish_td(xhci, td, event, ep, status); 2300 } 2301 2302 /* 2303 * If this function returns an error condition, it means it got a Transfer 2304 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2305 * At this point, the host controller is probably hosed and should be reset. 2306 */ 2307 static int handle_tx_event(struct xhci_hcd *xhci, 2308 struct xhci_transfer_event *event) 2309 { 2310 struct xhci_virt_device *xdev; 2311 struct xhci_virt_ep *ep; 2312 struct xhci_ring *ep_ring; 2313 unsigned int slot_id; 2314 int ep_index; 2315 struct xhci_td *td = NULL; 2316 dma_addr_t ep_trb_dma; 2317 struct xhci_segment *ep_seg; 2318 union xhci_trb *ep_trb; 2319 int status = -EINPROGRESS; 2320 struct xhci_ep_ctx *ep_ctx; 2321 struct list_head *tmp; 2322 u32 trb_comp_code; 2323 int td_num = 0; 2324 bool handling_skipped_tds = false; 2325 2326 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2327 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2328 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2329 ep_trb_dma = le64_to_cpu(event->buffer); 2330 2331 xdev = xhci->devs[slot_id]; 2332 if (!xdev) { 2333 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2334 slot_id); 2335 goto err_out; 2336 } 2337 2338 ep = &xdev->eps[ep_index]; 2339 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2340 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2341 2342 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2343 xhci_err(xhci, 2344 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2345 slot_id, ep_index); 2346 goto err_out; 2347 } 2348 2349 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2350 if (!ep_ring) { 2351 switch (trb_comp_code) { 2352 case COMP_STALL_ERROR: 2353 case COMP_USB_TRANSACTION_ERROR: 2354 case COMP_INVALID_STREAM_TYPE_ERROR: 2355 case COMP_INVALID_STREAM_ID_ERROR: 2356 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2357 NULL, EP_SOFT_RESET); 2358 goto cleanup; 2359 case COMP_RING_UNDERRUN: 2360 case COMP_RING_OVERRUN: 2361 case COMP_STOPPED_LENGTH_INVALID: 2362 goto cleanup; 2363 default: 2364 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2365 slot_id, ep_index); 2366 goto err_out; 2367 } 2368 } 2369 2370 /* Count current td numbers if ep->skip is set */ 2371 if (ep->skip) { 2372 list_for_each(tmp, &ep_ring->td_list) 2373 td_num++; 2374 } 2375 2376 /* Look for common error cases */ 2377 switch (trb_comp_code) { 2378 /* Skip codes that require special handling depending on 2379 * transfer type 2380 */ 2381 case COMP_SUCCESS: 2382 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2383 break; 2384 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2385 ep_ring->last_td_was_short) 2386 trb_comp_code = COMP_SHORT_PACKET; 2387 else 2388 xhci_warn_ratelimited(xhci, 2389 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2390 slot_id, ep_index); 2391 case COMP_SHORT_PACKET: 2392 break; 2393 /* Completion codes for endpoint stopped state */ 2394 case COMP_STOPPED: 2395 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2396 slot_id, ep_index); 2397 break; 2398 case COMP_STOPPED_LENGTH_INVALID: 2399 xhci_dbg(xhci, 2400 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2401 slot_id, ep_index); 2402 break; 2403 case COMP_STOPPED_SHORT_PACKET: 2404 xhci_dbg(xhci, 2405 "Stopped with short packet transfer detected for slot %u ep %u\n", 2406 slot_id, ep_index); 2407 break; 2408 /* Completion codes for endpoint halted state */ 2409 case COMP_STALL_ERROR: 2410 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2411 ep_index); 2412 ep->ep_state |= EP_HALTED; 2413 status = -EPIPE; 2414 break; 2415 case COMP_SPLIT_TRANSACTION_ERROR: 2416 case COMP_USB_TRANSACTION_ERROR: 2417 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2418 slot_id, ep_index); 2419 status = -EPROTO; 2420 break; 2421 case COMP_BABBLE_DETECTED_ERROR: 2422 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2423 slot_id, ep_index); 2424 status = -EOVERFLOW; 2425 break; 2426 /* Completion codes for endpoint error state */ 2427 case COMP_TRB_ERROR: 2428 xhci_warn(xhci, 2429 "WARN: TRB error for slot %u ep %u on endpoint\n", 2430 slot_id, ep_index); 2431 status = -EILSEQ; 2432 break; 2433 /* completion codes not indicating endpoint state change */ 2434 case COMP_DATA_BUFFER_ERROR: 2435 xhci_warn(xhci, 2436 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2437 slot_id, ep_index); 2438 status = -ENOSR; 2439 break; 2440 case COMP_BANDWIDTH_OVERRUN_ERROR: 2441 xhci_warn(xhci, 2442 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2443 slot_id, ep_index); 2444 break; 2445 case COMP_ISOCH_BUFFER_OVERRUN: 2446 xhci_warn(xhci, 2447 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2448 slot_id, ep_index); 2449 break; 2450 case COMP_RING_UNDERRUN: 2451 /* 2452 * When the Isoch ring is empty, the xHC will generate 2453 * a Ring Overrun Event for IN Isoch endpoint or Ring 2454 * Underrun Event for OUT Isoch endpoint. 2455 */ 2456 xhci_dbg(xhci, "underrun event on endpoint\n"); 2457 if (!list_empty(&ep_ring->td_list)) 2458 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2459 "still with TDs queued?\n", 2460 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2461 ep_index); 2462 goto cleanup; 2463 case COMP_RING_OVERRUN: 2464 xhci_dbg(xhci, "overrun event on endpoint\n"); 2465 if (!list_empty(&ep_ring->td_list)) 2466 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2467 "still with TDs queued?\n", 2468 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2469 ep_index); 2470 goto cleanup; 2471 case COMP_MISSED_SERVICE_ERROR: 2472 /* 2473 * When encounter missed service error, one or more isoc tds 2474 * may be missed by xHC. 2475 * Set skip flag of the ep_ring; Complete the missed tds as 2476 * short transfer when process the ep_ring next time. 2477 */ 2478 ep->skip = true; 2479 xhci_dbg(xhci, 2480 "Miss service interval error for slot %u ep %u, set skip flag\n", 2481 slot_id, ep_index); 2482 goto cleanup; 2483 case COMP_NO_PING_RESPONSE_ERROR: 2484 ep->skip = true; 2485 xhci_dbg(xhci, 2486 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2487 slot_id, ep_index); 2488 goto cleanup; 2489 2490 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2491 /* needs disable slot command to recover */ 2492 xhci_warn(xhci, 2493 "WARN: detect an incompatible device for slot %u ep %u", 2494 slot_id, ep_index); 2495 status = -EPROTO; 2496 break; 2497 default: 2498 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2499 status = 0; 2500 break; 2501 } 2502 xhci_warn(xhci, 2503 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2504 trb_comp_code, slot_id, ep_index); 2505 goto cleanup; 2506 } 2507 2508 do { 2509 /* This TRB should be in the TD at the head of this ring's 2510 * TD list. 2511 */ 2512 if (list_empty(&ep_ring->td_list)) { 2513 /* 2514 * Don't print wanings if it's due to a stopped endpoint 2515 * generating an extra completion event if the device 2516 * was suspended. Or, a event for the last TRB of a 2517 * short TD we already got a short event for. 2518 * The short TD is already removed from the TD list. 2519 */ 2520 2521 if (!(trb_comp_code == COMP_STOPPED || 2522 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2523 ep_ring->last_td_was_short)) { 2524 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2525 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2526 ep_index); 2527 } 2528 if (ep->skip) { 2529 ep->skip = false; 2530 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2531 slot_id, ep_index); 2532 } 2533 goto cleanup; 2534 } 2535 2536 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2537 if (ep->skip && td_num == 0) { 2538 ep->skip = false; 2539 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2540 slot_id, ep_index); 2541 goto cleanup; 2542 } 2543 2544 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2545 td_list); 2546 if (ep->skip) 2547 td_num--; 2548 2549 /* Is this a TRB in the currently executing TD? */ 2550 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2551 td->last_trb, ep_trb_dma, false); 2552 2553 /* 2554 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2555 * is not in the current TD pointed by ep_ring->dequeue because 2556 * that the hardware dequeue pointer still at the previous TRB 2557 * of the current TD. The previous TRB maybe a Link TD or the 2558 * last TRB of the previous TD. The command completion handle 2559 * will take care the rest. 2560 */ 2561 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2562 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2563 goto cleanup; 2564 } 2565 2566 if (!ep_seg) { 2567 if (!ep->skip || 2568 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2569 /* Some host controllers give a spurious 2570 * successful event after a short transfer. 2571 * Ignore it. 2572 */ 2573 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2574 ep_ring->last_td_was_short) { 2575 ep_ring->last_td_was_short = false; 2576 goto cleanup; 2577 } 2578 /* HC is busted, give up! */ 2579 xhci_err(xhci, 2580 "ERROR Transfer event TRB DMA ptr not " 2581 "part of current TD ep_index %d " 2582 "comp_code %u\n", ep_index, 2583 trb_comp_code); 2584 trb_in_td(xhci, ep_ring->deq_seg, 2585 ep_ring->dequeue, td->last_trb, 2586 ep_trb_dma, true); 2587 return -ESHUTDOWN; 2588 } 2589 2590 skip_isoc_td(xhci, td, event, ep, &status); 2591 goto cleanup; 2592 } 2593 if (trb_comp_code == COMP_SHORT_PACKET) 2594 ep_ring->last_td_was_short = true; 2595 else 2596 ep_ring->last_td_was_short = false; 2597 2598 if (ep->skip) { 2599 xhci_dbg(xhci, 2600 "Found td. Clear skip flag for slot %u ep %u.\n", 2601 slot_id, ep_index); 2602 ep->skip = false; 2603 } 2604 2605 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2606 sizeof(*ep_trb)]; 2607 2608 trace_xhci_handle_transfer(ep_ring, 2609 (struct xhci_generic_trb *) ep_trb); 2610 2611 /* 2612 * No-op TRB could trigger interrupts in a case where 2613 * a URB was killed and a STALL_ERROR happens right 2614 * after the endpoint ring stopped. Reset the halted 2615 * endpoint. Otherwise, the endpoint remains stalled 2616 * indefinitely. 2617 */ 2618 if (trb_is_noop(ep_trb)) { 2619 if (trb_comp_code == COMP_STALL_ERROR || 2620 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2621 trb_comp_code)) 2622 xhci_cleanup_halted_endpoint(xhci, slot_id, 2623 ep_index, 2624 ep_ring->stream_id, 2625 td, EP_HARD_RESET); 2626 goto cleanup; 2627 } 2628 2629 /* update the urb's actual_length and give back to the core */ 2630 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2631 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2632 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2633 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2634 else 2635 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2636 &status); 2637 cleanup: 2638 handling_skipped_tds = ep->skip && 2639 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2640 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2641 2642 /* 2643 * Do not update event ring dequeue pointer if we're in a loop 2644 * processing missed tds. 2645 */ 2646 if (!handling_skipped_tds) 2647 inc_deq(xhci, xhci->event_ring); 2648 2649 /* 2650 * If ep->skip is set, it means there are missed tds on the 2651 * endpoint ring need to take care of. 2652 * Process them as short transfer until reach the td pointed by 2653 * the event. 2654 */ 2655 } while (handling_skipped_tds); 2656 2657 return 0; 2658 2659 err_out: 2660 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2661 (unsigned long long) xhci_trb_virt_to_dma( 2662 xhci->event_ring->deq_seg, 2663 xhci->event_ring->dequeue), 2664 lower_32_bits(le64_to_cpu(event->buffer)), 2665 upper_32_bits(le64_to_cpu(event->buffer)), 2666 le32_to_cpu(event->transfer_len), 2667 le32_to_cpu(event->flags)); 2668 return -ENODEV; 2669 } 2670 2671 /* 2672 * This function handles all OS-owned events on the event ring. It may drop 2673 * xhci->lock between event processing (e.g. to pass up port status changes). 2674 * Returns >0 for "possibly more events to process" (caller should call again), 2675 * otherwise 0 if done. In future, <0 returns should indicate error code. 2676 */ 2677 static int xhci_handle_event(struct xhci_hcd *xhci) 2678 { 2679 union xhci_trb *event; 2680 int update_ptrs = 1; 2681 int ret; 2682 2683 /* Event ring hasn't been allocated yet. */ 2684 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2685 xhci_err(xhci, "ERROR event ring not ready\n"); 2686 return -ENOMEM; 2687 } 2688 2689 event = xhci->event_ring->dequeue; 2690 /* Does the HC or OS own the TRB? */ 2691 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2692 xhci->event_ring->cycle_state) 2693 return 0; 2694 2695 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2696 2697 /* 2698 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2699 * speculative reads of the event's flags/data below. 2700 */ 2701 rmb(); 2702 /* FIXME: Handle more event types. */ 2703 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2704 case TRB_TYPE(TRB_COMPLETION): 2705 handle_cmd_completion(xhci, &event->event_cmd); 2706 break; 2707 case TRB_TYPE(TRB_PORT_STATUS): 2708 handle_port_status(xhci, event); 2709 update_ptrs = 0; 2710 break; 2711 case TRB_TYPE(TRB_TRANSFER): 2712 ret = handle_tx_event(xhci, &event->trans_event); 2713 if (ret >= 0) 2714 update_ptrs = 0; 2715 break; 2716 case TRB_TYPE(TRB_DEV_NOTE): 2717 handle_device_notification(xhci, event); 2718 break; 2719 default: 2720 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2721 TRB_TYPE(48)) 2722 handle_vendor_event(xhci, event); 2723 else 2724 xhci_warn(xhci, "ERROR unknown event type %d\n", 2725 TRB_FIELD_TO_TYPE( 2726 le32_to_cpu(event->event_cmd.flags))); 2727 } 2728 /* Any of the above functions may drop and re-acquire the lock, so check 2729 * to make sure a watchdog timer didn't mark the host as non-responsive. 2730 */ 2731 if (xhci->xhc_state & XHCI_STATE_DYING) { 2732 xhci_dbg(xhci, "xHCI host dying, returning from " 2733 "event handler.\n"); 2734 return 0; 2735 } 2736 2737 if (update_ptrs) 2738 /* Update SW event ring dequeue pointer */ 2739 inc_deq(xhci, xhci->event_ring); 2740 2741 /* Are there more items on the event ring? Caller will call us again to 2742 * check. 2743 */ 2744 return 1; 2745 } 2746 2747 /* 2748 * Update Event Ring Dequeue Pointer: 2749 * - When all events have finished 2750 * - To avoid "Event Ring Full Error" condition 2751 */ 2752 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2753 union xhci_trb *event_ring_deq) 2754 { 2755 u64 temp_64; 2756 dma_addr_t deq; 2757 2758 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2759 /* If necessary, update the HW's version of the event ring deq ptr. */ 2760 if (event_ring_deq != xhci->event_ring->dequeue) { 2761 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2762 xhci->event_ring->dequeue); 2763 if (deq == 0) 2764 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2765 /* 2766 * Per 4.9.4, Software writes to the ERDP register shall 2767 * always advance the Event Ring Dequeue Pointer value. 2768 */ 2769 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2770 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2771 return; 2772 2773 /* Update HC event ring dequeue pointer */ 2774 temp_64 &= ERST_PTR_MASK; 2775 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2776 } 2777 2778 /* Clear the event handler busy flag (RW1C) */ 2779 temp_64 |= ERST_EHB; 2780 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2781 } 2782 2783 /* 2784 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2785 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2786 * indicators of an event TRB error, but we check the status *first* to be safe. 2787 */ 2788 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2789 { 2790 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2791 union xhci_trb *event_ring_deq; 2792 irqreturn_t ret = IRQ_NONE; 2793 unsigned long flags; 2794 u64 temp_64; 2795 u32 status; 2796 int event_loop = 0; 2797 2798 spin_lock_irqsave(&xhci->lock, flags); 2799 /* Check if the xHC generated the interrupt, or the irq is shared */ 2800 status = readl(&xhci->op_regs->status); 2801 if (status == ~(u32)0) { 2802 xhci_hc_died(xhci); 2803 ret = IRQ_HANDLED; 2804 goto out; 2805 } 2806 2807 if (!(status & STS_EINT)) 2808 goto out; 2809 2810 if (status & STS_FATAL) { 2811 xhci_warn(xhci, "WARNING: Host System Error\n"); 2812 xhci_halt(xhci); 2813 ret = IRQ_HANDLED; 2814 goto out; 2815 } 2816 2817 /* 2818 * Clear the op reg interrupt status first, 2819 * so we can receive interrupts from other MSI-X interrupters. 2820 * Write 1 to clear the interrupt status. 2821 */ 2822 status |= STS_EINT; 2823 writel(status, &xhci->op_regs->status); 2824 2825 if (!hcd->msi_enabled) { 2826 u32 irq_pending; 2827 irq_pending = readl(&xhci->ir_set->irq_pending); 2828 irq_pending |= IMAN_IP; 2829 writel(irq_pending, &xhci->ir_set->irq_pending); 2830 } 2831 2832 if (xhci->xhc_state & XHCI_STATE_DYING || 2833 xhci->xhc_state & XHCI_STATE_HALTED) { 2834 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2835 "Shouldn't IRQs be disabled?\n"); 2836 /* Clear the event handler busy flag (RW1C); 2837 * the event ring should be empty. 2838 */ 2839 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2840 xhci_write_64(xhci, temp_64 | ERST_EHB, 2841 &xhci->ir_set->erst_dequeue); 2842 ret = IRQ_HANDLED; 2843 goto out; 2844 } 2845 2846 event_ring_deq = xhci->event_ring->dequeue; 2847 /* FIXME this should be a delayed service routine 2848 * that clears the EHB. 2849 */ 2850 while (xhci_handle_event(xhci) > 0) { 2851 if (event_loop++ < TRBS_PER_SEGMENT / 2) 2852 continue; 2853 xhci_update_erst_dequeue(xhci, event_ring_deq); 2854 event_loop = 0; 2855 } 2856 2857 xhci_update_erst_dequeue(xhci, event_ring_deq); 2858 ret = IRQ_HANDLED; 2859 2860 out: 2861 spin_unlock_irqrestore(&xhci->lock, flags); 2862 2863 return ret; 2864 } 2865 2866 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2867 { 2868 return xhci_irq(hcd); 2869 } 2870 2871 /**** Endpoint Ring Operations ****/ 2872 2873 /* 2874 * Generic function for queueing a TRB on a ring. 2875 * The caller must have checked to make sure there's room on the ring. 2876 * 2877 * @more_trbs_coming: Will you enqueue more TRBs before calling 2878 * prepare_transfer()? 2879 */ 2880 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2881 bool more_trbs_coming, 2882 u32 field1, u32 field2, u32 field3, u32 field4) 2883 { 2884 struct xhci_generic_trb *trb; 2885 2886 trb = &ring->enqueue->generic; 2887 trb->field[0] = cpu_to_le32(field1); 2888 trb->field[1] = cpu_to_le32(field2); 2889 trb->field[2] = cpu_to_le32(field3); 2890 trb->field[3] = cpu_to_le32(field4); 2891 2892 trace_xhci_queue_trb(ring, trb); 2893 2894 inc_enq(xhci, ring, more_trbs_coming); 2895 } 2896 2897 /* 2898 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2899 * FIXME allocate segments if the ring is full. 2900 */ 2901 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2902 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2903 { 2904 unsigned int num_trbs_needed; 2905 2906 /* Make sure the endpoint has been added to xHC schedule */ 2907 switch (ep_state) { 2908 case EP_STATE_DISABLED: 2909 /* 2910 * USB core changed config/interfaces without notifying us, 2911 * or hardware is reporting the wrong state. 2912 */ 2913 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2914 return -ENOENT; 2915 case EP_STATE_ERROR: 2916 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2917 /* FIXME event handling code for error needs to clear it */ 2918 /* XXX not sure if this should be -ENOENT or not */ 2919 return -EINVAL; 2920 case EP_STATE_HALTED: 2921 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2922 case EP_STATE_STOPPED: 2923 case EP_STATE_RUNNING: 2924 break; 2925 default: 2926 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2927 /* 2928 * FIXME issue Configure Endpoint command to try to get the HC 2929 * back into a known state. 2930 */ 2931 return -EINVAL; 2932 } 2933 2934 while (1) { 2935 if (room_on_ring(xhci, ep_ring, num_trbs)) 2936 break; 2937 2938 if (ep_ring == xhci->cmd_ring) { 2939 xhci_err(xhci, "Do not support expand command ring\n"); 2940 return -ENOMEM; 2941 } 2942 2943 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2944 "ERROR no room on ep ring, try ring expansion"); 2945 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2946 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2947 mem_flags)) { 2948 xhci_err(xhci, "Ring expansion failed\n"); 2949 return -ENOMEM; 2950 } 2951 } 2952 2953 while (trb_is_link(ep_ring->enqueue)) { 2954 /* If we're not dealing with 0.95 hardware or isoc rings 2955 * on AMD 0.96 host, clear the chain bit. 2956 */ 2957 if (!xhci_link_trb_quirk(xhci) && 2958 !(ep_ring->type == TYPE_ISOC && 2959 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2960 ep_ring->enqueue->link.control &= 2961 cpu_to_le32(~TRB_CHAIN); 2962 else 2963 ep_ring->enqueue->link.control |= 2964 cpu_to_le32(TRB_CHAIN); 2965 2966 wmb(); 2967 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2968 2969 /* Toggle the cycle bit after the last ring segment. */ 2970 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2971 ep_ring->cycle_state ^= 1; 2972 2973 ep_ring->enq_seg = ep_ring->enq_seg->next; 2974 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2975 } 2976 return 0; 2977 } 2978 2979 static int prepare_transfer(struct xhci_hcd *xhci, 2980 struct xhci_virt_device *xdev, 2981 unsigned int ep_index, 2982 unsigned int stream_id, 2983 unsigned int num_trbs, 2984 struct urb *urb, 2985 unsigned int td_index, 2986 gfp_t mem_flags) 2987 { 2988 int ret; 2989 struct urb_priv *urb_priv; 2990 struct xhci_td *td; 2991 struct xhci_ring *ep_ring; 2992 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2993 2994 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2995 if (!ep_ring) { 2996 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2997 stream_id); 2998 return -EINVAL; 2999 } 3000 3001 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3002 num_trbs, mem_flags); 3003 if (ret) 3004 return ret; 3005 3006 urb_priv = urb->hcpriv; 3007 td = &urb_priv->td[td_index]; 3008 3009 INIT_LIST_HEAD(&td->td_list); 3010 INIT_LIST_HEAD(&td->cancelled_td_list); 3011 3012 if (td_index == 0) { 3013 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3014 if (unlikely(ret)) 3015 return ret; 3016 } 3017 3018 td->urb = urb; 3019 /* Add this TD to the tail of the endpoint ring's TD list */ 3020 list_add_tail(&td->td_list, &ep_ring->td_list); 3021 td->start_seg = ep_ring->enq_seg; 3022 td->first_trb = ep_ring->enqueue; 3023 3024 return 0; 3025 } 3026 3027 unsigned int count_trbs(u64 addr, u64 len) 3028 { 3029 unsigned int num_trbs; 3030 3031 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3032 TRB_MAX_BUFF_SIZE); 3033 if (num_trbs == 0) 3034 num_trbs++; 3035 3036 return num_trbs; 3037 } 3038 3039 static inline unsigned int count_trbs_needed(struct urb *urb) 3040 { 3041 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3042 } 3043 3044 static unsigned int count_sg_trbs_needed(struct urb *urb) 3045 { 3046 struct scatterlist *sg; 3047 unsigned int i, len, full_len, num_trbs = 0; 3048 3049 full_len = urb->transfer_buffer_length; 3050 3051 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3052 len = sg_dma_len(sg); 3053 num_trbs += count_trbs(sg_dma_address(sg), len); 3054 len = min_t(unsigned int, len, full_len); 3055 full_len -= len; 3056 if (full_len == 0) 3057 break; 3058 } 3059 3060 return num_trbs; 3061 } 3062 3063 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3064 { 3065 u64 addr, len; 3066 3067 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3068 len = urb->iso_frame_desc[i].length; 3069 3070 return count_trbs(addr, len); 3071 } 3072 3073 static void check_trb_math(struct urb *urb, int running_total) 3074 { 3075 if (unlikely(running_total != urb->transfer_buffer_length)) 3076 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3077 "queued %#x (%d), asked for %#x (%d)\n", 3078 __func__, 3079 urb->ep->desc.bEndpointAddress, 3080 running_total, running_total, 3081 urb->transfer_buffer_length, 3082 urb->transfer_buffer_length); 3083 } 3084 3085 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3086 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3087 struct xhci_generic_trb *start_trb) 3088 { 3089 /* 3090 * Pass all the TRBs to the hardware at once and make sure this write 3091 * isn't reordered. 3092 */ 3093 wmb(); 3094 if (start_cycle) 3095 start_trb->field[3] |= cpu_to_le32(start_cycle); 3096 else 3097 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3098 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3099 } 3100 3101 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3102 struct xhci_ep_ctx *ep_ctx) 3103 { 3104 int xhci_interval; 3105 int ep_interval; 3106 3107 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3108 ep_interval = urb->interval; 3109 3110 /* Convert to microframes */ 3111 if (urb->dev->speed == USB_SPEED_LOW || 3112 urb->dev->speed == USB_SPEED_FULL) 3113 ep_interval *= 8; 3114 3115 /* FIXME change this to a warning and a suggestion to use the new API 3116 * to set the polling interval (once the API is added). 3117 */ 3118 if (xhci_interval != ep_interval) { 3119 dev_dbg_ratelimited(&urb->dev->dev, 3120 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3121 ep_interval, ep_interval == 1 ? "" : "s", 3122 xhci_interval, xhci_interval == 1 ? "" : "s"); 3123 urb->interval = xhci_interval; 3124 /* Convert back to frames for LS/FS devices */ 3125 if (urb->dev->speed == USB_SPEED_LOW || 3126 urb->dev->speed == USB_SPEED_FULL) 3127 urb->interval /= 8; 3128 } 3129 } 3130 3131 /* 3132 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3133 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3134 * (comprised of sg list entries) can take several service intervals to 3135 * transmit. 3136 */ 3137 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3138 struct urb *urb, int slot_id, unsigned int ep_index) 3139 { 3140 struct xhci_ep_ctx *ep_ctx; 3141 3142 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3143 check_interval(xhci, urb, ep_ctx); 3144 3145 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3146 } 3147 3148 /* 3149 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3150 * packets remaining in the TD (*not* including this TRB). 3151 * 3152 * Total TD packet count = total_packet_count = 3153 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3154 * 3155 * Packets transferred up to and including this TRB = packets_transferred = 3156 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3157 * 3158 * TD size = total_packet_count - packets_transferred 3159 * 3160 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3161 * including this TRB, right shifted by 10 3162 * 3163 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3164 * This is taken care of in the TRB_TD_SIZE() macro 3165 * 3166 * The last TRB in a TD must have the TD size set to zero. 3167 */ 3168 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3169 int trb_buff_len, unsigned int td_total_len, 3170 struct urb *urb, bool more_trbs_coming) 3171 { 3172 u32 maxp, total_packet_count; 3173 3174 /* MTK xHCI 0.96 contains some features from 1.0 */ 3175 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3176 return ((td_total_len - transferred) >> 10); 3177 3178 /* One TRB with a zero-length data packet. */ 3179 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3180 trb_buff_len == td_total_len) 3181 return 0; 3182 3183 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3184 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3185 trb_buff_len = 0; 3186 3187 maxp = usb_endpoint_maxp(&urb->ep->desc); 3188 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3189 3190 /* Queueing functions don't count the current TRB into transferred */ 3191 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3192 } 3193 3194 3195 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3196 u32 *trb_buff_len, struct xhci_segment *seg) 3197 { 3198 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3199 unsigned int unalign; 3200 unsigned int max_pkt; 3201 u32 new_buff_len; 3202 size_t len; 3203 3204 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3205 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3206 3207 /* we got lucky, last normal TRB data on segment is packet aligned */ 3208 if (unalign == 0) 3209 return 0; 3210 3211 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3212 unalign, *trb_buff_len); 3213 3214 /* is the last nornal TRB alignable by splitting it */ 3215 if (*trb_buff_len > unalign) { 3216 *trb_buff_len -= unalign; 3217 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3218 return 0; 3219 } 3220 3221 /* 3222 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3223 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3224 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3225 */ 3226 new_buff_len = max_pkt - (enqd_len % max_pkt); 3227 3228 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3229 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3230 3231 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3232 if (usb_urb_dir_out(urb)) { 3233 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3234 seg->bounce_buf, new_buff_len, enqd_len); 3235 if (len != new_buff_len) 3236 xhci_warn(xhci, 3237 "WARN Wrong bounce buffer write length: %zu != %d\n", 3238 len, new_buff_len); 3239 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3240 max_pkt, DMA_TO_DEVICE); 3241 } else { 3242 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3243 max_pkt, DMA_FROM_DEVICE); 3244 } 3245 3246 if (dma_mapping_error(dev, seg->bounce_dma)) { 3247 /* try without aligning. Some host controllers survive */ 3248 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3249 return 0; 3250 } 3251 *trb_buff_len = new_buff_len; 3252 seg->bounce_len = new_buff_len; 3253 seg->bounce_offs = enqd_len; 3254 3255 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3256 3257 return 1; 3258 } 3259 3260 /* This is very similar to what ehci-q.c qtd_fill() does */ 3261 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3262 struct urb *urb, int slot_id, unsigned int ep_index) 3263 { 3264 struct xhci_ring *ring; 3265 struct urb_priv *urb_priv; 3266 struct xhci_td *td; 3267 struct xhci_generic_trb *start_trb; 3268 struct scatterlist *sg = NULL; 3269 bool more_trbs_coming = true; 3270 bool need_zero_pkt = false; 3271 bool first_trb = true; 3272 unsigned int num_trbs; 3273 unsigned int start_cycle, num_sgs = 0; 3274 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3275 int sent_len, ret; 3276 u32 field, length_field, remainder; 3277 u64 addr, send_addr; 3278 3279 ring = xhci_urb_to_transfer_ring(xhci, urb); 3280 if (!ring) 3281 return -EINVAL; 3282 3283 full_len = urb->transfer_buffer_length; 3284 /* If we have scatter/gather list, we use it. */ 3285 if (urb->num_sgs) { 3286 num_sgs = urb->num_mapped_sgs; 3287 sg = urb->sg; 3288 addr = (u64) sg_dma_address(sg); 3289 block_len = sg_dma_len(sg); 3290 num_trbs = count_sg_trbs_needed(urb); 3291 } else { 3292 num_trbs = count_trbs_needed(urb); 3293 addr = (u64) urb->transfer_dma; 3294 block_len = full_len; 3295 } 3296 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3297 ep_index, urb->stream_id, 3298 num_trbs, urb, 0, mem_flags); 3299 if (unlikely(ret < 0)) 3300 return ret; 3301 3302 urb_priv = urb->hcpriv; 3303 3304 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3305 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3306 need_zero_pkt = true; 3307 3308 td = &urb_priv->td[0]; 3309 3310 /* 3311 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3312 * until we've finished creating all the other TRBs. The ring's cycle 3313 * state may change as we enqueue the other TRBs, so save it too. 3314 */ 3315 start_trb = &ring->enqueue->generic; 3316 start_cycle = ring->cycle_state; 3317 send_addr = addr; 3318 3319 /* Queue the TRBs, even if they are zero-length */ 3320 for (enqd_len = 0; first_trb || enqd_len < full_len; 3321 enqd_len += trb_buff_len) { 3322 field = TRB_TYPE(TRB_NORMAL); 3323 3324 /* TRB buffer should not cross 64KB boundaries */ 3325 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3326 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3327 3328 if (enqd_len + trb_buff_len > full_len) 3329 trb_buff_len = full_len - enqd_len; 3330 3331 /* Don't change the cycle bit of the first TRB until later */ 3332 if (first_trb) { 3333 first_trb = false; 3334 if (start_cycle == 0) 3335 field |= TRB_CYCLE; 3336 } else 3337 field |= ring->cycle_state; 3338 3339 /* Chain all the TRBs together; clear the chain bit in the last 3340 * TRB to indicate it's the last TRB in the chain. 3341 */ 3342 if (enqd_len + trb_buff_len < full_len) { 3343 field |= TRB_CHAIN; 3344 if (trb_is_link(ring->enqueue + 1)) { 3345 if (xhci_align_td(xhci, urb, enqd_len, 3346 &trb_buff_len, 3347 ring->enq_seg)) { 3348 send_addr = ring->enq_seg->bounce_dma; 3349 /* assuming TD won't span 2 segs */ 3350 td->bounce_seg = ring->enq_seg; 3351 } 3352 } 3353 } 3354 if (enqd_len + trb_buff_len >= full_len) { 3355 field &= ~TRB_CHAIN; 3356 field |= TRB_IOC; 3357 more_trbs_coming = false; 3358 td->last_trb = ring->enqueue; 3359 3360 if (xhci_urb_suitable_for_idt(urb)) { 3361 memcpy(&send_addr, urb->transfer_buffer, 3362 trb_buff_len); 3363 le64_to_cpus(&send_addr); 3364 field |= TRB_IDT; 3365 } 3366 } 3367 3368 /* Only set interrupt on short packet for IN endpoints */ 3369 if (usb_urb_dir_in(urb)) 3370 field |= TRB_ISP; 3371 3372 /* Set the TRB length, TD size, and interrupter fields. */ 3373 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3374 full_len, urb, more_trbs_coming); 3375 3376 length_field = TRB_LEN(trb_buff_len) | 3377 TRB_TD_SIZE(remainder) | 3378 TRB_INTR_TARGET(0); 3379 3380 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3381 lower_32_bits(send_addr), 3382 upper_32_bits(send_addr), 3383 length_field, 3384 field); 3385 3386 addr += trb_buff_len; 3387 sent_len = trb_buff_len; 3388 3389 while (sg && sent_len >= block_len) { 3390 /* New sg entry */ 3391 --num_sgs; 3392 sent_len -= block_len; 3393 if (num_sgs != 0) { 3394 sg = sg_next(sg); 3395 block_len = sg_dma_len(sg); 3396 addr = (u64) sg_dma_address(sg); 3397 addr += sent_len; 3398 } 3399 } 3400 block_len -= sent_len; 3401 send_addr = addr; 3402 } 3403 3404 if (need_zero_pkt) { 3405 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3406 ep_index, urb->stream_id, 3407 1, urb, 1, mem_flags); 3408 urb_priv->td[1].last_trb = ring->enqueue; 3409 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3410 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3411 } 3412 3413 check_trb_math(urb, enqd_len); 3414 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3415 start_cycle, start_trb); 3416 return 0; 3417 } 3418 3419 /* Caller must have locked xhci->lock */ 3420 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3421 struct urb *urb, int slot_id, unsigned int ep_index) 3422 { 3423 struct xhci_ring *ep_ring; 3424 int num_trbs; 3425 int ret; 3426 struct usb_ctrlrequest *setup; 3427 struct xhci_generic_trb *start_trb; 3428 int start_cycle; 3429 u32 field; 3430 struct urb_priv *urb_priv; 3431 struct xhci_td *td; 3432 3433 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3434 if (!ep_ring) 3435 return -EINVAL; 3436 3437 /* 3438 * Need to copy setup packet into setup TRB, so we can't use the setup 3439 * DMA address. 3440 */ 3441 if (!urb->setup_packet) 3442 return -EINVAL; 3443 3444 /* 1 TRB for setup, 1 for status */ 3445 num_trbs = 2; 3446 /* 3447 * Don't need to check if we need additional event data and normal TRBs, 3448 * since data in control transfers will never get bigger than 16MB 3449 * XXX: can we get a buffer that crosses 64KB boundaries? 3450 */ 3451 if (urb->transfer_buffer_length > 0) 3452 num_trbs++; 3453 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3454 ep_index, urb->stream_id, 3455 num_trbs, urb, 0, mem_flags); 3456 if (ret < 0) 3457 return ret; 3458 3459 urb_priv = urb->hcpriv; 3460 td = &urb_priv->td[0]; 3461 3462 /* 3463 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3464 * until we've finished creating all the other TRBs. The ring's cycle 3465 * state may change as we enqueue the other TRBs, so save it too. 3466 */ 3467 start_trb = &ep_ring->enqueue->generic; 3468 start_cycle = ep_ring->cycle_state; 3469 3470 /* Queue setup TRB - see section 6.4.1.2.1 */ 3471 /* FIXME better way to translate setup_packet into two u32 fields? */ 3472 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3473 field = 0; 3474 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3475 if (start_cycle == 0) 3476 field |= 0x1; 3477 3478 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3479 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3480 if (urb->transfer_buffer_length > 0) { 3481 if (setup->bRequestType & USB_DIR_IN) 3482 field |= TRB_TX_TYPE(TRB_DATA_IN); 3483 else 3484 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3485 } 3486 } 3487 3488 queue_trb(xhci, ep_ring, true, 3489 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3490 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3491 TRB_LEN(8) | TRB_INTR_TARGET(0), 3492 /* Immediate data in pointer */ 3493 field); 3494 3495 /* If there's data, queue data TRBs */ 3496 /* Only set interrupt on short packet for IN endpoints */ 3497 if (usb_urb_dir_in(urb)) 3498 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3499 else 3500 field = TRB_TYPE(TRB_DATA); 3501 3502 if (urb->transfer_buffer_length > 0) { 3503 u32 length_field, remainder; 3504 u64 addr; 3505 3506 if (xhci_urb_suitable_for_idt(urb)) { 3507 memcpy(&addr, urb->transfer_buffer, 3508 urb->transfer_buffer_length); 3509 le64_to_cpus(&addr); 3510 field |= TRB_IDT; 3511 } else { 3512 addr = (u64) urb->transfer_dma; 3513 } 3514 3515 remainder = xhci_td_remainder(xhci, 0, 3516 urb->transfer_buffer_length, 3517 urb->transfer_buffer_length, 3518 urb, 1); 3519 length_field = TRB_LEN(urb->transfer_buffer_length) | 3520 TRB_TD_SIZE(remainder) | 3521 TRB_INTR_TARGET(0); 3522 if (setup->bRequestType & USB_DIR_IN) 3523 field |= TRB_DIR_IN; 3524 queue_trb(xhci, ep_ring, true, 3525 lower_32_bits(addr), 3526 upper_32_bits(addr), 3527 length_field, 3528 field | ep_ring->cycle_state); 3529 } 3530 3531 /* Save the DMA address of the last TRB in the TD */ 3532 td->last_trb = ep_ring->enqueue; 3533 3534 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3535 /* If the device sent data, the status stage is an OUT transfer */ 3536 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3537 field = 0; 3538 else 3539 field = TRB_DIR_IN; 3540 queue_trb(xhci, ep_ring, false, 3541 0, 3542 0, 3543 TRB_INTR_TARGET(0), 3544 /* Event on completion */ 3545 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3546 3547 giveback_first_trb(xhci, slot_id, ep_index, 0, 3548 start_cycle, start_trb); 3549 return 0; 3550 } 3551 3552 /* 3553 * The transfer burst count field of the isochronous TRB defines the number of 3554 * bursts that are required to move all packets in this TD. Only SuperSpeed 3555 * devices can burst up to bMaxBurst number of packets per service interval. 3556 * This field is zero based, meaning a value of zero in the field means one 3557 * burst. Basically, for everything but SuperSpeed devices, this field will be 3558 * zero. Only xHCI 1.0 host controllers support this field. 3559 */ 3560 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3561 struct urb *urb, unsigned int total_packet_count) 3562 { 3563 unsigned int max_burst; 3564 3565 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3566 return 0; 3567 3568 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3569 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3570 } 3571 3572 /* 3573 * Returns the number of packets in the last "burst" of packets. This field is 3574 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3575 * the last burst packet count is equal to the total number of packets in the 3576 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3577 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3578 * contain 1 to (bMaxBurst + 1) packets. 3579 */ 3580 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3581 struct urb *urb, unsigned int total_packet_count) 3582 { 3583 unsigned int max_burst; 3584 unsigned int residue; 3585 3586 if (xhci->hci_version < 0x100) 3587 return 0; 3588 3589 if (urb->dev->speed >= USB_SPEED_SUPER) { 3590 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3591 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3592 residue = total_packet_count % (max_burst + 1); 3593 /* If residue is zero, the last burst contains (max_burst + 1) 3594 * number of packets, but the TLBPC field is zero-based. 3595 */ 3596 if (residue == 0) 3597 return max_burst; 3598 return residue - 1; 3599 } 3600 if (total_packet_count == 0) 3601 return 0; 3602 return total_packet_count - 1; 3603 } 3604 3605 /* 3606 * Calculates Frame ID field of the isochronous TRB identifies the 3607 * target frame that the Interval associated with this Isochronous 3608 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3609 * 3610 * Returns actual frame id on success, negative value on error. 3611 */ 3612 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3613 struct urb *urb, int index) 3614 { 3615 int start_frame, ist, ret = 0; 3616 int start_frame_id, end_frame_id, current_frame_id; 3617 3618 if (urb->dev->speed == USB_SPEED_LOW || 3619 urb->dev->speed == USB_SPEED_FULL) 3620 start_frame = urb->start_frame + index * urb->interval; 3621 else 3622 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3623 3624 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3625 * 3626 * If bit [3] of IST is cleared to '0', software can add a TRB no 3627 * later than IST[2:0] Microframes before that TRB is scheduled to 3628 * be executed. 3629 * If bit [3] of IST is set to '1', software can add a TRB no later 3630 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3631 */ 3632 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3633 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3634 ist <<= 3; 3635 3636 /* Software shall not schedule an Isoch TD with a Frame ID value that 3637 * is less than the Start Frame ID or greater than the End Frame ID, 3638 * where: 3639 * 3640 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3641 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3642 * 3643 * Both the End Frame ID and Start Frame ID values are calculated 3644 * in microframes. When software determines the valid Frame ID value; 3645 * The End Frame ID value should be rounded down to the nearest Frame 3646 * boundary, and the Start Frame ID value should be rounded up to the 3647 * nearest Frame boundary. 3648 */ 3649 current_frame_id = readl(&xhci->run_regs->microframe_index); 3650 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3651 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3652 3653 start_frame &= 0x7ff; 3654 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3655 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3656 3657 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3658 __func__, index, readl(&xhci->run_regs->microframe_index), 3659 start_frame_id, end_frame_id, start_frame); 3660 3661 if (start_frame_id < end_frame_id) { 3662 if (start_frame > end_frame_id || 3663 start_frame < start_frame_id) 3664 ret = -EINVAL; 3665 } else if (start_frame_id > end_frame_id) { 3666 if ((start_frame > end_frame_id && 3667 start_frame < start_frame_id)) 3668 ret = -EINVAL; 3669 } else { 3670 ret = -EINVAL; 3671 } 3672 3673 if (index == 0) { 3674 if (ret == -EINVAL || start_frame == start_frame_id) { 3675 start_frame = start_frame_id + 1; 3676 if (urb->dev->speed == USB_SPEED_LOW || 3677 urb->dev->speed == USB_SPEED_FULL) 3678 urb->start_frame = start_frame; 3679 else 3680 urb->start_frame = start_frame << 3; 3681 ret = 0; 3682 } 3683 } 3684 3685 if (ret) { 3686 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3687 start_frame, current_frame_id, index, 3688 start_frame_id, end_frame_id); 3689 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3690 return ret; 3691 } 3692 3693 return start_frame; 3694 } 3695 3696 /* This is for isoc transfer */ 3697 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3698 struct urb *urb, int slot_id, unsigned int ep_index) 3699 { 3700 struct xhci_ring *ep_ring; 3701 struct urb_priv *urb_priv; 3702 struct xhci_td *td; 3703 int num_tds, trbs_per_td; 3704 struct xhci_generic_trb *start_trb; 3705 bool first_trb; 3706 int start_cycle; 3707 u32 field, length_field; 3708 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3709 u64 start_addr, addr; 3710 int i, j; 3711 bool more_trbs_coming; 3712 struct xhci_virt_ep *xep; 3713 int frame_id; 3714 3715 xep = &xhci->devs[slot_id]->eps[ep_index]; 3716 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3717 3718 num_tds = urb->number_of_packets; 3719 if (num_tds < 1) { 3720 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3721 return -EINVAL; 3722 } 3723 start_addr = (u64) urb->transfer_dma; 3724 start_trb = &ep_ring->enqueue->generic; 3725 start_cycle = ep_ring->cycle_state; 3726 3727 urb_priv = urb->hcpriv; 3728 /* Queue the TRBs for each TD, even if they are zero-length */ 3729 for (i = 0; i < num_tds; i++) { 3730 unsigned int total_pkt_count, max_pkt; 3731 unsigned int burst_count, last_burst_pkt_count; 3732 u32 sia_frame_id; 3733 3734 first_trb = true; 3735 running_total = 0; 3736 addr = start_addr + urb->iso_frame_desc[i].offset; 3737 td_len = urb->iso_frame_desc[i].length; 3738 td_remain_len = td_len; 3739 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3740 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3741 3742 /* A zero-length transfer still involves at least one packet. */ 3743 if (total_pkt_count == 0) 3744 total_pkt_count++; 3745 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3746 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3747 urb, total_pkt_count); 3748 3749 trbs_per_td = count_isoc_trbs_needed(urb, i); 3750 3751 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3752 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3753 if (ret < 0) { 3754 if (i == 0) 3755 return ret; 3756 goto cleanup; 3757 } 3758 td = &urb_priv->td[i]; 3759 3760 /* use SIA as default, if frame id is used overwrite it */ 3761 sia_frame_id = TRB_SIA; 3762 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3763 HCC_CFC(xhci->hcc_params)) { 3764 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3765 if (frame_id >= 0) 3766 sia_frame_id = TRB_FRAME_ID(frame_id); 3767 } 3768 /* 3769 * Set isoc specific data for the first TRB in a TD. 3770 * Prevent HW from getting the TRBs by keeping the cycle state 3771 * inverted in the first TDs isoc TRB. 3772 */ 3773 field = TRB_TYPE(TRB_ISOC) | 3774 TRB_TLBPC(last_burst_pkt_count) | 3775 sia_frame_id | 3776 (i ? ep_ring->cycle_state : !start_cycle); 3777 3778 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3779 if (!xep->use_extended_tbc) 3780 field |= TRB_TBC(burst_count); 3781 3782 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3783 for (j = 0; j < trbs_per_td; j++) { 3784 u32 remainder = 0; 3785 3786 /* only first TRB is isoc, overwrite otherwise */ 3787 if (!first_trb) 3788 field = TRB_TYPE(TRB_NORMAL) | 3789 ep_ring->cycle_state; 3790 3791 /* Only set interrupt on short packet for IN EPs */ 3792 if (usb_urb_dir_in(urb)) 3793 field |= TRB_ISP; 3794 3795 /* Set the chain bit for all except the last TRB */ 3796 if (j < trbs_per_td - 1) { 3797 more_trbs_coming = true; 3798 field |= TRB_CHAIN; 3799 } else { 3800 more_trbs_coming = false; 3801 td->last_trb = ep_ring->enqueue; 3802 field |= TRB_IOC; 3803 /* set BEI, except for the last TD */ 3804 if (xhci->hci_version >= 0x100 && 3805 !(xhci->quirks & XHCI_AVOID_BEI) && 3806 i < num_tds - 1) 3807 field |= TRB_BEI; 3808 } 3809 /* Calculate TRB length */ 3810 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3811 if (trb_buff_len > td_remain_len) 3812 trb_buff_len = td_remain_len; 3813 3814 /* Set the TRB length, TD size, & interrupter fields. */ 3815 remainder = xhci_td_remainder(xhci, running_total, 3816 trb_buff_len, td_len, 3817 urb, more_trbs_coming); 3818 3819 length_field = TRB_LEN(trb_buff_len) | 3820 TRB_INTR_TARGET(0); 3821 3822 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3823 if (first_trb && xep->use_extended_tbc) 3824 length_field |= TRB_TD_SIZE_TBC(burst_count); 3825 else 3826 length_field |= TRB_TD_SIZE(remainder); 3827 first_trb = false; 3828 3829 queue_trb(xhci, ep_ring, more_trbs_coming, 3830 lower_32_bits(addr), 3831 upper_32_bits(addr), 3832 length_field, 3833 field); 3834 running_total += trb_buff_len; 3835 3836 addr += trb_buff_len; 3837 td_remain_len -= trb_buff_len; 3838 } 3839 3840 /* Check TD length */ 3841 if (running_total != td_len) { 3842 xhci_err(xhci, "ISOC TD length unmatch\n"); 3843 ret = -EINVAL; 3844 goto cleanup; 3845 } 3846 } 3847 3848 /* store the next frame id */ 3849 if (HCC_CFC(xhci->hcc_params)) 3850 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3851 3852 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3853 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3854 usb_amd_quirk_pll_disable(); 3855 } 3856 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3857 3858 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3859 start_cycle, start_trb); 3860 return 0; 3861 cleanup: 3862 /* Clean up a partially enqueued isoc transfer. */ 3863 3864 for (i--; i >= 0; i--) 3865 list_del_init(&urb_priv->td[i].td_list); 3866 3867 /* Use the first TD as a temporary variable to turn the TDs we've queued 3868 * into No-ops with a software-owned cycle bit. That way the hardware 3869 * won't accidentally start executing bogus TDs when we partially 3870 * overwrite them. td->first_trb and td->start_seg are already set. 3871 */ 3872 urb_priv->td[0].last_trb = ep_ring->enqueue; 3873 /* Every TRB except the first & last will have its cycle bit flipped. */ 3874 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3875 3876 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3877 ep_ring->enqueue = urb_priv->td[0].first_trb; 3878 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3879 ep_ring->cycle_state = start_cycle; 3880 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3881 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3882 return ret; 3883 } 3884 3885 /* 3886 * Check transfer ring to guarantee there is enough room for the urb. 3887 * Update ISO URB start_frame and interval. 3888 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3889 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3890 * Contiguous Frame ID is not supported by HC. 3891 */ 3892 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3893 struct urb *urb, int slot_id, unsigned int ep_index) 3894 { 3895 struct xhci_virt_device *xdev; 3896 struct xhci_ring *ep_ring; 3897 struct xhci_ep_ctx *ep_ctx; 3898 int start_frame; 3899 int num_tds, num_trbs, i; 3900 int ret; 3901 struct xhci_virt_ep *xep; 3902 int ist; 3903 3904 xdev = xhci->devs[slot_id]; 3905 xep = &xhci->devs[slot_id]->eps[ep_index]; 3906 ep_ring = xdev->eps[ep_index].ring; 3907 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3908 3909 num_trbs = 0; 3910 num_tds = urb->number_of_packets; 3911 for (i = 0; i < num_tds; i++) 3912 num_trbs += count_isoc_trbs_needed(urb, i); 3913 3914 /* Check the ring to guarantee there is enough room for the whole urb. 3915 * Do not insert any td of the urb to the ring if the check failed. 3916 */ 3917 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3918 num_trbs, mem_flags); 3919 if (ret) 3920 return ret; 3921 3922 /* 3923 * Check interval value. This should be done before we start to 3924 * calculate the start frame value. 3925 */ 3926 check_interval(xhci, urb, ep_ctx); 3927 3928 /* Calculate the start frame and put it in urb->start_frame. */ 3929 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3930 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3931 urb->start_frame = xep->next_frame_id; 3932 goto skip_start_over; 3933 } 3934 } 3935 3936 start_frame = readl(&xhci->run_regs->microframe_index); 3937 start_frame &= 0x3fff; 3938 /* 3939 * Round up to the next frame and consider the time before trb really 3940 * gets scheduled by hardare. 3941 */ 3942 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3943 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3944 ist <<= 3; 3945 start_frame += ist + XHCI_CFC_DELAY; 3946 start_frame = roundup(start_frame, 8); 3947 3948 /* 3949 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3950 * is greate than 8 microframes. 3951 */ 3952 if (urb->dev->speed == USB_SPEED_LOW || 3953 urb->dev->speed == USB_SPEED_FULL) { 3954 start_frame = roundup(start_frame, urb->interval << 3); 3955 urb->start_frame = start_frame >> 3; 3956 } else { 3957 start_frame = roundup(start_frame, urb->interval); 3958 urb->start_frame = start_frame; 3959 } 3960 3961 skip_start_over: 3962 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3963 3964 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3965 } 3966 3967 /**** Command Ring Operations ****/ 3968 3969 /* Generic function for queueing a command TRB on the command ring. 3970 * Check to make sure there's room on the command ring for one command TRB. 3971 * Also check that there's room reserved for commands that must not fail. 3972 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3973 * then only check for the number of reserved spots. 3974 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3975 * because the command event handler may want to resubmit a failed command. 3976 */ 3977 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3978 u32 field1, u32 field2, 3979 u32 field3, u32 field4, bool command_must_succeed) 3980 { 3981 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3982 int ret; 3983 3984 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3985 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3986 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3987 return -ESHUTDOWN; 3988 } 3989 3990 if (!command_must_succeed) 3991 reserved_trbs++; 3992 3993 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3994 reserved_trbs, GFP_ATOMIC); 3995 if (ret < 0) { 3996 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3997 if (command_must_succeed) 3998 xhci_err(xhci, "ERR: Reserved TRB counting for " 3999 "unfailable commands failed.\n"); 4000 return ret; 4001 } 4002 4003 cmd->command_trb = xhci->cmd_ring->enqueue; 4004 4005 /* if there are no other commands queued we start the timeout timer */ 4006 if (list_empty(&xhci->cmd_list)) { 4007 xhci->current_cmd = cmd; 4008 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4009 } 4010 4011 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4012 4013 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4014 field4 | xhci->cmd_ring->cycle_state); 4015 return 0; 4016 } 4017 4018 /* Queue a slot enable or disable request on the command ring */ 4019 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4020 u32 trb_type, u32 slot_id) 4021 { 4022 return queue_command(xhci, cmd, 0, 0, 0, 4023 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4024 } 4025 4026 /* Queue an address device command TRB */ 4027 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4028 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4029 { 4030 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4031 upper_32_bits(in_ctx_ptr), 0, 4032 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4033 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4034 } 4035 4036 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4037 u32 field1, u32 field2, u32 field3, u32 field4) 4038 { 4039 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4040 } 4041 4042 /* Queue a reset device command TRB */ 4043 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4044 u32 slot_id) 4045 { 4046 return queue_command(xhci, cmd, 0, 0, 0, 4047 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4048 false); 4049 } 4050 4051 /* Queue a configure endpoint command TRB */ 4052 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4053 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4054 u32 slot_id, bool command_must_succeed) 4055 { 4056 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4057 upper_32_bits(in_ctx_ptr), 0, 4058 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4059 command_must_succeed); 4060 } 4061 4062 /* Queue an evaluate context command TRB */ 4063 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4064 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4065 { 4066 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4067 upper_32_bits(in_ctx_ptr), 0, 4068 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4069 command_must_succeed); 4070 } 4071 4072 /* 4073 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4074 * activity on an endpoint that is about to be suspended. 4075 */ 4076 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4077 int slot_id, unsigned int ep_index, int suspend) 4078 { 4079 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4080 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4081 u32 type = TRB_TYPE(TRB_STOP_RING); 4082 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4083 4084 return queue_command(xhci, cmd, 0, 0, 0, 4085 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4086 } 4087 4088 /* Set Transfer Ring Dequeue Pointer command */ 4089 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4090 unsigned int slot_id, unsigned int ep_index, 4091 struct xhci_dequeue_state *deq_state) 4092 { 4093 dma_addr_t addr; 4094 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4095 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4096 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4097 u32 trb_sct = 0; 4098 u32 type = TRB_TYPE(TRB_SET_DEQ); 4099 struct xhci_virt_ep *ep; 4100 struct xhci_command *cmd; 4101 int ret; 4102 4103 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4104 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4105 deq_state->new_deq_seg, 4106 (unsigned long long)deq_state->new_deq_seg->dma, 4107 deq_state->new_deq_ptr, 4108 (unsigned long long)xhci_trb_virt_to_dma( 4109 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4110 deq_state->new_cycle_state); 4111 4112 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4113 deq_state->new_deq_ptr); 4114 if (addr == 0) { 4115 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4116 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4117 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4118 return; 4119 } 4120 ep = &xhci->devs[slot_id]->eps[ep_index]; 4121 if ((ep->ep_state & SET_DEQ_PENDING)) { 4122 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4123 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4124 return; 4125 } 4126 4127 /* This function gets called from contexts where it cannot sleep */ 4128 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4129 if (!cmd) 4130 return; 4131 4132 ep->queued_deq_seg = deq_state->new_deq_seg; 4133 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4134 if (deq_state->stream_id) 4135 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4136 ret = queue_command(xhci, cmd, 4137 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4138 upper_32_bits(addr), trb_stream_id, 4139 trb_slot_id | trb_ep_index | type, false); 4140 if (ret < 0) { 4141 xhci_free_command(xhci, cmd); 4142 return; 4143 } 4144 4145 /* Stop the TD queueing code from ringing the doorbell until 4146 * this command completes. The HC won't set the dequeue pointer 4147 * if the ring is running, and ringing the doorbell starts the 4148 * ring running. 4149 */ 4150 ep->ep_state |= SET_DEQ_PENDING; 4151 } 4152 4153 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4154 int slot_id, unsigned int ep_index, 4155 enum xhci_ep_reset_type reset_type) 4156 { 4157 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4158 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4159 u32 type = TRB_TYPE(TRB_RESET_EP); 4160 4161 if (reset_type == EP_SOFT_RESET) 4162 type |= TRB_TSP; 4163 4164 return queue_command(xhci, cmd, 0, 0, 0, 4165 trb_slot_id | trb_ep_index | type, false); 4166 } 4167