1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring) 127 { 128 /* Enqueue pointer can be left pointing to the link TRB, 129 * we must handle that 130 */ 131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control)) 132 return ring->enq_seg->next->trbs; 133 return ring->enqueue; 134 } 135 136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 137 * TRB is in a new segment. This does not skip over link TRBs, and it does not 138 * effect the ring dequeue or enqueue pointers. 139 */ 140 static void next_trb(struct xhci_hcd *xhci, 141 struct xhci_ring *ring, 142 struct xhci_segment **seg, 143 union xhci_trb **trb) 144 { 145 if (last_trb(xhci, ring, *seg, *trb)) { 146 *seg = (*seg)->next; 147 *trb = ((*seg)->trbs); 148 } else { 149 (*trb)++; 150 } 151 } 152 153 /* 154 * See Cycle bit rules. SW is the consumer for the event ring only. 155 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 156 */ 157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 158 { 159 unsigned long long addr; 160 161 ring->deq_updates++; 162 163 /* 164 * If this is not event ring, and the dequeue pointer 165 * is not on a link TRB, there is one more usable TRB 166 */ 167 if (ring->type != TYPE_EVENT && 168 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 169 ring->num_trbs_free++; 170 171 do { 172 /* 173 * Update the dequeue pointer further if that was a link TRB or 174 * we're at the end of an event ring segment (which doesn't have 175 * link TRBS) 176 */ 177 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 178 if (ring->type == TYPE_EVENT && 179 last_trb_on_last_seg(xhci, ring, 180 ring->deq_seg, ring->dequeue)) { 181 ring->cycle_state = (ring->cycle_state ? 0 : 1); 182 } 183 ring->deq_seg = ring->deq_seg->next; 184 ring->dequeue = ring->deq_seg->trbs; 185 } else { 186 ring->dequeue++; 187 } 188 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 189 190 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 191 } 192 193 /* 194 * See Cycle bit rules. SW is the consumer for the event ring only. 195 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 196 * 197 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 198 * chain bit is set), then set the chain bit in all the following link TRBs. 199 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 200 * have their chain bit cleared (so that each Link TRB is a separate TD). 201 * 202 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 203 * set, but other sections talk about dealing with the chain bit set. This was 204 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 205 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 206 * 207 * @more_trbs_coming: Will you enqueue more TRBs before calling 208 * prepare_transfer()? 209 */ 210 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 211 bool more_trbs_coming) 212 { 213 u32 chain; 214 union xhci_trb *next; 215 unsigned long long addr; 216 217 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 218 /* If this is not event ring, there is one less usable TRB */ 219 if (ring->type != TYPE_EVENT && 220 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 221 ring->num_trbs_free--; 222 next = ++(ring->enqueue); 223 224 ring->enq_updates++; 225 /* Update the dequeue pointer further if that was a link TRB or we're at 226 * the end of an event ring segment (which doesn't have link TRBS) 227 */ 228 while (last_trb(xhci, ring, ring->enq_seg, next)) { 229 if (ring->type != TYPE_EVENT) { 230 /* 231 * If the caller doesn't plan on enqueueing more 232 * TDs before ringing the doorbell, then we 233 * don't want to give the link TRB to the 234 * hardware just yet. We'll give the link TRB 235 * back in prepare_ring() just before we enqueue 236 * the TD at the top of the ring. 237 */ 238 if (!chain && !more_trbs_coming) 239 break; 240 241 /* If we're not dealing with 0.95 hardware or 242 * isoc rings on AMD 0.96 host, 243 * carry over the chain bit of the previous TRB 244 * (which may mean the chain bit is cleared). 245 */ 246 if (!(ring->type == TYPE_ISOC && 247 (xhci->quirks & XHCI_AMD_0x96_HOST)) 248 && !xhci_link_trb_quirk(xhci)) { 249 next->link.control &= 250 cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= 252 cpu_to_le32(chain); 253 } 254 /* Give this link TRB to the hardware */ 255 wmb(); 256 next->link.control ^= cpu_to_le32(TRB_CYCLE); 257 258 /* Toggle the cycle bit after the last ring segment. */ 259 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 260 ring->cycle_state = (ring->cycle_state ? 0 : 1); 261 } 262 } 263 ring->enq_seg = ring->enq_seg->next; 264 ring->enqueue = ring->enq_seg->trbs; 265 next = ring->enqueue; 266 } 267 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 268 } 269 270 /* 271 * Check to see if there's room to enqueue num_trbs on the ring and make sure 272 * enqueue pointer will not advance into dequeue segment. See rules above. 273 */ 274 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 275 unsigned int num_trbs) 276 { 277 int num_trbs_in_deq_seg; 278 279 if (ring->num_trbs_free < num_trbs) 280 return 0; 281 282 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 283 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 284 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 285 return 0; 286 } 287 288 return 1; 289 } 290 291 /* Ring the host controller doorbell after placing a command on the ring */ 292 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 293 { 294 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 295 return; 296 297 xhci_dbg(xhci, "// Ding dong!\n"); 298 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 299 /* Flush PCI posted writes */ 300 xhci_readl(xhci, &xhci->dba->doorbell[0]); 301 } 302 303 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 304 { 305 u64 temp_64; 306 int ret; 307 308 xhci_dbg(xhci, "Abort command ring\n"); 309 310 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 311 xhci_dbg(xhci, "The command ring isn't running, " 312 "Have the command ring been stopped?\n"); 313 return 0; 314 } 315 316 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 317 if (!(temp_64 & CMD_RING_RUNNING)) { 318 xhci_dbg(xhci, "Command ring had been stopped\n"); 319 return 0; 320 } 321 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 322 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 323 &xhci->op_regs->cmd_ring); 324 325 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 326 * time the completion od all xHCI commands, including 327 * the Command Abort operation. If software doesn't see 328 * CRR negated in a timely manner (e.g. longer than 5 329 * seconds), then it should assume that the there are 330 * larger problems with the xHC and assert HCRST. 331 */ 332 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 333 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 334 if (ret < 0) { 335 xhci_err(xhci, "Stopped the command ring failed, " 336 "maybe the host is dead\n"); 337 xhci->xhc_state |= XHCI_STATE_DYING; 338 xhci_quiesce(xhci); 339 xhci_halt(xhci); 340 return -ESHUTDOWN; 341 } 342 343 return 0; 344 } 345 346 static int xhci_queue_cd(struct xhci_hcd *xhci, 347 struct xhci_command *command, 348 union xhci_trb *cmd_trb) 349 { 350 struct xhci_cd *cd; 351 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 352 if (!cd) 353 return -ENOMEM; 354 INIT_LIST_HEAD(&cd->cancel_cmd_list); 355 356 cd->command = command; 357 cd->cmd_trb = cmd_trb; 358 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 359 360 return 0; 361 } 362 363 /* 364 * Cancel the command which has issue. 365 * 366 * Some commands may hang due to waiting for acknowledgement from 367 * usb device. It is outside of the xHC's ability to control and 368 * will cause the command ring is blocked. When it occurs software 369 * should intervene to recover the command ring. 370 * See Section 4.6.1.1 and 4.6.1.2 371 */ 372 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 373 union xhci_trb *cmd_trb) 374 { 375 int retval = 0; 376 unsigned long flags; 377 378 spin_lock_irqsave(&xhci->lock, flags); 379 380 if (xhci->xhc_state & XHCI_STATE_DYING) { 381 xhci_warn(xhci, "Abort the command ring," 382 " but the xHCI is dead.\n"); 383 retval = -ESHUTDOWN; 384 goto fail; 385 } 386 387 /* queue the cmd desriptor to cancel_cmd_list */ 388 retval = xhci_queue_cd(xhci, command, cmd_trb); 389 if (retval) { 390 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 391 goto fail; 392 } 393 394 /* abort command ring */ 395 retval = xhci_abort_cmd_ring(xhci); 396 if (retval) { 397 xhci_err(xhci, "Abort command ring failed\n"); 398 if (unlikely(retval == -ESHUTDOWN)) { 399 spin_unlock_irqrestore(&xhci->lock, flags); 400 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 401 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 402 return retval; 403 } 404 } 405 406 fail: 407 spin_unlock_irqrestore(&xhci->lock, flags); 408 return retval; 409 } 410 411 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index, 414 unsigned int stream_id) 415 { 416 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 417 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 418 unsigned int ep_state = ep->ep_state; 419 420 /* Don't ring the doorbell for this endpoint if there are pending 421 * cancellations because we don't want to interrupt processing. 422 * We don't want to restart any stream rings if there's a set dequeue 423 * pointer command pending because the device can choose to start any 424 * stream once the endpoint is on the HW schedule. 425 * FIXME - check all the stream rings for pending cancellations. 426 */ 427 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 428 (ep_state & EP_HALTED)) 429 return; 430 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 431 /* The CPU has better things to do at this point than wait for a 432 * write-posting flush. It'll get there soon enough. 433 */ 434 } 435 436 /* Ring the doorbell for any rings with pending URBs */ 437 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 438 unsigned int slot_id, 439 unsigned int ep_index) 440 { 441 unsigned int stream_id; 442 struct xhci_virt_ep *ep; 443 444 ep = &xhci->devs[slot_id]->eps[ep_index]; 445 446 /* A ring has pending URBs if its TD list is not empty */ 447 if (!(ep->ep_state & EP_HAS_STREAMS)) { 448 if (ep->ring && !(list_empty(&ep->ring->td_list))) 449 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 450 return; 451 } 452 453 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 454 stream_id++) { 455 struct xhci_stream_info *stream_info = ep->stream_info; 456 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 458 stream_id); 459 } 460 } 461 462 /* 463 * Find the segment that trb is in. Start searching in start_seg. 464 * If we must move past a segment that has a link TRB with a toggle cycle state 465 * bit set, then we will toggle the value pointed at by cycle_state. 466 */ 467 static struct xhci_segment *find_trb_seg( 468 struct xhci_segment *start_seg, 469 union xhci_trb *trb, int *cycle_state) 470 { 471 struct xhci_segment *cur_seg = start_seg; 472 struct xhci_generic_trb *generic_trb; 473 474 while (cur_seg->trbs > trb || 475 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 476 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 477 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 478 *cycle_state ^= 0x1; 479 cur_seg = cur_seg->next; 480 if (cur_seg == start_seg) 481 /* Looped over the entire list. Oops! */ 482 return NULL; 483 } 484 return cur_seg; 485 } 486 487 488 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 489 unsigned int slot_id, unsigned int ep_index, 490 unsigned int stream_id) 491 { 492 struct xhci_virt_ep *ep; 493 494 ep = &xhci->devs[slot_id]->eps[ep_index]; 495 /* Common case: no streams */ 496 if (!(ep->ep_state & EP_HAS_STREAMS)) 497 return ep->ring; 498 499 if (stream_id == 0) { 500 xhci_warn(xhci, 501 "WARN: Slot ID %u, ep index %u has streams, " 502 "but URB has no stream ID.\n", 503 slot_id, ep_index); 504 return NULL; 505 } 506 507 if (stream_id < ep->stream_info->num_streams) 508 return ep->stream_info->stream_rings[stream_id]; 509 510 xhci_warn(xhci, 511 "WARN: Slot ID %u, ep index %u has " 512 "stream IDs 1 to %u allocated, " 513 "but stream ID %u is requested.\n", 514 slot_id, ep_index, 515 ep->stream_info->num_streams - 1, 516 stream_id); 517 return NULL; 518 } 519 520 /* Get the right ring for the given URB. 521 * If the endpoint supports streams, boundary check the URB's stream ID. 522 * If the endpoint doesn't support streams, return the singular endpoint ring. 523 */ 524 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 525 struct urb *urb) 526 { 527 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 528 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 529 } 530 531 /* 532 * Move the xHC's endpoint ring dequeue pointer past cur_td. 533 * Record the new state of the xHC's endpoint ring dequeue segment, 534 * dequeue pointer, and new consumer cycle state in state. 535 * Update our internal representation of the ring's dequeue pointer. 536 * 537 * We do this in three jumps: 538 * - First we update our new ring state to be the same as when the xHC stopped. 539 * - Then we traverse the ring to find the segment that contains 540 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 541 * any link TRBs with the toggle cycle bit set. 542 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 543 * if we've moved it past a link TRB with the toggle cycle bit set. 544 * 545 * Some of the uses of xhci_generic_trb are grotty, but if they're done 546 * with correct __le32 accesses they should work fine. Only users of this are 547 * in here. 548 */ 549 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 550 unsigned int slot_id, unsigned int ep_index, 551 unsigned int stream_id, struct xhci_td *cur_td, 552 struct xhci_dequeue_state *state) 553 { 554 struct xhci_virt_device *dev = xhci->devs[slot_id]; 555 struct xhci_ring *ep_ring; 556 struct xhci_generic_trb *trb; 557 struct xhci_ep_ctx *ep_ctx; 558 dma_addr_t addr; 559 560 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 561 ep_index, stream_id); 562 if (!ep_ring) { 563 xhci_warn(xhci, "WARN can't find new dequeue state " 564 "for invalid stream ID %u.\n", 565 stream_id); 566 return; 567 } 568 state->new_cycle_state = 0; 569 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 570 "Finding segment containing stopped TRB."); 571 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 572 dev->eps[ep_index].stopped_trb, 573 &state->new_cycle_state); 574 if (!state->new_deq_seg) { 575 WARN_ON(1); 576 return; 577 } 578 579 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 580 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 581 "Finding endpoint context"); 582 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 583 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 584 585 state->new_deq_ptr = cur_td->last_trb; 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "Finding segment containing last TRB in TD."); 588 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 589 state->new_deq_ptr, 590 &state->new_cycle_state); 591 if (!state->new_deq_seg) { 592 WARN_ON(1); 593 return; 594 } 595 596 trb = &state->new_deq_ptr->generic; 597 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 598 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 599 state->new_cycle_state ^= 0x1; 600 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 601 602 /* 603 * If there is only one segment in a ring, find_trb_seg()'s while loop 604 * will not run, and it will return before it has a chance to see if it 605 * needs to toggle the cycle bit. It can't tell if the stalled transfer 606 * ended just before the link TRB on a one-segment ring, or if the TD 607 * wrapped around the top of the ring, because it doesn't have the TD in 608 * question. Look for the one-segment case where stalled TRB's address 609 * is greater than the new dequeue pointer address. 610 */ 611 if (ep_ring->first_seg == ep_ring->first_seg->next && 612 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 613 state->new_cycle_state ^= 0x1; 614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 615 "Cycle state = 0x%x", state->new_cycle_state); 616 617 /* Don't update the ring cycle state for the producer (us). */ 618 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 619 "New dequeue segment = %p (virtual)", 620 state->new_deq_seg); 621 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 623 "New dequeue pointer = 0x%llx (DMA)", 624 (unsigned long long) addr); 625 } 626 627 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 628 * (The last TRB actually points to the ring enqueue pointer, which is not part 629 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 630 */ 631 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 632 struct xhci_td *cur_td, bool flip_cycle) 633 { 634 struct xhci_segment *cur_seg; 635 union xhci_trb *cur_trb; 636 637 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 638 true; 639 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 640 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 641 /* Unchain any chained Link TRBs, but 642 * leave the pointers intact. 643 */ 644 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 645 /* Flip the cycle bit (link TRBs can't be the first 646 * or last TRB). 647 */ 648 if (flip_cycle) 649 cur_trb->generic.field[3] ^= 650 cpu_to_le32(TRB_CYCLE); 651 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 652 "Cancel (unchain) link TRB"); 653 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 654 "Address = %p (0x%llx dma); " 655 "in seg %p (0x%llx dma)", 656 cur_trb, 657 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 658 cur_seg, 659 (unsigned long long)cur_seg->dma); 660 } else { 661 cur_trb->generic.field[0] = 0; 662 cur_trb->generic.field[1] = 0; 663 cur_trb->generic.field[2] = 0; 664 /* Preserve only the cycle bit of this TRB */ 665 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 666 /* Flip the cycle bit except on the first or last TRB */ 667 if (flip_cycle && cur_trb != cur_td->first_trb && 668 cur_trb != cur_td->last_trb) 669 cur_trb->generic.field[3] ^= 670 cpu_to_le32(TRB_CYCLE); 671 cur_trb->generic.field[3] |= cpu_to_le32( 672 TRB_TYPE(TRB_TR_NOOP)); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 674 "TRB to noop at offset 0x%llx", 675 (unsigned long long) 676 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 677 } 678 if (cur_trb == cur_td->last_trb) 679 break; 680 } 681 } 682 683 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 684 unsigned int ep_index, unsigned int stream_id, 685 struct xhci_segment *deq_seg, 686 union xhci_trb *deq_ptr, u32 cycle_state); 687 688 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 689 unsigned int slot_id, unsigned int ep_index, 690 unsigned int stream_id, 691 struct xhci_dequeue_state *deq_state) 692 { 693 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 694 695 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 696 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 697 "new deq ptr = %p (0x%llx dma), new cycle = %u", 698 deq_state->new_deq_seg, 699 (unsigned long long)deq_state->new_deq_seg->dma, 700 deq_state->new_deq_ptr, 701 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 702 deq_state->new_cycle_state); 703 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 704 deq_state->new_deq_seg, 705 deq_state->new_deq_ptr, 706 (u32) deq_state->new_cycle_state); 707 /* Stop the TD queueing code from ringing the doorbell until 708 * this command completes. The HC won't set the dequeue pointer 709 * if the ring is running, and ringing the doorbell starts the 710 * ring running. 711 */ 712 ep->ep_state |= SET_DEQ_PENDING; 713 } 714 715 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 716 struct xhci_virt_ep *ep) 717 { 718 ep->ep_state &= ~EP_HALT_PENDING; 719 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 720 * timer is running on another CPU, we don't decrement stop_cmds_pending 721 * (since we didn't successfully stop the watchdog timer). 722 */ 723 if (del_timer(&ep->stop_cmd_timer)) 724 ep->stop_cmds_pending--; 725 } 726 727 /* Must be called with xhci->lock held in interrupt context */ 728 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 729 struct xhci_td *cur_td, int status, char *adjective) 730 { 731 struct usb_hcd *hcd; 732 struct urb *urb; 733 struct urb_priv *urb_priv; 734 735 urb = cur_td->urb; 736 urb_priv = urb->hcpriv; 737 urb_priv->td_cnt++; 738 hcd = bus_to_hcd(urb->dev->bus); 739 740 /* Only giveback urb when this is the last td in urb */ 741 if (urb_priv->td_cnt == urb_priv->length) { 742 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 743 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 744 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_quirk_pll_enable(); 747 } 748 } 749 usb_hcd_unlink_urb_from_ep(hcd, urb); 750 751 spin_unlock(&xhci->lock); 752 usb_hcd_giveback_urb(hcd, urb, status); 753 xhci_urb_free_priv(xhci, urb_priv); 754 spin_lock(&xhci->lock); 755 } 756 } 757 758 /* 759 * When we get a command completion for a Stop Endpoint Command, we need to 760 * unlink any cancelled TDs from the ring. There are two ways to do that: 761 * 762 * 1. If the HW was in the middle of processing the TD that needs to be 763 * cancelled, then we must move the ring's dequeue pointer past the last TRB 764 * in the TD with a Set Dequeue Pointer Command. 765 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 766 * bit cleared) so that the HW will skip over them. 767 */ 768 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 769 union xhci_trb *trb, struct xhci_event_cmd *event) 770 { 771 unsigned int slot_id; 772 unsigned int ep_index; 773 struct xhci_virt_device *virt_dev; 774 struct xhci_ring *ep_ring; 775 struct xhci_virt_ep *ep; 776 struct list_head *entry; 777 struct xhci_td *cur_td = NULL; 778 struct xhci_td *last_unlinked_td; 779 780 struct xhci_dequeue_state deq_state; 781 782 if (unlikely(TRB_TO_SUSPEND_PORT( 783 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 784 slot_id = TRB_TO_SLOT_ID( 785 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 786 virt_dev = xhci->devs[slot_id]; 787 if (virt_dev) 788 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 789 event); 790 else 791 xhci_warn(xhci, "Stop endpoint command " 792 "completion for disabled slot %u\n", 793 slot_id); 794 return; 795 } 796 797 memset(&deq_state, 0, sizeof(deq_state)); 798 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 799 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 800 ep = &xhci->devs[slot_id]->eps[ep_index]; 801 802 if (list_empty(&ep->cancelled_td_list)) { 803 xhci_stop_watchdog_timer_in_irq(xhci, ep); 804 ep->stopped_td = NULL; 805 ep->stopped_trb = NULL; 806 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 807 return; 808 } 809 810 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 811 * We have the xHCI lock, so nothing can modify this list until we drop 812 * it. We're also in the event handler, so we can't get re-interrupted 813 * if another Stop Endpoint command completes 814 */ 815 list_for_each(entry, &ep->cancelled_td_list) { 816 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 817 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 818 "Removing canceled TD starting at 0x%llx (dma).", 819 (unsigned long long)xhci_trb_virt_to_dma( 820 cur_td->start_seg, cur_td->first_trb)); 821 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 822 if (!ep_ring) { 823 /* This shouldn't happen unless a driver is mucking 824 * with the stream ID after submission. This will 825 * leave the TD on the hardware ring, and the hardware 826 * will try to execute it, and may access a buffer 827 * that has already been freed. In the best case, the 828 * hardware will execute it, and the event handler will 829 * ignore the completion event for that TD, since it was 830 * removed from the td_list for that endpoint. In 831 * short, don't muck with the stream ID after 832 * submission. 833 */ 834 xhci_warn(xhci, "WARN Cancelled URB %p " 835 "has invalid stream ID %u.\n", 836 cur_td->urb, 837 cur_td->urb->stream_id); 838 goto remove_finished_td; 839 } 840 /* 841 * If we stopped on the TD we need to cancel, then we have to 842 * move the xHC endpoint ring dequeue pointer past this TD. 843 */ 844 if (cur_td == ep->stopped_td) 845 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 846 cur_td->urb->stream_id, 847 cur_td, &deq_state); 848 else 849 td_to_noop(xhci, ep_ring, cur_td, false); 850 remove_finished_td: 851 /* 852 * The event handler won't see a completion for this TD anymore, 853 * so remove it from the endpoint ring's TD list. Keep it in 854 * the cancelled TD list for URB completion later. 855 */ 856 list_del_init(&cur_td->td_list); 857 } 858 last_unlinked_td = cur_td; 859 xhci_stop_watchdog_timer_in_irq(xhci, ep); 860 861 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 862 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 863 xhci_queue_new_dequeue_state(xhci, 864 slot_id, ep_index, 865 ep->stopped_td->urb->stream_id, 866 &deq_state); 867 xhci_ring_cmd_db(xhci); 868 } else { 869 /* Otherwise ring the doorbell(s) to restart queued transfers */ 870 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 871 } 872 873 /* Clear stopped_td and stopped_trb if endpoint is not halted */ 874 if (!(ep->ep_state & EP_HALTED)) { 875 ep->stopped_td = NULL; 876 ep->stopped_trb = NULL; 877 } 878 879 /* 880 * Drop the lock and complete the URBs in the cancelled TD list. 881 * New TDs to be cancelled might be added to the end of the list before 882 * we can complete all the URBs for the TDs we already unlinked. 883 * So stop when we've completed the URB for the last TD we unlinked. 884 */ 885 do { 886 cur_td = list_entry(ep->cancelled_td_list.next, 887 struct xhci_td, cancelled_td_list); 888 list_del_init(&cur_td->cancelled_td_list); 889 890 /* Clean up the cancelled URB */ 891 /* Doesn't matter what we pass for status, since the core will 892 * just overwrite it (because the URB has been unlinked). 893 */ 894 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 895 896 /* Stop processing the cancelled list if the watchdog timer is 897 * running. 898 */ 899 if (xhci->xhc_state & XHCI_STATE_DYING) 900 return; 901 } while (cur_td != last_unlinked_td); 902 903 /* Return to the event handler with xhci->lock re-acquired */ 904 } 905 906 /* Watchdog timer function for when a stop endpoint command fails to complete. 907 * In this case, we assume the host controller is broken or dying or dead. The 908 * host may still be completing some other events, so we have to be careful to 909 * let the event ring handler and the URB dequeueing/enqueueing functions know 910 * through xhci->state. 911 * 912 * The timer may also fire if the host takes a very long time to respond to the 913 * command, and the stop endpoint command completion handler cannot delete the 914 * timer before the timer function is called. Another endpoint cancellation may 915 * sneak in before the timer function can grab the lock, and that may queue 916 * another stop endpoint command and add the timer back. So we cannot use a 917 * simple flag to say whether there is a pending stop endpoint command for a 918 * particular endpoint. 919 * 920 * Instead we use a combination of that flag and a counter for the number of 921 * pending stop endpoint commands. If the timer is the tail end of the last 922 * stop endpoint command, and the endpoint's command is still pending, we assume 923 * the host is dying. 924 */ 925 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 926 { 927 struct xhci_hcd *xhci; 928 struct xhci_virt_ep *ep; 929 struct xhci_virt_ep *temp_ep; 930 struct xhci_ring *ring; 931 struct xhci_td *cur_td; 932 int ret, i, j; 933 unsigned long flags; 934 935 ep = (struct xhci_virt_ep *) arg; 936 xhci = ep->xhci; 937 938 spin_lock_irqsave(&xhci->lock, flags); 939 940 ep->stop_cmds_pending--; 941 if (xhci->xhc_state & XHCI_STATE_DYING) { 942 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 943 "Stop EP timer ran, but another timer marked " 944 "xHCI as DYING, exiting."); 945 spin_unlock_irqrestore(&xhci->lock, flags); 946 return; 947 } 948 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 949 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 950 "Stop EP timer ran, but no command pending, " 951 "exiting."); 952 spin_unlock_irqrestore(&xhci->lock, flags); 953 return; 954 } 955 956 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 957 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 958 /* Oops, HC is dead or dying or at least not responding to the stop 959 * endpoint command. 960 */ 961 xhci->xhc_state |= XHCI_STATE_DYING; 962 /* Disable interrupts from the host controller and start halting it */ 963 xhci_quiesce(xhci); 964 spin_unlock_irqrestore(&xhci->lock, flags); 965 966 ret = xhci_halt(xhci); 967 968 spin_lock_irqsave(&xhci->lock, flags); 969 if (ret < 0) { 970 /* This is bad; the host is not responding to commands and it's 971 * not allowing itself to be halted. At least interrupts are 972 * disabled. If we call usb_hc_died(), it will attempt to 973 * disconnect all device drivers under this host. Those 974 * disconnect() methods will wait for all URBs to be unlinked, 975 * so we must complete them. 976 */ 977 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 978 xhci_warn(xhci, "Completing active URBs anyway.\n"); 979 /* We could turn all TDs on the rings to no-ops. This won't 980 * help if the host has cached part of the ring, and is slow if 981 * we want to preserve the cycle bit. Skip it and hope the host 982 * doesn't touch the memory. 983 */ 984 } 985 for (i = 0; i < MAX_HC_SLOTS; i++) { 986 if (!xhci->devs[i]) 987 continue; 988 for (j = 0; j < 31; j++) { 989 temp_ep = &xhci->devs[i]->eps[j]; 990 ring = temp_ep->ring; 991 if (!ring) 992 continue; 993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 994 "Killing URBs for slot ID %u, " 995 "ep index %u", i, j); 996 while (!list_empty(&ring->td_list)) { 997 cur_td = list_first_entry(&ring->td_list, 998 struct xhci_td, 999 td_list); 1000 list_del_init(&cur_td->td_list); 1001 if (!list_empty(&cur_td->cancelled_td_list)) 1002 list_del_init(&cur_td->cancelled_td_list); 1003 xhci_giveback_urb_in_irq(xhci, cur_td, 1004 -ESHUTDOWN, "killed"); 1005 } 1006 while (!list_empty(&temp_ep->cancelled_td_list)) { 1007 cur_td = list_first_entry( 1008 &temp_ep->cancelled_td_list, 1009 struct xhci_td, 1010 cancelled_td_list); 1011 list_del_init(&cur_td->cancelled_td_list); 1012 xhci_giveback_urb_in_irq(xhci, cur_td, 1013 -ESHUTDOWN, "killed"); 1014 } 1015 } 1016 } 1017 spin_unlock_irqrestore(&xhci->lock, flags); 1018 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1019 "Calling usb_hc_died()"); 1020 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1021 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1022 "xHCI host controller is dead."); 1023 } 1024 1025 1026 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1027 struct xhci_virt_device *dev, 1028 struct xhci_ring *ep_ring, 1029 unsigned int ep_index) 1030 { 1031 union xhci_trb *dequeue_temp; 1032 int num_trbs_free_temp; 1033 bool revert = false; 1034 1035 num_trbs_free_temp = ep_ring->num_trbs_free; 1036 dequeue_temp = ep_ring->dequeue; 1037 1038 /* If we get two back-to-back stalls, and the first stalled transfer 1039 * ends just before a link TRB, the dequeue pointer will be left on 1040 * the link TRB by the code in the while loop. So we have to update 1041 * the dequeue pointer one segment further, or we'll jump off 1042 * the segment into la-la-land. 1043 */ 1044 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1045 ep_ring->deq_seg = ep_ring->deq_seg->next; 1046 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1047 } 1048 1049 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1050 /* We have more usable TRBs */ 1051 ep_ring->num_trbs_free++; 1052 ep_ring->dequeue++; 1053 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1054 ep_ring->dequeue)) { 1055 if (ep_ring->dequeue == 1056 dev->eps[ep_index].queued_deq_ptr) 1057 break; 1058 ep_ring->deq_seg = ep_ring->deq_seg->next; 1059 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1060 } 1061 if (ep_ring->dequeue == dequeue_temp) { 1062 revert = true; 1063 break; 1064 } 1065 } 1066 1067 if (revert) { 1068 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1069 ep_ring->num_trbs_free = num_trbs_free_temp; 1070 } 1071 } 1072 1073 /* 1074 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1075 * we need to clear the set deq pending flag in the endpoint ring state, so that 1076 * the TD queueing code can ring the doorbell again. We also need to ring the 1077 * endpoint doorbell to restart the ring, but only if there aren't more 1078 * cancellations pending. 1079 */ 1080 static void handle_set_deq_completion(struct xhci_hcd *xhci, 1081 struct xhci_event_cmd *event, 1082 union xhci_trb *trb) 1083 { 1084 unsigned int slot_id; 1085 unsigned int ep_index; 1086 unsigned int stream_id; 1087 struct xhci_ring *ep_ring; 1088 struct xhci_virt_device *dev; 1089 struct xhci_ep_ctx *ep_ctx; 1090 struct xhci_slot_ctx *slot_ctx; 1091 1092 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1093 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1094 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1095 dev = xhci->devs[slot_id]; 1096 1097 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1098 if (!ep_ring) { 1099 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1100 "freed stream ID %u\n", 1101 stream_id); 1102 /* XXX: Harmless??? */ 1103 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1104 return; 1105 } 1106 1107 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1108 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1109 1110 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 1111 unsigned int ep_state; 1112 unsigned int slot_state; 1113 1114 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 1115 case COMP_TRB_ERR: 1116 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1117 "of stream ID configuration\n"); 1118 break; 1119 case COMP_CTX_STATE: 1120 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1121 "to incorrect slot or ep state.\n"); 1122 ep_state = le32_to_cpu(ep_ctx->ep_info); 1123 ep_state &= EP_STATE_MASK; 1124 slot_state = le32_to_cpu(slot_ctx->dev_state); 1125 slot_state = GET_SLOT_STATE(slot_state); 1126 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1127 "Slot state = %u, EP state = %u", 1128 slot_state, ep_state); 1129 break; 1130 case COMP_EBADSLT: 1131 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1132 "slot %u was not enabled.\n", slot_id); 1133 break; 1134 default: 1135 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1136 "completion code of %u.\n", 1137 GET_COMP_CODE(le32_to_cpu(event->status))); 1138 break; 1139 } 1140 /* OK what do we do now? The endpoint state is hosed, and we 1141 * should never get to this point if the synchronization between 1142 * queueing, and endpoint state are correct. This might happen 1143 * if the device gets disconnected after we've finished 1144 * cancelling URBs, which might not be an error... 1145 */ 1146 } else { 1147 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1148 "Successful Set TR Deq Ptr cmd, deq = @%08llx", 1149 le64_to_cpu(ep_ctx->deq)); 1150 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1151 dev->eps[ep_index].queued_deq_ptr) == 1152 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1153 /* Update the ring's dequeue segment and dequeue pointer 1154 * to reflect the new position. 1155 */ 1156 update_ring_for_set_deq_completion(xhci, dev, 1157 ep_ring, ep_index); 1158 } else { 1159 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1160 "Ptr command & xHCI internal state.\n"); 1161 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1162 dev->eps[ep_index].queued_deq_seg, 1163 dev->eps[ep_index].queued_deq_ptr); 1164 } 1165 } 1166 1167 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1168 dev->eps[ep_index].queued_deq_seg = NULL; 1169 dev->eps[ep_index].queued_deq_ptr = NULL; 1170 /* Restart any rings with pending URBs */ 1171 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1172 } 1173 1174 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1175 struct xhci_event_cmd *event, 1176 union xhci_trb *trb) 1177 { 1178 int slot_id; 1179 unsigned int ep_index; 1180 1181 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1182 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1183 /* This command will only fail if the endpoint wasn't halted, 1184 * but we don't care. 1185 */ 1186 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1187 "Ignoring reset ep completion code of %u", 1188 GET_COMP_CODE(le32_to_cpu(event->status))); 1189 1190 /* HW with the reset endpoint quirk needs to have a configure endpoint 1191 * command complete before the endpoint can be used. Queue that here 1192 * because the HW can't handle two commands being queued in a row. 1193 */ 1194 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1195 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1196 "Queueing configure endpoint command"); 1197 xhci_queue_configure_endpoint(xhci, 1198 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1199 false); 1200 xhci_ring_cmd_db(xhci); 1201 } else { 1202 /* Clear our internal halted state and restart the ring(s) */ 1203 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1204 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1205 } 1206 } 1207 1208 /* Complete the command and detele it from the devcie's command queue. 1209 */ 1210 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1211 struct xhci_command *command, u32 status) 1212 { 1213 command->status = status; 1214 list_del(&command->cmd_list); 1215 if (command->completion) 1216 complete(command->completion); 1217 else 1218 xhci_free_command(xhci, command); 1219 } 1220 1221 1222 /* Check to see if a command in the device's command queue matches this one. 1223 * Signal the completion or free the command, and return 1. Return 0 if the 1224 * completed command isn't at the head of the command list. 1225 */ 1226 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1227 struct xhci_virt_device *virt_dev, 1228 struct xhci_event_cmd *event) 1229 { 1230 struct xhci_command *command; 1231 1232 if (list_empty(&virt_dev->cmd_list)) 1233 return 0; 1234 1235 command = list_entry(virt_dev->cmd_list.next, 1236 struct xhci_command, cmd_list); 1237 if (xhci->cmd_ring->dequeue != command->command_trb) 1238 return 0; 1239 1240 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1241 GET_COMP_CODE(le32_to_cpu(event->status))); 1242 return 1; 1243 } 1244 1245 /* 1246 * Finding the command trb need to be cancelled and modifying it to 1247 * NO OP command. And if the command is in device's command wait 1248 * list, finishing and freeing it. 1249 * 1250 * If we can't find the command trb, we think it had already been 1251 * executed. 1252 */ 1253 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1254 { 1255 struct xhci_segment *cur_seg; 1256 union xhci_trb *cmd_trb; 1257 u32 cycle_state; 1258 1259 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1260 return; 1261 1262 /* find the current segment of command ring */ 1263 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1264 xhci->cmd_ring->dequeue, &cycle_state); 1265 1266 if (!cur_seg) { 1267 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1268 xhci->cmd_ring->dequeue, 1269 (unsigned long long) 1270 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1271 xhci->cmd_ring->dequeue)); 1272 xhci_debug_ring(xhci, xhci->cmd_ring); 1273 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1274 return; 1275 } 1276 1277 /* find the command trb matched by cd from command ring */ 1278 for (cmd_trb = xhci->cmd_ring->dequeue; 1279 cmd_trb != xhci->cmd_ring->enqueue; 1280 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1281 /* If the trb is link trb, continue */ 1282 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1283 continue; 1284 1285 if (cur_cd->cmd_trb == cmd_trb) { 1286 1287 /* If the command in device's command list, we should 1288 * finish it and free the command structure. 1289 */ 1290 if (cur_cd->command) 1291 xhci_complete_cmd_in_cmd_wait_list(xhci, 1292 cur_cd->command, COMP_CMD_STOP); 1293 1294 /* get cycle state from the origin command trb */ 1295 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1296 & TRB_CYCLE; 1297 1298 /* modify the command trb to NO OP command */ 1299 cmd_trb->generic.field[0] = 0; 1300 cmd_trb->generic.field[1] = 0; 1301 cmd_trb->generic.field[2] = 0; 1302 cmd_trb->generic.field[3] = cpu_to_le32( 1303 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1304 break; 1305 } 1306 } 1307 } 1308 1309 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1310 { 1311 struct xhci_cd *cur_cd, *next_cd; 1312 1313 if (list_empty(&xhci->cancel_cmd_list)) 1314 return; 1315 1316 list_for_each_entry_safe(cur_cd, next_cd, 1317 &xhci->cancel_cmd_list, cancel_cmd_list) { 1318 xhci_cmd_to_noop(xhci, cur_cd); 1319 list_del(&cur_cd->cancel_cmd_list); 1320 kfree(cur_cd); 1321 } 1322 } 1323 1324 /* 1325 * traversing the cancel_cmd_list. If the command descriptor according 1326 * to cmd_trb is found, the function free it and return 1, otherwise 1327 * return 0. 1328 */ 1329 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1330 union xhci_trb *cmd_trb) 1331 { 1332 struct xhci_cd *cur_cd, *next_cd; 1333 1334 if (list_empty(&xhci->cancel_cmd_list)) 1335 return 0; 1336 1337 list_for_each_entry_safe(cur_cd, next_cd, 1338 &xhci->cancel_cmd_list, cancel_cmd_list) { 1339 if (cur_cd->cmd_trb == cmd_trb) { 1340 if (cur_cd->command) 1341 xhci_complete_cmd_in_cmd_wait_list(xhci, 1342 cur_cd->command, COMP_CMD_STOP); 1343 list_del(&cur_cd->cancel_cmd_list); 1344 kfree(cur_cd); 1345 return 1; 1346 } 1347 } 1348 1349 return 0; 1350 } 1351 1352 /* 1353 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1354 * trb pointed by the command ring dequeue pointer is the trb we want to 1355 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1356 * traverse the cancel_cmd_list to trun the all of the commands according 1357 * to command descriptor to NO-OP trb. 1358 */ 1359 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1360 int cmd_trb_comp_code) 1361 { 1362 int cur_trb_is_good = 0; 1363 1364 /* Searching the cmd trb pointed by the command ring dequeue 1365 * pointer in command descriptor list. If it is found, free it. 1366 */ 1367 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1368 xhci->cmd_ring->dequeue); 1369 1370 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1371 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1372 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1373 /* traversing the cancel_cmd_list and canceling 1374 * the command according to command descriptor 1375 */ 1376 xhci_cancel_cmd_in_cd_list(xhci); 1377 1378 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1379 /* 1380 * ring command ring doorbell again to restart the 1381 * command ring 1382 */ 1383 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1384 xhci_ring_cmd_db(xhci); 1385 } 1386 return cur_trb_is_good; 1387 } 1388 1389 static void handle_cmd_completion(struct xhci_hcd *xhci, 1390 struct xhci_event_cmd *event) 1391 { 1392 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1393 u64 cmd_dma; 1394 dma_addr_t cmd_dequeue_dma; 1395 struct xhci_input_control_ctx *ctrl_ctx; 1396 struct xhci_virt_device *virt_dev; 1397 unsigned int ep_index; 1398 struct xhci_ring *ep_ring; 1399 unsigned int ep_state; 1400 1401 cmd_dma = le64_to_cpu(event->cmd_trb); 1402 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1403 xhci->cmd_ring->dequeue); 1404 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1405 if (cmd_dequeue_dma == 0) { 1406 xhci->error_bitmask |= 1 << 4; 1407 return; 1408 } 1409 /* Does the DMA address match our internal dequeue pointer address? */ 1410 if (cmd_dma != (u64) cmd_dequeue_dma) { 1411 xhci->error_bitmask |= 1 << 5; 1412 return; 1413 } 1414 1415 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic, 1416 (struct xhci_generic_trb *) event); 1417 1418 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) || 1419 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) { 1420 /* If the return value is 0, we think the trb pointed by 1421 * command ring dequeue pointer is a good trb. The good 1422 * trb means we don't want to cancel the trb, but it have 1423 * been stopped by host. So we should handle it normally. 1424 * Otherwise, driver should invoke inc_deq() and return. 1425 */ 1426 if (handle_stopped_cmd_ring(xhci, 1427 GET_COMP_CODE(le32_to_cpu(event->status)))) { 1428 inc_deq(xhci, xhci->cmd_ring); 1429 return; 1430 } 1431 /* There is no command to handle if we get a stop event when the 1432 * command ring is empty, event->cmd_trb points to the next 1433 * unset command 1434 */ 1435 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1436 return; 1437 } 1438 1439 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1440 & TRB_TYPE_BITMASK) { 1441 case TRB_TYPE(TRB_ENABLE_SLOT): 1442 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1443 xhci->slot_id = slot_id; 1444 else 1445 xhci->slot_id = 0; 1446 complete(&xhci->addr_dev); 1447 break; 1448 case TRB_TYPE(TRB_DISABLE_SLOT): 1449 if (xhci->devs[slot_id]) { 1450 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1451 /* Delete default control endpoint resources */ 1452 xhci_free_device_endpoint_resources(xhci, 1453 xhci->devs[slot_id], true); 1454 xhci_free_virt_device(xhci, slot_id); 1455 } 1456 break; 1457 case TRB_TYPE(TRB_CONFIG_EP): 1458 virt_dev = xhci->devs[slot_id]; 1459 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1460 break; 1461 /* 1462 * Configure endpoint commands can come from the USB core 1463 * configuration or alt setting changes, or because the HW 1464 * needed an extra configure endpoint command after a reset 1465 * endpoint command or streams were being configured. 1466 * If the command was for a halted endpoint, the xHCI driver 1467 * is not waiting on the configure endpoint command. 1468 */ 1469 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1470 virt_dev->in_ctx); 1471 if (!ctrl_ctx) { 1472 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1473 break; 1474 } 1475 /* Input ctx add_flags are the endpoint index plus one */ 1476 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1477 /* A usb_set_interface() call directly after clearing a halted 1478 * condition may race on this quirky hardware. Not worth 1479 * worrying about, since this is prototype hardware. Not sure 1480 * if this will work for streams, but streams support was 1481 * untested on this prototype. 1482 */ 1483 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1484 ep_index != (unsigned int) -1 && 1485 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1486 le32_to_cpu(ctrl_ctx->drop_flags)) { 1487 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1488 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1489 if (!(ep_state & EP_HALTED)) 1490 goto bandwidth_change; 1491 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1492 "Completed config ep cmd - " 1493 "last ep index = %d, state = %d", 1494 ep_index, ep_state); 1495 /* Clear internal halted state and restart ring(s) */ 1496 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1497 ~EP_HALTED; 1498 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1499 break; 1500 } 1501 bandwidth_change: 1502 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1503 "Completed config ep cmd"); 1504 xhci->devs[slot_id]->cmd_status = 1505 GET_COMP_CODE(le32_to_cpu(event->status)); 1506 complete(&xhci->devs[slot_id]->cmd_completion); 1507 break; 1508 case TRB_TYPE(TRB_EVAL_CONTEXT): 1509 virt_dev = xhci->devs[slot_id]; 1510 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1511 break; 1512 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1513 complete(&xhci->devs[slot_id]->cmd_completion); 1514 break; 1515 case TRB_TYPE(TRB_ADDR_DEV): 1516 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1517 complete(&xhci->addr_dev); 1518 break; 1519 case TRB_TYPE(TRB_STOP_RING): 1520 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1521 break; 1522 case TRB_TYPE(TRB_SET_DEQ): 1523 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1524 break; 1525 case TRB_TYPE(TRB_CMD_NOOP): 1526 break; 1527 case TRB_TYPE(TRB_RESET_EP): 1528 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1529 break; 1530 case TRB_TYPE(TRB_RESET_DEV): 1531 xhci_dbg(xhci, "Completed reset device command.\n"); 1532 slot_id = TRB_TO_SLOT_ID( 1533 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1534 virt_dev = xhci->devs[slot_id]; 1535 if (virt_dev) 1536 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1537 else 1538 xhci_warn(xhci, "Reset device command completion " 1539 "for disabled slot %u\n", slot_id); 1540 break; 1541 case TRB_TYPE(TRB_NEC_GET_FW): 1542 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1543 xhci->error_bitmask |= 1 << 6; 1544 break; 1545 } 1546 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1547 "NEC firmware version %2x.%02x", 1548 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1549 NEC_FW_MINOR(le32_to_cpu(event->status))); 1550 break; 1551 default: 1552 /* Skip over unknown commands on the event ring */ 1553 xhci->error_bitmask |= 1 << 6; 1554 break; 1555 } 1556 inc_deq(xhci, xhci->cmd_ring); 1557 } 1558 1559 static void handle_vendor_event(struct xhci_hcd *xhci, 1560 union xhci_trb *event) 1561 { 1562 u32 trb_type; 1563 1564 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1565 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1566 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1567 handle_cmd_completion(xhci, &event->event_cmd); 1568 } 1569 1570 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1571 * port registers -- USB 3.0 and USB 2.0). 1572 * 1573 * Returns a zero-based port number, which is suitable for indexing into each of 1574 * the split roothubs' port arrays and bus state arrays. 1575 * Add one to it in order to call xhci_find_slot_id_by_port. 1576 */ 1577 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1578 struct xhci_hcd *xhci, u32 port_id) 1579 { 1580 unsigned int i; 1581 unsigned int num_similar_speed_ports = 0; 1582 1583 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1584 * and usb2_ports are 0-based indexes. Count the number of similar 1585 * speed ports, up to 1 port before this port. 1586 */ 1587 for (i = 0; i < (port_id - 1); i++) { 1588 u8 port_speed = xhci->port_array[i]; 1589 1590 /* 1591 * Skip ports that don't have known speeds, or have duplicate 1592 * Extended Capabilities port speed entries. 1593 */ 1594 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1595 continue; 1596 1597 /* 1598 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1599 * 1.1 ports are under the USB 2.0 hub. If the port speed 1600 * matches the device speed, it's a similar speed port. 1601 */ 1602 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1603 num_similar_speed_ports++; 1604 } 1605 return num_similar_speed_ports; 1606 } 1607 1608 static void handle_device_notification(struct xhci_hcd *xhci, 1609 union xhci_trb *event) 1610 { 1611 u32 slot_id; 1612 struct usb_device *udev; 1613 1614 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1615 if (!xhci->devs[slot_id]) { 1616 xhci_warn(xhci, "Device Notification event for " 1617 "unused slot %u\n", slot_id); 1618 return; 1619 } 1620 1621 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1622 slot_id); 1623 udev = xhci->devs[slot_id]->udev; 1624 if (udev && udev->parent) 1625 usb_wakeup_notification(udev->parent, udev->portnum); 1626 } 1627 1628 static void handle_port_status(struct xhci_hcd *xhci, 1629 union xhci_trb *event) 1630 { 1631 struct usb_hcd *hcd; 1632 u32 port_id; 1633 u32 temp, temp1; 1634 int max_ports; 1635 int slot_id; 1636 unsigned int faked_port_index; 1637 u8 major_revision; 1638 struct xhci_bus_state *bus_state; 1639 __le32 __iomem **port_array; 1640 bool bogus_port_status = false; 1641 1642 /* Port status change events always have a successful completion code */ 1643 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1644 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1645 xhci->error_bitmask |= 1 << 8; 1646 } 1647 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1648 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1649 1650 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1651 if ((port_id <= 0) || (port_id > max_ports)) { 1652 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1653 inc_deq(xhci, xhci->event_ring); 1654 return; 1655 } 1656 1657 /* Figure out which usb_hcd this port is attached to: 1658 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1659 */ 1660 major_revision = xhci->port_array[port_id - 1]; 1661 1662 /* Find the right roothub. */ 1663 hcd = xhci_to_hcd(xhci); 1664 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1665 hcd = xhci->shared_hcd; 1666 1667 if (major_revision == 0) { 1668 xhci_warn(xhci, "Event for port %u not in " 1669 "Extended Capabilities, ignoring.\n", 1670 port_id); 1671 bogus_port_status = true; 1672 goto cleanup; 1673 } 1674 if (major_revision == DUPLICATE_ENTRY) { 1675 xhci_warn(xhci, "Event for port %u duplicated in" 1676 "Extended Capabilities, ignoring.\n", 1677 port_id); 1678 bogus_port_status = true; 1679 goto cleanup; 1680 } 1681 1682 /* 1683 * Hardware port IDs reported by a Port Status Change Event include USB 1684 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1685 * resume event, but we first need to translate the hardware port ID 1686 * into the index into the ports on the correct split roothub, and the 1687 * correct bus_state structure. 1688 */ 1689 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1690 if (hcd->speed == HCD_USB3) 1691 port_array = xhci->usb3_ports; 1692 else 1693 port_array = xhci->usb2_ports; 1694 /* Find the faked port hub number */ 1695 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1696 port_id); 1697 1698 temp = xhci_readl(xhci, port_array[faked_port_index]); 1699 if (hcd->state == HC_STATE_SUSPENDED) { 1700 xhci_dbg(xhci, "resume root hub\n"); 1701 usb_hcd_resume_root_hub(hcd); 1702 } 1703 1704 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1705 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1706 1707 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1708 if (!(temp1 & CMD_RUN)) { 1709 xhci_warn(xhci, "xHC is not running.\n"); 1710 goto cleanup; 1711 } 1712 1713 if (DEV_SUPERSPEED(temp)) { 1714 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1715 /* Set a flag to say the port signaled remote wakeup, 1716 * so we can tell the difference between the end of 1717 * device and host initiated resume. 1718 */ 1719 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1720 xhci_test_and_clear_bit(xhci, port_array, 1721 faked_port_index, PORT_PLC); 1722 xhci_set_link_state(xhci, port_array, faked_port_index, 1723 XDEV_U0); 1724 /* Need to wait until the next link state change 1725 * indicates the device is actually in U0. 1726 */ 1727 bogus_port_status = true; 1728 goto cleanup; 1729 } else { 1730 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1731 bus_state->resume_done[faked_port_index] = jiffies + 1732 msecs_to_jiffies(20); 1733 set_bit(faked_port_index, &bus_state->resuming_ports); 1734 mod_timer(&hcd->rh_timer, 1735 bus_state->resume_done[faked_port_index]); 1736 /* Do the rest in GetPortStatus */ 1737 } 1738 } 1739 1740 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1741 DEV_SUPERSPEED(temp)) { 1742 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1743 /* We've just brought the device into U0 through either the 1744 * Resume state after a device remote wakeup, or through the 1745 * U3Exit state after a host-initiated resume. If it's a device 1746 * initiated remote wake, don't pass up the link state change, 1747 * so the roothub behavior is consistent with external 1748 * USB 3.0 hub behavior. 1749 */ 1750 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1751 faked_port_index + 1); 1752 if (slot_id && xhci->devs[slot_id]) 1753 xhci_ring_device(xhci, slot_id); 1754 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1755 bus_state->port_remote_wakeup &= 1756 ~(1 << faked_port_index); 1757 xhci_test_and_clear_bit(xhci, port_array, 1758 faked_port_index, PORT_PLC); 1759 usb_wakeup_notification(hcd->self.root_hub, 1760 faked_port_index + 1); 1761 bogus_port_status = true; 1762 goto cleanup; 1763 } 1764 } 1765 1766 /* 1767 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1768 * RExit to a disconnect state). If so, let the the driver know it's 1769 * out of the RExit state. 1770 */ 1771 if (!DEV_SUPERSPEED(temp) && 1772 test_and_clear_bit(faked_port_index, 1773 &bus_state->rexit_ports)) { 1774 complete(&bus_state->rexit_done[faked_port_index]); 1775 bogus_port_status = true; 1776 goto cleanup; 1777 } 1778 1779 if (hcd->speed != HCD_USB3) 1780 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1781 PORT_PLC); 1782 1783 cleanup: 1784 /* Update event ring dequeue pointer before dropping the lock */ 1785 inc_deq(xhci, xhci->event_ring); 1786 1787 /* Don't make the USB core poll the roothub if we got a bad port status 1788 * change event. Besides, at that point we can't tell which roothub 1789 * (USB 2.0 or USB 3.0) to kick. 1790 */ 1791 if (bogus_port_status) 1792 return; 1793 1794 /* 1795 * xHCI port-status-change events occur when the "or" of all the 1796 * status-change bits in the portsc register changes from 0 to 1. 1797 * New status changes won't cause an event if any other change 1798 * bits are still set. When an event occurs, switch over to 1799 * polling to avoid losing status changes. 1800 */ 1801 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1802 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1803 spin_unlock(&xhci->lock); 1804 /* Pass this up to the core */ 1805 usb_hcd_poll_rh_status(hcd); 1806 spin_lock(&xhci->lock); 1807 } 1808 1809 /* 1810 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1811 * at end_trb, which may be in another segment. If the suspect DMA address is a 1812 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1813 * returns 0. 1814 */ 1815 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1816 union xhci_trb *start_trb, 1817 union xhci_trb *end_trb, 1818 dma_addr_t suspect_dma) 1819 { 1820 dma_addr_t start_dma; 1821 dma_addr_t end_seg_dma; 1822 dma_addr_t end_trb_dma; 1823 struct xhci_segment *cur_seg; 1824 1825 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1826 cur_seg = start_seg; 1827 1828 do { 1829 if (start_dma == 0) 1830 return NULL; 1831 /* We may get an event for a Link TRB in the middle of a TD */ 1832 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1833 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1834 /* If the end TRB isn't in this segment, this is set to 0 */ 1835 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1836 1837 if (end_trb_dma > 0) { 1838 /* The end TRB is in this segment, so suspect should be here */ 1839 if (start_dma <= end_trb_dma) { 1840 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1841 return cur_seg; 1842 } else { 1843 /* Case for one segment with 1844 * a TD wrapped around to the top 1845 */ 1846 if ((suspect_dma >= start_dma && 1847 suspect_dma <= end_seg_dma) || 1848 (suspect_dma >= cur_seg->dma && 1849 suspect_dma <= end_trb_dma)) 1850 return cur_seg; 1851 } 1852 return NULL; 1853 } else { 1854 /* Might still be somewhere in this segment */ 1855 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1856 return cur_seg; 1857 } 1858 cur_seg = cur_seg->next; 1859 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1860 } while (cur_seg != start_seg); 1861 1862 return NULL; 1863 } 1864 1865 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1866 unsigned int slot_id, unsigned int ep_index, 1867 unsigned int stream_id, 1868 struct xhci_td *td, union xhci_trb *event_trb) 1869 { 1870 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1871 ep->ep_state |= EP_HALTED; 1872 ep->stopped_td = td; 1873 ep->stopped_trb = event_trb; 1874 ep->stopped_stream = stream_id; 1875 1876 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1877 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1878 1879 ep->stopped_td = NULL; 1880 ep->stopped_trb = NULL; 1881 ep->stopped_stream = 0; 1882 1883 xhci_ring_cmd_db(xhci); 1884 } 1885 1886 /* Check if an error has halted the endpoint ring. The class driver will 1887 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1888 * However, a babble and other errors also halt the endpoint ring, and the class 1889 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1890 * Ring Dequeue Pointer command manually. 1891 */ 1892 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1893 struct xhci_ep_ctx *ep_ctx, 1894 unsigned int trb_comp_code) 1895 { 1896 /* TRB completion codes that may require a manual halt cleanup */ 1897 if (trb_comp_code == COMP_TX_ERR || 1898 trb_comp_code == COMP_BABBLE || 1899 trb_comp_code == COMP_SPLIT_ERR) 1900 /* The 0.96 spec says a babbling control endpoint 1901 * is not halted. The 0.96 spec says it is. Some HW 1902 * claims to be 0.95 compliant, but it halts the control 1903 * endpoint anyway. Check if a babble halted the 1904 * endpoint. 1905 */ 1906 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1907 cpu_to_le32(EP_STATE_HALTED)) 1908 return 1; 1909 1910 return 0; 1911 } 1912 1913 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1914 { 1915 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1916 /* Vendor defined "informational" completion code, 1917 * treat as not-an-error. 1918 */ 1919 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1920 trb_comp_code); 1921 xhci_dbg(xhci, "Treating code as success.\n"); 1922 return 1; 1923 } 1924 return 0; 1925 } 1926 1927 /* 1928 * Finish the td processing, remove the td from td list; 1929 * Return 1 if the urb can be given back. 1930 */ 1931 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1932 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1933 struct xhci_virt_ep *ep, int *status, bool skip) 1934 { 1935 struct xhci_virt_device *xdev; 1936 struct xhci_ring *ep_ring; 1937 unsigned int slot_id; 1938 int ep_index; 1939 struct urb *urb = NULL; 1940 struct xhci_ep_ctx *ep_ctx; 1941 int ret = 0; 1942 struct urb_priv *urb_priv; 1943 u32 trb_comp_code; 1944 1945 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1946 xdev = xhci->devs[slot_id]; 1947 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1948 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1949 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1950 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1951 1952 if (skip) 1953 goto td_cleanup; 1954 1955 if (trb_comp_code == COMP_STOP_INVAL || 1956 trb_comp_code == COMP_STOP) { 1957 /* The Endpoint Stop Command completion will take care of any 1958 * stopped TDs. A stopped TD may be restarted, so don't update 1959 * the ring dequeue pointer or take this TD off any lists yet. 1960 */ 1961 ep->stopped_td = td; 1962 ep->stopped_trb = event_trb; 1963 return 0; 1964 } else { 1965 if (trb_comp_code == COMP_STALL) { 1966 /* The transfer is completed from the driver's 1967 * perspective, but we need to issue a set dequeue 1968 * command for this stalled endpoint to move the dequeue 1969 * pointer past the TD. We can't do that here because 1970 * the halt condition must be cleared first. Let the 1971 * USB class driver clear the stall later. 1972 */ 1973 ep->stopped_td = td; 1974 ep->stopped_trb = event_trb; 1975 ep->stopped_stream = ep_ring->stream_id; 1976 } else if (xhci_requires_manual_halt_cleanup(xhci, 1977 ep_ctx, trb_comp_code)) { 1978 /* Other types of errors halt the endpoint, but the 1979 * class driver doesn't call usb_reset_endpoint() unless 1980 * the error is -EPIPE. Clear the halted status in the 1981 * xHCI hardware manually. 1982 */ 1983 xhci_cleanup_halted_endpoint(xhci, 1984 slot_id, ep_index, ep_ring->stream_id, 1985 td, event_trb); 1986 } else { 1987 /* Update ring dequeue pointer */ 1988 while (ep_ring->dequeue != td->last_trb) 1989 inc_deq(xhci, ep_ring); 1990 inc_deq(xhci, ep_ring); 1991 } 1992 1993 td_cleanup: 1994 /* Clean up the endpoint's TD list */ 1995 urb = td->urb; 1996 urb_priv = urb->hcpriv; 1997 1998 /* Do one last check of the actual transfer length. 1999 * If the host controller said we transferred more data than 2000 * the buffer length, urb->actual_length will be a very big 2001 * number (since it's unsigned). Play it safe and say we didn't 2002 * transfer anything. 2003 */ 2004 if (urb->actual_length > urb->transfer_buffer_length) { 2005 xhci_warn(xhci, "URB transfer length is wrong, " 2006 "xHC issue? req. len = %u, " 2007 "act. len = %u\n", 2008 urb->transfer_buffer_length, 2009 urb->actual_length); 2010 urb->actual_length = 0; 2011 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2012 *status = -EREMOTEIO; 2013 else 2014 *status = 0; 2015 } 2016 list_del_init(&td->td_list); 2017 /* Was this TD slated to be cancelled but completed anyway? */ 2018 if (!list_empty(&td->cancelled_td_list)) 2019 list_del_init(&td->cancelled_td_list); 2020 2021 urb_priv->td_cnt++; 2022 /* Giveback the urb when all the tds are completed */ 2023 if (urb_priv->td_cnt == urb_priv->length) { 2024 ret = 1; 2025 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2026 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 2027 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 2028 == 0) { 2029 if (xhci->quirks & XHCI_AMD_PLL_FIX) 2030 usb_amd_quirk_pll_enable(); 2031 } 2032 } 2033 } 2034 } 2035 2036 return ret; 2037 } 2038 2039 /* 2040 * Process control tds, update urb status and actual_length. 2041 */ 2042 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2043 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2044 struct xhci_virt_ep *ep, int *status) 2045 { 2046 struct xhci_virt_device *xdev; 2047 struct xhci_ring *ep_ring; 2048 unsigned int slot_id; 2049 int ep_index; 2050 struct xhci_ep_ctx *ep_ctx; 2051 u32 trb_comp_code; 2052 2053 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2054 xdev = xhci->devs[slot_id]; 2055 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2056 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2057 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2058 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2059 2060 switch (trb_comp_code) { 2061 case COMP_SUCCESS: 2062 if (event_trb == ep_ring->dequeue) { 2063 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2064 "without IOC set??\n"); 2065 *status = -ESHUTDOWN; 2066 } else if (event_trb != td->last_trb) { 2067 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2068 "without IOC set??\n"); 2069 *status = -ESHUTDOWN; 2070 } else { 2071 *status = 0; 2072 } 2073 break; 2074 case COMP_SHORT_TX: 2075 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2076 *status = -EREMOTEIO; 2077 else 2078 *status = 0; 2079 break; 2080 case COMP_STOP_INVAL: 2081 case COMP_STOP: 2082 return finish_td(xhci, td, event_trb, event, ep, status, false); 2083 default: 2084 if (!xhci_requires_manual_halt_cleanup(xhci, 2085 ep_ctx, trb_comp_code)) 2086 break; 2087 xhci_dbg(xhci, "TRB error code %u, " 2088 "halted endpoint index = %u\n", 2089 trb_comp_code, ep_index); 2090 /* else fall through */ 2091 case COMP_STALL: 2092 /* Did we transfer part of the data (middle) phase? */ 2093 if (event_trb != ep_ring->dequeue && 2094 event_trb != td->last_trb) 2095 td->urb->actual_length = 2096 td->urb->transfer_buffer_length - 2097 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2098 else 2099 td->urb->actual_length = 0; 2100 2101 xhci_cleanup_halted_endpoint(xhci, 2102 slot_id, ep_index, 0, td, event_trb); 2103 return finish_td(xhci, td, event_trb, event, ep, status, true); 2104 } 2105 /* 2106 * Did we transfer any data, despite the errors that might have 2107 * happened? I.e. did we get past the setup stage? 2108 */ 2109 if (event_trb != ep_ring->dequeue) { 2110 /* The event was for the status stage */ 2111 if (event_trb == td->last_trb) { 2112 if (td->urb->actual_length != 0) { 2113 /* Don't overwrite a previously set error code 2114 */ 2115 if ((*status == -EINPROGRESS || *status == 0) && 2116 (td->urb->transfer_flags 2117 & URB_SHORT_NOT_OK)) 2118 /* Did we already see a short data 2119 * stage? */ 2120 *status = -EREMOTEIO; 2121 } else { 2122 td->urb->actual_length = 2123 td->urb->transfer_buffer_length; 2124 } 2125 } else { 2126 /* Maybe the event was for the data stage? */ 2127 td->urb->actual_length = 2128 td->urb->transfer_buffer_length - 2129 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2130 xhci_dbg(xhci, "Waiting for status " 2131 "stage event\n"); 2132 return 0; 2133 } 2134 } 2135 2136 return finish_td(xhci, td, event_trb, event, ep, status, false); 2137 } 2138 2139 /* 2140 * Process isochronous tds, update urb packet status and actual_length. 2141 */ 2142 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2143 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2144 struct xhci_virt_ep *ep, int *status) 2145 { 2146 struct xhci_ring *ep_ring; 2147 struct urb_priv *urb_priv; 2148 int idx; 2149 int len = 0; 2150 union xhci_trb *cur_trb; 2151 struct xhci_segment *cur_seg; 2152 struct usb_iso_packet_descriptor *frame; 2153 u32 trb_comp_code; 2154 bool skip_td = false; 2155 2156 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2157 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2158 urb_priv = td->urb->hcpriv; 2159 idx = urb_priv->td_cnt; 2160 frame = &td->urb->iso_frame_desc[idx]; 2161 2162 /* handle completion code */ 2163 switch (trb_comp_code) { 2164 case COMP_SUCCESS: 2165 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2166 frame->status = 0; 2167 break; 2168 } 2169 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2170 trb_comp_code = COMP_SHORT_TX; 2171 case COMP_SHORT_TX: 2172 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2173 -EREMOTEIO : 0; 2174 break; 2175 case COMP_BW_OVER: 2176 frame->status = -ECOMM; 2177 skip_td = true; 2178 break; 2179 case COMP_BUFF_OVER: 2180 case COMP_BABBLE: 2181 frame->status = -EOVERFLOW; 2182 skip_td = true; 2183 break; 2184 case COMP_DEV_ERR: 2185 case COMP_STALL: 2186 case COMP_TX_ERR: 2187 frame->status = -EPROTO; 2188 skip_td = true; 2189 break; 2190 case COMP_STOP: 2191 case COMP_STOP_INVAL: 2192 break; 2193 default: 2194 frame->status = -1; 2195 break; 2196 } 2197 2198 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2199 frame->actual_length = frame->length; 2200 td->urb->actual_length += frame->length; 2201 } else { 2202 for (cur_trb = ep_ring->dequeue, 2203 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2204 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2205 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2206 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2207 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2208 } 2209 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2210 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2211 2212 if (trb_comp_code != COMP_STOP_INVAL) { 2213 frame->actual_length = len; 2214 td->urb->actual_length += len; 2215 } 2216 } 2217 2218 return finish_td(xhci, td, event_trb, event, ep, status, false); 2219 } 2220 2221 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2222 struct xhci_transfer_event *event, 2223 struct xhci_virt_ep *ep, int *status) 2224 { 2225 struct xhci_ring *ep_ring; 2226 struct urb_priv *urb_priv; 2227 struct usb_iso_packet_descriptor *frame; 2228 int idx; 2229 2230 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2231 urb_priv = td->urb->hcpriv; 2232 idx = urb_priv->td_cnt; 2233 frame = &td->urb->iso_frame_desc[idx]; 2234 2235 /* The transfer is partly done. */ 2236 frame->status = -EXDEV; 2237 2238 /* calc actual length */ 2239 frame->actual_length = 0; 2240 2241 /* Update ring dequeue pointer */ 2242 while (ep_ring->dequeue != td->last_trb) 2243 inc_deq(xhci, ep_ring); 2244 inc_deq(xhci, ep_ring); 2245 2246 return finish_td(xhci, td, NULL, event, ep, status, true); 2247 } 2248 2249 /* 2250 * Process bulk and interrupt tds, update urb status and actual_length. 2251 */ 2252 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2253 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2254 struct xhci_virt_ep *ep, int *status) 2255 { 2256 struct xhci_ring *ep_ring; 2257 union xhci_trb *cur_trb; 2258 struct xhci_segment *cur_seg; 2259 u32 trb_comp_code; 2260 2261 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2262 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2263 2264 switch (trb_comp_code) { 2265 case COMP_SUCCESS: 2266 /* Double check that the HW transferred everything. */ 2267 if (event_trb != td->last_trb || 2268 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2269 xhci_warn(xhci, "WARN Successful completion " 2270 "on short TX\n"); 2271 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2272 *status = -EREMOTEIO; 2273 else 2274 *status = 0; 2275 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2276 trb_comp_code = COMP_SHORT_TX; 2277 } else { 2278 *status = 0; 2279 } 2280 break; 2281 case COMP_SHORT_TX: 2282 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2283 *status = -EREMOTEIO; 2284 else 2285 *status = 0; 2286 break; 2287 default: 2288 /* Others already handled above */ 2289 break; 2290 } 2291 if (trb_comp_code == COMP_SHORT_TX) 2292 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2293 "%d bytes untransferred\n", 2294 td->urb->ep->desc.bEndpointAddress, 2295 td->urb->transfer_buffer_length, 2296 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2297 /* Fast path - was this the last TRB in the TD for this URB? */ 2298 if (event_trb == td->last_trb) { 2299 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2300 td->urb->actual_length = 2301 td->urb->transfer_buffer_length - 2302 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2303 if (td->urb->transfer_buffer_length < 2304 td->urb->actual_length) { 2305 xhci_warn(xhci, "HC gave bad length " 2306 "of %d bytes left\n", 2307 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2308 td->urb->actual_length = 0; 2309 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2310 *status = -EREMOTEIO; 2311 else 2312 *status = 0; 2313 } 2314 /* Don't overwrite a previously set error code */ 2315 if (*status == -EINPROGRESS) { 2316 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2317 *status = -EREMOTEIO; 2318 else 2319 *status = 0; 2320 } 2321 } else { 2322 td->urb->actual_length = 2323 td->urb->transfer_buffer_length; 2324 /* Ignore a short packet completion if the 2325 * untransferred length was zero. 2326 */ 2327 if (*status == -EREMOTEIO) 2328 *status = 0; 2329 } 2330 } else { 2331 /* Slow path - walk the list, starting from the dequeue 2332 * pointer, to get the actual length transferred. 2333 */ 2334 td->urb->actual_length = 0; 2335 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2336 cur_trb != event_trb; 2337 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2338 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2339 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2340 td->urb->actual_length += 2341 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2342 } 2343 /* If the ring didn't stop on a Link or No-op TRB, add 2344 * in the actual bytes transferred from the Normal TRB 2345 */ 2346 if (trb_comp_code != COMP_STOP_INVAL) 2347 td->urb->actual_length += 2348 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2349 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2350 } 2351 2352 return finish_td(xhci, td, event_trb, event, ep, status, false); 2353 } 2354 2355 /* 2356 * If this function returns an error condition, it means it got a Transfer 2357 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2358 * At this point, the host controller is probably hosed and should be reset. 2359 */ 2360 static int handle_tx_event(struct xhci_hcd *xhci, 2361 struct xhci_transfer_event *event) 2362 __releases(&xhci->lock) 2363 __acquires(&xhci->lock) 2364 { 2365 struct xhci_virt_device *xdev; 2366 struct xhci_virt_ep *ep; 2367 struct xhci_ring *ep_ring; 2368 unsigned int slot_id; 2369 int ep_index; 2370 struct xhci_td *td = NULL; 2371 dma_addr_t event_dma; 2372 struct xhci_segment *event_seg; 2373 union xhci_trb *event_trb; 2374 struct urb *urb = NULL; 2375 int status = -EINPROGRESS; 2376 struct urb_priv *urb_priv; 2377 struct xhci_ep_ctx *ep_ctx; 2378 struct list_head *tmp; 2379 u32 trb_comp_code; 2380 int ret = 0; 2381 int td_num = 0; 2382 2383 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2384 xdev = xhci->devs[slot_id]; 2385 if (!xdev) { 2386 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2387 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2388 (unsigned long long) xhci_trb_virt_to_dma( 2389 xhci->event_ring->deq_seg, 2390 xhci->event_ring->dequeue), 2391 lower_32_bits(le64_to_cpu(event->buffer)), 2392 upper_32_bits(le64_to_cpu(event->buffer)), 2393 le32_to_cpu(event->transfer_len), 2394 le32_to_cpu(event->flags)); 2395 xhci_dbg(xhci, "Event ring:\n"); 2396 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2397 return -ENODEV; 2398 } 2399 2400 /* Endpoint ID is 1 based, our index is zero based */ 2401 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2402 ep = &xdev->eps[ep_index]; 2403 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2404 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2405 if (!ep_ring || 2406 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2407 EP_STATE_DISABLED) { 2408 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2409 "or incorrect stream ring\n"); 2410 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2411 (unsigned long long) xhci_trb_virt_to_dma( 2412 xhci->event_ring->deq_seg, 2413 xhci->event_ring->dequeue), 2414 lower_32_bits(le64_to_cpu(event->buffer)), 2415 upper_32_bits(le64_to_cpu(event->buffer)), 2416 le32_to_cpu(event->transfer_len), 2417 le32_to_cpu(event->flags)); 2418 xhci_dbg(xhci, "Event ring:\n"); 2419 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2420 return -ENODEV; 2421 } 2422 2423 /* Count current td numbers if ep->skip is set */ 2424 if (ep->skip) { 2425 list_for_each(tmp, &ep_ring->td_list) 2426 td_num++; 2427 } 2428 2429 event_dma = le64_to_cpu(event->buffer); 2430 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2431 /* Look for common error cases */ 2432 switch (trb_comp_code) { 2433 /* Skip codes that require special handling depending on 2434 * transfer type 2435 */ 2436 case COMP_SUCCESS: 2437 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2438 break; 2439 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2440 trb_comp_code = COMP_SHORT_TX; 2441 else 2442 xhci_warn_ratelimited(xhci, 2443 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2444 case COMP_SHORT_TX: 2445 break; 2446 case COMP_STOP: 2447 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2448 break; 2449 case COMP_STOP_INVAL: 2450 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2451 break; 2452 case COMP_STALL: 2453 xhci_dbg(xhci, "Stalled endpoint\n"); 2454 ep->ep_state |= EP_HALTED; 2455 status = -EPIPE; 2456 break; 2457 case COMP_TRB_ERR: 2458 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2459 status = -EILSEQ; 2460 break; 2461 case COMP_SPLIT_ERR: 2462 case COMP_TX_ERR: 2463 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2464 status = -EPROTO; 2465 break; 2466 case COMP_BABBLE: 2467 xhci_dbg(xhci, "Babble error on endpoint\n"); 2468 status = -EOVERFLOW; 2469 break; 2470 case COMP_DB_ERR: 2471 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2472 status = -ENOSR; 2473 break; 2474 case COMP_BW_OVER: 2475 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2476 break; 2477 case COMP_BUFF_OVER: 2478 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2479 break; 2480 case COMP_UNDERRUN: 2481 /* 2482 * When the Isoch ring is empty, the xHC will generate 2483 * a Ring Overrun Event for IN Isoch endpoint or Ring 2484 * Underrun Event for OUT Isoch endpoint. 2485 */ 2486 xhci_dbg(xhci, "underrun event on endpoint\n"); 2487 if (!list_empty(&ep_ring->td_list)) 2488 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2489 "still with TDs queued?\n", 2490 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2491 ep_index); 2492 goto cleanup; 2493 case COMP_OVERRUN: 2494 xhci_dbg(xhci, "overrun event on endpoint\n"); 2495 if (!list_empty(&ep_ring->td_list)) 2496 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2497 "still with TDs queued?\n", 2498 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2499 ep_index); 2500 goto cleanup; 2501 case COMP_DEV_ERR: 2502 xhci_warn(xhci, "WARN: detect an incompatible device"); 2503 status = -EPROTO; 2504 break; 2505 case COMP_MISSED_INT: 2506 /* 2507 * When encounter missed service error, one or more isoc tds 2508 * may be missed by xHC. 2509 * Set skip flag of the ep_ring; Complete the missed tds as 2510 * short transfer when process the ep_ring next time. 2511 */ 2512 ep->skip = true; 2513 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2514 goto cleanup; 2515 default: 2516 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2517 status = 0; 2518 break; 2519 } 2520 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2521 "busted\n"); 2522 goto cleanup; 2523 } 2524 2525 do { 2526 /* This TRB should be in the TD at the head of this ring's 2527 * TD list. 2528 */ 2529 if (list_empty(&ep_ring->td_list)) { 2530 /* 2531 * A stopped endpoint may generate an extra completion 2532 * event if the device was suspended. Don't print 2533 * warnings. 2534 */ 2535 if (!(trb_comp_code == COMP_STOP || 2536 trb_comp_code == COMP_STOP_INVAL)) { 2537 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2538 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2539 ep_index); 2540 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2541 (le32_to_cpu(event->flags) & 2542 TRB_TYPE_BITMASK)>>10); 2543 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2544 } 2545 if (ep->skip) { 2546 ep->skip = false; 2547 xhci_dbg(xhci, "td_list is empty while skip " 2548 "flag set. Clear skip flag.\n"); 2549 } 2550 ret = 0; 2551 goto cleanup; 2552 } 2553 2554 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2555 if (ep->skip && td_num == 0) { 2556 ep->skip = false; 2557 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2558 "Clear skip flag.\n"); 2559 ret = 0; 2560 goto cleanup; 2561 } 2562 2563 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2564 if (ep->skip) 2565 td_num--; 2566 2567 /* Is this a TRB in the currently executing TD? */ 2568 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2569 td->last_trb, event_dma); 2570 2571 /* 2572 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2573 * is not in the current TD pointed by ep_ring->dequeue because 2574 * that the hardware dequeue pointer still at the previous TRB 2575 * of the current TD. The previous TRB maybe a Link TD or the 2576 * last TRB of the previous TD. The command completion handle 2577 * will take care the rest. 2578 */ 2579 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2580 ret = 0; 2581 goto cleanup; 2582 } 2583 2584 if (!event_seg) { 2585 if (!ep->skip || 2586 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2587 /* Some host controllers give a spurious 2588 * successful event after a short transfer. 2589 * Ignore it. 2590 */ 2591 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2592 ep_ring->last_td_was_short) { 2593 ep_ring->last_td_was_short = false; 2594 ret = 0; 2595 goto cleanup; 2596 } 2597 /* HC is busted, give up! */ 2598 xhci_err(xhci, 2599 "ERROR Transfer event TRB DMA ptr not " 2600 "part of current TD\n"); 2601 return -ESHUTDOWN; 2602 } 2603 2604 ret = skip_isoc_td(xhci, td, event, ep, &status); 2605 goto cleanup; 2606 } 2607 if (trb_comp_code == COMP_SHORT_TX) 2608 ep_ring->last_td_was_short = true; 2609 else 2610 ep_ring->last_td_was_short = false; 2611 2612 if (ep->skip) { 2613 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2614 ep->skip = false; 2615 } 2616 2617 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2618 sizeof(*event_trb)]; 2619 /* 2620 * No-op TRB should not trigger interrupts. 2621 * If event_trb is a no-op TRB, it means the 2622 * corresponding TD has been cancelled. Just ignore 2623 * the TD. 2624 */ 2625 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2626 xhci_dbg(xhci, 2627 "event_trb is a no-op TRB. Skip it\n"); 2628 goto cleanup; 2629 } 2630 2631 /* Now update the urb's actual_length and give back to 2632 * the core 2633 */ 2634 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2635 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2636 &status); 2637 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2638 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2639 &status); 2640 else 2641 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2642 ep, &status); 2643 2644 cleanup: 2645 /* 2646 * Do not update event ring dequeue pointer if ep->skip is set. 2647 * Will roll back to continue process missed tds. 2648 */ 2649 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2650 inc_deq(xhci, xhci->event_ring); 2651 } 2652 2653 if (ret) { 2654 urb = td->urb; 2655 urb_priv = urb->hcpriv; 2656 /* Leave the TD around for the reset endpoint function 2657 * to use(but only if it's not a control endpoint, 2658 * since we already queued the Set TR dequeue pointer 2659 * command for stalled control endpoints). 2660 */ 2661 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2662 (trb_comp_code != COMP_STALL && 2663 trb_comp_code != COMP_BABBLE)) 2664 xhci_urb_free_priv(xhci, urb_priv); 2665 else 2666 kfree(urb_priv); 2667 2668 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2669 if ((urb->actual_length != urb->transfer_buffer_length && 2670 (urb->transfer_flags & 2671 URB_SHORT_NOT_OK)) || 2672 (status != 0 && 2673 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2674 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2675 "expected = %d, status = %d\n", 2676 urb, urb->actual_length, 2677 urb->transfer_buffer_length, 2678 status); 2679 spin_unlock(&xhci->lock); 2680 /* EHCI, UHCI, and OHCI always unconditionally set the 2681 * urb->status of an isochronous endpoint to 0. 2682 */ 2683 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2684 status = 0; 2685 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2686 spin_lock(&xhci->lock); 2687 } 2688 2689 /* 2690 * If ep->skip is set, it means there are missed tds on the 2691 * endpoint ring need to take care of. 2692 * Process them as short transfer until reach the td pointed by 2693 * the event. 2694 */ 2695 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2696 2697 return 0; 2698 } 2699 2700 /* 2701 * This function handles all OS-owned events on the event ring. It may drop 2702 * xhci->lock between event processing (e.g. to pass up port status changes). 2703 * Returns >0 for "possibly more events to process" (caller should call again), 2704 * otherwise 0 if done. In future, <0 returns should indicate error code. 2705 */ 2706 static int xhci_handle_event(struct xhci_hcd *xhci) 2707 { 2708 union xhci_trb *event; 2709 int update_ptrs = 1; 2710 int ret; 2711 2712 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2713 xhci->error_bitmask |= 1 << 1; 2714 return 0; 2715 } 2716 2717 event = xhci->event_ring->dequeue; 2718 /* Does the HC or OS own the TRB? */ 2719 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2720 xhci->event_ring->cycle_state) { 2721 xhci->error_bitmask |= 1 << 2; 2722 return 0; 2723 } 2724 2725 /* 2726 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2727 * speculative reads of the event's flags/data below. 2728 */ 2729 rmb(); 2730 /* FIXME: Handle more event types. */ 2731 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2732 case TRB_TYPE(TRB_COMPLETION): 2733 handle_cmd_completion(xhci, &event->event_cmd); 2734 break; 2735 case TRB_TYPE(TRB_PORT_STATUS): 2736 handle_port_status(xhci, event); 2737 update_ptrs = 0; 2738 break; 2739 case TRB_TYPE(TRB_TRANSFER): 2740 ret = handle_tx_event(xhci, &event->trans_event); 2741 if (ret < 0) 2742 xhci->error_bitmask |= 1 << 9; 2743 else 2744 update_ptrs = 0; 2745 break; 2746 case TRB_TYPE(TRB_DEV_NOTE): 2747 handle_device_notification(xhci, event); 2748 break; 2749 default: 2750 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2751 TRB_TYPE(48)) 2752 handle_vendor_event(xhci, event); 2753 else 2754 xhci->error_bitmask |= 1 << 3; 2755 } 2756 /* Any of the above functions may drop and re-acquire the lock, so check 2757 * to make sure a watchdog timer didn't mark the host as non-responsive. 2758 */ 2759 if (xhci->xhc_state & XHCI_STATE_DYING) { 2760 xhci_dbg(xhci, "xHCI host dying, returning from " 2761 "event handler.\n"); 2762 return 0; 2763 } 2764 2765 if (update_ptrs) 2766 /* Update SW event ring dequeue pointer */ 2767 inc_deq(xhci, xhci->event_ring); 2768 2769 /* Are there more items on the event ring? Caller will call us again to 2770 * check. 2771 */ 2772 return 1; 2773 } 2774 2775 /* 2776 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2777 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2778 * indicators of an event TRB error, but we check the status *first* to be safe. 2779 */ 2780 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2781 { 2782 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2783 u32 status; 2784 u64 temp_64; 2785 union xhci_trb *event_ring_deq; 2786 dma_addr_t deq; 2787 2788 spin_lock(&xhci->lock); 2789 /* Check if the xHC generated the interrupt, or the irq is shared */ 2790 status = xhci_readl(xhci, &xhci->op_regs->status); 2791 if (status == 0xffffffff) 2792 goto hw_died; 2793 2794 if (!(status & STS_EINT)) { 2795 spin_unlock(&xhci->lock); 2796 return IRQ_NONE; 2797 } 2798 if (status & STS_FATAL) { 2799 xhci_warn(xhci, "WARNING: Host System Error\n"); 2800 xhci_halt(xhci); 2801 hw_died: 2802 spin_unlock(&xhci->lock); 2803 return -ESHUTDOWN; 2804 } 2805 2806 /* 2807 * Clear the op reg interrupt status first, 2808 * so we can receive interrupts from other MSI-X interrupters. 2809 * Write 1 to clear the interrupt status. 2810 */ 2811 status |= STS_EINT; 2812 xhci_writel(xhci, status, &xhci->op_regs->status); 2813 /* FIXME when MSI-X is supported and there are multiple vectors */ 2814 /* Clear the MSI-X event interrupt status */ 2815 2816 if (hcd->irq) { 2817 u32 irq_pending; 2818 /* Acknowledge the PCI interrupt */ 2819 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2820 irq_pending |= IMAN_IP; 2821 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2822 } 2823 2824 if (xhci->xhc_state & XHCI_STATE_DYING) { 2825 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2826 "Shouldn't IRQs be disabled?\n"); 2827 /* Clear the event handler busy flag (RW1C); 2828 * the event ring should be empty. 2829 */ 2830 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2831 xhci_write_64(xhci, temp_64 | ERST_EHB, 2832 &xhci->ir_set->erst_dequeue); 2833 spin_unlock(&xhci->lock); 2834 2835 return IRQ_HANDLED; 2836 } 2837 2838 event_ring_deq = xhci->event_ring->dequeue; 2839 /* FIXME this should be a delayed service routine 2840 * that clears the EHB. 2841 */ 2842 while (xhci_handle_event(xhci) > 0) {} 2843 2844 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2845 /* If necessary, update the HW's version of the event ring deq ptr. */ 2846 if (event_ring_deq != xhci->event_ring->dequeue) { 2847 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2848 xhci->event_ring->dequeue); 2849 if (deq == 0) 2850 xhci_warn(xhci, "WARN something wrong with SW event " 2851 "ring dequeue ptr.\n"); 2852 /* Update HC event ring dequeue pointer */ 2853 temp_64 &= ERST_PTR_MASK; 2854 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2855 } 2856 2857 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2858 temp_64 |= ERST_EHB; 2859 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2860 2861 spin_unlock(&xhci->lock); 2862 2863 return IRQ_HANDLED; 2864 } 2865 2866 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2867 { 2868 return xhci_irq(hcd); 2869 } 2870 2871 /**** Endpoint Ring Operations ****/ 2872 2873 /* 2874 * Generic function for queueing a TRB on a ring. 2875 * The caller must have checked to make sure there's room on the ring. 2876 * 2877 * @more_trbs_coming: Will you enqueue more TRBs before calling 2878 * prepare_transfer()? 2879 */ 2880 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2881 bool more_trbs_coming, 2882 u32 field1, u32 field2, u32 field3, u32 field4) 2883 { 2884 struct xhci_generic_trb *trb; 2885 2886 trb = &ring->enqueue->generic; 2887 trb->field[0] = cpu_to_le32(field1); 2888 trb->field[1] = cpu_to_le32(field2); 2889 trb->field[2] = cpu_to_le32(field3); 2890 trb->field[3] = cpu_to_le32(field4); 2891 inc_enq(xhci, ring, more_trbs_coming); 2892 } 2893 2894 /* 2895 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2896 * FIXME allocate segments if the ring is full. 2897 */ 2898 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2899 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2900 { 2901 unsigned int num_trbs_needed; 2902 2903 /* Make sure the endpoint has been added to xHC schedule */ 2904 switch (ep_state) { 2905 case EP_STATE_DISABLED: 2906 /* 2907 * USB core changed config/interfaces without notifying us, 2908 * or hardware is reporting the wrong state. 2909 */ 2910 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2911 return -ENOENT; 2912 case EP_STATE_ERROR: 2913 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2914 /* FIXME event handling code for error needs to clear it */ 2915 /* XXX not sure if this should be -ENOENT or not */ 2916 return -EINVAL; 2917 case EP_STATE_HALTED: 2918 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2919 case EP_STATE_STOPPED: 2920 case EP_STATE_RUNNING: 2921 break; 2922 default: 2923 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2924 /* 2925 * FIXME issue Configure Endpoint command to try to get the HC 2926 * back into a known state. 2927 */ 2928 return -EINVAL; 2929 } 2930 2931 while (1) { 2932 if (room_on_ring(xhci, ep_ring, num_trbs)) 2933 break; 2934 2935 if (ep_ring == xhci->cmd_ring) { 2936 xhci_err(xhci, "Do not support expand command ring\n"); 2937 return -ENOMEM; 2938 } 2939 2940 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2941 "ERROR no room on ep ring, try ring expansion"); 2942 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2943 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2944 mem_flags)) { 2945 xhci_err(xhci, "Ring expansion failed\n"); 2946 return -ENOMEM; 2947 } 2948 } 2949 2950 if (enqueue_is_link_trb(ep_ring)) { 2951 struct xhci_ring *ring = ep_ring; 2952 union xhci_trb *next; 2953 2954 next = ring->enqueue; 2955 2956 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2957 /* If we're not dealing with 0.95 hardware or isoc rings 2958 * on AMD 0.96 host, clear the chain bit. 2959 */ 2960 if (!xhci_link_trb_quirk(xhci) && 2961 !(ring->type == TYPE_ISOC && 2962 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2963 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2964 else 2965 next->link.control |= cpu_to_le32(TRB_CHAIN); 2966 2967 wmb(); 2968 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2969 2970 /* Toggle the cycle bit after the last ring segment. */ 2971 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2972 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2973 } 2974 ring->enq_seg = ring->enq_seg->next; 2975 ring->enqueue = ring->enq_seg->trbs; 2976 next = ring->enqueue; 2977 } 2978 } 2979 2980 return 0; 2981 } 2982 2983 static int prepare_transfer(struct xhci_hcd *xhci, 2984 struct xhci_virt_device *xdev, 2985 unsigned int ep_index, 2986 unsigned int stream_id, 2987 unsigned int num_trbs, 2988 struct urb *urb, 2989 unsigned int td_index, 2990 gfp_t mem_flags) 2991 { 2992 int ret; 2993 struct urb_priv *urb_priv; 2994 struct xhci_td *td; 2995 struct xhci_ring *ep_ring; 2996 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2997 2998 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2999 if (!ep_ring) { 3000 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3001 stream_id); 3002 return -EINVAL; 3003 } 3004 3005 ret = prepare_ring(xhci, ep_ring, 3006 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3007 num_trbs, mem_flags); 3008 if (ret) 3009 return ret; 3010 3011 urb_priv = urb->hcpriv; 3012 td = urb_priv->td[td_index]; 3013 3014 INIT_LIST_HEAD(&td->td_list); 3015 INIT_LIST_HEAD(&td->cancelled_td_list); 3016 3017 if (td_index == 0) { 3018 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3019 if (unlikely(ret)) 3020 return ret; 3021 } 3022 3023 td->urb = urb; 3024 /* Add this TD to the tail of the endpoint ring's TD list */ 3025 list_add_tail(&td->td_list, &ep_ring->td_list); 3026 td->start_seg = ep_ring->enq_seg; 3027 td->first_trb = ep_ring->enqueue; 3028 3029 urb_priv->td[td_index] = td; 3030 3031 return 0; 3032 } 3033 3034 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3035 { 3036 int num_sgs, num_trbs, running_total, temp, i; 3037 struct scatterlist *sg; 3038 3039 sg = NULL; 3040 num_sgs = urb->num_mapped_sgs; 3041 temp = urb->transfer_buffer_length; 3042 3043 num_trbs = 0; 3044 for_each_sg(urb->sg, sg, num_sgs, i) { 3045 unsigned int len = sg_dma_len(sg); 3046 3047 /* Scatter gather list entries may cross 64KB boundaries */ 3048 running_total = TRB_MAX_BUFF_SIZE - 3049 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3050 running_total &= TRB_MAX_BUFF_SIZE - 1; 3051 if (running_total != 0) 3052 num_trbs++; 3053 3054 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3055 while (running_total < sg_dma_len(sg) && running_total < temp) { 3056 num_trbs++; 3057 running_total += TRB_MAX_BUFF_SIZE; 3058 } 3059 len = min_t(int, len, temp); 3060 temp -= len; 3061 if (temp == 0) 3062 break; 3063 } 3064 return num_trbs; 3065 } 3066 3067 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3068 { 3069 if (num_trbs != 0) 3070 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3071 "TRBs, %d left\n", __func__, 3072 urb->ep->desc.bEndpointAddress, num_trbs); 3073 if (running_total != urb->transfer_buffer_length) 3074 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3075 "queued %#x (%d), asked for %#x (%d)\n", 3076 __func__, 3077 urb->ep->desc.bEndpointAddress, 3078 running_total, running_total, 3079 urb->transfer_buffer_length, 3080 urb->transfer_buffer_length); 3081 } 3082 3083 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3084 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3085 struct xhci_generic_trb *start_trb) 3086 { 3087 /* 3088 * Pass all the TRBs to the hardware at once and make sure this write 3089 * isn't reordered. 3090 */ 3091 wmb(); 3092 if (start_cycle) 3093 start_trb->field[3] |= cpu_to_le32(start_cycle); 3094 else 3095 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3096 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3097 } 3098 3099 /* 3100 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3101 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3102 * (comprised of sg list entries) can take several service intervals to 3103 * transmit. 3104 */ 3105 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3106 struct urb *urb, int slot_id, unsigned int ep_index) 3107 { 3108 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3109 xhci->devs[slot_id]->out_ctx, ep_index); 3110 int xhci_interval; 3111 int ep_interval; 3112 3113 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3114 ep_interval = urb->interval; 3115 /* Convert to microframes */ 3116 if (urb->dev->speed == USB_SPEED_LOW || 3117 urb->dev->speed == USB_SPEED_FULL) 3118 ep_interval *= 8; 3119 /* FIXME change this to a warning and a suggestion to use the new API 3120 * to set the polling interval (once the API is added). 3121 */ 3122 if (xhci_interval != ep_interval) { 3123 dev_dbg_ratelimited(&urb->dev->dev, 3124 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3125 ep_interval, ep_interval == 1 ? "" : "s", 3126 xhci_interval, xhci_interval == 1 ? "" : "s"); 3127 urb->interval = xhci_interval; 3128 /* Convert back to frames for LS/FS devices */ 3129 if (urb->dev->speed == USB_SPEED_LOW || 3130 urb->dev->speed == USB_SPEED_FULL) 3131 urb->interval /= 8; 3132 } 3133 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3134 } 3135 3136 /* 3137 * The TD size is the number of bytes remaining in the TD (including this TRB), 3138 * right shifted by 10. 3139 * It must fit in bits 21:17, so it can't be bigger than 31. 3140 */ 3141 static u32 xhci_td_remainder(unsigned int remainder) 3142 { 3143 u32 max = (1 << (21 - 17 + 1)) - 1; 3144 3145 if ((remainder >> 10) >= max) 3146 return max << 17; 3147 else 3148 return (remainder >> 10) << 17; 3149 } 3150 3151 /* 3152 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3153 * packets remaining in the TD (*not* including this TRB). 3154 * 3155 * Total TD packet count = total_packet_count = 3156 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3157 * 3158 * Packets transferred up to and including this TRB = packets_transferred = 3159 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3160 * 3161 * TD size = total_packet_count - packets_transferred 3162 * 3163 * It must fit in bits 21:17, so it can't be bigger than 31. 3164 * The last TRB in a TD must have the TD size set to zero. 3165 */ 3166 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3167 unsigned int total_packet_count, struct urb *urb, 3168 unsigned int num_trbs_left) 3169 { 3170 int packets_transferred; 3171 3172 /* One TRB with a zero-length data packet. */ 3173 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3174 return 0; 3175 3176 /* All the TRB queueing functions don't count the current TRB in 3177 * running_total. 3178 */ 3179 packets_transferred = (running_total + trb_buff_len) / 3180 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3181 3182 if ((total_packet_count - packets_transferred) > 31) 3183 return 31 << 17; 3184 return (total_packet_count - packets_transferred) << 17; 3185 } 3186 3187 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3188 struct urb *urb, int slot_id, unsigned int ep_index) 3189 { 3190 struct xhci_ring *ep_ring; 3191 unsigned int num_trbs; 3192 struct urb_priv *urb_priv; 3193 struct xhci_td *td; 3194 struct scatterlist *sg; 3195 int num_sgs; 3196 int trb_buff_len, this_sg_len, running_total; 3197 unsigned int total_packet_count; 3198 bool first_trb; 3199 u64 addr; 3200 bool more_trbs_coming; 3201 3202 struct xhci_generic_trb *start_trb; 3203 int start_cycle; 3204 3205 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3206 if (!ep_ring) 3207 return -EINVAL; 3208 3209 num_trbs = count_sg_trbs_needed(xhci, urb); 3210 num_sgs = urb->num_mapped_sgs; 3211 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3212 usb_endpoint_maxp(&urb->ep->desc)); 3213 3214 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3215 ep_index, urb->stream_id, 3216 num_trbs, urb, 0, mem_flags); 3217 if (trb_buff_len < 0) 3218 return trb_buff_len; 3219 3220 urb_priv = urb->hcpriv; 3221 td = urb_priv->td[0]; 3222 3223 /* 3224 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3225 * until we've finished creating all the other TRBs. The ring's cycle 3226 * state may change as we enqueue the other TRBs, so save it too. 3227 */ 3228 start_trb = &ep_ring->enqueue->generic; 3229 start_cycle = ep_ring->cycle_state; 3230 3231 running_total = 0; 3232 /* 3233 * How much data is in the first TRB? 3234 * 3235 * There are three forces at work for TRB buffer pointers and lengths: 3236 * 1. We don't want to walk off the end of this sg-list entry buffer. 3237 * 2. The transfer length that the driver requested may be smaller than 3238 * the amount of memory allocated for this scatter-gather list. 3239 * 3. TRBs buffers can't cross 64KB boundaries. 3240 */ 3241 sg = urb->sg; 3242 addr = (u64) sg_dma_address(sg); 3243 this_sg_len = sg_dma_len(sg); 3244 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3245 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3246 if (trb_buff_len > urb->transfer_buffer_length) 3247 trb_buff_len = urb->transfer_buffer_length; 3248 3249 first_trb = true; 3250 /* Queue the first TRB, even if it's zero-length */ 3251 do { 3252 u32 field = 0; 3253 u32 length_field = 0; 3254 u32 remainder = 0; 3255 3256 /* Don't change the cycle bit of the first TRB until later */ 3257 if (first_trb) { 3258 first_trb = false; 3259 if (start_cycle == 0) 3260 field |= 0x1; 3261 } else 3262 field |= ep_ring->cycle_state; 3263 3264 /* Chain all the TRBs together; clear the chain bit in the last 3265 * TRB to indicate it's the last TRB in the chain. 3266 */ 3267 if (num_trbs > 1) { 3268 field |= TRB_CHAIN; 3269 } else { 3270 /* FIXME - add check for ZERO_PACKET flag before this */ 3271 td->last_trb = ep_ring->enqueue; 3272 field |= TRB_IOC; 3273 } 3274 3275 /* Only set interrupt on short packet for IN endpoints */ 3276 if (usb_urb_dir_in(urb)) 3277 field |= TRB_ISP; 3278 3279 if (TRB_MAX_BUFF_SIZE - 3280 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3281 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3282 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3283 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3284 (unsigned int) addr + trb_buff_len); 3285 } 3286 3287 /* Set the TRB length, TD size, and interrupter fields. */ 3288 if (xhci->hci_version < 0x100) { 3289 remainder = xhci_td_remainder( 3290 urb->transfer_buffer_length - 3291 running_total); 3292 } else { 3293 remainder = xhci_v1_0_td_remainder(running_total, 3294 trb_buff_len, total_packet_count, urb, 3295 num_trbs - 1); 3296 } 3297 length_field = TRB_LEN(trb_buff_len) | 3298 remainder | 3299 TRB_INTR_TARGET(0); 3300 3301 if (num_trbs > 1) 3302 more_trbs_coming = true; 3303 else 3304 more_trbs_coming = false; 3305 queue_trb(xhci, ep_ring, more_trbs_coming, 3306 lower_32_bits(addr), 3307 upper_32_bits(addr), 3308 length_field, 3309 field | TRB_TYPE(TRB_NORMAL)); 3310 --num_trbs; 3311 running_total += trb_buff_len; 3312 3313 /* Calculate length for next transfer -- 3314 * Are we done queueing all the TRBs for this sg entry? 3315 */ 3316 this_sg_len -= trb_buff_len; 3317 if (this_sg_len == 0) { 3318 --num_sgs; 3319 if (num_sgs == 0) 3320 break; 3321 sg = sg_next(sg); 3322 addr = (u64) sg_dma_address(sg); 3323 this_sg_len = sg_dma_len(sg); 3324 } else { 3325 addr += trb_buff_len; 3326 } 3327 3328 trb_buff_len = TRB_MAX_BUFF_SIZE - 3329 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3330 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3331 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3332 trb_buff_len = 3333 urb->transfer_buffer_length - running_total; 3334 } while (running_total < urb->transfer_buffer_length); 3335 3336 check_trb_math(urb, num_trbs, running_total); 3337 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3338 start_cycle, start_trb); 3339 return 0; 3340 } 3341 3342 /* This is very similar to what ehci-q.c qtd_fill() does */ 3343 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3344 struct urb *urb, int slot_id, unsigned int ep_index) 3345 { 3346 struct xhci_ring *ep_ring; 3347 struct urb_priv *urb_priv; 3348 struct xhci_td *td; 3349 int num_trbs; 3350 struct xhci_generic_trb *start_trb; 3351 bool first_trb; 3352 bool more_trbs_coming; 3353 int start_cycle; 3354 u32 field, length_field; 3355 3356 int running_total, trb_buff_len, ret; 3357 unsigned int total_packet_count; 3358 u64 addr; 3359 3360 if (urb->num_sgs) 3361 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3362 3363 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3364 if (!ep_ring) 3365 return -EINVAL; 3366 3367 num_trbs = 0; 3368 /* How much data is (potentially) left before the 64KB boundary? */ 3369 running_total = TRB_MAX_BUFF_SIZE - 3370 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3371 running_total &= TRB_MAX_BUFF_SIZE - 1; 3372 3373 /* If there's some data on this 64KB chunk, or we have to send a 3374 * zero-length transfer, we need at least one TRB 3375 */ 3376 if (running_total != 0 || urb->transfer_buffer_length == 0) 3377 num_trbs++; 3378 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3379 while (running_total < urb->transfer_buffer_length) { 3380 num_trbs++; 3381 running_total += TRB_MAX_BUFF_SIZE; 3382 } 3383 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3384 3385 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3386 ep_index, urb->stream_id, 3387 num_trbs, urb, 0, mem_flags); 3388 if (ret < 0) 3389 return ret; 3390 3391 urb_priv = urb->hcpriv; 3392 td = urb_priv->td[0]; 3393 3394 /* 3395 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3396 * until we've finished creating all the other TRBs. The ring's cycle 3397 * state may change as we enqueue the other TRBs, so save it too. 3398 */ 3399 start_trb = &ep_ring->enqueue->generic; 3400 start_cycle = ep_ring->cycle_state; 3401 3402 running_total = 0; 3403 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3404 usb_endpoint_maxp(&urb->ep->desc)); 3405 /* How much data is in the first TRB? */ 3406 addr = (u64) urb->transfer_dma; 3407 trb_buff_len = TRB_MAX_BUFF_SIZE - 3408 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3409 if (trb_buff_len > urb->transfer_buffer_length) 3410 trb_buff_len = urb->transfer_buffer_length; 3411 3412 first_trb = true; 3413 3414 /* Queue the first TRB, even if it's zero-length */ 3415 do { 3416 u32 remainder = 0; 3417 field = 0; 3418 3419 /* Don't change the cycle bit of the first TRB until later */ 3420 if (first_trb) { 3421 first_trb = false; 3422 if (start_cycle == 0) 3423 field |= 0x1; 3424 } else 3425 field |= ep_ring->cycle_state; 3426 3427 /* Chain all the TRBs together; clear the chain bit in the last 3428 * TRB to indicate it's the last TRB in the chain. 3429 */ 3430 if (num_trbs > 1) { 3431 field |= TRB_CHAIN; 3432 } else { 3433 /* FIXME - add check for ZERO_PACKET flag before this */ 3434 td->last_trb = ep_ring->enqueue; 3435 field |= TRB_IOC; 3436 } 3437 3438 /* Only set interrupt on short packet for IN endpoints */ 3439 if (usb_urb_dir_in(urb)) 3440 field |= TRB_ISP; 3441 3442 /* Set the TRB length, TD size, and interrupter fields. */ 3443 if (xhci->hci_version < 0x100) { 3444 remainder = xhci_td_remainder( 3445 urb->transfer_buffer_length - 3446 running_total); 3447 } else { 3448 remainder = xhci_v1_0_td_remainder(running_total, 3449 trb_buff_len, total_packet_count, urb, 3450 num_trbs - 1); 3451 } 3452 length_field = TRB_LEN(trb_buff_len) | 3453 remainder | 3454 TRB_INTR_TARGET(0); 3455 3456 if (num_trbs > 1) 3457 more_trbs_coming = true; 3458 else 3459 more_trbs_coming = false; 3460 queue_trb(xhci, ep_ring, more_trbs_coming, 3461 lower_32_bits(addr), 3462 upper_32_bits(addr), 3463 length_field, 3464 field | TRB_TYPE(TRB_NORMAL)); 3465 --num_trbs; 3466 running_total += trb_buff_len; 3467 3468 /* Calculate length for next transfer */ 3469 addr += trb_buff_len; 3470 trb_buff_len = urb->transfer_buffer_length - running_total; 3471 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3472 trb_buff_len = TRB_MAX_BUFF_SIZE; 3473 } while (running_total < urb->transfer_buffer_length); 3474 3475 check_trb_math(urb, num_trbs, running_total); 3476 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3477 start_cycle, start_trb); 3478 return 0; 3479 } 3480 3481 /* Caller must have locked xhci->lock */ 3482 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3483 struct urb *urb, int slot_id, unsigned int ep_index) 3484 { 3485 struct xhci_ring *ep_ring; 3486 int num_trbs; 3487 int ret; 3488 struct usb_ctrlrequest *setup; 3489 struct xhci_generic_trb *start_trb; 3490 int start_cycle; 3491 u32 field, length_field; 3492 struct urb_priv *urb_priv; 3493 struct xhci_td *td; 3494 3495 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3496 if (!ep_ring) 3497 return -EINVAL; 3498 3499 /* 3500 * Need to copy setup packet into setup TRB, so we can't use the setup 3501 * DMA address. 3502 */ 3503 if (!urb->setup_packet) 3504 return -EINVAL; 3505 3506 /* 1 TRB for setup, 1 for status */ 3507 num_trbs = 2; 3508 /* 3509 * Don't need to check if we need additional event data and normal TRBs, 3510 * since data in control transfers will never get bigger than 16MB 3511 * XXX: can we get a buffer that crosses 64KB boundaries? 3512 */ 3513 if (urb->transfer_buffer_length > 0) 3514 num_trbs++; 3515 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3516 ep_index, urb->stream_id, 3517 num_trbs, urb, 0, mem_flags); 3518 if (ret < 0) 3519 return ret; 3520 3521 urb_priv = urb->hcpriv; 3522 td = urb_priv->td[0]; 3523 3524 /* 3525 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3526 * until we've finished creating all the other TRBs. The ring's cycle 3527 * state may change as we enqueue the other TRBs, so save it too. 3528 */ 3529 start_trb = &ep_ring->enqueue->generic; 3530 start_cycle = ep_ring->cycle_state; 3531 3532 /* Queue setup TRB - see section 6.4.1.2.1 */ 3533 /* FIXME better way to translate setup_packet into two u32 fields? */ 3534 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3535 field = 0; 3536 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3537 if (start_cycle == 0) 3538 field |= 0x1; 3539 3540 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3541 if (xhci->hci_version == 0x100) { 3542 if (urb->transfer_buffer_length > 0) { 3543 if (setup->bRequestType & USB_DIR_IN) 3544 field |= TRB_TX_TYPE(TRB_DATA_IN); 3545 else 3546 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3547 } 3548 } 3549 3550 queue_trb(xhci, ep_ring, true, 3551 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3552 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3553 TRB_LEN(8) | TRB_INTR_TARGET(0), 3554 /* Immediate data in pointer */ 3555 field); 3556 3557 /* If there's data, queue data TRBs */ 3558 /* Only set interrupt on short packet for IN endpoints */ 3559 if (usb_urb_dir_in(urb)) 3560 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3561 else 3562 field = TRB_TYPE(TRB_DATA); 3563 3564 length_field = TRB_LEN(urb->transfer_buffer_length) | 3565 xhci_td_remainder(urb->transfer_buffer_length) | 3566 TRB_INTR_TARGET(0); 3567 if (urb->transfer_buffer_length > 0) { 3568 if (setup->bRequestType & USB_DIR_IN) 3569 field |= TRB_DIR_IN; 3570 queue_trb(xhci, ep_ring, true, 3571 lower_32_bits(urb->transfer_dma), 3572 upper_32_bits(urb->transfer_dma), 3573 length_field, 3574 field | ep_ring->cycle_state); 3575 } 3576 3577 /* Save the DMA address of the last TRB in the TD */ 3578 td->last_trb = ep_ring->enqueue; 3579 3580 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3581 /* If the device sent data, the status stage is an OUT transfer */ 3582 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3583 field = 0; 3584 else 3585 field = TRB_DIR_IN; 3586 queue_trb(xhci, ep_ring, false, 3587 0, 3588 0, 3589 TRB_INTR_TARGET(0), 3590 /* Event on completion */ 3591 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3592 3593 giveback_first_trb(xhci, slot_id, ep_index, 0, 3594 start_cycle, start_trb); 3595 return 0; 3596 } 3597 3598 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3599 struct urb *urb, int i) 3600 { 3601 int num_trbs = 0; 3602 u64 addr, td_len; 3603 3604 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3605 td_len = urb->iso_frame_desc[i].length; 3606 3607 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3608 TRB_MAX_BUFF_SIZE); 3609 if (num_trbs == 0) 3610 num_trbs++; 3611 3612 return num_trbs; 3613 } 3614 3615 /* 3616 * The transfer burst count field of the isochronous TRB defines the number of 3617 * bursts that are required to move all packets in this TD. Only SuperSpeed 3618 * devices can burst up to bMaxBurst number of packets per service interval. 3619 * This field is zero based, meaning a value of zero in the field means one 3620 * burst. Basically, for everything but SuperSpeed devices, this field will be 3621 * zero. Only xHCI 1.0 host controllers support this field. 3622 */ 3623 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3624 struct usb_device *udev, 3625 struct urb *urb, unsigned int total_packet_count) 3626 { 3627 unsigned int max_burst; 3628 3629 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3630 return 0; 3631 3632 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3633 return roundup(total_packet_count, max_burst + 1) - 1; 3634 } 3635 3636 /* 3637 * Returns the number of packets in the last "burst" of packets. This field is 3638 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3639 * the last burst packet count is equal to the total number of packets in the 3640 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3641 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3642 * contain 1 to (bMaxBurst + 1) packets. 3643 */ 3644 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3645 struct usb_device *udev, 3646 struct urb *urb, unsigned int total_packet_count) 3647 { 3648 unsigned int max_burst; 3649 unsigned int residue; 3650 3651 if (xhci->hci_version < 0x100) 3652 return 0; 3653 3654 switch (udev->speed) { 3655 case USB_SPEED_SUPER: 3656 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3657 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3658 residue = total_packet_count % (max_burst + 1); 3659 /* If residue is zero, the last burst contains (max_burst + 1) 3660 * number of packets, but the TLBPC field is zero-based. 3661 */ 3662 if (residue == 0) 3663 return max_burst; 3664 return residue - 1; 3665 default: 3666 if (total_packet_count == 0) 3667 return 0; 3668 return total_packet_count - 1; 3669 } 3670 } 3671 3672 /* This is for isoc transfer */ 3673 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3674 struct urb *urb, int slot_id, unsigned int ep_index) 3675 { 3676 struct xhci_ring *ep_ring; 3677 struct urb_priv *urb_priv; 3678 struct xhci_td *td; 3679 int num_tds, trbs_per_td; 3680 struct xhci_generic_trb *start_trb; 3681 bool first_trb; 3682 int start_cycle; 3683 u32 field, length_field; 3684 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3685 u64 start_addr, addr; 3686 int i, j; 3687 bool more_trbs_coming; 3688 3689 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3690 3691 num_tds = urb->number_of_packets; 3692 if (num_tds < 1) { 3693 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3694 return -EINVAL; 3695 } 3696 3697 start_addr = (u64) urb->transfer_dma; 3698 start_trb = &ep_ring->enqueue->generic; 3699 start_cycle = ep_ring->cycle_state; 3700 3701 urb_priv = urb->hcpriv; 3702 /* Queue the first TRB, even if it's zero-length */ 3703 for (i = 0; i < num_tds; i++) { 3704 unsigned int total_packet_count; 3705 unsigned int burst_count; 3706 unsigned int residue; 3707 3708 first_trb = true; 3709 running_total = 0; 3710 addr = start_addr + urb->iso_frame_desc[i].offset; 3711 td_len = urb->iso_frame_desc[i].length; 3712 td_remain_len = td_len; 3713 total_packet_count = DIV_ROUND_UP(td_len, 3714 GET_MAX_PACKET( 3715 usb_endpoint_maxp(&urb->ep->desc))); 3716 /* A zero-length transfer still involves at least one packet. */ 3717 if (total_packet_count == 0) 3718 total_packet_count++; 3719 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3720 total_packet_count); 3721 residue = xhci_get_last_burst_packet_count(xhci, 3722 urb->dev, urb, total_packet_count); 3723 3724 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3725 3726 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3727 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3728 if (ret < 0) { 3729 if (i == 0) 3730 return ret; 3731 goto cleanup; 3732 } 3733 3734 td = urb_priv->td[i]; 3735 for (j = 0; j < trbs_per_td; j++) { 3736 u32 remainder = 0; 3737 field = 0; 3738 3739 if (first_trb) { 3740 field = TRB_TBC(burst_count) | 3741 TRB_TLBPC(residue); 3742 /* Queue the isoc TRB */ 3743 field |= TRB_TYPE(TRB_ISOC); 3744 /* Assume URB_ISO_ASAP is set */ 3745 field |= TRB_SIA; 3746 if (i == 0) { 3747 if (start_cycle == 0) 3748 field |= 0x1; 3749 } else 3750 field |= ep_ring->cycle_state; 3751 first_trb = false; 3752 } else { 3753 /* Queue other normal TRBs */ 3754 field |= TRB_TYPE(TRB_NORMAL); 3755 field |= ep_ring->cycle_state; 3756 } 3757 3758 /* Only set interrupt on short packet for IN EPs */ 3759 if (usb_urb_dir_in(urb)) 3760 field |= TRB_ISP; 3761 3762 /* Chain all the TRBs together; clear the chain bit in 3763 * the last TRB to indicate it's the last TRB in the 3764 * chain. 3765 */ 3766 if (j < trbs_per_td - 1) { 3767 field |= TRB_CHAIN; 3768 more_trbs_coming = true; 3769 } else { 3770 td->last_trb = ep_ring->enqueue; 3771 field |= TRB_IOC; 3772 if (xhci->hci_version == 0x100 && 3773 !(xhci->quirks & 3774 XHCI_AVOID_BEI)) { 3775 /* Set BEI bit except for the last td */ 3776 if (i < num_tds - 1) 3777 field |= TRB_BEI; 3778 } 3779 more_trbs_coming = false; 3780 } 3781 3782 /* Calculate TRB length */ 3783 trb_buff_len = TRB_MAX_BUFF_SIZE - 3784 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3785 if (trb_buff_len > td_remain_len) 3786 trb_buff_len = td_remain_len; 3787 3788 /* Set the TRB length, TD size, & interrupter fields. */ 3789 if (xhci->hci_version < 0x100) { 3790 remainder = xhci_td_remainder( 3791 td_len - running_total); 3792 } else { 3793 remainder = xhci_v1_0_td_remainder( 3794 running_total, trb_buff_len, 3795 total_packet_count, urb, 3796 (trbs_per_td - j - 1)); 3797 } 3798 length_field = TRB_LEN(trb_buff_len) | 3799 remainder | 3800 TRB_INTR_TARGET(0); 3801 3802 queue_trb(xhci, ep_ring, more_trbs_coming, 3803 lower_32_bits(addr), 3804 upper_32_bits(addr), 3805 length_field, 3806 field); 3807 running_total += trb_buff_len; 3808 3809 addr += trb_buff_len; 3810 td_remain_len -= trb_buff_len; 3811 } 3812 3813 /* Check TD length */ 3814 if (running_total != td_len) { 3815 xhci_err(xhci, "ISOC TD length unmatch\n"); 3816 ret = -EINVAL; 3817 goto cleanup; 3818 } 3819 } 3820 3821 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3822 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3823 usb_amd_quirk_pll_disable(); 3824 } 3825 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3826 3827 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3828 start_cycle, start_trb); 3829 return 0; 3830 cleanup: 3831 /* Clean up a partially enqueued isoc transfer. */ 3832 3833 for (i--; i >= 0; i--) 3834 list_del_init(&urb_priv->td[i]->td_list); 3835 3836 /* Use the first TD as a temporary variable to turn the TDs we've queued 3837 * into No-ops with a software-owned cycle bit. That way the hardware 3838 * won't accidentally start executing bogus TDs when we partially 3839 * overwrite them. td->first_trb and td->start_seg are already set. 3840 */ 3841 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3842 /* Every TRB except the first & last will have its cycle bit flipped. */ 3843 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3844 3845 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3846 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3847 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3848 ep_ring->cycle_state = start_cycle; 3849 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3850 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3851 return ret; 3852 } 3853 3854 /* 3855 * Check transfer ring to guarantee there is enough room for the urb. 3856 * Update ISO URB start_frame and interval. 3857 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3858 * update the urb->start_frame by now. 3859 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3860 */ 3861 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3862 struct urb *urb, int slot_id, unsigned int ep_index) 3863 { 3864 struct xhci_virt_device *xdev; 3865 struct xhci_ring *ep_ring; 3866 struct xhci_ep_ctx *ep_ctx; 3867 int start_frame; 3868 int xhci_interval; 3869 int ep_interval; 3870 int num_tds, num_trbs, i; 3871 int ret; 3872 3873 xdev = xhci->devs[slot_id]; 3874 ep_ring = xdev->eps[ep_index].ring; 3875 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3876 3877 num_trbs = 0; 3878 num_tds = urb->number_of_packets; 3879 for (i = 0; i < num_tds; i++) 3880 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3881 3882 /* Check the ring to guarantee there is enough room for the whole urb. 3883 * Do not insert any td of the urb to the ring if the check failed. 3884 */ 3885 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3886 num_trbs, mem_flags); 3887 if (ret) 3888 return ret; 3889 3890 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3891 start_frame &= 0x3fff; 3892 3893 urb->start_frame = start_frame; 3894 if (urb->dev->speed == USB_SPEED_LOW || 3895 urb->dev->speed == USB_SPEED_FULL) 3896 urb->start_frame >>= 3; 3897 3898 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3899 ep_interval = urb->interval; 3900 /* Convert to microframes */ 3901 if (urb->dev->speed == USB_SPEED_LOW || 3902 urb->dev->speed == USB_SPEED_FULL) 3903 ep_interval *= 8; 3904 /* FIXME change this to a warning and a suggestion to use the new API 3905 * to set the polling interval (once the API is added). 3906 */ 3907 if (xhci_interval != ep_interval) { 3908 dev_dbg_ratelimited(&urb->dev->dev, 3909 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3910 ep_interval, ep_interval == 1 ? "" : "s", 3911 xhci_interval, xhci_interval == 1 ? "" : "s"); 3912 urb->interval = xhci_interval; 3913 /* Convert back to frames for LS/FS devices */ 3914 if (urb->dev->speed == USB_SPEED_LOW || 3915 urb->dev->speed == USB_SPEED_FULL) 3916 urb->interval /= 8; 3917 } 3918 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3919 3920 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3921 } 3922 3923 /**** Command Ring Operations ****/ 3924 3925 /* Generic function for queueing a command TRB on the command ring. 3926 * Check to make sure there's room on the command ring for one command TRB. 3927 * Also check that there's room reserved for commands that must not fail. 3928 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3929 * then only check for the number of reserved spots. 3930 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3931 * because the command event handler may want to resubmit a failed command. 3932 */ 3933 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3934 u32 field3, u32 field4, bool command_must_succeed) 3935 { 3936 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3937 int ret; 3938 3939 if (!command_must_succeed) 3940 reserved_trbs++; 3941 3942 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3943 reserved_trbs, GFP_ATOMIC); 3944 if (ret < 0) { 3945 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3946 if (command_must_succeed) 3947 xhci_err(xhci, "ERR: Reserved TRB counting for " 3948 "unfailable commands failed.\n"); 3949 return ret; 3950 } 3951 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3952 field4 | xhci->cmd_ring->cycle_state); 3953 return 0; 3954 } 3955 3956 /* Queue a slot enable or disable request on the command ring */ 3957 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3958 { 3959 return queue_command(xhci, 0, 0, 0, 3960 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3961 } 3962 3963 /* Queue an address device command TRB */ 3964 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3965 u32 slot_id) 3966 { 3967 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3968 upper_32_bits(in_ctx_ptr), 0, 3969 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3970 false); 3971 } 3972 3973 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3974 u32 field1, u32 field2, u32 field3, u32 field4) 3975 { 3976 return queue_command(xhci, field1, field2, field3, field4, false); 3977 } 3978 3979 /* Queue a reset device command TRB */ 3980 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3981 { 3982 return queue_command(xhci, 0, 0, 0, 3983 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3984 false); 3985 } 3986 3987 /* Queue a configure endpoint command TRB */ 3988 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3989 u32 slot_id, bool command_must_succeed) 3990 { 3991 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3992 upper_32_bits(in_ctx_ptr), 0, 3993 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3994 command_must_succeed); 3995 } 3996 3997 /* Queue an evaluate context command TRB */ 3998 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3999 u32 slot_id, bool command_must_succeed) 4000 { 4001 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4002 upper_32_bits(in_ctx_ptr), 0, 4003 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4004 command_must_succeed); 4005 } 4006 4007 /* 4008 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4009 * activity on an endpoint that is about to be suspended. 4010 */ 4011 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 4012 unsigned int ep_index, int suspend) 4013 { 4014 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4015 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4016 u32 type = TRB_TYPE(TRB_STOP_RING); 4017 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4018 4019 return queue_command(xhci, 0, 0, 0, 4020 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4021 } 4022 4023 /* Set Transfer Ring Dequeue Pointer command. 4024 * This should not be used for endpoints that have streams enabled. 4025 */ 4026 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 4027 unsigned int ep_index, unsigned int stream_id, 4028 struct xhci_segment *deq_seg, 4029 union xhci_trb *deq_ptr, u32 cycle_state) 4030 { 4031 dma_addr_t addr; 4032 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4033 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4034 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4035 u32 type = TRB_TYPE(TRB_SET_DEQ); 4036 struct xhci_virt_ep *ep; 4037 4038 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4039 if (addr == 0) { 4040 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4041 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4042 deq_seg, deq_ptr); 4043 return 0; 4044 } 4045 ep = &xhci->devs[slot_id]->eps[ep_index]; 4046 if ((ep->ep_state & SET_DEQ_PENDING)) { 4047 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4048 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4049 return 0; 4050 } 4051 ep->queued_deq_seg = deq_seg; 4052 ep->queued_deq_ptr = deq_ptr; 4053 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 4054 upper_32_bits(addr), trb_stream_id, 4055 trb_slot_id | trb_ep_index | type, false); 4056 } 4057 4058 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4059 unsigned int ep_index) 4060 { 4061 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4062 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4063 u32 type = TRB_TYPE(TRB_RESET_EP); 4064 4065 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4066 false); 4067 } 4068