1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 /* 330 * Consider expanding the ring already if num_trbs fills the current 331 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 332 * the next segment. Avoids confusing full ring with special empty ring 333 * case below 334 */ 335 if (trbs_past_seg < 0) 336 return 0; 337 338 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 339 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 340 return 0; 341 342 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 343 seg = ring->enq_seg; 344 345 while (new_segs > 0) { 346 seg = seg->next; 347 if (seg == ring->deq_seg) { 348 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 349 new_segs); 350 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 351 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 352 return new_segs; 353 } 354 new_segs--; 355 } 356 357 return 0; 358 } 359 360 /* Ring the host controller doorbell after placing a command on the ring */ 361 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 362 { 363 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 364 return; 365 366 xhci_dbg(xhci, "// Ding dong!\n"); 367 368 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 369 370 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 371 /* Flush PCI posted writes */ 372 readl(&xhci->dba->doorbell[0]); 373 } 374 375 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 376 { 377 return mod_delayed_work(system_wq, &xhci->cmd_timer, 378 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 379 } 380 381 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 382 { 383 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 384 cmd_list); 385 } 386 387 /* 388 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 389 * If there are other commands waiting then restart the ring and kick the timer. 390 * This must be called with command ring stopped and xhci->lock held. 391 */ 392 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 393 struct xhci_command *cur_cmd) 394 { 395 struct xhci_command *i_cmd; 396 397 /* Turn all aborted commands in list to no-ops, then restart */ 398 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 399 400 if (i_cmd->status != COMP_COMMAND_ABORTED) 401 continue; 402 403 i_cmd->status = COMP_COMMAND_RING_STOPPED; 404 405 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 406 i_cmd->command_trb); 407 408 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 409 410 /* 411 * caller waiting for completion is called when command 412 * completion event is received for these no-op commands 413 */ 414 } 415 416 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 417 418 /* ring command ring doorbell to restart the command ring */ 419 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 420 !(xhci->xhc_state & XHCI_STATE_DYING)) { 421 xhci->current_cmd = cur_cmd; 422 xhci_mod_cmd_timer(xhci); 423 xhci_ring_cmd_db(xhci); 424 } 425 } 426 427 /* Must be called with xhci->lock held, releases and aquires lock back */ 428 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 429 { 430 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 431 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 432 u64 crcr; 433 int ret; 434 435 xhci_dbg(xhci, "Abort command ring\n"); 436 437 reinit_completion(&xhci->cmd_ring_stop_completion); 438 439 /* 440 * The control bits like command stop, abort are located in lower 441 * dword of the command ring control register. 442 * Some controllers require all 64 bits to be written to abort the ring. 443 * Make sure the upper dword is valid, pointing to the next command, 444 * avoiding corrupting the command ring pointer in case the command ring 445 * is stopped by the time the upper dword is written. 446 */ 447 next_trb(xhci, NULL, &new_seg, &new_deq); 448 if (trb_is_link(new_deq)) 449 next_trb(xhci, NULL, &new_seg, &new_deq); 450 451 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 452 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 453 454 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 455 * completion of the Command Abort operation. If CRR is not negated in 5 456 * seconds then driver handles it as if host died (-ENODEV). 457 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 458 * and try to recover a -ETIMEDOUT with a host controller reset. 459 */ 460 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 461 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 462 if (ret < 0) { 463 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 464 xhci_halt(xhci); 465 xhci_hc_died(xhci); 466 return ret; 467 } 468 /* 469 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 470 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 471 * but the completion event in never sent. Wait 2 secs (arbitrary 472 * number) to handle those cases after negation of CMD_RING_RUNNING. 473 */ 474 spin_unlock_irqrestore(&xhci->lock, flags); 475 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 476 msecs_to_jiffies(2000)); 477 spin_lock_irqsave(&xhci->lock, flags); 478 if (!ret) { 479 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 480 xhci_cleanup_command_queue(xhci); 481 } else { 482 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 483 } 484 return 0; 485 } 486 487 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 488 unsigned int slot_id, 489 unsigned int ep_index, 490 unsigned int stream_id) 491 { 492 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 493 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 494 unsigned int ep_state = ep->ep_state; 495 496 /* Don't ring the doorbell for this endpoint if there are pending 497 * cancellations because we don't want to interrupt processing. 498 * We don't want to restart any stream rings if there's a set dequeue 499 * pointer command pending because the device can choose to start any 500 * stream once the endpoint is on the HW schedule. 501 */ 502 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 503 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 504 return; 505 506 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 507 508 writel(DB_VALUE(ep_index, stream_id), db_addr); 509 /* flush the write */ 510 readl(db_addr); 511 } 512 513 /* Ring the doorbell for any rings with pending URBs */ 514 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 515 unsigned int slot_id, 516 unsigned int ep_index) 517 { 518 unsigned int stream_id; 519 struct xhci_virt_ep *ep; 520 521 ep = &xhci->devs[slot_id]->eps[ep_index]; 522 523 /* A ring has pending URBs if its TD list is not empty */ 524 if (!(ep->ep_state & EP_HAS_STREAMS)) { 525 if (ep->ring && !(list_empty(&ep->ring->td_list))) 526 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 527 return; 528 } 529 530 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 531 stream_id++) { 532 struct xhci_stream_info *stream_info = ep->stream_info; 533 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 534 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 535 stream_id); 536 } 537 } 538 539 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 540 unsigned int slot_id, 541 unsigned int ep_index) 542 { 543 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 544 } 545 546 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 547 unsigned int slot_id, 548 unsigned int ep_index) 549 { 550 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 551 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 552 return NULL; 553 } 554 if (ep_index >= EP_CTX_PER_DEV) { 555 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 556 return NULL; 557 } 558 if (!xhci->devs[slot_id]) { 559 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 560 return NULL; 561 } 562 563 return &xhci->devs[slot_id]->eps[ep_index]; 564 } 565 566 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 567 struct xhci_virt_ep *ep, 568 unsigned int stream_id) 569 { 570 /* common case, no streams */ 571 if (!(ep->ep_state & EP_HAS_STREAMS)) 572 return ep->ring; 573 574 if (!ep->stream_info) 575 return NULL; 576 577 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 578 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 579 stream_id, ep->vdev->slot_id, ep->ep_index); 580 return NULL; 581 } 582 583 return ep->stream_info->stream_rings[stream_id]; 584 } 585 586 /* Get the right ring for the given slot_id, ep_index and stream_id. 587 * If the endpoint supports streams, boundary check the URB's stream ID. 588 * If the endpoint doesn't support streams, return the singular endpoint ring. 589 */ 590 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 591 unsigned int slot_id, unsigned int ep_index, 592 unsigned int stream_id) 593 { 594 struct xhci_virt_ep *ep; 595 596 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 597 if (!ep) 598 return NULL; 599 600 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 601 } 602 603 604 /* 605 * Get the hw dequeue pointer xHC stopped on, either directly from the 606 * endpoint context, or if streams are in use from the stream context. 607 * The returned hw_dequeue contains the lowest four bits with cycle state 608 * and possbile stream context type. 609 */ 610 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 611 unsigned int ep_index, unsigned int stream_id) 612 { 613 struct xhci_ep_ctx *ep_ctx; 614 struct xhci_stream_ctx *st_ctx; 615 struct xhci_virt_ep *ep; 616 617 ep = &vdev->eps[ep_index]; 618 619 if (ep->ep_state & EP_HAS_STREAMS) { 620 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 621 return le64_to_cpu(st_ctx->stream_ring); 622 } 623 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 624 return le64_to_cpu(ep_ctx->deq); 625 } 626 627 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 628 unsigned int slot_id, unsigned int ep_index, 629 unsigned int stream_id, struct xhci_td *td) 630 { 631 struct xhci_virt_device *dev = xhci->devs[slot_id]; 632 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 633 struct xhci_ring *ep_ring; 634 struct xhci_command *cmd; 635 struct xhci_segment *new_seg; 636 union xhci_trb *new_deq; 637 int new_cycle; 638 dma_addr_t addr; 639 u64 hw_dequeue; 640 bool cycle_found = false; 641 bool td_last_trb_found = false; 642 u32 trb_sct = 0; 643 int ret; 644 645 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 646 ep_index, stream_id); 647 if (!ep_ring) { 648 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 649 stream_id); 650 return -ENODEV; 651 } 652 /* 653 * A cancelled TD can complete with a stall if HW cached the trb. 654 * In this case driver can't find td, but if the ring is empty we 655 * can move the dequeue pointer to the current enqueue position. 656 * We shouldn't hit this anymore as cached cancelled TRBs are given back 657 * after clearing the cache, but be on the safe side and keep it anyway 658 */ 659 if (!td) { 660 if (list_empty(&ep_ring->td_list)) { 661 new_seg = ep_ring->enq_seg; 662 new_deq = ep_ring->enqueue; 663 new_cycle = ep_ring->cycle_state; 664 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 665 goto deq_found; 666 } else { 667 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 668 return -EINVAL; 669 } 670 } 671 672 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 673 new_seg = ep_ring->deq_seg; 674 new_deq = ep_ring->dequeue; 675 new_cycle = hw_dequeue & 0x1; 676 677 /* 678 * We want to find the pointer, segment and cycle state of the new trb 679 * (the one after current TD's last_trb). We know the cycle state at 680 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 681 * found. 682 */ 683 do { 684 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 685 == (dma_addr_t)(hw_dequeue & ~0xf)) { 686 cycle_found = true; 687 if (td_last_trb_found) 688 break; 689 } 690 if (new_deq == td->last_trb) 691 td_last_trb_found = true; 692 693 if (cycle_found && trb_is_link(new_deq) && 694 link_trb_toggles_cycle(new_deq)) 695 new_cycle ^= 0x1; 696 697 next_trb(xhci, ep_ring, &new_seg, &new_deq); 698 699 /* Search wrapped around, bail out */ 700 if (new_deq == ep->ring->dequeue) { 701 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 702 return -EINVAL; 703 } 704 705 } while (!cycle_found || !td_last_trb_found); 706 707 deq_found: 708 709 /* Don't update the ring cycle state for the producer (us). */ 710 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 711 if (addr == 0) { 712 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 713 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 714 return -EINVAL; 715 } 716 717 if ((ep->ep_state & SET_DEQ_PENDING)) { 718 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 719 &addr); 720 return -EBUSY; 721 } 722 723 /* This function gets called from contexts where it cannot sleep */ 724 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 725 if (!cmd) { 726 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 727 return -ENOMEM; 728 } 729 730 if (stream_id) 731 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 732 ret = queue_command(xhci, cmd, 733 lower_32_bits(addr) | trb_sct | new_cycle, 734 upper_32_bits(addr), 735 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 736 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 737 if (ret < 0) { 738 xhci_free_command(xhci, cmd); 739 return ret; 740 } 741 ep->queued_deq_seg = new_seg; 742 ep->queued_deq_ptr = new_deq; 743 744 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 745 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 746 747 /* Stop the TD queueing code from ringing the doorbell until 748 * this command completes. The HC won't set the dequeue pointer 749 * if the ring is running, and ringing the doorbell starts the 750 * ring running. 751 */ 752 ep->ep_state |= SET_DEQ_PENDING; 753 xhci_ring_cmd_db(xhci); 754 return 0; 755 } 756 757 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 758 * (The last TRB actually points to the ring enqueue pointer, which is not part 759 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 760 */ 761 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 762 struct xhci_td *td, bool flip_cycle) 763 { 764 struct xhci_segment *seg = td->start_seg; 765 union xhci_trb *trb = td->first_trb; 766 767 while (1) { 768 trb_to_noop(trb, TRB_TR_NOOP); 769 770 /* flip cycle if asked to */ 771 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 772 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 773 774 if (trb == td->last_trb) 775 break; 776 777 next_trb(xhci, ep_ring, &seg, &trb); 778 } 779 } 780 781 /* 782 * Must be called with xhci->lock held in interrupt context, 783 * releases and re-acquires xhci->lock 784 */ 785 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 786 struct xhci_td *cur_td, int status) 787 { 788 struct urb *urb = cur_td->urb; 789 struct urb_priv *urb_priv = urb->hcpriv; 790 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 791 792 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 793 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 794 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 795 if (xhci->quirks & XHCI_AMD_PLL_FIX) 796 usb_amd_quirk_pll_enable(); 797 } 798 } 799 xhci_urb_free_priv(urb_priv); 800 usb_hcd_unlink_urb_from_ep(hcd, urb); 801 trace_xhci_urb_giveback(urb); 802 usb_hcd_giveback_urb(hcd, urb, status); 803 } 804 805 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 806 struct xhci_ring *ring, struct xhci_td *td) 807 { 808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 809 struct xhci_segment *seg = td->bounce_seg; 810 struct urb *urb = td->urb; 811 size_t len; 812 813 if (!ring || !seg || !urb) 814 return; 815 816 if (usb_urb_dir_out(urb)) { 817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 818 DMA_TO_DEVICE); 819 return; 820 } 821 822 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 823 DMA_FROM_DEVICE); 824 /* for in tranfers we need to copy the data from bounce to sg */ 825 if (urb->num_sgs) { 826 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 827 seg->bounce_len, seg->bounce_offs); 828 if (len != seg->bounce_len) 829 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 830 len, seg->bounce_len); 831 } else { 832 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 833 seg->bounce_len); 834 } 835 seg->bounce_len = 0; 836 seg->bounce_offs = 0; 837 } 838 839 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 840 struct xhci_ring *ep_ring, int status) 841 { 842 struct urb *urb = NULL; 843 844 /* Clean up the endpoint's TD list */ 845 urb = td->urb; 846 847 /* if a bounce buffer was used to align this td then unmap it */ 848 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 849 850 /* Do one last check of the actual transfer length. 851 * If the host controller said we transferred more data than the buffer 852 * length, urb->actual_length will be a very big number (since it's 853 * unsigned). Play it safe and say we didn't transfer anything. 854 */ 855 if (urb->actual_length > urb->transfer_buffer_length) { 856 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 857 urb->transfer_buffer_length, urb->actual_length); 858 urb->actual_length = 0; 859 status = 0; 860 } 861 /* TD might be removed from td_list if we are giving back a cancelled URB */ 862 if (!list_empty(&td->td_list)) 863 list_del_init(&td->td_list); 864 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 865 if (!list_empty(&td->cancelled_td_list)) 866 list_del_init(&td->cancelled_td_list); 867 868 inc_td_cnt(urb); 869 /* Giveback the urb when all the tds are completed */ 870 if (last_td_in_urb(td)) { 871 if ((urb->actual_length != urb->transfer_buffer_length && 872 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 873 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 874 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 875 urb, urb->actual_length, 876 urb->transfer_buffer_length, status); 877 878 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 879 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 880 status = 0; 881 xhci_giveback_urb_in_irq(xhci, td, status); 882 } 883 884 return 0; 885 } 886 887 888 /* Complete the cancelled URBs we unlinked from td_list. */ 889 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 890 { 891 struct xhci_ring *ring; 892 struct xhci_td *td, *tmp_td; 893 894 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 895 cancelled_td_list) { 896 897 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 898 899 if (td->cancel_status == TD_CLEARED) { 900 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 901 __func__, td->urb); 902 xhci_td_cleanup(ep->xhci, td, ring, td->status); 903 } else { 904 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 905 __func__, td->urb, td->cancel_status); 906 } 907 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 908 return; 909 } 910 } 911 912 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 913 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 914 { 915 struct xhci_command *command; 916 int ret = 0; 917 918 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 919 if (!command) { 920 ret = -ENOMEM; 921 goto done; 922 } 923 924 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 925 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 926 ep_index, slot_id); 927 928 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 929 done: 930 if (ret) 931 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 932 slot_id, ep_index, ret); 933 return ret; 934 } 935 936 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 937 struct xhci_virt_ep *ep, 938 struct xhci_td *td, 939 enum xhci_ep_reset_type reset_type) 940 { 941 unsigned int slot_id = ep->vdev->slot_id; 942 int err; 943 944 /* 945 * Avoid resetting endpoint if link is inactive. Can cause host hang. 946 * Device will be reset soon to recover the link so don't do anything 947 */ 948 if (ep->vdev->flags & VDEV_PORT_ERROR) 949 return -ENODEV; 950 951 /* add td to cancelled list and let reset ep handler take care of it */ 952 if (reset_type == EP_HARD_RESET) { 953 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 954 if (td && list_empty(&td->cancelled_td_list)) { 955 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 956 td->cancel_status = TD_HALTED; 957 } 958 } 959 960 if (ep->ep_state & EP_HALTED) { 961 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 962 ep->ep_index); 963 return 0; 964 } 965 966 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 967 if (err) 968 return err; 969 970 ep->ep_state |= EP_HALTED; 971 972 xhci_ring_cmd_db(xhci); 973 974 return 0; 975 } 976 977 /* 978 * Fix up the ep ring first, so HW stops executing cancelled TDs. 979 * We have the xHCI lock, so nothing can modify this list until we drop it. 980 * We're also in the event handler, so we can't get re-interrupted if another 981 * Stop Endpoint command completes. 982 * 983 * only call this when ring is not in a running state 984 */ 985 986 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 987 { 988 struct xhci_hcd *xhci; 989 struct xhci_td *td = NULL; 990 struct xhci_td *tmp_td = NULL; 991 struct xhci_td *cached_td = NULL; 992 struct xhci_ring *ring; 993 u64 hw_deq; 994 unsigned int slot_id = ep->vdev->slot_id; 995 int err; 996 997 xhci = ep->xhci; 998 999 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1000 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1001 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1002 (unsigned long long)xhci_trb_virt_to_dma( 1003 td->start_seg, td->first_trb), 1004 td->urb->stream_id, td->urb); 1005 list_del_init(&td->td_list); 1006 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1007 if (!ring) { 1008 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1009 td->urb, td->urb->stream_id); 1010 continue; 1011 } 1012 /* 1013 * If a ring stopped on the TD we need to cancel then we have to 1014 * move the xHC endpoint ring dequeue pointer past this TD. 1015 * Rings halted due to STALL may show hw_deq is past the stalled 1016 * TD, but still require a set TR Deq command to flush xHC cache. 1017 */ 1018 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1019 td->urb->stream_id); 1020 hw_deq &= ~0xf; 1021 1022 if (td->cancel_status == TD_HALTED || 1023 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1024 switch (td->cancel_status) { 1025 case TD_CLEARED: /* TD is already no-op */ 1026 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1027 break; 1028 case TD_DIRTY: /* TD is cached, clear it */ 1029 case TD_HALTED: 1030 td->cancel_status = TD_CLEARING_CACHE; 1031 if (cached_td) 1032 /* FIXME stream case, several stopped rings */ 1033 xhci_dbg(xhci, 1034 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1035 td->urb->stream_id, td->urb, 1036 cached_td->urb->stream_id, cached_td->urb); 1037 cached_td = td; 1038 break; 1039 } 1040 } else { 1041 td_to_noop(xhci, ring, td, false); 1042 td->cancel_status = TD_CLEARED; 1043 } 1044 } 1045 1046 /* If there's no need to move the dequeue pointer then we're done */ 1047 if (!cached_td) 1048 return 0; 1049 1050 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1051 cached_td->urb->stream_id, 1052 cached_td); 1053 if (err) { 1054 /* Failed to move past cached td, just set cached TDs to no-op */ 1055 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1056 if (td->cancel_status != TD_CLEARING_CACHE) 1057 continue; 1058 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1059 td->urb); 1060 td_to_noop(xhci, ring, td, false); 1061 td->cancel_status = TD_CLEARED; 1062 } 1063 } 1064 return 0; 1065 } 1066 1067 /* 1068 * Returns the TD the endpoint ring halted on. 1069 * Only call for non-running rings without streams. 1070 */ 1071 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1072 { 1073 struct xhci_td *td; 1074 u64 hw_deq; 1075 1076 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1077 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1078 hw_deq &= ~0xf; 1079 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1080 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1081 td->last_trb, hw_deq, false)) 1082 return td; 1083 } 1084 return NULL; 1085 } 1086 1087 /* 1088 * When we get a command completion for a Stop Endpoint Command, we need to 1089 * unlink any cancelled TDs from the ring. There are two ways to do that: 1090 * 1091 * 1. If the HW was in the middle of processing the TD that needs to be 1092 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1093 * in the TD with a Set Dequeue Pointer Command. 1094 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1095 * bit cleared) so that the HW will skip over them. 1096 */ 1097 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1098 union xhci_trb *trb, u32 comp_code) 1099 { 1100 unsigned int ep_index; 1101 struct xhci_virt_ep *ep; 1102 struct xhci_ep_ctx *ep_ctx; 1103 struct xhci_td *td = NULL; 1104 enum xhci_ep_reset_type reset_type; 1105 struct xhci_command *command; 1106 int err; 1107 1108 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1109 if (!xhci->devs[slot_id]) 1110 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1111 slot_id); 1112 return; 1113 } 1114 1115 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1116 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1117 if (!ep) 1118 return; 1119 1120 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1121 1122 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1123 1124 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1125 /* 1126 * If stop endpoint command raced with a halting endpoint we need to 1127 * reset the host side endpoint first. 1128 * If the TD we halted on isn't cancelled the TD should be given back 1129 * with a proper error code, and the ring dequeue moved past the TD. 1130 * If streams case we can't find hw_deq, or the TD we halted on so do a 1131 * soft reset. 1132 * 1133 * Proper error code is unknown here, it would be -EPIPE if device side 1134 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1135 * We use -EPROTO, if device is stalled it should return a stall error on 1136 * next transfer, which then will return -EPIPE, and device side stall is 1137 * noted and cleared by class driver. 1138 */ 1139 switch (GET_EP_CTX_STATE(ep_ctx)) { 1140 case EP_STATE_HALTED: 1141 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1142 if (ep->ep_state & EP_HAS_STREAMS) { 1143 reset_type = EP_SOFT_RESET; 1144 } else { 1145 reset_type = EP_HARD_RESET; 1146 td = find_halted_td(ep); 1147 if (td) 1148 td->status = -EPROTO; 1149 } 1150 /* reset ep, reset handler cleans up cancelled tds */ 1151 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1152 if (err) 1153 break; 1154 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1155 return; 1156 case EP_STATE_RUNNING: 1157 /* Race, HW handled stop ep cmd before ep was running */ 1158 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1159 1160 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1161 if (!command) { 1162 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1163 return; 1164 } 1165 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1166 xhci_ring_cmd_db(xhci); 1167 1168 return; 1169 default: 1170 break; 1171 } 1172 } 1173 1174 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1175 xhci_invalidate_cancelled_tds(ep); 1176 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1177 1178 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1179 xhci_giveback_invalidated_tds(ep); 1180 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1181 } 1182 1183 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1184 { 1185 struct xhci_td *cur_td; 1186 struct xhci_td *tmp; 1187 1188 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1189 list_del_init(&cur_td->td_list); 1190 1191 if (!list_empty(&cur_td->cancelled_td_list)) 1192 list_del_init(&cur_td->cancelled_td_list); 1193 1194 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1195 1196 inc_td_cnt(cur_td->urb); 1197 if (last_td_in_urb(cur_td)) 1198 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1199 } 1200 } 1201 1202 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1203 int slot_id, int ep_index) 1204 { 1205 struct xhci_td *cur_td; 1206 struct xhci_td *tmp; 1207 struct xhci_virt_ep *ep; 1208 struct xhci_ring *ring; 1209 1210 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1211 if (!ep) 1212 return; 1213 1214 if ((ep->ep_state & EP_HAS_STREAMS) || 1215 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1216 int stream_id; 1217 1218 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1219 stream_id++) { 1220 ring = ep->stream_info->stream_rings[stream_id]; 1221 if (!ring) 1222 continue; 1223 1224 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1225 "Killing URBs for slot ID %u, ep index %u, stream %u", 1226 slot_id, ep_index, stream_id); 1227 xhci_kill_ring_urbs(xhci, ring); 1228 } 1229 } else { 1230 ring = ep->ring; 1231 if (!ring) 1232 return; 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1234 "Killing URBs for slot ID %u, ep index %u", 1235 slot_id, ep_index); 1236 xhci_kill_ring_urbs(xhci, ring); 1237 } 1238 1239 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1240 cancelled_td_list) { 1241 list_del_init(&cur_td->cancelled_td_list); 1242 inc_td_cnt(cur_td->urb); 1243 1244 if (last_td_in_urb(cur_td)) 1245 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1246 } 1247 } 1248 1249 /* 1250 * host controller died, register read returns 0xffffffff 1251 * Complete pending commands, mark them ABORTED. 1252 * URBs need to be given back as usb core might be waiting with device locks 1253 * held for the URBs to finish during device disconnect, blocking host remove. 1254 * 1255 * Call with xhci->lock held. 1256 * lock is relased and re-acquired while giving back urb. 1257 */ 1258 void xhci_hc_died(struct xhci_hcd *xhci) 1259 { 1260 int i, j; 1261 1262 if (xhci->xhc_state & XHCI_STATE_DYING) 1263 return; 1264 1265 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1266 xhci->xhc_state |= XHCI_STATE_DYING; 1267 1268 xhci_cleanup_command_queue(xhci); 1269 1270 /* return any pending urbs, remove may be waiting for them */ 1271 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1272 if (!xhci->devs[i]) 1273 continue; 1274 for (j = 0; j < 31; j++) 1275 xhci_kill_endpoint_urbs(xhci, i, j); 1276 } 1277 1278 /* inform usb core hc died if PCI remove isn't already handling it */ 1279 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1280 usb_hc_died(xhci_to_hcd(xhci)); 1281 } 1282 1283 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1284 struct xhci_virt_device *dev, 1285 struct xhci_ring *ep_ring, 1286 unsigned int ep_index) 1287 { 1288 union xhci_trb *dequeue_temp; 1289 1290 dequeue_temp = ep_ring->dequeue; 1291 1292 /* If we get two back-to-back stalls, and the first stalled transfer 1293 * ends just before a link TRB, the dequeue pointer will be left on 1294 * the link TRB by the code in the while loop. So we have to update 1295 * the dequeue pointer one segment further, or we'll jump off 1296 * the segment into la-la-land. 1297 */ 1298 if (trb_is_link(ep_ring->dequeue)) { 1299 ep_ring->deq_seg = ep_ring->deq_seg->next; 1300 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1301 } 1302 1303 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1304 /* We have more usable TRBs */ 1305 ep_ring->dequeue++; 1306 if (trb_is_link(ep_ring->dequeue)) { 1307 if (ep_ring->dequeue == 1308 dev->eps[ep_index].queued_deq_ptr) 1309 break; 1310 ep_ring->deq_seg = ep_ring->deq_seg->next; 1311 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1312 } 1313 if (ep_ring->dequeue == dequeue_temp) { 1314 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1315 break; 1316 } 1317 } 1318 } 1319 1320 /* 1321 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1322 * we need to clear the set deq pending flag in the endpoint ring state, so that 1323 * the TD queueing code can ring the doorbell again. We also need to ring the 1324 * endpoint doorbell to restart the ring, but only if there aren't more 1325 * cancellations pending. 1326 */ 1327 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1328 union xhci_trb *trb, u32 cmd_comp_code) 1329 { 1330 unsigned int ep_index; 1331 unsigned int stream_id; 1332 struct xhci_ring *ep_ring; 1333 struct xhci_virt_ep *ep; 1334 struct xhci_ep_ctx *ep_ctx; 1335 struct xhci_slot_ctx *slot_ctx; 1336 struct xhci_td *td, *tmp_td; 1337 1338 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1339 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1340 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1341 if (!ep) 1342 return; 1343 1344 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1345 if (!ep_ring) { 1346 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1347 stream_id); 1348 /* XXX: Harmless??? */ 1349 goto cleanup; 1350 } 1351 1352 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1353 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1354 trace_xhci_handle_cmd_set_deq(slot_ctx); 1355 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1356 1357 if (cmd_comp_code != COMP_SUCCESS) { 1358 unsigned int ep_state; 1359 unsigned int slot_state; 1360 1361 switch (cmd_comp_code) { 1362 case COMP_TRB_ERROR: 1363 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1364 break; 1365 case COMP_CONTEXT_STATE_ERROR: 1366 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1367 ep_state = GET_EP_CTX_STATE(ep_ctx); 1368 slot_state = le32_to_cpu(slot_ctx->dev_state); 1369 slot_state = GET_SLOT_STATE(slot_state); 1370 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1371 "Slot state = %u, EP state = %u", 1372 slot_state, ep_state); 1373 break; 1374 case COMP_SLOT_NOT_ENABLED_ERROR: 1375 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1376 slot_id); 1377 break; 1378 default: 1379 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1380 cmd_comp_code); 1381 break; 1382 } 1383 /* OK what do we do now? The endpoint state is hosed, and we 1384 * should never get to this point if the synchronization between 1385 * queueing, and endpoint state are correct. This might happen 1386 * if the device gets disconnected after we've finished 1387 * cancelling URBs, which might not be an error... 1388 */ 1389 } else { 1390 u64 deq; 1391 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1392 if (ep->ep_state & EP_HAS_STREAMS) { 1393 struct xhci_stream_ctx *ctx = 1394 &ep->stream_info->stream_ctx_array[stream_id]; 1395 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1396 } else { 1397 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1398 } 1399 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1400 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1401 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1402 ep->queued_deq_ptr) == deq) { 1403 /* Update the ring's dequeue segment and dequeue pointer 1404 * to reflect the new position. 1405 */ 1406 update_ring_for_set_deq_completion(xhci, ep->vdev, 1407 ep_ring, ep_index); 1408 } else { 1409 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1410 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1411 ep->queued_deq_seg, ep->queued_deq_ptr); 1412 } 1413 } 1414 /* HW cached TDs cleared from cache, give them back */ 1415 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1416 cancelled_td_list) { 1417 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1418 if (td->cancel_status == TD_CLEARING_CACHE) { 1419 td->cancel_status = TD_CLEARED; 1420 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1421 __func__, td->urb); 1422 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1423 } else { 1424 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1425 __func__, td->urb, td->cancel_status); 1426 } 1427 } 1428 cleanup: 1429 ep->ep_state &= ~SET_DEQ_PENDING; 1430 ep->queued_deq_seg = NULL; 1431 ep->queued_deq_ptr = NULL; 1432 /* Restart any rings with pending URBs */ 1433 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1434 } 1435 1436 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1437 union xhci_trb *trb, u32 cmd_comp_code) 1438 { 1439 struct xhci_virt_ep *ep; 1440 struct xhci_ep_ctx *ep_ctx; 1441 unsigned int ep_index; 1442 1443 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1444 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1445 if (!ep) 1446 return; 1447 1448 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1449 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1450 1451 /* This command will only fail if the endpoint wasn't halted, 1452 * but we don't care. 1453 */ 1454 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1455 "Ignoring reset ep completion code of %u", cmd_comp_code); 1456 1457 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1458 xhci_invalidate_cancelled_tds(ep); 1459 1460 /* Clear our internal halted state */ 1461 ep->ep_state &= ~EP_HALTED; 1462 1463 xhci_giveback_invalidated_tds(ep); 1464 1465 /* if this was a soft reset, then restart */ 1466 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1467 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1468 } 1469 1470 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1471 struct xhci_command *command, u32 cmd_comp_code) 1472 { 1473 if (cmd_comp_code == COMP_SUCCESS) 1474 command->slot_id = slot_id; 1475 else 1476 command->slot_id = 0; 1477 } 1478 1479 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1480 { 1481 struct xhci_virt_device *virt_dev; 1482 struct xhci_slot_ctx *slot_ctx; 1483 1484 virt_dev = xhci->devs[slot_id]; 1485 if (!virt_dev) 1486 return; 1487 1488 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1489 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1490 1491 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1492 /* Delete default control endpoint resources */ 1493 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1494 } 1495 1496 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1497 u32 cmd_comp_code) 1498 { 1499 struct xhci_virt_device *virt_dev; 1500 struct xhci_input_control_ctx *ctrl_ctx; 1501 struct xhci_ep_ctx *ep_ctx; 1502 unsigned int ep_index; 1503 u32 add_flags; 1504 1505 /* 1506 * Configure endpoint commands can come from the USB core configuration 1507 * or alt setting changes, or when streams were being configured. 1508 */ 1509 1510 virt_dev = xhci->devs[slot_id]; 1511 if (!virt_dev) 1512 return; 1513 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1514 if (!ctrl_ctx) { 1515 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1516 return; 1517 } 1518 1519 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1520 1521 /* Input ctx add_flags are the endpoint index plus one */ 1522 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1523 1524 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1525 trace_xhci_handle_cmd_config_ep(ep_ctx); 1526 1527 return; 1528 } 1529 1530 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1531 { 1532 struct xhci_virt_device *vdev; 1533 struct xhci_slot_ctx *slot_ctx; 1534 1535 vdev = xhci->devs[slot_id]; 1536 if (!vdev) 1537 return; 1538 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1539 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1540 } 1541 1542 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1543 { 1544 struct xhci_virt_device *vdev; 1545 struct xhci_slot_ctx *slot_ctx; 1546 1547 vdev = xhci->devs[slot_id]; 1548 if (!vdev) { 1549 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1550 slot_id); 1551 return; 1552 } 1553 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1554 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1555 1556 xhci_dbg(xhci, "Completed reset device command.\n"); 1557 } 1558 1559 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1560 struct xhci_event_cmd *event) 1561 { 1562 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1563 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1564 return; 1565 } 1566 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1567 "NEC firmware version %2x.%02x", 1568 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1569 NEC_FW_MINOR(le32_to_cpu(event->status))); 1570 } 1571 1572 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1573 { 1574 list_del(&cmd->cmd_list); 1575 1576 if (cmd->completion) { 1577 cmd->status = status; 1578 complete(cmd->completion); 1579 } else { 1580 kfree(cmd); 1581 } 1582 } 1583 1584 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1585 { 1586 struct xhci_command *cur_cmd, *tmp_cmd; 1587 xhci->current_cmd = NULL; 1588 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1589 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1590 } 1591 1592 void xhci_handle_command_timeout(struct work_struct *work) 1593 { 1594 struct xhci_hcd *xhci; 1595 unsigned long flags; 1596 char str[XHCI_MSG_MAX]; 1597 u64 hw_ring_state; 1598 u32 cmd_field3; 1599 u32 usbsts; 1600 1601 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1602 1603 spin_lock_irqsave(&xhci->lock, flags); 1604 1605 /* 1606 * If timeout work is pending, or current_cmd is NULL, it means we 1607 * raced with command completion. Command is handled so just return. 1608 */ 1609 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1610 spin_unlock_irqrestore(&xhci->lock, flags); 1611 return; 1612 } 1613 1614 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1615 usbsts = readl(&xhci->op_regs->status); 1616 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1617 1618 /* Bail out and tear down xhci if a stop endpoint command failed */ 1619 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1620 struct xhci_virt_ep *ep; 1621 1622 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1623 1624 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1625 TRB_TO_EP_INDEX(cmd_field3)); 1626 if (ep) 1627 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1628 1629 xhci_halt(xhci); 1630 xhci_hc_died(xhci); 1631 goto time_out_completed; 1632 } 1633 1634 /* mark this command to be cancelled */ 1635 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1636 1637 /* Make sure command ring is running before aborting it */ 1638 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1639 if (hw_ring_state == ~(u64)0) { 1640 xhci_hc_died(xhci); 1641 goto time_out_completed; 1642 } 1643 1644 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1645 (hw_ring_state & CMD_RING_RUNNING)) { 1646 /* Prevent new doorbell, and start command abort */ 1647 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1648 xhci_dbg(xhci, "Command timeout\n"); 1649 xhci_abort_cmd_ring(xhci, flags); 1650 goto time_out_completed; 1651 } 1652 1653 /* host removed. Bail out */ 1654 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1655 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1656 xhci_cleanup_command_queue(xhci); 1657 1658 goto time_out_completed; 1659 } 1660 1661 /* command timeout on stopped ring, ring can't be aborted */ 1662 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1663 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1664 1665 time_out_completed: 1666 spin_unlock_irqrestore(&xhci->lock, flags); 1667 return; 1668 } 1669 1670 static void handle_cmd_completion(struct xhci_hcd *xhci, 1671 struct xhci_event_cmd *event) 1672 { 1673 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1674 u64 cmd_dma; 1675 dma_addr_t cmd_dequeue_dma; 1676 u32 cmd_comp_code; 1677 union xhci_trb *cmd_trb; 1678 struct xhci_command *cmd; 1679 u32 cmd_type; 1680 1681 if (slot_id >= MAX_HC_SLOTS) { 1682 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1683 return; 1684 } 1685 1686 cmd_dma = le64_to_cpu(event->cmd_trb); 1687 cmd_trb = xhci->cmd_ring->dequeue; 1688 1689 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1690 1691 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1692 cmd_trb); 1693 /* 1694 * Check whether the completion event is for our internal kept 1695 * command. 1696 */ 1697 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1698 xhci_warn(xhci, 1699 "ERROR mismatched command completion event\n"); 1700 return; 1701 } 1702 1703 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1704 1705 cancel_delayed_work(&xhci->cmd_timer); 1706 1707 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1708 1709 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1710 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1711 complete_all(&xhci->cmd_ring_stop_completion); 1712 return; 1713 } 1714 1715 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1716 xhci_err(xhci, 1717 "Command completion event does not match command\n"); 1718 return; 1719 } 1720 1721 /* 1722 * Host aborted the command ring, check if the current command was 1723 * supposed to be aborted, otherwise continue normally. 1724 * The command ring is stopped now, but the xHC will issue a Command 1725 * Ring Stopped event which will cause us to restart it. 1726 */ 1727 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1728 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1729 if (cmd->status == COMP_COMMAND_ABORTED) { 1730 if (xhci->current_cmd == cmd) 1731 xhci->current_cmd = NULL; 1732 goto event_handled; 1733 } 1734 } 1735 1736 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1737 switch (cmd_type) { 1738 case TRB_ENABLE_SLOT: 1739 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1740 break; 1741 case TRB_DISABLE_SLOT: 1742 xhci_handle_cmd_disable_slot(xhci, slot_id); 1743 break; 1744 case TRB_CONFIG_EP: 1745 if (!cmd->completion) 1746 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1747 break; 1748 case TRB_EVAL_CONTEXT: 1749 break; 1750 case TRB_ADDR_DEV: 1751 xhci_handle_cmd_addr_dev(xhci, slot_id); 1752 break; 1753 case TRB_STOP_RING: 1754 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1755 le32_to_cpu(cmd_trb->generic.field[3]))); 1756 if (!cmd->completion) 1757 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1758 cmd_comp_code); 1759 break; 1760 case TRB_SET_DEQ: 1761 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1762 le32_to_cpu(cmd_trb->generic.field[3]))); 1763 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1764 break; 1765 case TRB_CMD_NOOP: 1766 /* Is this an aborted command turned to NO-OP? */ 1767 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1768 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1769 break; 1770 case TRB_RESET_EP: 1771 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1772 le32_to_cpu(cmd_trb->generic.field[3]))); 1773 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1774 break; 1775 case TRB_RESET_DEV: 1776 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1777 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1778 */ 1779 slot_id = TRB_TO_SLOT_ID( 1780 le32_to_cpu(cmd_trb->generic.field[3])); 1781 xhci_handle_cmd_reset_dev(xhci, slot_id); 1782 break; 1783 case TRB_NEC_GET_FW: 1784 xhci_handle_cmd_nec_get_fw(xhci, event); 1785 break; 1786 default: 1787 /* Skip over unknown commands on the event ring */ 1788 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1789 break; 1790 } 1791 1792 /* restart timer if this wasn't the last command */ 1793 if (!list_is_singular(&xhci->cmd_list)) { 1794 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1795 struct xhci_command, cmd_list); 1796 xhci_mod_cmd_timer(xhci); 1797 } else if (xhci->current_cmd == cmd) { 1798 xhci->current_cmd = NULL; 1799 } 1800 1801 event_handled: 1802 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1803 1804 inc_deq(xhci, xhci->cmd_ring); 1805 } 1806 1807 static void handle_vendor_event(struct xhci_hcd *xhci, 1808 union xhci_trb *event, u32 trb_type) 1809 { 1810 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1811 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1812 handle_cmd_completion(xhci, &event->event_cmd); 1813 } 1814 1815 static void handle_device_notification(struct xhci_hcd *xhci, 1816 union xhci_trb *event) 1817 { 1818 u32 slot_id; 1819 struct usb_device *udev; 1820 1821 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1822 if (!xhci->devs[slot_id]) { 1823 xhci_warn(xhci, "Device Notification event for " 1824 "unused slot %u\n", slot_id); 1825 return; 1826 } 1827 1828 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1829 slot_id); 1830 udev = xhci->devs[slot_id]->udev; 1831 if (udev && udev->parent) 1832 usb_wakeup_notification(udev->parent, udev->portnum); 1833 } 1834 1835 /* 1836 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1837 * Controller. 1838 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1839 * If a connection to a USB 1 device is followed by another connection 1840 * to a USB 2 device. 1841 * 1842 * Reset the PHY after the USB device is disconnected if device speed 1843 * is less than HCD_USB3. 1844 * Retry the reset sequence max of 4 times checking the PLL lock status. 1845 * 1846 */ 1847 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1848 { 1849 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1850 u32 pll_lock_check; 1851 u32 retry_count = 4; 1852 1853 do { 1854 /* Assert PHY reset */ 1855 writel(0x6F, hcd->regs + 0x1048); 1856 udelay(10); 1857 /* De-assert the PHY reset */ 1858 writel(0x7F, hcd->regs + 0x1048); 1859 udelay(200); 1860 pll_lock_check = readl(hcd->regs + 0x1070); 1861 } while (!(pll_lock_check & 0x1) && --retry_count); 1862 } 1863 1864 static void handle_port_status(struct xhci_hcd *xhci, 1865 struct xhci_interrupter *ir, 1866 union xhci_trb *event) 1867 { 1868 struct usb_hcd *hcd; 1869 u32 port_id; 1870 u32 portsc, cmd_reg; 1871 int max_ports; 1872 int slot_id; 1873 unsigned int hcd_portnum; 1874 struct xhci_bus_state *bus_state; 1875 bool bogus_port_status = false; 1876 struct xhci_port *port; 1877 1878 /* Port status change events always have a successful completion code */ 1879 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1880 xhci_warn(xhci, 1881 "WARN: xHC returned failed port status event\n"); 1882 1883 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1884 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1885 1886 if ((port_id <= 0) || (port_id > max_ports)) { 1887 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1888 port_id); 1889 inc_deq(xhci, ir->event_ring); 1890 return; 1891 } 1892 1893 port = &xhci->hw_ports[port_id - 1]; 1894 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1895 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1896 port_id); 1897 bogus_port_status = true; 1898 goto cleanup; 1899 } 1900 1901 /* We might get interrupts after shared_hcd is removed */ 1902 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1903 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1904 bogus_port_status = true; 1905 goto cleanup; 1906 } 1907 1908 hcd = port->rhub->hcd; 1909 bus_state = &port->rhub->bus_state; 1910 hcd_portnum = port->hcd_portnum; 1911 portsc = readl(port->addr); 1912 1913 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1914 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1915 1916 trace_xhci_handle_port_status(hcd_portnum, portsc); 1917 1918 if (hcd->state == HC_STATE_SUSPENDED) { 1919 xhci_dbg(xhci, "resume root hub\n"); 1920 usb_hcd_resume_root_hub(hcd); 1921 } 1922 1923 if (hcd->speed >= HCD_USB3 && 1924 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1925 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1926 if (slot_id && xhci->devs[slot_id]) 1927 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1928 } 1929 1930 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1931 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1932 1933 cmd_reg = readl(&xhci->op_regs->command); 1934 if (!(cmd_reg & CMD_RUN)) { 1935 xhci_warn(xhci, "xHC is not running.\n"); 1936 goto cleanup; 1937 } 1938 1939 if (DEV_SUPERSPEED_ANY(portsc)) { 1940 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1941 /* Set a flag to say the port signaled remote wakeup, 1942 * so we can tell the difference between the end of 1943 * device and host initiated resume. 1944 */ 1945 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1946 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1947 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1948 xhci_set_link_state(xhci, port, XDEV_U0); 1949 /* Need to wait until the next link state change 1950 * indicates the device is actually in U0. 1951 */ 1952 bogus_port_status = true; 1953 goto cleanup; 1954 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1955 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1956 port->resume_timestamp = jiffies + 1957 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1958 set_bit(hcd_portnum, &bus_state->resuming_ports); 1959 /* Do the rest in GetPortStatus after resume time delay. 1960 * Avoid polling roothub status before that so that a 1961 * usb device auto-resume latency around ~40ms. 1962 */ 1963 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1964 mod_timer(&hcd->rh_timer, 1965 port->resume_timestamp); 1966 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1967 bogus_port_status = true; 1968 } 1969 } 1970 1971 if ((portsc & PORT_PLC) && 1972 DEV_SUPERSPEED_ANY(portsc) && 1973 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1974 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1975 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1976 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1977 complete(&port->u3exit_done); 1978 /* We've just brought the device into U0/1/2 through either the 1979 * Resume state after a device remote wakeup, or through the 1980 * U3Exit state after a host-initiated resume. If it's a device 1981 * initiated remote wake, don't pass up the link state change, 1982 * so the roothub behavior is consistent with external 1983 * USB 3.0 hub behavior. 1984 */ 1985 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1986 if (slot_id && xhci->devs[slot_id]) 1987 xhci_ring_device(xhci, slot_id); 1988 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1989 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1990 usb_wakeup_notification(hcd->self.root_hub, 1991 hcd_portnum + 1); 1992 bogus_port_status = true; 1993 goto cleanup; 1994 } 1995 } 1996 1997 /* 1998 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1999 * RExit to a disconnect state). If so, let the driver know it's 2000 * out of the RExit state. 2001 */ 2002 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2003 complete(&port->rexit_done); 2004 port->rexit_active = false; 2005 bogus_port_status = true; 2006 goto cleanup; 2007 } 2008 2009 if (hcd->speed < HCD_USB3) { 2010 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2011 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2012 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2013 xhci_cavium_reset_phy_quirk(xhci); 2014 } 2015 2016 cleanup: 2017 /* Update event ring dequeue pointer before dropping the lock */ 2018 inc_deq(xhci, ir->event_ring); 2019 2020 /* Don't make the USB core poll the roothub if we got a bad port status 2021 * change event. Besides, at that point we can't tell which roothub 2022 * (USB 2.0 or USB 3.0) to kick. 2023 */ 2024 if (bogus_port_status) 2025 return; 2026 2027 /* 2028 * xHCI port-status-change events occur when the "or" of all the 2029 * status-change bits in the portsc register changes from 0 to 1. 2030 * New status changes won't cause an event if any other change 2031 * bits are still set. When an event occurs, switch over to 2032 * polling to avoid losing status changes. 2033 */ 2034 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2035 __func__, hcd->self.busnum); 2036 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2037 spin_unlock(&xhci->lock); 2038 /* Pass this up to the core */ 2039 usb_hcd_poll_rh_status(hcd); 2040 spin_lock(&xhci->lock); 2041 } 2042 2043 /* 2044 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2045 * at end_trb, which may be in another segment. If the suspect DMA address is a 2046 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2047 * returns 0. 2048 */ 2049 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2050 struct xhci_segment *start_seg, 2051 union xhci_trb *start_trb, 2052 union xhci_trb *end_trb, 2053 dma_addr_t suspect_dma, 2054 bool debug) 2055 { 2056 dma_addr_t start_dma; 2057 dma_addr_t end_seg_dma; 2058 dma_addr_t end_trb_dma; 2059 struct xhci_segment *cur_seg; 2060 2061 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2062 cur_seg = start_seg; 2063 2064 do { 2065 if (start_dma == 0) 2066 return NULL; 2067 /* We may get an event for a Link TRB in the middle of a TD */ 2068 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2069 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2070 /* If the end TRB isn't in this segment, this is set to 0 */ 2071 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2072 2073 if (debug) 2074 xhci_warn(xhci, 2075 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2076 (unsigned long long)suspect_dma, 2077 (unsigned long long)start_dma, 2078 (unsigned long long)end_trb_dma, 2079 (unsigned long long)cur_seg->dma, 2080 (unsigned long long)end_seg_dma); 2081 2082 if (end_trb_dma > 0) { 2083 /* The end TRB is in this segment, so suspect should be here */ 2084 if (start_dma <= end_trb_dma) { 2085 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2086 return cur_seg; 2087 } else { 2088 /* Case for one segment with 2089 * a TD wrapped around to the top 2090 */ 2091 if ((suspect_dma >= start_dma && 2092 suspect_dma <= end_seg_dma) || 2093 (suspect_dma >= cur_seg->dma && 2094 suspect_dma <= end_trb_dma)) 2095 return cur_seg; 2096 } 2097 return NULL; 2098 } else { 2099 /* Might still be somewhere in this segment */ 2100 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2101 return cur_seg; 2102 } 2103 cur_seg = cur_seg->next; 2104 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2105 } while (cur_seg != start_seg); 2106 2107 return NULL; 2108 } 2109 2110 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2111 struct xhci_virt_ep *ep) 2112 { 2113 /* 2114 * As part of low/full-speed endpoint-halt processing 2115 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2116 */ 2117 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2118 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2119 !(ep->ep_state & EP_CLEARING_TT)) { 2120 ep->ep_state |= EP_CLEARING_TT; 2121 td->urb->ep->hcpriv = td->urb->dev; 2122 if (usb_hub_clear_tt_buffer(td->urb)) 2123 ep->ep_state &= ~EP_CLEARING_TT; 2124 } 2125 } 2126 2127 /* Check if an error has halted the endpoint ring. The class driver will 2128 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2129 * However, a babble and other errors also halt the endpoint ring, and the class 2130 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2131 * Ring Dequeue Pointer command manually. 2132 */ 2133 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2134 struct xhci_ep_ctx *ep_ctx, 2135 unsigned int trb_comp_code) 2136 { 2137 /* TRB completion codes that may require a manual halt cleanup */ 2138 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2139 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2140 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2141 /* The 0.95 spec says a babbling control endpoint 2142 * is not halted. The 0.96 spec says it is. Some HW 2143 * claims to be 0.95 compliant, but it halts the control 2144 * endpoint anyway. Check if a babble halted the 2145 * endpoint. 2146 */ 2147 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2148 return 1; 2149 2150 return 0; 2151 } 2152 2153 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2154 { 2155 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2156 /* Vendor defined "informational" completion code, 2157 * treat as not-an-error. 2158 */ 2159 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2160 trb_comp_code); 2161 xhci_dbg(xhci, "Treating code as success.\n"); 2162 return 1; 2163 } 2164 return 0; 2165 } 2166 2167 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2168 struct xhci_ring *ep_ring, struct xhci_td *td, 2169 u32 trb_comp_code) 2170 { 2171 struct xhci_ep_ctx *ep_ctx; 2172 2173 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2174 2175 switch (trb_comp_code) { 2176 case COMP_STOPPED_LENGTH_INVALID: 2177 case COMP_STOPPED_SHORT_PACKET: 2178 case COMP_STOPPED: 2179 /* 2180 * The "Stop Endpoint" completion will take care of any 2181 * stopped TDs. A stopped TD may be restarted, so don't update 2182 * the ring dequeue pointer or take this TD off any lists yet. 2183 */ 2184 return 0; 2185 case COMP_USB_TRANSACTION_ERROR: 2186 case COMP_BABBLE_DETECTED_ERROR: 2187 case COMP_SPLIT_TRANSACTION_ERROR: 2188 /* 2189 * If endpoint context state is not halted we might be 2190 * racing with a reset endpoint command issued by a unsuccessful 2191 * stop endpoint completion (context error). In that case the 2192 * td should be on the cancelled list, and EP_HALTED flag set. 2193 * 2194 * Or then it's not halted due to the 0.95 spec stating that a 2195 * babbling control endpoint should not halt. The 0.96 spec 2196 * again says it should. Some HW claims to be 0.95 compliant, 2197 * but it halts the control endpoint anyway. 2198 */ 2199 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2200 /* 2201 * If EP_HALTED is set and TD is on the cancelled list 2202 * the TD and dequeue pointer will be handled by reset 2203 * ep command completion 2204 */ 2205 if ((ep->ep_state & EP_HALTED) && 2206 !list_empty(&td->cancelled_td_list)) { 2207 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2208 (unsigned long long)xhci_trb_virt_to_dma( 2209 td->start_seg, td->first_trb)); 2210 return 0; 2211 } 2212 /* endpoint not halted, don't reset it */ 2213 break; 2214 } 2215 /* Almost same procedure as for STALL_ERROR below */ 2216 xhci_clear_hub_tt_buffer(xhci, td, ep); 2217 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2218 return 0; 2219 case COMP_STALL_ERROR: 2220 /* 2221 * xhci internal endpoint state will go to a "halt" state for 2222 * any stall, including default control pipe protocol stall. 2223 * To clear the host side halt we need to issue a reset endpoint 2224 * command, followed by a set dequeue command to move past the 2225 * TD. 2226 * Class drivers clear the device side halt from a functional 2227 * stall later. Hub TT buffer should only be cleared for FS/LS 2228 * devices behind HS hubs for functional stalls. 2229 */ 2230 if (ep->ep_index != 0) 2231 xhci_clear_hub_tt_buffer(xhci, td, ep); 2232 2233 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2234 2235 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2236 default: 2237 break; 2238 } 2239 2240 /* Update ring dequeue pointer */ 2241 ep_ring->dequeue = td->last_trb; 2242 ep_ring->deq_seg = td->last_trb_seg; 2243 inc_deq(xhci, ep_ring); 2244 2245 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2246 } 2247 2248 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2249 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2250 union xhci_trb *stop_trb) 2251 { 2252 u32 sum; 2253 union xhci_trb *trb = ring->dequeue; 2254 struct xhci_segment *seg = ring->deq_seg; 2255 2256 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2257 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2258 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2259 } 2260 return sum; 2261 } 2262 2263 /* 2264 * Process control tds, update urb status and actual_length. 2265 */ 2266 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2267 struct xhci_ring *ep_ring, struct xhci_td *td, 2268 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2269 { 2270 struct xhci_ep_ctx *ep_ctx; 2271 u32 trb_comp_code; 2272 u32 remaining, requested; 2273 u32 trb_type; 2274 2275 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2276 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2277 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2278 requested = td->urb->transfer_buffer_length; 2279 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2280 2281 switch (trb_comp_code) { 2282 case COMP_SUCCESS: 2283 if (trb_type != TRB_STATUS) { 2284 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2285 (trb_type == TRB_DATA) ? "data" : "setup"); 2286 td->status = -ESHUTDOWN; 2287 break; 2288 } 2289 td->status = 0; 2290 break; 2291 case COMP_SHORT_PACKET: 2292 td->status = 0; 2293 break; 2294 case COMP_STOPPED_SHORT_PACKET: 2295 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2296 td->urb->actual_length = remaining; 2297 else 2298 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2299 goto finish_td; 2300 case COMP_STOPPED: 2301 switch (trb_type) { 2302 case TRB_SETUP: 2303 td->urb->actual_length = 0; 2304 goto finish_td; 2305 case TRB_DATA: 2306 case TRB_NORMAL: 2307 td->urb->actual_length = requested - remaining; 2308 goto finish_td; 2309 case TRB_STATUS: 2310 td->urb->actual_length = requested; 2311 goto finish_td; 2312 default: 2313 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2314 trb_type); 2315 goto finish_td; 2316 } 2317 case COMP_STOPPED_LENGTH_INVALID: 2318 goto finish_td; 2319 default: 2320 if (!xhci_requires_manual_halt_cleanup(xhci, 2321 ep_ctx, trb_comp_code)) 2322 break; 2323 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2324 trb_comp_code, ep->ep_index); 2325 fallthrough; 2326 case COMP_STALL_ERROR: 2327 /* Did we transfer part of the data (middle) phase? */ 2328 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2329 td->urb->actual_length = requested - remaining; 2330 else if (!td->urb_length_set) 2331 td->urb->actual_length = 0; 2332 goto finish_td; 2333 } 2334 2335 /* stopped at setup stage, no data transferred */ 2336 if (trb_type == TRB_SETUP) 2337 goto finish_td; 2338 2339 /* 2340 * if on data stage then update the actual_length of the URB and flag it 2341 * as set, so it won't be overwritten in the event for the last TRB. 2342 */ 2343 if (trb_type == TRB_DATA || 2344 trb_type == TRB_NORMAL) { 2345 td->urb_length_set = true; 2346 td->urb->actual_length = requested - remaining; 2347 xhci_dbg(xhci, "Waiting for status stage event\n"); 2348 return 0; 2349 } 2350 2351 /* at status stage */ 2352 if (!td->urb_length_set) 2353 td->urb->actual_length = requested; 2354 2355 finish_td: 2356 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2357 } 2358 2359 /* 2360 * Process isochronous tds, update urb packet status and actual_length. 2361 */ 2362 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2363 struct xhci_ring *ep_ring, struct xhci_td *td, 2364 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2365 { 2366 struct urb_priv *urb_priv; 2367 int idx; 2368 struct usb_iso_packet_descriptor *frame; 2369 u32 trb_comp_code; 2370 bool sum_trbs_for_length = false; 2371 u32 remaining, requested, ep_trb_len; 2372 int short_framestatus; 2373 2374 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2375 urb_priv = td->urb->hcpriv; 2376 idx = urb_priv->num_tds_done; 2377 frame = &td->urb->iso_frame_desc[idx]; 2378 requested = frame->length; 2379 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2380 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2381 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2382 -EREMOTEIO : 0; 2383 2384 /* handle completion code */ 2385 switch (trb_comp_code) { 2386 case COMP_SUCCESS: 2387 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2388 if (td->error_mid_td) 2389 break; 2390 if (remaining) { 2391 frame->status = short_framestatus; 2392 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2393 sum_trbs_for_length = true; 2394 break; 2395 } 2396 frame->status = 0; 2397 break; 2398 case COMP_SHORT_PACKET: 2399 frame->status = short_framestatus; 2400 sum_trbs_for_length = true; 2401 break; 2402 case COMP_BANDWIDTH_OVERRUN_ERROR: 2403 frame->status = -ECOMM; 2404 break; 2405 case COMP_BABBLE_DETECTED_ERROR: 2406 sum_trbs_for_length = true; 2407 fallthrough; 2408 case COMP_ISOCH_BUFFER_OVERRUN: 2409 frame->status = -EOVERFLOW; 2410 if (ep_trb != td->last_trb) 2411 td->error_mid_td = true; 2412 break; 2413 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2414 case COMP_STALL_ERROR: 2415 frame->status = -EPROTO; 2416 break; 2417 case COMP_USB_TRANSACTION_ERROR: 2418 frame->status = -EPROTO; 2419 sum_trbs_for_length = true; 2420 if (ep_trb != td->last_trb) 2421 td->error_mid_td = true; 2422 break; 2423 case COMP_STOPPED: 2424 sum_trbs_for_length = true; 2425 break; 2426 case COMP_STOPPED_SHORT_PACKET: 2427 /* field normally containing residue now contains tranferred */ 2428 frame->status = short_framestatus; 2429 requested = remaining; 2430 break; 2431 case COMP_STOPPED_LENGTH_INVALID: 2432 requested = 0; 2433 remaining = 0; 2434 break; 2435 default: 2436 sum_trbs_for_length = true; 2437 frame->status = -1; 2438 break; 2439 } 2440 2441 if (td->urb_length_set) 2442 goto finish_td; 2443 2444 if (sum_trbs_for_length) 2445 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2446 ep_trb_len - remaining; 2447 else 2448 frame->actual_length = requested; 2449 2450 td->urb->actual_length += frame->actual_length; 2451 2452 finish_td: 2453 /* Don't give back TD yet if we encountered an error mid TD */ 2454 if (td->error_mid_td && ep_trb != td->last_trb) { 2455 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2456 td->urb_length_set = true; 2457 return 0; 2458 } 2459 2460 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2461 } 2462 2463 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2464 struct xhci_virt_ep *ep, int status) 2465 { 2466 struct urb_priv *urb_priv; 2467 struct usb_iso_packet_descriptor *frame; 2468 int idx; 2469 2470 urb_priv = td->urb->hcpriv; 2471 idx = urb_priv->num_tds_done; 2472 frame = &td->urb->iso_frame_desc[idx]; 2473 2474 /* The transfer is partly done. */ 2475 frame->status = -EXDEV; 2476 2477 /* calc actual length */ 2478 frame->actual_length = 0; 2479 2480 /* Update ring dequeue pointer */ 2481 ep->ring->dequeue = td->last_trb; 2482 ep->ring->deq_seg = td->last_trb_seg; 2483 inc_deq(xhci, ep->ring); 2484 2485 return xhci_td_cleanup(xhci, td, ep->ring, status); 2486 } 2487 2488 /* 2489 * Process bulk and interrupt tds, update urb status and actual_length. 2490 */ 2491 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2492 struct xhci_ring *ep_ring, struct xhci_td *td, 2493 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2494 { 2495 struct xhci_slot_ctx *slot_ctx; 2496 u32 trb_comp_code; 2497 u32 remaining, requested, ep_trb_len; 2498 2499 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2500 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2501 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2502 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2503 requested = td->urb->transfer_buffer_length; 2504 2505 switch (trb_comp_code) { 2506 case COMP_SUCCESS: 2507 ep->err_count = 0; 2508 /* handle success with untransferred data as short packet */ 2509 if (ep_trb != td->last_trb || remaining) { 2510 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2511 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2512 td->urb->ep->desc.bEndpointAddress, 2513 requested, remaining); 2514 } 2515 td->status = 0; 2516 break; 2517 case COMP_SHORT_PACKET: 2518 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2519 td->urb->ep->desc.bEndpointAddress, 2520 requested, remaining); 2521 td->status = 0; 2522 break; 2523 case COMP_STOPPED_SHORT_PACKET: 2524 td->urb->actual_length = remaining; 2525 goto finish_td; 2526 case COMP_STOPPED_LENGTH_INVALID: 2527 /* stopped on ep trb with invalid length, exclude it */ 2528 ep_trb_len = 0; 2529 remaining = 0; 2530 break; 2531 case COMP_USB_TRANSACTION_ERROR: 2532 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2533 (ep->err_count++ > MAX_SOFT_RETRY) || 2534 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2535 break; 2536 2537 td->status = 0; 2538 2539 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2540 return 0; 2541 default: 2542 /* do nothing */ 2543 break; 2544 } 2545 2546 if (ep_trb == td->last_trb) 2547 td->urb->actual_length = requested - remaining; 2548 else 2549 td->urb->actual_length = 2550 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2551 ep_trb_len - remaining; 2552 finish_td: 2553 if (remaining > requested) { 2554 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2555 remaining); 2556 td->urb->actual_length = 0; 2557 } 2558 2559 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2560 } 2561 2562 /* 2563 * If this function returns an error condition, it means it got a Transfer 2564 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2565 * At this point, the host controller is probably hosed and should be reset. 2566 */ 2567 static int handle_tx_event(struct xhci_hcd *xhci, 2568 struct xhci_interrupter *ir, 2569 struct xhci_transfer_event *event) 2570 { 2571 struct xhci_virt_ep *ep; 2572 struct xhci_ring *ep_ring; 2573 unsigned int slot_id; 2574 int ep_index; 2575 struct xhci_td *td = NULL; 2576 dma_addr_t ep_trb_dma; 2577 struct xhci_segment *ep_seg; 2578 union xhci_trb *ep_trb; 2579 int status = -EINPROGRESS; 2580 struct xhci_ep_ctx *ep_ctx; 2581 u32 trb_comp_code; 2582 int td_num = 0; 2583 bool handling_skipped_tds = false; 2584 2585 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2586 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2587 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2588 ep_trb_dma = le64_to_cpu(event->buffer); 2589 2590 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2591 if (!ep) { 2592 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2593 goto err_out; 2594 } 2595 2596 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2597 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2598 2599 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2600 xhci_err(xhci, 2601 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2602 slot_id, ep_index); 2603 goto err_out; 2604 } 2605 2606 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2607 if (!ep_ring) { 2608 switch (trb_comp_code) { 2609 case COMP_STALL_ERROR: 2610 case COMP_USB_TRANSACTION_ERROR: 2611 case COMP_INVALID_STREAM_TYPE_ERROR: 2612 case COMP_INVALID_STREAM_ID_ERROR: 2613 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2614 ep_index); 2615 if (ep->err_count++ > MAX_SOFT_RETRY) 2616 xhci_handle_halted_endpoint(xhci, ep, NULL, 2617 EP_HARD_RESET); 2618 else 2619 xhci_handle_halted_endpoint(xhci, ep, NULL, 2620 EP_SOFT_RESET); 2621 goto cleanup; 2622 case COMP_RING_UNDERRUN: 2623 case COMP_RING_OVERRUN: 2624 case COMP_STOPPED_LENGTH_INVALID: 2625 goto cleanup; 2626 default: 2627 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2628 slot_id, ep_index); 2629 goto err_out; 2630 } 2631 } 2632 2633 /* Count current td numbers if ep->skip is set */ 2634 if (ep->skip) 2635 td_num += list_count_nodes(&ep_ring->td_list); 2636 2637 /* Look for common error cases */ 2638 switch (trb_comp_code) { 2639 /* Skip codes that require special handling depending on 2640 * transfer type 2641 */ 2642 case COMP_SUCCESS: 2643 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2644 break; 2645 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2646 ep_ring->last_td_was_short) 2647 trb_comp_code = COMP_SHORT_PACKET; 2648 else 2649 xhci_warn_ratelimited(xhci, 2650 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2651 slot_id, ep_index); 2652 break; 2653 case COMP_SHORT_PACKET: 2654 break; 2655 /* Completion codes for endpoint stopped state */ 2656 case COMP_STOPPED: 2657 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2658 slot_id, ep_index); 2659 break; 2660 case COMP_STOPPED_LENGTH_INVALID: 2661 xhci_dbg(xhci, 2662 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2663 slot_id, ep_index); 2664 break; 2665 case COMP_STOPPED_SHORT_PACKET: 2666 xhci_dbg(xhci, 2667 "Stopped with short packet transfer detected for slot %u ep %u\n", 2668 slot_id, ep_index); 2669 break; 2670 /* Completion codes for endpoint halted state */ 2671 case COMP_STALL_ERROR: 2672 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2673 ep_index); 2674 status = -EPIPE; 2675 break; 2676 case COMP_SPLIT_TRANSACTION_ERROR: 2677 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2678 slot_id, ep_index); 2679 status = -EPROTO; 2680 break; 2681 case COMP_USB_TRANSACTION_ERROR: 2682 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2683 slot_id, ep_index); 2684 status = -EPROTO; 2685 break; 2686 case COMP_BABBLE_DETECTED_ERROR: 2687 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2688 slot_id, ep_index); 2689 status = -EOVERFLOW; 2690 break; 2691 /* Completion codes for endpoint error state */ 2692 case COMP_TRB_ERROR: 2693 xhci_warn(xhci, 2694 "WARN: TRB error for slot %u ep %u on endpoint\n", 2695 slot_id, ep_index); 2696 status = -EILSEQ; 2697 break; 2698 /* completion codes not indicating endpoint state change */ 2699 case COMP_DATA_BUFFER_ERROR: 2700 xhci_warn(xhci, 2701 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2702 slot_id, ep_index); 2703 status = -ENOSR; 2704 break; 2705 case COMP_BANDWIDTH_OVERRUN_ERROR: 2706 xhci_warn(xhci, 2707 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2708 slot_id, ep_index); 2709 break; 2710 case COMP_ISOCH_BUFFER_OVERRUN: 2711 xhci_warn(xhci, 2712 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2713 slot_id, ep_index); 2714 break; 2715 case COMP_RING_UNDERRUN: 2716 /* 2717 * When the Isoch ring is empty, the xHC will generate 2718 * a Ring Overrun Event for IN Isoch endpoint or Ring 2719 * Underrun Event for OUT Isoch endpoint. 2720 */ 2721 xhci_dbg(xhci, "underrun event on endpoint\n"); 2722 if (!list_empty(&ep_ring->td_list)) 2723 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2724 "still with TDs queued?\n", 2725 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2726 ep_index); 2727 goto cleanup; 2728 case COMP_RING_OVERRUN: 2729 xhci_dbg(xhci, "overrun event on endpoint\n"); 2730 if (!list_empty(&ep_ring->td_list)) 2731 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2732 "still with TDs queued?\n", 2733 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2734 ep_index); 2735 goto cleanup; 2736 case COMP_MISSED_SERVICE_ERROR: 2737 /* 2738 * When encounter missed service error, one or more isoc tds 2739 * may be missed by xHC. 2740 * Set skip flag of the ep_ring; Complete the missed tds as 2741 * short transfer when process the ep_ring next time. 2742 */ 2743 ep->skip = true; 2744 xhci_dbg(xhci, 2745 "Miss service interval error for slot %u ep %u, set skip flag\n", 2746 slot_id, ep_index); 2747 goto cleanup; 2748 case COMP_NO_PING_RESPONSE_ERROR: 2749 ep->skip = true; 2750 xhci_dbg(xhci, 2751 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2752 slot_id, ep_index); 2753 goto cleanup; 2754 2755 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2756 /* needs disable slot command to recover */ 2757 xhci_warn(xhci, 2758 "WARN: detect an incompatible device for slot %u ep %u", 2759 slot_id, ep_index); 2760 status = -EPROTO; 2761 break; 2762 default: 2763 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2764 status = 0; 2765 break; 2766 } 2767 xhci_warn(xhci, 2768 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2769 trb_comp_code, slot_id, ep_index); 2770 goto cleanup; 2771 } 2772 2773 do { 2774 /* This TRB should be in the TD at the head of this ring's 2775 * TD list. 2776 */ 2777 if (list_empty(&ep_ring->td_list)) { 2778 /* 2779 * Don't print wanings if it's due to a stopped endpoint 2780 * generating an extra completion event if the device 2781 * was suspended. Or, a event for the last TRB of a 2782 * short TD we already got a short event for. 2783 * The short TD is already removed from the TD list. 2784 */ 2785 2786 if (!(trb_comp_code == COMP_STOPPED || 2787 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2788 ep_ring->last_td_was_short)) { 2789 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2790 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2791 ep_index); 2792 } 2793 if (ep->skip) { 2794 ep->skip = false; 2795 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2796 slot_id, ep_index); 2797 } 2798 if (trb_comp_code == COMP_STALL_ERROR || 2799 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2800 trb_comp_code)) { 2801 xhci_handle_halted_endpoint(xhci, ep, NULL, 2802 EP_HARD_RESET); 2803 } 2804 goto cleanup; 2805 } 2806 2807 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2808 if (ep->skip && td_num == 0) { 2809 ep->skip = false; 2810 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2811 slot_id, ep_index); 2812 goto cleanup; 2813 } 2814 2815 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2816 td_list); 2817 if (ep->skip) 2818 td_num--; 2819 2820 /* Is this a TRB in the currently executing TD? */ 2821 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2822 td->last_trb, ep_trb_dma, false); 2823 2824 /* 2825 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2826 * is not in the current TD pointed by ep_ring->dequeue because 2827 * that the hardware dequeue pointer still at the previous TRB 2828 * of the current TD. The previous TRB maybe a Link TD or the 2829 * last TRB of the previous TD. The command completion handle 2830 * will take care the rest. 2831 */ 2832 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2833 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2834 goto cleanup; 2835 } 2836 2837 if (!ep_seg) { 2838 2839 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2840 skip_isoc_td(xhci, td, ep, status); 2841 goto cleanup; 2842 } 2843 2844 /* 2845 * Some hosts give a spurious success event after a short 2846 * transfer. Ignore it. 2847 */ 2848 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2849 ep_ring->last_td_was_short) { 2850 ep_ring->last_td_was_short = false; 2851 goto cleanup; 2852 } 2853 2854 /* 2855 * xhci 4.10.2 states isoc endpoints should continue 2856 * processing the next TD if there was an error mid TD. 2857 * So host like NEC don't generate an event for the last 2858 * isoc TRB even if the IOC flag is set. 2859 * xhci 4.9.1 states that if there are errors in mult-TRB 2860 * TDs xHC should generate an error for that TRB, and if xHC 2861 * proceeds to the next TD it should genete an event for 2862 * any TRB with IOC flag on the way. Other host follow this. 2863 * So this event might be for the next TD. 2864 */ 2865 if (td->error_mid_td && 2866 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2867 struct xhci_td *td_next = list_next_entry(td, td_list); 2868 2869 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2870 td_next->last_trb, ep_trb_dma, false); 2871 if (ep_seg) { 2872 /* give back previous TD, start handling new */ 2873 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2874 ep_ring->dequeue = td->last_trb; 2875 ep_ring->deq_seg = td->last_trb_seg; 2876 inc_deq(xhci, ep_ring); 2877 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2878 td = td_next; 2879 } 2880 } 2881 2882 if (!ep_seg) { 2883 /* HC is busted, give up! */ 2884 xhci_err(xhci, 2885 "ERROR Transfer event TRB DMA ptr not " 2886 "part of current TD ep_index %d " 2887 "comp_code %u\n", ep_index, 2888 trb_comp_code); 2889 trb_in_td(xhci, ep_ring->deq_seg, 2890 ep_ring->dequeue, td->last_trb, 2891 ep_trb_dma, true); 2892 return -ESHUTDOWN; 2893 } 2894 } 2895 if (trb_comp_code == COMP_SHORT_PACKET) 2896 ep_ring->last_td_was_short = true; 2897 else 2898 ep_ring->last_td_was_short = false; 2899 2900 if (ep->skip) { 2901 xhci_dbg(xhci, 2902 "Found td. Clear skip flag for slot %u ep %u.\n", 2903 slot_id, ep_index); 2904 ep->skip = false; 2905 } 2906 2907 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2908 sizeof(*ep_trb)]; 2909 2910 trace_xhci_handle_transfer(ep_ring, 2911 (struct xhci_generic_trb *) ep_trb); 2912 2913 /* 2914 * No-op TRB could trigger interrupts in a case where 2915 * a URB was killed and a STALL_ERROR happens right 2916 * after the endpoint ring stopped. Reset the halted 2917 * endpoint. Otherwise, the endpoint remains stalled 2918 * indefinitely. 2919 */ 2920 2921 if (trb_is_noop(ep_trb)) { 2922 if (trb_comp_code == COMP_STALL_ERROR || 2923 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2924 trb_comp_code)) 2925 xhci_handle_halted_endpoint(xhci, ep, td, 2926 EP_HARD_RESET); 2927 goto cleanup; 2928 } 2929 2930 td->status = status; 2931 2932 /* update the urb's actual_length and give back to the core */ 2933 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2934 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2935 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2936 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2937 else 2938 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2939 cleanup: 2940 handling_skipped_tds = ep->skip && 2941 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2942 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2943 2944 /* 2945 * Do not update event ring dequeue pointer if we're in a loop 2946 * processing missed tds. 2947 */ 2948 if (!handling_skipped_tds) 2949 inc_deq(xhci, ir->event_ring); 2950 2951 /* 2952 * If ep->skip is set, it means there are missed tds on the 2953 * endpoint ring need to take care of. 2954 * Process them as short transfer until reach the td pointed by 2955 * the event. 2956 */ 2957 } while (handling_skipped_tds); 2958 2959 return 0; 2960 2961 err_out: 2962 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2963 (unsigned long long) xhci_trb_virt_to_dma( 2964 ir->event_ring->deq_seg, 2965 ir->event_ring->dequeue), 2966 lower_32_bits(le64_to_cpu(event->buffer)), 2967 upper_32_bits(le64_to_cpu(event->buffer)), 2968 le32_to_cpu(event->transfer_len), 2969 le32_to_cpu(event->flags)); 2970 return -ENODEV; 2971 } 2972 2973 /* 2974 * This function handles all OS-owned events on the event ring. It may drop 2975 * xhci->lock between event processing (e.g. to pass up port status changes). 2976 * Returns >0 for "possibly more events to process" (caller should call again), 2977 * otherwise 0 if done. In future, <0 returns should indicate error code. 2978 */ 2979 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2980 { 2981 union xhci_trb *event; 2982 int update_ptrs = 1; 2983 u32 trb_type; 2984 int ret; 2985 2986 /* Event ring hasn't been allocated yet. */ 2987 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2988 xhci_err(xhci, "ERROR interrupter not ready\n"); 2989 return -ENOMEM; 2990 } 2991 2992 event = ir->event_ring->dequeue; 2993 /* Does the HC or OS own the TRB? */ 2994 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2995 ir->event_ring->cycle_state) 2996 return 0; 2997 2998 trace_xhci_handle_event(ir->event_ring, &event->generic); 2999 3000 /* 3001 * Barrier between reading the TRB_CYCLE (valid) flag above and any 3002 * speculative reads of the event's flags/data below. 3003 */ 3004 rmb(); 3005 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3006 /* FIXME: Handle more event types. */ 3007 3008 switch (trb_type) { 3009 case TRB_COMPLETION: 3010 handle_cmd_completion(xhci, &event->event_cmd); 3011 break; 3012 case TRB_PORT_STATUS: 3013 handle_port_status(xhci, ir, event); 3014 update_ptrs = 0; 3015 break; 3016 case TRB_TRANSFER: 3017 ret = handle_tx_event(xhci, ir, &event->trans_event); 3018 if (ret >= 0) 3019 update_ptrs = 0; 3020 break; 3021 case TRB_DEV_NOTE: 3022 handle_device_notification(xhci, event); 3023 break; 3024 default: 3025 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3026 handle_vendor_event(xhci, event, trb_type); 3027 else 3028 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3029 } 3030 /* Any of the above functions may drop and re-acquire the lock, so check 3031 * to make sure a watchdog timer didn't mark the host as non-responsive. 3032 */ 3033 if (xhci->xhc_state & XHCI_STATE_DYING) { 3034 xhci_dbg(xhci, "xHCI host dying, returning from " 3035 "event handler.\n"); 3036 return 0; 3037 } 3038 3039 if (update_ptrs) 3040 /* Update SW event ring dequeue pointer */ 3041 inc_deq(xhci, ir->event_ring); 3042 3043 /* Are there more items on the event ring? Caller will call us again to 3044 * check. 3045 */ 3046 return 1; 3047 } 3048 3049 /* 3050 * Update Event Ring Dequeue Pointer: 3051 * - When all events have finished 3052 * - To avoid "Event Ring Full Error" condition 3053 */ 3054 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3055 struct xhci_interrupter *ir, 3056 union xhci_trb *event_ring_deq, 3057 bool clear_ehb) 3058 { 3059 u64 temp_64; 3060 dma_addr_t deq; 3061 3062 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3063 /* If necessary, update the HW's version of the event ring deq ptr. */ 3064 if (event_ring_deq != ir->event_ring->dequeue) { 3065 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3066 ir->event_ring->dequeue); 3067 if (deq == 0) 3068 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3069 /* 3070 * Per 4.9.4, Software writes to the ERDP register shall 3071 * always advance the Event Ring Dequeue Pointer value. 3072 */ 3073 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3074 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3075 return; 3076 3077 /* Update HC event ring dequeue pointer */ 3078 temp_64 &= ERST_DESI_MASK; 3079 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3080 } 3081 3082 /* Clear the event handler busy flag (RW1C) */ 3083 if (clear_ehb) 3084 temp_64 |= ERST_EHB; 3085 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3086 } 3087 3088 /* 3089 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3090 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3091 * indicators of an event TRB error, but we check the status *first* to be safe. 3092 */ 3093 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3094 { 3095 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3096 union xhci_trb *event_ring_deq; 3097 struct xhci_interrupter *ir; 3098 irqreturn_t ret = IRQ_NONE; 3099 u64 temp_64; 3100 u32 status; 3101 int event_loop = 0; 3102 3103 spin_lock(&xhci->lock); 3104 /* Check if the xHC generated the interrupt, or the irq is shared */ 3105 status = readl(&xhci->op_regs->status); 3106 if (status == ~(u32)0) { 3107 xhci_hc_died(xhci); 3108 ret = IRQ_HANDLED; 3109 goto out; 3110 } 3111 3112 if (!(status & STS_EINT)) 3113 goto out; 3114 3115 if (status & STS_HCE) { 3116 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3117 goto out; 3118 } 3119 3120 if (status & STS_FATAL) { 3121 xhci_warn(xhci, "WARNING: Host System Error\n"); 3122 xhci_halt(xhci); 3123 ret = IRQ_HANDLED; 3124 goto out; 3125 } 3126 3127 /* 3128 * Clear the op reg interrupt status first, 3129 * so we can receive interrupts from other MSI-X interrupters. 3130 * Write 1 to clear the interrupt status. 3131 */ 3132 status |= STS_EINT; 3133 writel(status, &xhci->op_regs->status); 3134 3135 /* This is the handler of the primary interrupter */ 3136 ir = xhci->interrupter; 3137 if (!hcd->msi_enabled) { 3138 u32 irq_pending; 3139 irq_pending = readl(&ir->ir_set->irq_pending); 3140 irq_pending |= IMAN_IP; 3141 writel(irq_pending, &ir->ir_set->irq_pending); 3142 } 3143 3144 if (xhci->xhc_state & XHCI_STATE_DYING || 3145 xhci->xhc_state & XHCI_STATE_HALTED) { 3146 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3147 "Shouldn't IRQs be disabled?\n"); 3148 /* Clear the event handler busy flag (RW1C); 3149 * the event ring should be empty. 3150 */ 3151 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3152 xhci_write_64(xhci, temp_64 | ERST_EHB, 3153 &ir->ir_set->erst_dequeue); 3154 ret = IRQ_HANDLED; 3155 goto out; 3156 } 3157 3158 event_ring_deq = ir->event_ring->dequeue; 3159 /* FIXME this should be a delayed service routine 3160 * that clears the EHB. 3161 */ 3162 while (xhci_handle_event(xhci, ir) > 0) { 3163 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3164 continue; 3165 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3166 event_ring_deq = ir->event_ring->dequeue; 3167 3168 /* ring is half-full, force isoc trbs to interrupt more often */ 3169 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3170 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3171 3172 event_loop = 0; 3173 } 3174 3175 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3176 ret = IRQ_HANDLED; 3177 3178 out: 3179 spin_unlock(&xhci->lock); 3180 3181 return ret; 3182 } 3183 3184 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3185 { 3186 return xhci_irq(hcd); 3187 } 3188 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3189 3190 /**** Endpoint Ring Operations ****/ 3191 3192 /* 3193 * Generic function for queueing a TRB on a ring. 3194 * The caller must have checked to make sure there's room on the ring. 3195 * 3196 * @more_trbs_coming: Will you enqueue more TRBs before calling 3197 * prepare_transfer()? 3198 */ 3199 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3200 bool more_trbs_coming, 3201 u32 field1, u32 field2, u32 field3, u32 field4) 3202 { 3203 struct xhci_generic_trb *trb; 3204 3205 trb = &ring->enqueue->generic; 3206 trb->field[0] = cpu_to_le32(field1); 3207 trb->field[1] = cpu_to_le32(field2); 3208 trb->field[2] = cpu_to_le32(field3); 3209 /* make sure TRB is fully written before giving it to the controller */ 3210 wmb(); 3211 trb->field[3] = cpu_to_le32(field4); 3212 3213 trace_xhci_queue_trb(ring, trb); 3214 3215 inc_enq(xhci, ring, more_trbs_coming); 3216 } 3217 3218 /* 3219 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3220 * expand ring if it start to be full. 3221 */ 3222 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3223 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3224 { 3225 unsigned int link_trb_count = 0; 3226 unsigned int new_segs = 0; 3227 3228 /* Make sure the endpoint has been added to xHC schedule */ 3229 switch (ep_state) { 3230 case EP_STATE_DISABLED: 3231 /* 3232 * USB core changed config/interfaces without notifying us, 3233 * or hardware is reporting the wrong state. 3234 */ 3235 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3236 return -ENOENT; 3237 case EP_STATE_ERROR: 3238 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3239 /* FIXME event handling code for error needs to clear it */ 3240 /* XXX not sure if this should be -ENOENT or not */ 3241 return -EINVAL; 3242 case EP_STATE_HALTED: 3243 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3244 break; 3245 case EP_STATE_STOPPED: 3246 case EP_STATE_RUNNING: 3247 break; 3248 default: 3249 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3250 /* 3251 * FIXME issue Configure Endpoint command to try to get the HC 3252 * back into a known state. 3253 */ 3254 return -EINVAL; 3255 } 3256 3257 if (ep_ring != xhci->cmd_ring) { 3258 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3259 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3260 xhci_err(xhci, "Do not support expand command ring\n"); 3261 return -ENOMEM; 3262 } 3263 3264 if (new_segs) { 3265 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3266 "ERROR no room on ep ring, try ring expansion"); 3267 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3268 xhci_err(xhci, "Ring expansion failed\n"); 3269 return -ENOMEM; 3270 } 3271 } 3272 3273 while (trb_is_link(ep_ring->enqueue)) { 3274 /* If we're not dealing with 0.95 hardware or isoc rings 3275 * on AMD 0.96 host, clear the chain bit. 3276 */ 3277 if (!xhci_link_trb_quirk(xhci) && 3278 !(ep_ring->type == TYPE_ISOC && 3279 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3280 ep_ring->enqueue->link.control &= 3281 cpu_to_le32(~TRB_CHAIN); 3282 else 3283 ep_ring->enqueue->link.control |= 3284 cpu_to_le32(TRB_CHAIN); 3285 3286 wmb(); 3287 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3288 3289 /* Toggle the cycle bit after the last ring segment. */ 3290 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3291 ep_ring->cycle_state ^= 1; 3292 3293 ep_ring->enq_seg = ep_ring->enq_seg->next; 3294 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3295 3296 /* prevent infinite loop if all first trbs are link trbs */ 3297 if (link_trb_count++ > ep_ring->num_segs) { 3298 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3299 return -EINVAL; 3300 } 3301 } 3302 3303 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3304 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3305 return -EINVAL; 3306 } 3307 3308 return 0; 3309 } 3310 3311 static int prepare_transfer(struct xhci_hcd *xhci, 3312 struct xhci_virt_device *xdev, 3313 unsigned int ep_index, 3314 unsigned int stream_id, 3315 unsigned int num_trbs, 3316 struct urb *urb, 3317 unsigned int td_index, 3318 gfp_t mem_flags) 3319 { 3320 int ret; 3321 struct urb_priv *urb_priv; 3322 struct xhci_td *td; 3323 struct xhci_ring *ep_ring; 3324 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3325 3326 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3327 stream_id); 3328 if (!ep_ring) { 3329 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3330 stream_id); 3331 return -EINVAL; 3332 } 3333 3334 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3335 num_trbs, mem_flags); 3336 if (ret) 3337 return ret; 3338 3339 urb_priv = urb->hcpriv; 3340 td = &urb_priv->td[td_index]; 3341 3342 INIT_LIST_HEAD(&td->td_list); 3343 INIT_LIST_HEAD(&td->cancelled_td_list); 3344 3345 if (td_index == 0) { 3346 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3347 if (unlikely(ret)) 3348 return ret; 3349 } 3350 3351 td->urb = urb; 3352 /* Add this TD to the tail of the endpoint ring's TD list */ 3353 list_add_tail(&td->td_list, &ep_ring->td_list); 3354 td->start_seg = ep_ring->enq_seg; 3355 td->first_trb = ep_ring->enqueue; 3356 3357 return 0; 3358 } 3359 3360 unsigned int count_trbs(u64 addr, u64 len) 3361 { 3362 unsigned int num_trbs; 3363 3364 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3365 TRB_MAX_BUFF_SIZE); 3366 if (num_trbs == 0) 3367 num_trbs++; 3368 3369 return num_trbs; 3370 } 3371 3372 static inline unsigned int count_trbs_needed(struct urb *urb) 3373 { 3374 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3375 } 3376 3377 static unsigned int count_sg_trbs_needed(struct urb *urb) 3378 { 3379 struct scatterlist *sg; 3380 unsigned int i, len, full_len, num_trbs = 0; 3381 3382 full_len = urb->transfer_buffer_length; 3383 3384 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3385 len = sg_dma_len(sg); 3386 num_trbs += count_trbs(sg_dma_address(sg), len); 3387 len = min_t(unsigned int, len, full_len); 3388 full_len -= len; 3389 if (full_len == 0) 3390 break; 3391 } 3392 3393 return num_trbs; 3394 } 3395 3396 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3397 { 3398 u64 addr, len; 3399 3400 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3401 len = urb->iso_frame_desc[i].length; 3402 3403 return count_trbs(addr, len); 3404 } 3405 3406 static void check_trb_math(struct urb *urb, int running_total) 3407 { 3408 if (unlikely(running_total != urb->transfer_buffer_length)) 3409 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3410 "queued %#x (%d), asked for %#x (%d)\n", 3411 __func__, 3412 urb->ep->desc.bEndpointAddress, 3413 running_total, running_total, 3414 urb->transfer_buffer_length, 3415 urb->transfer_buffer_length); 3416 } 3417 3418 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3419 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3420 struct xhci_generic_trb *start_trb) 3421 { 3422 /* 3423 * Pass all the TRBs to the hardware at once and make sure this write 3424 * isn't reordered. 3425 */ 3426 wmb(); 3427 if (start_cycle) 3428 start_trb->field[3] |= cpu_to_le32(start_cycle); 3429 else 3430 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3432 } 3433 3434 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3435 struct xhci_ep_ctx *ep_ctx) 3436 { 3437 int xhci_interval; 3438 int ep_interval; 3439 3440 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3441 ep_interval = urb->interval; 3442 3443 /* Convert to microframes */ 3444 if (urb->dev->speed == USB_SPEED_LOW || 3445 urb->dev->speed == USB_SPEED_FULL) 3446 ep_interval *= 8; 3447 3448 /* FIXME change this to a warning and a suggestion to use the new API 3449 * to set the polling interval (once the API is added). 3450 */ 3451 if (xhci_interval != ep_interval) { 3452 dev_dbg_ratelimited(&urb->dev->dev, 3453 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3454 ep_interval, ep_interval == 1 ? "" : "s", 3455 xhci_interval, xhci_interval == 1 ? "" : "s"); 3456 urb->interval = xhci_interval; 3457 /* Convert back to frames for LS/FS devices */ 3458 if (urb->dev->speed == USB_SPEED_LOW || 3459 urb->dev->speed == USB_SPEED_FULL) 3460 urb->interval /= 8; 3461 } 3462 } 3463 3464 /* 3465 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3466 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3467 * (comprised of sg list entries) can take several service intervals to 3468 * transmit. 3469 */ 3470 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3471 struct urb *urb, int slot_id, unsigned int ep_index) 3472 { 3473 struct xhci_ep_ctx *ep_ctx; 3474 3475 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3476 check_interval(xhci, urb, ep_ctx); 3477 3478 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3479 } 3480 3481 /* 3482 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3483 * packets remaining in the TD (*not* including this TRB). 3484 * 3485 * Total TD packet count = total_packet_count = 3486 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3487 * 3488 * Packets transferred up to and including this TRB = packets_transferred = 3489 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3490 * 3491 * TD size = total_packet_count - packets_transferred 3492 * 3493 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3494 * including this TRB, right shifted by 10 3495 * 3496 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3497 * This is taken care of in the TRB_TD_SIZE() macro 3498 * 3499 * The last TRB in a TD must have the TD size set to zero. 3500 */ 3501 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3502 int trb_buff_len, unsigned int td_total_len, 3503 struct urb *urb, bool more_trbs_coming) 3504 { 3505 u32 maxp, total_packet_count; 3506 3507 /* MTK xHCI 0.96 contains some features from 1.0 */ 3508 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3509 return ((td_total_len - transferred) >> 10); 3510 3511 /* One TRB with a zero-length data packet. */ 3512 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3513 trb_buff_len == td_total_len) 3514 return 0; 3515 3516 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3517 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3518 trb_buff_len = 0; 3519 3520 maxp = usb_endpoint_maxp(&urb->ep->desc); 3521 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3522 3523 /* Queueing functions don't count the current TRB into transferred */ 3524 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3525 } 3526 3527 3528 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3529 u32 *trb_buff_len, struct xhci_segment *seg) 3530 { 3531 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3532 unsigned int unalign; 3533 unsigned int max_pkt; 3534 u32 new_buff_len; 3535 size_t len; 3536 3537 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3538 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3539 3540 /* we got lucky, last normal TRB data on segment is packet aligned */ 3541 if (unalign == 0) 3542 return 0; 3543 3544 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3545 unalign, *trb_buff_len); 3546 3547 /* is the last nornal TRB alignable by splitting it */ 3548 if (*trb_buff_len > unalign) { 3549 *trb_buff_len -= unalign; 3550 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3551 return 0; 3552 } 3553 3554 /* 3555 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3556 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3557 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3558 */ 3559 new_buff_len = max_pkt - (enqd_len % max_pkt); 3560 3561 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3562 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3563 3564 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3565 if (usb_urb_dir_out(urb)) { 3566 if (urb->num_sgs) { 3567 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3568 seg->bounce_buf, new_buff_len, enqd_len); 3569 if (len != new_buff_len) 3570 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3571 len, new_buff_len); 3572 } else { 3573 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3574 } 3575 3576 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3577 max_pkt, DMA_TO_DEVICE); 3578 } else { 3579 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3580 max_pkt, DMA_FROM_DEVICE); 3581 } 3582 3583 if (dma_mapping_error(dev, seg->bounce_dma)) { 3584 /* try without aligning. Some host controllers survive */ 3585 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3586 return 0; 3587 } 3588 *trb_buff_len = new_buff_len; 3589 seg->bounce_len = new_buff_len; 3590 seg->bounce_offs = enqd_len; 3591 3592 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3593 3594 return 1; 3595 } 3596 3597 /* This is very similar to what ehci-q.c qtd_fill() does */ 3598 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3599 struct urb *urb, int slot_id, unsigned int ep_index) 3600 { 3601 struct xhci_ring *ring; 3602 struct urb_priv *urb_priv; 3603 struct xhci_td *td; 3604 struct xhci_generic_trb *start_trb; 3605 struct scatterlist *sg = NULL; 3606 bool more_trbs_coming = true; 3607 bool need_zero_pkt = false; 3608 bool first_trb = true; 3609 unsigned int num_trbs; 3610 unsigned int start_cycle, num_sgs = 0; 3611 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3612 int sent_len, ret; 3613 u32 field, length_field, remainder; 3614 u64 addr, send_addr; 3615 3616 ring = xhci_urb_to_transfer_ring(xhci, urb); 3617 if (!ring) 3618 return -EINVAL; 3619 3620 full_len = urb->transfer_buffer_length; 3621 /* If we have scatter/gather list, we use it. */ 3622 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3623 num_sgs = urb->num_mapped_sgs; 3624 sg = urb->sg; 3625 addr = (u64) sg_dma_address(sg); 3626 block_len = sg_dma_len(sg); 3627 num_trbs = count_sg_trbs_needed(urb); 3628 } else { 3629 num_trbs = count_trbs_needed(urb); 3630 addr = (u64) urb->transfer_dma; 3631 block_len = full_len; 3632 } 3633 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3634 ep_index, urb->stream_id, 3635 num_trbs, urb, 0, mem_flags); 3636 if (unlikely(ret < 0)) 3637 return ret; 3638 3639 urb_priv = urb->hcpriv; 3640 3641 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3642 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3643 need_zero_pkt = true; 3644 3645 td = &urb_priv->td[0]; 3646 3647 /* 3648 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3649 * until we've finished creating all the other TRBs. The ring's cycle 3650 * state may change as we enqueue the other TRBs, so save it too. 3651 */ 3652 start_trb = &ring->enqueue->generic; 3653 start_cycle = ring->cycle_state; 3654 send_addr = addr; 3655 3656 /* Queue the TRBs, even if they are zero-length */ 3657 for (enqd_len = 0; first_trb || enqd_len < full_len; 3658 enqd_len += trb_buff_len) { 3659 field = TRB_TYPE(TRB_NORMAL); 3660 3661 /* TRB buffer should not cross 64KB boundaries */ 3662 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3663 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3664 3665 if (enqd_len + trb_buff_len > full_len) 3666 trb_buff_len = full_len - enqd_len; 3667 3668 /* Don't change the cycle bit of the first TRB until later */ 3669 if (first_trb) { 3670 first_trb = false; 3671 if (start_cycle == 0) 3672 field |= TRB_CYCLE; 3673 } else 3674 field |= ring->cycle_state; 3675 3676 /* Chain all the TRBs together; clear the chain bit in the last 3677 * TRB to indicate it's the last TRB in the chain. 3678 */ 3679 if (enqd_len + trb_buff_len < full_len) { 3680 field |= TRB_CHAIN; 3681 if (trb_is_link(ring->enqueue + 1)) { 3682 if (xhci_align_td(xhci, urb, enqd_len, 3683 &trb_buff_len, 3684 ring->enq_seg)) { 3685 send_addr = ring->enq_seg->bounce_dma; 3686 /* assuming TD won't span 2 segs */ 3687 td->bounce_seg = ring->enq_seg; 3688 } 3689 } 3690 } 3691 if (enqd_len + trb_buff_len >= full_len) { 3692 field &= ~TRB_CHAIN; 3693 field |= TRB_IOC; 3694 more_trbs_coming = false; 3695 td->last_trb = ring->enqueue; 3696 td->last_trb_seg = ring->enq_seg; 3697 if (xhci_urb_suitable_for_idt(urb)) { 3698 memcpy(&send_addr, urb->transfer_buffer, 3699 trb_buff_len); 3700 le64_to_cpus(&send_addr); 3701 field |= TRB_IDT; 3702 } 3703 } 3704 3705 /* Only set interrupt on short packet for IN endpoints */ 3706 if (usb_urb_dir_in(urb)) 3707 field |= TRB_ISP; 3708 3709 /* Set the TRB length, TD size, and interrupter fields. */ 3710 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3711 full_len, urb, more_trbs_coming); 3712 3713 length_field = TRB_LEN(trb_buff_len) | 3714 TRB_TD_SIZE(remainder) | 3715 TRB_INTR_TARGET(0); 3716 3717 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3718 lower_32_bits(send_addr), 3719 upper_32_bits(send_addr), 3720 length_field, 3721 field); 3722 td->num_trbs++; 3723 addr += trb_buff_len; 3724 sent_len = trb_buff_len; 3725 3726 while (sg && sent_len >= block_len) { 3727 /* New sg entry */ 3728 --num_sgs; 3729 sent_len -= block_len; 3730 sg = sg_next(sg); 3731 if (num_sgs != 0 && sg) { 3732 block_len = sg_dma_len(sg); 3733 addr = (u64) sg_dma_address(sg); 3734 addr += sent_len; 3735 } 3736 } 3737 block_len -= sent_len; 3738 send_addr = addr; 3739 } 3740 3741 if (need_zero_pkt) { 3742 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3743 ep_index, urb->stream_id, 3744 1, urb, 1, mem_flags); 3745 urb_priv->td[1].last_trb = ring->enqueue; 3746 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3747 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3748 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3749 urb_priv->td[1].num_trbs++; 3750 } 3751 3752 check_trb_math(urb, enqd_len); 3753 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3754 start_cycle, start_trb); 3755 return 0; 3756 } 3757 3758 /* Caller must have locked xhci->lock */ 3759 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3760 struct urb *urb, int slot_id, unsigned int ep_index) 3761 { 3762 struct xhci_ring *ep_ring; 3763 int num_trbs; 3764 int ret; 3765 struct usb_ctrlrequest *setup; 3766 struct xhci_generic_trb *start_trb; 3767 int start_cycle; 3768 u32 field; 3769 struct urb_priv *urb_priv; 3770 struct xhci_td *td; 3771 3772 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3773 if (!ep_ring) 3774 return -EINVAL; 3775 3776 /* 3777 * Need to copy setup packet into setup TRB, so we can't use the setup 3778 * DMA address. 3779 */ 3780 if (!urb->setup_packet) 3781 return -EINVAL; 3782 3783 /* 1 TRB for setup, 1 for status */ 3784 num_trbs = 2; 3785 /* 3786 * Don't need to check if we need additional event data and normal TRBs, 3787 * since data in control transfers will never get bigger than 16MB 3788 * XXX: can we get a buffer that crosses 64KB boundaries? 3789 */ 3790 if (urb->transfer_buffer_length > 0) 3791 num_trbs++; 3792 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3793 ep_index, urb->stream_id, 3794 num_trbs, urb, 0, mem_flags); 3795 if (ret < 0) 3796 return ret; 3797 3798 urb_priv = urb->hcpriv; 3799 td = &urb_priv->td[0]; 3800 td->num_trbs = num_trbs; 3801 3802 /* 3803 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3804 * until we've finished creating all the other TRBs. The ring's cycle 3805 * state may change as we enqueue the other TRBs, so save it too. 3806 */ 3807 start_trb = &ep_ring->enqueue->generic; 3808 start_cycle = ep_ring->cycle_state; 3809 3810 /* Queue setup TRB - see section 6.4.1.2.1 */ 3811 /* FIXME better way to translate setup_packet into two u32 fields? */ 3812 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3813 field = 0; 3814 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3815 if (start_cycle == 0) 3816 field |= 0x1; 3817 3818 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3819 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3820 if (urb->transfer_buffer_length > 0) { 3821 if (setup->bRequestType & USB_DIR_IN) 3822 field |= TRB_TX_TYPE(TRB_DATA_IN); 3823 else 3824 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3825 } 3826 } 3827 3828 queue_trb(xhci, ep_ring, true, 3829 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3830 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3831 TRB_LEN(8) | TRB_INTR_TARGET(0), 3832 /* Immediate data in pointer */ 3833 field); 3834 3835 /* If there's data, queue data TRBs */ 3836 /* Only set interrupt on short packet for IN endpoints */ 3837 if (usb_urb_dir_in(urb)) 3838 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3839 else 3840 field = TRB_TYPE(TRB_DATA); 3841 3842 if (urb->transfer_buffer_length > 0) { 3843 u32 length_field, remainder; 3844 u64 addr; 3845 3846 if (xhci_urb_suitable_for_idt(urb)) { 3847 memcpy(&addr, urb->transfer_buffer, 3848 urb->transfer_buffer_length); 3849 le64_to_cpus(&addr); 3850 field |= TRB_IDT; 3851 } else { 3852 addr = (u64) urb->transfer_dma; 3853 } 3854 3855 remainder = xhci_td_remainder(xhci, 0, 3856 urb->transfer_buffer_length, 3857 urb->transfer_buffer_length, 3858 urb, 1); 3859 length_field = TRB_LEN(urb->transfer_buffer_length) | 3860 TRB_TD_SIZE(remainder) | 3861 TRB_INTR_TARGET(0); 3862 if (setup->bRequestType & USB_DIR_IN) 3863 field |= TRB_DIR_IN; 3864 queue_trb(xhci, ep_ring, true, 3865 lower_32_bits(addr), 3866 upper_32_bits(addr), 3867 length_field, 3868 field | ep_ring->cycle_state); 3869 } 3870 3871 /* Save the DMA address of the last TRB in the TD */ 3872 td->last_trb = ep_ring->enqueue; 3873 td->last_trb_seg = ep_ring->enq_seg; 3874 3875 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3876 /* If the device sent data, the status stage is an OUT transfer */ 3877 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3878 field = 0; 3879 else 3880 field = TRB_DIR_IN; 3881 queue_trb(xhci, ep_ring, false, 3882 0, 3883 0, 3884 TRB_INTR_TARGET(0), 3885 /* Event on completion */ 3886 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3887 3888 giveback_first_trb(xhci, slot_id, ep_index, 0, 3889 start_cycle, start_trb); 3890 return 0; 3891 } 3892 3893 /* 3894 * The transfer burst count field of the isochronous TRB defines the number of 3895 * bursts that are required to move all packets in this TD. Only SuperSpeed 3896 * devices can burst up to bMaxBurst number of packets per service interval. 3897 * This field is zero based, meaning a value of zero in the field means one 3898 * burst. Basically, for everything but SuperSpeed devices, this field will be 3899 * zero. Only xHCI 1.0 host controllers support this field. 3900 */ 3901 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3902 struct urb *urb, unsigned int total_packet_count) 3903 { 3904 unsigned int max_burst; 3905 3906 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3907 return 0; 3908 3909 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3910 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3911 } 3912 3913 /* 3914 * Returns the number of packets in the last "burst" of packets. This field is 3915 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3916 * the last burst packet count is equal to the total number of packets in the 3917 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3918 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3919 * contain 1 to (bMaxBurst + 1) packets. 3920 */ 3921 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3922 struct urb *urb, unsigned int total_packet_count) 3923 { 3924 unsigned int max_burst; 3925 unsigned int residue; 3926 3927 if (xhci->hci_version < 0x100) 3928 return 0; 3929 3930 if (urb->dev->speed >= USB_SPEED_SUPER) { 3931 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3932 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3933 residue = total_packet_count % (max_burst + 1); 3934 /* If residue is zero, the last burst contains (max_burst + 1) 3935 * number of packets, but the TLBPC field is zero-based. 3936 */ 3937 if (residue == 0) 3938 return max_burst; 3939 return residue - 1; 3940 } 3941 if (total_packet_count == 0) 3942 return 0; 3943 return total_packet_count - 1; 3944 } 3945 3946 /* 3947 * Calculates Frame ID field of the isochronous TRB identifies the 3948 * target frame that the Interval associated with this Isochronous 3949 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3950 * 3951 * Returns actual frame id on success, negative value on error. 3952 */ 3953 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3954 struct urb *urb, int index) 3955 { 3956 int start_frame, ist, ret = 0; 3957 int start_frame_id, end_frame_id, current_frame_id; 3958 3959 if (urb->dev->speed == USB_SPEED_LOW || 3960 urb->dev->speed == USB_SPEED_FULL) 3961 start_frame = urb->start_frame + index * urb->interval; 3962 else 3963 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3964 3965 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3966 * 3967 * If bit [3] of IST is cleared to '0', software can add a TRB no 3968 * later than IST[2:0] Microframes before that TRB is scheduled to 3969 * be executed. 3970 * If bit [3] of IST is set to '1', software can add a TRB no later 3971 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3972 */ 3973 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3974 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3975 ist <<= 3; 3976 3977 /* Software shall not schedule an Isoch TD with a Frame ID value that 3978 * is less than the Start Frame ID or greater than the End Frame ID, 3979 * where: 3980 * 3981 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3982 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3983 * 3984 * Both the End Frame ID and Start Frame ID values are calculated 3985 * in microframes. When software determines the valid Frame ID value; 3986 * The End Frame ID value should be rounded down to the nearest Frame 3987 * boundary, and the Start Frame ID value should be rounded up to the 3988 * nearest Frame boundary. 3989 */ 3990 current_frame_id = readl(&xhci->run_regs->microframe_index); 3991 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3992 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3993 3994 start_frame &= 0x7ff; 3995 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3996 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3997 3998 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3999 __func__, index, readl(&xhci->run_regs->microframe_index), 4000 start_frame_id, end_frame_id, start_frame); 4001 4002 if (start_frame_id < end_frame_id) { 4003 if (start_frame > end_frame_id || 4004 start_frame < start_frame_id) 4005 ret = -EINVAL; 4006 } else if (start_frame_id > end_frame_id) { 4007 if ((start_frame > end_frame_id && 4008 start_frame < start_frame_id)) 4009 ret = -EINVAL; 4010 } else { 4011 ret = -EINVAL; 4012 } 4013 4014 if (index == 0) { 4015 if (ret == -EINVAL || start_frame == start_frame_id) { 4016 start_frame = start_frame_id + 1; 4017 if (urb->dev->speed == USB_SPEED_LOW || 4018 urb->dev->speed == USB_SPEED_FULL) 4019 urb->start_frame = start_frame; 4020 else 4021 urb->start_frame = start_frame << 3; 4022 ret = 0; 4023 } 4024 } 4025 4026 if (ret) { 4027 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4028 start_frame, current_frame_id, index, 4029 start_frame_id, end_frame_id); 4030 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4031 return ret; 4032 } 4033 4034 return start_frame; 4035 } 4036 4037 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4038 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4039 { 4040 if (xhci->hci_version < 0x100) 4041 return false; 4042 /* always generate an event interrupt for the last TD */ 4043 if (i == num_tds - 1) 4044 return false; 4045 /* 4046 * If AVOID_BEI is set the host handles full event rings poorly, 4047 * generate an event at least every 8th TD to clear the event ring 4048 */ 4049 if (i && xhci->quirks & XHCI_AVOID_BEI) 4050 return !!(i % xhci->isoc_bei_interval); 4051 4052 return true; 4053 } 4054 4055 /* This is for isoc transfer */ 4056 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4057 struct urb *urb, int slot_id, unsigned int ep_index) 4058 { 4059 struct xhci_ring *ep_ring; 4060 struct urb_priv *urb_priv; 4061 struct xhci_td *td; 4062 int num_tds, trbs_per_td; 4063 struct xhci_generic_trb *start_trb; 4064 bool first_trb; 4065 int start_cycle; 4066 u32 field, length_field; 4067 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4068 u64 start_addr, addr; 4069 int i, j; 4070 bool more_trbs_coming; 4071 struct xhci_virt_ep *xep; 4072 int frame_id; 4073 4074 xep = &xhci->devs[slot_id]->eps[ep_index]; 4075 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4076 4077 num_tds = urb->number_of_packets; 4078 if (num_tds < 1) { 4079 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4080 return -EINVAL; 4081 } 4082 start_addr = (u64) urb->transfer_dma; 4083 start_trb = &ep_ring->enqueue->generic; 4084 start_cycle = ep_ring->cycle_state; 4085 4086 urb_priv = urb->hcpriv; 4087 /* Queue the TRBs for each TD, even if they are zero-length */ 4088 for (i = 0; i < num_tds; i++) { 4089 unsigned int total_pkt_count, max_pkt; 4090 unsigned int burst_count, last_burst_pkt_count; 4091 u32 sia_frame_id; 4092 4093 first_trb = true; 4094 running_total = 0; 4095 addr = start_addr + urb->iso_frame_desc[i].offset; 4096 td_len = urb->iso_frame_desc[i].length; 4097 td_remain_len = td_len; 4098 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4099 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4100 4101 /* A zero-length transfer still involves at least one packet. */ 4102 if (total_pkt_count == 0) 4103 total_pkt_count++; 4104 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4105 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4106 urb, total_pkt_count); 4107 4108 trbs_per_td = count_isoc_trbs_needed(urb, i); 4109 4110 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4111 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4112 if (ret < 0) { 4113 if (i == 0) 4114 return ret; 4115 goto cleanup; 4116 } 4117 td = &urb_priv->td[i]; 4118 td->num_trbs = trbs_per_td; 4119 /* use SIA as default, if frame id is used overwrite it */ 4120 sia_frame_id = TRB_SIA; 4121 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4122 HCC_CFC(xhci->hcc_params)) { 4123 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4124 if (frame_id >= 0) 4125 sia_frame_id = TRB_FRAME_ID(frame_id); 4126 } 4127 /* 4128 * Set isoc specific data for the first TRB in a TD. 4129 * Prevent HW from getting the TRBs by keeping the cycle state 4130 * inverted in the first TDs isoc TRB. 4131 */ 4132 field = TRB_TYPE(TRB_ISOC) | 4133 TRB_TLBPC(last_burst_pkt_count) | 4134 sia_frame_id | 4135 (i ? ep_ring->cycle_state : !start_cycle); 4136 4137 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4138 if (!xep->use_extended_tbc) 4139 field |= TRB_TBC(burst_count); 4140 4141 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4142 for (j = 0; j < trbs_per_td; j++) { 4143 u32 remainder = 0; 4144 4145 /* only first TRB is isoc, overwrite otherwise */ 4146 if (!first_trb) 4147 field = TRB_TYPE(TRB_NORMAL) | 4148 ep_ring->cycle_state; 4149 4150 /* Only set interrupt on short packet for IN EPs */ 4151 if (usb_urb_dir_in(urb)) 4152 field |= TRB_ISP; 4153 4154 /* Set the chain bit for all except the last TRB */ 4155 if (j < trbs_per_td - 1) { 4156 more_trbs_coming = true; 4157 field |= TRB_CHAIN; 4158 } else { 4159 more_trbs_coming = false; 4160 td->last_trb = ep_ring->enqueue; 4161 td->last_trb_seg = ep_ring->enq_seg; 4162 field |= TRB_IOC; 4163 if (trb_block_event_intr(xhci, num_tds, i)) 4164 field |= TRB_BEI; 4165 } 4166 /* Calculate TRB length */ 4167 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4168 if (trb_buff_len > td_remain_len) 4169 trb_buff_len = td_remain_len; 4170 4171 /* Set the TRB length, TD size, & interrupter fields. */ 4172 remainder = xhci_td_remainder(xhci, running_total, 4173 trb_buff_len, td_len, 4174 urb, more_trbs_coming); 4175 4176 length_field = TRB_LEN(trb_buff_len) | 4177 TRB_INTR_TARGET(0); 4178 4179 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4180 if (first_trb && xep->use_extended_tbc) 4181 length_field |= TRB_TD_SIZE_TBC(burst_count); 4182 else 4183 length_field |= TRB_TD_SIZE(remainder); 4184 first_trb = false; 4185 4186 queue_trb(xhci, ep_ring, more_trbs_coming, 4187 lower_32_bits(addr), 4188 upper_32_bits(addr), 4189 length_field, 4190 field); 4191 running_total += trb_buff_len; 4192 4193 addr += trb_buff_len; 4194 td_remain_len -= trb_buff_len; 4195 } 4196 4197 /* Check TD length */ 4198 if (running_total != td_len) { 4199 xhci_err(xhci, "ISOC TD length unmatch\n"); 4200 ret = -EINVAL; 4201 goto cleanup; 4202 } 4203 } 4204 4205 /* store the next frame id */ 4206 if (HCC_CFC(xhci->hcc_params)) 4207 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4208 4209 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4210 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4211 usb_amd_quirk_pll_disable(); 4212 } 4213 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4214 4215 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4216 start_cycle, start_trb); 4217 return 0; 4218 cleanup: 4219 /* Clean up a partially enqueued isoc transfer. */ 4220 4221 for (i--; i >= 0; i--) 4222 list_del_init(&urb_priv->td[i].td_list); 4223 4224 /* Use the first TD as a temporary variable to turn the TDs we've queued 4225 * into No-ops with a software-owned cycle bit. That way the hardware 4226 * won't accidentally start executing bogus TDs when we partially 4227 * overwrite them. td->first_trb and td->start_seg are already set. 4228 */ 4229 urb_priv->td[0].last_trb = ep_ring->enqueue; 4230 /* Every TRB except the first & last will have its cycle bit flipped. */ 4231 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4232 4233 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4234 ep_ring->enqueue = urb_priv->td[0].first_trb; 4235 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4236 ep_ring->cycle_state = start_cycle; 4237 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4238 return ret; 4239 } 4240 4241 /* 4242 * Check transfer ring to guarantee there is enough room for the urb. 4243 * Update ISO URB start_frame and interval. 4244 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4245 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4246 * Contiguous Frame ID is not supported by HC. 4247 */ 4248 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4249 struct urb *urb, int slot_id, unsigned int ep_index) 4250 { 4251 struct xhci_virt_device *xdev; 4252 struct xhci_ring *ep_ring; 4253 struct xhci_ep_ctx *ep_ctx; 4254 int start_frame; 4255 int num_tds, num_trbs, i; 4256 int ret; 4257 struct xhci_virt_ep *xep; 4258 int ist; 4259 4260 xdev = xhci->devs[slot_id]; 4261 xep = &xhci->devs[slot_id]->eps[ep_index]; 4262 ep_ring = xdev->eps[ep_index].ring; 4263 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4264 4265 num_trbs = 0; 4266 num_tds = urb->number_of_packets; 4267 for (i = 0; i < num_tds; i++) 4268 num_trbs += count_isoc_trbs_needed(urb, i); 4269 4270 /* Check the ring to guarantee there is enough room for the whole urb. 4271 * Do not insert any td of the urb to the ring if the check failed. 4272 */ 4273 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4274 num_trbs, mem_flags); 4275 if (ret) 4276 return ret; 4277 4278 /* 4279 * Check interval value. This should be done before we start to 4280 * calculate the start frame value. 4281 */ 4282 check_interval(xhci, urb, ep_ctx); 4283 4284 /* Calculate the start frame and put it in urb->start_frame. */ 4285 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4286 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4287 urb->start_frame = xep->next_frame_id; 4288 goto skip_start_over; 4289 } 4290 } 4291 4292 start_frame = readl(&xhci->run_regs->microframe_index); 4293 start_frame &= 0x3fff; 4294 /* 4295 * Round up to the next frame and consider the time before trb really 4296 * gets scheduled by hardare. 4297 */ 4298 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4299 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4300 ist <<= 3; 4301 start_frame += ist + XHCI_CFC_DELAY; 4302 start_frame = roundup(start_frame, 8); 4303 4304 /* 4305 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4306 * is greate than 8 microframes. 4307 */ 4308 if (urb->dev->speed == USB_SPEED_LOW || 4309 urb->dev->speed == USB_SPEED_FULL) { 4310 start_frame = roundup(start_frame, urb->interval << 3); 4311 urb->start_frame = start_frame >> 3; 4312 } else { 4313 start_frame = roundup(start_frame, urb->interval); 4314 urb->start_frame = start_frame; 4315 } 4316 4317 skip_start_over: 4318 4319 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4320 } 4321 4322 /**** Command Ring Operations ****/ 4323 4324 /* Generic function for queueing a command TRB on the command ring. 4325 * Check to make sure there's room on the command ring for one command TRB. 4326 * Also check that there's room reserved for commands that must not fail. 4327 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4328 * then only check for the number of reserved spots. 4329 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4330 * because the command event handler may want to resubmit a failed command. 4331 */ 4332 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4333 u32 field1, u32 field2, 4334 u32 field3, u32 field4, bool command_must_succeed) 4335 { 4336 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4337 int ret; 4338 4339 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4340 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4341 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4342 return -ESHUTDOWN; 4343 } 4344 4345 if (!command_must_succeed) 4346 reserved_trbs++; 4347 4348 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4349 reserved_trbs, GFP_ATOMIC); 4350 if (ret < 0) { 4351 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4352 if (command_must_succeed) 4353 xhci_err(xhci, "ERR: Reserved TRB counting for " 4354 "unfailable commands failed.\n"); 4355 return ret; 4356 } 4357 4358 cmd->command_trb = xhci->cmd_ring->enqueue; 4359 4360 /* if there are no other commands queued we start the timeout timer */ 4361 if (list_empty(&xhci->cmd_list)) { 4362 xhci->current_cmd = cmd; 4363 xhci_mod_cmd_timer(xhci); 4364 } 4365 4366 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4367 4368 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4369 field4 | xhci->cmd_ring->cycle_state); 4370 return 0; 4371 } 4372 4373 /* Queue a slot enable or disable request on the command ring */ 4374 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4375 u32 trb_type, u32 slot_id) 4376 { 4377 return queue_command(xhci, cmd, 0, 0, 0, 4378 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4379 } 4380 4381 /* Queue an address device command TRB */ 4382 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4383 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4384 { 4385 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4386 upper_32_bits(in_ctx_ptr), 0, 4387 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4388 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4389 } 4390 4391 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4392 u32 field1, u32 field2, u32 field3, u32 field4) 4393 { 4394 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4395 } 4396 4397 /* Queue a reset device command TRB */ 4398 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4399 u32 slot_id) 4400 { 4401 return queue_command(xhci, cmd, 0, 0, 0, 4402 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4403 false); 4404 } 4405 4406 /* Queue a configure endpoint command TRB */ 4407 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4408 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4409 u32 slot_id, bool command_must_succeed) 4410 { 4411 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4412 upper_32_bits(in_ctx_ptr), 0, 4413 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4414 command_must_succeed); 4415 } 4416 4417 /* Queue an evaluate context command TRB */ 4418 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4419 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4420 { 4421 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4422 upper_32_bits(in_ctx_ptr), 0, 4423 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4424 command_must_succeed); 4425 } 4426 4427 /* 4428 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4429 * activity on an endpoint that is about to be suspended. 4430 */ 4431 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4432 int slot_id, unsigned int ep_index, int suspend) 4433 { 4434 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4435 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4436 u32 type = TRB_TYPE(TRB_STOP_RING); 4437 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4438 4439 return queue_command(xhci, cmd, 0, 0, 0, 4440 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4441 } 4442 4443 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4444 int slot_id, unsigned int ep_index, 4445 enum xhci_ep_reset_type reset_type) 4446 { 4447 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4448 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4449 u32 type = TRB_TYPE(TRB_RESET_EP); 4450 4451 if (reset_type == EP_SOFT_RESET) 4452 type |= TRB_TSP; 4453 4454 return queue_command(xhci, cmd, 0, 0, 0, 4455 trb_slot_id | trb_ep_index | type, false); 4456 } 4457