1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 284 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 285 286 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 287 /* Flush PCI posted writes */ 288 readl(&xhci->dba->doorbell[0]); 289 } 290 291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 292 { 293 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 294 } 295 296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 297 { 298 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 299 cmd_list); 300 } 301 302 /* 303 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 304 * If there are other commands waiting then restart the ring and kick the timer. 305 * This must be called with command ring stopped and xhci->lock held. 306 */ 307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 308 struct xhci_command *cur_cmd) 309 { 310 struct xhci_command *i_cmd; 311 312 /* Turn all aborted commands in list to no-ops, then restart */ 313 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 314 315 if (i_cmd->status != COMP_COMMAND_ABORTED) 316 continue; 317 318 i_cmd->status = COMP_COMMAND_RING_STOPPED; 319 320 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 321 i_cmd->command_trb); 322 323 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 324 325 /* 326 * caller waiting for completion is called when command 327 * completion event is received for these no-op commands 328 */ 329 } 330 331 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 332 333 /* ring command ring doorbell to restart the command ring */ 334 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 335 !(xhci->xhc_state & XHCI_STATE_DYING)) { 336 xhci->current_cmd = cur_cmd; 337 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 338 xhci_ring_cmd_db(xhci); 339 } 340 } 341 342 /* Must be called with xhci->lock held, releases and aquires lock back */ 343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 344 { 345 u64 temp_64; 346 int ret; 347 348 xhci_dbg(xhci, "Abort command ring\n"); 349 350 reinit_completion(&xhci->cmd_ring_stop_completion); 351 352 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 353 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 354 &xhci->op_regs->cmd_ring); 355 356 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 357 * completion of the Command Abort operation. If CRR is not negated in 5 358 * seconds then driver handles it as if host died (-ENODEV). 359 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 360 * and try to recover a -ETIMEDOUT with a host controller reset. 361 */ 362 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 363 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 364 if (ret < 0) { 365 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 366 xhci_halt(xhci); 367 xhci_hc_died(xhci); 368 return ret; 369 } 370 /* 371 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 372 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 373 * but the completion event in never sent. Wait 2 secs (arbitrary 374 * number) to handle those cases after negation of CMD_RING_RUNNING. 375 */ 376 spin_unlock_irqrestore(&xhci->lock, flags); 377 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 378 msecs_to_jiffies(2000)); 379 spin_lock_irqsave(&xhci->lock, flags); 380 if (!ret) { 381 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 382 xhci_cleanup_command_queue(xhci); 383 } else { 384 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 385 } 386 return 0; 387 } 388 389 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 390 unsigned int slot_id, 391 unsigned int ep_index, 392 unsigned int stream_id) 393 { 394 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 395 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 396 unsigned int ep_state = ep->ep_state; 397 398 /* Don't ring the doorbell for this endpoint if there are pending 399 * cancellations because we don't want to interrupt processing. 400 * We don't want to restart any stream rings if there's a set dequeue 401 * pointer command pending because the device can choose to start any 402 * stream once the endpoint is on the HW schedule. 403 */ 404 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 405 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 406 return; 407 408 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 409 410 writel(DB_VALUE(ep_index, stream_id), db_addr); 411 /* The CPU has better things to do at this point than wait for a 412 * write-posting flush. It'll get there soon enough. 413 */ 414 } 415 416 /* Ring the doorbell for any rings with pending URBs */ 417 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 418 unsigned int slot_id, 419 unsigned int ep_index) 420 { 421 unsigned int stream_id; 422 struct xhci_virt_ep *ep; 423 424 ep = &xhci->devs[slot_id]->eps[ep_index]; 425 426 /* A ring has pending URBs if its TD list is not empty */ 427 if (!(ep->ep_state & EP_HAS_STREAMS)) { 428 if (ep->ring && !(list_empty(&ep->ring->td_list))) 429 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 430 return; 431 } 432 433 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 434 stream_id++) { 435 struct xhci_stream_info *stream_info = ep->stream_info; 436 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 437 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 438 stream_id); 439 } 440 } 441 442 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 443 unsigned int slot_id, 444 unsigned int ep_index) 445 { 446 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 447 } 448 449 /* Get the right ring for the given slot_id, ep_index and stream_id. 450 * If the endpoint supports streams, boundary check the URB's stream ID. 451 * If the endpoint doesn't support streams, return the singular endpoint ring. 452 */ 453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 454 unsigned int slot_id, unsigned int ep_index, 455 unsigned int stream_id) 456 { 457 struct xhci_virt_ep *ep; 458 459 ep = &xhci->devs[slot_id]->eps[ep_index]; 460 /* Common case: no streams */ 461 if (!(ep->ep_state & EP_HAS_STREAMS)) 462 return ep->ring; 463 464 if (stream_id == 0) { 465 xhci_warn(xhci, 466 "WARN: Slot ID %u, ep index %u has streams, " 467 "but URB has no stream ID.\n", 468 slot_id, ep_index); 469 return NULL; 470 } 471 472 if (stream_id < ep->stream_info->num_streams) 473 return ep->stream_info->stream_rings[stream_id]; 474 475 xhci_warn(xhci, 476 "WARN: Slot ID %u, ep index %u has " 477 "stream IDs 1 to %u allocated, " 478 "but stream ID %u is requested.\n", 479 slot_id, ep_index, 480 ep->stream_info->num_streams - 1, 481 stream_id); 482 return NULL; 483 } 484 485 486 /* 487 * Get the hw dequeue pointer xHC stopped on, either directly from the 488 * endpoint context, or if streams are in use from the stream context. 489 * The returned hw_dequeue contains the lowest four bits with cycle state 490 * and possbile stream context type. 491 */ 492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 493 unsigned int ep_index, unsigned int stream_id) 494 { 495 struct xhci_ep_ctx *ep_ctx; 496 struct xhci_stream_ctx *st_ctx; 497 struct xhci_virt_ep *ep; 498 499 ep = &vdev->eps[ep_index]; 500 501 if (ep->ep_state & EP_HAS_STREAMS) { 502 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 503 return le64_to_cpu(st_ctx->stream_ring); 504 } 505 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 506 return le64_to_cpu(ep_ctx->deq); 507 } 508 509 /* 510 * Move the xHC's endpoint ring dequeue pointer past cur_td. 511 * Record the new state of the xHC's endpoint ring dequeue segment, 512 * dequeue pointer, stream id, and new consumer cycle state in state. 513 * Update our internal representation of the ring's dequeue pointer. 514 * 515 * We do this in three jumps: 516 * - First we update our new ring state to be the same as when the xHC stopped. 517 * - Then we traverse the ring to find the segment that contains 518 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 519 * any link TRBs with the toggle cycle bit set. 520 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 521 * if we've moved it past a link TRB with the toggle cycle bit set. 522 * 523 * Some of the uses of xhci_generic_trb are grotty, but if they're done 524 * with correct __le32 accesses they should work fine. Only users of this are 525 * in here. 526 */ 527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 528 unsigned int slot_id, unsigned int ep_index, 529 unsigned int stream_id, struct xhci_td *cur_td, 530 struct xhci_dequeue_state *state) 531 { 532 struct xhci_virt_device *dev = xhci->devs[slot_id]; 533 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 534 struct xhci_ring *ep_ring; 535 struct xhci_segment *new_seg; 536 union xhci_trb *new_deq; 537 dma_addr_t addr; 538 u64 hw_dequeue; 539 bool cycle_found = false; 540 bool td_last_trb_found = false; 541 542 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 543 ep_index, stream_id); 544 if (!ep_ring) { 545 xhci_warn(xhci, "WARN can't find new dequeue state " 546 "for invalid stream ID %u.\n", 547 stream_id); 548 return; 549 } 550 /* 551 * A cancelled TD can complete with a stall if HW cached the trb. 552 * In this case driver can't find cur_td, but if the ring is empty we 553 * can move the dequeue pointer to the current enqueue position. 554 */ 555 if (!cur_td) { 556 if (list_empty(&ep_ring->td_list)) { 557 state->new_deq_seg = ep_ring->enq_seg; 558 state->new_deq_ptr = ep_ring->enqueue; 559 state->new_cycle_state = ep_ring->cycle_state; 560 goto done; 561 } else { 562 xhci_warn(xhci, "Can't find new dequeue state, missing cur_td\n"); 563 return; 564 } 565 } 566 567 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 568 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 569 "Finding endpoint context"); 570 571 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 572 new_seg = ep_ring->deq_seg; 573 new_deq = ep_ring->dequeue; 574 state->new_cycle_state = hw_dequeue & 0x1; 575 state->stream_id = stream_id; 576 577 /* 578 * We want to find the pointer, segment and cycle state of the new trb 579 * (the one after current TD's last_trb). We know the cycle state at 580 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 581 * found. 582 */ 583 do { 584 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 585 == (dma_addr_t)(hw_dequeue & ~0xf)) { 586 cycle_found = true; 587 if (td_last_trb_found) 588 break; 589 } 590 if (new_deq == cur_td->last_trb) 591 td_last_trb_found = true; 592 593 if (cycle_found && trb_is_link(new_deq) && 594 link_trb_toggles_cycle(new_deq)) 595 state->new_cycle_state ^= 0x1; 596 597 next_trb(xhci, ep_ring, &new_seg, &new_deq); 598 599 /* Search wrapped around, bail out */ 600 if (new_deq == ep->ring->dequeue) { 601 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 602 state->new_deq_seg = NULL; 603 state->new_deq_ptr = NULL; 604 return; 605 } 606 607 } while (!cycle_found || !td_last_trb_found); 608 609 state->new_deq_seg = new_seg; 610 state->new_deq_ptr = new_deq; 611 612 done: 613 /* Don't update the ring cycle state for the producer (us). */ 614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 615 "Cycle state = 0x%x", state->new_cycle_state); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 618 "New dequeue segment = %p (virtual)", 619 state->new_deq_seg); 620 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 621 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 622 "New dequeue pointer = 0x%llx (DMA)", 623 (unsigned long long) addr); 624 } 625 626 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 627 * (The last TRB actually points to the ring enqueue pointer, which is not part 628 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 629 */ 630 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 631 struct xhci_td *td, bool flip_cycle) 632 { 633 struct xhci_segment *seg = td->start_seg; 634 union xhci_trb *trb = td->first_trb; 635 636 while (1) { 637 trb_to_noop(trb, TRB_TR_NOOP); 638 639 /* flip cycle if asked to */ 640 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 641 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 642 643 if (trb == td->last_trb) 644 break; 645 646 next_trb(xhci, ep_ring, &seg, &trb); 647 } 648 } 649 650 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 651 struct xhci_virt_ep *ep) 652 { 653 ep->ep_state &= ~EP_STOP_CMD_PENDING; 654 /* Can't del_timer_sync in interrupt */ 655 del_timer(&ep->stop_cmd_timer); 656 } 657 658 /* 659 * Must be called with xhci->lock held in interrupt context, 660 * releases and re-acquires xhci->lock 661 */ 662 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 663 struct xhci_td *cur_td, int status) 664 { 665 struct urb *urb = cur_td->urb; 666 struct urb_priv *urb_priv = urb->hcpriv; 667 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 668 669 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 670 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 671 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 672 if (xhci->quirks & XHCI_AMD_PLL_FIX) 673 usb_amd_quirk_pll_enable(); 674 } 675 } 676 xhci_urb_free_priv(urb_priv); 677 usb_hcd_unlink_urb_from_ep(hcd, urb); 678 trace_xhci_urb_giveback(urb); 679 usb_hcd_giveback_urb(hcd, urb, status); 680 } 681 682 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 683 struct xhci_ring *ring, struct xhci_td *td) 684 { 685 struct device *dev = xhci_to_hcd(xhci)->self.controller; 686 struct xhci_segment *seg = td->bounce_seg; 687 struct urb *urb = td->urb; 688 size_t len; 689 690 if (!ring || !seg || !urb) 691 return; 692 693 if (usb_urb_dir_out(urb)) { 694 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 695 DMA_TO_DEVICE); 696 return; 697 } 698 699 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 700 DMA_FROM_DEVICE); 701 /* for in tranfers we need to copy the data from bounce to sg */ 702 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 703 seg->bounce_len, seg->bounce_offs); 704 if (len != seg->bounce_len) 705 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 706 len, seg->bounce_len); 707 seg->bounce_len = 0; 708 seg->bounce_offs = 0; 709 } 710 711 /* 712 * When we get a command completion for a Stop Endpoint Command, we need to 713 * unlink any cancelled TDs from the ring. There are two ways to do that: 714 * 715 * 1. If the HW was in the middle of processing the TD that needs to be 716 * cancelled, then we must move the ring's dequeue pointer past the last TRB 717 * in the TD with a Set Dequeue Pointer Command. 718 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 719 * bit cleared) so that the HW will skip over them. 720 */ 721 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 722 union xhci_trb *trb, struct xhci_event_cmd *event) 723 { 724 unsigned int ep_index; 725 struct xhci_ring *ep_ring; 726 struct xhci_virt_ep *ep; 727 struct xhci_td *cur_td = NULL; 728 struct xhci_td *last_unlinked_td; 729 struct xhci_ep_ctx *ep_ctx; 730 struct xhci_virt_device *vdev; 731 u64 hw_deq; 732 struct xhci_dequeue_state deq_state; 733 734 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 735 if (!xhci->devs[slot_id]) 736 xhci_warn(xhci, "Stop endpoint command " 737 "completion for disabled slot %u\n", 738 slot_id); 739 return; 740 } 741 742 memset(&deq_state, 0, sizeof(deq_state)); 743 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 744 745 vdev = xhci->devs[slot_id]; 746 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 747 trace_xhci_handle_cmd_stop_ep(ep_ctx); 748 749 ep = &xhci->devs[slot_id]->eps[ep_index]; 750 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 751 struct xhci_td, cancelled_td_list); 752 753 if (list_empty(&ep->cancelled_td_list)) { 754 xhci_stop_watchdog_timer_in_irq(xhci, ep); 755 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 756 return; 757 } 758 759 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 760 * We have the xHCI lock, so nothing can modify this list until we drop 761 * it. We're also in the event handler, so we can't get re-interrupted 762 * if another Stop Endpoint command completes 763 */ 764 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 765 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 766 "Removing canceled TD starting at 0x%llx (dma).", 767 (unsigned long long)xhci_trb_virt_to_dma( 768 cur_td->start_seg, cur_td->first_trb)); 769 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 770 if (!ep_ring) { 771 /* This shouldn't happen unless a driver is mucking 772 * with the stream ID after submission. This will 773 * leave the TD on the hardware ring, and the hardware 774 * will try to execute it, and may access a buffer 775 * that has already been freed. In the best case, the 776 * hardware will execute it, and the event handler will 777 * ignore the completion event for that TD, since it was 778 * removed from the td_list for that endpoint. In 779 * short, don't muck with the stream ID after 780 * submission. 781 */ 782 xhci_warn(xhci, "WARN Cancelled URB %p " 783 "has invalid stream ID %u.\n", 784 cur_td->urb, 785 cur_td->urb->stream_id); 786 goto remove_finished_td; 787 } 788 /* 789 * If we stopped on the TD we need to cancel, then we have to 790 * move the xHC endpoint ring dequeue pointer past this TD. 791 */ 792 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 793 cur_td->urb->stream_id); 794 hw_deq &= ~0xf; 795 796 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 797 cur_td->last_trb, hw_deq, false)) { 798 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 799 cur_td->urb->stream_id, 800 cur_td, &deq_state); 801 } else { 802 td_to_noop(xhci, ep_ring, cur_td, false); 803 } 804 805 remove_finished_td: 806 /* 807 * The event handler won't see a completion for this TD anymore, 808 * so remove it from the endpoint ring's TD list. Keep it in 809 * the cancelled TD list for URB completion later. 810 */ 811 list_del_init(&cur_td->td_list); 812 } 813 814 xhci_stop_watchdog_timer_in_irq(xhci, ep); 815 816 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 817 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 818 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 819 &deq_state); 820 xhci_ring_cmd_db(xhci); 821 } else { 822 /* Otherwise ring the doorbell(s) to restart queued transfers */ 823 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 824 } 825 826 /* 827 * Drop the lock and complete the URBs in the cancelled TD list. 828 * New TDs to be cancelled might be added to the end of the list before 829 * we can complete all the URBs for the TDs we already unlinked. 830 * So stop when we've completed the URB for the last TD we unlinked. 831 */ 832 do { 833 cur_td = list_first_entry(&ep->cancelled_td_list, 834 struct xhci_td, cancelled_td_list); 835 list_del_init(&cur_td->cancelled_td_list); 836 837 /* Clean up the cancelled URB */ 838 /* Doesn't matter what we pass for status, since the core will 839 * just overwrite it (because the URB has been unlinked). 840 */ 841 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 842 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 843 inc_td_cnt(cur_td->urb); 844 if (last_td_in_urb(cur_td)) 845 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 846 847 /* Stop processing the cancelled list if the watchdog timer is 848 * running. 849 */ 850 if (xhci->xhc_state & XHCI_STATE_DYING) 851 return; 852 } while (cur_td != last_unlinked_td); 853 854 /* Return to the event handler with xhci->lock re-acquired */ 855 } 856 857 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 858 { 859 struct xhci_td *cur_td; 860 struct xhci_td *tmp; 861 862 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 863 list_del_init(&cur_td->td_list); 864 865 if (!list_empty(&cur_td->cancelled_td_list)) 866 list_del_init(&cur_td->cancelled_td_list); 867 868 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 869 870 inc_td_cnt(cur_td->urb); 871 if (last_td_in_urb(cur_td)) 872 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 873 } 874 } 875 876 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 877 int slot_id, int ep_index) 878 { 879 struct xhci_td *cur_td; 880 struct xhci_td *tmp; 881 struct xhci_virt_ep *ep; 882 struct xhci_ring *ring; 883 884 ep = &xhci->devs[slot_id]->eps[ep_index]; 885 if ((ep->ep_state & EP_HAS_STREAMS) || 886 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 887 int stream_id; 888 889 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 890 stream_id++) { 891 ring = ep->stream_info->stream_rings[stream_id]; 892 if (!ring) 893 continue; 894 895 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 896 "Killing URBs for slot ID %u, ep index %u, stream %u", 897 slot_id, ep_index, stream_id); 898 xhci_kill_ring_urbs(xhci, ring); 899 } 900 } else { 901 ring = ep->ring; 902 if (!ring) 903 return; 904 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 905 "Killing URBs for slot ID %u, ep index %u", 906 slot_id, ep_index); 907 xhci_kill_ring_urbs(xhci, ring); 908 } 909 910 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 911 cancelled_td_list) { 912 list_del_init(&cur_td->cancelled_td_list); 913 inc_td_cnt(cur_td->urb); 914 915 if (last_td_in_urb(cur_td)) 916 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 917 } 918 } 919 920 /* 921 * host controller died, register read returns 0xffffffff 922 * Complete pending commands, mark them ABORTED. 923 * URBs need to be given back as usb core might be waiting with device locks 924 * held for the URBs to finish during device disconnect, blocking host remove. 925 * 926 * Call with xhci->lock held. 927 * lock is relased and re-acquired while giving back urb. 928 */ 929 void xhci_hc_died(struct xhci_hcd *xhci) 930 { 931 int i, j; 932 933 if (xhci->xhc_state & XHCI_STATE_DYING) 934 return; 935 936 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 937 xhci->xhc_state |= XHCI_STATE_DYING; 938 939 xhci_cleanup_command_queue(xhci); 940 941 /* return any pending urbs, remove may be waiting for them */ 942 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 943 if (!xhci->devs[i]) 944 continue; 945 for (j = 0; j < 31; j++) 946 xhci_kill_endpoint_urbs(xhci, i, j); 947 } 948 949 /* inform usb core hc died if PCI remove isn't already handling it */ 950 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 951 usb_hc_died(xhci_to_hcd(xhci)); 952 } 953 954 /* Watchdog timer function for when a stop endpoint command fails to complete. 955 * In this case, we assume the host controller is broken or dying or dead. The 956 * host may still be completing some other events, so we have to be careful to 957 * let the event ring handler and the URB dequeueing/enqueueing functions know 958 * through xhci->state. 959 * 960 * The timer may also fire if the host takes a very long time to respond to the 961 * command, and the stop endpoint command completion handler cannot delete the 962 * timer before the timer function is called. Another endpoint cancellation may 963 * sneak in before the timer function can grab the lock, and that may queue 964 * another stop endpoint command and add the timer back. So we cannot use a 965 * simple flag to say whether there is a pending stop endpoint command for a 966 * particular endpoint. 967 * 968 * Instead we use a combination of that flag and checking if a new timer is 969 * pending. 970 */ 971 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 972 { 973 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 974 struct xhci_hcd *xhci = ep->xhci; 975 unsigned long flags; 976 u32 usbsts; 977 978 spin_lock_irqsave(&xhci->lock, flags); 979 980 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 981 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 982 timer_pending(&ep->stop_cmd_timer)) { 983 spin_unlock_irqrestore(&xhci->lock, flags); 984 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 985 return; 986 } 987 usbsts = readl(&xhci->op_regs->status); 988 989 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 990 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts)); 991 992 ep->ep_state &= ~EP_STOP_CMD_PENDING; 993 994 xhci_halt(xhci); 995 996 /* 997 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 998 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 999 * and try to recover a -ETIMEDOUT with a host controller reset 1000 */ 1001 xhci_hc_died(xhci); 1002 1003 spin_unlock_irqrestore(&xhci->lock, flags); 1004 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1005 "xHCI host controller is dead."); 1006 } 1007 1008 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1009 struct xhci_virt_device *dev, 1010 struct xhci_ring *ep_ring, 1011 unsigned int ep_index) 1012 { 1013 union xhci_trb *dequeue_temp; 1014 int num_trbs_free_temp; 1015 bool revert = false; 1016 1017 num_trbs_free_temp = ep_ring->num_trbs_free; 1018 dequeue_temp = ep_ring->dequeue; 1019 1020 /* If we get two back-to-back stalls, and the first stalled transfer 1021 * ends just before a link TRB, the dequeue pointer will be left on 1022 * the link TRB by the code in the while loop. So we have to update 1023 * the dequeue pointer one segment further, or we'll jump off 1024 * the segment into la-la-land. 1025 */ 1026 if (trb_is_link(ep_ring->dequeue)) { 1027 ep_ring->deq_seg = ep_ring->deq_seg->next; 1028 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1029 } 1030 1031 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1032 /* We have more usable TRBs */ 1033 ep_ring->num_trbs_free++; 1034 ep_ring->dequeue++; 1035 if (trb_is_link(ep_ring->dequeue)) { 1036 if (ep_ring->dequeue == 1037 dev->eps[ep_index].queued_deq_ptr) 1038 break; 1039 ep_ring->deq_seg = ep_ring->deq_seg->next; 1040 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1041 } 1042 if (ep_ring->dequeue == dequeue_temp) { 1043 revert = true; 1044 break; 1045 } 1046 } 1047 1048 if (revert) { 1049 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1050 ep_ring->num_trbs_free = num_trbs_free_temp; 1051 } 1052 } 1053 1054 /* 1055 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1056 * we need to clear the set deq pending flag in the endpoint ring state, so that 1057 * the TD queueing code can ring the doorbell again. We also need to ring the 1058 * endpoint doorbell to restart the ring, but only if there aren't more 1059 * cancellations pending. 1060 */ 1061 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1062 union xhci_trb *trb, u32 cmd_comp_code) 1063 { 1064 unsigned int ep_index; 1065 unsigned int stream_id; 1066 struct xhci_ring *ep_ring; 1067 struct xhci_virt_device *dev; 1068 struct xhci_virt_ep *ep; 1069 struct xhci_ep_ctx *ep_ctx; 1070 struct xhci_slot_ctx *slot_ctx; 1071 1072 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1073 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1074 dev = xhci->devs[slot_id]; 1075 ep = &dev->eps[ep_index]; 1076 1077 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1078 if (!ep_ring) { 1079 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1080 stream_id); 1081 /* XXX: Harmless??? */ 1082 goto cleanup; 1083 } 1084 1085 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1086 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1087 trace_xhci_handle_cmd_set_deq(slot_ctx); 1088 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1089 1090 if (cmd_comp_code != COMP_SUCCESS) { 1091 unsigned int ep_state; 1092 unsigned int slot_state; 1093 1094 switch (cmd_comp_code) { 1095 case COMP_TRB_ERROR: 1096 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1097 break; 1098 case COMP_CONTEXT_STATE_ERROR: 1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1100 ep_state = GET_EP_CTX_STATE(ep_ctx); 1101 slot_state = le32_to_cpu(slot_ctx->dev_state); 1102 slot_state = GET_SLOT_STATE(slot_state); 1103 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1104 "Slot state = %u, EP state = %u", 1105 slot_state, ep_state); 1106 break; 1107 case COMP_SLOT_NOT_ENABLED_ERROR: 1108 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1109 slot_id); 1110 break; 1111 default: 1112 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1113 cmd_comp_code); 1114 break; 1115 } 1116 /* OK what do we do now? The endpoint state is hosed, and we 1117 * should never get to this point if the synchronization between 1118 * queueing, and endpoint state are correct. This might happen 1119 * if the device gets disconnected after we've finished 1120 * cancelling URBs, which might not be an error... 1121 */ 1122 } else { 1123 u64 deq; 1124 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1125 if (ep->ep_state & EP_HAS_STREAMS) { 1126 struct xhci_stream_ctx *ctx = 1127 &ep->stream_info->stream_ctx_array[stream_id]; 1128 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1129 } else { 1130 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1131 } 1132 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1133 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1134 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1135 ep->queued_deq_ptr) == deq) { 1136 /* Update the ring's dequeue segment and dequeue pointer 1137 * to reflect the new position. 1138 */ 1139 update_ring_for_set_deq_completion(xhci, dev, 1140 ep_ring, ep_index); 1141 } else { 1142 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1143 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1144 ep->queued_deq_seg, ep->queued_deq_ptr); 1145 } 1146 } 1147 1148 cleanup: 1149 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1150 dev->eps[ep_index].queued_deq_seg = NULL; 1151 dev->eps[ep_index].queued_deq_ptr = NULL; 1152 /* Restart any rings with pending URBs */ 1153 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1154 } 1155 1156 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1157 union xhci_trb *trb, u32 cmd_comp_code) 1158 { 1159 struct xhci_virt_device *vdev; 1160 struct xhci_ep_ctx *ep_ctx; 1161 unsigned int ep_index; 1162 1163 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1164 vdev = xhci->devs[slot_id]; 1165 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1166 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1167 1168 /* This command will only fail if the endpoint wasn't halted, 1169 * but we don't care. 1170 */ 1171 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1172 "Ignoring reset ep completion code of %u", cmd_comp_code); 1173 1174 /* HW with the reset endpoint quirk needs to have a configure endpoint 1175 * command complete before the endpoint can be used. Queue that here 1176 * because the HW can't handle two commands being queued in a row. 1177 */ 1178 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1179 struct xhci_command *command; 1180 1181 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1182 if (!command) 1183 return; 1184 1185 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1186 "Queueing configure endpoint command"); 1187 xhci_queue_configure_endpoint(xhci, command, 1188 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1189 false); 1190 xhci_ring_cmd_db(xhci); 1191 } else { 1192 /* Clear our internal halted state */ 1193 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1194 } 1195 1196 /* if this was a soft reset, then restart */ 1197 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1198 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1199 } 1200 1201 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1202 struct xhci_command *command, u32 cmd_comp_code) 1203 { 1204 if (cmd_comp_code == COMP_SUCCESS) 1205 command->slot_id = slot_id; 1206 else 1207 command->slot_id = 0; 1208 } 1209 1210 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1211 { 1212 struct xhci_virt_device *virt_dev; 1213 struct xhci_slot_ctx *slot_ctx; 1214 1215 virt_dev = xhci->devs[slot_id]; 1216 if (!virt_dev) 1217 return; 1218 1219 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1220 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1221 1222 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1223 /* Delete default control endpoint resources */ 1224 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1225 xhci_free_virt_device(xhci, slot_id); 1226 } 1227 1228 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1229 struct xhci_event_cmd *event, u32 cmd_comp_code) 1230 { 1231 struct xhci_virt_device *virt_dev; 1232 struct xhci_input_control_ctx *ctrl_ctx; 1233 struct xhci_ep_ctx *ep_ctx; 1234 unsigned int ep_index; 1235 unsigned int ep_state; 1236 u32 add_flags, drop_flags; 1237 1238 /* 1239 * Configure endpoint commands can come from the USB core 1240 * configuration or alt setting changes, or because the HW 1241 * needed an extra configure endpoint command after a reset 1242 * endpoint command or streams were being configured. 1243 * If the command was for a halted endpoint, the xHCI driver 1244 * is not waiting on the configure endpoint command. 1245 */ 1246 virt_dev = xhci->devs[slot_id]; 1247 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1248 if (!ctrl_ctx) { 1249 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1250 return; 1251 } 1252 1253 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1254 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1255 /* Input ctx add_flags are the endpoint index plus one */ 1256 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1257 1258 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1259 trace_xhci_handle_cmd_config_ep(ep_ctx); 1260 1261 /* A usb_set_interface() call directly after clearing a halted 1262 * condition may race on this quirky hardware. Not worth 1263 * worrying about, since this is prototype hardware. Not sure 1264 * if this will work for streams, but streams support was 1265 * untested on this prototype. 1266 */ 1267 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1268 ep_index != (unsigned int) -1 && 1269 add_flags - SLOT_FLAG == drop_flags) { 1270 ep_state = virt_dev->eps[ep_index].ep_state; 1271 if (!(ep_state & EP_HALTED)) 1272 return; 1273 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1274 "Completed config ep cmd - " 1275 "last ep index = %d, state = %d", 1276 ep_index, ep_state); 1277 /* Clear internal halted state and restart ring(s) */ 1278 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1279 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1280 return; 1281 } 1282 return; 1283 } 1284 1285 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1286 { 1287 struct xhci_virt_device *vdev; 1288 struct xhci_slot_ctx *slot_ctx; 1289 1290 vdev = xhci->devs[slot_id]; 1291 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1292 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1293 } 1294 1295 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1296 struct xhci_event_cmd *event) 1297 { 1298 struct xhci_virt_device *vdev; 1299 struct xhci_slot_ctx *slot_ctx; 1300 1301 vdev = xhci->devs[slot_id]; 1302 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1303 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1304 1305 xhci_dbg(xhci, "Completed reset device command.\n"); 1306 if (!xhci->devs[slot_id]) 1307 xhci_warn(xhci, "Reset device command completion " 1308 "for disabled slot %u\n", slot_id); 1309 } 1310 1311 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1312 struct xhci_event_cmd *event) 1313 { 1314 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1315 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1316 return; 1317 } 1318 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1319 "NEC firmware version %2x.%02x", 1320 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1321 NEC_FW_MINOR(le32_to_cpu(event->status))); 1322 } 1323 1324 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1325 { 1326 list_del(&cmd->cmd_list); 1327 1328 if (cmd->completion) { 1329 cmd->status = status; 1330 complete(cmd->completion); 1331 } else { 1332 kfree(cmd); 1333 } 1334 } 1335 1336 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1337 { 1338 struct xhci_command *cur_cmd, *tmp_cmd; 1339 xhci->current_cmd = NULL; 1340 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1341 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1342 } 1343 1344 void xhci_handle_command_timeout(struct work_struct *work) 1345 { 1346 struct xhci_hcd *xhci; 1347 unsigned long flags; 1348 u64 hw_ring_state; 1349 1350 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1351 1352 spin_lock_irqsave(&xhci->lock, flags); 1353 1354 /* 1355 * If timeout work is pending, or current_cmd is NULL, it means we 1356 * raced with command completion. Command is handled so just return. 1357 */ 1358 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1359 spin_unlock_irqrestore(&xhci->lock, flags); 1360 return; 1361 } 1362 /* mark this command to be cancelled */ 1363 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1364 1365 /* Make sure command ring is running before aborting it */ 1366 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1367 if (hw_ring_state == ~(u64)0) { 1368 xhci_hc_died(xhci); 1369 goto time_out_completed; 1370 } 1371 1372 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1373 (hw_ring_state & CMD_RING_RUNNING)) { 1374 /* Prevent new doorbell, and start command abort */ 1375 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1376 xhci_dbg(xhci, "Command timeout\n"); 1377 xhci_abort_cmd_ring(xhci, flags); 1378 goto time_out_completed; 1379 } 1380 1381 /* host removed. Bail out */ 1382 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1383 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1384 xhci_cleanup_command_queue(xhci); 1385 1386 goto time_out_completed; 1387 } 1388 1389 /* command timeout on stopped ring, ring can't be aborted */ 1390 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1391 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1392 1393 time_out_completed: 1394 spin_unlock_irqrestore(&xhci->lock, flags); 1395 return; 1396 } 1397 1398 static void handle_cmd_completion(struct xhci_hcd *xhci, 1399 struct xhci_event_cmd *event) 1400 { 1401 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1402 u64 cmd_dma; 1403 dma_addr_t cmd_dequeue_dma; 1404 u32 cmd_comp_code; 1405 union xhci_trb *cmd_trb; 1406 struct xhci_command *cmd; 1407 u32 cmd_type; 1408 1409 cmd_dma = le64_to_cpu(event->cmd_trb); 1410 cmd_trb = xhci->cmd_ring->dequeue; 1411 1412 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1413 1414 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1415 cmd_trb); 1416 /* 1417 * Check whether the completion event is for our internal kept 1418 * command. 1419 */ 1420 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1421 xhci_warn(xhci, 1422 "ERROR mismatched command completion event\n"); 1423 return; 1424 } 1425 1426 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1427 1428 cancel_delayed_work(&xhci->cmd_timer); 1429 1430 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1431 1432 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1433 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1434 complete_all(&xhci->cmd_ring_stop_completion); 1435 return; 1436 } 1437 1438 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1439 xhci_err(xhci, 1440 "Command completion event does not match command\n"); 1441 return; 1442 } 1443 1444 /* 1445 * Host aborted the command ring, check if the current command was 1446 * supposed to be aborted, otherwise continue normally. 1447 * The command ring is stopped now, but the xHC will issue a Command 1448 * Ring Stopped event which will cause us to restart it. 1449 */ 1450 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1451 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1452 if (cmd->status == COMP_COMMAND_ABORTED) { 1453 if (xhci->current_cmd == cmd) 1454 xhci->current_cmd = NULL; 1455 goto event_handled; 1456 } 1457 } 1458 1459 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1460 switch (cmd_type) { 1461 case TRB_ENABLE_SLOT: 1462 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1463 break; 1464 case TRB_DISABLE_SLOT: 1465 xhci_handle_cmd_disable_slot(xhci, slot_id); 1466 break; 1467 case TRB_CONFIG_EP: 1468 if (!cmd->completion) 1469 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1470 cmd_comp_code); 1471 break; 1472 case TRB_EVAL_CONTEXT: 1473 break; 1474 case TRB_ADDR_DEV: 1475 xhci_handle_cmd_addr_dev(xhci, slot_id); 1476 break; 1477 case TRB_STOP_RING: 1478 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1479 le32_to_cpu(cmd_trb->generic.field[3]))); 1480 if (!cmd->completion) 1481 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1482 break; 1483 case TRB_SET_DEQ: 1484 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1485 le32_to_cpu(cmd_trb->generic.field[3]))); 1486 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1487 break; 1488 case TRB_CMD_NOOP: 1489 /* Is this an aborted command turned to NO-OP? */ 1490 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1491 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1492 break; 1493 case TRB_RESET_EP: 1494 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1495 le32_to_cpu(cmd_trb->generic.field[3]))); 1496 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1497 break; 1498 case TRB_RESET_DEV: 1499 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1500 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1501 */ 1502 slot_id = TRB_TO_SLOT_ID( 1503 le32_to_cpu(cmd_trb->generic.field[3])); 1504 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1505 break; 1506 case TRB_NEC_GET_FW: 1507 xhci_handle_cmd_nec_get_fw(xhci, event); 1508 break; 1509 default: 1510 /* Skip over unknown commands on the event ring */ 1511 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1512 break; 1513 } 1514 1515 /* restart timer if this wasn't the last command */ 1516 if (!list_is_singular(&xhci->cmd_list)) { 1517 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1518 struct xhci_command, cmd_list); 1519 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1520 } else if (xhci->current_cmd == cmd) { 1521 xhci->current_cmd = NULL; 1522 } 1523 1524 event_handled: 1525 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1526 1527 inc_deq(xhci, xhci->cmd_ring); 1528 } 1529 1530 static void handle_vendor_event(struct xhci_hcd *xhci, 1531 union xhci_trb *event) 1532 { 1533 u32 trb_type; 1534 1535 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1536 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1537 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1538 handle_cmd_completion(xhci, &event->event_cmd); 1539 } 1540 1541 static void handle_device_notification(struct xhci_hcd *xhci, 1542 union xhci_trb *event) 1543 { 1544 u32 slot_id; 1545 struct usb_device *udev; 1546 1547 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1548 if (!xhci->devs[slot_id]) { 1549 xhci_warn(xhci, "Device Notification event for " 1550 "unused slot %u\n", slot_id); 1551 return; 1552 } 1553 1554 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1555 slot_id); 1556 udev = xhci->devs[slot_id]->udev; 1557 if (udev && udev->parent) 1558 usb_wakeup_notification(udev->parent, udev->portnum); 1559 } 1560 1561 /* 1562 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1563 * Controller. 1564 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1565 * If a connection to a USB 1 device is followed by another connection 1566 * to a USB 2 device. 1567 * 1568 * Reset the PHY after the USB device is disconnected if device speed 1569 * is less than HCD_USB3. 1570 * Retry the reset sequence max of 4 times checking the PLL lock status. 1571 * 1572 */ 1573 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1574 { 1575 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1576 u32 pll_lock_check; 1577 u32 retry_count = 4; 1578 1579 do { 1580 /* Assert PHY reset */ 1581 writel(0x6F, hcd->regs + 0x1048); 1582 udelay(10); 1583 /* De-assert the PHY reset */ 1584 writel(0x7F, hcd->regs + 0x1048); 1585 udelay(200); 1586 pll_lock_check = readl(hcd->regs + 0x1070); 1587 } while (!(pll_lock_check & 0x1) && --retry_count); 1588 } 1589 1590 static void handle_port_status(struct xhci_hcd *xhci, 1591 union xhci_trb *event) 1592 { 1593 struct usb_hcd *hcd; 1594 u32 port_id; 1595 u32 portsc, cmd_reg; 1596 int max_ports; 1597 int slot_id; 1598 unsigned int hcd_portnum; 1599 struct xhci_bus_state *bus_state; 1600 bool bogus_port_status = false; 1601 struct xhci_port *port; 1602 1603 /* Port status change events always have a successful completion code */ 1604 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1605 xhci_warn(xhci, 1606 "WARN: xHC returned failed port status event\n"); 1607 1608 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1609 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1610 1611 if ((port_id <= 0) || (port_id > max_ports)) { 1612 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1613 port_id); 1614 inc_deq(xhci, xhci->event_ring); 1615 return; 1616 } 1617 1618 port = &xhci->hw_ports[port_id - 1]; 1619 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1620 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1621 port_id); 1622 bogus_port_status = true; 1623 goto cleanup; 1624 } 1625 1626 /* We might get interrupts after shared_hcd is removed */ 1627 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1628 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1629 bogus_port_status = true; 1630 goto cleanup; 1631 } 1632 1633 hcd = port->rhub->hcd; 1634 bus_state = &port->rhub->bus_state; 1635 hcd_portnum = port->hcd_portnum; 1636 portsc = readl(port->addr); 1637 1638 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1639 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1640 1641 trace_xhci_handle_port_status(hcd_portnum, portsc); 1642 1643 if (hcd->state == HC_STATE_SUSPENDED) { 1644 xhci_dbg(xhci, "resume root hub\n"); 1645 usb_hcd_resume_root_hub(hcd); 1646 } 1647 1648 if (hcd->speed >= HCD_USB3 && 1649 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1650 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1651 if (slot_id && xhci->devs[slot_id]) 1652 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1653 } 1654 1655 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1656 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1657 1658 cmd_reg = readl(&xhci->op_regs->command); 1659 if (!(cmd_reg & CMD_RUN)) { 1660 xhci_warn(xhci, "xHC is not running.\n"); 1661 goto cleanup; 1662 } 1663 1664 if (DEV_SUPERSPEED_ANY(portsc)) { 1665 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1666 /* Set a flag to say the port signaled remote wakeup, 1667 * so we can tell the difference between the end of 1668 * device and host initiated resume. 1669 */ 1670 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1671 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1672 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1673 xhci_set_link_state(xhci, port, XDEV_U0); 1674 /* Need to wait until the next link state change 1675 * indicates the device is actually in U0. 1676 */ 1677 bogus_port_status = true; 1678 goto cleanup; 1679 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1680 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1681 bus_state->resume_done[hcd_portnum] = jiffies + 1682 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1683 set_bit(hcd_portnum, &bus_state->resuming_ports); 1684 /* Do the rest in GetPortStatus after resume time delay. 1685 * Avoid polling roothub status before that so that a 1686 * usb device auto-resume latency around ~40ms. 1687 */ 1688 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1689 mod_timer(&hcd->rh_timer, 1690 bus_state->resume_done[hcd_portnum]); 1691 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1692 bogus_port_status = true; 1693 } 1694 } 1695 1696 if ((portsc & PORT_PLC) && 1697 DEV_SUPERSPEED_ANY(portsc) && 1698 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1699 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1700 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1701 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1702 complete(&bus_state->u3exit_done[hcd_portnum]); 1703 /* We've just brought the device into U0/1/2 through either the 1704 * Resume state after a device remote wakeup, or through the 1705 * U3Exit state after a host-initiated resume. If it's a device 1706 * initiated remote wake, don't pass up the link state change, 1707 * so the roothub behavior is consistent with external 1708 * USB 3.0 hub behavior. 1709 */ 1710 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1711 if (slot_id && xhci->devs[slot_id]) 1712 xhci_ring_device(xhci, slot_id); 1713 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1714 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1715 usb_wakeup_notification(hcd->self.root_hub, 1716 hcd_portnum + 1); 1717 bogus_port_status = true; 1718 goto cleanup; 1719 } 1720 } 1721 1722 /* 1723 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1724 * RExit to a disconnect state). If so, let the the driver know it's 1725 * out of the RExit state. 1726 */ 1727 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1728 test_and_clear_bit(hcd_portnum, 1729 &bus_state->rexit_ports)) { 1730 complete(&bus_state->rexit_done[hcd_portnum]); 1731 bogus_port_status = true; 1732 goto cleanup; 1733 } 1734 1735 if (hcd->speed < HCD_USB3) { 1736 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1737 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1738 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1739 xhci_cavium_reset_phy_quirk(xhci); 1740 } 1741 1742 cleanup: 1743 /* Update event ring dequeue pointer before dropping the lock */ 1744 inc_deq(xhci, xhci->event_ring); 1745 1746 /* Don't make the USB core poll the roothub if we got a bad port status 1747 * change event. Besides, at that point we can't tell which roothub 1748 * (USB 2.0 or USB 3.0) to kick. 1749 */ 1750 if (bogus_port_status) 1751 return; 1752 1753 /* 1754 * xHCI port-status-change events occur when the "or" of all the 1755 * status-change bits in the portsc register changes from 0 to 1. 1756 * New status changes won't cause an event if any other change 1757 * bits are still set. When an event occurs, switch over to 1758 * polling to avoid losing status changes. 1759 */ 1760 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1761 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1762 spin_unlock(&xhci->lock); 1763 /* Pass this up to the core */ 1764 usb_hcd_poll_rh_status(hcd); 1765 spin_lock(&xhci->lock); 1766 } 1767 1768 /* 1769 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1770 * at end_trb, which may be in another segment. If the suspect DMA address is a 1771 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1772 * returns 0. 1773 */ 1774 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1775 struct xhci_segment *start_seg, 1776 union xhci_trb *start_trb, 1777 union xhci_trb *end_trb, 1778 dma_addr_t suspect_dma, 1779 bool debug) 1780 { 1781 dma_addr_t start_dma; 1782 dma_addr_t end_seg_dma; 1783 dma_addr_t end_trb_dma; 1784 struct xhci_segment *cur_seg; 1785 1786 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1787 cur_seg = start_seg; 1788 1789 do { 1790 if (start_dma == 0) 1791 return NULL; 1792 /* We may get an event for a Link TRB in the middle of a TD */ 1793 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1794 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1795 /* If the end TRB isn't in this segment, this is set to 0 */ 1796 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1797 1798 if (debug) 1799 xhci_warn(xhci, 1800 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1801 (unsigned long long)suspect_dma, 1802 (unsigned long long)start_dma, 1803 (unsigned long long)end_trb_dma, 1804 (unsigned long long)cur_seg->dma, 1805 (unsigned long long)end_seg_dma); 1806 1807 if (end_trb_dma > 0) { 1808 /* The end TRB is in this segment, so suspect should be here */ 1809 if (start_dma <= end_trb_dma) { 1810 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1811 return cur_seg; 1812 } else { 1813 /* Case for one segment with 1814 * a TD wrapped around to the top 1815 */ 1816 if ((suspect_dma >= start_dma && 1817 suspect_dma <= end_seg_dma) || 1818 (suspect_dma >= cur_seg->dma && 1819 suspect_dma <= end_trb_dma)) 1820 return cur_seg; 1821 } 1822 return NULL; 1823 } else { 1824 /* Might still be somewhere in this segment */ 1825 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1826 return cur_seg; 1827 } 1828 cur_seg = cur_seg->next; 1829 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1830 } while (cur_seg != start_seg); 1831 1832 return NULL; 1833 } 1834 1835 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 1836 struct xhci_virt_ep *ep) 1837 { 1838 /* 1839 * As part of low/full-speed endpoint-halt processing 1840 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 1841 */ 1842 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 1843 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 1844 !(ep->ep_state & EP_CLEARING_TT)) { 1845 ep->ep_state |= EP_CLEARING_TT; 1846 td->urb->ep->hcpriv = td->urb->dev; 1847 if (usb_hub_clear_tt_buffer(td->urb)) 1848 ep->ep_state &= ~EP_CLEARING_TT; 1849 } 1850 } 1851 1852 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1853 unsigned int slot_id, unsigned int ep_index, 1854 unsigned int stream_id, struct xhci_td *td, 1855 enum xhci_ep_reset_type reset_type) 1856 { 1857 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1858 struct xhci_command *command; 1859 1860 /* 1861 * Avoid resetting endpoint if link is inactive. Can cause host hang. 1862 * Device will be reset soon to recover the link so don't do anything 1863 */ 1864 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) 1865 return; 1866 1867 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1868 if (!command) 1869 return; 1870 1871 ep->ep_state |= EP_HALTED; 1872 1873 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1874 1875 if (reset_type == EP_HARD_RESET) { 1876 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1877 xhci_cleanup_stalled_ring(xhci, slot_id, ep_index, stream_id, 1878 td); 1879 } 1880 xhci_ring_cmd_db(xhci); 1881 } 1882 1883 /* Check if an error has halted the endpoint ring. The class driver will 1884 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1885 * However, a babble and other errors also halt the endpoint ring, and the class 1886 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1887 * Ring Dequeue Pointer command manually. 1888 */ 1889 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1890 struct xhci_ep_ctx *ep_ctx, 1891 unsigned int trb_comp_code) 1892 { 1893 /* TRB completion codes that may require a manual halt cleanup */ 1894 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1895 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1896 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1897 /* The 0.95 spec says a babbling control endpoint 1898 * is not halted. The 0.96 spec says it is. Some HW 1899 * claims to be 0.95 compliant, but it halts the control 1900 * endpoint anyway. Check if a babble halted the 1901 * endpoint. 1902 */ 1903 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1904 return 1; 1905 1906 return 0; 1907 } 1908 1909 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1910 { 1911 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1912 /* Vendor defined "informational" completion code, 1913 * treat as not-an-error. 1914 */ 1915 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1916 trb_comp_code); 1917 xhci_dbg(xhci, "Treating code as success.\n"); 1918 return 1; 1919 } 1920 return 0; 1921 } 1922 1923 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1924 struct xhci_ring *ep_ring, int *status) 1925 { 1926 struct urb *urb = NULL; 1927 1928 /* Clean up the endpoint's TD list */ 1929 urb = td->urb; 1930 1931 /* if a bounce buffer was used to align this td then unmap it */ 1932 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1933 1934 /* Do one last check of the actual transfer length. 1935 * If the host controller said we transferred more data than the buffer 1936 * length, urb->actual_length will be a very big number (since it's 1937 * unsigned). Play it safe and say we didn't transfer anything. 1938 */ 1939 if (urb->actual_length > urb->transfer_buffer_length) { 1940 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1941 urb->transfer_buffer_length, urb->actual_length); 1942 urb->actual_length = 0; 1943 *status = 0; 1944 } 1945 list_del_init(&td->td_list); 1946 /* Was this TD slated to be cancelled but completed anyway? */ 1947 if (!list_empty(&td->cancelled_td_list)) 1948 list_del_init(&td->cancelled_td_list); 1949 1950 inc_td_cnt(urb); 1951 /* Giveback the urb when all the tds are completed */ 1952 if (last_td_in_urb(td)) { 1953 if ((urb->actual_length != urb->transfer_buffer_length && 1954 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1955 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1956 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1957 urb, urb->actual_length, 1958 urb->transfer_buffer_length, *status); 1959 1960 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1961 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1962 *status = 0; 1963 xhci_giveback_urb_in_irq(xhci, td, *status); 1964 } 1965 1966 return 0; 1967 } 1968 1969 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1970 struct xhci_transfer_event *event, 1971 struct xhci_virt_ep *ep, int *status) 1972 { 1973 struct xhci_virt_device *xdev; 1974 struct xhci_ep_ctx *ep_ctx; 1975 struct xhci_ring *ep_ring; 1976 unsigned int slot_id; 1977 u32 trb_comp_code; 1978 int ep_index; 1979 1980 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1981 xdev = xhci->devs[slot_id]; 1982 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1983 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1984 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1985 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1986 1987 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1988 trb_comp_code == COMP_STOPPED || 1989 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1990 /* The Endpoint Stop Command completion will take care of any 1991 * stopped TDs. A stopped TD may be restarted, so don't update 1992 * the ring dequeue pointer or take this TD off any lists yet. 1993 */ 1994 return 0; 1995 } 1996 if (trb_comp_code == COMP_STALL_ERROR || 1997 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1998 trb_comp_code)) { 1999 /* 2000 * xhci internal endpoint state will go to a "halt" state for 2001 * any stall, including default control pipe protocol stall. 2002 * To clear the host side halt we need to issue a reset endpoint 2003 * command, followed by a set dequeue command to move past the 2004 * TD. 2005 * Class drivers clear the device side halt from a functional 2006 * stall later. Hub TT buffer should only be cleared for FS/LS 2007 * devices behind HS hubs for functional stalls. 2008 */ 2009 if ((ep_index != 0) || (trb_comp_code != COMP_STALL_ERROR)) 2010 xhci_clear_hub_tt_buffer(xhci, td, ep); 2011 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2012 ep_ring->stream_id, td, EP_HARD_RESET); 2013 } else { 2014 /* Update ring dequeue pointer */ 2015 while (ep_ring->dequeue != td->last_trb) 2016 inc_deq(xhci, ep_ring); 2017 inc_deq(xhci, ep_ring); 2018 } 2019 2020 return xhci_td_cleanup(xhci, td, ep_ring, status); 2021 } 2022 2023 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2024 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2025 union xhci_trb *stop_trb) 2026 { 2027 u32 sum; 2028 union xhci_trb *trb = ring->dequeue; 2029 struct xhci_segment *seg = ring->deq_seg; 2030 2031 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2032 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2033 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2034 } 2035 return sum; 2036 } 2037 2038 /* 2039 * Process control tds, update urb status and actual_length. 2040 */ 2041 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2042 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2043 struct xhci_virt_ep *ep, int *status) 2044 { 2045 struct xhci_virt_device *xdev; 2046 unsigned int slot_id; 2047 int ep_index; 2048 struct xhci_ep_ctx *ep_ctx; 2049 u32 trb_comp_code; 2050 u32 remaining, requested; 2051 u32 trb_type; 2052 2053 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2054 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2055 xdev = xhci->devs[slot_id]; 2056 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2057 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2058 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2059 requested = td->urb->transfer_buffer_length; 2060 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2061 2062 switch (trb_comp_code) { 2063 case COMP_SUCCESS: 2064 if (trb_type != TRB_STATUS) { 2065 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2066 (trb_type == TRB_DATA) ? "data" : "setup"); 2067 *status = -ESHUTDOWN; 2068 break; 2069 } 2070 *status = 0; 2071 break; 2072 case COMP_SHORT_PACKET: 2073 *status = 0; 2074 break; 2075 case COMP_STOPPED_SHORT_PACKET: 2076 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2077 td->urb->actual_length = remaining; 2078 else 2079 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2080 goto finish_td; 2081 case COMP_STOPPED: 2082 switch (trb_type) { 2083 case TRB_SETUP: 2084 td->urb->actual_length = 0; 2085 goto finish_td; 2086 case TRB_DATA: 2087 case TRB_NORMAL: 2088 td->urb->actual_length = requested - remaining; 2089 goto finish_td; 2090 case TRB_STATUS: 2091 td->urb->actual_length = requested; 2092 goto finish_td; 2093 default: 2094 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2095 trb_type); 2096 goto finish_td; 2097 } 2098 case COMP_STOPPED_LENGTH_INVALID: 2099 goto finish_td; 2100 default: 2101 if (!xhci_requires_manual_halt_cleanup(xhci, 2102 ep_ctx, trb_comp_code)) 2103 break; 2104 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2105 trb_comp_code, ep_index); 2106 fallthrough; 2107 case COMP_STALL_ERROR: 2108 /* Did we transfer part of the data (middle) phase? */ 2109 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2110 td->urb->actual_length = requested - remaining; 2111 else if (!td->urb_length_set) 2112 td->urb->actual_length = 0; 2113 goto finish_td; 2114 } 2115 2116 /* stopped at setup stage, no data transferred */ 2117 if (trb_type == TRB_SETUP) 2118 goto finish_td; 2119 2120 /* 2121 * if on data stage then update the actual_length of the URB and flag it 2122 * as set, so it won't be overwritten in the event for the last TRB. 2123 */ 2124 if (trb_type == TRB_DATA || 2125 trb_type == TRB_NORMAL) { 2126 td->urb_length_set = true; 2127 td->urb->actual_length = requested - remaining; 2128 xhci_dbg(xhci, "Waiting for status stage event\n"); 2129 return 0; 2130 } 2131 2132 /* at status stage */ 2133 if (!td->urb_length_set) 2134 td->urb->actual_length = requested; 2135 2136 finish_td: 2137 return finish_td(xhci, td, event, ep, status); 2138 } 2139 2140 /* 2141 * Process isochronous tds, update urb packet status and actual_length. 2142 */ 2143 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2144 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2145 struct xhci_virt_ep *ep, int *status) 2146 { 2147 struct xhci_ring *ep_ring; 2148 struct urb_priv *urb_priv; 2149 int idx; 2150 struct usb_iso_packet_descriptor *frame; 2151 u32 trb_comp_code; 2152 bool sum_trbs_for_length = false; 2153 u32 remaining, requested, ep_trb_len; 2154 int short_framestatus; 2155 2156 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2157 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2158 urb_priv = td->urb->hcpriv; 2159 idx = urb_priv->num_tds_done; 2160 frame = &td->urb->iso_frame_desc[idx]; 2161 requested = frame->length; 2162 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2163 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2164 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2165 -EREMOTEIO : 0; 2166 2167 /* handle completion code */ 2168 switch (trb_comp_code) { 2169 case COMP_SUCCESS: 2170 if (remaining) { 2171 frame->status = short_framestatus; 2172 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2173 sum_trbs_for_length = true; 2174 break; 2175 } 2176 frame->status = 0; 2177 break; 2178 case COMP_SHORT_PACKET: 2179 frame->status = short_framestatus; 2180 sum_trbs_for_length = true; 2181 break; 2182 case COMP_BANDWIDTH_OVERRUN_ERROR: 2183 frame->status = -ECOMM; 2184 break; 2185 case COMP_ISOCH_BUFFER_OVERRUN: 2186 case COMP_BABBLE_DETECTED_ERROR: 2187 frame->status = -EOVERFLOW; 2188 break; 2189 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2190 case COMP_STALL_ERROR: 2191 frame->status = -EPROTO; 2192 break; 2193 case COMP_USB_TRANSACTION_ERROR: 2194 frame->status = -EPROTO; 2195 if (ep_trb != td->last_trb) 2196 return 0; 2197 break; 2198 case COMP_STOPPED: 2199 sum_trbs_for_length = true; 2200 break; 2201 case COMP_STOPPED_SHORT_PACKET: 2202 /* field normally containing residue now contains tranferred */ 2203 frame->status = short_framestatus; 2204 requested = remaining; 2205 break; 2206 case COMP_STOPPED_LENGTH_INVALID: 2207 requested = 0; 2208 remaining = 0; 2209 break; 2210 default: 2211 sum_trbs_for_length = true; 2212 frame->status = -1; 2213 break; 2214 } 2215 2216 if (sum_trbs_for_length) 2217 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2218 ep_trb_len - remaining; 2219 else 2220 frame->actual_length = requested; 2221 2222 td->urb->actual_length += frame->actual_length; 2223 2224 return finish_td(xhci, td, event, ep, status); 2225 } 2226 2227 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2228 struct xhci_transfer_event *event, 2229 struct xhci_virt_ep *ep, int *status) 2230 { 2231 struct xhci_ring *ep_ring; 2232 struct urb_priv *urb_priv; 2233 struct usb_iso_packet_descriptor *frame; 2234 int idx; 2235 2236 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2237 urb_priv = td->urb->hcpriv; 2238 idx = urb_priv->num_tds_done; 2239 frame = &td->urb->iso_frame_desc[idx]; 2240 2241 /* The transfer is partly done. */ 2242 frame->status = -EXDEV; 2243 2244 /* calc actual length */ 2245 frame->actual_length = 0; 2246 2247 /* Update ring dequeue pointer */ 2248 while (ep_ring->dequeue != td->last_trb) 2249 inc_deq(xhci, ep_ring); 2250 inc_deq(xhci, ep_ring); 2251 2252 return xhci_td_cleanup(xhci, td, ep_ring, status); 2253 } 2254 2255 /* 2256 * Process bulk and interrupt tds, update urb status and actual_length. 2257 */ 2258 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2259 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2260 struct xhci_virt_ep *ep, int *status) 2261 { 2262 struct xhci_slot_ctx *slot_ctx; 2263 struct xhci_ring *ep_ring; 2264 u32 trb_comp_code; 2265 u32 remaining, requested, ep_trb_len; 2266 unsigned int slot_id; 2267 int ep_index; 2268 2269 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2270 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2271 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2272 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2273 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2274 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2275 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2276 requested = td->urb->transfer_buffer_length; 2277 2278 switch (trb_comp_code) { 2279 case COMP_SUCCESS: 2280 ep_ring->err_count = 0; 2281 /* handle success with untransferred data as short packet */ 2282 if (ep_trb != td->last_trb || remaining) { 2283 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2284 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2285 td->urb->ep->desc.bEndpointAddress, 2286 requested, remaining); 2287 } 2288 *status = 0; 2289 break; 2290 case COMP_SHORT_PACKET: 2291 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2292 td->urb->ep->desc.bEndpointAddress, 2293 requested, remaining); 2294 *status = 0; 2295 break; 2296 case COMP_STOPPED_SHORT_PACKET: 2297 td->urb->actual_length = remaining; 2298 goto finish_td; 2299 case COMP_STOPPED_LENGTH_INVALID: 2300 /* stopped on ep trb with invalid length, exclude it */ 2301 ep_trb_len = 0; 2302 remaining = 0; 2303 break; 2304 case COMP_USB_TRANSACTION_ERROR: 2305 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2306 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2307 break; 2308 *status = 0; 2309 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2310 ep_ring->stream_id, td, EP_SOFT_RESET); 2311 return 0; 2312 default: 2313 /* do nothing */ 2314 break; 2315 } 2316 2317 if (ep_trb == td->last_trb) 2318 td->urb->actual_length = requested - remaining; 2319 else 2320 td->urb->actual_length = 2321 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2322 ep_trb_len - remaining; 2323 finish_td: 2324 if (remaining > requested) { 2325 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2326 remaining); 2327 td->urb->actual_length = 0; 2328 } 2329 return finish_td(xhci, td, event, ep, status); 2330 } 2331 2332 /* 2333 * If this function returns an error condition, it means it got a Transfer 2334 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2335 * At this point, the host controller is probably hosed and should be reset. 2336 */ 2337 static int handle_tx_event(struct xhci_hcd *xhci, 2338 struct xhci_transfer_event *event) 2339 { 2340 struct xhci_virt_device *xdev; 2341 struct xhci_virt_ep *ep; 2342 struct xhci_ring *ep_ring; 2343 unsigned int slot_id; 2344 int ep_index; 2345 struct xhci_td *td = NULL; 2346 dma_addr_t ep_trb_dma; 2347 struct xhci_segment *ep_seg; 2348 union xhci_trb *ep_trb; 2349 int status = -EINPROGRESS; 2350 struct xhci_ep_ctx *ep_ctx; 2351 struct list_head *tmp; 2352 u32 trb_comp_code; 2353 int td_num = 0; 2354 bool handling_skipped_tds = false; 2355 2356 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2357 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2358 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2359 ep_trb_dma = le64_to_cpu(event->buffer); 2360 2361 xdev = xhci->devs[slot_id]; 2362 if (!xdev) { 2363 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2364 slot_id); 2365 goto err_out; 2366 } 2367 2368 ep = &xdev->eps[ep_index]; 2369 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2370 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2371 2372 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2373 xhci_err(xhci, 2374 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2375 slot_id, ep_index); 2376 goto err_out; 2377 } 2378 2379 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2380 if (!ep_ring) { 2381 switch (trb_comp_code) { 2382 case COMP_STALL_ERROR: 2383 case COMP_USB_TRANSACTION_ERROR: 2384 case COMP_INVALID_STREAM_TYPE_ERROR: 2385 case COMP_INVALID_STREAM_ID_ERROR: 2386 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2387 NULL, EP_SOFT_RESET); 2388 goto cleanup; 2389 case COMP_RING_UNDERRUN: 2390 case COMP_RING_OVERRUN: 2391 case COMP_STOPPED_LENGTH_INVALID: 2392 goto cleanup; 2393 default: 2394 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2395 slot_id, ep_index); 2396 goto err_out; 2397 } 2398 } 2399 2400 /* Count current td numbers if ep->skip is set */ 2401 if (ep->skip) { 2402 list_for_each(tmp, &ep_ring->td_list) 2403 td_num++; 2404 } 2405 2406 /* Look for common error cases */ 2407 switch (trb_comp_code) { 2408 /* Skip codes that require special handling depending on 2409 * transfer type 2410 */ 2411 case COMP_SUCCESS: 2412 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2413 break; 2414 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2415 ep_ring->last_td_was_short) 2416 trb_comp_code = COMP_SHORT_PACKET; 2417 else 2418 xhci_warn_ratelimited(xhci, 2419 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2420 slot_id, ep_index); 2421 break; 2422 case COMP_SHORT_PACKET: 2423 break; 2424 /* Completion codes for endpoint stopped state */ 2425 case COMP_STOPPED: 2426 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2427 slot_id, ep_index); 2428 break; 2429 case COMP_STOPPED_LENGTH_INVALID: 2430 xhci_dbg(xhci, 2431 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2432 slot_id, ep_index); 2433 break; 2434 case COMP_STOPPED_SHORT_PACKET: 2435 xhci_dbg(xhci, 2436 "Stopped with short packet transfer detected for slot %u ep %u\n", 2437 slot_id, ep_index); 2438 break; 2439 /* Completion codes for endpoint halted state */ 2440 case COMP_STALL_ERROR: 2441 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2442 ep_index); 2443 ep->ep_state |= EP_HALTED; 2444 status = -EPIPE; 2445 break; 2446 case COMP_SPLIT_TRANSACTION_ERROR: 2447 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2448 slot_id, ep_index); 2449 status = -EPROTO; 2450 break; 2451 case COMP_USB_TRANSACTION_ERROR: 2452 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2453 slot_id, ep_index); 2454 status = -EPROTO; 2455 break; 2456 case COMP_BABBLE_DETECTED_ERROR: 2457 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2458 slot_id, ep_index); 2459 status = -EOVERFLOW; 2460 break; 2461 /* Completion codes for endpoint error state */ 2462 case COMP_TRB_ERROR: 2463 xhci_warn(xhci, 2464 "WARN: TRB error for slot %u ep %u on endpoint\n", 2465 slot_id, ep_index); 2466 status = -EILSEQ; 2467 break; 2468 /* completion codes not indicating endpoint state change */ 2469 case COMP_DATA_BUFFER_ERROR: 2470 xhci_warn(xhci, 2471 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2472 slot_id, ep_index); 2473 status = -ENOSR; 2474 break; 2475 case COMP_BANDWIDTH_OVERRUN_ERROR: 2476 xhci_warn(xhci, 2477 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2478 slot_id, ep_index); 2479 break; 2480 case COMP_ISOCH_BUFFER_OVERRUN: 2481 xhci_warn(xhci, 2482 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2483 slot_id, ep_index); 2484 break; 2485 case COMP_RING_UNDERRUN: 2486 /* 2487 * When the Isoch ring is empty, the xHC will generate 2488 * a Ring Overrun Event for IN Isoch endpoint or Ring 2489 * Underrun Event for OUT Isoch endpoint. 2490 */ 2491 xhci_dbg(xhci, "underrun event on endpoint\n"); 2492 if (!list_empty(&ep_ring->td_list)) 2493 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2494 "still with TDs queued?\n", 2495 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2496 ep_index); 2497 goto cleanup; 2498 case COMP_RING_OVERRUN: 2499 xhci_dbg(xhci, "overrun event on endpoint\n"); 2500 if (!list_empty(&ep_ring->td_list)) 2501 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2502 "still with TDs queued?\n", 2503 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2504 ep_index); 2505 goto cleanup; 2506 case COMP_MISSED_SERVICE_ERROR: 2507 /* 2508 * When encounter missed service error, one or more isoc tds 2509 * may be missed by xHC. 2510 * Set skip flag of the ep_ring; Complete the missed tds as 2511 * short transfer when process the ep_ring next time. 2512 */ 2513 ep->skip = true; 2514 xhci_dbg(xhci, 2515 "Miss service interval error for slot %u ep %u, set skip flag\n", 2516 slot_id, ep_index); 2517 goto cleanup; 2518 case COMP_NO_PING_RESPONSE_ERROR: 2519 ep->skip = true; 2520 xhci_dbg(xhci, 2521 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2522 slot_id, ep_index); 2523 goto cleanup; 2524 2525 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2526 /* needs disable slot command to recover */ 2527 xhci_warn(xhci, 2528 "WARN: detect an incompatible device for slot %u ep %u", 2529 slot_id, ep_index); 2530 status = -EPROTO; 2531 break; 2532 default: 2533 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2534 status = 0; 2535 break; 2536 } 2537 xhci_warn(xhci, 2538 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2539 trb_comp_code, slot_id, ep_index); 2540 goto cleanup; 2541 } 2542 2543 do { 2544 /* This TRB should be in the TD at the head of this ring's 2545 * TD list. 2546 */ 2547 if (list_empty(&ep_ring->td_list)) { 2548 /* 2549 * Don't print wanings if it's due to a stopped endpoint 2550 * generating an extra completion event if the device 2551 * was suspended. Or, a event for the last TRB of a 2552 * short TD we already got a short event for. 2553 * The short TD is already removed from the TD list. 2554 */ 2555 2556 if (!(trb_comp_code == COMP_STOPPED || 2557 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2558 ep_ring->last_td_was_short)) { 2559 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2560 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2561 ep_index); 2562 } 2563 if (ep->skip) { 2564 ep->skip = false; 2565 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2566 slot_id, ep_index); 2567 } 2568 if (trb_comp_code == COMP_STALL_ERROR || 2569 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2570 trb_comp_code)) { 2571 xhci_cleanup_halted_endpoint(xhci, slot_id, 2572 ep_index, 2573 ep_ring->stream_id, 2574 NULL, 2575 EP_HARD_RESET); 2576 } 2577 goto cleanup; 2578 } 2579 2580 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2581 if (ep->skip && td_num == 0) { 2582 ep->skip = false; 2583 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2584 slot_id, ep_index); 2585 goto cleanup; 2586 } 2587 2588 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2589 td_list); 2590 if (ep->skip) 2591 td_num--; 2592 2593 /* Is this a TRB in the currently executing TD? */ 2594 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2595 td->last_trb, ep_trb_dma, false); 2596 2597 /* 2598 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2599 * is not in the current TD pointed by ep_ring->dequeue because 2600 * that the hardware dequeue pointer still at the previous TRB 2601 * of the current TD. The previous TRB maybe a Link TD or the 2602 * last TRB of the previous TD. The command completion handle 2603 * will take care the rest. 2604 */ 2605 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2606 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2607 goto cleanup; 2608 } 2609 2610 if (!ep_seg) { 2611 if (!ep->skip || 2612 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2613 /* Some host controllers give a spurious 2614 * successful event after a short transfer. 2615 * Ignore it. 2616 */ 2617 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2618 ep_ring->last_td_was_short) { 2619 ep_ring->last_td_was_short = false; 2620 goto cleanup; 2621 } 2622 /* HC is busted, give up! */ 2623 xhci_err(xhci, 2624 "ERROR Transfer event TRB DMA ptr not " 2625 "part of current TD ep_index %d " 2626 "comp_code %u\n", ep_index, 2627 trb_comp_code); 2628 trb_in_td(xhci, ep_ring->deq_seg, 2629 ep_ring->dequeue, td->last_trb, 2630 ep_trb_dma, true); 2631 return -ESHUTDOWN; 2632 } 2633 2634 skip_isoc_td(xhci, td, event, ep, &status); 2635 goto cleanup; 2636 } 2637 if (trb_comp_code == COMP_SHORT_PACKET) 2638 ep_ring->last_td_was_short = true; 2639 else 2640 ep_ring->last_td_was_short = false; 2641 2642 if (ep->skip) { 2643 xhci_dbg(xhci, 2644 "Found td. Clear skip flag for slot %u ep %u.\n", 2645 slot_id, ep_index); 2646 ep->skip = false; 2647 } 2648 2649 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2650 sizeof(*ep_trb)]; 2651 2652 trace_xhci_handle_transfer(ep_ring, 2653 (struct xhci_generic_trb *) ep_trb); 2654 2655 /* 2656 * No-op TRB could trigger interrupts in a case where 2657 * a URB was killed and a STALL_ERROR happens right 2658 * after the endpoint ring stopped. Reset the halted 2659 * endpoint. Otherwise, the endpoint remains stalled 2660 * indefinitely. 2661 */ 2662 if (trb_is_noop(ep_trb)) { 2663 if (trb_comp_code == COMP_STALL_ERROR || 2664 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2665 trb_comp_code)) 2666 xhci_cleanup_halted_endpoint(xhci, slot_id, 2667 ep_index, 2668 ep_ring->stream_id, 2669 td, EP_HARD_RESET); 2670 goto cleanup; 2671 } 2672 2673 /* update the urb's actual_length and give back to the core */ 2674 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2675 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2676 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2677 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2678 else 2679 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2680 &status); 2681 cleanup: 2682 handling_skipped_tds = ep->skip && 2683 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2684 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2685 2686 /* 2687 * Do not update event ring dequeue pointer if we're in a loop 2688 * processing missed tds. 2689 */ 2690 if (!handling_skipped_tds) 2691 inc_deq(xhci, xhci->event_ring); 2692 2693 /* 2694 * If ep->skip is set, it means there are missed tds on the 2695 * endpoint ring need to take care of. 2696 * Process them as short transfer until reach the td pointed by 2697 * the event. 2698 */ 2699 } while (handling_skipped_tds); 2700 2701 return 0; 2702 2703 err_out: 2704 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2705 (unsigned long long) xhci_trb_virt_to_dma( 2706 xhci->event_ring->deq_seg, 2707 xhci->event_ring->dequeue), 2708 lower_32_bits(le64_to_cpu(event->buffer)), 2709 upper_32_bits(le64_to_cpu(event->buffer)), 2710 le32_to_cpu(event->transfer_len), 2711 le32_to_cpu(event->flags)); 2712 return -ENODEV; 2713 } 2714 2715 /* 2716 * This function handles all OS-owned events on the event ring. It may drop 2717 * xhci->lock between event processing (e.g. to pass up port status changes). 2718 * Returns >0 for "possibly more events to process" (caller should call again), 2719 * otherwise 0 if done. In future, <0 returns should indicate error code. 2720 */ 2721 static int xhci_handle_event(struct xhci_hcd *xhci) 2722 { 2723 union xhci_trb *event; 2724 int update_ptrs = 1; 2725 int ret; 2726 2727 /* Event ring hasn't been allocated yet. */ 2728 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2729 xhci_err(xhci, "ERROR event ring not ready\n"); 2730 return -ENOMEM; 2731 } 2732 2733 event = xhci->event_ring->dequeue; 2734 /* Does the HC or OS own the TRB? */ 2735 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2736 xhci->event_ring->cycle_state) 2737 return 0; 2738 2739 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2740 2741 /* 2742 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2743 * speculative reads of the event's flags/data below. 2744 */ 2745 rmb(); 2746 /* FIXME: Handle more event types. */ 2747 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2748 case TRB_TYPE(TRB_COMPLETION): 2749 handle_cmd_completion(xhci, &event->event_cmd); 2750 break; 2751 case TRB_TYPE(TRB_PORT_STATUS): 2752 handle_port_status(xhci, event); 2753 update_ptrs = 0; 2754 break; 2755 case TRB_TYPE(TRB_TRANSFER): 2756 ret = handle_tx_event(xhci, &event->trans_event); 2757 if (ret >= 0) 2758 update_ptrs = 0; 2759 break; 2760 case TRB_TYPE(TRB_DEV_NOTE): 2761 handle_device_notification(xhci, event); 2762 break; 2763 default: 2764 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2765 TRB_TYPE(48)) 2766 handle_vendor_event(xhci, event); 2767 else 2768 xhci_warn(xhci, "ERROR unknown event type %d\n", 2769 TRB_FIELD_TO_TYPE( 2770 le32_to_cpu(event->event_cmd.flags))); 2771 } 2772 /* Any of the above functions may drop and re-acquire the lock, so check 2773 * to make sure a watchdog timer didn't mark the host as non-responsive. 2774 */ 2775 if (xhci->xhc_state & XHCI_STATE_DYING) { 2776 xhci_dbg(xhci, "xHCI host dying, returning from " 2777 "event handler.\n"); 2778 return 0; 2779 } 2780 2781 if (update_ptrs) 2782 /* Update SW event ring dequeue pointer */ 2783 inc_deq(xhci, xhci->event_ring); 2784 2785 /* Are there more items on the event ring? Caller will call us again to 2786 * check. 2787 */ 2788 return 1; 2789 } 2790 2791 /* 2792 * Update Event Ring Dequeue Pointer: 2793 * - When all events have finished 2794 * - To avoid "Event Ring Full Error" condition 2795 */ 2796 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2797 union xhci_trb *event_ring_deq) 2798 { 2799 u64 temp_64; 2800 dma_addr_t deq; 2801 2802 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2803 /* If necessary, update the HW's version of the event ring deq ptr. */ 2804 if (event_ring_deq != xhci->event_ring->dequeue) { 2805 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2806 xhci->event_ring->dequeue); 2807 if (deq == 0) 2808 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2809 /* 2810 * Per 4.9.4, Software writes to the ERDP register shall 2811 * always advance the Event Ring Dequeue Pointer value. 2812 */ 2813 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2814 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2815 return; 2816 2817 /* Update HC event ring dequeue pointer */ 2818 temp_64 &= ERST_PTR_MASK; 2819 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2820 } 2821 2822 /* Clear the event handler busy flag (RW1C) */ 2823 temp_64 |= ERST_EHB; 2824 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2825 } 2826 2827 /* 2828 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2829 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2830 * indicators of an event TRB error, but we check the status *first* to be safe. 2831 */ 2832 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2833 { 2834 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2835 union xhci_trb *event_ring_deq; 2836 irqreturn_t ret = IRQ_NONE; 2837 unsigned long flags; 2838 u64 temp_64; 2839 u32 status; 2840 int event_loop = 0; 2841 2842 spin_lock_irqsave(&xhci->lock, flags); 2843 /* Check if the xHC generated the interrupt, or the irq is shared */ 2844 status = readl(&xhci->op_regs->status); 2845 if (status == ~(u32)0) { 2846 xhci_hc_died(xhci); 2847 ret = IRQ_HANDLED; 2848 goto out; 2849 } 2850 2851 if (!(status & STS_EINT)) 2852 goto out; 2853 2854 if (status & STS_FATAL) { 2855 xhci_warn(xhci, "WARNING: Host System Error\n"); 2856 xhci_halt(xhci); 2857 ret = IRQ_HANDLED; 2858 goto out; 2859 } 2860 2861 /* 2862 * Clear the op reg interrupt status first, 2863 * so we can receive interrupts from other MSI-X interrupters. 2864 * Write 1 to clear the interrupt status. 2865 */ 2866 status |= STS_EINT; 2867 writel(status, &xhci->op_regs->status); 2868 2869 if (!hcd->msi_enabled) { 2870 u32 irq_pending; 2871 irq_pending = readl(&xhci->ir_set->irq_pending); 2872 irq_pending |= IMAN_IP; 2873 writel(irq_pending, &xhci->ir_set->irq_pending); 2874 } 2875 2876 if (xhci->xhc_state & XHCI_STATE_DYING || 2877 xhci->xhc_state & XHCI_STATE_HALTED) { 2878 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2879 "Shouldn't IRQs be disabled?\n"); 2880 /* Clear the event handler busy flag (RW1C); 2881 * the event ring should be empty. 2882 */ 2883 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2884 xhci_write_64(xhci, temp_64 | ERST_EHB, 2885 &xhci->ir_set->erst_dequeue); 2886 ret = IRQ_HANDLED; 2887 goto out; 2888 } 2889 2890 event_ring_deq = xhci->event_ring->dequeue; 2891 /* FIXME this should be a delayed service routine 2892 * that clears the EHB. 2893 */ 2894 while (xhci_handle_event(xhci) > 0) { 2895 if (event_loop++ < TRBS_PER_SEGMENT / 2) 2896 continue; 2897 xhci_update_erst_dequeue(xhci, event_ring_deq); 2898 event_loop = 0; 2899 } 2900 2901 xhci_update_erst_dequeue(xhci, event_ring_deq); 2902 ret = IRQ_HANDLED; 2903 2904 out: 2905 spin_unlock_irqrestore(&xhci->lock, flags); 2906 2907 return ret; 2908 } 2909 2910 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2911 { 2912 return xhci_irq(hcd); 2913 } 2914 2915 /**** Endpoint Ring Operations ****/ 2916 2917 /* 2918 * Generic function for queueing a TRB on a ring. 2919 * The caller must have checked to make sure there's room on the ring. 2920 * 2921 * @more_trbs_coming: Will you enqueue more TRBs before calling 2922 * prepare_transfer()? 2923 */ 2924 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2925 bool more_trbs_coming, 2926 u32 field1, u32 field2, u32 field3, u32 field4) 2927 { 2928 struct xhci_generic_trb *trb; 2929 2930 trb = &ring->enqueue->generic; 2931 trb->field[0] = cpu_to_le32(field1); 2932 trb->field[1] = cpu_to_le32(field2); 2933 trb->field[2] = cpu_to_le32(field3); 2934 /* make sure TRB is fully written before giving it to the controller */ 2935 wmb(); 2936 trb->field[3] = cpu_to_le32(field4); 2937 2938 trace_xhci_queue_trb(ring, trb); 2939 2940 inc_enq(xhci, ring, more_trbs_coming); 2941 } 2942 2943 /* 2944 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2945 * FIXME allocate segments if the ring is full. 2946 */ 2947 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2948 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2949 { 2950 unsigned int num_trbs_needed; 2951 2952 /* Make sure the endpoint has been added to xHC schedule */ 2953 switch (ep_state) { 2954 case EP_STATE_DISABLED: 2955 /* 2956 * USB core changed config/interfaces without notifying us, 2957 * or hardware is reporting the wrong state. 2958 */ 2959 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2960 return -ENOENT; 2961 case EP_STATE_ERROR: 2962 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2963 /* FIXME event handling code for error needs to clear it */ 2964 /* XXX not sure if this should be -ENOENT or not */ 2965 return -EINVAL; 2966 case EP_STATE_HALTED: 2967 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2968 break; 2969 case EP_STATE_STOPPED: 2970 case EP_STATE_RUNNING: 2971 break; 2972 default: 2973 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2974 /* 2975 * FIXME issue Configure Endpoint command to try to get the HC 2976 * back into a known state. 2977 */ 2978 return -EINVAL; 2979 } 2980 2981 while (1) { 2982 if (room_on_ring(xhci, ep_ring, num_trbs)) 2983 break; 2984 2985 if (ep_ring == xhci->cmd_ring) { 2986 xhci_err(xhci, "Do not support expand command ring\n"); 2987 return -ENOMEM; 2988 } 2989 2990 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2991 "ERROR no room on ep ring, try ring expansion"); 2992 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2993 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2994 mem_flags)) { 2995 xhci_err(xhci, "Ring expansion failed\n"); 2996 return -ENOMEM; 2997 } 2998 } 2999 3000 while (trb_is_link(ep_ring->enqueue)) { 3001 /* If we're not dealing with 0.95 hardware or isoc rings 3002 * on AMD 0.96 host, clear the chain bit. 3003 */ 3004 if (!xhci_link_trb_quirk(xhci) && 3005 !(ep_ring->type == TYPE_ISOC && 3006 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3007 ep_ring->enqueue->link.control &= 3008 cpu_to_le32(~TRB_CHAIN); 3009 else 3010 ep_ring->enqueue->link.control |= 3011 cpu_to_le32(TRB_CHAIN); 3012 3013 wmb(); 3014 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3015 3016 /* Toggle the cycle bit after the last ring segment. */ 3017 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3018 ep_ring->cycle_state ^= 1; 3019 3020 ep_ring->enq_seg = ep_ring->enq_seg->next; 3021 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3022 } 3023 return 0; 3024 } 3025 3026 static int prepare_transfer(struct xhci_hcd *xhci, 3027 struct xhci_virt_device *xdev, 3028 unsigned int ep_index, 3029 unsigned int stream_id, 3030 unsigned int num_trbs, 3031 struct urb *urb, 3032 unsigned int td_index, 3033 gfp_t mem_flags) 3034 { 3035 int ret; 3036 struct urb_priv *urb_priv; 3037 struct xhci_td *td; 3038 struct xhci_ring *ep_ring; 3039 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3040 3041 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3042 if (!ep_ring) { 3043 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3044 stream_id); 3045 return -EINVAL; 3046 } 3047 3048 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3049 num_trbs, mem_flags); 3050 if (ret) 3051 return ret; 3052 3053 urb_priv = urb->hcpriv; 3054 td = &urb_priv->td[td_index]; 3055 3056 INIT_LIST_HEAD(&td->td_list); 3057 INIT_LIST_HEAD(&td->cancelled_td_list); 3058 3059 if (td_index == 0) { 3060 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3061 if (unlikely(ret)) 3062 return ret; 3063 } 3064 3065 td->urb = urb; 3066 /* Add this TD to the tail of the endpoint ring's TD list */ 3067 list_add_tail(&td->td_list, &ep_ring->td_list); 3068 td->start_seg = ep_ring->enq_seg; 3069 td->first_trb = ep_ring->enqueue; 3070 3071 return 0; 3072 } 3073 3074 unsigned int count_trbs(u64 addr, u64 len) 3075 { 3076 unsigned int num_trbs; 3077 3078 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3079 TRB_MAX_BUFF_SIZE); 3080 if (num_trbs == 0) 3081 num_trbs++; 3082 3083 return num_trbs; 3084 } 3085 3086 static inline unsigned int count_trbs_needed(struct urb *urb) 3087 { 3088 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3089 } 3090 3091 static unsigned int count_sg_trbs_needed(struct urb *urb) 3092 { 3093 struct scatterlist *sg; 3094 unsigned int i, len, full_len, num_trbs = 0; 3095 3096 full_len = urb->transfer_buffer_length; 3097 3098 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3099 len = sg_dma_len(sg); 3100 num_trbs += count_trbs(sg_dma_address(sg), len); 3101 len = min_t(unsigned int, len, full_len); 3102 full_len -= len; 3103 if (full_len == 0) 3104 break; 3105 } 3106 3107 return num_trbs; 3108 } 3109 3110 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3111 { 3112 u64 addr, len; 3113 3114 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3115 len = urb->iso_frame_desc[i].length; 3116 3117 return count_trbs(addr, len); 3118 } 3119 3120 static void check_trb_math(struct urb *urb, int running_total) 3121 { 3122 if (unlikely(running_total != urb->transfer_buffer_length)) 3123 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3124 "queued %#x (%d), asked for %#x (%d)\n", 3125 __func__, 3126 urb->ep->desc.bEndpointAddress, 3127 running_total, running_total, 3128 urb->transfer_buffer_length, 3129 urb->transfer_buffer_length); 3130 } 3131 3132 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3133 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3134 struct xhci_generic_trb *start_trb) 3135 { 3136 /* 3137 * Pass all the TRBs to the hardware at once and make sure this write 3138 * isn't reordered. 3139 */ 3140 wmb(); 3141 if (start_cycle) 3142 start_trb->field[3] |= cpu_to_le32(start_cycle); 3143 else 3144 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3145 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3146 } 3147 3148 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3149 struct xhci_ep_ctx *ep_ctx) 3150 { 3151 int xhci_interval; 3152 int ep_interval; 3153 3154 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3155 ep_interval = urb->interval; 3156 3157 /* Convert to microframes */ 3158 if (urb->dev->speed == USB_SPEED_LOW || 3159 urb->dev->speed == USB_SPEED_FULL) 3160 ep_interval *= 8; 3161 3162 /* FIXME change this to a warning and a suggestion to use the new API 3163 * to set the polling interval (once the API is added). 3164 */ 3165 if (xhci_interval != ep_interval) { 3166 dev_dbg_ratelimited(&urb->dev->dev, 3167 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3168 ep_interval, ep_interval == 1 ? "" : "s", 3169 xhci_interval, xhci_interval == 1 ? "" : "s"); 3170 urb->interval = xhci_interval; 3171 /* Convert back to frames for LS/FS devices */ 3172 if (urb->dev->speed == USB_SPEED_LOW || 3173 urb->dev->speed == USB_SPEED_FULL) 3174 urb->interval /= 8; 3175 } 3176 } 3177 3178 /* 3179 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3180 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3181 * (comprised of sg list entries) can take several service intervals to 3182 * transmit. 3183 */ 3184 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3185 struct urb *urb, int slot_id, unsigned int ep_index) 3186 { 3187 struct xhci_ep_ctx *ep_ctx; 3188 3189 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3190 check_interval(xhci, urb, ep_ctx); 3191 3192 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3193 } 3194 3195 /* 3196 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3197 * packets remaining in the TD (*not* including this TRB). 3198 * 3199 * Total TD packet count = total_packet_count = 3200 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3201 * 3202 * Packets transferred up to and including this TRB = packets_transferred = 3203 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3204 * 3205 * TD size = total_packet_count - packets_transferred 3206 * 3207 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3208 * including this TRB, right shifted by 10 3209 * 3210 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3211 * This is taken care of in the TRB_TD_SIZE() macro 3212 * 3213 * The last TRB in a TD must have the TD size set to zero. 3214 */ 3215 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3216 int trb_buff_len, unsigned int td_total_len, 3217 struct urb *urb, bool more_trbs_coming) 3218 { 3219 u32 maxp, total_packet_count; 3220 3221 /* MTK xHCI 0.96 contains some features from 1.0 */ 3222 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3223 return ((td_total_len - transferred) >> 10); 3224 3225 /* One TRB with a zero-length data packet. */ 3226 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3227 trb_buff_len == td_total_len) 3228 return 0; 3229 3230 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3231 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3232 trb_buff_len = 0; 3233 3234 maxp = usb_endpoint_maxp(&urb->ep->desc); 3235 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3236 3237 /* Queueing functions don't count the current TRB into transferred */ 3238 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3239 } 3240 3241 3242 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3243 u32 *trb_buff_len, struct xhci_segment *seg) 3244 { 3245 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3246 unsigned int unalign; 3247 unsigned int max_pkt; 3248 u32 new_buff_len; 3249 size_t len; 3250 3251 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3252 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3253 3254 /* we got lucky, last normal TRB data on segment is packet aligned */ 3255 if (unalign == 0) 3256 return 0; 3257 3258 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3259 unalign, *trb_buff_len); 3260 3261 /* is the last nornal TRB alignable by splitting it */ 3262 if (*trb_buff_len > unalign) { 3263 *trb_buff_len -= unalign; 3264 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3265 return 0; 3266 } 3267 3268 /* 3269 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3270 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3271 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3272 */ 3273 new_buff_len = max_pkt - (enqd_len % max_pkt); 3274 3275 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3276 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3277 3278 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3279 if (usb_urb_dir_out(urb)) { 3280 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3281 seg->bounce_buf, new_buff_len, enqd_len); 3282 if (len != new_buff_len) 3283 xhci_warn(xhci, 3284 "WARN Wrong bounce buffer write length: %zu != %d\n", 3285 len, new_buff_len); 3286 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3287 max_pkt, DMA_TO_DEVICE); 3288 } else { 3289 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3290 max_pkt, DMA_FROM_DEVICE); 3291 } 3292 3293 if (dma_mapping_error(dev, seg->bounce_dma)) { 3294 /* try without aligning. Some host controllers survive */ 3295 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3296 return 0; 3297 } 3298 *trb_buff_len = new_buff_len; 3299 seg->bounce_len = new_buff_len; 3300 seg->bounce_offs = enqd_len; 3301 3302 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3303 3304 return 1; 3305 } 3306 3307 /* This is very similar to what ehci-q.c qtd_fill() does */ 3308 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3309 struct urb *urb, int slot_id, unsigned int ep_index) 3310 { 3311 struct xhci_ring *ring; 3312 struct urb_priv *urb_priv; 3313 struct xhci_td *td; 3314 struct xhci_generic_trb *start_trb; 3315 struct scatterlist *sg = NULL; 3316 bool more_trbs_coming = true; 3317 bool need_zero_pkt = false; 3318 bool first_trb = true; 3319 unsigned int num_trbs; 3320 unsigned int start_cycle, num_sgs = 0; 3321 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3322 int sent_len, ret; 3323 u32 field, length_field, remainder; 3324 u64 addr, send_addr; 3325 3326 ring = xhci_urb_to_transfer_ring(xhci, urb); 3327 if (!ring) 3328 return -EINVAL; 3329 3330 full_len = urb->transfer_buffer_length; 3331 /* If we have scatter/gather list, we use it. */ 3332 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3333 num_sgs = urb->num_mapped_sgs; 3334 sg = urb->sg; 3335 addr = (u64) sg_dma_address(sg); 3336 block_len = sg_dma_len(sg); 3337 num_trbs = count_sg_trbs_needed(urb); 3338 } else { 3339 num_trbs = count_trbs_needed(urb); 3340 addr = (u64) urb->transfer_dma; 3341 block_len = full_len; 3342 } 3343 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3344 ep_index, urb->stream_id, 3345 num_trbs, urb, 0, mem_flags); 3346 if (unlikely(ret < 0)) 3347 return ret; 3348 3349 urb_priv = urb->hcpriv; 3350 3351 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3352 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3353 need_zero_pkt = true; 3354 3355 td = &urb_priv->td[0]; 3356 3357 /* 3358 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3359 * until we've finished creating all the other TRBs. The ring's cycle 3360 * state may change as we enqueue the other TRBs, so save it too. 3361 */ 3362 start_trb = &ring->enqueue->generic; 3363 start_cycle = ring->cycle_state; 3364 send_addr = addr; 3365 3366 /* Queue the TRBs, even if they are zero-length */ 3367 for (enqd_len = 0; first_trb || enqd_len < full_len; 3368 enqd_len += trb_buff_len) { 3369 field = TRB_TYPE(TRB_NORMAL); 3370 3371 /* TRB buffer should not cross 64KB boundaries */ 3372 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3373 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3374 3375 if (enqd_len + trb_buff_len > full_len) 3376 trb_buff_len = full_len - enqd_len; 3377 3378 /* Don't change the cycle bit of the first TRB until later */ 3379 if (first_trb) { 3380 first_trb = false; 3381 if (start_cycle == 0) 3382 field |= TRB_CYCLE; 3383 } else 3384 field |= ring->cycle_state; 3385 3386 /* Chain all the TRBs together; clear the chain bit in the last 3387 * TRB to indicate it's the last TRB in the chain. 3388 */ 3389 if (enqd_len + trb_buff_len < full_len) { 3390 field |= TRB_CHAIN; 3391 if (trb_is_link(ring->enqueue + 1)) { 3392 if (xhci_align_td(xhci, urb, enqd_len, 3393 &trb_buff_len, 3394 ring->enq_seg)) { 3395 send_addr = ring->enq_seg->bounce_dma; 3396 /* assuming TD won't span 2 segs */ 3397 td->bounce_seg = ring->enq_seg; 3398 } 3399 } 3400 } 3401 if (enqd_len + trb_buff_len >= full_len) { 3402 field &= ~TRB_CHAIN; 3403 field |= TRB_IOC; 3404 more_trbs_coming = false; 3405 td->last_trb = ring->enqueue; 3406 3407 if (xhci_urb_suitable_for_idt(urb)) { 3408 memcpy(&send_addr, urb->transfer_buffer, 3409 trb_buff_len); 3410 le64_to_cpus(&send_addr); 3411 field |= TRB_IDT; 3412 } 3413 } 3414 3415 /* Only set interrupt on short packet for IN endpoints */ 3416 if (usb_urb_dir_in(urb)) 3417 field |= TRB_ISP; 3418 3419 /* Set the TRB length, TD size, and interrupter fields. */ 3420 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3421 full_len, urb, more_trbs_coming); 3422 3423 length_field = TRB_LEN(trb_buff_len) | 3424 TRB_TD_SIZE(remainder) | 3425 TRB_INTR_TARGET(0); 3426 3427 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3428 lower_32_bits(send_addr), 3429 upper_32_bits(send_addr), 3430 length_field, 3431 field); 3432 3433 addr += trb_buff_len; 3434 sent_len = trb_buff_len; 3435 3436 while (sg && sent_len >= block_len) { 3437 /* New sg entry */ 3438 --num_sgs; 3439 sent_len -= block_len; 3440 sg = sg_next(sg); 3441 if (num_sgs != 0 && sg) { 3442 block_len = sg_dma_len(sg); 3443 addr = (u64) sg_dma_address(sg); 3444 addr += sent_len; 3445 } 3446 } 3447 block_len -= sent_len; 3448 send_addr = addr; 3449 } 3450 3451 if (need_zero_pkt) { 3452 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3453 ep_index, urb->stream_id, 3454 1, urb, 1, mem_flags); 3455 urb_priv->td[1].last_trb = ring->enqueue; 3456 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3457 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3458 } 3459 3460 check_trb_math(urb, enqd_len); 3461 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3462 start_cycle, start_trb); 3463 return 0; 3464 } 3465 3466 /* Caller must have locked xhci->lock */ 3467 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3468 struct urb *urb, int slot_id, unsigned int ep_index) 3469 { 3470 struct xhci_ring *ep_ring; 3471 int num_trbs; 3472 int ret; 3473 struct usb_ctrlrequest *setup; 3474 struct xhci_generic_trb *start_trb; 3475 int start_cycle; 3476 u32 field; 3477 struct urb_priv *urb_priv; 3478 struct xhci_td *td; 3479 3480 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3481 if (!ep_ring) 3482 return -EINVAL; 3483 3484 /* 3485 * Need to copy setup packet into setup TRB, so we can't use the setup 3486 * DMA address. 3487 */ 3488 if (!urb->setup_packet) 3489 return -EINVAL; 3490 3491 /* 1 TRB for setup, 1 for status */ 3492 num_trbs = 2; 3493 /* 3494 * Don't need to check if we need additional event data and normal TRBs, 3495 * since data in control transfers will never get bigger than 16MB 3496 * XXX: can we get a buffer that crosses 64KB boundaries? 3497 */ 3498 if (urb->transfer_buffer_length > 0) 3499 num_trbs++; 3500 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3501 ep_index, urb->stream_id, 3502 num_trbs, urb, 0, mem_flags); 3503 if (ret < 0) 3504 return ret; 3505 3506 urb_priv = urb->hcpriv; 3507 td = &urb_priv->td[0]; 3508 3509 /* 3510 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3511 * until we've finished creating all the other TRBs. The ring's cycle 3512 * state may change as we enqueue the other TRBs, so save it too. 3513 */ 3514 start_trb = &ep_ring->enqueue->generic; 3515 start_cycle = ep_ring->cycle_state; 3516 3517 /* Queue setup TRB - see section 6.4.1.2.1 */ 3518 /* FIXME better way to translate setup_packet into two u32 fields? */ 3519 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3520 field = 0; 3521 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3522 if (start_cycle == 0) 3523 field |= 0x1; 3524 3525 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3526 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3527 if (urb->transfer_buffer_length > 0) { 3528 if (setup->bRequestType & USB_DIR_IN) 3529 field |= TRB_TX_TYPE(TRB_DATA_IN); 3530 else 3531 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3532 } 3533 } 3534 3535 queue_trb(xhci, ep_ring, true, 3536 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3537 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3538 TRB_LEN(8) | TRB_INTR_TARGET(0), 3539 /* Immediate data in pointer */ 3540 field); 3541 3542 /* If there's data, queue data TRBs */ 3543 /* Only set interrupt on short packet for IN endpoints */ 3544 if (usb_urb_dir_in(urb)) 3545 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3546 else 3547 field = TRB_TYPE(TRB_DATA); 3548 3549 if (urb->transfer_buffer_length > 0) { 3550 u32 length_field, remainder; 3551 u64 addr; 3552 3553 if (xhci_urb_suitable_for_idt(urb)) { 3554 memcpy(&addr, urb->transfer_buffer, 3555 urb->transfer_buffer_length); 3556 le64_to_cpus(&addr); 3557 field |= TRB_IDT; 3558 } else { 3559 addr = (u64) urb->transfer_dma; 3560 } 3561 3562 remainder = xhci_td_remainder(xhci, 0, 3563 urb->transfer_buffer_length, 3564 urb->transfer_buffer_length, 3565 urb, 1); 3566 length_field = TRB_LEN(urb->transfer_buffer_length) | 3567 TRB_TD_SIZE(remainder) | 3568 TRB_INTR_TARGET(0); 3569 if (setup->bRequestType & USB_DIR_IN) 3570 field |= TRB_DIR_IN; 3571 queue_trb(xhci, ep_ring, true, 3572 lower_32_bits(addr), 3573 upper_32_bits(addr), 3574 length_field, 3575 field | ep_ring->cycle_state); 3576 } 3577 3578 /* Save the DMA address of the last TRB in the TD */ 3579 td->last_trb = ep_ring->enqueue; 3580 3581 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3582 /* If the device sent data, the status stage is an OUT transfer */ 3583 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3584 field = 0; 3585 else 3586 field = TRB_DIR_IN; 3587 queue_trb(xhci, ep_ring, false, 3588 0, 3589 0, 3590 TRB_INTR_TARGET(0), 3591 /* Event on completion */ 3592 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3593 3594 giveback_first_trb(xhci, slot_id, ep_index, 0, 3595 start_cycle, start_trb); 3596 return 0; 3597 } 3598 3599 /* 3600 * The transfer burst count field of the isochronous TRB defines the number of 3601 * bursts that are required to move all packets in this TD. Only SuperSpeed 3602 * devices can burst up to bMaxBurst number of packets per service interval. 3603 * This field is zero based, meaning a value of zero in the field means one 3604 * burst. Basically, for everything but SuperSpeed devices, this field will be 3605 * zero. Only xHCI 1.0 host controllers support this field. 3606 */ 3607 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3608 struct urb *urb, unsigned int total_packet_count) 3609 { 3610 unsigned int max_burst; 3611 3612 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3613 return 0; 3614 3615 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3616 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3617 } 3618 3619 /* 3620 * Returns the number of packets in the last "burst" of packets. This field is 3621 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3622 * the last burst packet count is equal to the total number of packets in the 3623 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3624 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3625 * contain 1 to (bMaxBurst + 1) packets. 3626 */ 3627 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3628 struct urb *urb, unsigned int total_packet_count) 3629 { 3630 unsigned int max_burst; 3631 unsigned int residue; 3632 3633 if (xhci->hci_version < 0x100) 3634 return 0; 3635 3636 if (urb->dev->speed >= USB_SPEED_SUPER) { 3637 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3638 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3639 residue = total_packet_count % (max_burst + 1); 3640 /* If residue is zero, the last burst contains (max_burst + 1) 3641 * number of packets, but the TLBPC field is zero-based. 3642 */ 3643 if (residue == 0) 3644 return max_burst; 3645 return residue - 1; 3646 } 3647 if (total_packet_count == 0) 3648 return 0; 3649 return total_packet_count - 1; 3650 } 3651 3652 /* 3653 * Calculates Frame ID field of the isochronous TRB identifies the 3654 * target frame that the Interval associated with this Isochronous 3655 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3656 * 3657 * Returns actual frame id on success, negative value on error. 3658 */ 3659 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3660 struct urb *urb, int index) 3661 { 3662 int start_frame, ist, ret = 0; 3663 int start_frame_id, end_frame_id, current_frame_id; 3664 3665 if (urb->dev->speed == USB_SPEED_LOW || 3666 urb->dev->speed == USB_SPEED_FULL) 3667 start_frame = urb->start_frame + index * urb->interval; 3668 else 3669 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3670 3671 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3672 * 3673 * If bit [3] of IST is cleared to '0', software can add a TRB no 3674 * later than IST[2:0] Microframes before that TRB is scheduled to 3675 * be executed. 3676 * If bit [3] of IST is set to '1', software can add a TRB no later 3677 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3678 */ 3679 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3680 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3681 ist <<= 3; 3682 3683 /* Software shall not schedule an Isoch TD with a Frame ID value that 3684 * is less than the Start Frame ID or greater than the End Frame ID, 3685 * where: 3686 * 3687 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3688 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3689 * 3690 * Both the End Frame ID and Start Frame ID values are calculated 3691 * in microframes. When software determines the valid Frame ID value; 3692 * The End Frame ID value should be rounded down to the nearest Frame 3693 * boundary, and the Start Frame ID value should be rounded up to the 3694 * nearest Frame boundary. 3695 */ 3696 current_frame_id = readl(&xhci->run_regs->microframe_index); 3697 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3698 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3699 3700 start_frame &= 0x7ff; 3701 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3702 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3703 3704 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3705 __func__, index, readl(&xhci->run_regs->microframe_index), 3706 start_frame_id, end_frame_id, start_frame); 3707 3708 if (start_frame_id < end_frame_id) { 3709 if (start_frame > end_frame_id || 3710 start_frame < start_frame_id) 3711 ret = -EINVAL; 3712 } else if (start_frame_id > end_frame_id) { 3713 if ((start_frame > end_frame_id && 3714 start_frame < start_frame_id)) 3715 ret = -EINVAL; 3716 } else { 3717 ret = -EINVAL; 3718 } 3719 3720 if (index == 0) { 3721 if (ret == -EINVAL || start_frame == start_frame_id) { 3722 start_frame = start_frame_id + 1; 3723 if (urb->dev->speed == USB_SPEED_LOW || 3724 urb->dev->speed == USB_SPEED_FULL) 3725 urb->start_frame = start_frame; 3726 else 3727 urb->start_frame = start_frame << 3; 3728 ret = 0; 3729 } 3730 } 3731 3732 if (ret) { 3733 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3734 start_frame, current_frame_id, index, 3735 start_frame_id, end_frame_id); 3736 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3737 return ret; 3738 } 3739 3740 return start_frame; 3741 } 3742 3743 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3744 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3745 { 3746 if (xhci->hci_version < 0x100) 3747 return false; 3748 /* always generate an event interrupt for the last TD */ 3749 if (i == num_tds - 1) 3750 return false; 3751 /* 3752 * If AVOID_BEI is set the host handles full event rings poorly, 3753 * generate an event at least every 8th TD to clear the event ring 3754 */ 3755 if (i && xhci->quirks & XHCI_AVOID_BEI) 3756 return !!(i % 8); 3757 3758 return true; 3759 } 3760 3761 /* This is for isoc transfer */ 3762 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3763 struct urb *urb, int slot_id, unsigned int ep_index) 3764 { 3765 struct xhci_ring *ep_ring; 3766 struct urb_priv *urb_priv; 3767 struct xhci_td *td; 3768 int num_tds, trbs_per_td; 3769 struct xhci_generic_trb *start_trb; 3770 bool first_trb; 3771 int start_cycle; 3772 u32 field, length_field; 3773 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3774 u64 start_addr, addr; 3775 int i, j; 3776 bool more_trbs_coming; 3777 struct xhci_virt_ep *xep; 3778 int frame_id; 3779 3780 xep = &xhci->devs[slot_id]->eps[ep_index]; 3781 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3782 3783 num_tds = urb->number_of_packets; 3784 if (num_tds < 1) { 3785 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3786 return -EINVAL; 3787 } 3788 start_addr = (u64) urb->transfer_dma; 3789 start_trb = &ep_ring->enqueue->generic; 3790 start_cycle = ep_ring->cycle_state; 3791 3792 urb_priv = urb->hcpriv; 3793 /* Queue the TRBs for each TD, even if they are zero-length */ 3794 for (i = 0; i < num_tds; i++) { 3795 unsigned int total_pkt_count, max_pkt; 3796 unsigned int burst_count, last_burst_pkt_count; 3797 u32 sia_frame_id; 3798 3799 first_trb = true; 3800 running_total = 0; 3801 addr = start_addr + urb->iso_frame_desc[i].offset; 3802 td_len = urb->iso_frame_desc[i].length; 3803 td_remain_len = td_len; 3804 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3805 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3806 3807 /* A zero-length transfer still involves at least one packet. */ 3808 if (total_pkt_count == 0) 3809 total_pkt_count++; 3810 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3811 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3812 urb, total_pkt_count); 3813 3814 trbs_per_td = count_isoc_trbs_needed(urb, i); 3815 3816 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3817 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3818 if (ret < 0) { 3819 if (i == 0) 3820 return ret; 3821 goto cleanup; 3822 } 3823 td = &urb_priv->td[i]; 3824 3825 /* use SIA as default, if frame id is used overwrite it */ 3826 sia_frame_id = TRB_SIA; 3827 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3828 HCC_CFC(xhci->hcc_params)) { 3829 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3830 if (frame_id >= 0) 3831 sia_frame_id = TRB_FRAME_ID(frame_id); 3832 } 3833 /* 3834 * Set isoc specific data for the first TRB in a TD. 3835 * Prevent HW from getting the TRBs by keeping the cycle state 3836 * inverted in the first TDs isoc TRB. 3837 */ 3838 field = TRB_TYPE(TRB_ISOC) | 3839 TRB_TLBPC(last_burst_pkt_count) | 3840 sia_frame_id | 3841 (i ? ep_ring->cycle_state : !start_cycle); 3842 3843 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3844 if (!xep->use_extended_tbc) 3845 field |= TRB_TBC(burst_count); 3846 3847 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3848 for (j = 0; j < trbs_per_td; j++) { 3849 u32 remainder = 0; 3850 3851 /* only first TRB is isoc, overwrite otherwise */ 3852 if (!first_trb) 3853 field = TRB_TYPE(TRB_NORMAL) | 3854 ep_ring->cycle_state; 3855 3856 /* Only set interrupt on short packet for IN EPs */ 3857 if (usb_urb_dir_in(urb)) 3858 field |= TRB_ISP; 3859 3860 /* Set the chain bit for all except the last TRB */ 3861 if (j < trbs_per_td - 1) { 3862 more_trbs_coming = true; 3863 field |= TRB_CHAIN; 3864 } else { 3865 more_trbs_coming = false; 3866 td->last_trb = ep_ring->enqueue; 3867 field |= TRB_IOC; 3868 if (trb_block_event_intr(xhci, num_tds, i)) 3869 field |= TRB_BEI; 3870 } 3871 /* Calculate TRB length */ 3872 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3873 if (trb_buff_len > td_remain_len) 3874 trb_buff_len = td_remain_len; 3875 3876 /* Set the TRB length, TD size, & interrupter fields. */ 3877 remainder = xhci_td_remainder(xhci, running_total, 3878 trb_buff_len, td_len, 3879 urb, more_trbs_coming); 3880 3881 length_field = TRB_LEN(trb_buff_len) | 3882 TRB_INTR_TARGET(0); 3883 3884 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3885 if (first_trb && xep->use_extended_tbc) 3886 length_field |= TRB_TD_SIZE_TBC(burst_count); 3887 else 3888 length_field |= TRB_TD_SIZE(remainder); 3889 first_trb = false; 3890 3891 queue_trb(xhci, ep_ring, more_trbs_coming, 3892 lower_32_bits(addr), 3893 upper_32_bits(addr), 3894 length_field, 3895 field); 3896 running_total += trb_buff_len; 3897 3898 addr += trb_buff_len; 3899 td_remain_len -= trb_buff_len; 3900 } 3901 3902 /* Check TD length */ 3903 if (running_total != td_len) { 3904 xhci_err(xhci, "ISOC TD length unmatch\n"); 3905 ret = -EINVAL; 3906 goto cleanup; 3907 } 3908 } 3909 3910 /* store the next frame id */ 3911 if (HCC_CFC(xhci->hcc_params)) 3912 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3913 3914 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3915 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3916 usb_amd_quirk_pll_disable(); 3917 } 3918 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3919 3920 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3921 start_cycle, start_trb); 3922 return 0; 3923 cleanup: 3924 /* Clean up a partially enqueued isoc transfer. */ 3925 3926 for (i--; i >= 0; i--) 3927 list_del_init(&urb_priv->td[i].td_list); 3928 3929 /* Use the first TD as a temporary variable to turn the TDs we've queued 3930 * into No-ops with a software-owned cycle bit. That way the hardware 3931 * won't accidentally start executing bogus TDs when we partially 3932 * overwrite them. td->first_trb and td->start_seg are already set. 3933 */ 3934 urb_priv->td[0].last_trb = ep_ring->enqueue; 3935 /* Every TRB except the first & last will have its cycle bit flipped. */ 3936 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3937 3938 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3939 ep_ring->enqueue = urb_priv->td[0].first_trb; 3940 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3941 ep_ring->cycle_state = start_cycle; 3942 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3943 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3944 return ret; 3945 } 3946 3947 /* 3948 * Check transfer ring to guarantee there is enough room for the urb. 3949 * Update ISO URB start_frame and interval. 3950 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3951 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3952 * Contiguous Frame ID is not supported by HC. 3953 */ 3954 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3955 struct urb *urb, int slot_id, unsigned int ep_index) 3956 { 3957 struct xhci_virt_device *xdev; 3958 struct xhci_ring *ep_ring; 3959 struct xhci_ep_ctx *ep_ctx; 3960 int start_frame; 3961 int num_tds, num_trbs, i; 3962 int ret; 3963 struct xhci_virt_ep *xep; 3964 int ist; 3965 3966 xdev = xhci->devs[slot_id]; 3967 xep = &xhci->devs[slot_id]->eps[ep_index]; 3968 ep_ring = xdev->eps[ep_index].ring; 3969 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3970 3971 num_trbs = 0; 3972 num_tds = urb->number_of_packets; 3973 for (i = 0; i < num_tds; i++) 3974 num_trbs += count_isoc_trbs_needed(urb, i); 3975 3976 /* Check the ring to guarantee there is enough room for the whole urb. 3977 * Do not insert any td of the urb to the ring if the check failed. 3978 */ 3979 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3980 num_trbs, mem_flags); 3981 if (ret) 3982 return ret; 3983 3984 /* 3985 * Check interval value. This should be done before we start to 3986 * calculate the start frame value. 3987 */ 3988 check_interval(xhci, urb, ep_ctx); 3989 3990 /* Calculate the start frame and put it in urb->start_frame. */ 3991 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3992 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3993 urb->start_frame = xep->next_frame_id; 3994 goto skip_start_over; 3995 } 3996 } 3997 3998 start_frame = readl(&xhci->run_regs->microframe_index); 3999 start_frame &= 0x3fff; 4000 /* 4001 * Round up to the next frame and consider the time before trb really 4002 * gets scheduled by hardare. 4003 */ 4004 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4005 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4006 ist <<= 3; 4007 start_frame += ist + XHCI_CFC_DELAY; 4008 start_frame = roundup(start_frame, 8); 4009 4010 /* 4011 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4012 * is greate than 8 microframes. 4013 */ 4014 if (urb->dev->speed == USB_SPEED_LOW || 4015 urb->dev->speed == USB_SPEED_FULL) { 4016 start_frame = roundup(start_frame, urb->interval << 3); 4017 urb->start_frame = start_frame >> 3; 4018 } else { 4019 start_frame = roundup(start_frame, urb->interval); 4020 urb->start_frame = start_frame; 4021 } 4022 4023 skip_start_over: 4024 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4025 4026 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4027 } 4028 4029 /**** Command Ring Operations ****/ 4030 4031 /* Generic function for queueing a command TRB on the command ring. 4032 * Check to make sure there's room on the command ring for one command TRB. 4033 * Also check that there's room reserved for commands that must not fail. 4034 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4035 * then only check for the number of reserved spots. 4036 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4037 * because the command event handler may want to resubmit a failed command. 4038 */ 4039 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4040 u32 field1, u32 field2, 4041 u32 field3, u32 field4, bool command_must_succeed) 4042 { 4043 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4044 int ret; 4045 4046 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4047 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4048 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4049 return -ESHUTDOWN; 4050 } 4051 4052 if (!command_must_succeed) 4053 reserved_trbs++; 4054 4055 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4056 reserved_trbs, GFP_ATOMIC); 4057 if (ret < 0) { 4058 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4059 if (command_must_succeed) 4060 xhci_err(xhci, "ERR: Reserved TRB counting for " 4061 "unfailable commands failed.\n"); 4062 return ret; 4063 } 4064 4065 cmd->command_trb = xhci->cmd_ring->enqueue; 4066 4067 /* if there are no other commands queued we start the timeout timer */ 4068 if (list_empty(&xhci->cmd_list)) { 4069 xhci->current_cmd = cmd; 4070 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4071 } 4072 4073 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4074 4075 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4076 field4 | xhci->cmd_ring->cycle_state); 4077 return 0; 4078 } 4079 4080 /* Queue a slot enable or disable request on the command ring */ 4081 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4082 u32 trb_type, u32 slot_id) 4083 { 4084 return queue_command(xhci, cmd, 0, 0, 0, 4085 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4086 } 4087 4088 /* Queue an address device command TRB */ 4089 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4090 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4091 { 4092 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4093 upper_32_bits(in_ctx_ptr), 0, 4094 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4095 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4096 } 4097 4098 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4099 u32 field1, u32 field2, u32 field3, u32 field4) 4100 { 4101 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4102 } 4103 4104 /* Queue a reset device command TRB */ 4105 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4106 u32 slot_id) 4107 { 4108 return queue_command(xhci, cmd, 0, 0, 0, 4109 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4110 false); 4111 } 4112 4113 /* Queue a configure endpoint command TRB */ 4114 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4115 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4116 u32 slot_id, bool command_must_succeed) 4117 { 4118 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4119 upper_32_bits(in_ctx_ptr), 0, 4120 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4121 command_must_succeed); 4122 } 4123 4124 /* Queue an evaluate context command TRB */ 4125 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4126 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4127 { 4128 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4129 upper_32_bits(in_ctx_ptr), 0, 4130 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4131 command_must_succeed); 4132 } 4133 4134 /* 4135 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4136 * activity on an endpoint that is about to be suspended. 4137 */ 4138 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4139 int slot_id, unsigned int ep_index, int suspend) 4140 { 4141 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4142 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4143 u32 type = TRB_TYPE(TRB_STOP_RING); 4144 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4145 4146 return queue_command(xhci, cmd, 0, 0, 0, 4147 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4148 } 4149 4150 /* Set Transfer Ring Dequeue Pointer command */ 4151 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4152 unsigned int slot_id, unsigned int ep_index, 4153 struct xhci_dequeue_state *deq_state) 4154 { 4155 dma_addr_t addr; 4156 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4157 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4158 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4159 u32 trb_sct = 0; 4160 u32 type = TRB_TYPE(TRB_SET_DEQ); 4161 struct xhci_virt_ep *ep; 4162 struct xhci_command *cmd; 4163 int ret; 4164 4165 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4166 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4167 deq_state->new_deq_seg, 4168 (unsigned long long)deq_state->new_deq_seg->dma, 4169 deq_state->new_deq_ptr, 4170 (unsigned long long)xhci_trb_virt_to_dma( 4171 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4172 deq_state->new_cycle_state); 4173 4174 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4175 deq_state->new_deq_ptr); 4176 if (addr == 0) { 4177 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4178 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4179 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4180 return; 4181 } 4182 ep = &xhci->devs[slot_id]->eps[ep_index]; 4183 if ((ep->ep_state & SET_DEQ_PENDING)) { 4184 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4185 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4186 return; 4187 } 4188 4189 /* This function gets called from contexts where it cannot sleep */ 4190 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4191 if (!cmd) 4192 return; 4193 4194 ep->queued_deq_seg = deq_state->new_deq_seg; 4195 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4196 if (deq_state->stream_id) 4197 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4198 ret = queue_command(xhci, cmd, 4199 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4200 upper_32_bits(addr), trb_stream_id, 4201 trb_slot_id | trb_ep_index | type, false); 4202 if (ret < 0) { 4203 xhci_free_command(xhci, cmd); 4204 return; 4205 } 4206 4207 /* Stop the TD queueing code from ringing the doorbell until 4208 * this command completes. The HC won't set the dequeue pointer 4209 * if the ring is running, and ringing the doorbell starts the 4210 * ring running. 4211 */ 4212 ep->ep_state |= SET_DEQ_PENDING; 4213 } 4214 4215 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4216 int slot_id, unsigned int ep_index, 4217 enum xhci_ep_reset_type reset_type) 4218 { 4219 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4220 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4221 u32 type = TRB_TYPE(TRB_RESET_EP); 4222 4223 if (reset_type == EP_SOFT_RESET) 4224 type |= TRB_TSP; 4225 4226 return queue_command(xhci, cmd, 0, 0, 0, 4227 trb_slot_id | trb_ep_index | type, false); 4228 } 4229