1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 284 /* Flush PCI posted writes */ 285 readl(&xhci->dba->doorbell[0]); 286 } 287 288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 289 { 290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 291 } 292 293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 294 { 295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 296 cmd_list); 297 } 298 299 /* 300 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 301 * If there are other commands waiting then restart the ring and kick the timer. 302 * This must be called with command ring stopped and xhci->lock held. 303 */ 304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 305 struct xhci_command *cur_cmd) 306 { 307 struct xhci_command *i_cmd; 308 309 /* Turn all aborted commands in list to no-ops, then restart */ 310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 311 312 if (i_cmd->status != COMP_COMMAND_ABORTED) 313 continue; 314 315 i_cmd->status = COMP_COMMAND_RING_STOPPED; 316 317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 318 i_cmd->command_trb); 319 320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 321 322 /* 323 * caller waiting for completion is called when command 324 * completion event is received for these no-op commands 325 */ 326 } 327 328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 329 330 /* ring command ring doorbell to restart the command ring */ 331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 332 !(xhci->xhc_state & XHCI_STATE_DYING)) { 333 xhci->current_cmd = cur_cmd; 334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 335 xhci_ring_cmd_db(xhci); 336 } 337 } 338 339 /* Must be called with xhci->lock held, releases and aquires lock back */ 340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 341 { 342 u64 temp_64; 343 int ret; 344 345 xhci_dbg(xhci, "Abort command ring\n"); 346 347 reinit_completion(&xhci->cmd_ring_stop_completion); 348 349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 351 &xhci->op_regs->cmd_ring); 352 353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 354 * completion of the Command Abort operation. If CRR is not negated in 5 355 * seconds then driver handles it as if host died (-ENODEV). 356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 357 * and try to recover a -ETIMEDOUT with a host controller reset. 358 */ 359 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 361 if (ret < 0) { 362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 363 xhci_halt(xhci); 364 xhci_hc_died(xhci); 365 return ret; 366 } 367 /* 368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 370 * but the completion event in never sent. Wait 2 secs (arbitrary 371 * number) to handle those cases after negation of CMD_RING_RUNNING. 372 */ 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 375 msecs_to_jiffies(2000)); 376 spin_lock_irqsave(&xhci->lock, flags); 377 if (!ret) { 378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 379 xhci_cleanup_command_queue(xhci); 380 } else { 381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 382 } 383 return 0; 384 } 385 386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 387 unsigned int slot_id, 388 unsigned int ep_index, 389 unsigned int stream_id) 390 { 391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 393 unsigned int ep_state = ep->ep_state; 394 395 /* Don't ring the doorbell for this endpoint if there are pending 396 * cancellations because we don't want to interrupt processing. 397 * We don't want to restart any stream rings if there's a set dequeue 398 * pointer command pending because the device can choose to start any 399 * stream once the endpoint is on the HW schedule. 400 */ 401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 402 (ep_state & EP_HALTED)) 403 return; 404 writel(DB_VALUE(ep_index, stream_id), db_addr); 405 /* The CPU has better things to do at this point than wait for a 406 * write-posting flush. It'll get there soon enough. 407 */ 408 } 409 410 /* Ring the doorbell for any rings with pending URBs */ 411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index) 414 { 415 unsigned int stream_id; 416 struct xhci_virt_ep *ep; 417 418 ep = &xhci->devs[slot_id]->eps[ep_index]; 419 420 /* A ring has pending URBs if its TD list is not empty */ 421 if (!(ep->ep_state & EP_HAS_STREAMS)) { 422 if (ep->ring && !(list_empty(&ep->ring->td_list))) 423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 424 return; 425 } 426 427 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 428 stream_id++) { 429 struct xhci_stream_info *stream_info = ep->stream_info; 430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 432 stream_id); 433 } 434 } 435 436 /* Get the right ring for the given slot_id, ep_index and stream_id. 437 * If the endpoint supports streams, boundary check the URB's stream ID. 438 * If the endpoint doesn't support streams, return the singular endpoint ring. 439 */ 440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 441 unsigned int slot_id, unsigned int ep_index, 442 unsigned int stream_id) 443 { 444 struct xhci_virt_ep *ep; 445 446 ep = &xhci->devs[slot_id]->eps[ep_index]; 447 /* Common case: no streams */ 448 if (!(ep->ep_state & EP_HAS_STREAMS)) 449 return ep->ring; 450 451 if (stream_id == 0) { 452 xhci_warn(xhci, 453 "WARN: Slot ID %u, ep index %u has streams, " 454 "but URB has no stream ID.\n", 455 slot_id, ep_index); 456 return NULL; 457 } 458 459 if (stream_id < ep->stream_info->num_streams) 460 return ep->stream_info->stream_rings[stream_id]; 461 462 xhci_warn(xhci, 463 "WARN: Slot ID %u, ep index %u has " 464 "stream IDs 1 to %u allocated, " 465 "but stream ID %u is requested.\n", 466 slot_id, ep_index, 467 ep->stream_info->num_streams - 1, 468 stream_id); 469 return NULL; 470 } 471 472 473 /* 474 * Get the hw dequeue pointer xHC stopped on, either directly from the 475 * endpoint context, or if streams are in use from the stream context. 476 * The returned hw_dequeue contains the lowest four bits with cycle state 477 * and possbile stream context type. 478 */ 479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 480 unsigned int ep_index, unsigned int stream_id) 481 { 482 struct xhci_ep_ctx *ep_ctx; 483 struct xhci_stream_ctx *st_ctx; 484 struct xhci_virt_ep *ep; 485 486 ep = &vdev->eps[ep_index]; 487 488 if (ep->ep_state & EP_HAS_STREAMS) { 489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 490 return le64_to_cpu(st_ctx->stream_ring); 491 } 492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 493 return le64_to_cpu(ep_ctx->deq); 494 } 495 496 /* 497 * Move the xHC's endpoint ring dequeue pointer past cur_td. 498 * Record the new state of the xHC's endpoint ring dequeue segment, 499 * dequeue pointer, stream id, and new consumer cycle state in state. 500 * Update our internal representation of the ring's dequeue pointer. 501 * 502 * We do this in three jumps: 503 * - First we update our new ring state to be the same as when the xHC stopped. 504 * - Then we traverse the ring to find the segment that contains 505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 506 * any link TRBs with the toggle cycle bit set. 507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 508 * if we've moved it past a link TRB with the toggle cycle bit set. 509 * 510 * Some of the uses of xhci_generic_trb are grotty, but if they're done 511 * with correct __le32 accesses they should work fine. Only users of this are 512 * in here. 513 */ 514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 515 unsigned int slot_id, unsigned int ep_index, 516 unsigned int stream_id, struct xhci_td *cur_td, 517 struct xhci_dequeue_state *state) 518 { 519 struct xhci_virt_device *dev = xhci->devs[slot_id]; 520 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 521 struct xhci_ring *ep_ring; 522 struct xhci_segment *new_seg; 523 union xhci_trb *new_deq; 524 dma_addr_t addr; 525 u64 hw_dequeue; 526 bool cycle_found = false; 527 bool td_last_trb_found = false; 528 529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 530 ep_index, stream_id); 531 if (!ep_ring) { 532 xhci_warn(xhci, "WARN can't find new dequeue state " 533 "for invalid stream ID %u.\n", 534 stream_id); 535 return; 536 } 537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 539 "Finding endpoint context"); 540 541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 542 new_seg = ep_ring->deq_seg; 543 new_deq = ep_ring->dequeue; 544 state->new_cycle_state = hw_dequeue & 0x1; 545 state->stream_id = stream_id; 546 547 /* 548 * We want to find the pointer, segment and cycle state of the new trb 549 * (the one after current TD's last_trb). We know the cycle state at 550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 551 * found. 552 */ 553 do { 554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 555 == (dma_addr_t)(hw_dequeue & ~0xf)) { 556 cycle_found = true; 557 if (td_last_trb_found) 558 break; 559 } 560 if (new_deq == cur_td->last_trb) 561 td_last_trb_found = true; 562 563 if (cycle_found && trb_is_link(new_deq) && 564 link_trb_toggles_cycle(new_deq)) 565 state->new_cycle_state ^= 0x1; 566 567 next_trb(xhci, ep_ring, &new_seg, &new_deq); 568 569 /* Search wrapped around, bail out */ 570 if (new_deq == ep->ring->dequeue) { 571 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 572 state->new_deq_seg = NULL; 573 state->new_deq_ptr = NULL; 574 return; 575 } 576 577 } while (!cycle_found || !td_last_trb_found); 578 579 state->new_deq_seg = new_seg; 580 state->new_deq_ptr = new_deq; 581 582 /* Don't update the ring cycle state for the producer (us). */ 583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 584 "Cycle state = 0x%x", state->new_cycle_state); 585 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue segment = %p (virtual)", 588 state->new_deq_seg); 589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 591 "New dequeue pointer = 0x%llx (DMA)", 592 (unsigned long long) addr); 593 } 594 595 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 596 * (The last TRB actually points to the ring enqueue pointer, which is not part 597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 598 */ 599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 600 struct xhci_td *td, bool flip_cycle) 601 { 602 struct xhci_segment *seg = td->start_seg; 603 union xhci_trb *trb = td->first_trb; 604 605 while (1) { 606 trb_to_noop(trb, TRB_TR_NOOP); 607 608 /* flip cycle if asked to */ 609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 611 612 if (trb == td->last_trb) 613 break; 614 615 next_trb(xhci, ep_ring, &seg, &trb); 616 } 617 } 618 619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 620 struct xhci_virt_ep *ep) 621 { 622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 623 /* Can't del_timer_sync in interrupt */ 624 del_timer(&ep->stop_cmd_timer); 625 } 626 627 /* 628 * Must be called with xhci->lock held in interrupt context, 629 * releases and re-acquires xhci->lock 630 */ 631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 632 struct xhci_td *cur_td, int status) 633 { 634 struct urb *urb = cur_td->urb; 635 struct urb_priv *urb_priv = urb->hcpriv; 636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 637 638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_quirk_pll_enable(); 643 } 644 } 645 xhci_urb_free_priv(urb_priv); 646 usb_hcd_unlink_urb_from_ep(hcd, urb); 647 spin_unlock(&xhci->lock); 648 trace_xhci_urb_giveback(urb); 649 usb_hcd_giveback_urb(hcd, urb, status); 650 spin_lock(&xhci->lock); 651 } 652 653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 654 struct xhci_ring *ring, struct xhci_td *td) 655 { 656 struct device *dev = xhci_to_hcd(xhci)->self.controller; 657 struct xhci_segment *seg = td->bounce_seg; 658 struct urb *urb = td->urb; 659 660 if (!ring || !seg || !urb) 661 return; 662 663 if (usb_urb_dir_out(urb)) { 664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 665 DMA_TO_DEVICE); 666 return; 667 } 668 669 /* for in tranfers we need to copy the data from bounce to sg */ 670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 671 seg->bounce_len, seg->bounce_offs); 672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 673 DMA_FROM_DEVICE); 674 seg->bounce_len = 0; 675 seg->bounce_offs = 0; 676 } 677 678 /* 679 * When we get a command completion for a Stop Endpoint Command, we need to 680 * unlink any cancelled TDs from the ring. There are two ways to do that: 681 * 682 * 1. If the HW was in the middle of processing the TD that needs to be 683 * cancelled, then we must move the ring's dequeue pointer past the last TRB 684 * in the TD with a Set Dequeue Pointer Command. 685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 686 * bit cleared) so that the HW will skip over them. 687 */ 688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 689 union xhci_trb *trb, struct xhci_event_cmd *event) 690 { 691 unsigned int ep_index; 692 struct xhci_ring *ep_ring; 693 struct xhci_virt_ep *ep; 694 struct xhci_td *cur_td = NULL; 695 struct xhci_td *last_unlinked_td; 696 struct xhci_ep_ctx *ep_ctx; 697 struct xhci_virt_device *vdev; 698 u64 hw_deq; 699 struct xhci_dequeue_state deq_state; 700 701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 702 if (!xhci->devs[slot_id]) 703 xhci_warn(xhci, "Stop endpoint command " 704 "completion for disabled slot %u\n", 705 slot_id); 706 return; 707 } 708 709 memset(&deq_state, 0, sizeof(deq_state)); 710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 711 712 vdev = xhci->devs[slot_id]; 713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 714 trace_xhci_handle_cmd_stop_ep(ep_ctx); 715 716 ep = &xhci->devs[slot_id]->eps[ep_index]; 717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 718 struct xhci_td, cancelled_td_list); 719 720 if (list_empty(&ep->cancelled_td_list)) { 721 xhci_stop_watchdog_timer_in_irq(xhci, ep); 722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 723 return; 724 } 725 726 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 727 * We have the xHCI lock, so nothing can modify this list until we drop 728 * it. We're also in the event handler, so we can't get re-interrupted 729 * if another Stop Endpoint command completes 730 */ 731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 733 "Removing canceled TD starting at 0x%llx (dma).", 734 (unsigned long long)xhci_trb_virt_to_dma( 735 cur_td->start_seg, cur_td->first_trb)); 736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 737 if (!ep_ring) { 738 /* This shouldn't happen unless a driver is mucking 739 * with the stream ID after submission. This will 740 * leave the TD on the hardware ring, and the hardware 741 * will try to execute it, and may access a buffer 742 * that has already been freed. In the best case, the 743 * hardware will execute it, and the event handler will 744 * ignore the completion event for that TD, since it was 745 * removed from the td_list for that endpoint. In 746 * short, don't muck with the stream ID after 747 * submission. 748 */ 749 xhci_warn(xhci, "WARN Cancelled URB %p " 750 "has invalid stream ID %u.\n", 751 cur_td->urb, 752 cur_td->urb->stream_id); 753 goto remove_finished_td; 754 } 755 /* 756 * If we stopped on the TD we need to cancel, then we have to 757 * move the xHC endpoint ring dequeue pointer past this TD. 758 */ 759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 760 cur_td->urb->stream_id); 761 hw_deq &= ~0xf; 762 763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 764 cur_td->last_trb, hw_deq, false)) { 765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 766 cur_td->urb->stream_id, 767 cur_td, &deq_state); 768 } else { 769 td_to_noop(xhci, ep_ring, cur_td, false); 770 } 771 772 remove_finished_td: 773 /* 774 * The event handler won't see a completion for this TD anymore, 775 * so remove it from the endpoint ring's TD list. Keep it in 776 * the cancelled TD list for URB completion later. 777 */ 778 list_del_init(&cur_td->td_list); 779 } 780 781 xhci_stop_watchdog_timer_in_irq(xhci, ep); 782 783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 786 &deq_state); 787 xhci_ring_cmd_db(xhci); 788 } else { 789 /* Otherwise ring the doorbell(s) to restart queued transfers */ 790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 791 } 792 793 /* 794 * Drop the lock and complete the URBs in the cancelled TD list. 795 * New TDs to be cancelled might be added to the end of the list before 796 * we can complete all the URBs for the TDs we already unlinked. 797 * So stop when we've completed the URB for the last TD we unlinked. 798 */ 799 do { 800 cur_td = list_first_entry(&ep->cancelled_td_list, 801 struct xhci_td, cancelled_td_list); 802 list_del_init(&cur_td->cancelled_td_list); 803 804 /* Clean up the cancelled URB */ 805 /* Doesn't matter what we pass for status, since the core will 806 * just overwrite it (because the URB has been unlinked). 807 */ 808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 810 inc_td_cnt(cur_td->urb); 811 if (last_td_in_urb(cur_td)) 812 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 813 814 /* Stop processing the cancelled list if the watchdog timer is 815 * running. 816 */ 817 if (xhci->xhc_state & XHCI_STATE_DYING) 818 return; 819 } while (cur_td != last_unlinked_td); 820 821 /* Return to the event handler with xhci->lock re-acquired */ 822 } 823 824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 825 { 826 struct xhci_td *cur_td; 827 struct xhci_td *tmp; 828 829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 830 list_del_init(&cur_td->td_list); 831 832 if (!list_empty(&cur_td->cancelled_td_list)) 833 list_del_init(&cur_td->cancelled_td_list); 834 835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 836 837 inc_td_cnt(cur_td->urb); 838 if (last_td_in_urb(cur_td)) 839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 840 } 841 } 842 843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 844 int slot_id, int ep_index) 845 { 846 struct xhci_td *cur_td; 847 struct xhci_td *tmp; 848 struct xhci_virt_ep *ep; 849 struct xhci_ring *ring; 850 851 ep = &xhci->devs[slot_id]->eps[ep_index]; 852 if ((ep->ep_state & EP_HAS_STREAMS) || 853 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 854 int stream_id; 855 856 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 857 stream_id++) { 858 ring = ep->stream_info->stream_rings[stream_id]; 859 if (!ring) 860 continue; 861 862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 863 "Killing URBs for slot ID %u, ep index %u, stream %u", 864 slot_id, ep_index, stream_id); 865 xhci_kill_ring_urbs(xhci, ring); 866 } 867 } else { 868 ring = ep->ring; 869 if (!ring) 870 return; 871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 872 "Killing URBs for slot ID %u, ep index %u", 873 slot_id, ep_index); 874 xhci_kill_ring_urbs(xhci, ring); 875 } 876 877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 878 cancelled_td_list) { 879 list_del_init(&cur_td->cancelled_td_list); 880 inc_td_cnt(cur_td->urb); 881 882 if (last_td_in_urb(cur_td)) 883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 884 } 885 } 886 887 /* 888 * host controller died, register read returns 0xffffffff 889 * Complete pending commands, mark them ABORTED. 890 * URBs need to be given back as usb core might be waiting with device locks 891 * held for the URBs to finish during device disconnect, blocking host remove. 892 * 893 * Call with xhci->lock held. 894 * lock is relased and re-acquired while giving back urb. 895 */ 896 void xhci_hc_died(struct xhci_hcd *xhci) 897 { 898 int i, j; 899 900 if (xhci->xhc_state & XHCI_STATE_DYING) 901 return; 902 903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 904 xhci->xhc_state |= XHCI_STATE_DYING; 905 906 xhci_cleanup_command_queue(xhci); 907 908 /* return any pending urbs, remove may be waiting for them */ 909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 910 if (!xhci->devs[i]) 911 continue; 912 for (j = 0; j < 31; j++) 913 xhci_kill_endpoint_urbs(xhci, i, j); 914 } 915 916 /* inform usb core hc died if PCI remove isn't already handling it */ 917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 918 usb_hc_died(xhci_to_hcd(xhci)); 919 } 920 921 /* Watchdog timer function for when a stop endpoint command fails to complete. 922 * In this case, we assume the host controller is broken or dying or dead. The 923 * host may still be completing some other events, so we have to be careful to 924 * let the event ring handler and the URB dequeueing/enqueueing functions know 925 * through xhci->state. 926 * 927 * The timer may also fire if the host takes a very long time to respond to the 928 * command, and the stop endpoint command completion handler cannot delete the 929 * timer before the timer function is called. Another endpoint cancellation may 930 * sneak in before the timer function can grab the lock, and that may queue 931 * another stop endpoint command and add the timer back. So we cannot use a 932 * simple flag to say whether there is a pending stop endpoint command for a 933 * particular endpoint. 934 * 935 * Instead we use a combination of that flag and checking if a new timer is 936 * pending. 937 */ 938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 939 { 940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 941 struct xhci_hcd *xhci = ep->xhci; 942 unsigned long flags; 943 944 spin_lock_irqsave(&xhci->lock, flags); 945 946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 948 timer_pending(&ep->stop_cmd_timer)) { 949 spin_unlock_irqrestore(&xhci->lock, flags); 950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 951 return; 952 } 953 954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 955 ep->ep_state &= ~EP_STOP_CMD_PENDING; 956 957 xhci_halt(xhci); 958 959 /* 960 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 962 * and try to recover a -ETIMEDOUT with a host controller reset 963 */ 964 xhci_hc_died(xhci); 965 966 spin_unlock_irqrestore(&xhci->lock, flags); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 968 "xHCI host controller is dead."); 969 } 970 971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 972 struct xhci_virt_device *dev, 973 struct xhci_ring *ep_ring, 974 unsigned int ep_index) 975 { 976 union xhci_trb *dequeue_temp; 977 int num_trbs_free_temp; 978 bool revert = false; 979 980 num_trbs_free_temp = ep_ring->num_trbs_free; 981 dequeue_temp = ep_ring->dequeue; 982 983 /* If we get two back-to-back stalls, and the first stalled transfer 984 * ends just before a link TRB, the dequeue pointer will be left on 985 * the link TRB by the code in the while loop. So we have to update 986 * the dequeue pointer one segment further, or we'll jump off 987 * the segment into la-la-land. 988 */ 989 if (trb_is_link(ep_ring->dequeue)) { 990 ep_ring->deq_seg = ep_ring->deq_seg->next; 991 ep_ring->dequeue = ep_ring->deq_seg->trbs; 992 } 993 994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 995 /* We have more usable TRBs */ 996 ep_ring->num_trbs_free++; 997 ep_ring->dequeue++; 998 if (trb_is_link(ep_ring->dequeue)) { 999 if (ep_ring->dequeue == 1000 dev->eps[ep_index].queued_deq_ptr) 1001 break; 1002 ep_ring->deq_seg = ep_ring->deq_seg->next; 1003 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1004 } 1005 if (ep_ring->dequeue == dequeue_temp) { 1006 revert = true; 1007 break; 1008 } 1009 } 1010 1011 if (revert) { 1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1013 ep_ring->num_trbs_free = num_trbs_free_temp; 1014 } 1015 } 1016 1017 /* 1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1019 * we need to clear the set deq pending flag in the endpoint ring state, so that 1020 * the TD queueing code can ring the doorbell again. We also need to ring the 1021 * endpoint doorbell to restart the ring, but only if there aren't more 1022 * cancellations pending. 1023 */ 1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1025 union xhci_trb *trb, u32 cmd_comp_code) 1026 { 1027 unsigned int ep_index; 1028 unsigned int stream_id; 1029 struct xhci_ring *ep_ring; 1030 struct xhci_virt_device *dev; 1031 struct xhci_virt_ep *ep; 1032 struct xhci_ep_ctx *ep_ctx; 1033 struct xhci_slot_ctx *slot_ctx; 1034 1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1037 dev = xhci->devs[slot_id]; 1038 ep = &dev->eps[ep_index]; 1039 1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1041 if (!ep_ring) { 1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1043 stream_id); 1044 /* XXX: Harmless??? */ 1045 goto cleanup; 1046 } 1047 1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1050 trace_xhci_handle_cmd_set_deq(slot_ctx); 1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1052 1053 if (cmd_comp_code != COMP_SUCCESS) { 1054 unsigned int ep_state; 1055 unsigned int slot_state; 1056 1057 switch (cmd_comp_code) { 1058 case COMP_TRB_ERROR: 1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1060 break; 1061 case COMP_CONTEXT_STATE_ERROR: 1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1063 ep_state = GET_EP_CTX_STATE(ep_ctx); 1064 slot_state = le32_to_cpu(slot_ctx->dev_state); 1065 slot_state = GET_SLOT_STATE(slot_state); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1067 "Slot state = %u, EP state = %u", 1068 slot_state, ep_state); 1069 break; 1070 case COMP_SLOT_NOT_ENABLED_ERROR: 1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1072 slot_id); 1073 break; 1074 default: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1076 cmd_comp_code); 1077 break; 1078 } 1079 /* OK what do we do now? The endpoint state is hosed, and we 1080 * should never get to this point if the synchronization between 1081 * queueing, and endpoint state are correct. This might happen 1082 * if the device gets disconnected after we've finished 1083 * cancelling URBs, which might not be an error... 1084 */ 1085 } else { 1086 u64 deq; 1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1088 if (ep->ep_state & EP_HAS_STREAMS) { 1089 struct xhci_stream_ctx *ctx = 1090 &ep->stream_info->stream_ctx_array[stream_id]; 1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1092 } else { 1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1094 } 1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1098 ep->queued_deq_ptr) == deq) { 1099 /* Update the ring's dequeue segment and dequeue pointer 1100 * to reflect the new position. 1101 */ 1102 update_ring_for_set_deq_completion(xhci, dev, 1103 ep_ring, ep_index); 1104 } else { 1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1107 ep->queued_deq_seg, ep->queued_deq_ptr); 1108 } 1109 } 1110 1111 cleanup: 1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1113 dev->eps[ep_index].queued_deq_seg = NULL; 1114 dev->eps[ep_index].queued_deq_ptr = NULL; 1115 /* Restart any rings with pending URBs */ 1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1117 } 1118 1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1120 union xhci_trb *trb, u32 cmd_comp_code) 1121 { 1122 struct xhci_virt_device *vdev; 1123 struct xhci_ep_ctx *ep_ctx; 1124 unsigned int ep_index; 1125 1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1127 vdev = xhci->devs[slot_id]; 1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1129 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1130 1131 /* This command will only fail if the endpoint wasn't halted, 1132 * but we don't care. 1133 */ 1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1135 "Ignoring reset ep completion code of %u", cmd_comp_code); 1136 1137 /* HW with the reset endpoint quirk needs to have a configure endpoint 1138 * command complete before the endpoint can be used. Queue that here 1139 * because the HW can't handle two commands being queued in a row. 1140 */ 1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1142 struct xhci_command *command; 1143 1144 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1145 if (!command) 1146 return; 1147 1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1149 "Queueing configure endpoint command"); 1150 xhci_queue_configure_endpoint(xhci, command, 1151 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1152 false); 1153 xhci_ring_cmd_db(xhci); 1154 } else { 1155 /* Clear our internal halted state */ 1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1157 } 1158 } 1159 1160 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1161 struct xhci_command *command, u32 cmd_comp_code) 1162 { 1163 if (cmd_comp_code == COMP_SUCCESS) 1164 command->slot_id = slot_id; 1165 else 1166 command->slot_id = 0; 1167 } 1168 1169 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1170 { 1171 struct xhci_virt_device *virt_dev; 1172 struct xhci_slot_ctx *slot_ctx; 1173 1174 virt_dev = xhci->devs[slot_id]; 1175 if (!virt_dev) 1176 return; 1177 1178 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1179 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1180 1181 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1182 /* Delete default control endpoint resources */ 1183 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1184 xhci_free_virt_device(xhci, slot_id); 1185 } 1186 1187 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1188 struct xhci_event_cmd *event, u32 cmd_comp_code) 1189 { 1190 struct xhci_virt_device *virt_dev; 1191 struct xhci_input_control_ctx *ctrl_ctx; 1192 struct xhci_ep_ctx *ep_ctx; 1193 unsigned int ep_index; 1194 unsigned int ep_state; 1195 u32 add_flags, drop_flags; 1196 1197 /* 1198 * Configure endpoint commands can come from the USB core 1199 * configuration or alt setting changes, or because the HW 1200 * needed an extra configure endpoint command after a reset 1201 * endpoint command or streams were being configured. 1202 * If the command was for a halted endpoint, the xHCI driver 1203 * is not waiting on the configure endpoint command. 1204 */ 1205 virt_dev = xhci->devs[slot_id]; 1206 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1207 if (!ctrl_ctx) { 1208 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1209 return; 1210 } 1211 1212 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1213 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1214 /* Input ctx add_flags are the endpoint index plus one */ 1215 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1216 1217 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1218 trace_xhci_handle_cmd_config_ep(ep_ctx); 1219 1220 /* A usb_set_interface() call directly after clearing a halted 1221 * condition may race on this quirky hardware. Not worth 1222 * worrying about, since this is prototype hardware. Not sure 1223 * if this will work for streams, but streams support was 1224 * untested on this prototype. 1225 */ 1226 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1227 ep_index != (unsigned int) -1 && 1228 add_flags - SLOT_FLAG == drop_flags) { 1229 ep_state = virt_dev->eps[ep_index].ep_state; 1230 if (!(ep_state & EP_HALTED)) 1231 return; 1232 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1233 "Completed config ep cmd - " 1234 "last ep index = %d, state = %d", 1235 ep_index, ep_state); 1236 /* Clear internal halted state and restart ring(s) */ 1237 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1238 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1239 return; 1240 } 1241 return; 1242 } 1243 1244 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1245 { 1246 struct xhci_virt_device *vdev; 1247 struct xhci_slot_ctx *slot_ctx; 1248 1249 vdev = xhci->devs[slot_id]; 1250 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1251 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1252 } 1253 1254 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1255 struct xhci_event_cmd *event) 1256 { 1257 struct xhci_virt_device *vdev; 1258 struct xhci_slot_ctx *slot_ctx; 1259 1260 vdev = xhci->devs[slot_id]; 1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1262 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1263 1264 xhci_dbg(xhci, "Completed reset device command.\n"); 1265 if (!xhci->devs[slot_id]) 1266 xhci_warn(xhci, "Reset device command completion " 1267 "for disabled slot %u\n", slot_id); 1268 } 1269 1270 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1271 struct xhci_event_cmd *event) 1272 { 1273 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1274 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1275 return; 1276 } 1277 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1278 "NEC firmware version %2x.%02x", 1279 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1280 NEC_FW_MINOR(le32_to_cpu(event->status))); 1281 } 1282 1283 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1284 { 1285 list_del(&cmd->cmd_list); 1286 1287 if (cmd->completion) { 1288 cmd->status = status; 1289 complete(cmd->completion); 1290 } else { 1291 kfree(cmd); 1292 } 1293 } 1294 1295 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1296 { 1297 struct xhci_command *cur_cmd, *tmp_cmd; 1298 xhci->current_cmd = NULL; 1299 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1300 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1301 } 1302 1303 void xhci_handle_command_timeout(struct work_struct *work) 1304 { 1305 struct xhci_hcd *xhci; 1306 unsigned long flags; 1307 u64 hw_ring_state; 1308 1309 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1310 1311 spin_lock_irqsave(&xhci->lock, flags); 1312 1313 /* 1314 * If timeout work is pending, or current_cmd is NULL, it means we 1315 * raced with command completion. Command is handled so just return. 1316 */ 1317 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1318 spin_unlock_irqrestore(&xhci->lock, flags); 1319 return; 1320 } 1321 /* mark this command to be cancelled */ 1322 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1323 1324 /* Make sure command ring is running before aborting it */ 1325 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1326 if (hw_ring_state == ~(u64)0) { 1327 xhci_hc_died(xhci); 1328 goto time_out_completed; 1329 } 1330 1331 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1332 (hw_ring_state & CMD_RING_RUNNING)) { 1333 /* Prevent new doorbell, and start command abort */ 1334 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1335 xhci_dbg(xhci, "Command timeout\n"); 1336 xhci_abort_cmd_ring(xhci, flags); 1337 goto time_out_completed; 1338 } 1339 1340 /* host removed. Bail out */ 1341 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1342 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1343 xhci_cleanup_command_queue(xhci); 1344 1345 goto time_out_completed; 1346 } 1347 1348 /* command timeout on stopped ring, ring can't be aborted */ 1349 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1350 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1351 1352 time_out_completed: 1353 spin_unlock_irqrestore(&xhci->lock, flags); 1354 return; 1355 } 1356 1357 static void handle_cmd_completion(struct xhci_hcd *xhci, 1358 struct xhci_event_cmd *event) 1359 { 1360 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1361 u64 cmd_dma; 1362 dma_addr_t cmd_dequeue_dma; 1363 u32 cmd_comp_code; 1364 union xhci_trb *cmd_trb; 1365 struct xhci_command *cmd; 1366 u32 cmd_type; 1367 1368 cmd_dma = le64_to_cpu(event->cmd_trb); 1369 cmd_trb = xhci->cmd_ring->dequeue; 1370 1371 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1372 1373 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1374 cmd_trb); 1375 /* 1376 * Check whether the completion event is for our internal kept 1377 * command. 1378 */ 1379 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1380 xhci_warn(xhci, 1381 "ERROR mismatched command completion event\n"); 1382 return; 1383 } 1384 1385 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1386 1387 cancel_delayed_work(&xhci->cmd_timer); 1388 1389 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1390 1391 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1392 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1393 complete_all(&xhci->cmd_ring_stop_completion); 1394 return; 1395 } 1396 1397 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1398 xhci_err(xhci, 1399 "Command completion event does not match command\n"); 1400 return; 1401 } 1402 1403 /* 1404 * Host aborted the command ring, check if the current command was 1405 * supposed to be aborted, otherwise continue normally. 1406 * The command ring is stopped now, but the xHC will issue a Command 1407 * Ring Stopped event which will cause us to restart it. 1408 */ 1409 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1410 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1411 if (cmd->status == COMP_COMMAND_ABORTED) { 1412 if (xhci->current_cmd == cmd) 1413 xhci->current_cmd = NULL; 1414 goto event_handled; 1415 } 1416 } 1417 1418 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1419 switch (cmd_type) { 1420 case TRB_ENABLE_SLOT: 1421 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1422 break; 1423 case TRB_DISABLE_SLOT: 1424 xhci_handle_cmd_disable_slot(xhci, slot_id); 1425 break; 1426 case TRB_CONFIG_EP: 1427 if (!cmd->completion) 1428 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1429 cmd_comp_code); 1430 break; 1431 case TRB_EVAL_CONTEXT: 1432 break; 1433 case TRB_ADDR_DEV: 1434 xhci_handle_cmd_addr_dev(xhci, slot_id); 1435 break; 1436 case TRB_STOP_RING: 1437 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1438 le32_to_cpu(cmd_trb->generic.field[3]))); 1439 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1440 break; 1441 case TRB_SET_DEQ: 1442 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1443 le32_to_cpu(cmd_trb->generic.field[3]))); 1444 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1445 break; 1446 case TRB_CMD_NOOP: 1447 /* Is this an aborted command turned to NO-OP? */ 1448 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1449 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1450 break; 1451 case TRB_RESET_EP: 1452 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1453 le32_to_cpu(cmd_trb->generic.field[3]))); 1454 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1455 break; 1456 case TRB_RESET_DEV: 1457 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1458 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1459 */ 1460 slot_id = TRB_TO_SLOT_ID( 1461 le32_to_cpu(cmd_trb->generic.field[3])); 1462 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1463 break; 1464 case TRB_NEC_GET_FW: 1465 xhci_handle_cmd_nec_get_fw(xhci, event); 1466 break; 1467 default: 1468 /* Skip over unknown commands on the event ring */ 1469 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1470 break; 1471 } 1472 1473 /* restart timer if this wasn't the last command */ 1474 if (!list_is_singular(&xhci->cmd_list)) { 1475 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1476 struct xhci_command, cmd_list); 1477 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1478 } else if (xhci->current_cmd == cmd) { 1479 xhci->current_cmd = NULL; 1480 } 1481 1482 event_handled: 1483 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1484 1485 inc_deq(xhci, xhci->cmd_ring); 1486 } 1487 1488 static void handle_vendor_event(struct xhci_hcd *xhci, 1489 union xhci_trb *event) 1490 { 1491 u32 trb_type; 1492 1493 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1494 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1495 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1496 handle_cmd_completion(xhci, &event->event_cmd); 1497 } 1498 1499 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1500 * port registers -- USB 3.0 and USB 2.0). 1501 * 1502 * Returns a zero-based port number, which is suitable for indexing into each of 1503 * the split roothubs' port arrays and bus state arrays. 1504 * Add one to it in order to call xhci_find_slot_id_by_port. 1505 */ 1506 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1507 struct xhci_hcd *xhci, u32 port_id) 1508 { 1509 unsigned int i; 1510 unsigned int num_similar_speed_ports = 0; 1511 1512 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1513 * and usb2_ports are 0-based indexes. Count the number of similar 1514 * speed ports, up to 1 port before this port. 1515 */ 1516 for (i = 0; i < (port_id - 1); i++) { 1517 u8 port_speed = xhci->port_array[i]; 1518 1519 /* 1520 * Skip ports that don't have known speeds, or have duplicate 1521 * Extended Capabilities port speed entries. 1522 */ 1523 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1524 continue; 1525 1526 /* 1527 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1528 * 1.1 ports are under the USB 2.0 hub. If the port speed 1529 * matches the device speed, it's a similar speed port. 1530 */ 1531 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1532 num_similar_speed_ports++; 1533 } 1534 return num_similar_speed_ports; 1535 } 1536 1537 static void handle_device_notification(struct xhci_hcd *xhci, 1538 union xhci_trb *event) 1539 { 1540 u32 slot_id; 1541 struct usb_device *udev; 1542 1543 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1544 if (!xhci->devs[slot_id]) { 1545 xhci_warn(xhci, "Device Notification event for " 1546 "unused slot %u\n", slot_id); 1547 return; 1548 } 1549 1550 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1551 slot_id); 1552 udev = xhci->devs[slot_id]->udev; 1553 if (udev && udev->parent) 1554 usb_wakeup_notification(udev->parent, udev->portnum); 1555 } 1556 1557 static void handle_port_status(struct xhci_hcd *xhci, 1558 union xhci_trb *event) 1559 { 1560 struct usb_hcd *hcd; 1561 u32 port_id; 1562 u32 portsc, cmd_reg; 1563 int max_ports; 1564 int slot_id; 1565 unsigned int faked_port_index; 1566 u8 major_revision; 1567 struct xhci_bus_state *bus_state; 1568 __le32 __iomem **port_array; 1569 bool bogus_port_status = false; 1570 1571 /* Port status change events always have a successful completion code */ 1572 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1573 xhci_warn(xhci, 1574 "WARN: xHC returned failed port status event\n"); 1575 1576 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1577 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1578 1579 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1580 if ((port_id <= 0) || (port_id > max_ports)) { 1581 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1582 inc_deq(xhci, xhci->event_ring); 1583 return; 1584 } 1585 1586 /* Figure out which usb_hcd this port is attached to: 1587 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1588 */ 1589 major_revision = xhci->port_array[port_id - 1]; 1590 1591 /* Find the right roothub. */ 1592 hcd = xhci_to_hcd(xhci); 1593 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1594 hcd = xhci->shared_hcd; 1595 1596 if (major_revision == 0) { 1597 xhci_warn(xhci, "Event for port %u not in " 1598 "Extended Capabilities, ignoring.\n", 1599 port_id); 1600 bogus_port_status = true; 1601 goto cleanup; 1602 } 1603 if (major_revision == DUPLICATE_ENTRY) { 1604 xhci_warn(xhci, "Event for port %u duplicated in" 1605 "Extended Capabilities, ignoring.\n", 1606 port_id); 1607 bogus_port_status = true; 1608 goto cleanup; 1609 } 1610 1611 /* 1612 * Hardware port IDs reported by a Port Status Change Event include USB 1613 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1614 * resume event, but we first need to translate the hardware port ID 1615 * into the index into the ports on the correct split roothub, and the 1616 * correct bus_state structure. 1617 */ 1618 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1619 if (hcd->speed >= HCD_USB3) 1620 port_array = xhci->usb3_ports; 1621 else 1622 port_array = xhci->usb2_ports; 1623 /* Find the faked port hub number */ 1624 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1625 port_id); 1626 portsc = readl(port_array[faked_port_index]); 1627 1628 trace_xhci_handle_port_status(faked_port_index, portsc); 1629 1630 if (hcd->state == HC_STATE_SUSPENDED) { 1631 xhci_dbg(xhci, "resume root hub\n"); 1632 usb_hcd_resume_root_hub(hcd); 1633 } 1634 1635 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1636 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1637 1638 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1639 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1640 1641 cmd_reg = readl(&xhci->op_regs->command); 1642 if (!(cmd_reg & CMD_RUN)) { 1643 xhci_warn(xhci, "xHC is not running.\n"); 1644 goto cleanup; 1645 } 1646 1647 if (DEV_SUPERSPEED_ANY(portsc)) { 1648 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1649 /* Set a flag to say the port signaled remote wakeup, 1650 * so we can tell the difference between the end of 1651 * device and host initiated resume. 1652 */ 1653 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1654 xhci_test_and_clear_bit(xhci, port_array, 1655 faked_port_index, PORT_PLC); 1656 xhci_set_link_state(xhci, port_array, faked_port_index, 1657 XDEV_U0); 1658 /* Need to wait until the next link state change 1659 * indicates the device is actually in U0. 1660 */ 1661 bogus_port_status = true; 1662 goto cleanup; 1663 } else if (!test_bit(faked_port_index, 1664 &bus_state->resuming_ports)) { 1665 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1666 bus_state->resume_done[faked_port_index] = jiffies + 1667 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1668 set_bit(faked_port_index, &bus_state->resuming_ports); 1669 /* Do the rest in GetPortStatus after resume time delay. 1670 * Avoid polling roothub status before that so that a 1671 * usb device auto-resume latency around ~40ms. 1672 */ 1673 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1674 mod_timer(&hcd->rh_timer, 1675 bus_state->resume_done[faked_port_index]); 1676 bogus_port_status = true; 1677 } 1678 } 1679 1680 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 && 1681 DEV_SUPERSPEED_ANY(portsc)) { 1682 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1683 /* We've just brought the device into U0 through either the 1684 * Resume state after a device remote wakeup, or through the 1685 * U3Exit state after a host-initiated resume. If it's a device 1686 * initiated remote wake, don't pass up the link state change, 1687 * so the roothub behavior is consistent with external 1688 * USB 3.0 hub behavior. 1689 */ 1690 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1691 faked_port_index + 1); 1692 if (slot_id && xhci->devs[slot_id]) 1693 xhci_ring_device(xhci, slot_id); 1694 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1695 bus_state->port_remote_wakeup &= 1696 ~(1 << faked_port_index); 1697 xhci_test_and_clear_bit(xhci, port_array, 1698 faked_port_index, PORT_PLC); 1699 usb_wakeup_notification(hcd->self.root_hub, 1700 faked_port_index + 1); 1701 bogus_port_status = true; 1702 goto cleanup; 1703 } 1704 } 1705 1706 /* 1707 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1708 * RExit to a disconnect state). If so, let the the driver know it's 1709 * out of the RExit state. 1710 */ 1711 if (!DEV_SUPERSPEED_ANY(portsc) && 1712 test_and_clear_bit(faked_port_index, 1713 &bus_state->rexit_ports)) { 1714 complete(&bus_state->rexit_done[faked_port_index]); 1715 bogus_port_status = true; 1716 goto cleanup; 1717 } 1718 1719 if (hcd->speed < HCD_USB3) 1720 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1721 PORT_PLC); 1722 1723 cleanup: 1724 /* Update event ring dequeue pointer before dropping the lock */ 1725 inc_deq(xhci, xhci->event_ring); 1726 1727 /* Don't make the USB core poll the roothub if we got a bad port status 1728 * change event. Besides, at that point we can't tell which roothub 1729 * (USB 2.0 or USB 3.0) to kick. 1730 */ 1731 if (bogus_port_status) 1732 return; 1733 1734 /* 1735 * xHCI port-status-change events occur when the "or" of all the 1736 * status-change bits in the portsc register changes from 0 to 1. 1737 * New status changes won't cause an event if any other change 1738 * bits are still set. When an event occurs, switch over to 1739 * polling to avoid losing status changes. 1740 */ 1741 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1742 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1743 spin_unlock(&xhci->lock); 1744 /* Pass this up to the core */ 1745 usb_hcd_poll_rh_status(hcd); 1746 spin_lock(&xhci->lock); 1747 } 1748 1749 /* 1750 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1751 * at end_trb, which may be in another segment. If the suspect DMA address is a 1752 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1753 * returns 0. 1754 */ 1755 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1756 struct xhci_segment *start_seg, 1757 union xhci_trb *start_trb, 1758 union xhci_trb *end_trb, 1759 dma_addr_t suspect_dma, 1760 bool debug) 1761 { 1762 dma_addr_t start_dma; 1763 dma_addr_t end_seg_dma; 1764 dma_addr_t end_trb_dma; 1765 struct xhci_segment *cur_seg; 1766 1767 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1768 cur_seg = start_seg; 1769 1770 do { 1771 if (start_dma == 0) 1772 return NULL; 1773 /* We may get an event for a Link TRB in the middle of a TD */ 1774 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1775 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1776 /* If the end TRB isn't in this segment, this is set to 0 */ 1777 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1778 1779 if (debug) 1780 xhci_warn(xhci, 1781 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1782 (unsigned long long)suspect_dma, 1783 (unsigned long long)start_dma, 1784 (unsigned long long)end_trb_dma, 1785 (unsigned long long)cur_seg->dma, 1786 (unsigned long long)end_seg_dma); 1787 1788 if (end_trb_dma > 0) { 1789 /* The end TRB is in this segment, so suspect should be here */ 1790 if (start_dma <= end_trb_dma) { 1791 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1792 return cur_seg; 1793 } else { 1794 /* Case for one segment with 1795 * a TD wrapped around to the top 1796 */ 1797 if ((suspect_dma >= start_dma && 1798 suspect_dma <= end_seg_dma) || 1799 (suspect_dma >= cur_seg->dma && 1800 suspect_dma <= end_trb_dma)) 1801 return cur_seg; 1802 } 1803 return NULL; 1804 } else { 1805 /* Might still be somewhere in this segment */ 1806 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1807 return cur_seg; 1808 } 1809 cur_seg = cur_seg->next; 1810 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1811 } while (cur_seg != start_seg); 1812 1813 return NULL; 1814 } 1815 1816 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1817 unsigned int slot_id, unsigned int ep_index, 1818 unsigned int stream_id, 1819 struct xhci_td *td, union xhci_trb *ep_trb, 1820 enum xhci_ep_reset_type reset_type) 1821 { 1822 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1823 struct xhci_command *command; 1824 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1825 if (!command) 1826 return; 1827 1828 ep->ep_state |= EP_HALTED; 1829 1830 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1831 1832 if (reset_type == EP_HARD_RESET) 1833 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1834 1835 xhci_ring_cmd_db(xhci); 1836 } 1837 1838 /* Check if an error has halted the endpoint ring. The class driver will 1839 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1840 * However, a babble and other errors also halt the endpoint ring, and the class 1841 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1842 * Ring Dequeue Pointer command manually. 1843 */ 1844 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1845 struct xhci_ep_ctx *ep_ctx, 1846 unsigned int trb_comp_code) 1847 { 1848 /* TRB completion codes that may require a manual halt cleanup */ 1849 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1850 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1851 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1852 /* The 0.95 spec says a babbling control endpoint 1853 * is not halted. The 0.96 spec says it is. Some HW 1854 * claims to be 0.95 compliant, but it halts the control 1855 * endpoint anyway. Check if a babble halted the 1856 * endpoint. 1857 */ 1858 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1859 return 1; 1860 1861 return 0; 1862 } 1863 1864 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1865 { 1866 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1867 /* Vendor defined "informational" completion code, 1868 * treat as not-an-error. 1869 */ 1870 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1871 trb_comp_code); 1872 xhci_dbg(xhci, "Treating code as success.\n"); 1873 return 1; 1874 } 1875 return 0; 1876 } 1877 1878 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1879 struct xhci_ring *ep_ring, int *status) 1880 { 1881 struct urb_priv *urb_priv; 1882 struct urb *urb = NULL; 1883 1884 /* Clean up the endpoint's TD list */ 1885 urb = td->urb; 1886 urb_priv = urb->hcpriv; 1887 1888 /* if a bounce buffer was used to align this td then unmap it */ 1889 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1890 1891 /* Do one last check of the actual transfer length. 1892 * If the host controller said we transferred more data than the buffer 1893 * length, urb->actual_length will be a very big number (since it's 1894 * unsigned). Play it safe and say we didn't transfer anything. 1895 */ 1896 if (urb->actual_length > urb->transfer_buffer_length) { 1897 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1898 urb->transfer_buffer_length, urb->actual_length); 1899 urb->actual_length = 0; 1900 *status = 0; 1901 } 1902 list_del_init(&td->td_list); 1903 /* Was this TD slated to be cancelled but completed anyway? */ 1904 if (!list_empty(&td->cancelled_td_list)) 1905 list_del_init(&td->cancelled_td_list); 1906 1907 inc_td_cnt(urb); 1908 /* Giveback the urb when all the tds are completed */ 1909 if (last_td_in_urb(td)) { 1910 if ((urb->actual_length != urb->transfer_buffer_length && 1911 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1912 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1913 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1914 urb, urb->actual_length, 1915 urb->transfer_buffer_length, *status); 1916 1917 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1918 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1919 *status = 0; 1920 xhci_giveback_urb_in_irq(xhci, td, *status); 1921 } 1922 1923 return 0; 1924 } 1925 1926 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1927 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1928 struct xhci_virt_ep *ep, int *status) 1929 { 1930 struct xhci_virt_device *xdev; 1931 struct xhci_ep_ctx *ep_ctx; 1932 struct xhci_ring *ep_ring; 1933 unsigned int slot_id; 1934 u32 trb_comp_code; 1935 int ep_index; 1936 1937 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1938 xdev = xhci->devs[slot_id]; 1939 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1940 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1941 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1942 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1943 1944 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1945 trb_comp_code == COMP_STOPPED || 1946 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1947 /* The Endpoint Stop Command completion will take care of any 1948 * stopped TDs. A stopped TD may be restarted, so don't update 1949 * the ring dequeue pointer or take this TD off any lists yet. 1950 */ 1951 return 0; 1952 } 1953 if (trb_comp_code == COMP_STALL_ERROR || 1954 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1955 trb_comp_code)) { 1956 /* Issue a reset endpoint command to clear the host side 1957 * halt, followed by a set dequeue command to move the 1958 * dequeue pointer past the TD. 1959 * The class driver clears the device side halt later. 1960 */ 1961 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1962 ep_ring->stream_id, td, ep_trb, 1963 EP_HARD_RESET); 1964 } else { 1965 /* Update ring dequeue pointer */ 1966 while (ep_ring->dequeue != td->last_trb) 1967 inc_deq(xhci, ep_ring); 1968 inc_deq(xhci, ep_ring); 1969 } 1970 1971 return xhci_td_cleanup(xhci, td, ep_ring, status); 1972 } 1973 1974 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1975 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1976 union xhci_trb *stop_trb) 1977 { 1978 u32 sum; 1979 union xhci_trb *trb = ring->dequeue; 1980 struct xhci_segment *seg = ring->deq_seg; 1981 1982 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1983 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1984 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1985 } 1986 return sum; 1987 } 1988 1989 /* 1990 * Process control tds, update urb status and actual_length. 1991 */ 1992 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1993 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1994 struct xhci_virt_ep *ep, int *status) 1995 { 1996 struct xhci_virt_device *xdev; 1997 struct xhci_ring *ep_ring; 1998 unsigned int slot_id; 1999 int ep_index; 2000 struct xhci_ep_ctx *ep_ctx; 2001 u32 trb_comp_code; 2002 u32 remaining, requested; 2003 u32 trb_type; 2004 2005 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2006 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2007 xdev = xhci->devs[slot_id]; 2008 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2009 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2010 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2011 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2012 requested = td->urb->transfer_buffer_length; 2013 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2014 2015 switch (trb_comp_code) { 2016 case COMP_SUCCESS: 2017 if (trb_type != TRB_STATUS) { 2018 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2019 (trb_type == TRB_DATA) ? "data" : "setup"); 2020 *status = -ESHUTDOWN; 2021 break; 2022 } 2023 *status = 0; 2024 break; 2025 case COMP_SHORT_PACKET: 2026 *status = 0; 2027 break; 2028 case COMP_STOPPED_SHORT_PACKET: 2029 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2030 td->urb->actual_length = remaining; 2031 else 2032 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2033 goto finish_td; 2034 case COMP_STOPPED: 2035 switch (trb_type) { 2036 case TRB_SETUP: 2037 td->urb->actual_length = 0; 2038 goto finish_td; 2039 case TRB_DATA: 2040 case TRB_NORMAL: 2041 td->urb->actual_length = requested - remaining; 2042 goto finish_td; 2043 case TRB_STATUS: 2044 td->urb->actual_length = requested; 2045 goto finish_td; 2046 default: 2047 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2048 trb_type); 2049 goto finish_td; 2050 } 2051 case COMP_STOPPED_LENGTH_INVALID: 2052 goto finish_td; 2053 default: 2054 if (!xhci_requires_manual_halt_cleanup(xhci, 2055 ep_ctx, trb_comp_code)) 2056 break; 2057 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2058 trb_comp_code, ep_index); 2059 /* else fall through */ 2060 case COMP_STALL_ERROR: 2061 /* Did we transfer part of the data (middle) phase? */ 2062 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2063 td->urb->actual_length = requested - remaining; 2064 else if (!td->urb_length_set) 2065 td->urb->actual_length = 0; 2066 goto finish_td; 2067 } 2068 2069 /* stopped at setup stage, no data transferred */ 2070 if (trb_type == TRB_SETUP) 2071 goto finish_td; 2072 2073 /* 2074 * if on data stage then update the actual_length of the URB and flag it 2075 * as set, so it won't be overwritten in the event for the last TRB. 2076 */ 2077 if (trb_type == TRB_DATA || 2078 trb_type == TRB_NORMAL) { 2079 td->urb_length_set = true; 2080 td->urb->actual_length = requested - remaining; 2081 xhci_dbg(xhci, "Waiting for status stage event\n"); 2082 return 0; 2083 } 2084 2085 /* at status stage */ 2086 if (!td->urb_length_set) 2087 td->urb->actual_length = requested; 2088 2089 finish_td: 2090 return finish_td(xhci, td, ep_trb, event, ep, status); 2091 } 2092 2093 /* 2094 * Process isochronous tds, update urb packet status and actual_length. 2095 */ 2096 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2097 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2098 struct xhci_virt_ep *ep, int *status) 2099 { 2100 struct xhci_ring *ep_ring; 2101 struct urb_priv *urb_priv; 2102 int idx; 2103 struct usb_iso_packet_descriptor *frame; 2104 u32 trb_comp_code; 2105 bool sum_trbs_for_length = false; 2106 u32 remaining, requested, ep_trb_len; 2107 int short_framestatus; 2108 2109 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2110 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2111 urb_priv = td->urb->hcpriv; 2112 idx = urb_priv->num_tds_done; 2113 frame = &td->urb->iso_frame_desc[idx]; 2114 requested = frame->length; 2115 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2116 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2117 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2118 -EREMOTEIO : 0; 2119 2120 /* handle completion code */ 2121 switch (trb_comp_code) { 2122 case COMP_SUCCESS: 2123 if (remaining) { 2124 frame->status = short_framestatus; 2125 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2126 sum_trbs_for_length = true; 2127 break; 2128 } 2129 frame->status = 0; 2130 break; 2131 case COMP_SHORT_PACKET: 2132 frame->status = short_framestatus; 2133 sum_trbs_for_length = true; 2134 break; 2135 case COMP_BANDWIDTH_OVERRUN_ERROR: 2136 frame->status = -ECOMM; 2137 break; 2138 case COMP_ISOCH_BUFFER_OVERRUN: 2139 case COMP_BABBLE_DETECTED_ERROR: 2140 frame->status = -EOVERFLOW; 2141 break; 2142 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2143 case COMP_STALL_ERROR: 2144 frame->status = -EPROTO; 2145 break; 2146 case COMP_USB_TRANSACTION_ERROR: 2147 frame->status = -EPROTO; 2148 if (ep_trb != td->last_trb) 2149 return 0; 2150 break; 2151 case COMP_STOPPED: 2152 sum_trbs_for_length = true; 2153 break; 2154 case COMP_STOPPED_SHORT_PACKET: 2155 /* field normally containing residue now contains tranferred */ 2156 frame->status = short_framestatus; 2157 requested = remaining; 2158 break; 2159 case COMP_STOPPED_LENGTH_INVALID: 2160 requested = 0; 2161 remaining = 0; 2162 break; 2163 default: 2164 sum_trbs_for_length = true; 2165 frame->status = -1; 2166 break; 2167 } 2168 2169 if (sum_trbs_for_length) 2170 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2171 ep_trb_len - remaining; 2172 else 2173 frame->actual_length = requested; 2174 2175 td->urb->actual_length += frame->actual_length; 2176 2177 return finish_td(xhci, td, ep_trb, event, ep, status); 2178 } 2179 2180 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2181 struct xhci_transfer_event *event, 2182 struct xhci_virt_ep *ep, int *status) 2183 { 2184 struct xhci_ring *ep_ring; 2185 struct urb_priv *urb_priv; 2186 struct usb_iso_packet_descriptor *frame; 2187 int idx; 2188 2189 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2190 urb_priv = td->urb->hcpriv; 2191 idx = urb_priv->num_tds_done; 2192 frame = &td->urb->iso_frame_desc[idx]; 2193 2194 /* The transfer is partly done. */ 2195 frame->status = -EXDEV; 2196 2197 /* calc actual length */ 2198 frame->actual_length = 0; 2199 2200 /* Update ring dequeue pointer */ 2201 while (ep_ring->dequeue != td->last_trb) 2202 inc_deq(xhci, ep_ring); 2203 inc_deq(xhci, ep_ring); 2204 2205 return xhci_td_cleanup(xhci, td, ep_ring, status); 2206 } 2207 2208 /* 2209 * Process bulk and interrupt tds, update urb status and actual_length. 2210 */ 2211 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2212 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2213 struct xhci_virt_ep *ep, int *status) 2214 { 2215 struct xhci_ring *ep_ring; 2216 u32 trb_comp_code; 2217 u32 remaining, requested, ep_trb_len; 2218 2219 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2220 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2221 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2222 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2223 requested = td->urb->transfer_buffer_length; 2224 2225 switch (trb_comp_code) { 2226 case COMP_SUCCESS: 2227 /* handle success with untransferred data as short packet */ 2228 if (ep_trb != td->last_trb || remaining) { 2229 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2230 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2231 td->urb->ep->desc.bEndpointAddress, 2232 requested, remaining); 2233 } 2234 *status = 0; 2235 break; 2236 case COMP_SHORT_PACKET: 2237 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2238 td->urb->ep->desc.bEndpointAddress, 2239 requested, remaining); 2240 *status = 0; 2241 break; 2242 case COMP_STOPPED_SHORT_PACKET: 2243 td->urb->actual_length = remaining; 2244 goto finish_td; 2245 case COMP_STOPPED_LENGTH_INVALID: 2246 /* stopped on ep trb with invalid length, exclude it */ 2247 ep_trb_len = 0; 2248 remaining = 0; 2249 break; 2250 default: 2251 /* do nothing */ 2252 break; 2253 } 2254 2255 if (ep_trb == td->last_trb) 2256 td->urb->actual_length = requested - remaining; 2257 else 2258 td->urb->actual_length = 2259 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2260 ep_trb_len - remaining; 2261 finish_td: 2262 if (remaining > requested) { 2263 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2264 remaining); 2265 td->urb->actual_length = 0; 2266 } 2267 return finish_td(xhci, td, ep_trb, event, ep, status); 2268 } 2269 2270 /* 2271 * If this function returns an error condition, it means it got a Transfer 2272 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2273 * At this point, the host controller is probably hosed and should be reset. 2274 */ 2275 static int handle_tx_event(struct xhci_hcd *xhci, 2276 struct xhci_transfer_event *event) 2277 { 2278 struct xhci_virt_device *xdev; 2279 struct xhci_virt_ep *ep; 2280 struct xhci_ring *ep_ring; 2281 unsigned int slot_id; 2282 int ep_index; 2283 struct xhci_td *td = NULL; 2284 dma_addr_t ep_trb_dma; 2285 struct xhci_segment *ep_seg; 2286 union xhci_trb *ep_trb; 2287 int status = -EINPROGRESS; 2288 struct xhci_ep_ctx *ep_ctx; 2289 struct list_head *tmp; 2290 u32 trb_comp_code; 2291 int td_num = 0; 2292 bool handling_skipped_tds = false; 2293 2294 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2295 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2296 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2297 ep_trb_dma = le64_to_cpu(event->buffer); 2298 2299 xdev = xhci->devs[slot_id]; 2300 if (!xdev) { 2301 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2302 slot_id); 2303 goto err_out; 2304 } 2305 2306 ep = &xdev->eps[ep_index]; 2307 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2308 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2309 2310 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2311 xhci_err(xhci, 2312 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2313 slot_id, ep_index); 2314 goto err_out; 2315 } 2316 2317 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2318 if (!ep_ring) { 2319 switch (trb_comp_code) { 2320 case COMP_STALL_ERROR: 2321 case COMP_USB_TRANSACTION_ERROR: 2322 case COMP_INVALID_STREAM_TYPE_ERROR: 2323 case COMP_INVALID_STREAM_ID_ERROR: 2324 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2325 NULL, NULL, EP_SOFT_RESET); 2326 goto cleanup; 2327 case COMP_RING_UNDERRUN: 2328 case COMP_RING_OVERRUN: 2329 goto cleanup; 2330 default: 2331 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2332 slot_id, ep_index); 2333 goto err_out; 2334 } 2335 } 2336 2337 /* Count current td numbers if ep->skip is set */ 2338 if (ep->skip) { 2339 list_for_each(tmp, &ep_ring->td_list) 2340 td_num++; 2341 } 2342 2343 /* Look for common error cases */ 2344 switch (trb_comp_code) { 2345 /* Skip codes that require special handling depending on 2346 * transfer type 2347 */ 2348 case COMP_SUCCESS: 2349 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2350 break; 2351 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2352 trb_comp_code = COMP_SHORT_PACKET; 2353 else 2354 xhci_warn_ratelimited(xhci, 2355 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2356 slot_id, ep_index); 2357 case COMP_SHORT_PACKET: 2358 break; 2359 /* Completion codes for endpoint stopped state */ 2360 case COMP_STOPPED: 2361 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2362 slot_id, ep_index); 2363 break; 2364 case COMP_STOPPED_LENGTH_INVALID: 2365 xhci_dbg(xhci, 2366 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2367 slot_id, ep_index); 2368 break; 2369 case COMP_STOPPED_SHORT_PACKET: 2370 xhci_dbg(xhci, 2371 "Stopped with short packet transfer detected for slot %u ep %u\n", 2372 slot_id, ep_index); 2373 break; 2374 /* Completion codes for endpoint halted state */ 2375 case COMP_STALL_ERROR: 2376 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2377 ep_index); 2378 ep->ep_state |= EP_HALTED; 2379 status = -EPIPE; 2380 break; 2381 case COMP_SPLIT_TRANSACTION_ERROR: 2382 case COMP_USB_TRANSACTION_ERROR: 2383 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2384 slot_id, ep_index); 2385 status = -EPROTO; 2386 break; 2387 case COMP_BABBLE_DETECTED_ERROR: 2388 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2389 slot_id, ep_index); 2390 status = -EOVERFLOW; 2391 break; 2392 /* Completion codes for endpoint error state */ 2393 case COMP_TRB_ERROR: 2394 xhci_warn(xhci, 2395 "WARN: TRB error for slot %u ep %u on endpoint\n", 2396 slot_id, ep_index); 2397 status = -EILSEQ; 2398 break; 2399 /* completion codes not indicating endpoint state change */ 2400 case COMP_DATA_BUFFER_ERROR: 2401 xhci_warn(xhci, 2402 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2403 slot_id, ep_index); 2404 status = -ENOSR; 2405 break; 2406 case COMP_BANDWIDTH_OVERRUN_ERROR: 2407 xhci_warn(xhci, 2408 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2409 slot_id, ep_index); 2410 break; 2411 case COMP_ISOCH_BUFFER_OVERRUN: 2412 xhci_warn(xhci, 2413 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2414 slot_id, ep_index); 2415 break; 2416 case COMP_RING_UNDERRUN: 2417 /* 2418 * When the Isoch ring is empty, the xHC will generate 2419 * a Ring Overrun Event for IN Isoch endpoint or Ring 2420 * Underrun Event for OUT Isoch endpoint. 2421 */ 2422 xhci_dbg(xhci, "underrun event on endpoint\n"); 2423 if (!list_empty(&ep_ring->td_list)) 2424 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2425 "still with TDs queued?\n", 2426 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2427 ep_index); 2428 goto cleanup; 2429 case COMP_RING_OVERRUN: 2430 xhci_dbg(xhci, "overrun event on endpoint\n"); 2431 if (!list_empty(&ep_ring->td_list)) 2432 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2433 "still with TDs queued?\n", 2434 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2435 ep_index); 2436 goto cleanup; 2437 case COMP_MISSED_SERVICE_ERROR: 2438 /* 2439 * When encounter missed service error, one or more isoc tds 2440 * may be missed by xHC. 2441 * Set skip flag of the ep_ring; Complete the missed tds as 2442 * short transfer when process the ep_ring next time. 2443 */ 2444 ep->skip = true; 2445 xhci_dbg(xhci, 2446 "Miss service interval error for slot %u ep %u, set skip flag\n", 2447 slot_id, ep_index); 2448 goto cleanup; 2449 case COMP_NO_PING_RESPONSE_ERROR: 2450 ep->skip = true; 2451 xhci_dbg(xhci, 2452 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2453 slot_id, ep_index); 2454 goto cleanup; 2455 2456 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2457 /* needs disable slot command to recover */ 2458 xhci_warn(xhci, 2459 "WARN: detect an incompatible device for slot %u ep %u", 2460 slot_id, ep_index); 2461 status = -EPROTO; 2462 break; 2463 default: 2464 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2465 status = 0; 2466 break; 2467 } 2468 xhci_warn(xhci, 2469 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2470 trb_comp_code, slot_id, ep_index); 2471 goto cleanup; 2472 } 2473 2474 do { 2475 /* This TRB should be in the TD at the head of this ring's 2476 * TD list. 2477 */ 2478 if (list_empty(&ep_ring->td_list)) { 2479 /* 2480 * Don't print wanings if it's due to a stopped endpoint 2481 * generating an extra completion event if the device 2482 * was suspended. Or, a event for the last TRB of a 2483 * short TD we already got a short event for. 2484 * The short TD is already removed from the TD list. 2485 */ 2486 2487 if (!(trb_comp_code == COMP_STOPPED || 2488 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2489 ep_ring->last_td_was_short)) { 2490 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2491 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2492 ep_index); 2493 } 2494 if (ep->skip) { 2495 ep->skip = false; 2496 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2497 slot_id, ep_index); 2498 } 2499 goto cleanup; 2500 } 2501 2502 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2503 if (ep->skip && td_num == 0) { 2504 ep->skip = false; 2505 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2506 slot_id, ep_index); 2507 goto cleanup; 2508 } 2509 2510 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2511 td_list); 2512 if (ep->skip) 2513 td_num--; 2514 2515 /* Is this a TRB in the currently executing TD? */ 2516 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2517 td->last_trb, ep_trb_dma, false); 2518 2519 /* 2520 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2521 * is not in the current TD pointed by ep_ring->dequeue because 2522 * that the hardware dequeue pointer still at the previous TRB 2523 * of the current TD. The previous TRB maybe a Link TD or the 2524 * last TRB of the previous TD. The command completion handle 2525 * will take care the rest. 2526 */ 2527 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2528 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2529 goto cleanup; 2530 } 2531 2532 if (!ep_seg) { 2533 if (!ep->skip || 2534 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2535 /* Some host controllers give a spurious 2536 * successful event after a short transfer. 2537 * Ignore it. 2538 */ 2539 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2540 ep_ring->last_td_was_short) { 2541 ep_ring->last_td_was_short = false; 2542 goto cleanup; 2543 } 2544 /* HC is busted, give up! */ 2545 xhci_err(xhci, 2546 "ERROR Transfer event TRB DMA ptr not " 2547 "part of current TD ep_index %d " 2548 "comp_code %u\n", ep_index, 2549 trb_comp_code); 2550 trb_in_td(xhci, ep_ring->deq_seg, 2551 ep_ring->dequeue, td->last_trb, 2552 ep_trb_dma, true); 2553 return -ESHUTDOWN; 2554 } 2555 2556 skip_isoc_td(xhci, td, event, ep, &status); 2557 goto cleanup; 2558 } 2559 if (trb_comp_code == COMP_SHORT_PACKET) 2560 ep_ring->last_td_was_short = true; 2561 else 2562 ep_ring->last_td_was_short = false; 2563 2564 if (ep->skip) { 2565 xhci_dbg(xhci, 2566 "Found td. Clear skip flag for slot %u ep %u.\n", 2567 slot_id, ep_index); 2568 ep->skip = false; 2569 } 2570 2571 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2572 sizeof(*ep_trb)]; 2573 2574 trace_xhci_handle_transfer(ep_ring, 2575 (struct xhci_generic_trb *) ep_trb); 2576 2577 /* 2578 * No-op TRB could trigger interrupts in a case where 2579 * a URB was killed and a STALL_ERROR happens right 2580 * after the endpoint ring stopped. Reset the halted 2581 * endpoint. Otherwise, the endpoint remains stalled 2582 * indefinitely. 2583 */ 2584 if (trb_is_noop(ep_trb)) { 2585 if (trb_comp_code == COMP_STALL_ERROR || 2586 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2587 trb_comp_code)) 2588 xhci_cleanup_halted_endpoint(xhci, slot_id, 2589 ep_index, 2590 ep_ring->stream_id, 2591 td, ep_trb, 2592 EP_HARD_RESET); 2593 goto cleanup; 2594 } 2595 2596 /* update the urb's actual_length and give back to the core */ 2597 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2598 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2599 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2600 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2601 else 2602 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2603 &status); 2604 cleanup: 2605 handling_skipped_tds = ep->skip && 2606 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2607 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2608 2609 /* 2610 * Do not update event ring dequeue pointer if we're in a loop 2611 * processing missed tds. 2612 */ 2613 if (!handling_skipped_tds) 2614 inc_deq(xhci, xhci->event_ring); 2615 2616 /* 2617 * If ep->skip is set, it means there are missed tds on the 2618 * endpoint ring need to take care of. 2619 * Process them as short transfer until reach the td pointed by 2620 * the event. 2621 */ 2622 } while (handling_skipped_tds); 2623 2624 return 0; 2625 2626 err_out: 2627 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2628 (unsigned long long) xhci_trb_virt_to_dma( 2629 xhci->event_ring->deq_seg, 2630 xhci->event_ring->dequeue), 2631 lower_32_bits(le64_to_cpu(event->buffer)), 2632 upper_32_bits(le64_to_cpu(event->buffer)), 2633 le32_to_cpu(event->transfer_len), 2634 le32_to_cpu(event->flags)); 2635 return -ENODEV; 2636 } 2637 2638 /* 2639 * This function handles all OS-owned events on the event ring. It may drop 2640 * xhci->lock between event processing (e.g. to pass up port status changes). 2641 * Returns >0 for "possibly more events to process" (caller should call again), 2642 * otherwise 0 if done. In future, <0 returns should indicate error code. 2643 */ 2644 static int xhci_handle_event(struct xhci_hcd *xhci) 2645 { 2646 union xhci_trb *event; 2647 int update_ptrs = 1; 2648 int ret; 2649 2650 /* Event ring hasn't been allocated yet. */ 2651 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2652 xhci_err(xhci, "ERROR event ring not ready\n"); 2653 return -ENOMEM; 2654 } 2655 2656 event = xhci->event_ring->dequeue; 2657 /* Does the HC or OS own the TRB? */ 2658 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2659 xhci->event_ring->cycle_state) 2660 return 0; 2661 2662 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2663 2664 /* 2665 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2666 * speculative reads of the event's flags/data below. 2667 */ 2668 rmb(); 2669 /* FIXME: Handle more event types. */ 2670 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2671 case TRB_TYPE(TRB_COMPLETION): 2672 handle_cmd_completion(xhci, &event->event_cmd); 2673 break; 2674 case TRB_TYPE(TRB_PORT_STATUS): 2675 handle_port_status(xhci, event); 2676 update_ptrs = 0; 2677 break; 2678 case TRB_TYPE(TRB_TRANSFER): 2679 ret = handle_tx_event(xhci, &event->trans_event); 2680 if (ret >= 0) 2681 update_ptrs = 0; 2682 break; 2683 case TRB_TYPE(TRB_DEV_NOTE): 2684 handle_device_notification(xhci, event); 2685 break; 2686 default: 2687 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2688 TRB_TYPE(48)) 2689 handle_vendor_event(xhci, event); 2690 else 2691 xhci_warn(xhci, "ERROR unknown event type %d\n", 2692 TRB_FIELD_TO_TYPE( 2693 le32_to_cpu(event->event_cmd.flags))); 2694 } 2695 /* Any of the above functions may drop and re-acquire the lock, so check 2696 * to make sure a watchdog timer didn't mark the host as non-responsive. 2697 */ 2698 if (xhci->xhc_state & XHCI_STATE_DYING) { 2699 xhci_dbg(xhci, "xHCI host dying, returning from " 2700 "event handler.\n"); 2701 return 0; 2702 } 2703 2704 if (update_ptrs) 2705 /* Update SW event ring dequeue pointer */ 2706 inc_deq(xhci, xhci->event_ring); 2707 2708 /* Are there more items on the event ring? Caller will call us again to 2709 * check. 2710 */ 2711 return 1; 2712 } 2713 2714 /* 2715 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2716 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2717 * indicators of an event TRB error, but we check the status *first* to be safe. 2718 */ 2719 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2720 { 2721 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2722 union xhci_trb *event_ring_deq; 2723 irqreturn_t ret = IRQ_NONE; 2724 unsigned long flags; 2725 dma_addr_t deq; 2726 u64 temp_64; 2727 u32 status; 2728 2729 spin_lock_irqsave(&xhci->lock, flags); 2730 /* Check if the xHC generated the interrupt, or the irq is shared */ 2731 status = readl(&xhci->op_regs->status); 2732 if (status == ~(u32)0) { 2733 xhci_hc_died(xhci); 2734 ret = IRQ_HANDLED; 2735 goto out; 2736 } 2737 2738 if (!(status & STS_EINT)) 2739 goto out; 2740 2741 if (status & STS_FATAL) { 2742 xhci_warn(xhci, "WARNING: Host System Error\n"); 2743 xhci_halt(xhci); 2744 ret = IRQ_HANDLED; 2745 goto out; 2746 } 2747 2748 /* 2749 * Clear the op reg interrupt status first, 2750 * so we can receive interrupts from other MSI-X interrupters. 2751 * Write 1 to clear the interrupt status. 2752 */ 2753 status |= STS_EINT; 2754 writel(status, &xhci->op_regs->status); 2755 2756 if (!hcd->msi_enabled) { 2757 u32 irq_pending; 2758 irq_pending = readl(&xhci->ir_set->irq_pending); 2759 irq_pending |= IMAN_IP; 2760 writel(irq_pending, &xhci->ir_set->irq_pending); 2761 } 2762 2763 if (xhci->xhc_state & XHCI_STATE_DYING || 2764 xhci->xhc_state & XHCI_STATE_HALTED) { 2765 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2766 "Shouldn't IRQs be disabled?\n"); 2767 /* Clear the event handler busy flag (RW1C); 2768 * the event ring should be empty. 2769 */ 2770 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2771 xhci_write_64(xhci, temp_64 | ERST_EHB, 2772 &xhci->ir_set->erst_dequeue); 2773 ret = IRQ_HANDLED; 2774 goto out; 2775 } 2776 2777 event_ring_deq = xhci->event_ring->dequeue; 2778 /* FIXME this should be a delayed service routine 2779 * that clears the EHB. 2780 */ 2781 while (xhci_handle_event(xhci) > 0) {} 2782 2783 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2784 /* If necessary, update the HW's version of the event ring deq ptr. */ 2785 if (event_ring_deq != xhci->event_ring->dequeue) { 2786 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2787 xhci->event_ring->dequeue); 2788 if (deq == 0) 2789 xhci_warn(xhci, "WARN something wrong with SW event " 2790 "ring dequeue ptr.\n"); 2791 /* Update HC event ring dequeue pointer */ 2792 temp_64 &= ERST_PTR_MASK; 2793 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2794 } 2795 2796 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2797 temp_64 |= ERST_EHB; 2798 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2799 ret = IRQ_HANDLED; 2800 2801 out: 2802 spin_unlock_irqrestore(&xhci->lock, flags); 2803 2804 return ret; 2805 } 2806 2807 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2808 { 2809 return xhci_irq(hcd); 2810 } 2811 2812 /**** Endpoint Ring Operations ****/ 2813 2814 /* 2815 * Generic function for queueing a TRB on a ring. 2816 * The caller must have checked to make sure there's room on the ring. 2817 * 2818 * @more_trbs_coming: Will you enqueue more TRBs before calling 2819 * prepare_transfer()? 2820 */ 2821 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2822 bool more_trbs_coming, 2823 u32 field1, u32 field2, u32 field3, u32 field4) 2824 { 2825 struct xhci_generic_trb *trb; 2826 2827 trb = &ring->enqueue->generic; 2828 trb->field[0] = cpu_to_le32(field1); 2829 trb->field[1] = cpu_to_le32(field2); 2830 trb->field[2] = cpu_to_le32(field3); 2831 trb->field[3] = cpu_to_le32(field4); 2832 2833 trace_xhci_queue_trb(ring, trb); 2834 2835 inc_enq(xhci, ring, more_trbs_coming); 2836 } 2837 2838 /* 2839 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2840 * FIXME allocate segments if the ring is full. 2841 */ 2842 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2843 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2844 { 2845 unsigned int num_trbs_needed; 2846 2847 /* Make sure the endpoint has been added to xHC schedule */ 2848 switch (ep_state) { 2849 case EP_STATE_DISABLED: 2850 /* 2851 * USB core changed config/interfaces without notifying us, 2852 * or hardware is reporting the wrong state. 2853 */ 2854 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2855 return -ENOENT; 2856 case EP_STATE_ERROR: 2857 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2858 /* FIXME event handling code for error needs to clear it */ 2859 /* XXX not sure if this should be -ENOENT or not */ 2860 return -EINVAL; 2861 case EP_STATE_HALTED: 2862 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2863 case EP_STATE_STOPPED: 2864 case EP_STATE_RUNNING: 2865 break; 2866 default: 2867 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2868 /* 2869 * FIXME issue Configure Endpoint command to try to get the HC 2870 * back into a known state. 2871 */ 2872 return -EINVAL; 2873 } 2874 2875 while (1) { 2876 if (room_on_ring(xhci, ep_ring, num_trbs)) 2877 break; 2878 2879 if (ep_ring == xhci->cmd_ring) { 2880 xhci_err(xhci, "Do not support expand command ring\n"); 2881 return -ENOMEM; 2882 } 2883 2884 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2885 "ERROR no room on ep ring, try ring expansion"); 2886 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2887 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2888 mem_flags)) { 2889 xhci_err(xhci, "Ring expansion failed\n"); 2890 return -ENOMEM; 2891 } 2892 } 2893 2894 while (trb_is_link(ep_ring->enqueue)) { 2895 /* If we're not dealing with 0.95 hardware or isoc rings 2896 * on AMD 0.96 host, clear the chain bit. 2897 */ 2898 if (!xhci_link_trb_quirk(xhci) && 2899 !(ep_ring->type == TYPE_ISOC && 2900 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2901 ep_ring->enqueue->link.control &= 2902 cpu_to_le32(~TRB_CHAIN); 2903 else 2904 ep_ring->enqueue->link.control |= 2905 cpu_to_le32(TRB_CHAIN); 2906 2907 wmb(); 2908 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2909 2910 /* Toggle the cycle bit after the last ring segment. */ 2911 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2912 ep_ring->cycle_state ^= 1; 2913 2914 ep_ring->enq_seg = ep_ring->enq_seg->next; 2915 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2916 } 2917 return 0; 2918 } 2919 2920 static int prepare_transfer(struct xhci_hcd *xhci, 2921 struct xhci_virt_device *xdev, 2922 unsigned int ep_index, 2923 unsigned int stream_id, 2924 unsigned int num_trbs, 2925 struct urb *urb, 2926 unsigned int td_index, 2927 gfp_t mem_flags) 2928 { 2929 int ret; 2930 struct urb_priv *urb_priv; 2931 struct xhci_td *td; 2932 struct xhci_ring *ep_ring; 2933 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2934 2935 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2936 if (!ep_ring) { 2937 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2938 stream_id); 2939 return -EINVAL; 2940 } 2941 2942 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2943 num_trbs, mem_flags); 2944 if (ret) 2945 return ret; 2946 2947 urb_priv = urb->hcpriv; 2948 td = &urb_priv->td[td_index]; 2949 2950 INIT_LIST_HEAD(&td->td_list); 2951 INIT_LIST_HEAD(&td->cancelled_td_list); 2952 2953 if (td_index == 0) { 2954 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2955 if (unlikely(ret)) 2956 return ret; 2957 } 2958 2959 td->urb = urb; 2960 /* Add this TD to the tail of the endpoint ring's TD list */ 2961 list_add_tail(&td->td_list, &ep_ring->td_list); 2962 td->start_seg = ep_ring->enq_seg; 2963 td->first_trb = ep_ring->enqueue; 2964 2965 return 0; 2966 } 2967 2968 static unsigned int count_trbs(u64 addr, u64 len) 2969 { 2970 unsigned int num_trbs; 2971 2972 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2973 TRB_MAX_BUFF_SIZE); 2974 if (num_trbs == 0) 2975 num_trbs++; 2976 2977 return num_trbs; 2978 } 2979 2980 static inline unsigned int count_trbs_needed(struct urb *urb) 2981 { 2982 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2983 } 2984 2985 static unsigned int count_sg_trbs_needed(struct urb *urb) 2986 { 2987 struct scatterlist *sg; 2988 unsigned int i, len, full_len, num_trbs = 0; 2989 2990 full_len = urb->transfer_buffer_length; 2991 2992 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2993 len = sg_dma_len(sg); 2994 num_trbs += count_trbs(sg_dma_address(sg), len); 2995 len = min_t(unsigned int, len, full_len); 2996 full_len -= len; 2997 if (full_len == 0) 2998 break; 2999 } 3000 3001 return num_trbs; 3002 } 3003 3004 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3005 { 3006 u64 addr, len; 3007 3008 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3009 len = urb->iso_frame_desc[i].length; 3010 3011 return count_trbs(addr, len); 3012 } 3013 3014 static void check_trb_math(struct urb *urb, int running_total) 3015 { 3016 if (unlikely(running_total != urb->transfer_buffer_length)) 3017 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3018 "queued %#x (%d), asked for %#x (%d)\n", 3019 __func__, 3020 urb->ep->desc.bEndpointAddress, 3021 running_total, running_total, 3022 urb->transfer_buffer_length, 3023 urb->transfer_buffer_length); 3024 } 3025 3026 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3027 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3028 struct xhci_generic_trb *start_trb) 3029 { 3030 /* 3031 * Pass all the TRBs to the hardware at once and make sure this write 3032 * isn't reordered. 3033 */ 3034 wmb(); 3035 if (start_cycle) 3036 start_trb->field[3] |= cpu_to_le32(start_cycle); 3037 else 3038 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3039 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3040 } 3041 3042 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3043 struct xhci_ep_ctx *ep_ctx) 3044 { 3045 int xhci_interval; 3046 int ep_interval; 3047 3048 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3049 ep_interval = urb->interval; 3050 3051 /* Convert to microframes */ 3052 if (urb->dev->speed == USB_SPEED_LOW || 3053 urb->dev->speed == USB_SPEED_FULL) 3054 ep_interval *= 8; 3055 3056 /* FIXME change this to a warning and a suggestion to use the new API 3057 * to set the polling interval (once the API is added). 3058 */ 3059 if (xhci_interval != ep_interval) { 3060 dev_dbg_ratelimited(&urb->dev->dev, 3061 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3062 ep_interval, ep_interval == 1 ? "" : "s", 3063 xhci_interval, xhci_interval == 1 ? "" : "s"); 3064 urb->interval = xhci_interval; 3065 /* Convert back to frames for LS/FS devices */ 3066 if (urb->dev->speed == USB_SPEED_LOW || 3067 urb->dev->speed == USB_SPEED_FULL) 3068 urb->interval /= 8; 3069 } 3070 } 3071 3072 /* 3073 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3074 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3075 * (comprised of sg list entries) can take several service intervals to 3076 * transmit. 3077 */ 3078 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3079 struct urb *urb, int slot_id, unsigned int ep_index) 3080 { 3081 struct xhci_ep_ctx *ep_ctx; 3082 3083 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3084 check_interval(xhci, urb, ep_ctx); 3085 3086 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3087 } 3088 3089 /* 3090 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3091 * packets remaining in the TD (*not* including this TRB). 3092 * 3093 * Total TD packet count = total_packet_count = 3094 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3095 * 3096 * Packets transferred up to and including this TRB = packets_transferred = 3097 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3098 * 3099 * TD size = total_packet_count - packets_transferred 3100 * 3101 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3102 * including this TRB, right shifted by 10 3103 * 3104 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3105 * This is taken care of in the TRB_TD_SIZE() macro 3106 * 3107 * The last TRB in a TD must have the TD size set to zero. 3108 */ 3109 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3110 int trb_buff_len, unsigned int td_total_len, 3111 struct urb *urb, bool more_trbs_coming) 3112 { 3113 u32 maxp, total_packet_count; 3114 3115 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3116 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3117 return ((td_total_len - transferred) >> 10); 3118 3119 /* One TRB with a zero-length data packet. */ 3120 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3121 trb_buff_len == td_total_len) 3122 return 0; 3123 3124 /* for MTK xHCI, TD size doesn't include this TRB */ 3125 if (xhci->quirks & XHCI_MTK_HOST) 3126 trb_buff_len = 0; 3127 3128 maxp = usb_endpoint_maxp(&urb->ep->desc); 3129 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3130 3131 /* Queueing functions don't count the current TRB into transferred */ 3132 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3133 } 3134 3135 3136 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3137 u32 *trb_buff_len, struct xhci_segment *seg) 3138 { 3139 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3140 unsigned int unalign; 3141 unsigned int max_pkt; 3142 u32 new_buff_len; 3143 3144 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3145 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3146 3147 /* we got lucky, last normal TRB data on segment is packet aligned */ 3148 if (unalign == 0) 3149 return 0; 3150 3151 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3152 unalign, *trb_buff_len); 3153 3154 /* is the last nornal TRB alignable by splitting it */ 3155 if (*trb_buff_len > unalign) { 3156 *trb_buff_len -= unalign; 3157 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3158 return 0; 3159 } 3160 3161 /* 3162 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3163 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3164 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3165 */ 3166 new_buff_len = max_pkt - (enqd_len % max_pkt); 3167 3168 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3169 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3170 3171 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3172 if (usb_urb_dir_out(urb)) { 3173 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3174 seg->bounce_buf, new_buff_len, enqd_len); 3175 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3176 max_pkt, DMA_TO_DEVICE); 3177 } else { 3178 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3179 max_pkt, DMA_FROM_DEVICE); 3180 } 3181 3182 if (dma_mapping_error(dev, seg->bounce_dma)) { 3183 /* try without aligning. Some host controllers survive */ 3184 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3185 return 0; 3186 } 3187 *trb_buff_len = new_buff_len; 3188 seg->bounce_len = new_buff_len; 3189 seg->bounce_offs = enqd_len; 3190 3191 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3192 3193 return 1; 3194 } 3195 3196 /* This is very similar to what ehci-q.c qtd_fill() does */ 3197 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3198 struct urb *urb, int slot_id, unsigned int ep_index) 3199 { 3200 struct xhci_ring *ring; 3201 struct urb_priv *urb_priv; 3202 struct xhci_td *td; 3203 struct xhci_generic_trb *start_trb; 3204 struct scatterlist *sg = NULL; 3205 bool more_trbs_coming = true; 3206 bool need_zero_pkt = false; 3207 bool first_trb = true; 3208 unsigned int num_trbs; 3209 unsigned int start_cycle, num_sgs = 0; 3210 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3211 int sent_len, ret; 3212 u32 field, length_field, remainder; 3213 u64 addr, send_addr; 3214 3215 ring = xhci_urb_to_transfer_ring(xhci, urb); 3216 if (!ring) 3217 return -EINVAL; 3218 3219 full_len = urb->transfer_buffer_length; 3220 /* If we have scatter/gather list, we use it. */ 3221 if (urb->num_sgs) { 3222 num_sgs = urb->num_mapped_sgs; 3223 sg = urb->sg; 3224 addr = (u64) sg_dma_address(sg); 3225 block_len = sg_dma_len(sg); 3226 num_trbs = count_sg_trbs_needed(urb); 3227 } else { 3228 num_trbs = count_trbs_needed(urb); 3229 addr = (u64) urb->transfer_dma; 3230 block_len = full_len; 3231 } 3232 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3233 ep_index, urb->stream_id, 3234 num_trbs, urb, 0, mem_flags); 3235 if (unlikely(ret < 0)) 3236 return ret; 3237 3238 urb_priv = urb->hcpriv; 3239 3240 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3241 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3242 need_zero_pkt = true; 3243 3244 td = &urb_priv->td[0]; 3245 3246 /* 3247 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3248 * until we've finished creating all the other TRBs. The ring's cycle 3249 * state may change as we enqueue the other TRBs, so save it too. 3250 */ 3251 start_trb = &ring->enqueue->generic; 3252 start_cycle = ring->cycle_state; 3253 send_addr = addr; 3254 3255 /* Queue the TRBs, even if they are zero-length */ 3256 for (enqd_len = 0; first_trb || enqd_len < full_len; 3257 enqd_len += trb_buff_len) { 3258 field = TRB_TYPE(TRB_NORMAL); 3259 3260 /* TRB buffer should not cross 64KB boundaries */ 3261 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3262 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3263 3264 if (enqd_len + trb_buff_len > full_len) 3265 trb_buff_len = full_len - enqd_len; 3266 3267 /* Don't change the cycle bit of the first TRB until later */ 3268 if (first_trb) { 3269 first_trb = false; 3270 if (start_cycle == 0) 3271 field |= TRB_CYCLE; 3272 } else 3273 field |= ring->cycle_state; 3274 3275 /* Chain all the TRBs together; clear the chain bit in the last 3276 * TRB to indicate it's the last TRB in the chain. 3277 */ 3278 if (enqd_len + trb_buff_len < full_len) { 3279 field |= TRB_CHAIN; 3280 if (trb_is_link(ring->enqueue + 1)) { 3281 if (xhci_align_td(xhci, urb, enqd_len, 3282 &trb_buff_len, 3283 ring->enq_seg)) { 3284 send_addr = ring->enq_seg->bounce_dma; 3285 /* assuming TD won't span 2 segs */ 3286 td->bounce_seg = ring->enq_seg; 3287 } 3288 } 3289 } 3290 if (enqd_len + trb_buff_len >= full_len) { 3291 field &= ~TRB_CHAIN; 3292 field |= TRB_IOC; 3293 more_trbs_coming = false; 3294 td->last_trb = ring->enqueue; 3295 } 3296 3297 /* Only set interrupt on short packet for IN endpoints */ 3298 if (usb_urb_dir_in(urb)) 3299 field |= TRB_ISP; 3300 3301 /* Set the TRB length, TD size, and interrupter fields. */ 3302 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3303 full_len, urb, more_trbs_coming); 3304 3305 length_field = TRB_LEN(trb_buff_len) | 3306 TRB_TD_SIZE(remainder) | 3307 TRB_INTR_TARGET(0); 3308 3309 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3310 lower_32_bits(send_addr), 3311 upper_32_bits(send_addr), 3312 length_field, 3313 field); 3314 3315 addr += trb_buff_len; 3316 sent_len = trb_buff_len; 3317 3318 while (sg && sent_len >= block_len) { 3319 /* New sg entry */ 3320 --num_sgs; 3321 sent_len -= block_len; 3322 if (num_sgs != 0) { 3323 sg = sg_next(sg); 3324 block_len = sg_dma_len(sg); 3325 addr = (u64) sg_dma_address(sg); 3326 addr += sent_len; 3327 } 3328 } 3329 block_len -= sent_len; 3330 send_addr = addr; 3331 } 3332 3333 if (need_zero_pkt) { 3334 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3335 ep_index, urb->stream_id, 3336 1, urb, 1, mem_flags); 3337 urb_priv->td[1].last_trb = ring->enqueue; 3338 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3339 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3340 } 3341 3342 check_trb_math(urb, enqd_len); 3343 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3344 start_cycle, start_trb); 3345 return 0; 3346 } 3347 3348 /* Caller must have locked xhci->lock */ 3349 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3350 struct urb *urb, int slot_id, unsigned int ep_index) 3351 { 3352 struct xhci_ring *ep_ring; 3353 int num_trbs; 3354 int ret; 3355 struct usb_ctrlrequest *setup; 3356 struct xhci_generic_trb *start_trb; 3357 int start_cycle; 3358 u32 field; 3359 struct urb_priv *urb_priv; 3360 struct xhci_td *td; 3361 3362 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3363 if (!ep_ring) 3364 return -EINVAL; 3365 3366 /* 3367 * Need to copy setup packet into setup TRB, so we can't use the setup 3368 * DMA address. 3369 */ 3370 if (!urb->setup_packet) 3371 return -EINVAL; 3372 3373 /* 1 TRB for setup, 1 for status */ 3374 num_trbs = 2; 3375 /* 3376 * Don't need to check if we need additional event data and normal TRBs, 3377 * since data in control transfers will never get bigger than 16MB 3378 * XXX: can we get a buffer that crosses 64KB boundaries? 3379 */ 3380 if (urb->transfer_buffer_length > 0) 3381 num_trbs++; 3382 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3383 ep_index, urb->stream_id, 3384 num_trbs, urb, 0, mem_flags); 3385 if (ret < 0) 3386 return ret; 3387 3388 urb_priv = urb->hcpriv; 3389 td = &urb_priv->td[0]; 3390 3391 /* 3392 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3393 * until we've finished creating all the other TRBs. The ring's cycle 3394 * state may change as we enqueue the other TRBs, so save it too. 3395 */ 3396 start_trb = &ep_ring->enqueue->generic; 3397 start_cycle = ep_ring->cycle_state; 3398 3399 /* Queue setup TRB - see section 6.4.1.2.1 */ 3400 /* FIXME better way to translate setup_packet into two u32 fields? */ 3401 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3402 field = 0; 3403 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3404 if (start_cycle == 0) 3405 field |= 0x1; 3406 3407 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3408 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3409 if (urb->transfer_buffer_length > 0) { 3410 if (setup->bRequestType & USB_DIR_IN) 3411 field |= TRB_TX_TYPE(TRB_DATA_IN); 3412 else 3413 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3414 } 3415 } 3416 3417 queue_trb(xhci, ep_ring, true, 3418 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3419 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3420 TRB_LEN(8) | TRB_INTR_TARGET(0), 3421 /* Immediate data in pointer */ 3422 field); 3423 3424 /* If there's data, queue data TRBs */ 3425 /* Only set interrupt on short packet for IN endpoints */ 3426 if (usb_urb_dir_in(urb)) 3427 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3428 else 3429 field = TRB_TYPE(TRB_DATA); 3430 3431 if (urb->transfer_buffer_length > 0) { 3432 u32 length_field, remainder; 3433 3434 remainder = xhci_td_remainder(xhci, 0, 3435 urb->transfer_buffer_length, 3436 urb->transfer_buffer_length, 3437 urb, 1); 3438 length_field = TRB_LEN(urb->transfer_buffer_length) | 3439 TRB_TD_SIZE(remainder) | 3440 TRB_INTR_TARGET(0); 3441 if (setup->bRequestType & USB_DIR_IN) 3442 field |= TRB_DIR_IN; 3443 queue_trb(xhci, ep_ring, true, 3444 lower_32_bits(urb->transfer_dma), 3445 upper_32_bits(urb->transfer_dma), 3446 length_field, 3447 field | ep_ring->cycle_state); 3448 } 3449 3450 /* Save the DMA address of the last TRB in the TD */ 3451 td->last_trb = ep_ring->enqueue; 3452 3453 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3454 /* If the device sent data, the status stage is an OUT transfer */ 3455 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3456 field = 0; 3457 else 3458 field = TRB_DIR_IN; 3459 queue_trb(xhci, ep_ring, false, 3460 0, 3461 0, 3462 TRB_INTR_TARGET(0), 3463 /* Event on completion */ 3464 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3465 3466 giveback_first_trb(xhci, slot_id, ep_index, 0, 3467 start_cycle, start_trb); 3468 return 0; 3469 } 3470 3471 /* 3472 * The transfer burst count field of the isochronous TRB defines the number of 3473 * bursts that are required to move all packets in this TD. Only SuperSpeed 3474 * devices can burst up to bMaxBurst number of packets per service interval. 3475 * This field is zero based, meaning a value of zero in the field means one 3476 * burst. Basically, for everything but SuperSpeed devices, this field will be 3477 * zero. Only xHCI 1.0 host controllers support this field. 3478 */ 3479 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3480 struct urb *urb, unsigned int total_packet_count) 3481 { 3482 unsigned int max_burst; 3483 3484 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3485 return 0; 3486 3487 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3488 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3489 } 3490 3491 /* 3492 * Returns the number of packets in the last "burst" of packets. This field is 3493 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3494 * the last burst packet count is equal to the total number of packets in the 3495 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3496 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3497 * contain 1 to (bMaxBurst + 1) packets. 3498 */ 3499 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3500 struct urb *urb, unsigned int total_packet_count) 3501 { 3502 unsigned int max_burst; 3503 unsigned int residue; 3504 3505 if (xhci->hci_version < 0x100) 3506 return 0; 3507 3508 if (urb->dev->speed >= USB_SPEED_SUPER) { 3509 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3510 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3511 residue = total_packet_count % (max_burst + 1); 3512 /* If residue is zero, the last burst contains (max_burst + 1) 3513 * number of packets, but the TLBPC field is zero-based. 3514 */ 3515 if (residue == 0) 3516 return max_burst; 3517 return residue - 1; 3518 } 3519 if (total_packet_count == 0) 3520 return 0; 3521 return total_packet_count - 1; 3522 } 3523 3524 /* 3525 * Calculates Frame ID field of the isochronous TRB identifies the 3526 * target frame that the Interval associated with this Isochronous 3527 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3528 * 3529 * Returns actual frame id on success, negative value on error. 3530 */ 3531 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3532 struct urb *urb, int index) 3533 { 3534 int start_frame, ist, ret = 0; 3535 int start_frame_id, end_frame_id, current_frame_id; 3536 3537 if (urb->dev->speed == USB_SPEED_LOW || 3538 urb->dev->speed == USB_SPEED_FULL) 3539 start_frame = urb->start_frame + index * urb->interval; 3540 else 3541 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3542 3543 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3544 * 3545 * If bit [3] of IST is cleared to '0', software can add a TRB no 3546 * later than IST[2:0] Microframes before that TRB is scheduled to 3547 * be executed. 3548 * If bit [3] of IST is set to '1', software can add a TRB no later 3549 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3550 */ 3551 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3552 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3553 ist <<= 3; 3554 3555 /* Software shall not schedule an Isoch TD with a Frame ID value that 3556 * is less than the Start Frame ID or greater than the End Frame ID, 3557 * where: 3558 * 3559 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3560 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3561 * 3562 * Both the End Frame ID and Start Frame ID values are calculated 3563 * in microframes. When software determines the valid Frame ID value; 3564 * The End Frame ID value should be rounded down to the nearest Frame 3565 * boundary, and the Start Frame ID value should be rounded up to the 3566 * nearest Frame boundary. 3567 */ 3568 current_frame_id = readl(&xhci->run_regs->microframe_index); 3569 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3570 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3571 3572 start_frame &= 0x7ff; 3573 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3574 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3575 3576 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3577 __func__, index, readl(&xhci->run_regs->microframe_index), 3578 start_frame_id, end_frame_id, start_frame); 3579 3580 if (start_frame_id < end_frame_id) { 3581 if (start_frame > end_frame_id || 3582 start_frame < start_frame_id) 3583 ret = -EINVAL; 3584 } else if (start_frame_id > end_frame_id) { 3585 if ((start_frame > end_frame_id && 3586 start_frame < start_frame_id)) 3587 ret = -EINVAL; 3588 } else { 3589 ret = -EINVAL; 3590 } 3591 3592 if (index == 0) { 3593 if (ret == -EINVAL || start_frame == start_frame_id) { 3594 start_frame = start_frame_id + 1; 3595 if (urb->dev->speed == USB_SPEED_LOW || 3596 urb->dev->speed == USB_SPEED_FULL) 3597 urb->start_frame = start_frame; 3598 else 3599 urb->start_frame = start_frame << 3; 3600 ret = 0; 3601 } 3602 } 3603 3604 if (ret) { 3605 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3606 start_frame, current_frame_id, index, 3607 start_frame_id, end_frame_id); 3608 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3609 return ret; 3610 } 3611 3612 return start_frame; 3613 } 3614 3615 /* This is for isoc transfer */ 3616 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3617 struct urb *urb, int slot_id, unsigned int ep_index) 3618 { 3619 struct xhci_ring *ep_ring; 3620 struct urb_priv *urb_priv; 3621 struct xhci_td *td; 3622 int num_tds, trbs_per_td; 3623 struct xhci_generic_trb *start_trb; 3624 bool first_trb; 3625 int start_cycle; 3626 u32 field, length_field; 3627 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3628 u64 start_addr, addr; 3629 int i, j; 3630 bool more_trbs_coming; 3631 struct xhci_virt_ep *xep; 3632 int frame_id; 3633 3634 xep = &xhci->devs[slot_id]->eps[ep_index]; 3635 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3636 3637 num_tds = urb->number_of_packets; 3638 if (num_tds < 1) { 3639 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3640 return -EINVAL; 3641 } 3642 start_addr = (u64) urb->transfer_dma; 3643 start_trb = &ep_ring->enqueue->generic; 3644 start_cycle = ep_ring->cycle_state; 3645 3646 urb_priv = urb->hcpriv; 3647 /* Queue the TRBs for each TD, even if they are zero-length */ 3648 for (i = 0; i < num_tds; i++) { 3649 unsigned int total_pkt_count, max_pkt; 3650 unsigned int burst_count, last_burst_pkt_count; 3651 u32 sia_frame_id; 3652 3653 first_trb = true; 3654 running_total = 0; 3655 addr = start_addr + urb->iso_frame_desc[i].offset; 3656 td_len = urb->iso_frame_desc[i].length; 3657 td_remain_len = td_len; 3658 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3659 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3660 3661 /* A zero-length transfer still involves at least one packet. */ 3662 if (total_pkt_count == 0) 3663 total_pkt_count++; 3664 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3665 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3666 urb, total_pkt_count); 3667 3668 trbs_per_td = count_isoc_trbs_needed(urb, i); 3669 3670 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3671 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3672 if (ret < 0) { 3673 if (i == 0) 3674 return ret; 3675 goto cleanup; 3676 } 3677 td = &urb_priv->td[i]; 3678 3679 /* use SIA as default, if frame id is used overwrite it */ 3680 sia_frame_id = TRB_SIA; 3681 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3682 HCC_CFC(xhci->hcc_params)) { 3683 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3684 if (frame_id >= 0) 3685 sia_frame_id = TRB_FRAME_ID(frame_id); 3686 } 3687 /* 3688 * Set isoc specific data for the first TRB in a TD. 3689 * Prevent HW from getting the TRBs by keeping the cycle state 3690 * inverted in the first TDs isoc TRB. 3691 */ 3692 field = TRB_TYPE(TRB_ISOC) | 3693 TRB_TLBPC(last_burst_pkt_count) | 3694 sia_frame_id | 3695 (i ? ep_ring->cycle_state : !start_cycle); 3696 3697 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3698 if (!xep->use_extended_tbc) 3699 field |= TRB_TBC(burst_count); 3700 3701 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3702 for (j = 0; j < trbs_per_td; j++) { 3703 u32 remainder = 0; 3704 3705 /* only first TRB is isoc, overwrite otherwise */ 3706 if (!first_trb) 3707 field = TRB_TYPE(TRB_NORMAL) | 3708 ep_ring->cycle_state; 3709 3710 /* Only set interrupt on short packet for IN EPs */ 3711 if (usb_urb_dir_in(urb)) 3712 field |= TRB_ISP; 3713 3714 /* Set the chain bit for all except the last TRB */ 3715 if (j < trbs_per_td - 1) { 3716 more_trbs_coming = true; 3717 field |= TRB_CHAIN; 3718 } else { 3719 more_trbs_coming = false; 3720 td->last_trb = ep_ring->enqueue; 3721 field |= TRB_IOC; 3722 /* set BEI, except for the last TD */ 3723 if (xhci->hci_version >= 0x100 && 3724 !(xhci->quirks & XHCI_AVOID_BEI) && 3725 i < num_tds - 1) 3726 field |= TRB_BEI; 3727 } 3728 /* Calculate TRB length */ 3729 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3730 if (trb_buff_len > td_remain_len) 3731 trb_buff_len = td_remain_len; 3732 3733 /* Set the TRB length, TD size, & interrupter fields. */ 3734 remainder = xhci_td_remainder(xhci, running_total, 3735 trb_buff_len, td_len, 3736 urb, more_trbs_coming); 3737 3738 length_field = TRB_LEN(trb_buff_len) | 3739 TRB_INTR_TARGET(0); 3740 3741 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3742 if (first_trb && xep->use_extended_tbc) 3743 length_field |= TRB_TD_SIZE_TBC(burst_count); 3744 else 3745 length_field |= TRB_TD_SIZE(remainder); 3746 first_trb = false; 3747 3748 queue_trb(xhci, ep_ring, more_trbs_coming, 3749 lower_32_bits(addr), 3750 upper_32_bits(addr), 3751 length_field, 3752 field); 3753 running_total += trb_buff_len; 3754 3755 addr += trb_buff_len; 3756 td_remain_len -= trb_buff_len; 3757 } 3758 3759 /* Check TD length */ 3760 if (running_total != td_len) { 3761 xhci_err(xhci, "ISOC TD length unmatch\n"); 3762 ret = -EINVAL; 3763 goto cleanup; 3764 } 3765 } 3766 3767 /* store the next frame id */ 3768 if (HCC_CFC(xhci->hcc_params)) 3769 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3770 3771 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3772 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3773 usb_amd_quirk_pll_disable(); 3774 } 3775 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3776 3777 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3778 start_cycle, start_trb); 3779 return 0; 3780 cleanup: 3781 /* Clean up a partially enqueued isoc transfer. */ 3782 3783 for (i--; i >= 0; i--) 3784 list_del_init(&urb_priv->td[i].td_list); 3785 3786 /* Use the first TD as a temporary variable to turn the TDs we've queued 3787 * into No-ops with a software-owned cycle bit. That way the hardware 3788 * won't accidentally start executing bogus TDs when we partially 3789 * overwrite them. td->first_trb and td->start_seg are already set. 3790 */ 3791 urb_priv->td[0].last_trb = ep_ring->enqueue; 3792 /* Every TRB except the first & last will have its cycle bit flipped. */ 3793 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3794 3795 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3796 ep_ring->enqueue = urb_priv->td[0].first_trb; 3797 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3798 ep_ring->cycle_state = start_cycle; 3799 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3800 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3801 return ret; 3802 } 3803 3804 /* 3805 * Check transfer ring to guarantee there is enough room for the urb. 3806 * Update ISO URB start_frame and interval. 3807 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3808 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3809 * Contiguous Frame ID is not supported by HC. 3810 */ 3811 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3812 struct urb *urb, int slot_id, unsigned int ep_index) 3813 { 3814 struct xhci_virt_device *xdev; 3815 struct xhci_ring *ep_ring; 3816 struct xhci_ep_ctx *ep_ctx; 3817 int start_frame; 3818 int num_tds, num_trbs, i; 3819 int ret; 3820 struct xhci_virt_ep *xep; 3821 int ist; 3822 3823 xdev = xhci->devs[slot_id]; 3824 xep = &xhci->devs[slot_id]->eps[ep_index]; 3825 ep_ring = xdev->eps[ep_index].ring; 3826 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3827 3828 num_trbs = 0; 3829 num_tds = urb->number_of_packets; 3830 for (i = 0; i < num_tds; i++) 3831 num_trbs += count_isoc_trbs_needed(urb, i); 3832 3833 /* Check the ring to guarantee there is enough room for the whole urb. 3834 * Do not insert any td of the urb to the ring if the check failed. 3835 */ 3836 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3837 num_trbs, mem_flags); 3838 if (ret) 3839 return ret; 3840 3841 /* 3842 * Check interval value. This should be done before we start to 3843 * calculate the start frame value. 3844 */ 3845 check_interval(xhci, urb, ep_ctx); 3846 3847 /* Calculate the start frame and put it in urb->start_frame. */ 3848 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3849 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3850 urb->start_frame = xep->next_frame_id; 3851 goto skip_start_over; 3852 } 3853 } 3854 3855 start_frame = readl(&xhci->run_regs->microframe_index); 3856 start_frame &= 0x3fff; 3857 /* 3858 * Round up to the next frame and consider the time before trb really 3859 * gets scheduled by hardare. 3860 */ 3861 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3862 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3863 ist <<= 3; 3864 start_frame += ist + XHCI_CFC_DELAY; 3865 start_frame = roundup(start_frame, 8); 3866 3867 /* 3868 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3869 * is greate than 8 microframes. 3870 */ 3871 if (urb->dev->speed == USB_SPEED_LOW || 3872 urb->dev->speed == USB_SPEED_FULL) { 3873 start_frame = roundup(start_frame, urb->interval << 3); 3874 urb->start_frame = start_frame >> 3; 3875 } else { 3876 start_frame = roundup(start_frame, urb->interval); 3877 urb->start_frame = start_frame; 3878 } 3879 3880 skip_start_over: 3881 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3882 3883 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3884 } 3885 3886 /**** Command Ring Operations ****/ 3887 3888 /* Generic function for queueing a command TRB on the command ring. 3889 * Check to make sure there's room on the command ring for one command TRB. 3890 * Also check that there's room reserved for commands that must not fail. 3891 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3892 * then only check for the number of reserved spots. 3893 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3894 * because the command event handler may want to resubmit a failed command. 3895 */ 3896 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3897 u32 field1, u32 field2, 3898 u32 field3, u32 field4, bool command_must_succeed) 3899 { 3900 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3901 int ret; 3902 3903 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3904 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3905 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3906 return -ESHUTDOWN; 3907 } 3908 3909 if (!command_must_succeed) 3910 reserved_trbs++; 3911 3912 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3913 reserved_trbs, GFP_ATOMIC); 3914 if (ret < 0) { 3915 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3916 if (command_must_succeed) 3917 xhci_err(xhci, "ERR: Reserved TRB counting for " 3918 "unfailable commands failed.\n"); 3919 return ret; 3920 } 3921 3922 cmd->command_trb = xhci->cmd_ring->enqueue; 3923 3924 /* if there are no other commands queued we start the timeout timer */ 3925 if (list_empty(&xhci->cmd_list)) { 3926 xhci->current_cmd = cmd; 3927 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3928 } 3929 3930 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3931 3932 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3933 field4 | xhci->cmd_ring->cycle_state); 3934 return 0; 3935 } 3936 3937 /* Queue a slot enable or disable request on the command ring */ 3938 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3939 u32 trb_type, u32 slot_id) 3940 { 3941 return queue_command(xhci, cmd, 0, 0, 0, 3942 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3943 } 3944 3945 /* Queue an address device command TRB */ 3946 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3947 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3948 { 3949 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3950 upper_32_bits(in_ctx_ptr), 0, 3951 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3952 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3953 } 3954 3955 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3956 u32 field1, u32 field2, u32 field3, u32 field4) 3957 { 3958 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3959 } 3960 3961 /* Queue a reset device command TRB */ 3962 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3963 u32 slot_id) 3964 { 3965 return queue_command(xhci, cmd, 0, 0, 0, 3966 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3967 false); 3968 } 3969 3970 /* Queue a configure endpoint command TRB */ 3971 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3972 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3973 u32 slot_id, bool command_must_succeed) 3974 { 3975 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3976 upper_32_bits(in_ctx_ptr), 0, 3977 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3978 command_must_succeed); 3979 } 3980 3981 /* Queue an evaluate context command TRB */ 3982 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3983 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3984 { 3985 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3986 upper_32_bits(in_ctx_ptr), 0, 3987 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3988 command_must_succeed); 3989 } 3990 3991 /* 3992 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3993 * activity on an endpoint that is about to be suspended. 3994 */ 3995 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3996 int slot_id, unsigned int ep_index, int suspend) 3997 { 3998 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3999 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4000 u32 type = TRB_TYPE(TRB_STOP_RING); 4001 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4002 4003 return queue_command(xhci, cmd, 0, 0, 0, 4004 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4005 } 4006 4007 /* Set Transfer Ring Dequeue Pointer command */ 4008 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4009 unsigned int slot_id, unsigned int ep_index, 4010 struct xhci_dequeue_state *deq_state) 4011 { 4012 dma_addr_t addr; 4013 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4014 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4015 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4016 u32 trb_sct = 0; 4017 u32 type = TRB_TYPE(TRB_SET_DEQ); 4018 struct xhci_virt_ep *ep; 4019 struct xhci_command *cmd; 4020 int ret; 4021 4022 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4023 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4024 deq_state->new_deq_seg, 4025 (unsigned long long)deq_state->new_deq_seg->dma, 4026 deq_state->new_deq_ptr, 4027 (unsigned long long)xhci_trb_virt_to_dma( 4028 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4029 deq_state->new_cycle_state); 4030 4031 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4032 deq_state->new_deq_ptr); 4033 if (addr == 0) { 4034 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4035 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4036 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4037 return; 4038 } 4039 ep = &xhci->devs[slot_id]->eps[ep_index]; 4040 if ((ep->ep_state & SET_DEQ_PENDING)) { 4041 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4042 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4043 return; 4044 } 4045 4046 /* This function gets called from contexts where it cannot sleep */ 4047 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4048 if (!cmd) 4049 return; 4050 4051 ep->queued_deq_seg = deq_state->new_deq_seg; 4052 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4053 if (deq_state->stream_id) 4054 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4055 ret = queue_command(xhci, cmd, 4056 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4057 upper_32_bits(addr), trb_stream_id, 4058 trb_slot_id | trb_ep_index | type, false); 4059 if (ret < 0) { 4060 xhci_free_command(xhci, cmd); 4061 return; 4062 } 4063 4064 /* Stop the TD queueing code from ringing the doorbell until 4065 * this command completes. The HC won't set the dequeue pointer 4066 * if the ring is running, and ringing the doorbell starts the 4067 * ring running. 4068 */ 4069 ep->ep_state |= SET_DEQ_PENDING; 4070 } 4071 4072 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4073 int slot_id, unsigned int ep_index, 4074 enum xhci_ep_reset_type reset_type) 4075 { 4076 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4077 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4078 u32 type = TRB_TYPE(TRB_RESET_EP); 4079 4080 if (reset_type == EP_SOFT_RESET) 4081 type |= TRB_TSP; 4082 4083 return queue_command(xhci, cmd, 0, 0, 0, 4084 trb_slot_id | trb_ep_index | type, false); 4085 } 4086