xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision b9dd2add)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 /*
12  * Ring initialization rules:
13  * 1. Each segment is initialized to zero, except for link TRBs.
14  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
15  *    Consumer Cycle State (CCS), depending on ring function.
16  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17  *
18  * Ring behavior rules:
19  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
20  *    least one free TRB in the ring.  This is useful if you want to turn that
21  *    into a link TRB and expand the ring.
22  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23  *    link TRB, then load the pointer with the address in the link TRB.  If the
24  *    link TRB had its toggle bit set, you may need to update the ring cycle
25  *    state (see cycle bit rules).  You may have to do this multiple times
26  *    until you reach a non-link TRB.
27  * 3. A ring is full if enqueue++ (for the definition of increment above)
28  *    equals the dequeue pointer.
29  *
30  * Cycle bit rules:
31  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32  *    in a link TRB, it must toggle the ring cycle state.
33  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34  *    in a link TRB, it must toggle the ring cycle state.
35  *
36  * Producer rules:
37  * 1. Check if ring is full before you enqueue.
38  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39  *    Update enqueue pointer between each write (which may update the ring
40  *    cycle state).
41  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
42  *    and endpoint rings.  If HC is the producer for the event ring,
43  *    and it generates an interrupt according to interrupt modulation rules.
44  *
45  * Consumer rules:
46  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
47  *    the TRB is owned by the consumer.
48  * 2. Update dequeue pointer (which may update the ring cycle state) and
49  *    continue processing TRBs until you reach a TRB which is not owned by you.
50  * 3. Notify the producer.  SW is the consumer for the event ring, and it
51  *   updates event ring dequeue pointer.  HC is the consumer for the command and
52  *   endpoint rings; it generates events on the event ring for these.
53  */
54 
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61 
62 /*
63  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64  * address of the TRB.
65  */
66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 		union xhci_trb *trb)
68 {
69 	unsigned long segment_offset;
70 
71 	if (!seg || !trb || trb < seg->trbs)
72 		return 0;
73 	/* offset in TRBs */
74 	segment_offset = trb - seg->trbs;
75 	if (segment_offset >= TRBS_PER_SEGMENT)
76 		return 0;
77 	return seg->dma + (segment_offset * sizeof(*trb));
78 }
79 
80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84 
85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 	return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89 
90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94 
95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 			struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100 
101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 	struct urb_priv *urb_priv = td->urb->hcpriv;
109 
110 	return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112 
113 static void inc_td_cnt(struct urb *urb)
114 {
115 	struct urb_priv *urb_priv = urb->hcpriv;
116 
117 	urb_priv->num_tds_done++;
118 }
119 
120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 	if (trb_is_link(trb)) {
123 		/* unchain chained link TRBs */
124 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 	} else {
126 		trb->generic.field[0] = 0;
127 		trb->generic.field[1] = 0;
128 		trb->generic.field[2] = 0;
129 		/* Preserve only the cycle bit of this TRB */
130 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 	}
133 }
134 
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
137  * effect the ring dequeue or enqueue pointers.
138  */
139 static void next_trb(struct xhci_hcd *xhci,
140 		struct xhci_ring *ring,
141 		struct xhci_segment **seg,
142 		union xhci_trb **trb)
143 {
144 	if (trb_is_link(*trb)) {
145 		*seg = (*seg)->next;
146 		*trb = ((*seg)->trbs);
147 	} else {
148 		(*trb)++;
149 	}
150 }
151 
152 /*
153  * See Cycle bit rules. SW is the consumer for the event ring only.
154  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
155  */
156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 	/* event ring doesn't have link trbs, check for last trb */
159 	if (ring->type == TYPE_EVENT) {
160 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 			ring->dequeue++;
162 			goto out;
163 		}
164 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 			ring->cycle_state ^= 1;
166 		ring->deq_seg = ring->deq_seg->next;
167 		ring->dequeue = ring->deq_seg->trbs;
168 		goto out;
169 	}
170 
171 	/* All other rings have link trbs */
172 	if (!trb_is_link(ring->dequeue)) {
173 		ring->dequeue++;
174 		ring->num_trbs_free++;
175 	}
176 	while (trb_is_link(ring->dequeue)) {
177 		ring->deq_seg = ring->deq_seg->next;
178 		ring->dequeue = ring->deq_seg->trbs;
179 	}
180 
181 out:
182 	trace_xhci_inc_deq(ring);
183 
184 	return;
185 }
186 
187 /*
188  * See Cycle bit rules. SW is the consumer for the event ring only.
189  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
190  *
191  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192  * chain bit is set), then set the chain bit in all the following link TRBs.
193  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194  * have their chain bit cleared (so that each Link TRB is a separate TD).
195  *
196  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197  * set, but other sections talk about dealing with the chain bit set.  This was
198  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200  *
201  * @more_trbs_coming:	Will you enqueue more TRBs before calling
202  *			prepare_transfer()?
203  */
204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 			bool more_trbs_coming)
206 {
207 	u32 chain;
208 	union xhci_trb *next;
209 
210 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 	/* If this is not event ring, there is one less usable TRB */
212 	if (!trb_is_link(ring->enqueue))
213 		ring->num_trbs_free--;
214 	next = ++(ring->enqueue);
215 
216 	/* Update the dequeue pointer further if that was a link TRB */
217 	while (trb_is_link(next)) {
218 
219 		/*
220 		 * If the caller doesn't plan on enqueueing more TDs before
221 		 * ringing the doorbell, then we don't want to give the link TRB
222 		 * to the hardware just yet. We'll give the link TRB back in
223 		 * prepare_ring() just before we enqueue the TD at the top of
224 		 * the ring.
225 		 */
226 		if (!chain && !more_trbs_coming)
227 			break;
228 
229 		/* If we're not dealing with 0.95 hardware or isoc rings on
230 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 		 * (which may mean the chain bit is cleared).
232 		 */
233 		if (!(ring->type == TYPE_ISOC &&
234 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 		    !xhci_link_trb_quirk(xhci)) {
236 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 			next->link.control |= cpu_to_le32(chain);
238 		}
239 		/* Give this link TRB to the hardware */
240 		wmb();
241 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
242 
243 		/* Toggle the cycle bit after the last ring segment. */
244 		if (link_trb_toggles_cycle(next))
245 			ring->cycle_state ^= 1;
246 
247 		ring->enq_seg = ring->enq_seg->next;
248 		ring->enqueue = ring->enq_seg->trbs;
249 		next = ring->enqueue;
250 	}
251 
252 	trace_xhci_inc_enq(ring);
253 }
254 
255 /*
256  * Check to see if there's room to enqueue num_trbs on the ring and make sure
257  * enqueue pointer will not advance into dequeue segment. See rules above.
258  */
259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 		unsigned int num_trbs)
261 {
262 	int num_trbs_in_deq_seg;
263 
264 	if (ring->num_trbs_free < num_trbs)
265 		return 0;
266 
267 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 			return 0;
271 	}
272 
273 	return 1;
274 }
275 
276 /* Ring the host controller doorbell after placing a command on the ring */
277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 		return;
281 
282 	xhci_dbg(xhci, "// Ding dong!\n");
283 
284 	trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST);
285 
286 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
287 	/* Flush PCI posted writes */
288 	readl(&xhci->dba->doorbell[0]);
289 }
290 
291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
292 {
293 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
294 }
295 
296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
297 {
298 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
299 					cmd_list);
300 }
301 
302 /*
303  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
304  * If there are other commands waiting then restart the ring and kick the timer.
305  * This must be called with command ring stopped and xhci->lock held.
306  */
307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
308 					 struct xhci_command *cur_cmd)
309 {
310 	struct xhci_command *i_cmd;
311 
312 	/* Turn all aborted commands in list to no-ops, then restart */
313 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
314 
315 		if (i_cmd->status != COMP_COMMAND_ABORTED)
316 			continue;
317 
318 		i_cmd->status = COMP_COMMAND_RING_STOPPED;
319 
320 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
321 			 i_cmd->command_trb);
322 
323 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
324 
325 		/*
326 		 * caller waiting for completion is called when command
327 		 *  completion event is received for these no-op commands
328 		 */
329 	}
330 
331 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
332 
333 	/* ring command ring doorbell to restart the command ring */
334 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
335 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
336 		xhci->current_cmd = cur_cmd;
337 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
338 		xhci_ring_cmd_db(xhci);
339 	}
340 }
341 
342 /* Must be called with xhci->lock held, releases and aquires lock back */
343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
344 {
345 	u64 temp_64;
346 	int ret;
347 
348 	xhci_dbg(xhci, "Abort command ring\n");
349 
350 	reinit_completion(&xhci->cmd_ring_stop_completion);
351 
352 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
353 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
354 			&xhci->op_regs->cmd_ring);
355 
356 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
357 	 * completion of the Command Abort operation. If CRR is not negated in 5
358 	 * seconds then driver handles it as if host died (-ENODEV).
359 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
360 	 * and try to recover a -ETIMEDOUT with a host controller reset.
361 	 */
362 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
363 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
364 	if (ret < 0) {
365 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
366 		xhci_halt(xhci);
367 		xhci_hc_died(xhci);
368 		return ret;
369 	}
370 	/*
371 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
372 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
373 	 * but the completion event in never sent. Wait 2 secs (arbitrary
374 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
375 	 */
376 	spin_unlock_irqrestore(&xhci->lock, flags);
377 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
378 					  msecs_to_jiffies(2000));
379 	spin_lock_irqsave(&xhci->lock, flags);
380 	if (!ret) {
381 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
382 		xhci_cleanup_command_queue(xhci);
383 	} else {
384 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
385 	}
386 	return 0;
387 }
388 
389 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
390 		unsigned int slot_id,
391 		unsigned int ep_index,
392 		unsigned int stream_id)
393 {
394 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
395 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
396 	unsigned int ep_state = ep->ep_state;
397 
398 	/* Don't ring the doorbell for this endpoint if there are pending
399 	 * cancellations because we don't want to interrupt processing.
400 	 * We don't want to restart any stream rings if there's a set dequeue
401 	 * pointer command pending because the device can choose to start any
402 	 * stream once the endpoint is on the HW schedule.
403 	 */
404 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
405 	    (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
406 		return;
407 
408 	trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id));
409 
410 	writel(DB_VALUE(ep_index, stream_id), db_addr);
411 	/* The CPU has better things to do at this point than wait for a
412 	 * write-posting flush.  It'll get there soon enough.
413 	 */
414 }
415 
416 /* Ring the doorbell for any rings with pending URBs */
417 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
418 		unsigned int slot_id,
419 		unsigned int ep_index)
420 {
421 	unsigned int stream_id;
422 	struct xhci_virt_ep *ep;
423 
424 	ep = &xhci->devs[slot_id]->eps[ep_index];
425 
426 	/* A ring has pending URBs if its TD list is not empty */
427 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
428 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
429 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
430 		return;
431 	}
432 
433 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
434 			stream_id++) {
435 		struct xhci_stream_info *stream_info = ep->stream_info;
436 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
437 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
438 						stream_id);
439 	}
440 }
441 
442 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
443 		unsigned int slot_id,
444 		unsigned int ep_index)
445 {
446 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
447 }
448 
449 /* Get the right ring for the given slot_id, ep_index and stream_id.
450  * If the endpoint supports streams, boundary check the URB's stream ID.
451  * If the endpoint doesn't support streams, return the singular endpoint ring.
452  */
453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
454 		unsigned int slot_id, unsigned int ep_index,
455 		unsigned int stream_id)
456 {
457 	struct xhci_virt_ep *ep;
458 
459 	ep = &xhci->devs[slot_id]->eps[ep_index];
460 	/* Common case: no streams */
461 	if (!(ep->ep_state & EP_HAS_STREAMS))
462 		return ep->ring;
463 
464 	if (stream_id == 0) {
465 		xhci_warn(xhci,
466 				"WARN: Slot ID %u, ep index %u has streams, "
467 				"but URB has no stream ID.\n",
468 				slot_id, ep_index);
469 		return NULL;
470 	}
471 
472 	if (stream_id < ep->stream_info->num_streams)
473 		return ep->stream_info->stream_rings[stream_id];
474 
475 	xhci_warn(xhci,
476 			"WARN: Slot ID %u, ep index %u has "
477 			"stream IDs 1 to %u allocated, "
478 			"but stream ID %u is requested.\n",
479 			slot_id, ep_index,
480 			ep->stream_info->num_streams - 1,
481 			stream_id);
482 	return NULL;
483 }
484 
485 
486 /*
487  * Get the hw dequeue pointer xHC stopped on, either directly from the
488  * endpoint context, or if streams are in use from the stream context.
489  * The returned hw_dequeue contains the lowest four bits with cycle state
490  * and possbile stream context type.
491  */
492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
493 			   unsigned int ep_index, unsigned int stream_id)
494 {
495 	struct xhci_ep_ctx *ep_ctx;
496 	struct xhci_stream_ctx *st_ctx;
497 	struct xhci_virt_ep *ep;
498 
499 	ep = &vdev->eps[ep_index];
500 
501 	if (ep->ep_state & EP_HAS_STREAMS) {
502 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
503 		return le64_to_cpu(st_ctx->stream_ring);
504 	}
505 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
506 	return le64_to_cpu(ep_ctx->deq);
507 }
508 
509 /*
510  * Move the xHC's endpoint ring dequeue pointer past cur_td.
511  * Record the new state of the xHC's endpoint ring dequeue segment,
512  * dequeue pointer, stream id, and new consumer cycle state in state.
513  * Update our internal representation of the ring's dequeue pointer.
514  *
515  * We do this in three jumps:
516  *  - First we update our new ring state to be the same as when the xHC stopped.
517  *  - Then we traverse the ring to find the segment that contains
518  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
519  *    any link TRBs with the toggle cycle bit set.
520  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
521  *    if we've moved it past a link TRB with the toggle cycle bit set.
522  *
523  * Some of the uses of xhci_generic_trb are grotty, but if they're done
524  * with correct __le32 accesses they should work fine.  Only users of this are
525  * in here.
526  */
527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
528 		unsigned int slot_id, unsigned int ep_index,
529 		unsigned int stream_id, struct xhci_td *cur_td,
530 		struct xhci_dequeue_state *state)
531 {
532 	struct xhci_virt_device *dev = xhci->devs[slot_id];
533 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
534 	struct xhci_ring *ep_ring;
535 	struct xhci_segment *new_seg;
536 	union xhci_trb *new_deq;
537 	dma_addr_t addr;
538 	u64 hw_dequeue;
539 	bool cycle_found = false;
540 	bool td_last_trb_found = false;
541 
542 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
543 			ep_index, stream_id);
544 	if (!ep_ring) {
545 		xhci_warn(xhci, "WARN can't find new dequeue state "
546 				"for invalid stream ID %u.\n",
547 				stream_id);
548 		return;
549 	}
550 	/*
551 	 * A cancelled TD can complete with a stall if HW cached the trb.
552 	 * In this case driver can't find cur_td, but if the ring is empty we
553 	 * can move the dequeue pointer to the current enqueue position.
554 	 */
555 	if (!cur_td) {
556 		if (list_empty(&ep_ring->td_list)) {
557 			state->new_deq_seg = ep_ring->enq_seg;
558 			state->new_deq_ptr = ep_ring->enqueue;
559 			state->new_cycle_state = ep_ring->cycle_state;
560 			goto done;
561 		} else {
562 			xhci_warn(xhci, "Can't find new dequeue state, missing cur_td\n");
563 			return;
564 		}
565 	}
566 
567 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
568 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
569 			"Finding endpoint context");
570 
571 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
572 	new_seg = ep_ring->deq_seg;
573 	new_deq = ep_ring->dequeue;
574 	state->new_cycle_state = hw_dequeue & 0x1;
575 	state->stream_id = stream_id;
576 
577 	/*
578 	 * We want to find the pointer, segment and cycle state of the new trb
579 	 * (the one after current TD's last_trb). We know the cycle state at
580 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
581 	 * found.
582 	 */
583 	do {
584 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
585 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
586 			cycle_found = true;
587 			if (td_last_trb_found)
588 				break;
589 		}
590 		if (new_deq == cur_td->last_trb)
591 			td_last_trb_found = true;
592 
593 		if (cycle_found && trb_is_link(new_deq) &&
594 		    link_trb_toggles_cycle(new_deq))
595 			state->new_cycle_state ^= 0x1;
596 
597 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
598 
599 		/* Search wrapped around, bail out */
600 		if (new_deq == ep->ring->dequeue) {
601 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
602 			state->new_deq_seg = NULL;
603 			state->new_deq_ptr = NULL;
604 			return;
605 		}
606 
607 	} while (!cycle_found || !td_last_trb_found);
608 
609 	state->new_deq_seg = new_seg;
610 	state->new_deq_ptr = new_deq;
611 
612 done:
613 	/* Don't update the ring cycle state for the producer (us). */
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
615 			"Cycle state = 0x%x", state->new_cycle_state);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
618 			"New dequeue segment = %p (virtual)",
619 			state->new_deq_seg);
620 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
621 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
622 			"New dequeue pointer = 0x%llx (DMA)",
623 			(unsigned long long) addr);
624 }
625 
626 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
627  * (The last TRB actually points to the ring enqueue pointer, which is not part
628  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
629  */
630 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
631 		       struct xhci_td *td, bool flip_cycle)
632 {
633 	struct xhci_segment *seg	= td->start_seg;
634 	union xhci_trb *trb		= td->first_trb;
635 
636 	while (1) {
637 		trb_to_noop(trb, TRB_TR_NOOP);
638 
639 		/* flip cycle if asked to */
640 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
641 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
642 
643 		if (trb == td->last_trb)
644 			break;
645 
646 		next_trb(xhci, ep_ring, &seg, &trb);
647 	}
648 }
649 
650 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
651 		struct xhci_virt_ep *ep)
652 {
653 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
654 	/* Can't del_timer_sync in interrupt */
655 	del_timer(&ep->stop_cmd_timer);
656 }
657 
658 /*
659  * Must be called with xhci->lock held in interrupt context,
660  * releases and re-acquires xhci->lock
661  */
662 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
663 				     struct xhci_td *cur_td, int status)
664 {
665 	struct urb	*urb		= cur_td->urb;
666 	struct urb_priv	*urb_priv	= urb->hcpriv;
667 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
668 
669 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
670 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
671 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
672 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
673 				usb_amd_quirk_pll_enable();
674 		}
675 	}
676 	xhci_urb_free_priv(urb_priv);
677 	usb_hcd_unlink_urb_from_ep(hcd, urb);
678 	trace_xhci_urb_giveback(urb);
679 	usb_hcd_giveback_urb(hcd, urb, status);
680 }
681 
682 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
683 		struct xhci_ring *ring, struct xhci_td *td)
684 {
685 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
686 	struct xhci_segment *seg = td->bounce_seg;
687 	struct urb *urb = td->urb;
688 	size_t len;
689 
690 	if (!ring || !seg || !urb)
691 		return;
692 
693 	if (usb_urb_dir_out(urb)) {
694 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
695 				 DMA_TO_DEVICE);
696 		return;
697 	}
698 
699 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
700 			 DMA_FROM_DEVICE);
701 	/* for in tranfers we need to copy the data from bounce to sg */
702 	len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
703 			     seg->bounce_len, seg->bounce_offs);
704 	if (len != seg->bounce_len)
705 		xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
706 				len, seg->bounce_len);
707 	seg->bounce_len = 0;
708 	seg->bounce_offs = 0;
709 }
710 
711 /*
712  * When we get a command completion for a Stop Endpoint Command, we need to
713  * unlink any cancelled TDs from the ring.  There are two ways to do that:
714  *
715  *  1. If the HW was in the middle of processing the TD that needs to be
716  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
717  *     in the TD with a Set Dequeue Pointer Command.
718  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
719  *     bit cleared) so that the HW will skip over them.
720  */
721 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
722 		union xhci_trb *trb, struct xhci_event_cmd *event)
723 {
724 	unsigned int ep_index;
725 	struct xhci_ring *ep_ring;
726 	struct xhci_virt_ep *ep;
727 	struct xhci_td *cur_td = NULL;
728 	struct xhci_td *last_unlinked_td;
729 	struct xhci_ep_ctx *ep_ctx;
730 	struct xhci_virt_device *vdev;
731 	u64 hw_deq;
732 	struct xhci_dequeue_state deq_state;
733 
734 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
735 		if (!xhci->devs[slot_id])
736 			xhci_warn(xhci, "Stop endpoint command "
737 				"completion for disabled slot %u\n",
738 				slot_id);
739 		return;
740 	}
741 
742 	memset(&deq_state, 0, sizeof(deq_state));
743 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
744 
745 	vdev = xhci->devs[slot_id];
746 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
747 	trace_xhci_handle_cmd_stop_ep(ep_ctx);
748 
749 	ep = &xhci->devs[slot_id]->eps[ep_index];
750 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
751 			struct xhci_td, cancelled_td_list);
752 
753 	if (list_empty(&ep->cancelled_td_list)) {
754 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
755 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
756 		return;
757 	}
758 
759 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
760 	 * We have the xHCI lock, so nothing can modify this list until we drop
761 	 * it.  We're also in the event handler, so we can't get re-interrupted
762 	 * if another Stop Endpoint command completes
763 	 */
764 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
765 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
766 				"Removing canceled TD starting at 0x%llx (dma).",
767 				(unsigned long long)xhci_trb_virt_to_dma(
768 					cur_td->start_seg, cur_td->first_trb));
769 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
770 		if (!ep_ring) {
771 			/* This shouldn't happen unless a driver is mucking
772 			 * with the stream ID after submission.  This will
773 			 * leave the TD on the hardware ring, and the hardware
774 			 * will try to execute it, and may access a buffer
775 			 * that has already been freed.  In the best case, the
776 			 * hardware will execute it, and the event handler will
777 			 * ignore the completion event for that TD, since it was
778 			 * removed from the td_list for that endpoint.  In
779 			 * short, don't muck with the stream ID after
780 			 * submission.
781 			 */
782 			xhci_warn(xhci, "WARN Cancelled URB %p "
783 					"has invalid stream ID %u.\n",
784 					cur_td->urb,
785 					cur_td->urb->stream_id);
786 			goto remove_finished_td;
787 		}
788 		/*
789 		 * If we stopped on the TD we need to cancel, then we have to
790 		 * move the xHC endpoint ring dequeue pointer past this TD.
791 		 */
792 		hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
793 					 cur_td->urb->stream_id);
794 		hw_deq &= ~0xf;
795 
796 		if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
797 			      cur_td->last_trb, hw_deq, false)) {
798 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
799 						    cur_td->urb->stream_id,
800 						    cur_td, &deq_state);
801 		} else {
802 			td_to_noop(xhci, ep_ring, cur_td, false);
803 		}
804 
805 remove_finished_td:
806 		/*
807 		 * The event handler won't see a completion for this TD anymore,
808 		 * so remove it from the endpoint ring's TD list.  Keep it in
809 		 * the cancelled TD list for URB completion later.
810 		 */
811 		list_del_init(&cur_td->td_list);
812 	}
813 
814 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
815 
816 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
817 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
818 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
819 					     &deq_state);
820 		xhci_ring_cmd_db(xhci);
821 	} else {
822 		/* Otherwise ring the doorbell(s) to restart queued transfers */
823 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
824 	}
825 
826 	/*
827 	 * Drop the lock and complete the URBs in the cancelled TD list.
828 	 * New TDs to be cancelled might be added to the end of the list before
829 	 * we can complete all the URBs for the TDs we already unlinked.
830 	 * So stop when we've completed the URB for the last TD we unlinked.
831 	 */
832 	do {
833 		cur_td = list_first_entry(&ep->cancelled_td_list,
834 				struct xhci_td, cancelled_td_list);
835 		list_del_init(&cur_td->cancelled_td_list);
836 
837 		/* Clean up the cancelled URB */
838 		/* Doesn't matter what we pass for status, since the core will
839 		 * just overwrite it (because the URB has been unlinked).
840 		 */
841 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
842 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
843 		inc_td_cnt(cur_td->urb);
844 		if (last_td_in_urb(cur_td))
845 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
846 
847 		/* Stop processing the cancelled list if the watchdog timer is
848 		 * running.
849 		 */
850 		if (xhci->xhc_state & XHCI_STATE_DYING)
851 			return;
852 	} while (cur_td != last_unlinked_td);
853 
854 	/* Return to the event handler with xhci->lock re-acquired */
855 }
856 
857 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
858 {
859 	struct xhci_td *cur_td;
860 	struct xhci_td *tmp;
861 
862 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
863 		list_del_init(&cur_td->td_list);
864 
865 		if (!list_empty(&cur_td->cancelled_td_list))
866 			list_del_init(&cur_td->cancelled_td_list);
867 
868 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
869 
870 		inc_td_cnt(cur_td->urb);
871 		if (last_td_in_urb(cur_td))
872 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
873 	}
874 }
875 
876 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
877 		int slot_id, int ep_index)
878 {
879 	struct xhci_td *cur_td;
880 	struct xhci_td *tmp;
881 	struct xhci_virt_ep *ep;
882 	struct xhci_ring *ring;
883 
884 	ep = &xhci->devs[slot_id]->eps[ep_index];
885 	if ((ep->ep_state & EP_HAS_STREAMS) ||
886 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
887 		int stream_id;
888 
889 		for (stream_id = 1; stream_id < ep->stream_info->num_streams;
890 				stream_id++) {
891 			ring = ep->stream_info->stream_rings[stream_id];
892 			if (!ring)
893 				continue;
894 
895 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
896 					"Killing URBs for slot ID %u, ep index %u, stream %u",
897 					slot_id, ep_index, stream_id);
898 			xhci_kill_ring_urbs(xhci, ring);
899 		}
900 	} else {
901 		ring = ep->ring;
902 		if (!ring)
903 			return;
904 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
905 				"Killing URBs for slot ID %u, ep index %u",
906 				slot_id, ep_index);
907 		xhci_kill_ring_urbs(xhci, ring);
908 	}
909 
910 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
911 			cancelled_td_list) {
912 		list_del_init(&cur_td->cancelled_td_list);
913 		inc_td_cnt(cur_td->urb);
914 
915 		if (last_td_in_urb(cur_td))
916 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
917 	}
918 }
919 
920 /*
921  * host controller died, register read returns 0xffffffff
922  * Complete pending commands, mark them ABORTED.
923  * URBs need to be given back as usb core might be waiting with device locks
924  * held for the URBs to finish during device disconnect, blocking host remove.
925  *
926  * Call with xhci->lock held.
927  * lock is relased and re-acquired while giving back urb.
928  */
929 void xhci_hc_died(struct xhci_hcd *xhci)
930 {
931 	int i, j;
932 
933 	if (xhci->xhc_state & XHCI_STATE_DYING)
934 		return;
935 
936 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
937 	xhci->xhc_state |= XHCI_STATE_DYING;
938 
939 	xhci_cleanup_command_queue(xhci);
940 
941 	/* return any pending urbs, remove may be waiting for them */
942 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943 		if (!xhci->devs[i])
944 			continue;
945 		for (j = 0; j < 31; j++)
946 			xhci_kill_endpoint_urbs(xhci, i, j);
947 	}
948 
949 	/* inform usb core hc died if PCI remove isn't already handling it */
950 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
951 		usb_hc_died(xhci_to_hcd(xhci));
952 }
953 
954 /* Watchdog timer function for when a stop endpoint command fails to complete.
955  * In this case, we assume the host controller is broken or dying or dead.  The
956  * host may still be completing some other events, so we have to be careful to
957  * let the event ring handler and the URB dequeueing/enqueueing functions know
958  * through xhci->state.
959  *
960  * The timer may also fire if the host takes a very long time to respond to the
961  * command, and the stop endpoint command completion handler cannot delete the
962  * timer before the timer function is called.  Another endpoint cancellation may
963  * sneak in before the timer function can grab the lock, and that may queue
964  * another stop endpoint command and add the timer back.  So we cannot use a
965  * simple flag to say whether there is a pending stop endpoint command for a
966  * particular endpoint.
967  *
968  * Instead we use a combination of that flag and checking if a new timer is
969  * pending.
970  */
971 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
972 {
973 	struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
974 	struct xhci_hcd *xhci = ep->xhci;
975 	unsigned long flags;
976 	u32 usbsts;
977 
978 	spin_lock_irqsave(&xhci->lock, flags);
979 
980 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
981 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
982 	    timer_pending(&ep->stop_cmd_timer)) {
983 		spin_unlock_irqrestore(&xhci->lock, flags);
984 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
985 		return;
986 	}
987 	usbsts = readl(&xhci->op_regs->status);
988 
989 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
990 	xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts));
991 
992 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
993 
994 	xhci_halt(xhci);
995 
996 	/*
997 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
998 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
999 	 * and try to recover a -ETIMEDOUT with a host controller reset
1000 	 */
1001 	xhci_hc_died(xhci);
1002 
1003 	spin_unlock_irqrestore(&xhci->lock, flags);
1004 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1005 			"xHCI host controller is dead.");
1006 }
1007 
1008 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1009 		struct xhci_virt_device *dev,
1010 		struct xhci_ring *ep_ring,
1011 		unsigned int ep_index)
1012 {
1013 	union xhci_trb *dequeue_temp;
1014 	int num_trbs_free_temp;
1015 	bool revert = false;
1016 
1017 	num_trbs_free_temp = ep_ring->num_trbs_free;
1018 	dequeue_temp = ep_ring->dequeue;
1019 
1020 	/* If we get two back-to-back stalls, and the first stalled transfer
1021 	 * ends just before a link TRB, the dequeue pointer will be left on
1022 	 * the link TRB by the code in the while loop.  So we have to update
1023 	 * the dequeue pointer one segment further, or we'll jump off
1024 	 * the segment into la-la-land.
1025 	 */
1026 	if (trb_is_link(ep_ring->dequeue)) {
1027 		ep_ring->deq_seg = ep_ring->deq_seg->next;
1028 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
1029 	}
1030 
1031 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1032 		/* We have more usable TRBs */
1033 		ep_ring->num_trbs_free++;
1034 		ep_ring->dequeue++;
1035 		if (trb_is_link(ep_ring->dequeue)) {
1036 			if (ep_ring->dequeue ==
1037 					dev->eps[ep_index].queued_deq_ptr)
1038 				break;
1039 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1040 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1041 		}
1042 		if (ep_ring->dequeue == dequeue_temp) {
1043 			revert = true;
1044 			break;
1045 		}
1046 	}
1047 
1048 	if (revert) {
1049 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1050 		ep_ring->num_trbs_free = num_trbs_free_temp;
1051 	}
1052 }
1053 
1054 /*
1055  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1056  * we need to clear the set deq pending flag in the endpoint ring state, so that
1057  * the TD queueing code can ring the doorbell again.  We also need to ring the
1058  * endpoint doorbell to restart the ring, but only if there aren't more
1059  * cancellations pending.
1060  */
1061 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1062 		union xhci_trb *trb, u32 cmd_comp_code)
1063 {
1064 	unsigned int ep_index;
1065 	unsigned int stream_id;
1066 	struct xhci_ring *ep_ring;
1067 	struct xhci_virt_device *dev;
1068 	struct xhci_virt_ep *ep;
1069 	struct xhci_ep_ctx *ep_ctx;
1070 	struct xhci_slot_ctx *slot_ctx;
1071 
1072 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1073 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1074 	dev = xhci->devs[slot_id];
1075 	ep = &dev->eps[ep_index];
1076 
1077 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1078 	if (!ep_ring) {
1079 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1080 				stream_id);
1081 		/* XXX: Harmless??? */
1082 		goto cleanup;
1083 	}
1084 
1085 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1086 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1087 	trace_xhci_handle_cmd_set_deq(slot_ctx);
1088 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1089 
1090 	if (cmd_comp_code != COMP_SUCCESS) {
1091 		unsigned int ep_state;
1092 		unsigned int slot_state;
1093 
1094 		switch (cmd_comp_code) {
1095 		case COMP_TRB_ERROR:
1096 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1097 			break;
1098 		case COMP_CONTEXT_STATE_ERROR:
1099 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1100 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1101 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1102 			slot_state = GET_SLOT_STATE(slot_state);
1103 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1104 					"Slot state = %u, EP state = %u",
1105 					slot_state, ep_state);
1106 			break;
1107 		case COMP_SLOT_NOT_ENABLED_ERROR:
1108 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1109 					slot_id);
1110 			break;
1111 		default:
1112 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1113 					cmd_comp_code);
1114 			break;
1115 		}
1116 		/* OK what do we do now?  The endpoint state is hosed, and we
1117 		 * should never get to this point if the synchronization between
1118 		 * queueing, and endpoint state are correct.  This might happen
1119 		 * if the device gets disconnected after we've finished
1120 		 * cancelling URBs, which might not be an error...
1121 		 */
1122 	} else {
1123 		u64 deq;
1124 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1125 		if (ep->ep_state & EP_HAS_STREAMS) {
1126 			struct xhci_stream_ctx *ctx =
1127 				&ep->stream_info->stream_ctx_array[stream_id];
1128 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1129 		} else {
1130 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1131 		}
1132 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1133 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1134 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1135 					 ep->queued_deq_ptr) == deq) {
1136 			/* Update the ring's dequeue segment and dequeue pointer
1137 			 * to reflect the new position.
1138 			 */
1139 			update_ring_for_set_deq_completion(xhci, dev,
1140 				ep_ring, ep_index);
1141 		} else {
1142 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1143 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1144 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1145 		}
1146 	}
1147 
1148 cleanup:
1149 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1150 	dev->eps[ep_index].queued_deq_seg = NULL;
1151 	dev->eps[ep_index].queued_deq_ptr = NULL;
1152 	/* Restart any rings with pending URBs */
1153 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1154 }
1155 
1156 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1157 		union xhci_trb *trb, u32 cmd_comp_code)
1158 {
1159 	struct xhci_virt_device *vdev;
1160 	struct xhci_ep_ctx *ep_ctx;
1161 	unsigned int ep_index;
1162 
1163 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1164 	vdev = xhci->devs[slot_id];
1165 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1166 	trace_xhci_handle_cmd_reset_ep(ep_ctx);
1167 
1168 	/* This command will only fail if the endpoint wasn't halted,
1169 	 * but we don't care.
1170 	 */
1171 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1172 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1173 
1174 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1175 	 * command complete before the endpoint can be used.  Queue that here
1176 	 * because the HW can't handle two commands being queued in a row.
1177 	 */
1178 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1179 		struct xhci_command *command;
1180 
1181 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1182 		if (!command)
1183 			return;
1184 
1185 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1186 				"Queueing configure endpoint command");
1187 		xhci_queue_configure_endpoint(xhci, command,
1188 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1189 				false);
1190 		xhci_ring_cmd_db(xhci);
1191 	} else {
1192 		/* Clear our internal halted state */
1193 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1194 	}
1195 
1196 	/* if this was a soft reset, then restart */
1197 	if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1198 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1199 }
1200 
1201 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1202 		struct xhci_command *command, u32 cmd_comp_code)
1203 {
1204 	if (cmd_comp_code == COMP_SUCCESS)
1205 		command->slot_id = slot_id;
1206 	else
1207 		command->slot_id = 0;
1208 }
1209 
1210 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1211 {
1212 	struct xhci_virt_device *virt_dev;
1213 	struct xhci_slot_ctx *slot_ctx;
1214 
1215 	virt_dev = xhci->devs[slot_id];
1216 	if (!virt_dev)
1217 		return;
1218 
1219 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1220 	trace_xhci_handle_cmd_disable_slot(slot_ctx);
1221 
1222 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1223 		/* Delete default control endpoint resources */
1224 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1225 	xhci_free_virt_device(xhci, slot_id);
1226 }
1227 
1228 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1229 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1230 {
1231 	struct xhci_virt_device *virt_dev;
1232 	struct xhci_input_control_ctx *ctrl_ctx;
1233 	struct xhci_ep_ctx *ep_ctx;
1234 	unsigned int ep_index;
1235 	unsigned int ep_state;
1236 	u32 add_flags, drop_flags;
1237 
1238 	/*
1239 	 * Configure endpoint commands can come from the USB core
1240 	 * configuration or alt setting changes, or because the HW
1241 	 * needed an extra configure endpoint command after a reset
1242 	 * endpoint command or streams were being configured.
1243 	 * If the command was for a halted endpoint, the xHCI driver
1244 	 * is not waiting on the configure endpoint command.
1245 	 */
1246 	virt_dev = xhci->devs[slot_id];
1247 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1248 	if (!ctrl_ctx) {
1249 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1250 		return;
1251 	}
1252 
1253 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1254 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1255 	/* Input ctx add_flags are the endpoint index plus one */
1256 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1257 
1258 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1259 	trace_xhci_handle_cmd_config_ep(ep_ctx);
1260 
1261 	/* A usb_set_interface() call directly after clearing a halted
1262 	 * condition may race on this quirky hardware.  Not worth
1263 	 * worrying about, since this is prototype hardware.  Not sure
1264 	 * if this will work for streams, but streams support was
1265 	 * untested on this prototype.
1266 	 */
1267 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1268 			ep_index != (unsigned int) -1 &&
1269 			add_flags - SLOT_FLAG == drop_flags) {
1270 		ep_state = virt_dev->eps[ep_index].ep_state;
1271 		if (!(ep_state & EP_HALTED))
1272 			return;
1273 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1274 				"Completed config ep cmd - "
1275 				"last ep index = %d, state = %d",
1276 				ep_index, ep_state);
1277 		/* Clear internal halted state and restart ring(s) */
1278 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1279 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1280 		return;
1281 	}
1282 	return;
1283 }
1284 
1285 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1286 {
1287 	struct xhci_virt_device *vdev;
1288 	struct xhci_slot_ctx *slot_ctx;
1289 
1290 	vdev = xhci->devs[slot_id];
1291 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1292 	trace_xhci_handle_cmd_addr_dev(slot_ctx);
1293 }
1294 
1295 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1296 		struct xhci_event_cmd *event)
1297 {
1298 	struct xhci_virt_device *vdev;
1299 	struct xhci_slot_ctx *slot_ctx;
1300 
1301 	vdev = xhci->devs[slot_id];
1302 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1303 	trace_xhci_handle_cmd_reset_dev(slot_ctx);
1304 
1305 	xhci_dbg(xhci, "Completed reset device command.\n");
1306 	if (!xhci->devs[slot_id])
1307 		xhci_warn(xhci, "Reset device command completion "
1308 				"for disabled slot %u\n", slot_id);
1309 }
1310 
1311 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1312 		struct xhci_event_cmd *event)
1313 {
1314 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1315 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1316 		return;
1317 	}
1318 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1319 			"NEC firmware version %2x.%02x",
1320 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1321 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1322 }
1323 
1324 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1325 {
1326 	list_del(&cmd->cmd_list);
1327 
1328 	if (cmd->completion) {
1329 		cmd->status = status;
1330 		complete(cmd->completion);
1331 	} else {
1332 		kfree(cmd);
1333 	}
1334 }
1335 
1336 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1337 {
1338 	struct xhci_command *cur_cmd, *tmp_cmd;
1339 	xhci->current_cmd = NULL;
1340 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1341 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1342 }
1343 
1344 void xhci_handle_command_timeout(struct work_struct *work)
1345 {
1346 	struct xhci_hcd *xhci;
1347 	unsigned long flags;
1348 	u64 hw_ring_state;
1349 
1350 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1351 
1352 	spin_lock_irqsave(&xhci->lock, flags);
1353 
1354 	/*
1355 	 * If timeout work is pending, or current_cmd is NULL, it means we
1356 	 * raced with command completion. Command is handled so just return.
1357 	 */
1358 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1359 		spin_unlock_irqrestore(&xhci->lock, flags);
1360 		return;
1361 	}
1362 	/* mark this command to be cancelled */
1363 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1364 
1365 	/* Make sure command ring is running before aborting it */
1366 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1367 	if (hw_ring_state == ~(u64)0) {
1368 		xhci_hc_died(xhci);
1369 		goto time_out_completed;
1370 	}
1371 
1372 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1373 	    (hw_ring_state & CMD_RING_RUNNING))  {
1374 		/* Prevent new doorbell, and start command abort */
1375 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1376 		xhci_dbg(xhci, "Command timeout\n");
1377 		xhci_abort_cmd_ring(xhci, flags);
1378 		goto time_out_completed;
1379 	}
1380 
1381 	/* host removed. Bail out */
1382 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1383 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1384 		xhci_cleanup_command_queue(xhci);
1385 
1386 		goto time_out_completed;
1387 	}
1388 
1389 	/* command timeout on stopped ring, ring can't be aborted */
1390 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1391 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1392 
1393 time_out_completed:
1394 	spin_unlock_irqrestore(&xhci->lock, flags);
1395 	return;
1396 }
1397 
1398 static void handle_cmd_completion(struct xhci_hcd *xhci,
1399 		struct xhci_event_cmd *event)
1400 {
1401 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1402 	u64 cmd_dma;
1403 	dma_addr_t cmd_dequeue_dma;
1404 	u32 cmd_comp_code;
1405 	union xhci_trb *cmd_trb;
1406 	struct xhci_command *cmd;
1407 	u32 cmd_type;
1408 
1409 	cmd_dma = le64_to_cpu(event->cmd_trb);
1410 	cmd_trb = xhci->cmd_ring->dequeue;
1411 
1412 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1413 
1414 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1415 			cmd_trb);
1416 	/*
1417 	 * Check whether the completion event is for our internal kept
1418 	 * command.
1419 	 */
1420 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1421 		xhci_warn(xhci,
1422 			  "ERROR mismatched command completion event\n");
1423 		return;
1424 	}
1425 
1426 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1427 
1428 	cancel_delayed_work(&xhci->cmd_timer);
1429 
1430 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1431 
1432 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1433 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1434 		complete_all(&xhci->cmd_ring_stop_completion);
1435 		return;
1436 	}
1437 
1438 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1439 		xhci_err(xhci,
1440 			 "Command completion event does not match command\n");
1441 		return;
1442 	}
1443 
1444 	/*
1445 	 * Host aborted the command ring, check if the current command was
1446 	 * supposed to be aborted, otherwise continue normally.
1447 	 * The command ring is stopped now, but the xHC will issue a Command
1448 	 * Ring Stopped event which will cause us to restart it.
1449 	 */
1450 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1451 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1452 		if (cmd->status == COMP_COMMAND_ABORTED) {
1453 			if (xhci->current_cmd == cmd)
1454 				xhci->current_cmd = NULL;
1455 			goto event_handled;
1456 		}
1457 	}
1458 
1459 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1460 	switch (cmd_type) {
1461 	case TRB_ENABLE_SLOT:
1462 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1463 		break;
1464 	case TRB_DISABLE_SLOT:
1465 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1466 		break;
1467 	case TRB_CONFIG_EP:
1468 		if (!cmd->completion)
1469 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1470 						  cmd_comp_code);
1471 		break;
1472 	case TRB_EVAL_CONTEXT:
1473 		break;
1474 	case TRB_ADDR_DEV:
1475 		xhci_handle_cmd_addr_dev(xhci, slot_id);
1476 		break;
1477 	case TRB_STOP_RING:
1478 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1479 				le32_to_cpu(cmd_trb->generic.field[3])));
1480 		if (!cmd->completion)
1481 			xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1482 		break;
1483 	case TRB_SET_DEQ:
1484 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1485 				le32_to_cpu(cmd_trb->generic.field[3])));
1486 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1487 		break;
1488 	case TRB_CMD_NOOP:
1489 		/* Is this an aborted command turned to NO-OP? */
1490 		if (cmd->status == COMP_COMMAND_RING_STOPPED)
1491 			cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1492 		break;
1493 	case TRB_RESET_EP:
1494 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1495 				le32_to_cpu(cmd_trb->generic.field[3])));
1496 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1497 		break;
1498 	case TRB_RESET_DEV:
1499 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1500 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1501 		 */
1502 		slot_id = TRB_TO_SLOT_ID(
1503 				le32_to_cpu(cmd_trb->generic.field[3]));
1504 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1505 		break;
1506 	case TRB_NEC_GET_FW:
1507 		xhci_handle_cmd_nec_get_fw(xhci, event);
1508 		break;
1509 	default:
1510 		/* Skip over unknown commands on the event ring */
1511 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1512 		break;
1513 	}
1514 
1515 	/* restart timer if this wasn't the last command */
1516 	if (!list_is_singular(&xhci->cmd_list)) {
1517 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1518 						struct xhci_command, cmd_list);
1519 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1520 	} else if (xhci->current_cmd == cmd) {
1521 		xhci->current_cmd = NULL;
1522 	}
1523 
1524 event_handled:
1525 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1526 
1527 	inc_deq(xhci, xhci->cmd_ring);
1528 }
1529 
1530 static void handle_vendor_event(struct xhci_hcd *xhci,
1531 		union xhci_trb *event)
1532 {
1533 	u32 trb_type;
1534 
1535 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1536 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1537 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1538 		handle_cmd_completion(xhci, &event->event_cmd);
1539 }
1540 
1541 static void handle_device_notification(struct xhci_hcd *xhci,
1542 		union xhci_trb *event)
1543 {
1544 	u32 slot_id;
1545 	struct usb_device *udev;
1546 
1547 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1548 	if (!xhci->devs[slot_id]) {
1549 		xhci_warn(xhci, "Device Notification event for "
1550 				"unused slot %u\n", slot_id);
1551 		return;
1552 	}
1553 
1554 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1555 			slot_id);
1556 	udev = xhci->devs[slot_id]->udev;
1557 	if (udev && udev->parent)
1558 		usb_wakeup_notification(udev->parent, udev->portnum);
1559 }
1560 
1561 /*
1562  * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1563  * Controller.
1564  * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1565  * If a connection to a USB 1 device is followed by another connection
1566  * to a USB 2 device.
1567  *
1568  * Reset the PHY after the USB device is disconnected if device speed
1569  * is less than HCD_USB3.
1570  * Retry the reset sequence max of 4 times checking the PLL lock status.
1571  *
1572  */
1573 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1574 {
1575 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
1576 	u32 pll_lock_check;
1577 	u32 retry_count = 4;
1578 
1579 	do {
1580 		/* Assert PHY reset */
1581 		writel(0x6F, hcd->regs + 0x1048);
1582 		udelay(10);
1583 		/* De-assert the PHY reset */
1584 		writel(0x7F, hcd->regs + 0x1048);
1585 		udelay(200);
1586 		pll_lock_check = readl(hcd->regs + 0x1070);
1587 	} while (!(pll_lock_check & 0x1) && --retry_count);
1588 }
1589 
1590 static void handle_port_status(struct xhci_hcd *xhci,
1591 		union xhci_trb *event)
1592 {
1593 	struct usb_hcd *hcd;
1594 	u32 port_id;
1595 	u32 portsc, cmd_reg;
1596 	int max_ports;
1597 	int slot_id;
1598 	unsigned int hcd_portnum;
1599 	struct xhci_bus_state *bus_state;
1600 	bool bogus_port_status = false;
1601 	struct xhci_port *port;
1602 
1603 	/* Port status change events always have a successful completion code */
1604 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1605 		xhci_warn(xhci,
1606 			  "WARN: xHC returned failed port status event\n");
1607 
1608 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1609 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1610 
1611 	if ((port_id <= 0) || (port_id > max_ports)) {
1612 		xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1613 			  port_id);
1614 		inc_deq(xhci, xhci->event_ring);
1615 		return;
1616 	}
1617 
1618 	port = &xhci->hw_ports[port_id - 1];
1619 	if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1620 		xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1621 			  port_id);
1622 		bogus_port_status = true;
1623 		goto cleanup;
1624 	}
1625 
1626 	/* We might get interrupts after shared_hcd is removed */
1627 	if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1628 		xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1629 		bogus_port_status = true;
1630 		goto cleanup;
1631 	}
1632 
1633 	hcd = port->rhub->hcd;
1634 	bus_state = &port->rhub->bus_state;
1635 	hcd_portnum = port->hcd_portnum;
1636 	portsc = readl(port->addr);
1637 
1638 	xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1639 		 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1640 
1641 	trace_xhci_handle_port_status(hcd_portnum, portsc);
1642 
1643 	if (hcd->state == HC_STATE_SUSPENDED) {
1644 		xhci_dbg(xhci, "resume root hub\n");
1645 		usb_hcd_resume_root_hub(hcd);
1646 	}
1647 
1648 	if (hcd->speed >= HCD_USB3 &&
1649 	    (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1650 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1651 		if (slot_id && xhci->devs[slot_id])
1652 			xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR;
1653 	}
1654 
1655 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1656 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1657 
1658 		cmd_reg = readl(&xhci->op_regs->command);
1659 		if (!(cmd_reg & CMD_RUN)) {
1660 			xhci_warn(xhci, "xHC is not running.\n");
1661 			goto cleanup;
1662 		}
1663 
1664 		if (DEV_SUPERSPEED_ANY(portsc)) {
1665 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1666 			/* Set a flag to say the port signaled remote wakeup,
1667 			 * so we can tell the difference between the end of
1668 			 * device and host initiated resume.
1669 			 */
1670 			bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1671 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1672 			usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1673 			xhci_set_link_state(xhci, port, XDEV_U0);
1674 			/* Need to wait until the next link state change
1675 			 * indicates the device is actually in U0.
1676 			 */
1677 			bogus_port_status = true;
1678 			goto cleanup;
1679 		} else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1680 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1681 			bus_state->resume_done[hcd_portnum] = jiffies +
1682 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1683 			set_bit(hcd_portnum, &bus_state->resuming_ports);
1684 			/* Do the rest in GetPortStatus after resume time delay.
1685 			 * Avoid polling roothub status before that so that a
1686 			 * usb device auto-resume latency around ~40ms.
1687 			 */
1688 			set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1689 			mod_timer(&hcd->rh_timer,
1690 				  bus_state->resume_done[hcd_portnum]);
1691 			usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1692 			bogus_port_status = true;
1693 		}
1694 	}
1695 
1696 	if ((portsc & PORT_PLC) &&
1697 	    DEV_SUPERSPEED_ANY(portsc) &&
1698 	    ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1699 	     (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1700 	     (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1701 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1702 		complete(&bus_state->u3exit_done[hcd_portnum]);
1703 		/* We've just brought the device into U0/1/2 through either the
1704 		 * Resume state after a device remote wakeup, or through the
1705 		 * U3Exit state after a host-initiated resume.  If it's a device
1706 		 * initiated remote wake, don't pass up the link state change,
1707 		 * so the roothub behavior is consistent with external
1708 		 * USB 3.0 hub behavior.
1709 		 */
1710 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1711 		if (slot_id && xhci->devs[slot_id])
1712 			xhci_ring_device(xhci, slot_id);
1713 		if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1714 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1715 			usb_wakeup_notification(hcd->self.root_hub,
1716 					hcd_portnum + 1);
1717 			bogus_port_status = true;
1718 			goto cleanup;
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1724 	 * RExit to a disconnect state).  If so, let the the driver know it's
1725 	 * out of the RExit state.
1726 	 */
1727 	if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 &&
1728 			test_and_clear_bit(hcd_portnum,
1729 				&bus_state->rexit_ports)) {
1730 		complete(&bus_state->rexit_done[hcd_portnum]);
1731 		bogus_port_status = true;
1732 		goto cleanup;
1733 	}
1734 
1735 	if (hcd->speed < HCD_USB3) {
1736 		xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1737 		if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
1738 		    (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
1739 			xhci_cavium_reset_phy_quirk(xhci);
1740 	}
1741 
1742 cleanup:
1743 	/* Update event ring dequeue pointer before dropping the lock */
1744 	inc_deq(xhci, xhci->event_ring);
1745 
1746 	/* Don't make the USB core poll the roothub if we got a bad port status
1747 	 * change event.  Besides, at that point we can't tell which roothub
1748 	 * (USB 2.0 or USB 3.0) to kick.
1749 	 */
1750 	if (bogus_port_status)
1751 		return;
1752 
1753 	/*
1754 	 * xHCI port-status-change events occur when the "or" of all the
1755 	 * status-change bits in the portsc register changes from 0 to 1.
1756 	 * New status changes won't cause an event if any other change
1757 	 * bits are still set.  When an event occurs, switch over to
1758 	 * polling to avoid losing status changes.
1759 	 */
1760 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1761 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1762 	spin_unlock(&xhci->lock);
1763 	/* Pass this up to the core */
1764 	usb_hcd_poll_rh_status(hcd);
1765 	spin_lock(&xhci->lock);
1766 }
1767 
1768 /*
1769  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1770  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1771  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1772  * returns 0.
1773  */
1774 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1775 		struct xhci_segment *start_seg,
1776 		union xhci_trb	*start_trb,
1777 		union xhci_trb	*end_trb,
1778 		dma_addr_t	suspect_dma,
1779 		bool		debug)
1780 {
1781 	dma_addr_t start_dma;
1782 	dma_addr_t end_seg_dma;
1783 	dma_addr_t end_trb_dma;
1784 	struct xhci_segment *cur_seg;
1785 
1786 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1787 	cur_seg = start_seg;
1788 
1789 	do {
1790 		if (start_dma == 0)
1791 			return NULL;
1792 		/* We may get an event for a Link TRB in the middle of a TD */
1793 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1794 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1795 		/* If the end TRB isn't in this segment, this is set to 0 */
1796 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1797 
1798 		if (debug)
1799 			xhci_warn(xhci,
1800 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1801 				(unsigned long long)suspect_dma,
1802 				(unsigned long long)start_dma,
1803 				(unsigned long long)end_trb_dma,
1804 				(unsigned long long)cur_seg->dma,
1805 				(unsigned long long)end_seg_dma);
1806 
1807 		if (end_trb_dma > 0) {
1808 			/* The end TRB is in this segment, so suspect should be here */
1809 			if (start_dma <= end_trb_dma) {
1810 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1811 					return cur_seg;
1812 			} else {
1813 				/* Case for one segment with
1814 				 * a TD wrapped around to the top
1815 				 */
1816 				if ((suspect_dma >= start_dma &&
1817 							suspect_dma <= end_seg_dma) ||
1818 						(suspect_dma >= cur_seg->dma &&
1819 						 suspect_dma <= end_trb_dma))
1820 					return cur_seg;
1821 			}
1822 			return NULL;
1823 		} else {
1824 			/* Might still be somewhere in this segment */
1825 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1826 				return cur_seg;
1827 		}
1828 		cur_seg = cur_seg->next;
1829 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1830 	} while (cur_seg != start_seg);
1831 
1832 	return NULL;
1833 }
1834 
1835 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
1836 		struct xhci_virt_ep *ep)
1837 {
1838 	/*
1839 	 * As part of low/full-speed endpoint-halt processing
1840 	 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
1841 	 */
1842 	if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
1843 	    (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
1844 	    !(ep->ep_state & EP_CLEARING_TT)) {
1845 		ep->ep_state |= EP_CLEARING_TT;
1846 		td->urb->ep->hcpriv = td->urb->dev;
1847 		if (usb_hub_clear_tt_buffer(td->urb))
1848 			ep->ep_state &= ~EP_CLEARING_TT;
1849 	}
1850 }
1851 
1852 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1853 		unsigned int slot_id, unsigned int ep_index,
1854 		unsigned int stream_id, struct xhci_td *td,
1855 		enum xhci_ep_reset_type reset_type)
1856 {
1857 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1858 	struct xhci_command *command;
1859 
1860 	/*
1861 	 * Avoid resetting endpoint if link is inactive. Can cause host hang.
1862 	 * Device will be reset soon to recover the link so don't do anything
1863 	 */
1864 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR)
1865 		return;
1866 
1867 	command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1868 	if (!command)
1869 		return;
1870 
1871 	ep->ep_state |= EP_HALTED;
1872 
1873 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1874 
1875 	if (reset_type == EP_HARD_RESET) {
1876 		ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1877 		xhci_cleanup_stalled_ring(xhci, slot_id, ep_index, stream_id,
1878 					  td);
1879 	}
1880 	xhci_ring_cmd_db(xhci);
1881 }
1882 
1883 /* Check if an error has halted the endpoint ring.  The class driver will
1884  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1885  * However, a babble and other errors also halt the endpoint ring, and the class
1886  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1887  * Ring Dequeue Pointer command manually.
1888  */
1889 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1890 		struct xhci_ep_ctx *ep_ctx,
1891 		unsigned int trb_comp_code)
1892 {
1893 	/* TRB completion codes that may require a manual halt cleanup */
1894 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1895 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1896 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1897 		/* The 0.95 spec says a babbling control endpoint
1898 		 * is not halted. The 0.96 spec says it is.  Some HW
1899 		 * claims to be 0.95 compliant, but it halts the control
1900 		 * endpoint anyway.  Check if a babble halted the
1901 		 * endpoint.
1902 		 */
1903 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1904 			return 1;
1905 
1906 	return 0;
1907 }
1908 
1909 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1910 {
1911 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1912 		/* Vendor defined "informational" completion code,
1913 		 * treat as not-an-error.
1914 		 */
1915 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1916 				trb_comp_code);
1917 		xhci_dbg(xhci, "Treating code as success.\n");
1918 		return 1;
1919 	}
1920 	return 0;
1921 }
1922 
1923 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1924 		struct xhci_ring *ep_ring, int *status)
1925 {
1926 	struct urb *urb = NULL;
1927 
1928 	/* Clean up the endpoint's TD list */
1929 	urb = td->urb;
1930 
1931 	/* if a bounce buffer was used to align this td then unmap it */
1932 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1933 
1934 	/* Do one last check of the actual transfer length.
1935 	 * If the host controller said we transferred more data than the buffer
1936 	 * length, urb->actual_length will be a very big number (since it's
1937 	 * unsigned).  Play it safe and say we didn't transfer anything.
1938 	 */
1939 	if (urb->actual_length > urb->transfer_buffer_length) {
1940 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1941 			  urb->transfer_buffer_length, urb->actual_length);
1942 		urb->actual_length = 0;
1943 		*status = 0;
1944 	}
1945 	list_del_init(&td->td_list);
1946 	/* Was this TD slated to be cancelled but completed anyway? */
1947 	if (!list_empty(&td->cancelled_td_list))
1948 		list_del_init(&td->cancelled_td_list);
1949 
1950 	inc_td_cnt(urb);
1951 	/* Giveback the urb when all the tds are completed */
1952 	if (last_td_in_urb(td)) {
1953 		if ((urb->actual_length != urb->transfer_buffer_length &&
1954 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1955 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1956 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1957 				 urb, urb->actual_length,
1958 				 urb->transfer_buffer_length, *status);
1959 
1960 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1961 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1962 			*status = 0;
1963 		xhci_giveback_urb_in_irq(xhci, td, *status);
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1970 	struct xhci_transfer_event *event,
1971 	struct xhci_virt_ep *ep, int *status)
1972 {
1973 	struct xhci_virt_device *xdev;
1974 	struct xhci_ep_ctx *ep_ctx;
1975 	struct xhci_ring *ep_ring;
1976 	unsigned int slot_id;
1977 	u32 trb_comp_code;
1978 	int ep_index;
1979 
1980 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1981 	xdev = xhci->devs[slot_id];
1982 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1983 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1984 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1985 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1986 
1987 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1988 			trb_comp_code == COMP_STOPPED ||
1989 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1990 		/* The Endpoint Stop Command completion will take care of any
1991 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1992 		 * the ring dequeue pointer or take this TD off any lists yet.
1993 		 */
1994 		return 0;
1995 	}
1996 	if (trb_comp_code == COMP_STALL_ERROR ||
1997 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1998 						trb_comp_code)) {
1999 		/*
2000 		 * xhci internal endpoint state will go to a "halt" state for
2001 		 * any stall, including default control pipe protocol stall.
2002 		 * To clear the host side halt we need to issue a reset endpoint
2003 		 * command, followed by a set dequeue command to move past the
2004 		 * TD.
2005 		 * Class drivers clear the device side halt from a functional
2006 		 * stall later. Hub TT buffer should only be cleared for FS/LS
2007 		 * devices behind HS hubs for functional stalls.
2008 		 */
2009 		if ((ep_index != 0) || (trb_comp_code != COMP_STALL_ERROR))
2010 			xhci_clear_hub_tt_buffer(xhci, td, ep);
2011 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
2012 					ep_ring->stream_id, td, EP_HARD_RESET);
2013 	} else {
2014 		/* Update ring dequeue pointer */
2015 		while (ep_ring->dequeue != td->last_trb)
2016 			inc_deq(xhci, ep_ring);
2017 		inc_deq(xhci, ep_ring);
2018 	}
2019 
2020 	return xhci_td_cleanup(xhci, td, ep_ring, status);
2021 }
2022 
2023 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
2024 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
2025 			   union xhci_trb *stop_trb)
2026 {
2027 	u32 sum;
2028 	union xhci_trb *trb = ring->dequeue;
2029 	struct xhci_segment *seg = ring->deq_seg;
2030 
2031 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
2032 		if (!trb_is_noop(trb) && !trb_is_link(trb))
2033 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2034 	}
2035 	return sum;
2036 }
2037 
2038 /*
2039  * Process control tds, update urb status and actual_length.
2040  */
2041 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2042 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2043 	struct xhci_virt_ep *ep, int *status)
2044 {
2045 	struct xhci_virt_device *xdev;
2046 	unsigned int slot_id;
2047 	int ep_index;
2048 	struct xhci_ep_ctx *ep_ctx;
2049 	u32 trb_comp_code;
2050 	u32 remaining, requested;
2051 	u32 trb_type;
2052 
2053 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2054 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2055 	xdev = xhci->devs[slot_id];
2056 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2057 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2058 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2059 	requested = td->urb->transfer_buffer_length;
2060 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2061 
2062 	switch (trb_comp_code) {
2063 	case COMP_SUCCESS:
2064 		if (trb_type != TRB_STATUS) {
2065 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2066 				  (trb_type == TRB_DATA) ? "data" : "setup");
2067 			*status = -ESHUTDOWN;
2068 			break;
2069 		}
2070 		*status = 0;
2071 		break;
2072 	case COMP_SHORT_PACKET:
2073 		*status = 0;
2074 		break;
2075 	case COMP_STOPPED_SHORT_PACKET:
2076 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2077 			td->urb->actual_length = remaining;
2078 		else
2079 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2080 		goto finish_td;
2081 	case COMP_STOPPED:
2082 		switch (trb_type) {
2083 		case TRB_SETUP:
2084 			td->urb->actual_length = 0;
2085 			goto finish_td;
2086 		case TRB_DATA:
2087 		case TRB_NORMAL:
2088 			td->urb->actual_length = requested - remaining;
2089 			goto finish_td;
2090 		case TRB_STATUS:
2091 			td->urb->actual_length = requested;
2092 			goto finish_td;
2093 		default:
2094 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2095 				  trb_type);
2096 			goto finish_td;
2097 		}
2098 	case COMP_STOPPED_LENGTH_INVALID:
2099 		goto finish_td;
2100 	default:
2101 		if (!xhci_requires_manual_halt_cleanup(xhci,
2102 						       ep_ctx, trb_comp_code))
2103 			break;
2104 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2105 			 trb_comp_code, ep_index);
2106 		fallthrough;
2107 	case COMP_STALL_ERROR:
2108 		/* Did we transfer part of the data (middle) phase? */
2109 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2110 			td->urb->actual_length = requested - remaining;
2111 		else if (!td->urb_length_set)
2112 			td->urb->actual_length = 0;
2113 		goto finish_td;
2114 	}
2115 
2116 	/* stopped at setup stage, no data transferred */
2117 	if (trb_type == TRB_SETUP)
2118 		goto finish_td;
2119 
2120 	/*
2121 	 * if on data stage then update the actual_length of the URB and flag it
2122 	 * as set, so it won't be overwritten in the event for the last TRB.
2123 	 */
2124 	if (trb_type == TRB_DATA ||
2125 		trb_type == TRB_NORMAL) {
2126 		td->urb_length_set = true;
2127 		td->urb->actual_length = requested - remaining;
2128 		xhci_dbg(xhci, "Waiting for status stage event\n");
2129 		return 0;
2130 	}
2131 
2132 	/* at status stage */
2133 	if (!td->urb_length_set)
2134 		td->urb->actual_length = requested;
2135 
2136 finish_td:
2137 	return finish_td(xhci, td, event, ep, status);
2138 }
2139 
2140 /*
2141  * Process isochronous tds, update urb packet status and actual_length.
2142  */
2143 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2144 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2145 	struct xhci_virt_ep *ep, int *status)
2146 {
2147 	struct xhci_ring *ep_ring;
2148 	struct urb_priv *urb_priv;
2149 	int idx;
2150 	struct usb_iso_packet_descriptor *frame;
2151 	u32 trb_comp_code;
2152 	bool sum_trbs_for_length = false;
2153 	u32 remaining, requested, ep_trb_len;
2154 	int short_framestatus;
2155 
2156 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2157 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2158 	urb_priv = td->urb->hcpriv;
2159 	idx = urb_priv->num_tds_done;
2160 	frame = &td->urb->iso_frame_desc[idx];
2161 	requested = frame->length;
2162 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2163 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2164 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2165 		-EREMOTEIO : 0;
2166 
2167 	/* handle completion code */
2168 	switch (trb_comp_code) {
2169 	case COMP_SUCCESS:
2170 		if (remaining) {
2171 			frame->status = short_framestatus;
2172 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2173 				sum_trbs_for_length = true;
2174 			break;
2175 		}
2176 		frame->status = 0;
2177 		break;
2178 	case COMP_SHORT_PACKET:
2179 		frame->status = short_framestatus;
2180 		sum_trbs_for_length = true;
2181 		break;
2182 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2183 		frame->status = -ECOMM;
2184 		break;
2185 	case COMP_ISOCH_BUFFER_OVERRUN:
2186 	case COMP_BABBLE_DETECTED_ERROR:
2187 		frame->status = -EOVERFLOW;
2188 		break;
2189 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2190 	case COMP_STALL_ERROR:
2191 		frame->status = -EPROTO;
2192 		break;
2193 	case COMP_USB_TRANSACTION_ERROR:
2194 		frame->status = -EPROTO;
2195 		if (ep_trb != td->last_trb)
2196 			return 0;
2197 		break;
2198 	case COMP_STOPPED:
2199 		sum_trbs_for_length = true;
2200 		break;
2201 	case COMP_STOPPED_SHORT_PACKET:
2202 		/* field normally containing residue now contains tranferred */
2203 		frame->status = short_framestatus;
2204 		requested = remaining;
2205 		break;
2206 	case COMP_STOPPED_LENGTH_INVALID:
2207 		requested = 0;
2208 		remaining = 0;
2209 		break;
2210 	default:
2211 		sum_trbs_for_length = true;
2212 		frame->status = -1;
2213 		break;
2214 	}
2215 
2216 	if (sum_trbs_for_length)
2217 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2218 			ep_trb_len - remaining;
2219 	else
2220 		frame->actual_length = requested;
2221 
2222 	td->urb->actual_length += frame->actual_length;
2223 
2224 	return finish_td(xhci, td, event, ep, status);
2225 }
2226 
2227 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2228 			struct xhci_transfer_event *event,
2229 			struct xhci_virt_ep *ep, int *status)
2230 {
2231 	struct xhci_ring *ep_ring;
2232 	struct urb_priv *urb_priv;
2233 	struct usb_iso_packet_descriptor *frame;
2234 	int idx;
2235 
2236 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2237 	urb_priv = td->urb->hcpriv;
2238 	idx = urb_priv->num_tds_done;
2239 	frame = &td->urb->iso_frame_desc[idx];
2240 
2241 	/* The transfer is partly done. */
2242 	frame->status = -EXDEV;
2243 
2244 	/* calc actual length */
2245 	frame->actual_length = 0;
2246 
2247 	/* Update ring dequeue pointer */
2248 	while (ep_ring->dequeue != td->last_trb)
2249 		inc_deq(xhci, ep_ring);
2250 	inc_deq(xhci, ep_ring);
2251 
2252 	return xhci_td_cleanup(xhci, td, ep_ring, status);
2253 }
2254 
2255 /*
2256  * Process bulk and interrupt tds, update urb status and actual_length.
2257  */
2258 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2259 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2260 	struct xhci_virt_ep *ep, int *status)
2261 {
2262 	struct xhci_slot_ctx *slot_ctx;
2263 	struct xhci_ring *ep_ring;
2264 	u32 trb_comp_code;
2265 	u32 remaining, requested, ep_trb_len;
2266 	unsigned int slot_id;
2267 	int ep_index;
2268 
2269 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2270 	slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx);
2271 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2272 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2273 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2274 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2275 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2276 	requested = td->urb->transfer_buffer_length;
2277 
2278 	switch (trb_comp_code) {
2279 	case COMP_SUCCESS:
2280 		ep_ring->err_count = 0;
2281 		/* handle success with untransferred data as short packet */
2282 		if (ep_trb != td->last_trb || remaining) {
2283 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2284 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2285 				 td->urb->ep->desc.bEndpointAddress,
2286 				 requested, remaining);
2287 		}
2288 		*status = 0;
2289 		break;
2290 	case COMP_SHORT_PACKET:
2291 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2292 			 td->urb->ep->desc.bEndpointAddress,
2293 			 requested, remaining);
2294 		*status = 0;
2295 		break;
2296 	case COMP_STOPPED_SHORT_PACKET:
2297 		td->urb->actual_length = remaining;
2298 		goto finish_td;
2299 	case COMP_STOPPED_LENGTH_INVALID:
2300 		/* stopped on ep trb with invalid length, exclude it */
2301 		ep_trb_len	= 0;
2302 		remaining	= 0;
2303 		break;
2304 	case COMP_USB_TRANSACTION_ERROR:
2305 		if ((ep_ring->err_count++ > MAX_SOFT_RETRY) ||
2306 		    le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2307 			break;
2308 		*status = 0;
2309 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
2310 					ep_ring->stream_id, td, EP_SOFT_RESET);
2311 		return 0;
2312 	default:
2313 		/* do nothing */
2314 		break;
2315 	}
2316 
2317 	if (ep_trb == td->last_trb)
2318 		td->urb->actual_length = requested - remaining;
2319 	else
2320 		td->urb->actual_length =
2321 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2322 			ep_trb_len - remaining;
2323 finish_td:
2324 	if (remaining > requested) {
2325 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2326 			  remaining);
2327 		td->urb->actual_length = 0;
2328 	}
2329 	return finish_td(xhci, td, event, ep, status);
2330 }
2331 
2332 /*
2333  * If this function returns an error condition, it means it got a Transfer
2334  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2335  * At this point, the host controller is probably hosed and should be reset.
2336  */
2337 static int handle_tx_event(struct xhci_hcd *xhci,
2338 		struct xhci_transfer_event *event)
2339 {
2340 	struct xhci_virt_device *xdev;
2341 	struct xhci_virt_ep *ep;
2342 	struct xhci_ring *ep_ring;
2343 	unsigned int slot_id;
2344 	int ep_index;
2345 	struct xhci_td *td = NULL;
2346 	dma_addr_t ep_trb_dma;
2347 	struct xhci_segment *ep_seg;
2348 	union xhci_trb *ep_trb;
2349 	int status = -EINPROGRESS;
2350 	struct xhci_ep_ctx *ep_ctx;
2351 	struct list_head *tmp;
2352 	u32 trb_comp_code;
2353 	int td_num = 0;
2354 	bool handling_skipped_tds = false;
2355 
2356 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2357 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2358 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2359 	ep_trb_dma = le64_to_cpu(event->buffer);
2360 
2361 	xdev = xhci->devs[slot_id];
2362 	if (!xdev) {
2363 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2364 			 slot_id);
2365 		goto err_out;
2366 	}
2367 
2368 	ep = &xdev->eps[ep_index];
2369 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2370 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2371 
2372 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2373 		xhci_err(xhci,
2374 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2375 			  slot_id, ep_index);
2376 		goto err_out;
2377 	}
2378 
2379 	/* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2380 	if (!ep_ring) {
2381 		switch (trb_comp_code) {
2382 		case COMP_STALL_ERROR:
2383 		case COMP_USB_TRANSACTION_ERROR:
2384 		case COMP_INVALID_STREAM_TYPE_ERROR:
2385 		case COMP_INVALID_STREAM_ID_ERROR:
2386 			xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2387 						     NULL, EP_SOFT_RESET);
2388 			goto cleanup;
2389 		case COMP_RING_UNDERRUN:
2390 		case COMP_RING_OVERRUN:
2391 		case COMP_STOPPED_LENGTH_INVALID:
2392 			goto cleanup;
2393 		default:
2394 			xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2395 				 slot_id, ep_index);
2396 			goto err_out;
2397 		}
2398 	}
2399 
2400 	/* Count current td numbers if ep->skip is set */
2401 	if (ep->skip) {
2402 		list_for_each(tmp, &ep_ring->td_list)
2403 			td_num++;
2404 	}
2405 
2406 	/* Look for common error cases */
2407 	switch (trb_comp_code) {
2408 	/* Skip codes that require special handling depending on
2409 	 * transfer type
2410 	 */
2411 	case COMP_SUCCESS:
2412 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2413 			break;
2414 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH ||
2415 		    ep_ring->last_td_was_short)
2416 			trb_comp_code = COMP_SHORT_PACKET;
2417 		else
2418 			xhci_warn_ratelimited(xhci,
2419 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2420 					      slot_id, ep_index);
2421 		break;
2422 	case COMP_SHORT_PACKET:
2423 		break;
2424 	/* Completion codes for endpoint stopped state */
2425 	case COMP_STOPPED:
2426 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2427 			 slot_id, ep_index);
2428 		break;
2429 	case COMP_STOPPED_LENGTH_INVALID:
2430 		xhci_dbg(xhci,
2431 			 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2432 			 slot_id, ep_index);
2433 		break;
2434 	case COMP_STOPPED_SHORT_PACKET:
2435 		xhci_dbg(xhci,
2436 			 "Stopped with short packet transfer detected for slot %u ep %u\n",
2437 			 slot_id, ep_index);
2438 		break;
2439 	/* Completion codes for endpoint halted state */
2440 	case COMP_STALL_ERROR:
2441 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2442 			 ep_index);
2443 		ep->ep_state |= EP_HALTED;
2444 		status = -EPIPE;
2445 		break;
2446 	case COMP_SPLIT_TRANSACTION_ERROR:
2447 		xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n",
2448 			 slot_id, ep_index);
2449 		status = -EPROTO;
2450 		break;
2451 	case COMP_USB_TRANSACTION_ERROR:
2452 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2453 			 slot_id, ep_index);
2454 		status = -EPROTO;
2455 		break;
2456 	case COMP_BABBLE_DETECTED_ERROR:
2457 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2458 			 slot_id, ep_index);
2459 		status = -EOVERFLOW;
2460 		break;
2461 	/* Completion codes for endpoint error state */
2462 	case COMP_TRB_ERROR:
2463 		xhci_warn(xhci,
2464 			  "WARN: TRB error for slot %u ep %u on endpoint\n",
2465 			  slot_id, ep_index);
2466 		status = -EILSEQ;
2467 		break;
2468 	/* completion codes not indicating endpoint state change */
2469 	case COMP_DATA_BUFFER_ERROR:
2470 		xhci_warn(xhci,
2471 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2472 			  slot_id, ep_index);
2473 		status = -ENOSR;
2474 		break;
2475 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2476 		xhci_warn(xhci,
2477 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2478 			  slot_id, ep_index);
2479 		break;
2480 	case COMP_ISOCH_BUFFER_OVERRUN:
2481 		xhci_warn(xhci,
2482 			  "WARN: buffer overrun event for slot %u ep %u on endpoint",
2483 			  slot_id, ep_index);
2484 		break;
2485 	case COMP_RING_UNDERRUN:
2486 		/*
2487 		 * When the Isoch ring is empty, the xHC will generate
2488 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2489 		 * Underrun Event for OUT Isoch endpoint.
2490 		 */
2491 		xhci_dbg(xhci, "underrun event on endpoint\n");
2492 		if (!list_empty(&ep_ring->td_list))
2493 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2494 					"still with TDs queued?\n",
2495 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2496 				 ep_index);
2497 		goto cleanup;
2498 	case COMP_RING_OVERRUN:
2499 		xhci_dbg(xhci, "overrun event on endpoint\n");
2500 		if (!list_empty(&ep_ring->td_list))
2501 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2502 					"still with TDs queued?\n",
2503 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2504 				 ep_index);
2505 		goto cleanup;
2506 	case COMP_MISSED_SERVICE_ERROR:
2507 		/*
2508 		 * When encounter missed service error, one or more isoc tds
2509 		 * may be missed by xHC.
2510 		 * Set skip flag of the ep_ring; Complete the missed tds as
2511 		 * short transfer when process the ep_ring next time.
2512 		 */
2513 		ep->skip = true;
2514 		xhci_dbg(xhci,
2515 			 "Miss service interval error for slot %u ep %u, set skip flag\n",
2516 			 slot_id, ep_index);
2517 		goto cleanup;
2518 	case COMP_NO_PING_RESPONSE_ERROR:
2519 		ep->skip = true;
2520 		xhci_dbg(xhci,
2521 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2522 			 slot_id, ep_index);
2523 		goto cleanup;
2524 
2525 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2526 		/* needs disable slot command to recover */
2527 		xhci_warn(xhci,
2528 			  "WARN: detect an incompatible device for slot %u ep %u",
2529 			  slot_id, ep_index);
2530 		status = -EPROTO;
2531 		break;
2532 	default:
2533 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2534 			status = 0;
2535 			break;
2536 		}
2537 		xhci_warn(xhci,
2538 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2539 			  trb_comp_code, slot_id, ep_index);
2540 		goto cleanup;
2541 	}
2542 
2543 	do {
2544 		/* This TRB should be in the TD at the head of this ring's
2545 		 * TD list.
2546 		 */
2547 		if (list_empty(&ep_ring->td_list)) {
2548 			/*
2549 			 * Don't print wanings if it's due to a stopped endpoint
2550 			 * generating an extra completion event if the device
2551 			 * was suspended. Or, a event for the last TRB of a
2552 			 * short TD we already got a short event for.
2553 			 * The short TD is already removed from the TD list.
2554 			 */
2555 
2556 			if (!(trb_comp_code == COMP_STOPPED ||
2557 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2558 			      ep_ring->last_td_was_short)) {
2559 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2560 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2561 						ep_index);
2562 			}
2563 			if (ep->skip) {
2564 				ep->skip = false;
2565 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2566 					 slot_id, ep_index);
2567 			}
2568 			if (trb_comp_code == COMP_STALL_ERROR ||
2569 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2570 							      trb_comp_code)) {
2571 				xhci_cleanup_halted_endpoint(xhci, slot_id,
2572 							     ep_index,
2573 							     ep_ring->stream_id,
2574 							     NULL,
2575 							     EP_HARD_RESET);
2576 			}
2577 			goto cleanup;
2578 		}
2579 
2580 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2581 		if (ep->skip && td_num == 0) {
2582 			ep->skip = false;
2583 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2584 				 slot_id, ep_index);
2585 			goto cleanup;
2586 		}
2587 
2588 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2589 				      td_list);
2590 		if (ep->skip)
2591 			td_num--;
2592 
2593 		/* Is this a TRB in the currently executing TD? */
2594 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2595 				td->last_trb, ep_trb_dma, false);
2596 
2597 		/*
2598 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2599 		 * is not in the current TD pointed by ep_ring->dequeue because
2600 		 * that the hardware dequeue pointer still at the previous TRB
2601 		 * of the current TD. The previous TRB maybe a Link TD or the
2602 		 * last TRB of the previous TD. The command completion handle
2603 		 * will take care the rest.
2604 		 */
2605 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2606 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2607 			goto cleanup;
2608 		}
2609 
2610 		if (!ep_seg) {
2611 			if (!ep->skip ||
2612 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2613 				/* Some host controllers give a spurious
2614 				 * successful event after a short transfer.
2615 				 * Ignore it.
2616 				 */
2617 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2618 						ep_ring->last_td_was_short) {
2619 					ep_ring->last_td_was_short = false;
2620 					goto cleanup;
2621 				}
2622 				/* HC is busted, give up! */
2623 				xhci_err(xhci,
2624 					"ERROR Transfer event TRB DMA ptr not "
2625 					"part of current TD ep_index %d "
2626 					"comp_code %u\n", ep_index,
2627 					trb_comp_code);
2628 				trb_in_td(xhci, ep_ring->deq_seg,
2629 					  ep_ring->dequeue, td->last_trb,
2630 					  ep_trb_dma, true);
2631 				return -ESHUTDOWN;
2632 			}
2633 
2634 			skip_isoc_td(xhci, td, event, ep, &status);
2635 			goto cleanup;
2636 		}
2637 		if (trb_comp_code == COMP_SHORT_PACKET)
2638 			ep_ring->last_td_was_short = true;
2639 		else
2640 			ep_ring->last_td_was_short = false;
2641 
2642 		if (ep->skip) {
2643 			xhci_dbg(xhci,
2644 				 "Found td. Clear skip flag for slot %u ep %u.\n",
2645 				 slot_id, ep_index);
2646 			ep->skip = false;
2647 		}
2648 
2649 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2650 						sizeof(*ep_trb)];
2651 
2652 		trace_xhci_handle_transfer(ep_ring,
2653 				(struct xhci_generic_trb *) ep_trb);
2654 
2655 		/*
2656 		 * No-op TRB could trigger interrupts in a case where
2657 		 * a URB was killed and a STALL_ERROR happens right
2658 		 * after the endpoint ring stopped. Reset the halted
2659 		 * endpoint. Otherwise, the endpoint remains stalled
2660 		 * indefinitely.
2661 		 */
2662 		if (trb_is_noop(ep_trb)) {
2663 			if (trb_comp_code == COMP_STALL_ERROR ||
2664 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2665 							      trb_comp_code))
2666 				xhci_cleanup_halted_endpoint(xhci, slot_id,
2667 							     ep_index,
2668 							     ep_ring->stream_id,
2669 							     td, EP_HARD_RESET);
2670 			goto cleanup;
2671 		}
2672 
2673 		/* update the urb's actual_length and give back to the core */
2674 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2675 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2676 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2677 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2678 		else
2679 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2680 					     &status);
2681 cleanup:
2682 		handling_skipped_tds = ep->skip &&
2683 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2684 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2685 
2686 		/*
2687 		 * Do not update event ring dequeue pointer if we're in a loop
2688 		 * processing missed tds.
2689 		 */
2690 		if (!handling_skipped_tds)
2691 			inc_deq(xhci, xhci->event_ring);
2692 
2693 	/*
2694 	 * If ep->skip is set, it means there are missed tds on the
2695 	 * endpoint ring need to take care of.
2696 	 * Process them as short transfer until reach the td pointed by
2697 	 * the event.
2698 	 */
2699 	} while (handling_skipped_tds);
2700 
2701 	return 0;
2702 
2703 err_out:
2704 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2705 		 (unsigned long long) xhci_trb_virt_to_dma(
2706 			 xhci->event_ring->deq_seg,
2707 			 xhci->event_ring->dequeue),
2708 		 lower_32_bits(le64_to_cpu(event->buffer)),
2709 		 upper_32_bits(le64_to_cpu(event->buffer)),
2710 		 le32_to_cpu(event->transfer_len),
2711 		 le32_to_cpu(event->flags));
2712 	return -ENODEV;
2713 }
2714 
2715 /*
2716  * This function handles all OS-owned events on the event ring.  It may drop
2717  * xhci->lock between event processing (e.g. to pass up port status changes).
2718  * Returns >0 for "possibly more events to process" (caller should call again),
2719  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2720  */
2721 static int xhci_handle_event(struct xhci_hcd *xhci)
2722 {
2723 	union xhci_trb *event;
2724 	int update_ptrs = 1;
2725 	int ret;
2726 
2727 	/* Event ring hasn't been allocated yet. */
2728 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2729 		xhci_err(xhci, "ERROR event ring not ready\n");
2730 		return -ENOMEM;
2731 	}
2732 
2733 	event = xhci->event_ring->dequeue;
2734 	/* Does the HC or OS own the TRB? */
2735 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2736 	    xhci->event_ring->cycle_state)
2737 		return 0;
2738 
2739 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2740 
2741 	/*
2742 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2743 	 * speculative reads of the event's flags/data below.
2744 	 */
2745 	rmb();
2746 	/* FIXME: Handle more event types. */
2747 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2748 	case TRB_TYPE(TRB_COMPLETION):
2749 		handle_cmd_completion(xhci, &event->event_cmd);
2750 		break;
2751 	case TRB_TYPE(TRB_PORT_STATUS):
2752 		handle_port_status(xhci, event);
2753 		update_ptrs = 0;
2754 		break;
2755 	case TRB_TYPE(TRB_TRANSFER):
2756 		ret = handle_tx_event(xhci, &event->trans_event);
2757 		if (ret >= 0)
2758 			update_ptrs = 0;
2759 		break;
2760 	case TRB_TYPE(TRB_DEV_NOTE):
2761 		handle_device_notification(xhci, event);
2762 		break;
2763 	default:
2764 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2765 		    TRB_TYPE(48))
2766 			handle_vendor_event(xhci, event);
2767 		else
2768 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2769 				  TRB_FIELD_TO_TYPE(
2770 				  le32_to_cpu(event->event_cmd.flags)));
2771 	}
2772 	/* Any of the above functions may drop and re-acquire the lock, so check
2773 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2774 	 */
2775 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2776 		xhci_dbg(xhci, "xHCI host dying, returning from "
2777 				"event handler.\n");
2778 		return 0;
2779 	}
2780 
2781 	if (update_ptrs)
2782 		/* Update SW event ring dequeue pointer */
2783 		inc_deq(xhci, xhci->event_ring);
2784 
2785 	/* Are there more items on the event ring?  Caller will call us again to
2786 	 * check.
2787 	 */
2788 	return 1;
2789 }
2790 
2791 /*
2792  * Update Event Ring Dequeue Pointer:
2793  * - When all events have finished
2794  * - To avoid "Event Ring Full Error" condition
2795  */
2796 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci,
2797 		union xhci_trb *event_ring_deq)
2798 {
2799 	u64 temp_64;
2800 	dma_addr_t deq;
2801 
2802 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2803 	/* If necessary, update the HW's version of the event ring deq ptr. */
2804 	if (event_ring_deq != xhci->event_ring->dequeue) {
2805 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2806 				xhci->event_ring->dequeue);
2807 		if (deq == 0)
2808 			xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n");
2809 		/*
2810 		 * Per 4.9.4, Software writes to the ERDP register shall
2811 		 * always advance the Event Ring Dequeue Pointer value.
2812 		 */
2813 		if ((temp_64 & (u64) ~ERST_PTR_MASK) ==
2814 				((u64) deq & (u64) ~ERST_PTR_MASK))
2815 			return;
2816 
2817 		/* Update HC event ring dequeue pointer */
2818 		temp_64 &= ERST_PTR_MASK;
2819 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2820 	}
2821 
2822 	/* Clear the event handler busy flag (RW1C) */
2823 	temp_64 |= ERST_EHB;
2824 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2825 }
2826 
2827 /*
2828  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2829  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2830  * indicators of an event TRB error, but we check the status *first* to be safe.
2831  */
2832 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2833 {
2834 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2835 	union xhci_trb *event_ring_deq;
2836 	irqreturn_t ret = IRQ_NONE;
2837 	unsigned long flags;
2838 	u64 temp_64;
2839 	u32 status;
2840 	int event_loop = 0;
2841 
2842 	spin_lock_irqsave(&xhci->lock, flags);
2843 	/* Check if the xHC generated the interrupt, or the irq is shared */
2844 	status = readl(&xhci->op_regs->status);
2845 	if (status == ~(u32)0) {
2846 		xhci_hc_died(xhci);
2847 		ret = IRQ_HANDLED;
2848 		goto out;
2849 	}
2850 
2851 	if (!(status & STS_EINT))
2852 		goto out;
2853 
2854 	if (status & STS_FATAL) {
2855 		xhci_warn(xhci, "WARNING: Host System Error\n");
2856 		xhci_halt(xhci);
2857 		ret = IRQ_HANDLED;
2858 		goto out;
2859 	}
2860 
2861 	/*
2862 	 * Clear the op reg interrupt status first,
2863 	 * so we can receive interrupts from other MSI-X interrupters.
2864 	 * Write 1 to clear the interrupt status.
2865 	 */
2866 	status |= STS_EINT;
2867 	writel(status, &xhci->op_regs->status);
2868 
2869 	if (!hcd->msi_enabled) {
2870 		u32 irq_pending;
2871 		irq_pending = readl(&xhci->ir_set->irq_pending);
2872 		irq_pending |= IMAN_IP;
2873 		writel(irq_pending, &xhci->ir_set->irq_pending);
2874 	}
2875 
2876 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2877 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2878 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2879 				"Shouldn't IRQs be disabled?\n");
2880 		/* Clear the event handler busy flag (RW1C);
2881 		 * the event ring should be empty.
2882 		 */
2883 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2884 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2885 				&xhci->ir_set->erst_dequeue);
2886 		ret = IRQ_HANDLED;
2887 		goto out;
2888 	}
2889 
2890 	event_ring_deq = xhci->event_ring->dequeue;
2891 	/* FIXME this should be a delayed service routine
2892 	 * that clears the EHB.
2893 	 */
2894 	while (xhci_handle_event(xhci) > 0) {
2895 		if (event_loop++ < TRBS_PER_SEGMENT / 2)
2896 			continue;
2897 		xhci_update_erst_dequeue(xhci, event_ring_deq);
2898 		event_loop = 0;
2899 	}
2900 
2901 	xhci_update_erst_dequeue(xhci, event_ring_deq);
2902 	ret = IRQ_HANDLED;
2903 
2904 out:
2905 	spin_unlock_irqrestore(&xhci->lock, flags);
2906 
2907 	return ret;
2908 }
2909 
2910 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2911 {
2912 	return xhci_irq(hcd);
2913 }
2914 
2915 /****		Endpoint Ring Operations	****/
2916 
2917 /*
2918  * Generic function for queueing a TRB on a ring.
2919  * The caller must have checked to make sure there's room on the ring.
2920  *
2921  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2922  *			prepare_transfer()?
2923  */
2924 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2925 		bool more_trbs_coming,
2926 		u32 field1, u32 field2, u32 field3, u32 field4)
2927 {
2928 	struct xhci_generic_trb *trb;
2929 
2930 	trb = &ring->enqueue->generic;
2931 	trb->field[0] = cpu_to_le32(field1);
2932 	trb->field[1] = cpu_to_le32(field2);
2933 	trb->field[2] = cpu_to_le32(field3);
2934 	/* make sure TRB is fully written before giving it to the controller */
2935 	wmb();
2936 	trb->field[3] = cpu_to_le32(field4);
2937 
2938 	trace_xhci_queue_trb(ring, trb);
2939 
2940 	inc_enq(xhci, ring, more_trbs_coming);
2941 }
2942 
2943 /*
2944  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2945  * FIXME allocate segments if the ring is full.
2946  */
2947 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2948 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2949 {
2950 	unsigned int num_trbs_needed;
2951 
2952 	/* Make sure the endpoint has been added to xHC schedule */
2953 	switch (ep_state) {
2954 	case EP_STATE_DISABLED:
2955 		/*
2956 		 * USB core changed config/interfaces without notifying us,
2957 		 * or hardware is reporting the wrong state.
2958 		 */
2959 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2960 		return -ENOENT;
2961 	case EP_STATE_ERROR:
2962 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2963 		/* FIXME event handling code for error needs to clear it */
2964 		/* XXX not sure if this should be -ENOENT or not */
2965 		return -EINVAL;
2966 	case EP_STATE_HALTED:
2967 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2968 		break;
2969 	case EP_STATE_STOPPED:
2970 	case EP_STATE_RUNNING:
2971 		break;
2972 	default:
2973 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2974 		/*
2975 		 * FIXME issue Configure Endpoint command to try to get the HC
2976 		 * back into a known state.
2977 		 */
2978 		return -EINVAL;
2979 	}
2980 
2981 	while (1) {
2982 		if (room_on_ring(xhci, ep_ring, num_trbs))
2983 			break;
2984 
2985 		if (ep_ring == xhci->cmd_ring) {
2986 			xhci_err(xhci, "Do not support expand command ring\n");
2987 			return -ENOMEM;
2988 		}
2989 
2990 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2991 				"ERROR no room on ep ring, try ring expansion");
2992 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2993 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2994 					mem_flags)) {
2995 			xhci_err(xhci, "Ring expansion failed\n");
2996 			return -ENOMEM;
2997 		}
2998 	}
2999 
3000 	while (trb_is_link(ep_ring->enqueue)) {
3001 		/* If we're not dealing with 0.95 hardware or isoc rings
3002 		 * on AMD 0.96 host, clear the chain bit.
3003 		 */
3004 		if (!xhci_link_trb_quirk(xhci) &&
3005 		    !(ep_ring->type == TYPE_ISOC &&
3006 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
3007 			ep_ring->enqueue->link.control &=
3008 				cpu_to_le32(~TRB_CHAIN);
3009 		else
3010 			ep_ring->enqueue->link.control |=
3011 				cpu_to_le32(TRB_CHAIN);
3012 
3013 		wmb();
3014 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
3015 
3016 		/* Toggle the cycle bit after the last ring segment. */
3017 		if (link_trb_toggles_cycle(ep_ring->enqueue))
3018 			ep_ring->cycle_state ^= 1;
3019 
3020 		ep_ring->enq_seg = ep_ring->enq_seg->next;
3021 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
3022 	}
3023 	return 0;
3024 }
3025 
3026 static int prepare_transfer(struct xhci_hcd *xhci,
3027 		struct xhci_virt_device *xdev,
3028 		unsigned int ep_index,
3029 		unsigned int stream_id,
3030 		unsigned int num_trbs,
3031 		struct urb *urb,
3032 		unsigned int td_index,
3033 		gfp_t mem_flags)
3034 {
3035 	int ret;
3036 	struct urb_priv *urb_priv;
3037 	struct xhci_td	*td;
3038 	struct xhci_ring *ep_ring;
3039 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3040 
3041 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3042 	if (!ep_ring) {
3043 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3044 				stream_id);
3045 		return -EINVAL;
3046 	}
3047 
3048 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3049 			   num_trbs, mem_flags);
3050 	if (ret)
3051 		return ret;
3052 
3053 	urb_priv = urb->hcpriv;
3054 	td = &urb_priv->td[td_index];
3055 
3056 	INIT_LIST_HEAD(&td->td_list);
3057 	INIT_LIST_HEAD(&td->cancelled_td_list);
3058 
3059 	if (td_index == 0) {
3060 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3061 		if (unlikely(ret))
3062 			return ret;
3063 	}
3064 
3065 	td->urb = urb;
3066 	/* Add this TD to the tail of the endpoint ring's TD list */
3067 	list_add_tail(&td->td_list, &ep_ring->td_list);
3068 	td->start_seg = ep_ring->enq_seg;
3069 	td->first_trb = ep_ring->enqueue;
3070 
3071 	return 0;
3072 }
3073 
3074 unsigned int count_trbs(u64 addr, u64 len)
3075 {
3076 	unsigned int num_trbs;
3077 
3078 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3079 			TRB_MAX_BUFF_SIZE);
3080 	if (num_trbs == 0)
3081 		num_trbs++;
3082 
3083 	return num_trbs;
3084 }
3085 
3086 static inline unsigned int count_trbs_needed(struct urb *urb)
3087 {
3088 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3089 }
3090 
3091 static unsigned int count_sg_trbs_needed(struct urb *urb)
3092 {
3093 	struct scatterlist *sg;
3094 	unsigned int i, len, full_len, num_trbs = 0;
3095 
3096 	full_len = urb->transfer_buffer_length;
3097 
3098 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3099 		len = sg_dma_len(sg);
3100 		num_trbs += count_trbs(sg_dma_address(sg), len);
3101 		len = min_t(unsigned int, len, full_len);
3102 		full_len -= len;
3103 		if (full_len == 0)
3104 			break;
3105 	}
3106 
3107 	return num_trbs;
3108 }
3109 
3110 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3111 {
3112 	u64 addr, len;
3113 
3114 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3115 	len = urb->iso_frame_desc[i].length;
3116 
3117 	return count_trbs(addr, len);
3118 }
3119 
3120 static void check_trb_math(struct urb *urb, int running_total)
3121 {
3122 	if (unlikely(running_total != urb->transfer_buffer_length))
3123 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3124 				"queued %#x (%d), asked for %#x (%d)\n",
3125 				__func__,
3126 				urb->ep->desc.bEndpointAddress,
3127 				running_total, running_total,
3128 				urb->transfer_buffer_length,
3129 				urb->transfer_buffer_length);
3130 }
3131 
3132 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3133 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3134 		struct xhci_generic_trb *start_trb)
3135 {
3136 	/*
3137 	 * Pass all the TRBs to the hardware at once and make sure this write
3138 	 * isn't reordered.
3139 	 */
3140 	wmb();
3141 	if (start_cycle)
3142 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3143 	else
3144 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3145 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3146 }
3147 
3148 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3149 						struct xhci_ep_ctx *ep_ctx)
3150 {
3151 	int xhci_interval;
3152 	int ep_interval;
3153 
3154 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3155 	ep_interval = urb->interval;
3156 
3157 	/* Convert to microframes */
3158 	if (urb->dev->speed == USB_SPEED_LOW ||
3159 			urb->dev->speed == USB_SPEED_FULL)
3160 		ep_interval *= 8;
3161 
3162 	/* FIXME change this to a warning and a suggestion to use the new API
3163 	 * to set the polling interval (once the API is added).
3164 	 */
3165 	if (xhci_interval != ep_interval) {
3166 		dev_dbg_ratelimited(&urb->dev->dev,
3167 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3168 				ep_interval, ep_interval == 1 ? "" : "s",
3169 				xhci_interval, xhci_interval == 1 ? "" : "s");
3170 		urb->interval = xhci_interval;
3171 		/* Convert back to frames for LS/FS devices */
3172 		if (urb->dev->speed == USB_SPEED_LOW ||
3173 				urb->dev->speed == USB_SPEED_FULL)
3174 			urb->interval /= 8;
3175 	}
3176 }
3177 
3178 /*
3179  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3180  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3181  * (comprised of sg list entries) can take several service intervals to
3182  * transmit.
3183  */
3184 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3185 		struct urb *urb, int slot_id, unsigned int ep_index)
3186 {
3187 	struct xhci_ep_ctx *ep_ctx;
3188 
3189 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3190 	check_interval(xhci, urb, ep_ctx);
3191 
3192 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3193 }
3194 
3195 /*
3196  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3197  * packets remaining in the TD (*not* including this TRB).
3198  *
3199  * Total TD packet count = total_packet_count =
3200  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3201  *
3202  * Packets transferred up to and including this TRB = packets_transferred =
3203  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3204  *
3205  * TD size = total_packet_count - packets_transferred
3206  *
3207  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3208  * including this TRB, right shifted by 10
3209  *
3210  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3211  * This is taken care of in the TRB_TD_SIZE() macro
3212  *
3213  * The last TRB in a TD must have the TD size set to zero.
3214  */
3215 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3216 			      int trb_buff_len, unsigned int td_total_len,
3217 			      struct urb *urb, bool more_trbs_coming)
3218 {
3219 	u32 maxp, total_packet_count;
3220 
3221 	/* MTK xHCI 0.96 contains some features from 1.0 */
3222 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3223 		return ((td_total_len - transferred) >> 10);
3224 
3225 	/* One TRB with a zero-length data packet. */
3226 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3227 	    trb_buff_len == td_total_len)
3228 		return 0;
3229 
3230 	/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3231 	if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3232 		trb_buff_len = 0;
3233 
3234 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3235 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3236 
3237 	/* Queueing functions don't count the current TRB into transferred */
3238 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3239 }
3240 
3241 
3242 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3243 			 u32 *trb_buff_len, struct xhci_segment *seg)
3244 {
3245 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3246 	unsigned int unalign;
3247 	unsigned int max_pkt;
3248 	u32 new_buff_len;
3249 	size_t len;
3250 
3251 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3252 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3253 
3254 	/* we got lucky, last normal TRB data on segment is packet aligned */
3255 	if (unalign == 0)
3256 		return 0;
3257 
3258 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3259 		 unalign, *trb_buff_len);
3260 
3261 	/* is the last nornal TRB alignable by splitting it */
3262 	if (*trb_buff_len > unalign) {
3263 		*trb_buff_len -= unalign;
3264 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3265 		return 0;
3266 	}
3267 
3268 	/*
3269 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3270 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3271 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3272 	 */
3273 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3274 
3275 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3276 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3277 
3278 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3279 	if (usb_urb_dir_out(urb)) {
3280 		len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3281 				   seg->bounce_buf, new_buff_len, enqd_len);
3282 		if (len != new_buff_len)
3283 			xhci_warn(xhci,
3284 				"WARN Wrong bounce buffer write length: %zu != %d\n",
3285 				len, new_buff_len);
3286 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3287 						 max_pkt, DMA_TO_DEVICE);
3288 	} else {
3289 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3290 						 max_pkt, DMA_FROM_DEVICE);
3291 	}
3292 
3293 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3294 		/* try without aligning. Some host controllers survive */
3295 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3296 		return 0;
3297 	}
3298 	*trb_buff_len = new_buff_len;
3299 	seg->bounce_len = new_buff_len;
3300 	seg->bounce_offs = enqd_len;
3301 
3302 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3303 
3304 	return 1;
3305 }
3306 
3307 /* This is very similar to what ehci-q.c qtd_fill() does */
3308 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3309 		struct urb *urb, int slot_id, unsigned int ep_index)
3310 {
3311 	struct xhci_ring *ring;
3312 	struct urb_priv *urb_priv;
3313 	struct xhci_td *td;
3314 	struct xhci_generic_trb *start_trb;
3315 	struct scatterlist *sg = NULL;
3316 	bool more_trbs_coming = true;
3317 	bool need_zero_pkt = false;
3318 	bool first_trb = true;
3319 	unsigned int num_trbs;
3320 	unsigned int start_cycle, num_sgs = 0;
3321 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3322 	int sent_len, ret;
3323 	u32 field, length_field, remainder;
3324 	u64 addr, send_addr;
3325 
3326 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3327 	if (!ring)
3328 		return -EINVAL;
3329 
3330 	full_len = urb->transfer_buffer_length;
3331 	/* If we have scatter/gather list, we use it. */
3332 	if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
3333 		num_sgs = urb->num_mapped_sgs;
3334 		sg = urb->sg;
3335 		addr = (u64) sg_dma_address(sg);
3336 		block_len = sg_dma_len(sg);
3337 		num_trbs = count_sg_trbs_needed(urb);
3338 	} else {
3339 		num_trbs = count_trbs_needed(urb);
3340 		addr = (u64) urb->transfer_dma;
3341 		block_len = full_len;
3342 	}
3343 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3344 			ep_index, urb->stream_id,
3345 			num_trbs, urb, 0, mem_flags);
3346 	if (unlikely(ret < 0))
3347 		return ret;
3348 
3349 	urb_priv = urb->hcpriv;
3350 
3351 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3352 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3353 		need_zero_pkt = true;
3354 
3355 	td = &urb_priv->td[0];
3356 
3357 	/*
3358 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3359 	 * until we've finished creating all the other TRBs.  The ring's cycle
3360 	 * state may change as we enqueue the other TRBs, so save it too.
3361 	 */
3362 	start_trb = &ring->enqueue->generic;
3363 	start_cycle = ring->cycle_state;
3364 	send_addr = addr;
3365 
3366 	/* Queue the TRBs, even if they are zero-length */
3367 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3368 			enqd_len += trb_buff_len) {
3369 		field = TRB_TYPE(TRB_NORMAL);
3370 
3371 		/* TRB buffer should not cross 64KB boundaries */
3372 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3373 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3374 
3375 		if (enqd_len + trb_buff_len > full_len)
3376 			trb_buff_len = full_len - enqd_len;
3377 
3378 		/* Don't change the cycle bit of the first TRB until later */
3379 		if (first_trb) {
3380 			first_trb = false;
3381 			if (start_cycle == 0)
3382 				field |= TRB_CYCLE;
3383 		} else
3384 			field |= ring->cycle_state;
3385 
3386 		/* Chain all the TRBs together; clear the chain bit in the last
3387 		 * TRB to indicate it's the last TRB in the chain.
3388 		 */
3389 		if (enqd_len + trb_buff_len < full_len) {
3390 			field |= TRB_CHAIN;
3391 			if (trb_is_link(ring->enqueue + 1)) {
3392 				if (xhci_align_td(xhci, urb, enqd_len,
3393 						  &trb_buff_len,
3394 						  ring->enq_seg)) {
3395 					send_addr = ring->enq_seg->bounce_dma;
3396 					/* assuming TD won't span 2 segs */
3397 					td->bounce_seg = ring->enq_seg;
3398 				}
3399 			}
3400 		}
3401 		if (enqd_len + trb_buff_len >= full_len) {
3402 			field &= ~TRB_CHAIN;
3403 			field |= TRB_IOC;
3404 			more_trbs_coming = false;
3405 			td->last_trb = ring->enqueue;
3406 
3407 			if (xhci_urb_suitable_for_idt(urb)) {
3408 				memcpy(&send_addr, urb->transfer_buffer,
3409 				       trb_buff_len);
3410 				le64_to_cpus(&send_addr);
3411 				field |= TRB_IDT;
3412 			}
3413 		}
3414 
3415 		/* Only set interrupt on short packet for IN endpoints */
3416 		if (usb_urb_dir_in(urb))
3417 			field |= TRB_ISP;
3418 
3419 		/* Set the TRB length, TD size, and interrupter fields. */
3420 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3421 					      full_len, urb, more_trbs_coming);
3422 
3423 		length_field = TRB_LEN(trb_buff_len) |
3424 			TRB_TD_SIZE(remainder) |
3425 			TRB_INTR_TARGET(0);
3426 
3427 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3428 				lower_32_bits(send_addr),
3429 				upper_32_bits(send_addr),
3430 				length_field,
3431 				field);
3432 
3433 		addr += trb_buff_len;
3434 		sent_len = trb_buff_len;
3435 
3436 		while (sg && sent_len >= block_len) {
3437 			/* New sg entry */
3438 			--num_sgs;
3439 			sent_len -= block_len;
3440 			sg = sg_next(sg);
3441 			if (num_sgs != 0 && sg) {
3442 				block_len = sg_dma_len(sg);
3443 				addr = (u64) sg_dma_address(sg);
3444 				addr += sent_len;
3445 			}
3446 		}
3447 		block_len -= sent_len;
3448 		send_addr = addr;
3449 	}
3450 
3451 	if (need_zero_pkt) {
3452 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3453 				       ep_index, urb->stream_id,
3454 				       1, urb, 1, mem_flags);
3455 		urb_priv->td[1].last_trb = ring->enqueue;
3456 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3457 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3458 	}
3459 
3460 	check_trb_math(urb, enqd_len);
3461 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3462 			start_cycle, start_trb);
3463 	return 0;
3464 }
3465 
3466 /* Caller must have locked xhci->lock */
3467 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3468 		struct urb *urb, int slot_id, unsigned int ep_index)
3469 {
3470 	struct xhci_ring *ep_ring;
3471 	int num_trbs;
3472 	int ret;
3473 	struct usb_ctrlrequest *setup;
3474 	struct xhci_generic_trb *start_trb;
3475 	int start_cycle;
3476 	u32 field;
3477 	struct urb_priv *urb_priv;
3478 	struct xhci_td *td;
3479 
3480 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3481 	if (!ep_ring)
3482 		return -EINVAL;
3483 
3484 	/*
3485 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3486 	 * DMA address.
3487 	 */
3488 	if (!urb->setup_packet)
3489 		return -EINVAL;
3490 
3491 	/* 1 TRB for setup, 1 for status */
3492 	num_trbs = 2;
3493 	/*
3494 	 * Don't need to check if we need additional event data and normal TRBs,
3495 	 * since data in control transfers will never get bigger than 16MB
3496 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3497 	 */
3498 	if (urb->transfer_buffer_length > 0)
3499 		num_trbs++;
3500 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3501 			ep_index, urb->stream_id,
3502 			num_trbs, urb, 0, mem_flags);
3503 	if (ret < 0)
3504 		return ret;
3505 
3506 	urb_priv = urb->hcpriv;
3507 	td = &urb_priv->td[0];
3508 
3509 	/*
3510 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3511 	 * until we've finished creating all the other TRBs.  The ring's cycle
3512 	 * state may change as we enqueue the other TRBs, so save it too.
3513 	 */
3514 	start_trb = &ep_ring->enqueue->generic;
3515 	start_cycle = ep_ring->cycle_state;
3516 
3517 	/* Queue setup TRB - see section 6.4.1.2.1 */
3518 	/* FIXME better way to translate setup_packet into two u32 fields? */
3519 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3520 	field = 0;
3521 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3522 	if (start_cycle == 0)
3523 		field |= 0x1;
3524 
3525 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3526 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3527 		if (urb->transfer_buffer_length > 0) {
3528 			if (setup->bRequestType & USB_DIR_IN)
3529 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3530 			else
3531 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3532 		}
3533 	}
3534 
3535 	queue_trb(xhci, ep_ring, true,
3536 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3537 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3538 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3539 		  /* Immediate data in pointer */
3540 		  field);
3541 
3542 	/* If there's data, queue data TRBs */
3543 	/* Only set interrupt on short packet for IN endpoints */
3544 	if (usb_urb_dir_in(urb))
3545 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3546 	else
3547 		field = TRB_TYPE(TRB_DATA);
3548 
3549 	if (urb->transfer_buffer_length > 0) {
3550 		u32 length_field, remainder;
3551 		u64 addr;
3552 
3553 		if (xhci_urb_suitable_for_idt(urb)) {
3554 			memcpy(&addr, urb->transfer_buffer,
3555 			       urb->transfer_buffer_length);
3556 			le64_to_cpus(&addr);
3557 			field |= TRB_IDT;
3558 		} else {
3559 			addr = (u64) urb->transfer_dma;
3560 		}
3561 
3562 		remainder = xhci_td_remainder(xhci, 0,
3563 				urb->transfer_buffer_length,
3564 				urb->transfer_buffer_length,
3565 				urb, 1);
3566 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3567 				TRB_TD_SIZE(remainder) |
3568 				TRB_INTR_TARGET(0);
3569 		if (setup->bRequestType & USB_DIR_IN)
3570 			field |= TRB_DIR_IN;
3571 		queue_trb(xhci, ep_ring, true,
3572 				lower_32_bits(addr),
3573 				upper_32_bits(addr),
3574 				length_field,
3575 				field | ep_ring->cycle_state);
3576 	}
3577 
3578 	/* Save the DMA address of the last TRB in the TD */
3579 	td->last_trb = ep_ring->enqueue;
3580 
3581 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3582 	/* If the device sent data, the status stage is an OUT transfer */
3583 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3584 		field = 0;
3585 	else
3586 		field = TRB_DIR_IN;
3587 	queue_trb(xhci, ep_ring, false,
3588 			0,
3589 			0,
3590 			TRB_INTR_TARGET(0),
3591 			/* Event on completion */
3592 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3593 
3594 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3595 			start_cycle, start_trb);
3596 	return 0;
3597 }
3598 
3599 /*
3600  * The transfer burst count field of the isochronous TRB defines the number of
3601  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3602  * devices can burst up to bMaxBurst number of packets per service interval.
3603  * This field is zero based, meaning a value of zero in the field means one
3604  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3605  * zero.  Only xHCI 1.0 host controllers support this field.
3606  */
3607 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3608 		struct urb *urb, unsigned int total_packet_count)
3609 {
3610 	unsigned int max_burst;
3611 
3612 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3613 		return 0;
3614 
3615 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3616 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3617 }
3618 
3619 /*
3620  * Returns the number of packets in the last "burst" of packets.  This field is
3621  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3622  * the last burst packet count is equal to the total number of packets in the
3623  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3624  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3625  * contain 1 to (bMaxBurst + 1) packets.
3626  */
3627 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3628 		struct urb *urb, unsigned int total_packet_count)
3629 {
3630 	unsigned int max_burst;
3631 	unsigned int residue;
3632 
3633 	if (xhci->hci_version < 0x100)
3634 		return 0;
3635 
3636 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3637 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3638 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3639 		residue = total_packet_count % (max_burst + 1);
3640 		/* If residue is zero, the last burst contains (max_burst + 1)
3641 		 * number of packets, but the TLBPC field is zero-based.
3642 		 */
3643 		if (residue == 0)
3644 			return max_burst;
3645 		return residue - 1;
3646 	}
3647 	if (total_packet_count == 0)
3648 		return 0;
3649 	return total_packet_count - 1;
3650 }
3651 
3652 /*
3653  * Calculates Frame ID field of the isochronous TRB identifies the
3654  * target frame that the Interval associated with this Isochronous
3655  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3656  *
3657  * Returns actual frame id on success, negative value on error.
3658  */
3659 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3660 		struct urb *urb, int index)
3661 {
3662 	int start_frame, ist, ret = 0;
3663 	int start_frame_id, end_frame_id, current_frame_id;
3664 
3665 	if (urb->dev->speed == USB_SPEED_LOW ||
3666 			urb->dev->speed == USB_SPEED_FULL)
3667 		start_frame = urb->start_frame + index * urb->interval;
3668 	else
3669 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3670 
3671 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3672 	 *
3673 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3674 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3675 	 * be executed.
3676 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3677 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3678 	 */
3679 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3680 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3681 		ist <<= 3;
3682 
3683 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3684 	 * is less than the Start Frame ID or greater than the End Frame ID,
3685 	 * where:
3686 	 *
3687 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3688 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3689 	 *
3690 	 * Both the End Frame ID and Start Frame ID values are calculated
3691 	 * in microframes. When software determines the valid Frame ID value;
3692 	 * The End Frame ID value should be rounded down to the nearest Frame
3693 	 * boundary, and the Start Frame ID value should be rounded up to the
3694 	 * nearest Frame boundary.
3695 	 */
3696 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3697 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3698 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3699 
3700 	start_frame &= 0x7ff;
3701 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3702 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3703 
3704 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3705 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3706 		 start_frame_id, end_frame_id, start_frame);
3707 
3708 	if (start_frame_id < end_frame_id) {
3709 		if (start_frame > end_frame_id ||
3710 				start_frame < start_frame_id)
3711 			ret = -EINVAL;
3712 	} else if (start_frame_id > end_frame_id) {
3713 		if ((start_frame > end_frame_id &&
3714 				start_frame < start_frame_id))
3715 			ret = -EINVAL;
3716 	} else {
3717 			ret = -EINVAL;
3718 	}
3719 
3720 	if (index == 0) {
3721 		if (ret == -EINVAL || start_frame == start_frame_id) {
3722 			start_frame = start_frame_id + 1;
3723 			if (urb->dev->speed == USB_SPEED_LOW ||
3724 					urb->dev->speed == USB_SPEED_FULL)
3725 				urb->start_frame = start_frame;
3726 			else
3727 				urb->start_frame = start_frame << 3;
3728 			ret = 0;
3729 		}
3730 	}
3731 
3732 	if (ret) {
3733 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3734 				start_frame, current_frame_id, index,
3735 				start_frame_id, end_frame_id);
3736 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3737 		return ret;
3738 	}
3739 
3740 	return start_frame;
3741 }
3742 
3743 /* Check if we should generate event interrupt for a TD in an isoc URB */
3744 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i)
3745 {
3746 	if (xhci->hci_version < 0x100)
3747 		return false;
3748 	/* always generate an event interrupt for the last TD */
3749 	if (i == num_tds - 1)
3750 		return false;
3751 	/*
3752 	 * If AVOID_BEI is set the host handles full event rings poorly,
3753 	 * generate an event at least every 8th TD to clear the event ring
3754 	 */
3755 	if (i && xhci->quirks & XHCI_AVOID_BEI)
3756 		return !!(i % 8);
3757 
3758 	return true;
3759 }
3760 
3761 /* This is for isoc transfer */
3762 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3763 		struct urb *urb, int slot_id, unsigned int ep_index)
3764 {
3765 	struct xhci_ring *ep_ring;
3766 	struct urb_priv *urb_priv;
3767 	struct xhci_td *td;
3768 	int num_tds, trbs_per_td;
3769 	struct xhci_generic_trb *start_trb;
3770 	bool first_trb;
3771 	int start_cycle;
3772 	u32 field, length_field;
3773 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3774 	u64 start_addr, addr;
3775 	int i, j;
3776 	bool more_trbs_coming;
3777 	struct xhci_virt_ep *xep;
3778 	int frame_id;
3779 
3780 	xep = &xhci->devs[slot_id]->eps[ep_index];
3781 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3782 
3783 	num_tds = urb->number_of_packets;
3784 	if (num_tds < 1) {
3785 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3786 		return -EINVAL;
3787 	}
3788 	start_addr = (u64) urb->transfer_dma;
3789 	start_trb = &ep_ring->enqueue->generic;
3790 	start_cycle = ep_ring->cycle_state;
3791 
3792 	urb_priv = urb->hcpriv;
3793 	/* Queue the TRBs for each TD, even if they are zero-length */
3794 	for (i = 0; i < num_tds; i++) {
3795 		unsigned int total_pkt_count, max_pkt;
3796 		unsigned int burst_count, last_burst_pkt_count;
3797 		u32 sia_frame_id;
3798 
3799 		first_trb = true;
3800 		running_total = 0;
3801 		addr = start_addr + urb->iso_frame_desc[i].offset;
3802 		td_len = urb->iso_frame_desc[i].length;
3803 		td_remain_len = td_len;
3804 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3805 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3806 
3807 		/* A zero-length transfer still involves at least one packet. */
3808 		if (total_pkt_count == 0)
3809 			total_pkt_count++;
3810 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3811 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3812 							urb, total_pkt_count);
3813 
3814 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3815 
3816 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3817 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3818 		if (ret < 0) {
3819 			if (i == 0)
3820 				return ret;
3821 			goto cleanup;
3822 		}
3823 		td = &urb_priv->td[i];
3824 
3825 		/* use SIA as default, if frame id is used overwrite it */
3826 		sia_frame_id = TRB_SIA;
3827 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3828 		    HCC_CFC(xhci->hcc_params)) {
3829 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3830 			if (frame_id >= 0)
3831 				sia_frame_id = TRB_FRAME_ID(frame_id);
3832 		}
3833 		/*
3834 		 * Set isoc specific data for the first TRB in a TD.
3835 		 * Prevent HW from getting the TRBs by keeping the cycle state
3836 		 * inverted in the first TDs isoc TRB.
3837 		 */
3838 		field = TRB_TYPE(TRB_ISOC) |
3839 			TRB_TLBPC(last_burst_pkt_count) |
3840 			sia_frame_id |
3841 			(i ? ep_ring->cycle_state : !start_cycle);
3842 
3843 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3844 		if (!xep->use_extended_tbc)
3845 			field |= TRB_TBC(burst_count);
3846 
3847 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3848 		for (j = 0; j < trbs_per_td; j++) {
3849 			u32 remainder = 0;
3850 
3851 			/* only first TRB is isoc, overwrite otherwise */
3852 			if (!first_trb)
3853 				field = TRB_TYPE(TRB_NORMAL) |
3854 					ep_ring->cycle_state;
3855 
3856 			/* Only set interrupt on short packet for IN EPs */
3857 			if (usb_urb_dir_in(urb))
3858 				field |= TRB_ISP;
3859 
3860 			/* Set the chain bit for all except the last TRB  */
3861 			if (j < trbs_per_td - 1) {
3862 				more_trbs_coming = true;
3863 				field |= TRB_CHAIN;
3864 			} else {
3865 				more_trbs_coming = false;
3866 				td->last_trb = ep_ring->enqueue;
3867 				field |= TRB_IOC;
3868 				if (trb_block_event_intr(xhci, num_tds, i))
3869 					field |= TRB_BEI;
3870 			}
3871 			/* Calculate TRB length */
3872 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3873 			if (trb_buff_len > td_remain_len)
3874 				trb_buff_len = td_remain_len;
3875 
3876 			/* Set the TRB length, TD size, & interrupter fields. */
3877 			remainder = xhci_td_remainder(xhci, running_total,
3878 						   trb_buff_len, td_len,
3879 						   urb, more_trbs_coming);
3880 
3881 			length_field = TRB_LEN(trb_buff_len) |
3882 				TRB_INTR_TARGET(0);
3883 
3884 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3885 			if (first_trb && xep->use_extended_tbc)
3886 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3887 			else
3888 				length_field |= TRB_TD_SIZE(remainder);
3889 			first_trb = false;
3890 
3891 			queue_trb(xhci, ep_ring, more_trbs_coming,
3892 				lower_32_bits(addr),
3893 				upper_32_bits(addr),
3894 				length_field,
3895 				field);
3896 			running_total += trb_buff_len;
3897 
3898 			addr += trb_buff_len;
3899 			td_remain_len -= trb_buff_len;
3900 		}
3901 
3902 		/* Check TD length */
3903 		if (running_total != td_len) {
3904 			xhci_err(xhci, "ISOC TD length unmatch\n");
3905 			ret = -EINVAL;
3906 			goto cleanup;
3907 		}
3908 	}
3909 
3910 	/* store the next frame id */
3911 	if (HCC_CFC(xhci->hcc_params))
3912 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3913 
3914 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3915 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3916 			usb_amd_quirk_pll_disable();
3917 	}
3918 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3919 
3920 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3921 			start_cycle, start_trb);
3922 	return 0;
3923 cleanup:
3924 	/* Clean up a partially enqueued isoc transfer. */
3925 
3926 	for (i--; i >= 0; i--)
3927 		list_del_init(&urb_priv->td[i].td_list);
3928 
3929 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3930 	 * into No-ops with a software-owned cycle bit. That way the hardware
3931 	 * won't accidentally start executing bogus TDs when we partially
3932 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3933 	 */
3934 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3935 	/* Every TRB except the first & last will have its cycle bit flipped. */
3936 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3937 
3938 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3939 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3940 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3941 	ep_ring->cycle_state = start_cycle;
3942 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3943 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3944 	return ret;
3945 }
3946 
3947 /*
3948  * Check transfer ring to guarantee there is enough room for the urb.
3949  * Update ISO URB start_frame and interval.
3950  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3951  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3952  * Contiguous Frame ID is not supported by HC.
3953  */
3954 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3955 		struct urb *urb, int slot_id, unsigned int ep_index)
3956 {
3957 	struct xhci_virt_device *xdev;
3958 	struct xhci_ring *ep_ring;
3959 	struct xhci_ep_ctx *ep_ctx;
3960 	int start_frame;
3961 	int num_tds, num_trbs, i;
3962 	int ret;
3963 	struct xhci_virt_ep *xep;
3964 	int ist;
3965 
3966 	xdev = xhci->devs[slot_id];
3967 	xep = &xhci->devs[slot_id]->eps[ep_index];
3968 	ep_ring = xdev->eps[ep_index].ring;
3969 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3970 
3971 	num_trbs = 0;
3972 	num_tds = urb->number_of_packets;
3973 	for (i = 0; i < num_tds; i++)
3974 		num_trbs += count_isoc_trbs_needed(urb, i);
3975 
3976 	/* Check the ring to guarantee there is enough room for the whole urb.
3977 	 * Do not insert any td of the urb to the ring if the check failed.
3978 	 */
3979 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3980 			   num_trbs, mem_flags);
3981 	if (ret)
3982 		return ret;
3983 
3984 	/*
3985 	 * Check interval value. This should be done before we start to
3986 	 * calculate the start frame value.
3987 	 */
3988 	check_interval(xhci, urb, ep_ctx);
3989 
3990 	/* Calculate the start frame and put it in urb->start_frame. */
3991 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3992 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3993 			urb->start_frame = xep->next_frame_id;
3994 			goto skip_start_over;
3995 		}
3996 	}
3997 
3998 	start_frame = readl(&xhci->run_regs->microframe_index);
3999 	start_frame &= 0x3fff;
4000 	/*
4001 	 * Round up to the next frame and consider the time before trb really
4002 	 * gets scheduled by hardare.
4003 	 */
4004 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
4005 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
4006 		ist <<= 3;
4007 	start_frame += ist + XHCI_CFC_DELAY;
4008 	start_frame = roundup(start_frame, 8);
4009 
4010 	/*
4011 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
4012 	 * is greate than 8 microframes.
4013 	 */
4014 	if (urb->dev->speed == USB_SPEED_LOW ||
4015 			urb->dev->speed == USB_SPEED_FULL) {
4016 		start_frame = roundup(start_frame, urb->interval << 3);
4017 		urb->start_frame = start_frame >> 3;
4018 	} else {
4019 		start_frame = roundup(start_frame, urb->interval);
4020 		urb->start_frame = start_frame;
4021 	}
4022 
4023 skip_start_over:
4024 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
4025 
4026 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4027 }
4028 
4029 /****		Command Ring Operations		****/
4030 
4031 /* Generic function for queueing a command TRB on the command ring.
4032  * Check to make sure there's room on the command ring for one command TRB.
4033  * Also check that there's room reserved for commands that must not fail.
4034  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4035  * then only check for the number of reserved spots.
4036  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4037  * because the command event handler may want to resubmit a failed command.
4038  */
4039 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4040 			 u32 field1, u32 field2,
4041 			 u32 field3, u32 field4, bool command_must_succeed)
4042 {
4043 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4044 	int ret;
4045 
4046 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4047 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
4048 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4049 		return -ESHUTDOWN;
4050 	}
4051 
4052 	if (!command_must_succeed)
4053 		reserved_trbs++;
4054 
4055 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4056 			reserved_trbs, GFP_ATOMIC);
4057 	if (ret < 0) {
4058 		xhci_err(xhci, "ERR: No room for command on command ring\n");
4059 		if (command_must_succeed)
4060 			xhci_err(xhci, "ERR: Reserved TRB counting for "
4061 					"unfailable commands failed.\n");
4062 		return ret;
4063 	}
4064 
4065 	cmd->command_trb = xhci->cmd_ring->enqueue;
4066 
4067 	/* if there are no other commands queued we start the timeout timer */
4068 	if (list_empty(&xhci->cmd_list)) {
4069 		xhci->current_cmd = cmd;
4070 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
4071 	}
4072 
4073 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4074 
4075 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4076 			field4 | xhci->cmd_ring->cycle_state);
4077 	return 0;
4078 }
4079 
4080 /* Queue a slot enable or disable request on the command ring */
4081 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4082 		u32 trb_type, u32 slot_id)
4083 {
4084 	return queue_command(xhci, cmd, 0, 0, 0,
4085 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4086 }
4087 
4088 /* Queue an address device command TRB */
4089 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4090 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4091 {
4092 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4093 			upper_32_bits(in_ctx_ptr), 0,
4094 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4095 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4096 }
4097 
4098 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4099 		u32 field1, u32 field2, u32 field3, u32 field4)
4100 {
4101 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4102 }
4103 
4104 /* Queue a reset device command TRB */
4105 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4106 		u32 slot_id)
4107 {
4108 	return queue_command(xhci, cmd, 0, 0, 0,
4109 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4110 			false);
4111 }
4112 
4113 /* Queue a configure endpoint command TRB */
4114 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4115 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4116 		u32 slot_id, bool command_must_succeed)
4117 {
4118 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4119 			upper_32_bits(in_ctx_ptr), 0,
4120 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4121 			command_must_succeed);
4122 }
4123 
4124 /* Queue an evaluate context command TRB */
4125 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4126 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4127 {
4128 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4129 			upper_32_bits(in_ctx_ptr), 0,
4130 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4131 			command_must_succeed);
4132 }
4133 
4134 /*
4135  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4136  * activity on an endpoint that is about to be suspended.
4137  */
4138 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4139 			     int slot_id, unsigned int ep_index, int suspend)
4140 {
4141 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4142 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4143 	u32 type = TRB_TYPE(TRB_STOP_RING);
4144 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4145 
4146 	return queue_command(xhci, cmd, 0, 0, 0,
4147 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
4148 }
4149 
4150 /* Set Transfer Ring Dequeue Pointer command */
4151 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4152 		unsigned int slot_id, unsigned int ep_index,
4153 		struct xhci_dequeue_state *deq_state)
4154 {
4155 	dma_addr_t addr;
4156 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4157 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4158 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4159 	u32 trb_sct = 0;
4160 	u32 type = TRB_TYPE(TRB_SET_DEQ);
4161 	struct xhci_virt_ep *ep;
4162 	struct xhci_command *cmd;
4163 	int ret;
4164 
4165 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4166 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4167 		deq_state->new_deq_seg,
4168 		(unsigned long long)deq_state->new_deq_seg->dma,
4169 		deq_state->new_deq_ptr,
4170 		(unsigned long long)xhci_trb_virt_to_dma(
4171 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
4172 		deq_state->new_cycle_state);
4173 
4174 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4175 				    deq_state->new_deq_ptr);
4176 	if (addr == 0) {
4177 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4178 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4179 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
4180 		return;
4181 	}
4182 	ep = &xhci->devs[slot_id]->eps[ep_index];
4183 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4184 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4185 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4186 		return;
4187 	}
4188 
4189 	/* This function gets called from contexts where it cannot sleep */
4190 	cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
4191 	if (!cmd)
4192 		return;
4193 
4194 	ep->queued_deq_seg = deq_state->new_deq_seg;
4195 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4196 	if (deq_state->stream_id)
4197 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4198 	ret = queue_command(xhci, cmd,
4199 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4200 		upper_32_bits(addr), trb_stream_id,
4201 		trb_slot_id | trb_ep_index | type, false);
4202 	if (ret < 0) {
4203 		xhci_free_command(xhci, cmd);
4204 		return;
4205 	}
4206 
4207 	/* Stop the TD queueing code from ringing the doorbell until
4208 	 * this command completes.  The HC won't set the dequeue pointer
4209 	 * if the ring is running, and ringing the doorbell starts the
4210 	 * ring running.
4211 	 */
4212 	ep->ep_state |= SET_DEQ_PENDING;
4213 }
4214 
4215 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4216 			int slot_id, unsigned int ep_index,
4217 			enum xhci_ep_reset_type reset_type)
4218 {
4219 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4220 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4221 	u32 type = TRB_TYPE(TRB_RESET_EP);
4222 
4223 	if (reset_type == EP_SOFT_RESET)
4224 		type |= TRB_TSP;
4225 
4226 	return queue_command(xhci, cmd, 0, 0, 0,
4227 			trb_slot_id | trb_ep_index | type, false);
4228 }
4229