1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring) 127 { 128 /* Enqueue pointer can be left pointing to the link TRB, 129 * we must handle that 130 */ 131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control)) 132 return ring->enq_seg->next->trbs; 133 return ring->enqueue; 134 } 135 136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 137 * TRB is in a new segment. This does not skip over link TRBs, and it does not 138 * effect the ring dequeue or enqueue pointers. 139 */ 140 static void next_trb(struct xhci_hcd *xhci, 141 struct xhci_ring *ring, 142 struct xhci_segment **seg, 143 union xhci_trb **trb) 144 { 145 if (last_trb(xhci, ring, *seg, *trb)) { 146 *seg = (*seg)->next; 147 *trb = ((*seg)->trbs); 148 } else { 149 (*trb)++; 150 } 151 } 152 153 /* 154 * See Cycle bit rules. SW is the consumer for the event ring only. 155 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 156 */ 157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 158 { 159 ring->deq_updates++; 160 161 /* 162 * If this is not event ring, and the dequeue pointer 163 * is not on a link TRB, there is one more usable TRB 164 */ 165 if (ring->type != TYPE_EVENT && 166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 167 ring->num_trbs_free++; 168 169 do { 170 /* 171 * Update the dequeue pointer further if that was a link TRB or 172 * we're at the end of an event ring segment (which doesn't have 173 * link TRBS) 174 */ 175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 176 if (ring->type == TYPE_EVENT && 177 last_trb_on_last_seg(xhci, ring, 178 ring->deq_seg, ring->dequeue)) { 179 ring->cycle_state ^= 1; 180 } 181 ring->deq_seg = ring->deq_seg->next; 182 ring->dequeue = ring->deq_seg->trbs; 183 } else { 184 ring->dequeue++; 185 } 186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 187 } 188 189 /* 190 * See Cycle bit rules. SW is the consumer for the event ring only. 191 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 192 * 193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 194 * chain bit is set), then set the chain bit in all the following link TRBs. 195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 196 * have their chain bit cleared (so that each Link TRB is a separate TD). 197 * 198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 199 * set, but other sections talk about dealing with the chain bit set. This was 200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 201 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 202 * 203 * @more_trbs_coming: Will you enqueue more TRBs before calling 204 * prepare_transfer()? 205 */ 206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 207 bool more_trbs_coming) 208 { 209 u32 chain; 210 union xhci_trb *next; 211 212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 213 /* If this is not event ring, there is one less usable TRB */ 214 if (ring->type != TYPE_EVENT && 215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 216 ring->num_trbs_free--; 217 next = ++(ring->enqueue); 218 219 ring->enq_updates++; 220 /* Update the dequeue pointer further if that was a link TRB or we're at 221 * the end of an event ring segment (which doesn't have link TRBS) 222 */ 223 while (last_trb(xhci, ring, ring->enq_seg, next)) { 224 if (ring->type != TYPE_EVENT) { 225 /* 226 * If the caller doesn't plan on enqueueing more 227 * TDs before ringing the doorbell, then we 228 * don't want to give the link TRB to the 229 * hardware just yet. We'll give the link TRB 230 * back in prepare_ring() just before we enqueue 231 * the TD at the top of the ring. 232 */ 233 if (!chain && !more_trbs_coming) 234 break; 235 236 /* If we're not dealing with 0.95 hardware or 237 * isoc rings on AMD 0.96 host, 238 * carry over the chain bit of the previous TRB 239 * (which may mean the chain bit is cleared). 240 */ 241 if (!(ring->type == TYPE_ISOC && 242 (xhci->quirks & XHCI_AMD_0x96_HOST)) 243 && !xhci_link_trb_quirk(xhci)) { 244 next->link.control &= 245 cpu_to_le32(~TRB_CHAIN); 246 next->link.control |= 247 cpu_to_le32(chain); 248 } 249 /* Give this link TRB to the hardware */ 250 wmb(); 251 next->link.control ^= cpu_to_le32(TRB_CYCLE); 252 253 /* Toggle the cycle bit after the last ring segment. */ 254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 255 ring->cycle_state = (ring->cycle_state ? 0 : 1); 256 } 257 } 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 } 263 264 /* 265 * Check to see if there's room to enqueue num_trbs on the ring and make sure 266 * enqueue pointer will not advance into dequeue segment. See rules above. 267 */ 268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 269 unsigned int num_trbs) 270 { 271 int num_trbs_in_deq_seg; 272 273 if (ring->num_trbs_free < num_trbs) 274 return 0; 275 276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* Ring the host controller doorbell after placing a command on the ring */ 286 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 287 { 288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 289 return; 290 291 xhci_dbg(xhci, "// Ding dong!\n"); 292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 293 /* Flush PCI posted writes */ 294 readl(&xhci->dba->doorbell[0]); 295 } 296 297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 298 { 299 u64 temp_64; 300 int ret; 301 302 xhci_dbg(xhci, "Abort command ring\n"); 303 304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 305 xhci_dbg(xhci, "The command ring isn't running, " 306 "Have the command ring been stopped?\n"); 307 return 0; 308 } 309 310 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 311 if (!(temp_64 & CMD_RING_RUNNING)) { 312 xhci_dbg(xhci, "Command ring had been stopped\n"); 313 return 0; 314 } 315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 316 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 317 &xhci->op_regs->cmd_ring); 318 319 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 320 * time the completion od all xHCI commands, including 321 * the Command Abort operation. If software doesn't see 322 * CRR negated in a timely manner (e.g. longer than 5 323 * seconds), then it should assume that the there are 324 * larger problems with the xHC and assert HCRST. 325 */ 326 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 327 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 328 if (ret < 0) { 329 xhci_err(xhci, "Stopped the command ring failed, " 330 "maybe the host is dead\n"); 331 xhci->xhc_state |= XHCI_STATE_DYING; 332 xhci_quiesce(xhci); 333 xhci_halt(xhci); 334 return -ESHUTDOWN; 335 } 336 337 return 0; 338 } 339 340 static int xhci_queue_cd(struct xhci_hcd *xhci, 341 struct xhci_command *command, 342 union xhci_trb *cmd_trb) 343 { 344 struct xhci_cd *cd; 345 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 346 if (!cd) 347 return -ENOMEM; 348 INIT_LIST_HEAD(&cd->cancel_cmd_list); 349 350 cd->command = command; 351 cd->cmd_trb = cmd_trb; 352 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 353 354 return 0; 355 } 356 357 /* 358 * Cancel the command which has issue. 359 * 360 * Some commands may hang due to waiting for acknowledgement from 361 * usb device. It is outside of the xHC's ability to control and 362 * will cause the command ring is blocked. When it occurs software 363 * should intervene to recover the command ring. 364 * See Section 4.6.1.1 and 4.6.1.2 365 */ 366 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 367 union xhci_trb *cmd_trb) 368 { 369 int retval = 0; 370 unsigned long flags; 371 372 spin_lock_irqsave(&xhci->lock, flags); 373 374 if (xhci->xhc_state & XHCI_STATE_DYING) { 375 xhci_warn(xhci, "Abort the command ring," 376 " but the xHCI is dead.\n"); 377 retval = -ESHUTDOWN; 378 goto fail; 379 } 380 381 /* queue the cmd desriptor to cancel_cmd_list */ 382 retval = xhci_queue_cd(xhci, command, cmd_trb); 383 if (retval) { 384 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 385 goto fail; 386 } 387 388 /* abort command ring */ 389 retval = xhci_abort_cmd_ring(xhci); 390 if (retval) { 391 xhci_err(xhci, "Abort command ring failed\n"); 392 if (unlikely(retval == -ESHUTDOWN)) { 393 spin_unlock_irqrestore(&xhci->lock, flags); 394 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 395 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 396 return retval; 397 } 398 } 399 400 fail: 401 spin_unlock_irqrestore(&xhci->lock, flags); 402 return retval; 403 } 404 405 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 406 unsigned int slot_id, 407 unsigned int ep_index, 408 unsigned int stream_id) 409 { 410 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 411 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 412 unsigned int ep_state = ep->ep_state; 413 414 /* Don't ring the doorbell for this endpoint if there are pending 415 * cancellations because we don't want to interrupt processing. 416 * We don't want to restart any stream rings if there's a set dequeue 417 * pointer command pending because the device can choose to start any 418 * stream once the endpoint is on the HW schedule. 419 * FIXME - check all the stream rings for pending cancellations. 420 */ 421 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 422 (ep_state & EP_HALTED)) 423 return; 424 writel(DB_VALUE(ep_index, stream_id), db_addr); 425 /* The CPU has better things to do at this point than wait for a 426 * write-posting flush. It'll get there soon enough. 427 */ 428 } 429 430 /* Ring the doorbell for any rings with pending URBs */ 431 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 432 unsigned int slot_id, 433 unsigned int ep_index) 434 { 435 unsigned int stream_id; 436 struct xhci_virt_ep *ep; 437 438 ep = &xhci->devs[slot_id]->eps[ep_index]; 439 440 /* A ring has pending URBs if its TD list is not empty */ 441 if (!(ep->ep_state & EP_HAS_STREAMS)) { 442 if (ep->ring && !(list_empty(&ep->ring->td_list))) 443 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 444 return; 445 } 446 447 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 448 stream_id++) { 449 struct xhci_stream_info *stream_info = ep->stream_info; 450 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 451 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 452 stream_id); 453 } 454 } 455 456 /* 457 * Find the segment that trb is in. Start searching in start_seg. 458 * If we must move past a segment that has a link TRB with a toggle cycle state 459 * bit set, then we will toggle the value pointed at by cycle_state. 460 */ 461 static struct xhci_segment *find_trb_seg( 462 struct xhci_segment *start_seg, 463 union xhci_trb *trb, int *cycle_state) 464 { 465 struct xhci_segment *cur_seg = start_seg; 466 struct xhci_generic_trb *generic_trb; 467 468 while (cur_seg->trbs > trb || 469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 470 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 471 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 472 *cycle_state ^= 0x1; 473 cur_seg = cur_seg->next; 474 if (cur_seg == start_seg) 475 /* Looped over the entire list. Oops! */ 476 return NULL; 477 } 478 return cur_seg; 479 } 480 481 482 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 483 unsigned int slot_id, unsigned int ep_index, 484 unsigned int stream_id) 485 { 486 struct xhci_virt_ep *ep; 487 488 ep = &xhci->devs[slot_id]->eps[ep_index]; 489 /* Common case: no streams */ 490 if (!(ep->ep_state & EP_HAS_STREAMS)) 491 return ep->ring; 492 493 if (stream_id == 0) { 494 xhci_warn(xhci, 495 "WARN: Slot ID %u, ep index %u has streams, " 496 "but URB has no stream ID.\n", 497 slot_id, ep_index); 498 return NULL; 499 } 500 501 if (stream_id < ep->stream_info->num_streams) 502 return ep->stream_info->stream_rings[stream_id]; 503 504 xhci_warn(xhci, 505 "WARN: Slot ID %u, ep index %u has " 506 "stream IDs 1 to %u allocated, " 507 "but stream ID %u is requested.\n", 508 slot_id, ep_index, 509 ep->stream_info->num_streams - 1, 510 stream_id); 511 return NULL; 512 } 513 514 /* Get the right ring for the given URB. 515 * If the endpoint supports streams, boundary check the URB's stream ID. 516 * If the endpoint doesn't support streams, return the singular endpoint ring. 517 */ 518 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 519 struct urb *urb) 520 { 521 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 522 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 523 } 524 525 /* 526 * Move the xHC's endpoint ring dequeue pointer past cur_td. 527 * Record the new state of the xHC's endpoint ring dequeue segment, 528 * dequeue pointer, and new consumer cycle state in state. 529 * Update our internal representation of the ring's dequeue pointer. 530 * 531 * We do this in three jumps: 532 * - First we update our new ring state to be the same as when the xHC stopped. 533 * - Then we traverse the ring to find the segment that contains 534 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 535 * any link TRBs with the toggle cycle bit set. 536 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 537 * if we've moved it past a link TRB with the toggle cycle bit set. 538 * 539 * Some of the uses of xhci_generic_trb are grotty, but if they're done 540 * with correct __le32 accesses they should work fine. Only users of this are 541 * in here. 542 */ 543 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 544 unsigned int slot_id, unsigned int ep_index, 545 unsigned int stream_id, struct xhci_td *cur_td, 546 struct xhci_dequeue_state *state) 547 { 548 struct xhci_virt_device *dev = xhci->devs[slot_id]; 549 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 550 struct xhci_ring *ep_ring; 551 struct xhci_generic_trb *trb; 552 dma_addr_t addr; 553 554 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 555 ep_index, stream_id); 556 if (!ep_ring) { 557 xhci_warn(xhci, "WARN can't find new dequeue state " 558 "for invalid stream ID %u.\n", 559 stream_id); 560 return; 561 } 562 state->new_cycle_state = 0; 563 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 564 "Finding segment containing stopped TRB."); 565 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 566 dev->eps[ep_index].stopped_trb, 567 &state->new_cycle_state); 568 if (!state->new_deq_seg) { 569 WARN_ON(1); 570 return; 571 } 572 573 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 574 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 575 "Finding endpoint context"); 576 /* 4.6.9 the css flag is written to the stream context for streams */ 577 if (ep->ep_state & EP_HAS_STREAMS) { 578 struct xhci_stream_ctx *ctx = 579 &ep->stream_info->stream_ctx_array[stream_id]; 580 state->new_cycle_state = 0x1 & le64_to_cpu(ctx->stream_ring); 581 } else { 582 struct xhci_ep_ctx *ep_ctx 583 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 584 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 585 } 586 587 state->new_deq_ptr = cur_td->last_trb; 588 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 589 "Finding segment containing last TRB in TD."); 590 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 591 state->new_deq_ptr, 592 &state->new_cycle_state); 593 if (!state->new_deq_seg) { 594 WARN_ON(1); 595 return; 596 } 597 598 trb = &state->new_deq_ptr->generic; 599 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 600 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 601 state->new_cycle_state ^= 0x1; 602 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 603 604 /* 605 * If there is only one segment in a ring, find_trb_seg()'s while loop 606 * will not run, and it will return before it has a chance to see if it 607 * needs to toggle the cycle bit. It can't tell if the stalled transfer 608 * ended just before the link TRB on a one-segment ring, or if the TD 609 * wrapped around the top of the ring, because it doesn't have the TD in 610 * question. Look for the one-segment case where stalled TRB's address 611 * is greater than the new dequeue pointer address. 612 */ 613 if (ep_ring->first_seg == ep_ring->first_seg->next && 614 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 615 state->new_cycle_state ^= 0x1; 616 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 617 "Cycle state = 0x%x", state->new_cycle_state); 618 619 /* Don't update the ring cycle state for the producer (us). */ 620 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 621 "New dequeue segment = %p (virtual)", 622 state->new_deq_seg); 623 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 624 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 625 "New dequeue pointer = 0x%llx (DMA)", 626 (unsigned long long) addr); 627 } 628 629 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 630 * (The last TRB actually points to the ring enqueue pointer, which is not part 631 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 632 */ 633 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 634 struct xhci_td *cur_td, bool flip_cycle) 635 { 636 struct xhci_segment *cur_seg; 637 union xhci_trb *cur_trb; 638 639 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 640 true; 641 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 642 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 643 /* Unchain any chained Link TRBs, but 644 * leave the pointers intact. 645 */ 646 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 647 /* Flip the cycle bit (link TRBs can't be the first 648 * or last TRB). 649 */ 650 if (flip_cycle) 651 cur_trb->generic.field[3] ^= 652 cpu_to_le32(TRB_CYCLE); 653 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 654 "Cancel (unchain) link TRB"); 655 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 656 "Address = %p (0x%llx dma); " 657 "in seg %p (0x%llx dma)", 658 cur_trb, 659 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 660 cur_seg, 661 (unsigned long long)cur_seg->dma); 662 } else { 663 cur_trb->generic.field[0] = 0; 664 cur_trb->generic.field[1] = 0; 665 cur_trb->generic.field[2] = 0; 666 /* Preserve only the cycle bit of this TRB */ 667 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 668 /* Flip the cycle bit except on the first or last TRB */ 669 if (flip_cycle && cur_trb != cur_td->first_trb && 670 cur_trb != cur_td->last_trb) 671 cur_trb->generic.field[3] ^= 672 cpu_to_le32(TRB_CYCLE); 673 cur_trb->generic.field[3] |= cpu_to_le32( 674 TRB_TYPE(TRB_TR_NOOP)); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 676 "TRB to noop at offset 0x%llx", 677 (unsigned long long) 678 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 679 } 680 if (cur_trb == cur_td->last_trb) 681 break; 682 } 683 } 684 685 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 686 unsigned int ep_index, unsigned int stream_id, 687 struct xhci_segment *deq_seg, 688 union xhci_trb *deq_ptr, u32 cycle_state); 689 690 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 691 unsigned int slot_id, unsigned int ep_index, 692 unsigned int stream_id, 693 struct xhci_dequeue_state *deq_state) 694 { 695 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 696 697 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 698 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 699 "new deq ptr = %p (0x%llx dma), new cycle = %u", 700 deq_state->new_deq_seg, 701 (unsigned long long)deq_state->new_deq_seg->dma, 702 deq_state->new_deq_ptr, 703 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 704 deq_state->new_cycle_state); 705 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 706 deq_state->new_deq_seg, 707 deq_state->new_deq_ptr, 708 (u32) deq_state->new_cycle_state); 709 /* Stop the TD queueing code from ringing the doorbell until 710 * this command completes. The HC won't set the dequeue pointer 711 * if the ring is running, and ringing the doorbell starts the 712 * ring running. 713 */ 714 ep->ep_state |= SET_DEQ_PENDING; 715 } 716 717 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 718 struct xhci_virt_ep *ep) 719 { 720 ep->ep_state &= ~EP_HALT_PENDING; 721 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 722 * timer is running on another CPU, we don't decrement stop_cmds_pending 723 * (since we didn't successfully stop the watchdog timer). 724 */ 725 if (del_timer(&ep->stop_cmd_timer)) 726 ep->stop_cmds_pending--; 727 } 728 729 /* Must be called with xhci->lock held in interrupt context */ 730 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 731 struct xhci_td *cur_td, int status) 732 { 733 struct usb_hcd *hcd; 734 struct urb *urb; 735 struct urb_priv *urb_priv; 736 737 urb = cur_td->urb; 738 urb_priv = urb->hcpriv; 739 urb_priv->td_cnt++; 740 hcd = bus_to_hcd(urb->dev->bus); 741 742 /* Only giveback urb when this is the last td in urb */ 743 if (urb_priv->td_cnt == urb_priv->length) { 744 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 745 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 746 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 747 if (xhci->quirks & XHCI_AMD_PLL_FIX) 748 usb_amd_quirk_pll_enable(); 749 } 750 } 751 usb_hcd_unlink_urb_from_ep(hcd, urb); 752 753 spin_unlock(&xhci->lock); 754 usb_hcd_giveback_urb(hcd, urb, status); 755 xhci_urb_free_priv(xhci, urb_priv); 756 spin_lock(&xhci->lock); 757 } 758 } 759 760 /* 761 * When we get a command completion for a Stop Endpoint Command, we need to 762 * unlink any cancelled TDs from the ring. There are two ways to do that: 763 * 764 * 1. If the HW was in the middle of processing the TD that needs to be 765 * cancelled, then we must move the ring's dequeue pointer past the last TRB 766 * in the TD with a Set Dequeue Pointer Command. 767 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 768 * bit cleared) so that the HW will skip over them. 769 */ 770 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 771 union xhci_trb *trb, struct xhci_event_cmd *event) 772 { 773 unsigned int ep_index; 774 struct xhci_virt_device *virt_dev; 775 struct xhci_ring *ep_ring; 776 struct xhci_virt_ep *ep; 777 struct list_head *entry; 778 struct xhci_td *cur_td = NULL; 779 struct xhci_td *last_unlinked_td; 780 781 struct xhci_dequeue_state deq_state; 782 783 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 784 virt_dev = xhci->devs[slot_id]; 785 if (virt_dev) 786 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 787 event); 788 else 789 xhci_warn(xhci, "Stop endpoint command " 790 "completion for disabled slot %u\n", 791 slot_id); 792 return; 793 } 794 795 memset(&deq_state, 0, sizeof(deq_state)); 796 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 797 ep = &xhci->devs[slot_id]->eps[ep_index]; 798 799 if (list_empty(&ep->cancelled_td_list)) { 800 xhci_stop_watchdog_timer_in_irq(xhci, ep); 801 ep->stopped_td = NULL; 802 ep->stopped_trb = NULL; 803 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 804 return; 805 } 806 807 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 808 * We have the xHCI lock, so nothing can modify this list until we drop 809 * it. We're also in the event handler, so we can't get re-interrupted 810 * if another Stop Endpoint command completes 811 */ 812 list_for_each(entry, &ep->cancelled_td_list) { 813 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 814 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 815 "Removing canceled TD starting at 0x%llx (dma).", 816 (unsigned long long)xhci_trb_virt_to_dma( 817 cur_td->start_seg, cur_td->first_trb)); 818 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 819 if (!ep_ring) { 820 /* This shouldn't happen unless a driver is mucking 821 * with the stream ID after submission. This will 822 * leave the TD on the hardware ring, and the hardware 823 * will try to execute it, and may access a buffer 824 * that has already been freed. In the best case, the 825 * hardware will execute it, and the event handler will 826 * ignore the completion event for that TD, since it was 827 * removed from the td_list for that endpoint. In 828 * short, don't muck with the stream ID after 829 * submission. 830 */ 831 xhci_warn(xhci, "WARN Cancelled URB %p " 832 "has invalid stream ID %u.\n", 833 cur_td->urb, 834 cur_td->urb->stream_id); 835 goto remove_finished_td; 836 } 837 /* 838 * If we stopped on the TD we need to cancel, then we have to 839 * move the xHC endpoint ring dequeue pointer past this TD. 840 */ 841 if (cur_td == ep->stopped_td) 842 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 843 cur_td->urb->stream_id, 844 cur_td, &deq_state); 845 else 846 td_to_noop(xhci, ep_ring, cur_td, false); 847 remove_finished_td: 848 /* 849 * The event handler won't see a completion for this TD anymore, 850 * so remove it from the endpoint ring's TD list. Keep it in 851 * the cancelled TD list for URB completion later. 852 */ 853 list_del_init(&cur_td->td_list); 854 } 855 last_unlinked_td = cur_td; 856 xhci_stop_watchdog_timer_in_irq(xhci, ep); 857 858 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 859 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 860 xhci_queue_new_dequeue_state(xhci, 861 slot_id, ep_index, 862 ep->stopped_td->urb->stream_id, 863 &deq_state); 864 xhci_ring_cmd_db(xhci); 865 } else { 866 /* Otherwise ring the doorbell(s) to restart queued transfers */ 867 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 868 } 869 870 /* Clear stopped_td and stopped_trb if endpoint is not halted */ 871 if (!(ep->ep_state & EP_HALTED)) { 872 ep->stopped_td = NULL; 873 ep->stopped_trb = NULL; 874 } 875 876 /* 877 * Drop the lock and complete the URBs in the cancelled TD list. 878 * New TDs to be cancelled might be added to the end of the list before 879 * we can complete all the URBs for the TDs we already unlinked. 880 * So stop when we've completed the URB for the last TD we unlinked. 881 */ 882 do { 883 cur_td = list_entry(ep->cancelled_td_list.next, 884 struct xhci_td, cancelled_td_list); 885 list_del_init(&cur_td->cancelled_td_list); 886 887 /* Clean up the cancelled URB */ 888 /* Doesn't matter what we pass for status, since the core will 889 * just overwrite it (because the URB has been unlinked). 890 */ 891 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 892 893 /* Stop processing the cancelled list if the watchdog timer is 894 * running. 895 */ 896 if (xhci->xhc_state & XHCI_STATE_DYING) 897 return; 898 } while (cur_td != last_unlinked_td); 899 900 /* Return to the event handler with xhci->lock re-acquired */ 901 } 902 903 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 904 { 905 struct xhci_td *cur_td; 906 907 while (!list_empty(&ring->td_list)) { 908 cur_td = list_first_entry(&ring->td_list, 909 struct xhci_td, td_list); 910 list_del_init(&cur_td->td_list); 911 if (!list_empty(&cur_td->cancelled_td_list)) 912 list_del_init(&cur_td->cancelled_td_list); 913 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 914 } 915 } 916 917 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 918 int slot_id, int ep_index) 919 { 920 struct xhci_td *cur_td; 921 struct xhci_virt_ep *ep; 922 struct xhci_ring *ring; 923 924 ep = &xhci->devs[slot_id]->eps[ep_index]; 925 if ((ep->ep_state & EP_HAS_STREAMS) || 926 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 927 int stream_id; 928 929 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 930 stream_id++) { 931 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 932 "Killing URBs for slot ID %u, ep index %u, stream %u", 933 slot_id, ep_index, stream_id + 1); 934 xhci_kill_ring_urbs(xhci, 935 ep->stream_info->stream_rings[stream_id]); 936 } 937 } else { 938 ring = ep->ring; 939 if (!ring) 940 return; 941 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 942 "Killing URBs for slot ID %u, ep index %u", 943 slot_id, ep_index); 944 xhci_kill_ring_urbs(xhci, ring); 945 } 946 while (!list_empty(&ep->cancelled_td_list)) { 947 cur_td = list_first_entry(&ep->cancelled_td_list, 948 struct xhci_td, cancelled_td_list); 949 list_del_init(&cur_td->cancelled_td_list); 950 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 951 } 952 } 953 954 /* Watchdog timer function for when a stop endpoint command fails to complete. 955 * In this case, we assume the host controller is broken or dying or dead. The 956 * host may still be completing some other events, so we have to be careful to 957 * let the event ring handler and the URB dequeueing/enqueueing functions know 958 * through xhci->state. 959 * 960 * The timer may also fire if the host takes a very long time to respond to the 961 * command, and the stop endpoint command completion handler cannot delete the 962 * timer before the timer function is called. Another endpoint cancellation may 963 * sneak in before the timer function can grab the lock, and that may queue 964 * another stop endpoint command and add the timer back. So we cannot use a 965 * simple flag to say whether there is a pending stop endpoint command for a 966 * particular endpoint. 967 * 968 * Instead we use a combination of that flag and a counter for the number of 969 * pending stop endpoint commands. If the timer is the tail end of the last 970 * stop endpoint command, and the endpoint's command is still pending, we assume 971 * the host is dying. 972 */ 973 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 974 { 975 struct xhci_hcd *xhci; 976 struct xhci_virt_ep *ep; 977 int ret, i, j; 978 unsigned long flags; 979 980 ep = (struct xhci_virt_ep *) arg; 981 xhci = ep->xhci; 982 983 spin_lock_irqsave(&xhci->lock, flags); 984 985 ep->stop_cmds_pending--; 986 if (xhci->xhc_state & XHCI_STATE_DYING) { 987 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 988 "Stop EP timer ran, but another timer marked " 989 "xHCI as DYING, exiting."); 990 spin_unlock_irqrestore(&xhci->lock, flags); 991 return; 992 } 993 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 994 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 995 "Stop EP timer ran, but no command pending, " 996 "exiting."); 997 spin_unlock_irqrestore(&xhci->lock, flags); 998 return; 999 } 1000 1001 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 1002 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 1003 /* Oops, HC is dead or dying or at least not responding to the stop 1004 * endpoint command. 1005 */ 1006 xhci->xhc_state |= XHCI_STATE_DYING; 1007 /* Disable interrupts from the host controller and start halting it */ 1008 xhci_quiesce(xhci); 1009 spin_unlock_irqrestore(&xhci->lock, flags); 1010 1011 ret = xhci_halt(xhci); 1012 1013 spin_lock_irqsave(&xhci->lock, flags); 1014 if (ret < 0) { 1015 /* This is bad; the host is not responding to commands and it's 1016 * not allowing itself to be halted. At least interrupts are 1017 * disabled. If we call usb_hc_died(), it will attempt to 1018 * disconnect all device drivers under this host. Those 1019 * disconnect() methods will wait for all URBs to be unlinked, 1020 * so we must complete them. 1021 */ 1022 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 1023 xhci_warn(xhci, "Completing active URBs anyway.\n"); 1024 /* We could turn all TDs on the rings to no-ops. This won't 1025 * help if the host has cached part of the ring, and is slow if 1026 * we want to preserve the cycle bit. Skip it and hope the host 1027 * doesn't touch the memory. 1028 */ 1029 } 1030 for (i = 0; i < MAX_HC_SLOTS; i++) { 1031 if (!xhci->devs[i]) 1032 continue; 1033 for (j = 0; j < 31; j++) 1034 xhci_kill_endpoint_urbs(xhci, i, j); 1035 } 1036 spin_unlock_irqrestore(&xhci->lock, flags); 1037 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1038 "Calling usb_hc_died()"); 1039 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1040 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1041 "xHCI host controller is dead."); 1042 } 1043 1044 1045 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1046 struct xhci_virt_device *dev, 1047 struct xhci_ring *ep_ring, 1048 unsigned int ep_index) 1049 { 1050 union xhci_trb *dequeue_temp; 1051 int num_trbs_free_temp; 1052 bool revert = false; 1053 1054 num_trbs_free_temp = ep_ring->num_trbs_free; 1055 dequeue_temp = ep_ring->dequeue; 1056 1057 /* If we get two back-to-back stalls, and the first stalled transfer 1058 * ends just before a link TRB, the dequeue pointer will be left on 1059 * the link TRB by the code in the while loop. So we have to update 1060 * the dequeue pointer one segment further, or we'll jump off 1061 * the segment into la-la-land. 1062 */ 1063 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1064 ep_ring->deq_seg = ep_ring->deq_seg->next; 1065 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1066 } 1067 1068 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1069 /* We have more usable TRBs */ 1070 ep_ring->num_trbs_free++; 1071 ep_ring->dequeue++; 1072 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1073 ep_ring->dequeue)) { 1074 if (ep_ring->dequeue == 1075 dev->eps[ep_index].queued_deq_ptr) 1076 break; 1077 ep_ring->deq_seg = ep_ring->deq_seg->next; 1078 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1079 } 1080 if (ep_ring->dequeue == dequeue_temp) { 1081 revert = true; 1082 break; 1083 } 1084 } 1085 1086 if (revert) { 1087 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1088 ep_ring->num_trbs_free = num_trbs_free_temp; 1089 } 1090 } 1091 1092 /* 1093 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1094 * we need to clear the set deq pending flag in the endpoint ring state, so that 1095 * the TD queueing code can ring the doorbell again. We also need to ring the 1096 * endpoint doorbell to restart the ring, but only if there aren't more 1097 * cancellations pending. 1098 */ 1099 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1100 union xhci_trb *trb, u32 cmd_comp_code) 1101 { 1102 unsigned int ep_index; 1103 unsigned int stream_id; 1104 struct xhci_ring *ep_ring; 1105 struct xhci_virt_device *dev; 1106 struct xhci_virt_ep *ep; 1107 struct xhci_ep_ctx *ep_ctx; 1108 struct xhci_slot_ctx *slot_ctx; 1109 1110 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1111 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1112 dev = xhci->devs[slot_id]; 1113 ep = &dev->eps[ep_index]; 1114 1115 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1116 if (!ep_ring) { 1117 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1118 stream_id); 1119 /* XXX: Harmless??? */ 1120 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1121 return; 1122 } 1123 1124 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1125 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1126 1127 if (cmd_comp_code != COMP_SUCCESS) { 1128 unsigned int ep_state; 1129 unsigned int slot_state; 1130 1131 switch (cmd_comp_code) { 1132 case COMP_TRB_ERR: 1133 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1134 break; 1135 case COMP_CTX_STATE: 1136 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1137 ep_state = le32_to_cpu(ep_ctx->ep_info); 1138 ep_state &= EP_STATE_MASK; 1139 slot_state = le32_to_cpu(slot_ctx->dev_state); 1140 slot_state = GET_SLOT_STATE(slot_state); 1141 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1142 "Slot state = %u, EP state = %u", 1143 slot_state, ep_state); 1144 break; 1145 case COMP_EBADSLT: 1146 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1147 slot_id); 1148 break; 1149 default: 1150 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1151 cmd_comp_code); 1152 break; 1153 } 1154 /* OK what do we do now? The endpoint state is hosed, and we 1155 * should never get to this point if the synchronization between 1156 * queueing, and endpoint state are correct. This might happen 1157 * if the device gets disconnected after we've finished 1158 * cancelling URBs, which might not be an error... 1159 */ 1160 } else { 1161 u64 deq; 1162 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1163 if (ep->ep_state & EP_HAS_STREAMS) { 1164 struct xhci_stream_ctx *ctx = 1165 &ep->stream_info->stream_ctx_array[stream_id]; 1166 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1167 } else { 1168 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1169 } 1170 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1171 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1172 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1173 ep->queued_deq_ptr) == deq) { 1174 /* Update the ring's dequeue segment and dequeue pointer 1175 * to reflect the new position. 1176 */ 1177 update_ring_for_set_deq_completion(xhci, dev, 1178 ep_ring, ep_index); 1179 } else { 1180 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1181 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1182 ep->queued_deq_seg, ep->queued_deq_ptr); 1183 } 1184 } 1185 1186 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1187 dev->eps[ep_index].queued_deq_seg = NULL; 1188 dev->eps[ep_index].queued_deq_ptr = NULL; 1189 /* Restart any rings with pending URBs */ 1190 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1191 } 1192 1193 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1194 union xhci_trb *trb, u32 cmd_comp_code) 1195 { 1196 unsigned int ep_index; 1197 1198 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1199 /* This command will only fail if the endpoint wasn't halted, 1200 * but we don't care. 1201 */ 1202 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1203 "Ignoring reset ep completion code of %u", cmd_comp_code); 1204 1205 /* HW with the reset endpoint quirk needs to have a configure endpoint 1206 * command complete before the endpoint can be used. Queue that here 1207 * because the HW can't handle two commands being queued in a row. 1208 */ 1209 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1211 "Queueing configure endpoint command"); 1212 xhci_queue_configure_endpoint(xhci, 1213 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1214 false); 1215 xhci_ring_cmd_db(xhci); 1216 } else { 1217 /* Clear our internal halted state and restart the ring(s) */ 1218 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1219 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1220 } 1221 } 1222 1223 /* Complete the command and detele it from the devcie's command queue. 1224 */ 1225 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1226 struct xhci_command *command, u32 status) 1227 { 1228 command->status = status; 1229 list_del(&command->cmd_list); 1230 if (command->completion) 1231 complete(command->completion); 1232 else 1233 xhci_free_command(xhci, command); 1234 } 1235 1236 1237 /* Check to see if a command in the device's command queue matches this one. 1238 * Signal the completion or free the command, and return 1. Return 0 if the 1239 * completed command isn't at the head of the command list. 1240 */ 1241 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1242 struct xhci_virt_device *virt_dev, 1243 struct xhci_event_cmd *event) 1244 { 1245 struct xhci_command *command; 1246 1247 if (list_empty(&virt_dev->cmd_list)) 1248 return 0; 1249 1250 command = list_entry(virt_dev->cmd_list.next, 1251 struct xhci_command, cmd_list); 1252 if (xhci->cmd_ring->dequeue != command->command_trb) 1253 return 0; 1254 1255 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1256 GET_COMP_CODE(le32_to_cpu(event->status))); 1257 return 1; 1258 } 1259 1260 /* 1261 * Finding the command trb need to be cancelled and modifying it to 1262 * NO OP command. And if the command is in device's command wait 1263 * list, finishing and freeing it. 1264 * 1265 * If we can't find the command trb, we think it had already been 1266 * executed. 1267 */ 1268 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1269 { 1270 struct xhci_segment *cur_seg; 1271 union xhci_trb *cmd_trb; 1272 u32 cycle_state; 1273 1274 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1275 return; 1276 1277 /* find the current segment of command ring */ 1278 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1279 xhci->cmd_ring->dequeue, &cycle_state); 1280 1281 if (!cur_seg) { 1282 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1283 xhci->cmd_ring->dequeue, 1284 (unsigned long long) 1285 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1286 xhci->cmd_ring->dequeue)); 1287 xhci_debug_ring(xhci, xhci->cmd_ring); 1288 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1289 return; 1290 } 1291 1292 /* find the command trb matched by cd from command ring */ 1293 for (cmd_trb = xhci->cmd_ring->dequeue; 1294 cmd_trb != xhci->cmd_ring->enqueue; 1295 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1296 /* If the trb is link trb, continue */ 1297 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1298 continue; 1299 1300 if (cur_cd->cmd_trb == cmd_trb) { 1301 1302 /* If the command in device's command list, we should 1303 * finish it and free the command structure. 1304 */ 1305 if (cur_cd->command) 1306 xhci_complete_cmd_in_cmd_wait_list(xhci, 1307 cur_cd->command, COMP_CMD_STOP); 1308 1309 /* get cycle state from the origin command trb */ 1310 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1311 & TRB_CYCLE; 1312 1313 /* modify the command trb to NO OP command */ 1314 cmd_trb->generic.field[0] = 0; 1315 cmd_trb->generic.field[1] = 0; 1316 cmd_trb->generic.field[2] = 0; 1317 cmd_trb->generic.field[3] = cpu_to_le32( 1318 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1319 break; 1320 } 1321 } 1322 } 1323 1324 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1325 { 1326 struct xhci_cd *cur_cd, *next_cd; 1327 1328 if (list_empty(&xhci->cancel_cmd_list)) 1329 return; 1330 1331 list_for_each_entry_safe(cur_cd, next_cd, 1332 &xhci->cancel_cmd_list, cancel_cmd_list) { 1333 xhci_cmd_to_noop(xhci, cur_cd); 1334 list_del(&cur_cd->cancel_cmd_list); 1335 kfree(cur_cd); 1336 } 1337 } 1338 1339 /* 1340 * traversing the cancel_cmd_list. If the command descriptor according 1341 * to cmd_trb is found, the function free it and return 1, otherwise 1342 * return 0. 1343 */ 1344 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1345 union xhci_trb *cmd_trb) 1346 { 1347 struct xhci_cd *cur_cd, *next_cd; 1348 1349 if (list_empty(&xhci->cancel_cmd_list)) 1350 return 0; 1351 1352 list_for_each_entry_safe(cur_cd, next_cd, 1353 &xhci->cancel_cmd_list, cancel_cmd_list) { 1354 if (cur_cd->cmd_trb == cmd_trb) { 1355 if (cur_cd->command) 1356 xhci_complete_cmd_in_cmd_wait_list(xhci, 1357 cur_cd->command, COMP_CMD_STOP); 1358 list_del(&cur_cd->cancel_cmd_list); 1359 kfree(cur_cd); 1360 return 1; 1361 } 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1369 * trb pointed by the command ring dequeue pointer is the trb we want to 1370 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1371 * traverse the cancel_cmd_list to trun the all of the commands according 1372 * to command descriptor to NO-OP trb. 1373 */ 1374 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1375 int cmd_trb_comp_code) 1376 { 1377 int cur_trb_is_good = 0; 1378 1379 /* Searching the cmd trb pointed by the command ring dequeue 1380 * pointer in command descriptor list. If it is found, free it. 1381 */ 1382 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1383 xhci->cmd_ring->dequeue); 1384 1385 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1386 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1387 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1388 /* traversing the cancel_cmd_list and canceling 1389 * the command according to command descriptor 1390 */ 1391 xhci_cancel_cmd_in_cd_list(xhci); 1392 1393 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1394 /* 1395 * ring command ring doorbell again to restart the 1396 * command ring 1397 */ 1398 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1399 xhci_ring_cmd_db(xhci); 1400 } 1401 return cur_trb_is_good; 1402 } 1403 1404 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1405 u32 cmd_comp_code) 1406 { 1407 if (cmd_comp_code == COMP_SUCCESS) 1408 xhci->slot_id = slot_id; 1409 else 1410 xhci->slot_id = 0; 1411 complete(&xhci->addr_dev); 1412 } 1413 1414 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1415 { 1416 struct xhci_virt_device *virt_dev; 1417 1418 virt_dev = xhci->devs[slot_id]; 1419 if (!virt_dev) 1420 return; 1421 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1422 /* Delete default control endpoint resources */ 1423 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1424 xhci_free_virt_device(xhci, slot_id); 1425 } 1426 1427 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1428 struct xhci_event_cmd *event, u32 cmd_comp_code) 1429 { 1430 struct xhci_virt_device *virt_dev; 1431 struct xhci_input_control_ctx *ctrl_ctx; 1432 unsigned int ep_index; 1433 unsigned int ep_state; 1434 u32 add_flags, drop_flags; 1435 1436 virt_dev = xhci->devs[slot_id]; 1437 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1438 return; 1439 /* 1440 * Configure endpoint commands can come from the USB core 1441 * configuration or alt setting changes, or because the HW 1442 * needed an extra configure endpoint command after a reset 1443 * endpoint command or streams were being configured. 1444 * If the command was for a halted endpoint, the xHCI driver 1445 * is not waiting on the configure endpoint command. 1446 */ 1447 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1448 if (!ctrl_ctx) { 1449 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1450 return; 1451 } 1452 1453 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1454 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1455 /* Input ctx add_flags are the endpoint index plus one */ 1456 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1457 1458 /* A usb_set_interface() call directly after clearing a halted 1459 * condition may race on this quirky hardware. Not worth 1460 * worrying about, since this is prototype hardware. Not sure 1461 * if this will work for streams, but streams support was 1462 * untested on this prototype. 1463 */ 1464 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1465 ep_index != (unsigned int) -1 && 1466 add_flags - SLOT_FLAG == drop_flags) { 1467 ep_state = virt_dev->eps[ep_index].ep_state; 1468 if (!(ep_state & EP_HALTED)) 1469 goto bandwidth_change; 1470 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1471 "Completed config ep cmd - " 1472 "last ep index = %d, state = %d", 1473 ep_index, ep_state); 1474 /* Clear internal halted state and restart ring(s) */ 1475 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1476 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1477 return; 1478 } 1479 bandwidth_change: 1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1481 "Completed config ep cmd"); 1482 virt_dev->cmd_status = cmd_comp_code; 1483 complete(&virt_dev->cmd_completion); 1484 return; 1485 } 1486 1487 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id, 1488 struct xhci_event_cmd *event, u32 cmd_comp_code) 1489 { 1490 struct xhci_virt_device *virt_dev; 1491 1492 virt_dev = xhci->devs[slot_id]; 1493 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1494 return; 1495 virt_dev->cmd_status = cmd_comp_code; 1496 complete(&virt_dev->cmd_completion); 1497 } 1498 1499 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id, 1500 u32 cmd_comp_code) 1501 { 1502 xhci->devs[slot_id]->cmd_status = cmd_comp_code; 1503 complete(&xhci->addr_dev); 1504 } 1505 1506 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1507 struct xhci_event_cmd *event) 1508 { 1509 struct xhci_virt_device *virt_dev; 1510 1511 xhci_dbg(xhci, "Completed reset device command.\n"); 1512 virt_dev = xhci->devs[slot_id]; 1513 if (virt_dev) 1514 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1515 else 1516 xhci_warn(xhci, "Reset device command completion " 1517 "for disabled slot %u\n", slot_id); 1518 } 1519 1520 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1521 struct xhci_event_cmd *event) 1522 { 1523 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1524 xhci->error_bitmask |= 1 << 6; 1525 return; 1526 } 1527 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1528 "NEC firmware version %2x.%02x", 1529 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1530 NEC_FW_MINOR(le32_to_cpu(event->status))); 1531 } 1532 1533 static void handle_cmd_completion(struct xhci_hcd *xhci, 1534 struct xhci_event_cmd *event) 1535 { 1536 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1537 u64 cmd_dma; 1538 dma_addr_t cmd_dequeue_dma; 1539 u32 cmd_comp_code; 1540 union xhci_trb *cmd_trb; 1541 u32 cmd_type; 1542 1543 cmd_dma = le64_to_cpu(event->cmd_trb); 1544 cmd_trb = xhci->cmd_ring->dequeue; 1545 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1546 cmd_trb); 1547 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1548 if (cmd_dequeue_dma == 0) { 1549 xhci->error_bitmask |= 1 << 4; 1550 return; 1551 } 1552 /* Does the DMA address match our internal dequeue pointer address? */ 1553 if (cmd_dma != (u64) cmd_dequeue_dma) { 1554 xhci->error_bitmask |= 1 << 5; 1555 return; 1556 } 1557 1558 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1559 1560 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1561 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) { 1562 /* If the return value is 0, we think the trb pointed by 1563 * command ring dequeue pointer is a good trb. The good 1564 * trb means we don't want to cancel the trb, but it have 1565 * been stopped by host. So we should handle it normally. 1566 * Otherwise, driver should invoke inc_deq() and return. 1567 */ 1568 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) { 1569 inc_deq(xhci, xhci->cmd_ring); 1570 return; 1571 } 1572 /* There is no command to handle if we get a stop event when the 1573 * command ring is empty, event->cmd_trb points to the next 1574 * unset command 1575 */ 1576 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1577 return; 1578 } 1579 1580 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1581 switch (cmd_type) { 1582 case TRB_ENABLE_SLOT: 1583 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1584 break; 1585 case TRB_DISABLE_SLOT: 1586 xhci_handle_cmd_disable_slot(xhci, slot_id); 1587 break; 1588 case TRB_CONFIG_EP: 1589 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); 1590 break; 1591 case TRB_EVAL_CONTEXT: 1592 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code); 1593 break; 1594 case TRB_ADDR_DEV: 1595 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code); 1596 break; 1597 case TRB_STOP_RING: 1598 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1599 le32_to_cpu(cmd_trb->generic.field[3]))); 1600 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1601 break; 1602 case TRB_SET_DEQ: 1603 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1604 le32_to_cpu(cmd_trb->generic.field[3]))); 1605 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1606 break; 1607 case TRB_CMD_NOOP: 1608 break; 1609 case TRB_RESET_EP: 1610 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1611 le32_to_cpu(cmd_trb->generic.field[3]))); 1612 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1613 break; 1614 case TRB_RESET_DEV: 1615 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1616 le32_to_cpu(cmd_trb->generic.field[3]))); 1617 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1618 break; 1619 case TRB_NEC_GET_FW: 1620 xhci_handle_cmd_nec_get_fw(xhci, event); 1621 break; 1622 default: 1623 /* Skip over unknown commands on the event ring */ 1624 xhci->error_bitmask |= 1 << 6; 1625 break; 1626 } 1627 inc_deq(xhci, xhci->cmd_ring); 1628 } 1629 1630 static void handle_vendor_event(struct xhci_hcd *xhci, 1631 union xhci_trb *event) 1632 { 1633 u32 trb_type; 1634 1635 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1636 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1637 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1638 handle_cmd_completion(xhci, &event->event_cmd); 1639 } 1640 1641 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1642 * port registers -- USB 3.0 and USB 2.0). 1643 * 1644 * Returns a zero-based port number, which is suitable for indexing into each of 1645 * the split roothubs' port arrays and bus state arrays. 1646 * Add one to it in order to call xhci_find_slot_id_by_port. 1647 */ 1648 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1649 struct xhci_hcd *xhci, u32 port_id) 1650 { 1651 unsigned int i; 1652 unsigned int num_similar_speed_ports = 0; 1653 1654 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1655 * and usb2_ports are 0-based indexes. Count the number of similar 1656 * speed ports, up to 1 port before this port. 1657 */ 1658 for (i = 0; i < (port_id - 1); i++) { 1659 u8 port_speed = xhci->port_array[i]; 1660 1661 /* 1662 * Skip ports that don't have known speeds, or have duplicate 1663 * Extended Capabilities port speed entries. 1664 */ 1665 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1666 continue; 1667 1668 /* 1669 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1670 * 1.1 ports are under the USB 2.0 hub. If the port speed 1671 * matches the device speed, it's a similar speed port. 1672 */ 1673 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1674 num_similar_speed_ports++; 1675 } 1676 return num_similar_speed_ports; 1677 } 1678 1679 static void handle_device_notification(struct xhci_hcd *xhci, 1680 union xhci_trb *event) 1681 { 1682 u32 slot_id; 1683 struct usb_device *udev; 1684 1685 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1686 if (!xhci->devs[slot_id]) { 1687 xhci_warn(xhci, "Device Notification event for " 1688 "unused slot %u\n", slot_id); 1689 return; 1690 } 1691 1692 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1693 slot_id); 1694 udev = xhci->devs[slot_id]->udev; 1695 if (udev && udev->parent) 1696 usb_wakeup_notification(udev->parent, udev->portnum); 1697 } 1698 1699 static void handle_port_status(struct xhci_hcd *xhci, 1700 union xhci_trb *event) 1701 { 1702 struct usb_hcd *hcd; 1703 u32 port_id; 1704 u32 temp, temp1; 1705 int max_ports; 1706 int slot_id; 1707 unsigned int faked_port_index; 1708 u8 major_revision; 1709 struct xhci_bus_state *bus_state; 1710 __le32 __iomem **port_array; 1711 bool bogus_port_status = false; 1712 1713 /* Port status change events always have a successful completion code */ 1714 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1715 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1716 xhci->error_bitmask |= 1 << 8; 1717 } 1718 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1719 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1720 1721 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1722 if ((port_id <= 0) || (port_id > max_ports)) { 1723 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1724 inc_deq(xhci, xhci->event_ring); 1725 return; 1726 } 1727 1728 /* Figure out which usb_hcd this port is attached to: 1729 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1730 */ 1731 major_revision = xhci->port_array[port_id - 1]; 1732 1733 /* Find the right roothub. */ 1734 hcd = xhci_to_hcd(xhci); 1735 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1736 hcd = xhci->shared_hcd; 1737 1738 if (major_revision == 0) { 1739 xhci_warn(xhci, "Event for port %u not in " 1740 "Extended Capabilities, ignoring.\n", 1741 port_id); 1742 bogus_port_status = true; 1743 goto cleanup; 1744 } 1745 if (major_revision == DUPLICATE_ENTRY) { 1746 xhci_warn(xhci, "Event for port %u duplicated in" 1747 "Extended Capabilities, ignoring.\n", 1748 port_id); 1749 bogus_port_status = true; 1750 goto cleanup; 1751 } 1752 1753 /* 1754 * Hardware port IDs reported by a Port Status Change Event include USB 1755 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1756 * resume event, but we first need to translate the hardware port ID 1757 * into the index into the ports on the correct split roothub, and the 1758 * correct bus_state structure. 1759 */ 1760 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1761 if (hcd->speed == HCD_USB3) 1762 port_array = xhci->usb3_ports; 1763 else 1764 port_array = xhci->usb2_ports; 1765 /* Find the faked port hub number */ 1766 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1767 port_id); 1768 1769 temp = readl(port_array[faked_port_index]); 1770 if (hcd->state == HC_STATE_SUSPENDED) { 1771 xhci_dbg(xhci, "resume root hub\n"); 1772 usb_hcd_resume_root_hub(hcd); 1773 } 1774 1775 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1776 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1777 1778 temp1 = readl(&xhci->op_regs->command); 1779 if (!(temp1 & CMD_RUN)) { 1780 xhci_warn(xhci, "xHC is not running.\n"); 1781 goto cleanup; 1782 } 1783 1784 if (DEV_SUPERSPEED(temp)) { 1785 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1786 /* Set a flag to say the port signaled remote wakeup, 1787 * so we can tell the difference between the end of 1788 * device and host initiated resume. 1789 */ 1790 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1791 xhci_test_and_clear_bit(xhci, port_array, 1792 faked_port_index, PORT_PLC); 1793 xhci_set_link_state(xhci, port_array, faked_port_index, 1794 XDEV_U0); 1795 /* Need to wait until the next link state change 1796 * indicates the device is actually in U0. 1797 */ 1798 bogus_port_status = true; 1799 goto cleanup; 1800 } else { 1801 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1802 bus_state->resume_done[faked_port_index] = jiffies + 1803 msecs_to_jiffies(20); 1804 set_bit(faked_port_index, &bus_state->resuming_ports); 1805 mod_timer(&hcd->rh_timer, 1806 bus_state->resume_done[faked_port_index]); 1807 /* Do the rest in GetPortStatus */ 1808 } 1809 } 1810 1811 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1812 DEV_SUPERSPEED(temp)) { 1813 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1814 /* We've just brought the device into U0 through either the 1815 * Resume state after a device remote wakeup, or through the 1816 * U3Exit state after a host-initiated resume. If it's a device 1817 * initiated remote wake, don't pass up the link state change, 1818 * so the roothub behavior is consistent with external 1819 * USB 3.0 hub behavior. 1820 */ 1821 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1822 faked_port_index + 1); 1823 if (slot_id && xhci->devs[slot_id]) 1824 xhci_ring_device(xhci, slot_id); 1825 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1826 bus_state->port_remote_wakeup &= 1827 ~(1 << faked_port_index); 1828 xhci_test_and_clear_bit(xhci, port_array, 1829 faked_port_index, PORT_PLC); 1830 usb_wakeup_notification(hcd->self.root_hub, 1831 faked_port_index + 1); 1832 bogus_port_status = true; 1833 goto cleanup; 1834 } 1835 } 1836 1837 /* 1838 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1839 * RExit to a disconnect state). If so, let the the driver know it's 1840 * out of the RExit state. 1841 */ 1842 if (!DEV_SUPERSPEED(temp) && 1843 test_and_clear_bit(faked_port_index, 1844 &bus_state->rexit_ports)) { 1845 complete(&bus_state->rexit_done[faked_port_index]); 1846 bogus_port_status = true; 1847 goto cleanup; 1848 } 1849 1850 if (hcd->speed != HCD_USB3) 1851 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1852 PORT_PLC); 1853 1854 cleanup: 1855 /* Update event ring dequeue pointer before dropping the lock */ 1856 inc_deq(xhci, xhci->event_ring); 1857 1858 /* Don't make the USB core poll the roothub if we got a bad port status 1859 * change event. Besides, at that point we can't tell which roothub 1860 * (USB 2.0 or USB 3.0) to kick. 1861 */ 1862 if (bogus_port_status) 1863 return; 1864 1865 /* 1866 * xHCI port-status-change events occur when the "or" of all the 1867 * status-change bits in the portsc register changes from 0 to 1. 1868 * New status changes won't cause an event if any other change 1869 * bits are still set. When an event occurs, switch over to 1870 * polling to avoid losing status changes. 1871 */ 1872 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1873 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1874 spin_unlock(&xhci->lock); 1875 /* Pass this up to the core */ 1876 usb_hcd_poll_rh_status(hcd); 1877 spin_lock(&xhci->lock); 1878 } 1879 1880 /* 1881 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1882 * at end_trb, which may be in another segment. If the suspect DMA address is a 1883 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1884 * returns 0. 1885 */ 1886 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1887 union xhci_trb *start_trb, 1888 union xhci_trb *end_trb, 1889 dma_addr_t suspect_dma) 1890 { 1891 dma_addr_t start_dma; 1892 dma_addr_t end_seg_dma; 1893 dma_addr_t end_trb_dma; 1894 struct xhci_segment *cur_seg; 1895 1896 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1897 cur_seg = start_seg; 1898 1899 do { 1900 if (start_dma == 0) 1901 return NULL; 1902 /* We may get an event for a Link TRB in the middle of a TD */ 1903 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1904 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1905 /* If the end TRB isn't in this segment, this is set to 0 */ 1906 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1907 1908 if (end_trb_dma > 0) { 1909 /* The end TRB is in this segment, so suspect should be here */ 1910 if (start_dma <= end_trb_dma) { 1911 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1912 return cur_seg; 1913 } else { 1914 /* Case for one segment with 1915 * a TD wrapped around to the top 1916 */ 1917 if ((suspect_dma >= start_dma && 1918 suspect_dma <= end_seg_dma) || 1919 (suspect_dma >= cur_seg->dma && 1920 suspect_dma <= end_trb_dma)) 1921 return cur_seg; 1922 } 1923 return NULL; 1924 } else { 1925 /* Might still be somewhere in this segment */ 1926 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1927 return cur_seg; 1928 } 1929 cur_seg = cur_seg->next; 1930 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1931 } while (cur_seg != start_seg); 1932 1933 return NULL; 1934 } 1935 1936 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1937 unsigned int slot_id, unsigned int ep_index, 1938 unsigned int stream_id, 1939 struct xhci_td *td, union xhci_trb *event_trb) 1940 { 1941 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1942 ep->ep_state |= EP_HALTED; 1943 ep->stopped_td = td; 1944 ep->stopped_trb = event_trb; 1945 ep->stopped_stream = stream_id; 1946 1947 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1948 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1949 1950 ep->stopped_td = NULL; 1951 ep->stopped_trb = NULL; 1952 ep->stopped_stream = 0; 1953 1954 xhci_ring_cmd_db(xhci); 1955 } 1956 1957 /* Check if an error has halted the endpoint ring. The class driver will 1958 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1959 * However, a babble and other errors also halt the endpoint ring, and the class 1960 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1961 * Ring Dequeue Pointer command manually. 1962 */ 1963 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1964 struct xhci_ep_ctx *ep_ctx, 1965 unsigned int trb_comp_code) 1966 { 1967 /* TRB completion codes that may require a manual halt cleanup */ 1968 if (trb_comp_code == COMP_TX_ERR || 1969 trb_comp_code == COMP_BABBLE || 1970 trb_comp_code == COMP_SPLIT_ERR) 1971 /* The 0.96 spec says a babbling control endpoint 1972 * is not halted. The 0.96 spec says it is. Some HW 1973 * claims to be 0.95 compliant, but it halts the control 1974 * endpoint anyway. Check if a babble halted the 1975 * endpoint. 1976 */ 1977 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1978 cpu_to_le32(EP_STATE_HALTED)) 1979 return 1; 1980 1981 return 0; 1982 } 1983 1984 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1985 { 1986 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1987 /* Vendor defined "informational" completion code, 1988 * treat as not-an-error. 1989 */ 1990 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1991 trb_comp_code); 1992 xhci_dbg(xhci, "Treating code as success.\n"); 1993 return 1; 1994 } 1995 return 0; 1996 } 1997 1998 /* 1999 * Finish the td processing, remove the td from td list; 2000 * Return 1 if the urb can be given back. 2001 */ 2002 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 2003 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2004 struct xhci_virt_ep *ep, int *status, bool skip) 2005 { 2006 struct xhci_virt_device *xdev; 2007 struct xhci_ring *ep_ring; 2008 unsigned int slot_id; 2009 int ep_index; 2010 struct urb *urb = NULL; 2011 struct xhci_ep_ctx *ep_ctx; 2012 int ret = 0; 2013 struct urb_priv *urb_priv; 2014 u32 trb_comp_code; 2015 2016 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2017 xdev = xhci->devs[slot_id]; 2018 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2019 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2020 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2021 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2022 2023 if (skip) 2024 goto td_cleanup; 2025 2026 if (trb_comp_code == COMP_STOP_INVAL || 2027 trb_comp_code == COMP_STOP) { 2028 /* The Endpoint Stop Command completion will take care of any 2029 * stopped TDs. A stopped TD may be restarted, so don't update 2030 * the ring dequeue pointer or take this TD off any lists yet. 2031 */ 2032 ep->stopped_td = td; 2033 ep->stopped_trb = event_trb; 2034 return 0; 2035 } else { 2036 if (trb_comp_code == COMP_STALL) { 2037 /* The transfer is completed from the driver's 2038 * perspective, but we need to issue a set dequeue 2039 * command for this stalled endpoint to move the dequeue 2040 * pointer past the TD. We can't do that here because 2041 * the halt condition must be cleared first. Let the 2042 * USB class driver clear the stall later. 2043 */ 2044 ep->stopped_td = td; 2045 ep->stopped_trb = event_trb; 2046 ep->stopped_stream = ep_ring->stream_id; 2047 } else if (xhci_requires_manual_halt_cleanup(xhci, 2048 ep_ctx, trb_comp_code)) { 2049 /* Other types of errors halt the endpoint, but the 2050 * class driver doesn't call usb_reset_endpoint() unless 2051 * the error is -EPIPE. Clear the halted status in the 2052 * xHCI hardware manually. 2053 */ 2054 xhci_cleanup_halted_endpoint(xhci, 2055 slot_id, ep_index, ep_ring->stream_id, 2056 td, event_trb); 2057 } else { 2058 /* Update ring dequeue pointer */ 2059 while (ep_ring->dequeue != td->last_trb) 2060 inc_deq(xhci, ep_ring); 2061 inc_deq(xhci, ep_ring); 2062 } 2063 2064 td_cleanup: 2065 /* Clean up the endpoint's TD list */ 2066 urb = td->urb; 2067 urb_priv = urb->hcpriv; 2068 2069 /* Do one last check of the actual transfer length. 2070 * If the host controller said we transferred more data than 2071 * the buffer length, urb->actual_length will be a very big 2072 * number (since it's unsigned). Play it safe and say we didn't 2073 * transfer anything. 2074 */ 2075 if (urb->actual_length > urb->transfer_buffer_length) { 2076 xhci_warn(xhci, "URB transfer length is wrong, " 2077 "xHC issue? req. len = %u, " 2078 "act. len = %u\n", 2079 urb->transfer_buffer_length, 2080 urb->actual_length); 2081 urb->actual_length = 0; 2082 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2083 *status = -EREMOTEIO; 2084 else 2085 *status = 0; 2086 } 2087 list_del_init(&td->td_list); 2088 /* Was this TD slated to be cancelled but completed anyway? */ 2089 if (!list_empty(&td->cancelled_td_list)) 2090 list_del_init(&td->cancelled_td_list); 2091 2092 urb_priv->td_cnt++; 2093 /* Giveback the urb when all the tds are completed */ 2094 if (urb_priv->td_cnt == urb_priv->length) { 2095 ret = 1; 2096 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2097 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 2098 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 2099 == 0) { 2100 if (xhci->quirks & XHCI_AMD_PLL_FIX) 2101 usb_amd_quirk_pll_enable(); 2102 } 2103 } 2104 } 2105 } 2106 2107 return ret; 2108 } 2109 2110 /* 2111 * Process control tds, update urb status and actual_length. 2112 */ 2113 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2114 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2115 struct xhci_virt_ep *ep, int *status) 2116 { 2117 struct xhci_virt_device *xdev; 2118 struct xhci_ring *ep_ring; 2119 unsigned int slot_id; 2120 int ep_index; 2121 struct xhci_ep_ctx *ep_ctx; 2122 u32 trb_comp_code; 2123 2124 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2125 xdev = xhci->devs[slot_id]; 2126 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2127 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2128 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2129 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2130 2131 switch (trb_comp_code) { 2132 case COMP_SUCCESS: 2133 if (event_trb == ep_ring->dequeue) { 2134 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2135 "without IOC set??\n"); 2136 *status = -ESHUTDOWN; 2137 } else if (event_trb != td->last_trb) { 2138 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2139 "without IOC set??\n"); 2140 *status = -ESHUTDOWN; 2141 } else { 2142 *status = 0; 2143 } 2144 break; 2145 case COMP_SHORT_TX: 2146 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2147 *status = -EREMOTEIO; 2148 else 2149 *status = 0; 2150 break; 2151 case COMP_STOP_INVAL: 2152 case COMP_STOP: 2153 return finish_td(xhci, td, event_trb, event, ep, status, false); 2154 default: 2155 if (!xhci_requires_manual_halt_cleanup(xhci, 2156 ep_ctx, trb_comp_code)) 2157 break; 2158 xhci_dbg(xhci, "TRB error code %u, " 2159 "halted endpoint index = %u\n", 2160 trb_comp_code, ep_index); 2161 /* else fall through */ 2162 case COMP_STALL: 2163 /* Did we transfer part of the data (middle) phase? */ 2164 if (event_trb != ep_ring->dequeue && 2165 event_trb != td->last_trb) 2166 td->urb->actual_length = 2167 td->urb->transfer_buffer_length - 2168 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2169 else 2170 td->urb->actual_length = 0; 2171 2172 xhci_cleanup_halted_endpoint(xhci, 2173 slot_id, ep_index, 0, td, event_trb); 2174 return finish_td(xhci, td, event_trb, event, ep, status, true); 2175 } 2176 /* 2177 * Did we transfer any data, despite the errors that might have 2178 * happened? I.e. did we get past the setup stage? 2179 */ 2180 if (event_trb != ep_ring->dequeue) { 2181 /* The event was for the status stage */ 2182 if (event_trb == td->last_trb) { 2183 if (td->urb->actual_length != 0) { 2184 /* Don't overwrite a previously set error code 2185 */ 2186 if ((*status == -EINPROGRESS || *status == 0) && 2187 (td->urb->transfer_flags 2188 & URB_SHORT_NOT_OK)) 2189 /* Did we already see a short data 2190 * stage? */ 2191 *status = -EREMOTEIO; 2192 } else { 2193 td->urb->actual_length = 2194 td->urb->transfer_buffer_length; 2195 } 2196 } else { 2197 /* Maybe the event was for the data stage? */ 2198 td->urb->actual_length = 2199 td->urb->transfer_buffer_length - 2200 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2201 xhci_dbg(xhci, "Waiting for status " 2202 "stage event\n"); 2203 return 0; 2204 } 2205 } 2206 2207 return finish_td(xhci, td, event_trb, event, ep, status, false); 2208 } 2209 2210 /* 2211 * Process isochronous tds, update urb packet status and actual_length. 2212 */ 2213 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2214 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2215 struct xhci_virt_ep *ep, int *status) 2216 { 2217 struct xhci_ring *ep_ring; 2218 struct urb_priv *urb_priv; 2219 int idx; 2220 int len = 0; 2221 union xhci_trb *cur_trb; 2222 struct xhci_segment *cur_seg; 2223 struct usb_iso_packet_descriptor *frame; 2224 u32 trb_comp_code; 2225 bool skip_td = false; 2226 2227 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2228 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2229 urb_priv = td->urb->hcpriv; 2230 idx = urb_priv->td_cnt; 2231 frame = &td->urb->iso_frame_desc[idx]; 2232 2233 /* handle completion code */ 2234 switch (trb_comp_code) { 2235 case COMP_SUCCESS: 2236 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2237 frame->status = 0; 2238 break; 2239 } 2240 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2241 trb_comp_code = COMP_SHORT_TX; 2242 case COMP_SHORT_TX: 2243 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2244 -EREMOTEIO : 0; 2245 break; 2246 case COMP_BW_OVER: 2247 frame->status = -ECOMM; 2248 skip_td = true; 2249 break; 2250 case COMP_BUFF_OVER: 2251 case COMP_BABBLE: 2252 frame->status = -EOVERFLOW; 2253 skip_td = true; 2254 break; 2255 case COMP_DEV_ERR: 2256 case COMP_STALL: 2257 case COMP_TX_ERR: 2258 frame->status = -EPROTO; 2259 skip_td = true; 2260 break; 2261 case COMP_STOP: 2262 case COMP_STOP_INVAL: 2263 break; 2264 default: 2265 frame->status = -1; 2266 break; 2267 } 2268 2269 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2270 frame->actual_length = frame->length; 2271 td->urb->actual_length += frame->length; 2272 } else { 2273 for (cur_trb = ep_ring->dequeue, 2274 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2275 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2276 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2277 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2278 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2279 } 2280 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2281 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2282 2283 if (trb_comp_code != COMP_STOP_INVAL) { 2284 frame->actual_length = len; 2285 td->urb->actual_length += len; 2286 } 2287 } 2288 2289 return finish_td(xhci, td, event_trb, event, ep, status, false); 2290 } 2291 2292 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2293 struct xhci_transfer_event *event, 2294 struct xhci_virt_ep *ep, int *status) 2295 { 2296 struct xhci_ring *ep_ring; 2297 struct urb_priv *urb_priv; 2298 struct usb_iso_packet_descriptor *frame; 2299 int idx; 2300 2301 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2302 urb_priv = td->urb->hcpriv; 2303 idx = urb_priv->td_cnt; 2304 frame = &td->urb->iso_frame_desc[idx]; 2305 2306 /* The transfer is partly done. */ 2307 frame->status = -EXDEV; 2308 2309 /* calc actual length */ 2310 frame->actual_length = 0; 2311 2312 /* Update ring dequeue pointer */ 2313 while (ep_ring->dequeue != td->last_trb) 2314 inc_deq(xhci, ep_ring); 2315 inc_deq(xhci, ep_ring); 2316 2317 return finish_td(xhci, td, NULL, event, ep, status, true); 2318 } 2319 2320 /* 2321 * Process bulk and interrupt tds, update urb status and actual_length. 2322 */ 2323 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2324 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2325 struct xhci_virt_ep *ep, int *status) 2326 { 2327 struct xhci_ring *ep_ring; 2328 union xhci_trb *cur_trb; 2329 struct xhci_segment *cur_seg; 2330 u32 trb_comp_code; 2331 2332 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2333 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2334 2335 switch (trb_comp_code) { 2336 case COMP_SUCCESS: 2337 /* Double check that the HW transferred everything. */ 2338 if (event_trb != td->last_trb || 2339 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2340 xhci_warn(xhci, "WARN Successful completion " 2341 "on short TX\n"); 2342 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2343 *status = -EREMOTEIO; 2344 else 2345 *status = 0; 2346 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2347 trb_comp_code = COMP_SHORT_TX; 2348 } else { 2349 *status = 0; 2350 } 2351 break; 2352 case COMP_SHORT_TX: 2353 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2354 *status = -EREMOTEIO; 2355 else 2356 *status = 0; 2357 break; 2358 default: 2359 /* Others already handled above */ 2360 break; 2361 } 2362 if (trb_comp_code == COMP_SHORT_TX) 2363 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2364 "%d bytes untransferred\n", 2365 td->urb->ep->desc.bEndpointAddress, 2366 td->urb->transfer_buffer_length, 2367 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2368 /* Fast path - was this the last TRB in the TD for this URB? */ 2369 if (event_trb == td->last_trb) { 2370 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2371 td->urb->actual_length = 2372 td->urb->transfer_buffer_length - 2373 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2374 if (td->urb->transfer_buffer_length < 2375 td->urb->actual_length) { 2376 xhci_warn(xhci, "HC gave bad length " 2377 "of %d bytes left\n", 2378 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2379 td->urb->actual_length = 0; 2380 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2381 *status = -EREMOTEIO; 2382 else 2383 *status = 0; 2384 } 2385 /* Don't overwrite a previously set error code */ 2386 if (*status == -EINPROGRESS) { 2387 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2388 *status = -EREMOTEIO; 2389 else 2390 *status = 0; 2391 } 2392 } else { 2393 td->urb->actual_length = 2394 td->urb->transfer_buffer_length; 2395 /* Ignore a short packet completion if the 2396 * untransferred length was zero. 2397 */ 2398 if (*status == -EREMOTEIO) 2399 *status = 0; 2400 } 2401 } else { 2402 /* Slow path - walk the list, starting from the dequeue 2403 * pointer, to get the actual length transferred. 2404 */ 2405 td->urb->actual_length = 0; 2406 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2407 cur_trb != event_trb; 2408 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2409 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2410 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2411 td->urb->actual_length += 2412 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2413 } 2414 /* If the ring didn't stop on a Link or No-op TRB, add 2415 * in the actual bytes transferred from the Normal TRB 2416 */ 2417 if (trb_comp_code != COMP_STOP_INVAL) 2418 td->urb->actual_length += 2419 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2420 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2421 } 2422 2423 return finish_td(xhci, td, event_trb, event, ep, status, false); 2424 } 2425 2426 /* 2427 * If this function returns an error condition, it means it got a Transfer 2428 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2429 * At this point, the host controller is probably hosed and should be reset. 2430 */ 2431 static int handle_tx_event(struct xhci_hcd *xhci, 2432 struct xhci_transfer_event *event) 2433 __releases(&xhci->lock) 2434 __acquires(&xhci->lock) 2435 { 2436 struct xhci_virt_device *xdev; 2437 struct xhci_virt_ep *ep; 2438 struct xhci_ring *ep_ring; 2439 unsigned int slot_id; 2440 int ep_index; 2441 struct xhci_td *td = NULL; 2442 dma_addr_t event_dma; 2443 struct xhci_segment *event_seg; 2444 union xhci_trb *event_trb; 2445 struct urb *urb = NULL; 2446 int status = -EINPROGRESS; 2447 struct urb_priv *urb_priv; 2448 struct xhci_ep_ctx *ep_ctx; 2449 struct list_head *tmp; 2450 u32 trb_comp_code; 2451 int ret = 0; 2452 int td_num = 0; 2453 2454 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2455 xdev = xhci->devs[slot_id]; 2456 if (!xdev) { 2457 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2458 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2459 (unsigned long long) xhci_trb_virt_to_dma( 2460 xhci->event_ring->deq_seg, 2461 xhci->event_ring->dequeue), 2462 lower_32_bits(le64_to_cpu(event->buffer)), 2463 upper_32_bits(le64_to_cpu(event->buffer)), 2464 le32_to_cpu(event->transfer_len), 2465 le32_to_cpu(event->flags)); 2466 xhci_dbg(xhci, "Event ring:\n"); 2467 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2468 return -ENODEV; 2469 } 2470 2471 /* Endpoint ID is 1 based, our index is zero based */ 2472 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2473 ep = &xdev->eps[ep_index]; 2474 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2475 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2476 if (!ep_ring || 2477 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2478 EP_STATE_DISABLED) { 2479 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2480 "or incorrect stream ring\n"); 2481 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2482 (unsigned long long) xhci_trb_virt_to_dma( 2483 xhci->event_ring->deq_seg, 2484 xhci->event_ring->dequeue), 2485 lower_32_bits(le64_to_cpu(event->buffer)), 2486 upper_32_bits(le64_to_cpu(event->buffer)), 2487 le32_to_cpu(event->transfer_len), 2488 le32_to_cpu(event->flags)); 2489 xhci_dbg(xhci, "Event ring:\n"); 2490 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2491 return -ENODEV; 2492 } 2493 2494 /* Count current td numbers if ep->skip is set */ 2495 if (ep->skip) { 2496 list_for_each(tmp, &ep_ring->td_list) 2497 td_num++; 2498 } 2499 2500 event_dma = le64_to_cpu(event->buffer); 2501 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2502 /* Look for common error cases */ 2503 switch (trb_comp_code) { 2504 /* Skip codes that require special handling depending on 2505 * transfer type 2506 */ 2507 case COMP_SUCCESS: 2508 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2509 break; 2510 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2511 trb_comp_code = COMP_SHORT_TX; 2512 else 2513 xhci_warn_ratelimited(xhci, 2514 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2515 case COMP_SHORT_TX: 2516 break; 2517 case COMP_STOP: 2518 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2519 break; 2520 case COMP_STOP_INVAL: 2521 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2522 break; 2523 case COMP_STALL: 2524 xhci_dbg(xhci, "Stalled endpoint\n"); 2525 ep->ep_state |= EP_HALTED; 2526 status = -EPIPE; 2527 break; 2528 case COMP_TRB_ERR: 2529 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2530 status = -EILSEQ; 2531 break; 2532 case COMP_SPLIT_ERR: 2533 case COMP_TX_ERR: 2534 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2535 status = -EPROTO; 2536 break; 2537 case COMP_BABBLE: 2538 xhci_dbg(xhci, "Babble error on endpoint\n"); 2539 status = -EOVERFLOW; 2540 break; 2541 case COMP_DB_ERR: 2542 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2543 status = -ENOSR; 2544 break; 2545 case COMP_BW_OVER: 2546 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2547 break; 2548 case COMP_BUFF_OVER: 2549 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2550 break; 2551 case COMP_UNDERRUN: 2552 /* 2553 * When the Isoch ring is empty, the xHC will generate 2554 * a Ring Overrun Event for IN Isoch endpoint or Ring 2555 * Underrun Event for OUT Isoch endpoint. 2556 */ 2557 xhci_dbg(xhci, "underrun event on endpoint\n"); 2558 if (!list_empty(&ep_ring->td_list)) 2559 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2560 "still with TDs queued?\n", 2561 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2562 ep_index); 2563 goto cleanup; 2564 case COMP_OVERRUN: 2565 xhci_dbg(xhci, "overrun event on endpoint\n"); 2566 if (!list_empty(&ep_ring->td_list)) 2567 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2568 "still with TDs queued?\n", 2569 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2570 ep_index); 2571 goto cleanup; 2572 case COMP_DEV_ERR: 2573 xhci_warn(xhci, "WARN: detect an incompatible device"); 2574 status = -EPROTO; 2575 break; 2576 case COMP_MISSED_INT: 2577 /* 2578 * When encounter missed service error, one or more isoc tds 2579 * may be missed by xHC. 2580 * Set skip flag of the ep_ring; Complete the missed tds as 2581 * short transfer when process the ep_ring next time. 2582 */ 2583 ep->skip = true; 2584 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2585 goto cleanup; 2586 default: 2587 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2588 status = 0; 2589 break; 2590 } 2591 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2592 "busted\n"); 2593 goto cleanup; 2594 } 2595 2596 do { 2597 /* This TRB should be in the TD at the head of this ring's 2598 * TD list. 2599 */ 2600 if (list_empty(&ep_ring->td_list)) { 2601 /* 2602 * A stopped endpoint may generate an extra completion 2603 * event if the device was suspended. Don't print 2604 * warnings. 2605 */ 2606 if (!(trb_comp_code == COMP_STOP || 2607 trb_comp_code == COMP_STOP_INVAL)) { 2608 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2609 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2610 ep_index); 2611 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2612 (le32_to_cpu(event->flags) & 2613 TRB_TYPE_BITMASK)>>10); 2614 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2615 } 2616 if (ep->skip) { 2617 ep->skip = false; 2618 xhci_dbg(xhci, "td_list is empty while skip " 2619 "flag set. Clear skip flag.\n"); 2620 } 2621 ret = 0; 2622 goto cleanup; 2623 } 2624 2625 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2626 if (ep->skip && td_num == 0) { 2627 ep->skip = false; 2628 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2629 "Clear skip flag.\n"); 2630 ret = 0; 2631 goto cleanup; 2632 } 2633 2634 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2635 if (ep->skip) 2636 td_num--; 2637 2638 /* Is this a TRB in the currently executing TD? */ 2639 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2640 td->last_trb, event_dma); 2641 2642 /* 2643 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2644 * is not in the current TD pointed by ep_ring->dequeue because 2645 * that the hardware dequeue pointer still at the previous TRB 2646 * of the current TD. The previous TRB maybe a Link TD or the 2647 * last TRB of the previous TD. The command completion handle 2648 * will take care the rest. 2649 */ 2650 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2651 ret = 0; 2652 goto cleanup; 2653 } 2654 2655 if (!event_seg) { 2656 if (!ep->skip || 2657 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2658 /* Some host controllers give a spurious 2659 * successful event after a short transfer. 2660 * Ignore it. 2661 */ 2662 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2663 ep_ring->last_td_was_short) { 2664 ep_ring->last_td_was_short = false; 2665 ret = 0; 2666 goto cleanup; 2667 } 2668 /* HC is busted, give up! */ 2669 xhci_err(xhci, 2670 "ERROR Transfer event TRB DMA ptr not " 2671 "part of current TD\n"); 2672 return -ESHUTDOWN; 2673 } 2674 2675 ret = skip_isoc_td(xhci, td, event, ep, &status); 2676 goto cleanup; 2677 } 2678 if (trb_comp_code == COMP_SHORT_TX) 2679 ep_ring->last_td_was_short = true; 2680 else 2681 ep_ring->last_td_was_short = false; 2682 2683 if (ep->skip) { 2684 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2685 ep->skip = false; 2686 } 2687 2688 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2689 sizeof(*event_trb)]; 2690 /* 2691 * No-op TRB should not trigger interrupts. 2692 * If event_trb is a no-op TRB, it means the 2693 * corresponding TD has been cancelled. Just ignore 2694 * the TD. 2695 */ 2696 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2697 xhci_dbg(xhci, 2698 "event_trb is a no-op TRB. Skip it\n"); 2699 goto cleanup; 2700 } 2701 2702 /* Now update the urb's actual_length and give back to 2703 * the core 2704 */ 2705 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2706 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2707 &status); 2708 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2709 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2710 &status); 2711 else 2712 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2713 ep, &status); 2714 2715 cleanup: 2716 /* 2717 * Do not update event ring dequeue pointer if ep->skip is set. 2718 * Will roll back to continue process missed tds. 2719 */ 2720 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2721 inc_deq(xhci, xhci->event_ring); 2722 } 2723 2724 if (ret) { 2725 urb = td->urb; 2726 urb_priv = urb->hcpriv; 2727 /* Leave the TD around for the reset endpoint function 2728 * to use(but only if it's not a control endpoint, 2729 * since we already queued the Set TR dequeue pointer 2730 * command for stalled control endpoints). 2731 */ 2732 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2733 (trb_comp_code != COMP_STALL && 2734 trb_comp_code != COMP_BABBLE)) 2735 xhci_urb_free_priv(xhci, urb_priv); 2736 else 2737 kfree(urb_priv); 2738 2739 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2740 if ((urb->actual_length != urb->transfer_buffer_length && 2741 (urb->transfer_flags & 2742 URB_SHORT_NOT_OK)) || 2743 (status != 0 && 2744 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2745 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2746 "expected = %d, status = %d\n", 2747 urb, urb->actual_length, 2748 urb->transfer_buffer_length, 2749 status); 2750 spin_unlock(&xhci->lock); 2751 /* EHCI, UHCI, and OHCI always unconditionally set the 2752 * urb->status of an isochronous endpoint to 0. 2753 */ 2754 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2755 status = 0; 2756 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2757 spin_lock(&xhci->lock); 2758 } 2759 2760 /* 2761 * If ep->skip is set, it means there are missed tds on the 2762 * endpoint ring need to take care of. 2763 * Process them as short transfer until reach the td pointed by 2764 * the event. 2765 */ 2766 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2767 2768 return 0; 2769 } 2770 2771 /* 2772 * This function handles all OS-owned events on the event ring. It may drop 2773 * xhci->lock between event processing (e.g. to pass up port status changes). 2774 * Returns >0 for "possibly more events to process" (caller should call again), 2775 * otherwise 0 if done. In future, <0 returns should indicate error code. 2776 */ 2777 static int xhci_handle_event(struct xhci_hcd *xhci) 2778 { 2779 union xhci_trb *event; 2780 int update_ptrs = 1; 2781 int ret; 2782 2783 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2784 xhci->error_bitmask |= 1 << 1; 2785 return 0; 2786 } 2787 2788 event = xhci->event_ring->dequeue; 2789 /* Does the HC or OS own the TRB? */ 2790 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2791 xhci->event_ring->cycle_state) { 2792 xhci->error_bitmask |= 1 << 2; 2793 return 0; 2794 } 2795 2796 /* 2797 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2798 * speculative reads of the event's flags/data below. 2799 */ 2800 rmb(); 2801 /* FIXME: Handle more event types. */ 2802 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2803 case TRB_TYPE(TRB_COMPLETION): 2804 handle_cmd_completion(xhci, &event->event_cmd); 2805 break; 2806 case TRB_TYPE(TRB_PORT_STATUS): 2807 handle_port_status(xhci, event); 2808 update_ptrs = 0; 2809 break; 2810 case TRB_TYPE(TRB_TRANSFER): 2811 ret = handle_tx_event(xhci, &event->trans_event); 2812 if (ret < 0) 2813 xhci->error_bitmask |= 1 << 9; 2814 else 2815 update_ptrs = 0; 2816 break; 2817 case TRB_TYPE(TRB_DEV_NOTE): 2818 handle_device_notification(xhci, event); 2819 break; 2820 default: 2821 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2822 TRB_TYPE(48)) 2823 handle_vendor_event(xhci, event); 2824 else 2825 xhci->error_bitmask |= 1 << 3; 2826 } 2827 /* Any of the above functions may drop and re-acquire the lock, so check 2828 * to make sure a watchdog timer didn't mark the host as non-responsive. 2829 */ 2830 if (xhci->xhc_state & XHCI_STATE_DYING) { 2831 xhci_dbg(xhci, "xHCI host dying, returning from " 2832 "event handler.\n"); 2833 return 0; 2834 } 2835 2836 if (update_ptrs) 2837 /* Update SW event ring dequeue pointer */ 2838 inc_deq(xhci, xhci->event_ring); 2839 2840 /* Are there more items on the event ring? Caller will call us again to 2841 * check. 2842 */ 2843 return 1; 2844 } 2845 2846 /* 2847 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2848 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2849 * indicators of an event TRB error, but we check the status *first* to be safe. 2850 */ 2851 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2852 { 2853 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2854 u32 status; 2855 u64 temp_64; 2856 union xhci_trb *event_ring_deq; 2857 dma_addr_t deq; 2858 2859 spin_lock(&xhci->lock); 2860 /* Check if the xHC generated the interrupt, or the irq is shared */ 2861 status = readl(&xhci->op_regs->status); 2862 if (status == 0xffffffff) 2863 goto hw_died; 2864 2865 if (!(status & STS_EINT)) { 2866 spin_unlock(&xhci->lock); 2867 return IRQ_NONE; 2868 } 2869 if (status & STS_FATAL) { 2870 xhci_warn(xhci, "WARNING: Host System Error\n"); 2871 xhci_halt(xhci); 2872 hw_died: 2873 spin_unlock(&xhci->lock); 2874 return -ESHUTDOWN; 2875 } 2876 2877 /* 2878 * Clear the op reg interrupt status first, 2879 * so we can receive interrupts from other MSI-X interrupters. 2880 * Write 1 to clear the interrupt status. 2881 */ 2882 status |= STS_EINT; 2883 writel(status, &xhci->op_regs->status); 2884 /* FIXME when MSI-X is supported and there are multiple vectors */ 2885 /* Clear the MSI-X event interrupt status */ 2886 2887 if (hcd->irq) { 2888 u32 irq_pending; 2889 /* Acknowledge the PCI interrupt */ 2890 irq_pending = readl(&xhci->ir_set->irq_pending); 2891 irq_pending |= IMAN_IP; 2892 writel(irq_pending, &xhci->ir_set->irq_pending); 2893 } 2894 2895 if (xhci->xhc_state & XHCI_STATE_DYING) { 2896 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2897 "Shouldn't IRQs be disabled?\n"); 2898 /* Clear the event handler busy flag (RW1C); 2899 * the event ring should be empty. 2900 */ 2901 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2902 xhci_write_64(xhci, temp_64 | ERST_EHB, 2903 &xhci->ir_set->erst_dequeue); 2904 spin_unlock(&xhci->lock); 2905 2906 return IRQ_HANDLED; 2907 } 2908 2909 event_ring_deq = xhci->event_ring->dequeue; 2910 /* FIXME this should be a delayed service routine 2911 * that clears the EHB. 2912 */ 2913 while (xhci_handle_event(xhci) > 0) {} 2914 2915 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2916 /* If necessary, update the HW's version of the event ring deq ptr. */ 2917 if (event_ring_deq != xhci->event_ring->dequeue) { 2918 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2919 xhci->event_ring->dequeue); 2920 if (deq == 0) 2921 xhci_warn(xhci, "WARN something wrong with SW event " 2922 "ring dequeue ptr.\n"); 2923 /* Update HC event ring dequeue pointer */ 2924 temp_64 &= ERST_PTR_MASK; 2925 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2926 } 2927 2928 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2929 temp_64 |= ERST_EHB; 2930 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2931 2932 spin_unlock(&xhci->lock); 2933 2934 return IRQ_HANDLED; 2935 } 2936 2937 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2938 { 2939 return xhci_irq(hcd); 2940 } 2941 2942 /**** Endpoint Ring Operations ****/ 2943 2944 /* 2945 * Generic function for queueing a TRB on a ring. 2946 * The caller must have checked to make sure there's room on the ring. 2947 * 2948 * @more_trbs_coming: Will you enqueue more TRBs before calling 2949 * prepare_transfer()? 2950 */ 2951 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2952 bool more_trbs_coming, 2953 u32 field1, u32 field2, u32 field3, u32 field4) 2954 { 2955 struct xhci_generic_trb *trb; 2956 2957 trb = &ring->enqueue->generic; 2958 trb->field[0] = cpu_to_le32(field1); 2959 trb->field[1] = cpu_to_le32(field2); 2960 trb->field[2] = cpu_to_le32(field3); 2961 trb->field[3] = cpu_to_le32(field4); 2962 inc_enq(xhci, ring, more_trbs_coming); 2963 } 2964 2965 /* 2966 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2967 * FIXME allocate segments if the ring is full. 2968 */ 2969 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2970 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2971 { 2972 unsigned int num_trbs_needed; 2973 2974 /* Make sure the endpoint has been added to xHC schedule */ 2975 switch (ep_state) { 2976 case EP_STATE_DISABLED: 2977 /* 2978 * USB core changed config/interfaces without notifying us, 2979 * or hardware is reporting the wrong state. 2980 */ 2981 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2982 return -ENOENT; 2983 case EP_STATE_ERROR: 2984 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2985 /* FIXME event handling code for error needs to clear it */ 2986 /* XXX not sure if this should be -ENOENT or not */ 2987 return -EINVAL; 2988 case EP_STATE_HALTED: 2989 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2990 case EP_STATE_STOPPED: 2991 case EP_STATE_RUNNING: 2992 break; 2993 default: 2994 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2995 /* 2996 * FIXME issue Configure Endpoint command to try to get the HC 2997 * back into a known state. 2998 */ 2999 return -EINVAL; 3000 } 3001 3002 while (1) { 3003 if (room_on_ring(xhci, ep_ring, num_trbs)) 3004 break; 3005 3006 if (ep_ring == xhci->cmd_ring) { 3007 xhci_err(xhci, "Do not support expand command ring\n"); 3008 return -ENOMEM; 3009 } 3010 3011 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3012 "ERROR no room on ep ring, try ring expansion"); 3013 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3014 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3015 mem_flags)) { 3016 xhci_err(xhci, "Ring expansion failed\n"); 3017 return -ENOMEM; 3018 } 3019 } 3020 3021 if (enqueue_is_link_trb(ep_ring)) { 3022 struct xhci_ring *ring = ep_ring; 3023 union xhci_trb *next; 3024 3025 next = ring->enqueue; 3026 3027 while (last_trb(xhci, ring, ring->enq_seg, next)) { 3028 /* If we're not dealing with 0.95 hardware or isoc rings 3029 * on AMD 0.96 host, clear the chain bit. 3030 */ 3031 if (!xhci_link_trb_quirk(xhci) && 3032 !(ring->type == TYPE_ISOC && 3033 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3034 next->link.control &= cpu_to_le32(~TRB_CHAIN); 3035 else 3036 next->link.control |= cpu_to_le32(TRB_CHAIN); 3037 3038 wmb(); 3039 next->link.control ^= cpu_to_le32(TRB_CYCLE); 3040 3041 /* Toggle the cycle bit after the last ring segment. */ 3042 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 3043 ring->cycle_state = (ring->cycle_state ? 0 : 1); 3044 } 3045 ring->enq_seg = ring->enq_seg->next; 3046 ring->enqueue = ring->enq_seg->trbs; 3047 next = ring->enqueue; 3048 } 3049 } 3050 3051 return 0; 3052 } 3053 3054 static int prepare_transfer(struct xhci_hcd *xhci, 3055 struct xhci_virt_device *xdev, 3056 unsigned int ep_index, 3057 unsigned int stream_id, 3058 unsigned int num_trbs, 3059 struct urb *urb, 3060 unsigned int td_index, 3061 gfp_t mem_flags) 3062 { 3063 int ret; 3064 struct urb_priv *urb_priv; 3065 struct xhci_td *td; 3066 struct xhci_ring *ep_ring; 3067 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3068 3069 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3070 if (!ep_ring) { 3071 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3072 stream_id); 3073 return -EINVAL; 3074 } 3075 3076 ret = prepare_ring(xhci, ep_ring, 3077 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3078 num_trbs, mem_flags); 3079 if (ret) 3080 return ret; 3081 3082 urb_priv = urb->hcpriv; 3083 td = urb_priv->td[td_index]; 3084 3085 INIT_LIST_HEAD(&td->td_list); 3086 INIT_LIST_HEAD(&td->cancelled_td_list); 3087 3088 if (td_index == 0) { 3089 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3090 if (unlikely(ret)) 3091 return ret; 3092 } 3093 3094 td->urb = urb; 3095 /* Add this TD to the tail of the endpoint ring's TD list */ 3096 list_add_tail(&td->td_list, &ep_ring->td_list); 3097 td->start_seg = ep_ring->enq_seg; 3098 td->first_trb = ep_ring->enqueue; 3099 3100 urb_priv->td[td_index] = td; 3101 3102 return 0; 3103 } 3104 3105 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3106 { 3107 int num_sgs, num_trbs, running_total, temp, i; 3108 struct scatterlist *sg; 3109 3110 sg = NULL; 3111 num_sgs = urb->num_mapped_sgs; 3112 temp = urb->transfer_buffer_length; 3113 3114 num_trbs = 0; 3115 for_each_sg(urb->sg, sg, num_sgs, i) { 3116 unsigned int len = sg_dma_len(sg); 3117 3118 /* Scatter gather list entries may cross 64KB boundaries */ 3119 running_total = TRB_MAX_BUFF_SIZE - 3120 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3121 running_total &= TRB_MAX_BUFF_SIZE - 1; 3122 if (running_total != 0) 3123 num_trbs++; 3124 3125 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3126 while (running_total < sg_dma_len(sg) && running_total < temp) { 3127 num_trbs++; 3128 running_total += TRB_MAX_BUFF_SIZE; 3129 } 3130 len = min_t(int, len, temp); 3131 temp -= len; 3132 if (temp == 0) 3133 break; 3134 } 3135 return num_trbs; 3136 } 3137 3138 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3139 { 3140 if (num_trbs != 0) 3141 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3142 "TRBs, %d left\n", __func__, 3143 urb->ep->desc.bEndpointAddress, num_trbs); 3144 if (running_total != urb->transfer_buffer_length) 3145 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3146 "queued %#x (%d), asked for %#x (%d)\n", 3147 __func__, 3148 urb->ep->desc.bEndpointAddress, 3149 running_total, running_total, 3150 urb->transfer_buffer_length, 3151 urb->transfer_buffer_length); 3152 } 3153 3154 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3155 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3156 struct xhci_generic_trb *start_trb) 3157 { 3158 /* 3159 * Pass all the TRBs to the hardware at once and make sure this write 3160 * isn't reordered. 3161 */ 3162 wmb(); 3163 if (start_cycle) 3164 start_trb->field[3] |= cpu_to_le32(start_cycle); 3165 else 3166 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3167 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3168 } 3169 3170 /* 3171 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3172 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3173 * (comprised of sg list entries) can take several service intervals to 3174 * transmit. 3175 */ 3176 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3177 struct urb *urb, int slot_id, unsigned int ep_index) 3178 { 3179 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3180 xhci->devs[slot_id]->out_ctx, ep_index); 3181 int xhci_interval; 3182 int ep_interval; 3183 3184 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3185 ep_interval = urb->interval; 3186 /* Convert to microframes */ 3187 if (urb->dev->speed == USB_SPEED_LOW || 3188 urb->dev->speed == USB_SPEED_FULL) 3189 ep_interval *= 8; 3190 /* FIXME change this to a warning and a suggestion to use the new API 3191 * to set the polling interval (once the API is added). 3192 */ 3193 if (xhci_interval != ep_interval) { 3194 dev_dbg_ratelimited(&urb->dev->dev, 3195 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3196 ep_interval, ep_interval == 1 ? "" : "s", 3197 xhci_interval, xhci_interval == 1 ? "" : "s"); 3198 urb->interval = xhci_interval; 3199 /* Convert back to frames for LS/FS devices */ 3200 if (urb->dev->speed == USB_SPEED_LOW || 3201 urb->dev->speed == USB_SPEED_FULL) 3202 urb->interval /= 8; 3203 } 3204 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3205 } 3206 3207 /* 3208 * The TD size is the number of bytes remaining in the TD (including this TRB), 3209 * right shifted by 10. 3210 * It must fit in bits 21:17, so it can't be bigger than 31. 3211 */ 3212 static u32 xhci_td_remainder(unsigned int remainder) 3213 { 3214 u32 max = (1 << (21 - 17 + 1)) - 1; 3215 3216 if ((remainder >> 10) >= max) 3217 return max << 17; 3218 else 3219 return (remainder >> 10) << 17; 3220 } 3221 3222 /* 3223 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3224 * packets remaining in the TD (*not* including this TRB). 3225 * 3226 * Total TD packet count = total_packet_count = 3227 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3228 * 3229 * Packets transferred up to and including this TRB = packets_transferred = 3230 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3231 * 3232 * TD size = total_packet_count - packets_transferred 3233 * 3234 * It must fit in bits 21:17, so it can't be bigger than 31. 3235 * The last TRB in a TD must have the TD size set to zero. 3236 */ 3237 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3238 unsigned int total_packet_count, struct urb *urb, 3239 unsigned int num_trbs_left) 3240 { 3241 int packets_transferred; 3242 3243 /* One TRB with a zero-length data packet. */ 3244 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3245 return 0; 3246 3247 /* All the TRB queueing functions don't count the current TRB in 3248 * running_total. 3249 */ 3250 packets_transferred = (running_total + trb_buff_len) / 3251 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3252 3253 if ((total_packet_count - packets_transferred) > 31) 3254 return 31 << 17; 3255 return (total_packet_count - packets_transferred) << 17; 3256 } 3257 3258 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3259 struct urb *urb, int slot_id, unsigned int ep_index) 3260 { 3261 struct xhci_ring *ep_ring; 3262 unsigned int num_trbs; 3263 struct urb_priv *urb_priv; 3264 struct xhci_td *td; 3265 struct scatterlist *sg; 3266 int num_sgs; 3267 int trb_buff_len, this_sg_len, running_total; 3268 unsigned int total_packet_count; 3269 bool first_trb; 3270 u64 addr; 3271 bool more_trbs_coming; 3272 3273 struct xhci_generic_trb *start_trb; 3274 int start_cycle; 3275 3276 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3277 if (!ep_ring) 3278 return -EINVAL; 3279 3280 num_trbs = count_sg_trbs_needed(xhci, urb); 3281 num_sgs = urb->num_mapped_sgs; 3282 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3283 usb_endpoint_maxp(&urb->ep->desc)); 3284 3285 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3286 ep_index, urb->stream_id, 3287 num_trbs, urb, 0, mem_flags); 3288 if (trb_buff_len < 0) 3289 return trb_buff_len; 3290 3291 urb_priv = urb->hcpriv; 3292 td = urb_priv->td[0]; 3293 3294 /* 3295 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3296 * until we've finished creating all the other TRBs. The ring's cycle 3297 * state may change as we enqueue the other TRBs, so save it too. 3298 */ 3299 start_trb = &ep_ring->enqueue->generic; 3300 start_cycle = ep_ring->cycle_state; 3301 3302 running_total = 0; 3303 /* 3304 * How much data is in the first TRB? 3305 * 3306 * There are three forces at work for TRB buffer pointers and lengths: 3307 * 1. We don't want to walk off the end of this sg-list entry buffer. 3308 * 2. The transfer length that the driver requested may be smaller than 3309 * the amount of memory allocated for this scatter-gather list. 3310 * 3. TRBs buffers can't cross 64KB boundaries. 3311 */ 3312 sg = urb->sg; 3313 addr = (u64) sg_dma_address(sg); 3314 this_sg_len = sg_dma_len(sg); 3315 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3316 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3317 if (trb_buff_len > urb->transfer_buffer_length) 3318 trb_buff_len = urb->transfer_buffer_length; 3319 3320 first_trb = true; 3321 /* Queue the first TRB, even if it's zero-length */ 3322 do { 3323 u32 field = 0; 3324 u32 length_field = 0; 3325 u32 remainder = 0; 3326 3327 /* Don't change the cycle bit of the first TRB until later */ 3328 if (first_trb) { 3329 first_trb = false; 3330 if (start_cycle == 0) 3331 field |= 0x1; 3332 } else 3333 field |= ep_ring->cycle_state; 3334 3335 /* Chain all the TRBs together; clear the chain bit in the last 3336 * TRB to indicate it's the last TRB in the chain. 3337 */ 3338 if (num_trbs > 1) { 3339 field |= TRB_CHAIN; 3340 } else { 3341 /* FIXME - add check for ZERO_PACKET flag before this */ 3342 td->last_trb = ep_ring->enqueue; 3343 field |= TRB_IOC; 3344 } 3345 3346 /* Only set interrupt on short packet for IN endpoints */ 3347 if (usb_urb_dir_in(urb)) 3348 field |= TRB_ISP; 3349 3350 if (TRB_MAX_BUFF_SIZE - 3351 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3352 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3353 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3354 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3355 (unsigned int) addr + trb_buff_len); 3356 } 3357 3358 /* Set the TRB length, TD size, and interrupter fields. */ 3359 if (xhci->hci_version < 0x100) { 3360 remainder = xhci_td_remainder( 3361 urb->transfer_buffer_length - 3362 running_total); 3363 } else { 3364 remainder = xhci_v1_0_td_remainder(running_total, 3365 trb_buff_len, total_packet_count, urb, 3366 num_trbs - 1); 3367 } 3368 length_field = TRB_LEN(trb_buff_len) | 3369 remainder | 3370 TRB_INTR_TARGET(0); 3371 3372 if (num_trbs > 1) 3373 more_trbs_coming = true; 3374 else 3375 more_trbs_coming = false; 3376 queue_trb(xhci, ep_ring, more_trbs_coming, 3377 lower_32_bits(addr), 3378 upper_32_bits(addr), 3379 length_field, 3380 field | TRB_TYPE(TRB_NORMAL)); 3381 --num_trbs; 3382 running_total += trb_buff_len; 3383 3384 /* Calculate length for next transfer -- 3385 * Are we done queueing all the TRBs for this sg entry? 3386 */ 3387 this_sg_len -= trb_buff_len; 3388 if (this_sg_len == 0) { 3389 --num_sgs; 3390 if (num_sgs == 0) 3391 break; 3392 sg = sg_next(sg); 3393 addr = (u64) sg_dma_address(sg); 3394 this_sg_len = sg_dma_len(sg); 3395 } else { 3396 addr += trb_buff_len; 3397 } 3398 3399 trb_buff_len = TRB_MAX_BUFF_SIZE - 3400 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3401 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3402 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3403 trb_buff_len = 3404 urb->transfer_buffer_length - running_total; 3405 } while (running_total < urb->transfer_buffer_length); 3406 3407 check_trb_math(urb, num_trbs, running_total); 3408 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3409 start_cycle, start_trb); 3410 return 0; 3411 } 3412 3413 /* This is very similar to what ehci-q.c qtd_fill() does */ 3414 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3415 struct urb *urb, int slot_id, unsigned int ep_index) 3416 { 3417 struct xhci_ring *ep_ring; 3418 struct urb_priv *urb_priv; 3419 struct xhci_td *td; 3420 int num_trbs; 3421 struct xhci_generic_trb *start_trb; 3422 bool first_trb; 3423 bool more_trbs_coming; 3424 int start_cycle; 3425 u32 field, length_field; 3426 3427 int running_total, trb_buff_len, ret; 3428 unsigned int total_packet_count; 3429 u64 addr; 3430 3431 if (urb->num_sgs) 3432 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3433 3434 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3435 if (!ep_ring) 3436 return -EINVAL; 3437 3438 num_trbs = 0; 3439 /* How much data is (potentially) left before the 64KB boundary? */ 3440 running_total = TRB_MAX_BUFF_SIZE - 3441 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3442 running_total &= TRB_MAX_BUFF_SIZE - 1; 3443 3444 /* If there's some data on this 64KB chunk, or we have to send a 3445 * zero-length transfer, we need at least one TRB 3446 */ 3447 if (running_total != 0 || urb->transfer_buffer_length == 0) 3448 num_trbs++; 3449 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3450 while (running_total < urb->transfer_buffer_length) { 3451 num_trbs++; 3452 running_total += TRB_MAX_BUFF_SIZE; 3453 } 3454 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3455 3456 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3457 ep_index, urb->stream_id, 3458 num_trbs, urb, 0, mem_flags); 3459 if (ret < 0) 3460 return ret; 3461 3462 urb_priv = urb->hcpriv; 3463 td = urb_priv->td[0]; 3464 3465 /* 3466 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3467 * until we've finished creating all the other TRBs. The ring's cycle 3468 * state may change as we enqueue the other TRBs, so save it too. 3469 */ 3470 start_trb = &ep_ring->enqueue->generic; 3471 start_cycle = ep_ring->cycle_state; 3472 3473 running_total = 0; 3474 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3475 usb_endpoint_maxp(&urb->ep->desc)); 3476 /* How much data is in the first TRB? */ 3477 addr = (u64) urb->transfer_dma; 3478 trb_buff_len = TRB_MAX_BUFF_SIZE - 3479 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3480 if (trb_buff_len > urb->transfer_buffer_length) 3481 trb_buff_len = urb->transfer_buffer_length; 3482 3483 first_trb = true; 3484 3485 /* Queue the first TRB, even if it's zero-length */ 3486 do { 3487 u32 remainder = 0; 3488 field = 0; 3489 3490 /* Don't change the cycle bit of the first TRB until later */ 3491 if (first_trb) { 3492 first_trb = false; 3493 if (start_cycle == 0) 3494 field |= 0x1; 3495 } else 3496 field |= ep_ring->cycle_state; 3497 3498 /* Chain all the TRBs together; clear the chain bit in the last 3499 * TRB to indicate it's the last TRB in the chain. 3500 */ 3501 if (num_trbs > 1) { 3502 field |= TRB_CHAIN; 3503 } else { 3504 /* FIXME - add check for ZERO_PACKET flag before this */ 3505 td->last_trb = ep_ring->enqueue; 3506 field |= TRB_IOC; 3507 } 3508 3509 /* Only set interrupt on short packet for IN endpoints */ 3510 if (usb_urb_dir_in(urb)) 3511 field |= TRB_ISP; 3512 3513 /* Set the TRB length, TD size, and interrupter fields. */ 3514 if (xhci->hci_version < 0x100) { 3515 remainder = xhci_td_remainder( 3516 urb->transfer_buffer_length - 3517 running_total); 3518 } else { 3519 remainder = xhci_v1_0_td_remainder(running_total, 3520 trb_buff_len, total_packet_count, urb, 3521 num_trbs - 1); 3522 } 3523 length_field = TRB_LEN(trb_buff_len) | 3524 remainder | 3525 TRB_INTR_TARGET(0); 3526 3527 if (num_trbs > 1) 3528 more_trbs_coming = true; 3529 else 3530 more_trbs_coming = false; 3531 queue_trb(xhci, ep_ring, more_trbs_coming, 3532 lower_32_bits(addr), 3533 upper_32_bits(addr), 3534 length_field, 3535 field | TRB_TYPE(TRB_NORMAL)); 3536 --num_trbs; 3537 running_total += trb_buff_len; 3538 3539 /* Calculate length for next transfer */ 3540 addr += trb_buff_len; 3541 trb_buff_len = urb->transfer_buffer_length - running_total; 3542 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3543 trb_buff_len = TRB_MAX_BUFF_SIZE; 3544 } while (running_total < urb->transfer_buffer_length); 3545 3546 check_trb_math(urb, num_trbs, running_total); 3547 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3548 start_cycle, start_trb); 3549 return 0; 3550 } 3551 3552 /* Caller must have locked xhci->lock */ 3553 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3554 struct urb *urb, int slot_id, unsigned int ep_index) 3555 { 3556 struct xhci_ring *ep_ring; 3557 int num_trbs; 3558 int ret; 3559 struct usb_ctrlrequest *setup; 3560 struct xhci_generic_trb *start_trb; 3561 int start_cycle; 3562 u32 field, length_field; 3563 struct urb_priv *urb_priv; 3564 struct xhci_td *td; 3565 3566 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3567 if (!ep_ring) 3568 return -EINVAL; 3569 3570 /* 3571 * Need to copy setup packet into setup TRB, so we can't use the setup 3572 * DMA address. 3573 */ 3574 if (!urb->setup_packet) 3575 return -EINVAL; 3576 3577 /* 1 TRB for setup, 1 for status */ 3578 num_trbs = 2; 3579 /* 3580 * Don't need to check if we need additional event data and normal TRBs, 3581 * since data in control transfers will never get bigger than 16MB 3582 * XXX: can we get a buffer that crosses 64KB boundaries? 3583 */ 3584 if (urb->transfer_buffer_length > 0) 3585 num_trbs++; 3586 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3587 ep_index, urb->stream_id, 3588 num_trbs, urb, 0, mem_flags); 3589 if (ret < 0) 3590 return ret; 3591 3592 urb_priv = urb->hcpriv; 3593 td = urb_priv->td[0]; 3594 3595 /* 3596 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3597 * until we've finished creating all the other TRBs. The ring's cycle 3598 * state may change as we enqueue the other TRBs, so save it too. 3599 */ 3600 start_trb = &ep_ring->enqueue->generic; 3601 start_cycle = ep_ring->cycle_state; 3602 3603 /* Queue setup TRB - see section 6.4.1.2.1 */ 3604 /* FIXME better way to translate setup_packet into two u32 fields? */ 3605 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3606 field = 0; 3607 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3608 if (start_cycle == 0) 3609 field |= 0x1; 3610 3611 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3612 if (xhci->hci_version == 0x100) { 3613 if (urb->transfer_buffer_length > 0) { 3614 if (setup->bRequestType & USB_DIR_IN) 3615 field |= TRB_TX_TYPE(TRB_DATA_IN); 3616 else 3617 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3618 } 3619 } 3620 3621 queue_trb(xhci, ep_ring, true, 3622 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3623 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3624 TRB_LEN(8) | TRB_INTR_TARGET(0), 3625 /* Immediate data in pointer */ 3626 field); 3627 3628 /* If there's data, queue data TRBs */ 3629 /* Only set interrupt on short packet for IN endpoints */ 3630 if (usb_urb_dir_in(urb)) 3631 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3632 else 3633 field = TRB_TYPE(TRB_DATA); 3634 3635 length_field = TRB_LEN(urb->transfer_buffer_length) | 3636 xhci_td_remainder(urb->transfer_buffer_length) | 3637 TRB_INTR_TARGET(0); 3638 if (urb->transfer_buffer_length > 0) { 3639 if (setup->bRequestType & USB_DIR_IN) 3640 field |= TRB_DIR_IN; 3641 queue_trb(xhci, ep_ring, true, 3642 lower_32_bits(urb->transfer_dma), 3643 upper_32_bits(urb->transfer_dma), 3644 length_field, 3645 field | ep_ring->cycle_state); 3646 } 3647 3648 /* Save the DMA address of the last TRB in the TD */ 3649 td->last_trb = ep_ring->enqueue; 3650 3651 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3652 /* If the device sent data, the status stage is an OUT transfer */ 3653 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3654 field = 0; 3655 else 3656 field = TRB_DIR_IN; 3657 queue_trb(xhci, ep_ring, false, 3658 0, 3659 0, 3660 TRB_INTR_TARGET(0), 3661 /* Event on completion */ 3662 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3663 3664 giveback_first_trb(xhci, slot_id, ep_index, 0, 3665 start_cycle, start_trb); 3666 return 0; 3667 } 3668 3669 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3670 struct urb *urb, int i) 3671 { 3672 int num_trbs = 0; 3673 u64 addr, td_len; 3674 3675 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3676 td_len = urb->iso_frame_desc[i].length; 3677 3678 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3679 TRB_MAX_BUFF_SIZE); 3680 if (num_trbs == 0) 3681 num_trbs++; 3682 3683 return num_trbs; 3684 } 3685 3686 /* 3687 * The transfer burst count field of the isochronous TRB defines the number of 3688 * bursts that are required to move all packets in this TD. Only SuperSpeed 3689 * devices can burst up to bMaxBurst number of packets per service interval. 3690 * This field is zero based, meaning a value of zero in the field means one 3691 * burst. Basically, for everything but SuperSpeed devices, this field will be 3692 * zero. Only xHCI 1.0 host controllers support this field. 3693 */ 3694 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3695 struct usb_device *udev, 3696 struct urb *urb, unsigned int total_packet_count) 3697 { 3698 unsigned int max_burst; 3699 3700 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3701 return 0; 3702 3703 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3704 return roundup(total_packet_count, max_burst + 1) - 1; 3705 } 3706 3707 /* 3708 * Returns the number of packets in the last "burst" of packets. This field is 3709 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3710 * the last burst packet count is equal to the total number of packets in the 3711 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3712 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3713 * contain 1 to (bMaxBurst + 1) packets. 3714 */ 3715 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3716 struct usb_device *udev, 3717 struct urb *urb, unsigned int total_packet_count) 3718 { 3719 unsigned int max_burst; 3720 unsigned int residue; 3721 3722 if (xhci->hci_version < 0x100) 3723 return 0; 3724 3725 switch (udev->speed) { 3726 case USB_SPEED_SUPER: 3727 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3728 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3729 residue = total_packet_count % (max_burst + 1); 3730 /* If residue is zero, the last burst contains (max_burst + 1) 3731 * number of packets, but the TLBPC field is zero-based. 3732 */ 3733 if (residue == 0) 3734 return max_burst; 3735 return residue - 1; 3736 default: 3737 if (total_packet_count == 0) 3738 return 0; 3739 return total_packet_count - 1; 3740 } 3741 } 3742 3743 /* This is for isoc transfer */ 3744 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3745 struct urb *urb, int slot_id, unsigned int ep_index) 3746 { 3747 struct xhci_ring *ep_ring; 3748 struct urb_priv *urb_priv; 3749 struct xhci_td *td; 3750 int num_tds, trbs_per_td; 3751 struct xhci_generic_trb *start_trb; 3752 bool first_trb; 3753 int start_cycle; 3754 u32 field, length_field; 3755 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3756 u64 start_addr, addr; 3757 int i, j; 3758 bool more_trbs_coming; 3759 3760 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3761 3762 num_tds = urb->number_of_packets; 3763 if (num_tds < 1) { 3764 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3765 return -EINVAL; 3766 } 3767 3768 start_addr = (u64) urb->transfer_dma; 3769 start_trb = &ep_ring->enqueue->generic; 3770 start_cycle = ep_ring->cycle_state; 3771 3772 urb_priv = urb->hcpriv; 3773 /* Queue the first TRB, even if it's zero-length */ 3774 for (i = 0; i < num_tds; i++) { 3775 unsigned int total_packet_count; 3776 unsigned int burst_count; 3777 unsigned int residue; 3778 3779 first_trb = true; 3780 running_total = 0; 3781 addr = start_addr + urb->iso_frame_desc[i].offset; 3782 td_len = urb->iso_frame_desc[i].length; 3783 td_remain_len = td_len; 3784 total_packet_count = DIV_ROUND_UP(td_len, 3785 GET_MAX_PACKET( 3786 usb_endpoint_maxp(&urb->ep->desc))); 3787 /* A zero-length transfer still involves at least one packet. */ 3788 if (total_packet_count == 0) 3789 total_packet_count++; 3790 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3791 total_packet_count); 3792 residue = xhci_get_last_burst_packet_count(xhci, 3793 urb->dev, urb, total_packet_count); 3794 3795 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3796 3797 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3798 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3799 if (ret < 0) { 3800 if (i == 0) 3801 return ret; 3802 goto cleanup; 3803 } 3804 3805 td = urb_priv->td[i]; 3806 for (j = 0; j < trbs_per_td; j++) { 3807 u32 remainder = 0; 3808 field = 0; 3809 3810 if (first_trb) { 3811 field = TRB_TBC(burst_count) | 3812 TRB_TLBPC(residue); 3813 /* Queue the isoc TRB */ 3814 field |= TRB_TYPE(TRB_ISOC); 3815 /* Assume URB_ISO_ASAP is set */ 3816 field |= TRB_SIA; 3817 if (i == 0) { 3818 if (start_cycle == 0) 3819 field |= 0x1; 3820 } else 3821 field |= ep_ring->cycle_state; 3822 first_trb = false; 3823 } else { 3824 /* Queue other normal TRBs */ 3825 field |= TRB_TYPE(TRB_NORMAL); 3826 field |= ep_ring->cycle_state; 3827 } 3828 3829 /* Only set interrupt on short packet for IN EPs */ 3830 if (usb_urb_dir_in(urb)) 3831 field |= TRB_ISP; 3832 3833 /* Chain all the TRBs together; clear the chain bit in 3834 * the last TRB to indicate it's the last TRB in the 3835 * chain. 3836 */ 3837 if (j < trbs_per_td - 1) { 3838 field |= TRB_CHAIN; 3839 more_trbs_coming = true; 3840 } else { 3841 td->last_trb = ep_ring->enqueue; 3842 field |= TRB_IOC; 3843 if (xhci->hci_version == 0x100 && 3844 !(xhci->quirks & 3845 XHCI_AVOID_BEI)) { 3846 /* Set BEI bit except for the last td */ 3847 if (i < num_tds - 1) 3848 field |= TRB_BEI; 3849 } 3850 more_trbs_coming = false; 3851 } 3852 3853 /* Calculate TRB length */ 3854 trb_buff_len = TRB_MAX_BUFF_SIZE - 3855 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3856 if (trb_buff_len > td_remain_len) 3857 trb_buff_len = td_remain_len; 3858 3859 /* Set the TRB length, TD size, & interrupter fields. */ 3860 if (xhci->hci_version < 0x100) { 3861 remainder = xhci_td_remainder( 3862 td_len - running_total); 3863 } else { 3864 remainder = xhci_v1_0_td_remainder( 3865 running_total, trb_buff_len, 3866 total_packet_count, urb, 3867 (trbs_per_td - j - 1)); 3868 } 3869 length_field = TRB_LEN(trb_buff_len) | 3870 remainder | 3871 TRB_INTR_TARGET(0); 3872 3873 queue_trb(xhci, ep_ring, more_trbs_coming, 3874 lower_32_bits(addr), 3875 upper_32_bits(addr), 3876 length_field, 3877 field); 3878 running_total += trb_buff_len; 3879 3880 addr += trb_buff_len; 3881 td_remain_len -= trb_buff_len; 3882 } 3883 3884 /* Check TD length */ 3885 if (running_total != td_len) { 3886 xhci_err(xhci, "ISOC TD length unmatch\n"); 3887 ret = -EINVAL; 3888 goto cleanup; 3889 } 3890 } 3891 3892 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3893 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3894 usb_amd_quirk_pll_disable(); 3895 } 3896 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3897 3898 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3899 start_cycle, start_trb); 3900 return 0; 3901 cleanup: 3902 /* Clean up a partially enqueued isoc transfer. */ 3903 3904 for (i--; i >= 0; i--) 3905 list_del_init(&urb_priv->td[i]->td_list); 3906 3907 /* Use the first TD as a temporary variable to turn the TDs we've queued 3908 * into No-ops with a software-owned cycle bit. That way the hardware 3909 * won't accidentally start executing bogus TDs when we partially 3910 * overwrite them. td->first_trb and td->start_seg are already set. 3911 */ 3912 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3913 /* Every TRB except the first & last will have its cycle bit flipped. */ 3914 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3915 3916 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3917 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3918 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3919 ep_ring->cycle_state = start_cycle; 3920 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3921 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3922 return ret; 3923 } 3924 3925 /* 3926 * Check transfer ring to guarantee there is enough room for the urb. 3927 * Update ISO URB start_frame and interval. 3928 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3929 * update the urb->start_frame by now. 3930 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3931 */ 3932 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3933 struct urb *urb, int slot_id, unsigned int ep_index) 3934 { 3935 struct xhci_virt_device *xdev; 3936 struct xhci_ring *ep_ring; 3937 struct xhci_ep_ctx *ep_ctx; 3938 int start_frame; 3939 int xhci_interval; 3940 int ep_interval; 3941 int num_tds, num_trbs, i; 3942 int ret; 3943 3944 xdev = xhci->devs[slot_id]; 3945 ep_ring = xdev->eps[ep_index].ring; 3946 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3947 3948 num_trbs = 0; 3949 num_tds = urb->number_of_packets; 3950 for (i = 0; i < num_tds; i++) 3951 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3952 3953 /* Check the ring to guarantee there is enough room for the whole urb. 3954 * Do not insert any td of the urb to the ring if the check failed. 3955 */ 3956 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3957 num_trbs, mem_flags); 3958 if (ret) 3959 return ret; 3960 3961 start_frame = readl(&xhci->run_regs->microframe_index); 3962 start_frame &= 0x3fff; 3963 3964 urb->start_frame = start_frame; 3965 if (urb->dev->speed == USB_SPEED_LOW || 3966 urb->dev->speed == USB_SPEED_FULL) 3967 urb->start_frame >>= 3; 3968 3969 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3970 ep_interval = urb->interval; 3971 /* Convert to microframes */ 3972 if (urb->dev->speed == USB_SPEED_LOW || 3973 urb->dev->speed == USB_SPEED_FULL) 3974 ep_interval *= 8; 3975 /* FIXME change this to a warning and a suggestion to use the new API 3976 * to set the polling interval (once the API is added). 3977 */ 3978 if (xhci_interval != ep_interval) { 3979 dev_dbg_ratelimited(&urb->dev->dev, 3980 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3981 ep_interval, ep_interval == 1 ? "" : "s", 3982 xhci_interval, xhci_interval == 1 ? "" : "s"); 3983 urb->interval = xhci_interval; 3984 /* Convert back to frames for LS/FS devices */ 3985 if (urb->dev->speed == USB_SPEED_LOW || 3986 urb->dev->speed == USB_SPEED_FULL) 3987 urb->interval /= 8; 3988 } 3989 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3990 3991 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3992 } 3993 3994 /**** Command Ring Operations ****/ 3995 3996 /* Generic function for queueing a command TRB on the command ring. 3997 * Check to make sure there's room on the command ring for one command TRB. 3998 * Also check that there's room reserved for commands that must not fail. 3999 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4000 * then only check for the number of reserved spots. 4001 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4002 * because the command event handler may want to resubmit a failed command. 4003 */ 4004 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 4005 u32 field3, u32 field4, bool command_must_succeed) 4006 { 4007 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4008 int ret; 4009 4010 if (!command_must_succeed) 4011 reserved_trbs++; 4012 4013 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4014 reserved_trbs, GFP_ATOMIC); 4015 if (ret < 0) { 4016 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4017 if (command_must_succeed) 4018 xhci_err(xhci, "ERR: Reserved TRB counting for " 4019 "unfailable commands failed.\n"); 4020 return ret; 4021 } 4022 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4023 field4 | xhci->cmd_ring->cycle_state); 4024 return 0; 4025 } 4026 4027 /* Queue a slot enable or disable request on the command ring */ 4028 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 4029 { 4030 return queue_command(xhci, 0, 0, 0, 4031 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4032 } 4033 4034 /* Queue an address device command TRB */ 4035 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4036 u32 slot_id, enum xhci_setup_dev setup) 4037 { 4038 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4039 upper_32_bits(in_ctx_ptr), 0, 4040 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4041 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4042 } 4043 4044 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 4045 u32 field1, u32 field2, u32 field3, u32 field4) 4046 { 4047 return queue_command(xhci, field1, field2, field3, field4, false); 4048 } 4049 4050 /* Queue a reset device command TRB */ 4051 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 4052 { 4053 return queue_command(xhci, 0, 0, 0, 4054 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4055 false); 4056 } 4057 4058 /* Queue a configure endpoint command TRB */ 4059 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4060 u32 slot_id, bool command_must_succeed) 4061 { 4062 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4063 upper_32_bits(in_ctx_ptr), 0, 4064 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4065 command_must_succeed); 4066 } 4067 4068 /* Queue an evaluate context command TRB */ 4069 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4070 u32 slot_id, bool command_must_succeed) 4071 { 4072 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4073 upper_32_bits(in_ctx_ptr), 0, 4074 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4075 command_must_succeed); 4076 } 4077 4078 /* 4079 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4080 * activity on an endpoint that is about to be suspended. 4081 */ 4082 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 4083 unsigned int ep_index, int suspend) 4084 { 4085 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4086 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4087 u32 type = TRB_TYPE(TRB_STOP_RING); 4088 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4089 4090 return queue_command(xhci, 0, 0, 0, 4091 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4092 } 4093 4094 /* Set Transfer Ring Dequeue Pointer command. 4095 * This should not be used for endpoints that have streams enabled. 4096 */ 4097 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 4098 unsigned int ep_index, unsigned int stream_id, 4099 struct xhci_segment *deq_seg, 4100 union xhci_trb *deq_ptr, u32 cycle_state) 4101 { 4102 dma_addr_t addr; 4103 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4104 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4105 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4106 u32 trb_sct = 0; 4107 u32 type = TRB_TYPE(TRB_SET_DEQ); 4108 struct xhci_virt_ep *ep; 4109 4110 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4111 if (addr == 0) { 4112 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4113 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4114 deq_seg, deq_ptr); 4115 return 0; 4116 } 4117 ep = &xhci->devs[slot_id]->eps[ep_index]; 4118 if ((ep->ep_state & SET_DEQ_PENDING)) { 4119 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4120 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4121 return 0; 4122 } 4123 ep->queued_deq_seg = deq_seg; 4124 ep->queued_deq_ptr = deq_ptr; 4125 if (stream_id) 4126 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4127 return queue_command(xhci, lower_32_bits(addr) | trb_sct | cycle_state, 4128 upper_32_bits(addr), trb_stream_id, 4129 trb_slot_id | trb_ep_index | type, false); 4130 } 4131 4132 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4133 unsigned int ep_index) 4134 { 4135 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4136 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4137 u32 type = TRB_TYPE(TRB_RESET_EP); 4138 4139 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4140 false); 4141 } 4142