1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 /* 330 * Consider expanding the ring already if num_trbs fills the current 331 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 332 * the next segment. Avoids confusing full ring with special empty ring 333 * case below 334 */ 335 if (trbs_past_seg < 0) 336 return 0; 337 338 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 339 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 340 return 0; 341 342 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 343 seg = ring->enq_seg; 344 345 while (new_segs > 0) { 346 seg = seg->next; 347 if (seg == ring->deq_seg) { 348 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 349 new_segs); 350 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 351 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 352 return new_segs; 353 } 354 new_segs--; 355 } 356 357 return 0; 358 } 359 360 /* Ring the host controller doorbell after placing a command on the ring */ 361 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 362 { 363 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 364 return; 365 366 xhci_dbg(xhci, "// Ding dong!\n"); 367 368 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 369 370 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 371 /* Flush PCI posted writes */ 372 readl(&xhci->dba->doorbell[0]); 373 } 374 375 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 376 { 377 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 378 } 379 380 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 381 { 382 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 383 cmd_list); 384 } 385 386 /* 387 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 388 * If there are other commands waiting then restart the ring and kick the timer. 389 * This must be called with command ring stopped and xhci->lock held. 390 */ 391 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 392 struct xhci_command *cur_cmd) 393 { 394 struct xhci_command *i_cmd; 395 396 /* Turn all aborted commands in list to no-ops, then restart */ 397 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 398 399 if (i_cmd->status != COMP_COMMAND_ABORTED) 400 continue; 401 402 i_cmd->status = COMP_COMMAND_RING_STOPPED; 403 404 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 405 i_cmd->command_trb); 406 407 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 408 409 /* 410 * caller waiting for completion is called when command 411 * completion event is received for these no-op commands 412 */ 413 } 414 415 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 416 417 /* ring command ring doorbell to restart the command ring */ 418 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 419 !(xhci->xhc_state & XHCI_STATE_DYING)) { 420 xhci->current_cmd = cur_cmd; 421 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 422 xhci_ring_cmd_db(xhci); 423 } 424 } 425 426 /* Must be called with xhci->lock held, releases and aquires lock back */ 427 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 428 { 429 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 430 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 431 u64 crcr; 432 int ret; 433 434 xhci_dbg(xhci, "Abort command ring\n"); 435 436 reinit_completion(&xhci->cmd_ring_stop_completion); 437 438 /* 439 * The control bits like command stop, abort are located in lower 440 * dword of the command ring control register. 441 * Some controllers require all 64 bits to be written to abort the ring. 442 * Make sure the upper dword is valid, pointing to the next command, 443 * avoiding corrupting the command ring pointer in case the command ring 444 * is stopped by the time the upper dword is written. 445 */ 446 next_trb(xhci, NULL, &new_seg, &new_deq); 447 if (trb_is_link(new_deq)) 448 next_trb(xhci, NULL, &new_seg, &new_deq); 449 450 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 451 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 452 453 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 454 * completion of the Command Abort operation. If CRR is not negated in 5 455 * seconds then driver handles it as if host died (-ENODEV). 456 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 457 * and try to recover a -ETIMEDOUT with a host controller reset. 458 */ 459 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 460 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 461 if (ret < 0) { 462 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 463 xhci_halt(xhci); 464 xhci_hc_died(xhci); 465 return ret; 466 } 467 /* 468 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 469 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 470 * but the completion event in never sent. Wait 2 secs (arbitrary 471 * number) to handle those cases after negation of CMD_RING_RUNNING. 472 */ 473 spin_unlock_irqrestore(&xhci->lock, flags); 474 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 475 msecs_to_jiffies(2000)); 476 spin_lock_irqsave(&xhci->lock, flags); 477 if (!ret) { 478 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 479 xhci_cleanup_command_queue(xhci); 480 } else { 481 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 482 } 483 return 0; 484 } 485 486 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 487 unsigned int slot_id, 488 unsigned int ep_index, 489 unsigned int stream_id) 490 { 491 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 492 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 493 unsigned int ep_state = ep->ep_state; 494 495 /* Don't ring the doorbell for this endpoint if there are pending 496 * cancellations because we don't want to interrupt processing. 497 * We don't want to restart any stream rings if there's a set dequeue 498 * pointer command pending because the device can choose to start any 499 * stream once the endpoint is on the HW schedule. 500 */ 501 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 502 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 503 return; 504 505 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 506 507 writel(DB_VALUE(ep_index, stream_id), db_addr); 508 /* flush the write */ 509 readl(db_addr); 510 } 511 512 /* Ring the doorbell for any rings with pending URBs */ 513 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 514 unsigned int slot_id, 515 unsigned int ep_index) 516 { 517 unsigned int stream_id; 518 struct xhci_virt_ep *ep; 519 520 ep = &xhci->devs[slot_id]->eps[ep_index]; 521 522 /* A ring has pending URBs if its TD list is not empty */ 523 if (!(ep->ep_state & EP_HAS_STREAMS)) { 524 if (ep->ring && !(list_empty(&ep->ring->td_list))) 525 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 526 return; 527 } 528 529 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 530 stream_id++) { 531 struct xhci_stream_info *stream_info = ep->stream_info; 532 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 533 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 534 stream_id); 535 } 536 } 537 538 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 539 unsigned int slot_id, 540 unsigned int ep_index) 541 { 542 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 543 } 544 545 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 546 unsigned int slot_id, 547 unsigned int ep_index) 548 { 549 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 550 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 551 return NULL; 552 } 553 if (ep_index >= EP_CTX_PER_DEV) { 554 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 555 return NULL; 556 } 557 if (!xhci->devs[slot_id]) { 558 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 559 return NULL; 560 } 561 562 return &xhci->devs[slot_id]->eps[ep_index]; 563 } 564 565 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 566 struct xhci_virt_ep *ep, 567 unsigned int stream_id) 568 { 569 /* common case, no streams */ 570 if (!(ep->ep_state & EP_HAS_STREAMS)) 571 return ep->ring; 572 573 if (!ep->stream_info) 574 return NULL; 575 576 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 577 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 578 stream_id, ep->vdev->slot_id, ep->ep_index); 579 return NULL; 580 } 581 582 return ep->stream_info->stream_rings[stream_id]; 583 } 584 585 /* Get the right ring for the given slot_id, ep_index and stream_id. 586 * If the endpoint supports streams, boundary check the URB's stream ID. 587 * If the endpoint doesn't support streams, return the singular endpoint ring. 588 */ 589 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 590 unsigned int slot_id, unsigned int ep_index, 591 unsigned int stream_id) 592 { 593 struct xhci_virt_ep *ep; 594 595 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 596 if (!ep) 597 return NULL; 598 599 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 600 } 601 602 603 /* 604 * Get the hw dequeue pointer xHC stopped on, either directly from the 605 * endpoint context, or if streams are in use from the stream context. 606 * The returned hw_dequeue contains the lowest four bits with cycle state 607 * and possbile stream context type. 608 */ 609 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 610 unsigned int ep_index, unsigned int stream_id) 611 { 612 struct xhci_ep_ctx *ep_ctx; 613 struct xhci_stream_ctx *st_ctx; 614 struct xhci_virt_ep *ep; 615 616 ep = &vdev->eps[ep_index]; 617 618 if (ep->ep_state & EP_HAS_STREAMS) { 619 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 620 return le64_to_cpu(st_ctx->stream_ring); 621 } 622 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 623 return le64_to_cpu(ep_ctx->deq); 624 } 625 626 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 627 unsigned int slot_id, unsigned int ep_index, 628 unsigned int stream_id, struct xhci_td *td) 629 { 630 struct xhci_virt_device *dev = xhci->devs[slot_id]; 631 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 632 struct xhci_ring *ep_ring; 633 struct xhci_command *cmd; 634 struct xhci_segment *new_seg; 635 union xhci_trb *new_deq; 636 int new_cycle; 637 dma_addr_t addr; 638 u64 hw_dequeue; 639 bool cycle_found = false; 640 bool td_last_trb_found = false; 641 u32 trb_sct = 0; 642 int ret; 643 644 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 645 ep_index, stream_id); 646 if (!ep_ring) { 647 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 648 stream_id); 649 return -ENODEV; 650 } 651 /* 652 * A cancelled TD can complete with a stall if HW cached the trb. 653 * In this case driver can't find td, but if the ring is empty we 654 * can move the dequeue pointer to the current enqueue position. 655 * We shouldn't hit this anymore as cached cancelled TRBs are given back 656 * after clearing the cache, but be on the safe side and keep it anyway 657 */ 658 if (!td) { 659 if (list_empty(&ep_ring->td_list)) { 660 new_seg = ep_ring->enq_seg; 661 new_deq = ep_ring->enqueue; 662 new_cycle = ep_ring->cycle_state; 663 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 664 goto deq_found; 665 } else { 666 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 667 return -EINVAL; 668 } 669 } 670 671 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 672 new_seg = ep_ring->deq_seg; 673 new_deq = ep_ring->dequeue; 674 new_cycle = hw_dequeue & 0x1; 675 676 /* 677 * We want to find the pointer, segment and cycle state of the new trb 678 * (the one after current TD's last_trb). We know the cycle state at 679 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 680 * found. 681 */ 682 do { 683 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 684 == (dma_addr_t)(hw_dequeue & ~0xf)) { 685 cycle_found = true; 686 if (td_last_trb_found) 687 break; 688 } 689 if (new_deq == td->last_trb) 690 td_last_trb_found = true; 691 692 if (cycle_found && trb_is_link(new_deq) && 693 link_trb_toggles_cycle(new_deq)) 694 new_cycle ^= 0x1; 695 696 next_trb(xhci, ep_ring, &new_seg, &new_deq); 697 698 /* Search wrapped around, bail out */ 699 if (new_deq == ep->ring->dequeue) { 700 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 701 return -EINVAL; 702 } 703 704 } while (!cycle_found || !td_last_trb_found); 705 706 deq_found: 707 708 /* Don't update the ring cycle state for the producer (us). */ 709 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 710 if (addr == 0) { 711 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 712 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 713 return -EINVAL; 714 } 715 716 if ((ep->ep_state & SET_DEQ_PENDING)) { 717 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 718 &addr); 719 return -EBUSY; 720 } 721 722 /* This function gets called from contexts where it cannot sleep */ 723 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 724 if (!cmd) { 725 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 726 return -ENOMEM; 727 } 728 729 if (stream_id) 730 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 731 ret = queue_command(xhci, cmd, 732 lower_32_bits(addr) | trb_sct | new_cycle, 733 upper_32_bits(addr), 734 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 735 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 736 if (ret < 0) { 737 xhci_free_command(xhci, cmd); 738 return ret; 739 } 740 ep->queued_deq_seg = new_seg; 741 ep->queued_deq_ptr = new_deq; 742 743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 744 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 745 746 /* Stop the TD queueing code from ringing the doorbell until 747 * this command completes. The HC won't set the dequeue pointer 748 * if the ring is running, and ringing the doorbell starts the 749 * ring running. 750 */ 751 ep->ep_state |= SET_DEQ_PENDING; 752 xhci_ring_cmd_db(xhci); 753 return 0; 754 } 755 756 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 757 * (The last TRB actually points to the ring enqueue pointer, which is not part 758 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 759 */ 760 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 761 struct xhci_td *td, bool flip_cycle) 762 { 763 struct xhci_segment *seg = td->start_seg; 764 union xhci_trb *trb = td->first_trb; 765 766 while (1) { 767 trb_to_noop(trb, TRB_TR_NOOP); 768 769 /* flip cycle if asked to */ 770 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 771 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 772 773 if (trb == td->last_trb) 774 break; 775 776 next_trb(xhci, ep_ring, &seg, &trb); 777 } 778 } 779 780 /* 781 * Must be called with xhci->lock held in interrupt context, 782 * releases and re-acquires xhci->lock 783 */ 784 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 785 struct xhci_td *cur_td, int status) 786 { 787 struct urb *urb = cur_td->urb; 788 struct urb_priv *urb_priv = urb->hcpriv; 789 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 790 791 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 792 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 793 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 794 if (xhci->quirks & XHCI_AMD_PLL_FIX) 795 usb_amd_quirk_pll_enable(); 796 } 797 } 798 xhci_urb_free_priv(urb_priv); 799 usb_hcd_unlink_urb_from_ep(hcd, urb); 800 trace_xhci_urb_giveback(urb); 801 usb_hcd_giveback_urb(hcd, urb, status); 802 } 803 804 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 805 struct xhci_ring *ring, struct xhci_td *td) 806 { 807 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 808 struct xhci_segment *seg = td->bounce_seg; 809 struct urb *urb = td->urb; 810 size_t len; 811 812 if (!ring || !seg || !urb) 813 return; 814 815 if (usb_urb_dir_out(urb)) { 816 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 817 DMA_TO_DEVICE); 818 return; 819 } 820 821 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 822 DMA_FROM_DEVICE); 823 /* for in tranfers we need to copy the data from bounce to sg */ 824 if (urb->num_sgs) { 825 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 826 seg->bounce_len, seg->bounce_offs); 827 if (len != seg->bounce_len) 828 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 829 len, seg->bounce_len); 830 } else { 831 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 832 seg->bounce_len); 833 } 834 seg->bounce_len = 0; 835 seg->bounce_offs = 0; 836 } 837 838 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 839 struct xhci_ring *ep_ring, int status) 840 { 841 struct urb *urb = NULL; 842 843 /* Clean up the endpoint's TD list */ 844 urb = td->urb; 845 846 /* if a bounce buffer was used to align this td then unmap it */ 847 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 848 849 /* Do one last check of the actual transfer length. 850 * If the host controller said we transferred more data than the buffer 851 * length, urb->actual_length will be a very big number (since it's 852 * unsigned). Play it safe and say we didn't transfer anything. 853 */ 854 if (urb->actual_length > urb->transfer_buffer_length) { 855 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 856 urb->transfer_buffer_length, urb->actual_length); 857 urb->actual_length = 0; 858 status = 0; 859 } 860 /* TD might be removed from td_list if we are giving back a cancelled URB */ 861 if (!list_empty(&td->td_list)) 862 list_del_init(&td->td_list); 863 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 864 if (!list_empty(&td->cancelled_td_list)) 865 list_del_init(&td->cancelled_td_list); 866 867 inc_td_cnt(urb); 868 /* Giveback the urb when all the tds are completed */ 869 if (last_td_in_urb(td)) { 870 if ((urb->actual_length != urb->transfer_buffer_length && 871 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 872 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 873 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 874 urb, urb->actual_length, 875 urb->transfer_buffer_length, status); 876 877 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 878 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 879 status = 0; 880 xhci_giveback_urb_in_irq(xhci, td, status); 881 } 882 883 return 0; 884 } 885 886 887 /* Complete the cancelled URBs we unlinked from td_list. */ 888 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 889 { 890 struct xhci_ring *ring; 891 struct xhci_td *td, *tmp_td; 892 893 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 894 cancelled_td_list) { 895 896 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 897 898 if (td->cancel_status == TD_CLEARED) { 899 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 900 __func__, td->urb); 901 xhci_td_cleanup(ep->xhci, td, ring, td->status); 902 } else { 903 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 904 __func__, td->urb, td->cancel_status); 905 } 906 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 907 return; 908 } 909 } 910 911 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 912 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 913 { 914 struct xhci_command *command; 915 int ret = 0; 916 917 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 918 if (!command) { 919 ret = -ENOMEM; 920 goto done; 921 } 922 923 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 924 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 925 ep_index, slot_id); 926 927 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 928 done: 929 if (ret) 930 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 931 slot_id, ep_index, ret); 932 return ret; 933 } 934 935 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 936 struct xhci_virt_ep *ep, 937 struct xhci_td *td, 938 enum xhci_ep_reset_type reset_type) 939 { 940 unsigned int slot_id = ep->vdev->slot_id; 941 int err; 942 943 /* 944 * Avoid resetting endpoint if link is inactive. Can cause host hang. 945 * Device will be reset soon to recover the link so don't do anything 946 */ 947 if (ep->vdev->flags & VDEV_PORT_ERROR) 948 return -ENODEV; 949 950 /* add td to cancelled list and let reset ep handler take care of it */ 951 if (reset_type == EP_HARD_RESET) { 952 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 953 if (td && list_empty(&td->cancelled_td_list)) { 954 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 955 td->cancel_status = TD_HALTED; 956 } 957 } 958 959 if (ep->ep_state & EP_HALTED) { 960 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 961 ep->ep_index); 962 return 0; 963 } 964 965 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 966 if (err) 967 return err; 968 969 ep->ep_state |= EP_HALTED; 970 971 xhci_ring_cmd_db(xhci); 972 973 return 0; 974 } 975 976 /* 977 * Fix up the ep ring first, so HW stops executing cancelled TDs. 978 * We have the xHCI lock, so nothing can modify this list until we drop it. 979 * We're also in the event handler, so we can't get re-interrupted if another 980 * Stop Endpoint command completes. 981 * 982 * only call this when ring is not in a running state 983 */ 984 985 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 986 { 987 struct xhci_hcd *xhci; 988 struct xhci_td *td = NULL; 989 struct xhci_td *tmp_td = NULL; 990 struct xhci_td *cached_td = NULL; 991 struct xhci_ring *ring; 992 u64 hw_deq; 993 unsigned int slot_id = ep->vdev->slot_id; 994 int err; 995 996 xhci = ep->xhci; 997 998 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 999 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1000 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1001 (unsigned long long)xhci_trb_virt_to_dma( 1002 td->start_seg, td->first_trb), 1003 td->urb->stream_id, td->urb); 1004 list_del_init(&td->td_list); 1005 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1006 if (!ring) { 1007 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1008 td->urb, td->urb->stream_id); 1009 continue; 1010 } 1011 /* 1012 * If a ring stopped on the TD we need to cancel then we have to 1013 * move the xHC endpoint ring dequeue pointer past this TD. 1014 * Rings halted due to STALL may show hw_deq is past the stalled 1015 * TD, but still require a set TR Deq command to flush xHC cache. 1016 */ 1017 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1018 td->urb->stream_id); 1019 hw_deq &= ~0xf; 1020 1021 if (td->cancel_status == TD_HALTED || 1022 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1023 switch (td->cancel_status) { 1024 case TD_CLEARED: /* TD is already no-op */ 1025 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1026 break; 1027 case TD_DIRTY: /* TD is cached, clear it */ 1028 case TD_HALTED: 1029 td->cancel_status = TD_CLEARING_CACHE; 1030 if (cached_td) 1031 /* FIXME stream case, several stopped rings */ 1032 xhci_dbg(xhci, 1033 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1034 td->urb->stream_id, td->urb, 1035 cached_td->urb->stream_id, cached_td->urb); 1036 cached_td = td; 1037 break; 1038 } 1039 } else { 1040 td_to_noop(xhci, ring, td, false); 1041 td->cancel_status = TD_CLEARED; 1042 } 1043 } 1044 1045 /* If there's no need to move the dequeue pointer then we're done */ 1046 if (!cached_td) 1047 return 0; 1048 1049 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1050 cached_td->urb->stream_id, 1051 cached_td); 1052 if (err) { 1053 /* Failed to move past cached td, just set cached TDs to no-op */ 1054 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1055 if (td->cancel_status != TD_CLEARING_CACHE) 1056 continue; 1057 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1058 td->urb); 1059 td_to_noop(xhci, ring, td, false); 1060 td->cancel_status = TD_CLEARED; 1061 } 1062 } 1063 return 0; 1064 } 1065 1066 /* 1067 * Returns the TD the endpoint ring halted on. 1068 * Only call for non-running rings without streams. 1069 */ 1070 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1071 { 1072 struct xhci_td *td; 1073 u64 hw_deq; 1074 1075 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1076 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1077 hw_deq &= ~0xf; 1078 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1079 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1080 td->last_trb, hw_deq, false)) 1081 return td; 1082 } 1083 return NULL; 1084 } 1085 1086 /* 1087 * When we get a command completion for a Stop Endpoint Command, we need to 1088 * unlink any cancelled TDs from the ring. There are two ways to do that: 1089 * 1090 * 1. If the HW was in the middle of processing the TD that needs to be 1091 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1092 * in the TD with a Set Dequeue Pointer Command. 1093 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1094 * bit cleared) so that the HW will skip over them. 1095 */ 1096 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1097 union xhci_trb *trb, u32 comp_code) 1098 { 1099 unsigned int ep_index; 1100 struct xhci_virt_ep *ep; 1101 struct xhci_ep_ctx *ep_ctx; 1102 struct xhci_td *td = NULL; 1103 enum xhci_ep_reset_type reset_type; 1104 struct xhci_command *command; 1105 int err; 1106 1107 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1108 if (!xhci->devs[slot_id]) 1109 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1110 slot_id); 1111 return; 1112 } 1113 1114 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1115 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1116 if (!ep) 1117 return; 1118 1119 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1120 1121 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1122 1123 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1124 /* 1125 * If stop endpoint command raced with a halting endpoint we need to 1126 * reset the host side endpoint first. 1127 * If the TD we halted on isn't cancelled the TD should be given back 1128 * with a proper error code, and the ring dequeue moved past the TD. 1129 * If streams case we can't find hw_deq, or the TD we halted on so do a 1130 * soft reset. 1131 * 1132 * Proper error code is unknown here, it would be -EPIPE if device side 1133 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1134 * We use -EPROTO, if device is stalled it should return a stall error on 1135 * next transfer, which then will return -EPIPE, and device side stall is 1136 * noted and cleared by class driver. 1137 */ 1138 switch (GET_EP_CTX_STATE(ep_ctx)) { 1139 case EP_STATE_HALTED: 1140 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1141 if (ep->ep_state & EP_HAS_STREAMS) { 1142 reset_type = EP_SOFT_RESET; 1143 } else { 1144 reset_type = EP_HARD_RESET; 1145 td = find_halted_td(ep); 1146 if (td) 1147 td->status = -EPROTO; 1148 } 1149 /* reset ep, reset handler cleans up cancelled tds */ 1150 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1151 if (err) 1152 break; 1153 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1154 return; 1155 case EP_STATE_RUNNING: 1156 /* Race, HW handled stop ep cmd before ep was running */ 1157 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1158 1159 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1160 if (!command) { 1161 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1162 return; 1163 } 1164 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1165 xhci_ring_cmd_db(xhci); 1166 1167 return; 1168 default: 1169 break; 1170 } 1171 } 1172 1173 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1174 xhci_invalidate_cancelled_tds(ep); 1175 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1176 1177 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1178 xhci_giveback_invalidated_tds(ep); 1179 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1180 } 1181 1182 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1183 { 1184 struct xhci_td *cur_td; 1185 struct xhci_td *tmp; 1186 1187 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1188 list_del_init(&cur_td->td_list); 1189 1190 if (!list_empty(&cur_td->cancelled_td_list)) 1191 list_del_init(&cur_td->cancelled_td_list); 1192 1193 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1194 1195 inc_td_cnt(cur_td->urb); 1196 if (last_td_in_urb(cur_td)) 1197 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1198 } 1199 } 1200 1201 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1202 int slot_id, int ep_index) 1203 { 1204 struct xhci_td *cur_td; 1205 struct xhci_td *tmp; 1206 struct xhci_virt_ep *ep; 1207 struct xhci_ring *ring; 1208 1209 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1210 if (!ep) 1211 return; 1212 1213 if ((ep->ep_state & EP_HAS_STREAMS) || 1214 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1215 int stream_id; 1216 1217 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1218 stream_id++) { 1219 ring = ep->stream_info->stream_rings[stream_id]; 1220 if (!ring) 1221 continue; 1222 1223 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1224 "Killing URBs for slot ID %u, ep index %u, stream %u", 1225 slot_id, ep_index, stream_id); 1226 xhci_kill_ring_urbs(xhci, ring); 1227 } 1228 } else { 1229 ring = ep->ring; 1230 if (!ring) 1231 return; 1232 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1233 "Killing URBs for slot ID %u, ep index %u", 1234 slot_id, ep_index); 1235 xhci_kill_ring_urbs(xhci, ring); 1236 } 1237 1238 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1239 cancelled_td_list) { 1240 list_del_init(&cur_td->cancelled_td_list); 1241 inc_td_cnt(cur_td->urb); 1242 1243 if (last_td_in_urb(cur_td)) 1244 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1245 } 1246 } 1247 1248 /* 1249 * host controller died, register read returns 0xffffffff 1250 * Complete pending commands, mark them ABORTED. 1251 * URBs need to be given back as usb core might be waiting with device locks 1252 * held for the URBs to finish during device disconnect, blocking host remove. 1253 * 1254 * Call with xhci->lock held. 1255 * lock is relased and re-acquired while giving back urb. 1256 */ 1257 void xhci_hc_died(struct xhci_hcd *xhci) 1258 { 1259 int i, j; 1260 1261 if (xhci->xhc_state & XHCI_STATE_DYING) 1262 return; 1263 1264 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1265 xhci->xhc_state |= XHCI_STATE_DYING; 1266 1267 xhci_cleanup_command_queue(xhci); 1268 1269 /* return any pending urbs, remove may be waiting for them */ 1270 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1271 if (!xhci->devs[i]) 1272 continue; 1273 for (j = 0; j < 31; j++) 1274 xhci_kill_endpoint_urbs(xhci, i, j); 1275 } 1276 1277 /* inform usb core hc died if PCI remove isn't already handling it */ 1278 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1279 usb_hc_died(xhci_to_hcd(xhci)); 1280 } 1281 1282 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1283 struct xhci_virt_device *dev, 1284 struct xhci_ring *ep_ring, 1285 unsigned int ep_index) 1286 { 1287 union xhci_trb *dequeue_temp; 1288 1289 dequeue_temp = ep_ring->dequeue; 1290 1291 /* If we get two back-to-back stalls, and the first stalled transfer 1292 * ends just before a link TRB, the dequeue pointer will be left on 1293 * the link TRB by the code in the while loop. So we have to update 1294 * the dequeue pointer one segment further, or we'll jump off 1295 * the segment into la-la-land. 1296 */ 1297 if (trb_is_link(ep_ring->dequeue)) { 1298 ep_ring->deq_seg = ep_ring->deq_seg->next; 1299 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1300 } 1301 1302 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1303 /* We have more usable TRBs */ 1304 ep_ring->dequeue++; 1305 if (trb_is_link(ep_ring->dequeue)) { 1306 if (ep_ring->dequeue == 1307 dev->eps[ep_index].queued_deq_ptr) 1308 break; 1309 ep_ring->deq_seg = ep_ring->deq_seg->next; 1310 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1311 } 1312 if (ep_ring->dequeue == dequeue_temp) { 1313 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1314 break; 1315 } 1316 } 1317 } 1318 1319 /* 1320 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1321 * we need to clear the set deq pending flag in the endpoint ring state, so that 1322 * the TD queueing code can ring the doorbell again. We also need to ring the 1323 * endpoint doorbell to restart the ring, but only if there aren't more 1324 * cancellations pending. 1325 */ 1326 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1327 union xhci_trb *trb, u32 cmd_comp_code) 1328 { 1329 unsigned int ep_index; 1330 unsigned int stream_id; 1331 struct xhci_ring *ep_ring; 1332 struct xhci_virt_ep *ep; 1333 struct xhci_ep_ctx *ep_ctx; 1334 struct xhci_slot_ctx *slot_ctx; 1335 struct xhci_td *td, *tmp_td; 1336 1337 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1338 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1339 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1340 if (!ep) 1341 return; 1342 1343 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1344 if (!ep_ring) { 1345 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1346 stream_id); 1347 /* XXX: Harmless??? */ 1348 goto cleanup; 1349 } 1350 1351 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1352 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1353 trace_xhci_handle_cmd_set_deq(slot_ctx); 1354 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1355 1356 if (cmd_comp_code != COMP_SUCCESS) { 1357 unsigned int ep_state; 1358 unsigned int slot_state; 1359 1360 switch (cmd_comp_code) { 1361 case COMP_TRB_ERROR: 1362 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1363 break; 1364 case COMP_CONTEXT_STATE_ERROR: 1365 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1366 ep_state = GET_EP_CTX_STATE(ep_ctx); 1367 slot_state = le32_to_cpu(slot_ctx->dev_state); 1368 slot_state = GET_SLOT_STATE(slot_state); 1369 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1370 "Slot state = %u, EP state = %u", 1371 slot_state, ep_state); 1372 break; 1373 case COMP_SLOT_NOT_ENABLED_ERROR: 1374 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1375 slot_id); 1376 break; 1377 default: 1378 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1379 cmd_comp_code); 1380 break; 1381 } 1382 /* OK what do we do now? The endpoint state is hosed, and we 1383 * should never get to this point if the synchronization between 1384 * queueing, and endpoint state are correct. This might happen 1385 * if the device gets disconnected after we've finished 1386 * cancelling URBs, which might not be an error... 1387 */ 1388 } else { 1389 u64 deq; 1390 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1391 if (ep->ep_state & EP_HAS_STREAMS) { 1392 struct xhci_stream_ctx *ctx = 1393 &ep->stream_info->stream_ctx_array[stream_id]; 1394 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1395 } else { 1396 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1397 } 1398 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1399 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1400 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1401 ep->queued_deq_ptr) == deq) { 1402 /* Update the ring's dequeue segment and dequeue pointer 1403 * to reflect the new position. 1404 */ 1405 update_ring_for_set_deq_completion(xhci, ep->vdev, 1406 ep_ring, ep_index); 1407 } else { 1408 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1409 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1410 ep->queued_deq_seg, ep->queued_deq_ptr); 1411 } 1412 } 1413 /* HW cached TDs cleared from cache, give them back */ 1414 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1415 cancelled_td_list) { 1416 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1417 if (td->cancel_status == TD_CLEARING_CACHE) { 1418 td->cancel_status = TD_CLEARED; 1419 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1420 __func__, td->urb); 1421 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1422 } else { 1423 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1424 __func__, td->urb, td->cancel_status); 1425 } 1426 } 1427 cleanup: 1428 ep->ep_state &= ~SET_DEQ_PENDING; 1429 ep->queued_deq_seg = NULL; 1430 ep->queued_deq_ptr = NULL; 1431 /* Restart any rings with pending URBs */ 1432 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1433 } 1434 1435 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1436 union xhci_trb *trb, u32 cmd_comp_code) 1437 { 1438 struct xhci_virt_ep *ep; 1439 struct xhci_ep_ctx *ep_ctx; 1440 unsigned int ep_index; 1441 1442 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1443 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1444 if (!ep) 1445 return; 1446 1447 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1448 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1449 1450 /* This command will only fail if the endpoint wasn't halted, 1451 * but we don't care. 1452 */ 1453 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1454 "Ignoring reset ep completion code of %u", cmd_comp_code); 1455 1456 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1457 xhci_invalidate_cancelled_tds(ep); 1458 1459 /* Clear our internal halted state */ 1460 ep->ep_state &= ~EP_HALTED; 1461 1462 xhci_giveback_invalidated_tds(ep); 1463 1464 /* if this was a soft reset, then restart */ 1465 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1466 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1467 } 1468 1469 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1470 struct xhci_command *command, u32 cmd_comp_code) 1471 { 1472 if (cmd_comp_code == COMP_SUCCESS) 1473 command->slot_id = slot_id; 1474 else 1475 command->slot_id = 0; 1476 } 1477 1478 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1479 { 1480 struct xhci_virt_device *virt_dev; 1481 struct xhci_slot_ctx *slot_ctx; 1482 1483 virt_dev = xhci->devs[slot_id]; 1484 if (!virt_dev) 1485 return; 1486 1487 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1488 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1489 1490 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1491 /* Delete default control endpoint resources */ 1492 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1493 } 1494 1495 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1496 u32 cmd_comp_code) 1497 { 1498 struct xhci_virt_device *virt_dev; 1499 struct xhci_input_control_ctx *ctrl_ctx; 1500 struct xhci_ep_ctx *ep_ctx; 1501 unsigned int ep_index; 1502 u32 add_flags; 1503 1504 /* 1505 * Configure endpoint commands can come from the USB core configuration 1506 * or alt setting changes, or when streams were being configured. 1507 */ 1508 1509 virt_dev = xhci->devs[slot_id]; 1510 if (!virt_dev) 1511 return; 1512 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1513 if (!ctrl_ctx) { 1514 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1515 return; 1516 } 1517 1518 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1519 1520 /* Input ctx add_flags are the endpoint index plus one */ 1521 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1522 1523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1524 trace_xhci_handle_cmd_config_ep(ep_ctx); 1525 1526 return; 1527 } 1528 1529 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1530 { 1531 struct xhci_virt_device *vdev; 1532 struct xhci_slot_ctx *slot_ctx; 1533 1534 vdev = xhci->devs[slot_id]; 1535 if (!vdev) 1536 return; 1537 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1538 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1539 } 1540 1541 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1542 { 1543 struct xhci_virt_device *vdev; 1544 struct xhci_slot_ctx *slot_ctx; 1545 1546 vdev = xhci->devs[slot_id]; 1547 if (!vdev) { 1548 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1549 slot_id); 1550 return; 1551 } 1552 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1553 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1554 1555 xhci_dbg(xhci, "Completed reset device command.\n"); 1556 } 1557 1558 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1559 struct xhci_event_cmd *event) 1560 { 1561 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1562 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1563 return; 1564 } 1565 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1566 "NEC firmware version %2x.%02x", 1567 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1568 NEC_FW_MINOR(le32_to_cpu(event->status))); 1569 } 1570 1571 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1572 { 1573 list_del(&cmd->cmd_list); 1574 1575 if (cmd->completion) { 1576 cmd->status = status; 1577 complete(cmd->completion); 1578 } else { 1579 kfree(cmd); 1580 } 1581 } 1582 1583 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1584 { 1585 struct xhci_command *cur_cmd, *tmp_cmd; 1586 xhci->current_cmd = NULL; 1587 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1588 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1589 } 1590 1591 void xhci_handle_command_timeout(struct work_struct *work) 1592 { 1593 struct xhci_hcd *xhci; 1594 unsigned long flags; 1595 char str[XHCI_MSG_MAX]; 1596 u64 hw_ring_state; 1597 u32 cmd_field3; 1598 u32 usbsts; 1599 1600 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1601 1602 spin_lock_irqsave(&xhci->lock, flags); 1603 1604 /* 1605 * If timeout work is pending, or current_cmd is NULL, it means we 1606 * raced with command completion. Command is handled so just return. 1607 */ 1608 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1609 spin_unlock_irqrestore(&xhci->lock, flags); 1610 return; 1611 } 1612 1613 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1614 usbsts = readl(&xhci->op_regs->status); 1615 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1616 1617 /* Bail out and tear down xhci if a stop endpoint command failed */ 1618 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1619 struct xhci_virt_ep *ep; 1620 1621 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1622 1623 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1624 TRB_TO_EP_INDEX(cmd_field3)); 1625 if (ep) 1626 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1627 1628 xhci_halt(xhci); 1629 xhci_hc_died(xhci); 1630 goto time_out_completed; 1631 } 1632 1633 /* mark this command to be cancelled */ 1634 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1635 1636 /* Make sure command ring is running before aborting it */ 1637 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1638 if (hw_ring_state == ~(u64)0) { 1639 xhci_hc_died(xhci); 1640 goto time_out_completed; 1641 } 1642 1643 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1644 (hw_ring_state & CMD_RING_RUNNING)) { 1645 /* Prevent new doorbell, and start command abort */ 1646 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1647 xhci_dbg(xhci, "Command timeout\n"); 1648 xhci_abort_cmd_ring(xhci, flags); 1649 goto time_out_completed; 1650 } 1651 1652 /* host removed. Bail out */ 1653 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1654 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1655 xhci_cleanup_command_queue(xhci); 1656 1657 goto time_out_completed; 1658 } 1659 1660 /* command timeout on stopped ring, ring can't be aborted */ 1661 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1662 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1663 1664 time_out_completed: 1665 spin_unlock_irqrestore(&xhci->lock, flags); 1666 return; 1667 } 1668 1669 static void handle_cmd_completion(struct xhci_hcd *xhci, 1670 struct xhci_event_cmd *event) 1671 { 1672 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1673 u64 cmd_dma; 1674 dma_addr_t cmd_dequeue_dma; 1675 u32 cmd_comp_code; 1676 union xhci_trb *cmd_trb; 1677 struct xhci_command *cmd; 1678 u32 cmd_type; 1679 1680 if (slot_id >= MAX_HC_SLOTS) { 1681 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1682 return; 1683 } 1684 1685 cmd_dma = le64_to_cpu(event->cmd_trb); 1686 cmd_trb = xhci->cmd_ring->dequeue; 1687 1688 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1689 1690 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1691 cmd_trb); 1692 /* 1693 * Check whether the completion event is for our internal kept 1694 * command. 1695 */ 1696 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1697 xhci_warn(xhci, 1698 "ERROR mismatched command completion event\n"); 1699 return; 1700 } 1701 1702 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1703 1704 cancel_delayed_work(&xhci->cmd_timer); 1705 1706 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1707 1708 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1709 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1710 complete_all(&xhci->cmd_ring_stop_completion); 1711 return; 1712 } 1713 1714 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1715 xhci_err(xhci, 1716 "Command completion event does not match command\n"); 1717 return; 1718 } 1719 1720 /* 1721 * Host aborted the command ring, check if the current command was 1722 * supposed to be aborted, otherwise continue normally. 1723 * The command ring is stopped now, but the xHC will issue a Command 1724 * Ring Stopped event which will cause us to restart it. 1725 */ 1726 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1727 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1728 if (cmd->status == COMP_COMMAND_ABORTED) { 1729 if (xhci->current_cmd == cmd) 1730 xhci->current_cmd = NULL; 1731 goto event_handled; 1732 } 1733 } 1734 1735 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1736 switch (cmd_type) { 1737 case TRB_ENABLE_SLOT: 1738 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1739 break; 1740 case TRB_DISABLE_SLOT: 1741 xhci_handle_cmd_disable_slot(xhci, slot_id); 1742 break; 1743 case TRB_CONFIG_EP: 1744 if (!cmd->completion) 1745 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1746 break; 1747 case TRB_EVAL_CONTEXT: 1748 break; 1749 case TRB_ADDR_DEV: 1750 xhci_handle_cmd_addr_dev(xhci, slot_id); 1751 break; 1752 case TRB_STOP_RING: 1753 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1754 le32_to_cpu(cmd_trb->generic.field[3]))); 1755 if (!cmd->completion) 1756 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1757 cmd_comp_code); 1758 break; 1759 case TRB_SET_DEQ: 1760 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1761 le32_to_cpu(cmd_trb->generic.field[3]))); 1762 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1763 break; 1764 case TRB_CMD_NOOP: 1765 /* Is this an aborted command turned to NO-OP? */ 1766 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1767 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1768 break; 1769 case TRB_RESET_EP: 1770 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1771 le32_to_cpu(cmd_trb->generic.field[3]))); 1772 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1773 break; 1774 case TRB_RESET_DEV: 1775 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1776 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1777 */ 1778 slot_id = TRB_TO_SLOT_ID( 1779 le32_to_cpu(cmd_trb->generic.field[3])); 1780 xhci_handle_cmd_reset_dev(xhci, slot_id); 1781 break; 1782 case TRB_NEC_GET_FW: 1783 xhci_handle_cmd_nec_get_fw(xhci, event); 1784 break; 1785 default: 1786 /* Skip over unknown commands on the event ring */ 1787 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1788 break; 1789 } 1790 1791 /* restart timer if this wasn't the last command */ 1792 if (!list_is_singular(&xhci->cmd_list)) { 1793 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1794 struct xhci_command, cmd_list); 1795 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1796 } else if (xhci->current_cmd == cmd) { 1797 xhci->current_cmd = NULL; 1798 } 1799 1800 event_handled: 1801 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1802 1803 inc_deq(xhci, xhci->cmd_ring); 1804 } 1805 1806 static void handle_vendor_event(struct xhci_hcd *xhci, 1807 union xhci_trb *event, u32 trb_type) 1808 { 1809 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1810 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1811 handle_cmd_completion(xhci, &event->event_cmd); 1812 } 1813 1814 static void handle_device_notification(struct xhci_hcd *xhci, 1815 union xhci_trb *event) 1816 { 1817 u32 slot_id; 1818 struct usb_device *udev; 1819 1820 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1821 if (!xhci->devs[slot_id]) { 1822 xhci_warn(xhci, "Device Notification event for " 1823 "unused slot %u\n", slot_id); 1824 return; 1825 } 1826 1827 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1828 slot_id); 1829 udev = xhci->devs[slot_id]->udev; 1830 if (udev && udev->parent) 1831 usb_wakeup_notification(udev->parent, udev->portnum); 1832 } 1833 1834 /* 1835 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1836 * Controller. 1837 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1838 * If a connection to a USB 1 device is followed by another connection 1839 * to a USB 2 device. 1840 * 1841 * Reset the PHY after the USB device is disconnected if device speed 1842 * is less than HCD_USB3. 1843 * Retry the reset sequence max of 4 times checking the PLL lock status. 1844 * 1845 */ 1846 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1847 { 1848 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1849 u32 pll_lock_check; 1850 u32 retry_count = 4; 1851 1852 do { 1853 /* Assert PHY reset */ 1854 writel(0x6F, hcd->regs + 0x1048); 1855 udelay(10); 1856 /* De-assert the PHY reset */ 1857 writel(0x7F, hcd->regs + 0x1048); 1858 udelay(200); 1859 pll_lock_check = readl(hcd->regs + 0x1070); 1860 } while (!(pll_lock_check & 0x1) && --retry_count); 1861 } 1862 1863 static void handle_port_status(struct xhci_hcd *xhci, 1864 struct xhci_interrupter *ir, 1865 union xhci_trb *event) 1866 { 1867 struct usb_hcd *hcd; 1868 u32 port_id; 1869 u32 portsc, cmd_reg; 1870 int max_ports; 1871 int slot_id; 1872 unsigned int hcd_portnum; 1873 struct xhci_bus_state *bus_state; 1874 bool bogus_port_status = false; 1875 struct xhci_port *port; 1876 1877 /* Port status change events always have a successful completion code */ 1878 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1879 xhci_warn(xhci, 1880 "WARN: xHC returned failed port status event\n"); 1881 1882 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1883 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1884 1885 if ((port_id <= 0) || (port_id > max_ports)) { 1886 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1887 port_id); 1888 inc_deq(xhci, ir->event_ring); 1889 return; 1890 } 1891 1892 port = &xhci->hw_ports[port_id - 1]; 1893 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1894 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1895 port_id); 1896 bogus_port_status = true; 1897 goto cleanup; 1898 } 1899 1900 /* We might get interrupts after shared_hcd is removed */ 1901 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1902 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1903 bogus_port_status = true; 1904 goto cleanup; 1905 } 1906 1907 hcd = port->rhub->hcd; 1908 bus_state = &port->rhub->bus_state; 1909 hcd_portnum = port->hcd_portnum; 1910 portsc = readl(port->addr); 1911 1912 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1913 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1914 1915 trace_xhci_handle_port_status(hcd_portnum, portsc); 1916 1917 if (hcd->state == HC_STATE_SUSPENDED) { 1918 xhci_dbg(xhci, "resume root hub\n"); 1919 usb_hcd_resume_root_hub(hcd); 1920 } 1921 1922 if (hcd->speed >= HCD_USB3 && 1923 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1924 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1925 if (slot_id && xhci->devs[slot_id]) 1926 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1927 } 1928 1929 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1930 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1931 1932 cmd_reg = readl(&xhci->op_regs->command); 1933 if (!(cmd_reg & CMD_RUN)) { 1934 xhci_warn(xhci, "xHC is not running.\n"); 1935 goto cleanup; 1936 } 1937 1938 if (DEV_SUPERSPEED_ANY(portsc)) { 1939 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1940 /* Set a flag to say the port signaled remote wakeup, 1941 * so we can tell the difference between the end of 1942 * device and host initiated resume. 1943 */ 1944 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1945 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1946 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1947 xhci_set_link_state(xhci, port, XDEV_U0); 1948 /* Need to wait until the next link state change 1949 * indicates the device is actually in U0. 1950 */ 1951 bogus_port_status = true; 1952 goto cleanup; 1953 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1954 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1955 port->resume_timestamp = jiffies + 1956 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1957 set_bit(hcd_portnum, &bus_state->resuming_ports); 1958 /* Do the rest in GetPortStatus after resume time delay. 1959 * Avoid polling roothub status before that so that a 1960 * usb device auto-resume latency around ~40ms. 1961 */ 1962 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1963 mod_timer(&hcd->rh_timer, 1964 port->resume_timestamp); 1965 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1966 bogus_port_status = true; 1967 } 1968 } 1969 1970 if ((portsc & PORT_PLC) && 1971 DEV_SUPERSPEED_ANY(portsc) && 1972 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1973 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1974 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1975 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1976 complete(&port->u3exit_done); 1977 /* We've just brought the device into U0/1/2 through either the 1978 * Resume state after a device remote wakeup, or through the 1979 * U3Exit state after a host-initiated resume. If it's a device 1980 * initiated remote wake, don't pass up the link state change, 1981 * so the roothub behavior is consistent with external 1982 * USB 3.0 hub behavior. 1983 */ 1984 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1985 if (slot_id && xhci->devs[slot_id]) 1986 xhci_ring_device(xhci, slot_id); 1987 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1988 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1989 usb_wakeup_notification(hcd->self.root_hub, 1990 hcd_portnum + 1); 1991 bogus_port_status = true; 1992 goto cleanup; 1993 } 1994 } 1995 1996 /* 1997 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1998 * RExit to a disconnect state). If so, let the driver know it's 1999 * out of the RExit state. 2000 */ 2001 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2002 complete(&port->rexit_done); 2003 port->rexit_active = false; 2004 bogus_port_status = true; 2005 goto cleanup; 2006 } 2007 2008 if (hcd->speed < HCD_USB3) { 2009 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2010 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2011 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2012 xhci_cavium_reset_phy_quirk(xhci); 2013 } 2014 2015 cleanup: 2016 /* Update event ring dequeue pointer before dropping the lock */ 2017 inc_deq(xhci, ir->event_ring); 2018 2019 /* Don't make the USB core poll the roothub if we got a bad port status 2020 * change event. Besides, at that point we can't tell which roothub 2021 * (USB 2.0 or USB 3.0) to kick. 2022 */ 2023 if (bogus_port_status) 2024 return; 2025 2026 /* 2027 * xHCI port-status-change events occur when the "or" of all the 2028 * status-change bits in the portsc register changes from 0 to 1. 2029 * New status changes won't cause an event if any other change 2030 * bits are still set. When an event occurs, switch over to 2031 * polling to avoid losing status changes. 2032 */ 2033 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2034 __func__, hcd->self.busnum); 2035 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2036 spin_unlock(&xhci->lock); 2037 /* Pass this up to the core */ 2038 usb_hcd_poll_rh_status(hcd); 2039 spin_lock(&xhci->lock); 2040 } 2041 2042 /* 2043 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2044 * at end_trb, which may be in another segment. If the suspect DMA address is a 2045 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2046 * returns 0. 2047 */ 2048 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2049 struct xhci_segment *start_seg, 2050 union xhci_trb *start_trb, 2051 union xhci_trb *end_trb, 2052 dma_addr_t suspect_dma, 2053 bool debug) 2054 { 2055 dma_addr_t start_dma; 2056 dma_addr_t end_seg_dma; 2057 dma_addr_t end_trb_dma; 2058 struct xhci_segment *cur_seg; 2059 2060 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2061 cur_seg = start_seg; 2062 2063 do { 2064 if (start_dma == 0) 2065 return NULL; 2066 /* We may get an event for a Link TRB in the middle of a TD */ 2067 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2068 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2069 /* If the end TRB isn't in this segment, this is set to 0 */ 2070 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2071 2072 if (debug) 2073 xhci_warn(xhci, 2074 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2075 (unsigned long long)suspect_dma, 2076 (unsigned long long)start_dma, 2077 (unsigned long long)end_trb_dma, 2078 (unsigned long long)cur_seg->dma, 2079 (unsigned long long)end_seg_dma); 2080 2081 if (end_trb_dma > 0) { 2082 /* The end TRB is in this segment, so suspect should be here */ 2083 if (start_dma <= end_trb_dma) { 2084 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2085 return cur_seg; 2086 } else { 2087 /* Case for one segment with 2088 * a TD wrapped around to the top 2089 */ 2090 if ((suspect_dma >= start_dma && 2091 suspect_dma <= end_seg_dma) || 2092 (suspect_dma >= cur_seg->dma && 2093 suspect_dma <= end_trb_dma)) 2094 return cur_seg; 2095 } 2096 return NULL; 2097 } else { 2098 /* Might still be somewhere in this segment */ 2099 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2100 return cur_seg; 2101 } 2102 cur_seg = cur_seg->next; 2103 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2104 } while (cur_seg != start_seg); 2105 2106 return NULL; 2107 } 2108 2109 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2110 struct xhci_virt_ep *ep) 2111 { 2112 /* 2113 * As part of low/full-speed endpoint-halt processing 2114 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2115 */ 2116 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2117 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2118 !(ep->ep_state & EP_CLEARING_TT)) { 2119 ep->ep_state |= EP_CLEARING_TT; 2120 td->urb->ep->hcpriv = td->urb->dev; 2121 if (usb_hub_clear_tt_buffer(td->urb)) 2122 ep->ep_state &= ~EP_CLEARING_TT; 2123 } 2124 } 2125 2126 /* Check if an error has halted the endpoint ring. The class driver will 2127 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2128 * However, a babble and other errors also halt the endpoint ring, and the class 2129 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2130 * Ring Dequeue Pointer command manually. 2131 */ 2132 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2133 struct xhci_ep_ctx *ep_ctx, 2134 unsigned int trb_comp_code) 2135 { 2136 /* TRB completion codes that may require a manual halt cleanup */ 2137 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2138 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2139 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2140 /* The 0.95 spec says a babbling control endpoint 2141 * is not halted. The 0.96 spec says it is. Some HW 2142 * claims to be 0.95 compliant, but it halts the control 2143 * endpoint anyway. Check if a babble halted the 2144 * endpoint. 2145 */ 2146 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2147 return 1; 2148 2149 return 0; 2150 } 2151 2152 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2153 { 2154 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2155 /* Vendor defined "informational" completion code, 2156 * treat as not-an-error. 2157 */ 2158 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2159 trb_comp_code); 2160 xhci_dbg(xhci, "Treating code as success.\n"); 2161 return 1; 2162 } 2163 return 0; 2164 } 2165 2166 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2167 struct xhci_ring *ep_ring, struct xhci_td *td, 2168 u32 trb_comp_code) 2169 { 2170 struct xhci_ep_ctx *ep_ctx; 2171 2172 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2173 2174 switch (trb_comp_code) { 2175 case COMP_STOPPED_LENGTH_INVALID: 2176 case COMP_STOPPED_SHORT_PACKET: 2177 case COMP_STOPPED: 2178 /* 2179 * The "Stop Endpoint" completion will take care of any 2180 * stopped TDs. A stopped TD may be restarted, so don't update 2181 * the ring dequeue pointer or take this TD off any lists yet. 2182 */ 2183 return 0; 2184 case COMP_USB_TRANSACTION_ERROR: 2185 case COMP_BABBLE_DETECTED_ERROR: 2186 case COMP_SPLIT_TRANSACTION_ERROR: 2187 /* 2188 * If endpoint context state is not halted we might be 2189 * racing with a reset endpoint command issued by a unsuccessful 2190 * stop endpoint completion (context error). In that case the 2191 * td should be on the cancelled list, and EP_HALTED flag set. 2192 * 2193 * Or then it's not halted due to the 0.95 spec stating that a 2194 * babbling control endpoint should not halt. The 0.96 spec 2195 * again says it should. Some HW claims to be 0.95 compliant, 2196 * but it halts the control endpoint anyway. 2197 */ 2198 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2199 /* 2200 * If EP_HALTED is set and TD is on the cancelled list 2201 * the TD and dequeue pointer will be handled by reset 2202 * ep command completion 2203 */ 2204 if ((ep->ep_state & EP_HALTED) && 2205 !list_empty(&td->cancelled_td_list)) { 2206 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2207 (unsigned long long)xhci_trb_virt_to_dma( 2208 td->start_seg, td->first_trb)); 2209 return 0; 2210 } 2211 /* endpoint not halted, don't reset it */ 2212 break; 2213 } 2214 /* Almost same procedure as for STALL_ERROR below */ 2215 xhci_clear_hub_tt_buffer(xhci, td, ep); 2216 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2217 return 0; 2218 case COMP_STALL_ERROR: 2219 /* 2220 * xhci internal endpoint state will go to a "halt" state for 2221 * any stall, including default control pipe protocol stall. 2222 * To clear the host side halt we need to issue a reset endpoint 2223 * command, followed by a set dequeue command to move past the 2224 * TD. 2225 * Class drivers clear the device side halt from a functional 2226 * stall later. Hub TT buffer should only be cleared for FS/LS 2227 * devices behind HS hubs for functional stalls. 2228 */ 2229 if (ep->ep_index != 0) 2230 xhci_clear_hub_tt_buffer(xhci, td, ep); 2231 2232 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2233 2234 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2235 default: 2236 break; 2237 } 2238 2239 /* Update ring dequeue pointer */ 2240 ep_ring->dequeue = td->last_trb; 2241 ep_ring->deq_seg = td->last_trb_seg; 2242 inc_deq(xhci, ep_ring); 2243 2244 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2245 } 2246 2247 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2248 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2249 union xhci_trb *stop_trb) 2250 { 2251 u32 sum; 2252 union xhci_trb *trb = ring->dequeue; 2253 struct xhci_segment *seg = ring->deq_seg; 2254 2255 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2256 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2257 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2258 } 2259 return sum; 2260 } 2261 2262 /* 2263 * Process control tds, update urb status and actual_length. 2264 */ 2265 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2266 struct xhci_ring *ep_ring, struct xhci_td *td, 2267 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2268 { 2269 struct xhci_ep_ctx *ep_ctx; 2270 u32 trb_comp_code; 2271 u32 remaining, requested; 2272 u32 trb_type; 2273 2274 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2275 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2276 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2277 requested = td->urb->transfer_buffer_length; 2278 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2279 2280 switch (trb_comp_code) { 2281 case COMP_SUCCESS: 2282 if (trb_type != TRB_STATUS) { 2283 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2284 (trb_type == TRB_DATA) ? "data" : "setup"); 2285 td->status = -ESHUTDOWN; 2286 break; 2287 } 2288 td->status = 0; 2289 break; 2290 case COMP_SHORT_PACKET: 2291 td->status = 0; 2292 break; 2293 case COMP_STOPPED_SHORT_PACKET: 2294 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2295 td->urb->actual_length = remaining; 2296 else 2297 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2298 goto finish_td; 2299 case COMP_STOPPED: 2300 switch (trb_type) { 2301 case TRB_SETUP: 2302 td->urb->actual_length = 0; 2303 goto finish_td; 2304 case TRB_DATA: 2305 case TRB_NORMAL: 2306 td->urb->actual_length = requested - remaining; 2307 goto finish_td; 2308 case TRB_STATUS: 2309 td->urb->actual_length = requested; 2310 goto finish_td; 2311 default: 2312 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2313 trb_type); 2314 goto finish_td; 2315 } 2316 case COMP_STOPPED_LENGTH_INVALID: 2317 goto finish_td; 2318 default: 2319 if (!xhci_requires_manual_halt_cleanup(xhci, 2320 ep_ctx, trb_comp_code)) 2321 break; 2322 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2323 trb_comp_code, ep->ep_index); 2324 fallthrough; 2325 case COMP_STALL_ERROR: 2326 /* Did we transfer part of the data (middle) phase? */ 2327 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2328 td->urb->actual_length = requested - remaining; 2329 else if (!td->urb_length_set) 2330 td->urb->actual_length = 0; 2331 goto finish_td; 2332 } 2333 2334 /* stopped at setup stage, no data transferred */ 2335 if (trb_type == TRB_SETUP) 2336 goto finish_td; 2337 2338 /* 2339 * if on data stage then update the actual_length of the URB and flag it 2340 * as set, so it won't be overwritten in the event for the last TRB. 2341 */ 2342 if (trb_type == TRB_DATA || 2343 trb_type == TRB_NORMAL) { 2344 td->urb_length_set = true; 2345 td->urb->actual_length = requested - remaining; 2346 xhci_dbg(xhci, "Waiting for status stage event\n"); 2347 return 0; 2348 } 2349 2350 /* at status stage */ 2351 if (!td->urb_length_set) 2352 td->urb->actual_length = requested; 2353 2354 finish_td: 2355 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2356 } 2357 2358 /* 2359 * Process isochronous tds, update urb packet status and actual_length. 2360 */ 2361 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2362 struct xhci_ring *ep_ring, struct xhci_td *td, 2363 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2364 { 2365 struct urb_priv *urb_priv; 2366 int idx; 2367 struct usb_iso_packet_descriptor *frame; 2368 u32 trb_comp_code; 2369 bool sum_trbs_for_length = false; 2370 u32 remaining, requested, ep_trb_len; 2371 int short_framestatus; 2372 2373 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2374 urb_priv = td->urb->hcpriv; 2375 idx = urb_priv->num_tds_done; 2376 frame = &td->urb->iso_frame_desc[idx]; 2377 requested = frame->length; 2378 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2379 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2380 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2381 -EREMOTEIO : 0; 2382 2383 /* handle completion code */ 2384 switch (trb_comp_code) { 2385 case COMP_SUCCESS: 2386 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2387 if (td->error_mid_td) 2388 break; 2389 if (remaining) { 2390 frame->status = short_framestatus; 2391 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2392 sum_trbs_for_length = true; 2393 break; 2394 } 2395 frame->status = 0; 2396 break; 2397 case COMP_SHORT_PACKET: 2398 frame->status = short_framestatus; 2399 sum_trbs_for_length = true; 2400 break; 2401 case COMP_BANDWIDTH_OVERRUN_ERROR: 2402 frame->status = -ECOMM; 2403 break; 2404 case COMP_BABBLE_DETECTED_ERROR: 2405 sum_trbs_for_length = true; 2406 fallthrough; 2407 case COMP_ISOCH_BUFFER_OVERRUN: 2408 frame->status = -EOVERFLOW; 2409 if (ep_trb != td->last_trb) 2410 td->error_mid_td = true; 2411 break; 2412 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2413 case COMP_STALL_ERROR: 2414 frame->status = -EPROTO; 2415 break; 2416 case COMP_USB_TRANSACTION_ERROR: 2417 frame->status = -EPROTO; 2418 sum_trbs_for_length = true; 2419 if (ep_trb != td->last_trb) 2420 td->error_mid_td = true; 2421 break; 2422 case COMP_STOPPED: 2423 sum_trbs_for_length = true; 2424 break; 2425 case COMP_STOPPED_SHORT_PACKET: 2426 /* field normally containing residue now contains tranferred */ 2427 frame->status = short_framestatus; 2428 requested = remaining; 2429 break; 2430 case COMP_STOPPED_LENGTH_INVALID: 2431 requested = 0; 2432 remaining = 0; 2433 break; 2434 default: 2435 sum_trbs_for_length = true; 2436 frame->status = -1; 2437 break; 2438 } 2439 2440 if (td->urb_length_set) 2441 goto finish_td; 2442 2443 if (sum_trbs_for_length) 2444 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2445 ep_trb_len - remaining; 2446 else 2447 frame->actual_length = requested; 2448 2449 td->urb->actual_length += frame->actual_length; 2450 2451 finish_td: 2452 /* Don't give back TD yet if we encountered an error mid TD */ 2453 if (td->error_mid_td && ep_trb != td->last_trb) { 2454 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2455 td->urb_length_set = true; 2456 return 0; 2457 } 2458 2459 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2460 } 2461 2462 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2463 struct xhci_virt_ep *ep, int status) 2464 { 2465 struct urb_priv *urb_priv; 2466 struct usb_iso_packet_descriptor *frame; 2467 int idx; 2468 2469 urb_priv = td->urb->hcpriv; 2470 idx = urb_priv->num_tds_done; 2471 frame = &td->urb->iso_frame_desc[idx]; 2472 2473 /* The transfer is partly done. */ 2474 frame->status = -EXDEV; 2475 2476 /* calc actual length */ 2477 frame->actual_length = 0; 2478 2479 /* Update ring dequeue pointer */ 2480 ep->ring->dequeue = td->last_trb; 2481 ep->ring->deq_seg = td->last_trb_seg; 2482 inc_deq(xhci, ep->ring); 2483 2484 return xhci_td_cleanup(xhci, td, ep->ring, status); 2485 } 2486 2487 /* 2488 * Process bulk and interrupt tds, update urb status and actual_length. 2489 */ 2490 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2491 struct xhci_ring *ep_ring, struct xhci_td *td, 2492 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2493 { 2494 struct xhci_slot_ctx *slot_ctx; 2495 u32 trb_comp_code; 2496 u32 remaining, requested, ep_trb_len; 2497 2498 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2499 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2500 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2501 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2502 requested = td->urb->transfer_buffer_length; 2503 2504 switch (trb_comp_code) { 2505 case COMP_SUCCESS: 2506 ep->err_count = 0; 2507 /* handle success with untransferred data as short packet */ 2508 if (ep_trb != td->last_trb || remaining) { 2509 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2510 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2511 td->urb->ep->desc.bEndpointAddress, 2512 requested, remaining); 2513 } 2514 td->status = 0; 2515 break; 2516 case COMP_SHORT_PACKET: 2517 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2518 td->urb->ep->desc.bEndpointAddress, 2519 requested, remaining); 2520 td->status = 0; 2521 break; 2522 case COMP_STOPPED_SHORT_PACKET: 2523 td->urb->actual_length = remaining; 2524 goto finish_td; 2525 case COMP_STOPPED_LENGTH_INVALID: 2526 /* stopped on ep trb with invalid length, exclude it */ 2527 ep_trb_len = 0; 2528 remaining = 0; 2529 break; 2530 case COMP_USB_TRANSACTION_ERROR: 2531 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2532 (ep->err_count++ > MAX_SOFT_RETRY) || 2533 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2534 break; 2535 2536 td->status = 0; 2537 2538 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2539 return 0; 2540 default: 2541 /* do nothing */ 2542 break; 2543 } 2544 2545 if (ep_trb == td->last_trb) 2546 td->urb->actual_length = requested - remaining; 2547 else 2548 td->urb->actual_length = 2549 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2550 ep_trb_len - remaining; 2551 finish_td: 2552 if (remaining > requested) { 2553 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2554 remaining); 2555 td->urb->actual_length = 0; 2556 } 2557 2558 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2559 } 2560 2561 /* 2562 * If this function returns an error condition, it means it got a Transfer 2563 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2564 * At this point, the host controller is probably hosed and should be reset. 2565 */ 2566 static int handle_tx_event(struct xhci_hcd *xhci, 2567 struct xhci_interrupter *ir, 2568 struct xhci_transfer_event *event) 2569 { 2570 struct xhci_virt_ep *ep; 2571 struct xhci_ring *ep_ring; 2572 unsigned int slot_id; 2573 int ep_index; 2574 struct xhci_td *td = NULL; 2575 dma_addr_t ep_trb_dma; 2576 struct xhci_segment *ep_seg; 2577 union xhci_trb *ep_trb; 2578 int status = -EINPROGRESS; 2579 struct xhci_ep_ctx *ep_ctx; 2580 u32 trb_comp_code; 2581 int td_num = 0; 2582 bool handling_skipped_tds = false; 2583 2584 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2585 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2586 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2587 ep_trb_dma = le64_to_cpu(event->buffer); 2588 2589 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2590 if (!ep) { 2591 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2592 goto err_out; 2593 } 2594 2595 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2596 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2597 2598 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2599 xhci_err(xhci, 2600 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2601 slot_id, ep_index); 2602 goto err_out; 2603 } 2604 2605 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2606 if (!ep_ring) { 2607 switch (trb_comp_code) { 2608 case COMP_STALL_ERROR: 2609 case COMP_USB_TRANSACTION_ERROR: 2610 case COMP_INVALID_STREAM_TYPE_ERROR: 2611 case COMP_INVALID_STREAM_ID_ERROR: 2612 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2613 ep_index); 2614 if (ep->err_count++ > MAX_SOFT_RETRY) 2615 xhci_handle_halted_endpoint(xhci, ep, NULL, 2616 EP_HARD_RESET); 2617 else 2618 xhci_handle_halted_endpoint(xhci, ep, NULL, 2619 EP_SOFT_RESET); 2620 goto cleanup; 2621 case COMP_RING_UNDERRUN: 2622 case COMP_RING_OVERRUN: 2623 case COMP_STOPPED_LENGTH_INVALID: 2624 goto cleanup; 2625 default: 2626 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2627 slot_id, ep_index); 2628 goto err_out; 2629 } 2630 } 2631 2632 /* Count current td numbers if ep->skip is set */ 2633 if (ep->skip) 2634 td_num += list_count_nodes(&ep_ring->td_list); 2635 2636 /* Look for common error cases */ 2637 switch (trb_comp_code) { 2638 /* Skip codes that require special handling depending on 2639 * transfer type 2640 */ 2641 case COMP_SUCCESS: 2642 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2643 break; 2644 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2645 ep_ring->last_td_was_short) 2646 trb_comp_code = COMP_SHORT_PACKET; 2647 else 2648 xhci_warn_ratelimited(xhci, 2649 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2650 slot_id, ep_index); 2651 break; 2652 case COMP_SHORT_PACKET: 2653 break; 2654 /* Completion codes for endpoint stopped state */ 2655 case COMP_STOPPED: 2656 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2657 slot_id, ep_index); 2658 break; 2659 case COMP_STOPPED_LENGTH_INVALID: 2660 xhci_dbg(xhci, 2661 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2662 slot_id, ep_index); 2663 break; 2664 case COMP_STOPPED_SHORT_PACKET: 2665 xhci_dbg(xhci, 2666 "Stopped with short packet transfer detected for slot %u ep %u\n", 2667 slot_id, ep_index); 2668 break; 2669 /* Completion codes for endpoint halted state */ 2670 case COMP_STALL_ERROR: 2671 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2672 ep_index); 2673 status = -EPIPE; 2674 break; 2675 case COMP_SPLIT_TRANSACTION_ERROR: 2676 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2677 slot_id, ep_index); 2678 status = -EPROTO; 2679 break; 2680 case COMP_USB_TRANSACTION_ERROR: 2681 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2682 slot_id, ep_index); 2683 status = -EPROTO; 2684 break; 2685 case COMP_BABBLE_DETECTED_ERROR: 2686 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2687 slot_id, ep_index); 2688 status = -EOVERFLOW; 2689 break; 2690 /* Completion codes for endpoint error state */ 2691 case COMP_TRB_ERROR: 2692 xhci_warn(xhci, 2693 "WARN: TRB error for slot %u ep %u on endpoint\n", 2694 slot_id, ep_index); 2695 status = -EILSEQ; 2696 break; 2697 /* completion codes not indicating endpoint state change */ 2698 case COMP_DATA_BUFFER_ERROR: 2699 xhci_warn(xhci, 2700 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2701 slot_id, ep_index); 2702 status = -ENOSR; 2703 break; 2704 case COMP_BANDWIDTH_OVERRUN_ERROR: 2705 xhci_warn(xhci, 2706 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2707 slot_id, ep_index); 2708 break; 2709 case COMP_ISOCH_BUFFER_OVERRUN: 2710 xhci_warn(xhci, 2711 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2712 slot_id, ep_index); 2713 break; 2714 case COMP_RING_UNDERRUN: 2715 /* 2716 * When the Isoch ring is empty, the xHC will generate 2717 * a Ring Overrun Event for IN Isoch endpoint or Ring 2718 * Underrun Event for OUT Isoch endpoint. 2719 */ 2720 xhci_dbg(xhci, "underrun event on endpoint\n"); 2721 if (!list_empty(&ep_ring->td_list)) 2722 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2723 "still with TDs queued?\n", 2724 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2725 ep_index); 2726 goto cleanup; 2727 case COMP_RING_OVERRUN: 2728 xhci_dbg(xhci, "overrun event on endpoint\n"); 2729 if (!list_empty(&ep_ring->td_list)) 2730 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2731 "still with TDs queued?\n", 2732 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2733 ep_index); 2734 goto cleanup; 2735 case COMP_MISSED_SERVICE_ERROR: 2736 /* 2737 * When encounter missed service error, one or more isoc tds 2738 * may be missed by xHC. 2739 * Set skip flag of the ep_ring; Complete the missed tds as 2740 * short transfer when process the ep_ring next time. 2741 */ 2742 ep->skip = true; 2743 xhci_dbg(xhci, 2744 "Miss service interval error for slot %u ep %u, set skip flag\n", 2745 slot_id, ep_index); 2746 goto cleanup; 2747 case COMP_NO_PING_RESPONSE_ERROR: 2748 ep->skip = true; 2749 xhci_dbg(xhci, 2750 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2751 slot_id, ep_index); 2752 goto cleanup; 2753 2754 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2755 /* needs disable slot command to recover */ 2756 xhci_warn(xhci, 2757 "WARN: detect an incompatible device for slot %u ep %u", 2758 slot_id, ep_index); 2759 status = -EPROTO; 2760 break; 2761 default: 2762 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2763 status = 0; 2764 break; 2765 } 2766 xhci_warn(xhci, 2767 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2768 trb_comp_code, slot_id, ep_index); 2769 goto cleanup; 2770 } 2771 2772 do { 2773 /* This TRB should be in the TD at the head of this ring's 2774 * TD list. 2775 */ 2776 if (list_empty(&ep_ring->td_list)) { 2777 /* 2778 * Don't print wanings if it's due to a stopped endpoint 2779 * generating an extra completion event if the device 2780 * was suspended. Or, a event for the last TRB of a 2781 * short TD we already got a short event for. 2782 * The short TD is already removed from the TD list. 2783 */ 2784 2785 if (!(trb_comp_code == COMP_STOPPED || 2786 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2787 ep_ring->last_td_was_short)) { 2788 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2789 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2790 ep_index); 2791 } 2792 if (ep->skip) { 2793 ep->skip = false; 2794 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2795 slot_id, ep_index); 2796 } 2797 if (trb_comp_code == COMP_STALL_ERROR || 2798 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2799 trb_comp_code)) { 2800 xhci_handle_halted_endpoint(xhci, ep, NULL, 2801 EP_HARD_RESET); 2802 } 2803 goto cleanup; 2804 } 2805 2806 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2807 if (ep->skip && td_num == 0) { 2808 ep->skip = false; 2809 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2810 slot_id, ep_index); 2811 goto cleanup; 2812 } 2813 2814 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2815 td_list); 2816 if (ep->skip) 2817 td_num--; 2818 2819 /* Is this a TRB in the currently executing TD? */ 2820 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2821 td->last_trb, ep_trb_dma, false); 2822 2823 /* 2824 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2825 * is not in the current TD pointed by ep_ring->dequeue because 2826 * that the hardware dequeue pointer still at the previous TRB 2827 * of the current TD. The previous TRB maybe a Link TD or the 2828 * last TRB of the previous TD. The command completion handle 2829 * will take care the rest. 2830 */ 2831 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2832 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2833 goto cleanup; 2834 } 2835 2836 if (!ep_seg) { 2837 2838 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2839 skip_isoc_td(xhci, td, ep, status); 2840 goto cleanup; 2841 } 2842 2843 /* 2844 * Some hosts give a spurious success event after a short 2845 * transfer. Ignore it. 2846 */ 2847 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2848 ep_ring->last_td_was_short) { 2849 ep_ring->last_td_was_short = false; 2850 goto cleanup; 2851 } 2852 2853 /* 2854 * xhci 4.10.2 states isoc endpoints should continue 2855 * processing the next TD if there was an error mid TD. 2856 * So host like NEC don't generate an event for the last 2857 * isoc TRB even if the IOC flag is set. 2858 * xhci 4.9.1 states that if there are errors in mult-TRB 2859 * TDs xHC should generate an error for that TRB, and if xHC 2860 * proceeds to the next TD it should genete an event for 2861 * any TRB with IOC flag on the way. Other host follow this. 2862 * So this event might be for the next TD. 2863 */ 2864 if (td->error_mid_td && 2865 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2866 struct xhci_td *td_next = list_next_entry(td, td_list); 2867 2868 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2869 td_next->last_trb, ep_trb_dma, false); 2870 if (ep_seg) { 2871 /* give back previous TD, start handling new */ 2872 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2873 ep_ring->dequeue = td->last_trb; 2874 ep_ring->deq_seg = td->last_trb_seg; 2875 inc_deq(xhci, ep_ring); 2876 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2877 td = td_next; 2878 } 2879 } 2880 2881 if (!ep_seg) { 2882 /* HC is busted, give up! */ 2883 xhci_err(xhci, 2884 "ERROR Transfer event TRB DMA ptr not " 2885 "part of current TD ep_index %d " 2886 "comp_code %u\n", ep_index, 2887 trb_comp_code); 2888 trb_in_td(xhci, ep_ring->deq_seg, 2889 ep_ring->dequeue, td->last_trb, 2890 ep_trb_dma, true); 2891 return -ESHUTDOWN; 2892 } 2893 } 2894 if (trb_comp_code == COMP_SHORT_PACKET) 2895 ep_ring->last_td_was_short = true; 2896 else 2897 ep_ring->last_td_was_short = false; 2898 2899 if (ep->skip) { 2900 xhci_dbg(xhci, 2901 "Found td. Clear skip flag for slot %u ep %u.\n", 2902 slot_id, ep_index); 2903 ep->skip = false; 2904 } 2905 2906 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2907 sizeof(*ep_trb)]; 2908 2909 trace_xhci_handle_transfer(ep_ring, 2910 (struct xhci_generic_trb *) ep_trb); 2911 2912 /* 2913 * No-op TRB could trigger interrupts in a case where 2914 * a URB was killed and a STALL_ERROR happens right 2915 * after the endpoint ring stopped. Reset the halted 2916 * endpoint. Otherwise, the endpoint remains stalled 2917 * indefinitely. 2918 */ 2919 2920 if (trb_is_noop(ep_trb)) { 2921 if (trb_comp_code == COMP_STALL_ERROR || 2922 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2923 trb_comp_code)) 2924 xhci_handle_halted_endpoint(xhci, ep, td, 2925 EP_HARD_RESET); 2926 goto cleanup; 2927 } 2928 2929 td->status = status; 2930 2931 /* update the urb's actual_length and give back to the core */ 2932 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2933 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2934 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2935 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2936 else 2937 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2938 cleanup: 2939 handling_skipped_tds = ep->skip && 2940 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2941 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2942 2943 /* 2944 * Do not update event ring dequeue pointer if we're in a loop 2945 * processing missed tds. 2946 */ 2947 if (!handling_skipped_tds) 2948 inc_deq(xhci, ir->event_ring); 2949 2950 /* 2951 * If ep->skip is set, it means there are missed tds on the 2952 * endpoint ring need to take care of. 2953 * Process them as short transfer until reach the td pointed by 2954 * the event. 2955 */ 2956 } while (handling_skipped_tds); 2957 2958 return 0; 2959 2960 err_out: 2961 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2962 (unsigned long long) xhci_trb_virt_to_dma( 2963 ir->event_ring->deq_seg, 2964 ir->event_ring->dequeue), 2965 lower_32_bits(le64_to_cpu(event->buffer)), 2966 upper_32_bits(le64_to_cpu(event->buffer)), 2967 le32_to_cpu(event->transfer_len), 2968 le32_to_cpu(event->flags)); 2969 return -ENODEV; 2970 } 2971 2972 /* 2973 * This function handles all OS-owned events on the event ring. It may drop 2974 * xhci->lock between event processing (e.g. to pass up port status changes). 2975 * Returns >0 for "possibly more events to process" (caller should call again), 2976 * otherwise 0 if done. In future, <0 returns should indicate error code. 2977 */ 2978 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2979 { 2980 union xhci_trb *event; 2981 int update_ptrs = 1; 2982 u32 trb_type; 2983 int ret; 2984 2985 /* Event ring hasn't been allocated yet. */ 2986 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2987 xhci_err(xhci, "ERROR interrupter not ready\n"); 2988 return -ENOMEM; 2989 } 2990 2991 event = ir->event_ring->dequeue; 2992 /* Does the HC or OS own the TRB? */ 2993 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2994 ir->event_ring->cycle_state) 2995 return 0; 2996 2997 trace_xhci_handle_event(ir->event_ring, &event->generic); 2998 2999 /* 3000 * Barrier between reading the TRB_CYCLE (valid) flag above and any 3001 * speculative reads of the event's flags/data below. 3002 */ 3003 rmb(); 3004 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3005 /* FIXME: Handle more event types. */ 3006 3007 switch (trb_type) { 3008 case TRB_COMPLETION: 3009 handle_cmd_completion(xhci, &event->event_cmd); 3010 break; 3011 case TRB_PORT_STATUS: 3012 handle_port_status(xhci, ir, event); 3013 update_ptrs = 0; 3014 break; 3015 case TRB_TRANSFER: 3016 ret = handle_tx_event(xhci, ir, &event->trans_event); 3017 if (ret >= 0) 3018 update_ptrs = 0; 3019 break; 3020 case TRB_DEV_NOTE: 3021 handle_device_notification(xhci, event); 3022 break; 3023 default: 3024 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3025 handle_vendor_event(xhci, event, trb_type); 3026 else 3027 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3028 } 3029 /* Any of the above functions may drop and re-acquire the lock, so check 3030 * to make sure a watchdog timer didn't mark the host as non-responsive. 3031 */ 3032 if (xhci->xhc_state & XHCI_STATE_DYING) { 3033 xhci_dbg(xhci, "xHCI host dying, returning from " 3034 "event handler.\n"); 3035 return 0; 3036 } 3037 3038 if (update_ptrs) 3039 /* Update SW event ring dequeue pointer */ 3040 inc_deq(xhci, ir->event_ring); 3041 3042 /* Are there more items on the event ring? Caller will call us again to 3043 * check. 3044 */ 3045 return 1; 3046 } 3047 3048 /* 3049 * Update Event Ring Dequeue Pointer: 3050 * - When all events have finished 3051 * - To avoid "Event Ring Full Error" condition 3052 */ 3053 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3054 struct xhci_interrupter *ir, 3055 union xhci_trb *event_ring_deq, 3056 bool clear_ehb) 3057 { 3058 u64 temp_64; 3059 dma_addr_t deq; 3060 3061 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3062 /* If necessary, update the HW's version of the event ring deq ptr. */ 3063 if (event_ring_deq != ir->event_ring->dequeue) { 3064 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3065 ir->event_ring->dequeue); 3066 if (deq == 0) 3067 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3068 /* 3069 * Per 4.9.4, Software writes to the ERDP register shall 3070 * always advance the Event Ring Dequeue Pointer value. 3071 */ 3072 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3073 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3074 return; 3075 3076 /* Update HC event ring dequeue pointer */ 3077 temp_64 &= ERST_DESI_MASK; 3078 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3079 } 3080 3081 /* Clear the event handler busy flag (RW1C) */ 3082 if (clear_ehb) 3083 temp_64 |= ERST_EHB; 3084 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3085 } 3086 3087 /* 3088 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3089 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3090 * indicators of an event TRB error, but we check the status *first* to be safe. 3091 */ 3092 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3093 { 3094 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3095 union xhci_trb *event_ring_deq; 3096 struct xhci_interrupter *ir; 3097 irqreturn_t ret = IRQ_NONE; 3098 u64 temp_64; 3099 u32 status; 3100 int event_loop = 0; 3101 3102 spin_lock(&xhci->lock); 3103 /* Check if the xHC generated the interrupt, or the irq is shared */ 3104 status = readl(&xhci->op_regs->status); 3105 if (status == ~(u32)0) { 3106 xhci_hc_died(xhci); 3107 ret = IRQ_HANDLED; 3108 goto out; 3109 } 3110 3111 if (!(status & STS_EINT)) 3112 goto out; 3113 3114 if (status & STS_HCE) { 3115 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3116 goto out; 3117 } 3118 3119 if (status & STS_FATAL) { 3120 xhci_warn(xhci, "WARNING: Host System Error\n"); 3121 xhci_halt(xhci); 3122 ret = IRQ_HANDLED; 3123 goto out; 3124 } 3125 3126 /* 3127 * Clear the op reg interrupt status first, 3128 * so we can receive interrupts from other MSI-X interrupters. 3129 * Write 1 to clear the interrupt status. 3130 */ 3131 status |= STS_EINT; 3132 writel(status, &xhci->op_regs->status); 3133 3134 /* This is the handler of the primary interrupter */ 3135 ir = xhci->interrupter; 3136 if (!hcd->msi_enabled) { 3137 u32 irq_pending; 3138 irq_pending = readl(&ir->ir_set->irq_pending); 3139 irq_pending |= IMAN_IP; 3140 writel(irq_pending, &ir->ir_set->irq_pending); 3141 } 3142 3143 if (xhci->xhc_state & XHCI_STATE_DYING || 3144 xhci->xhc_state & XHCI_STATE_HALTED) { 3145 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3146 "Shouldn't IRQs be disabled?\n"); 3147 /* Clear the event handler busy flag (RW1C); 3148 * the event ring should be empty. 3149 */ 3150 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3151 xhci_write_64(xhci, temp_64 | ERST_EHB, 3152 &ir->ir_set->erst_dequeue); 3153 ret = IRQ_HANDLED; 3154 goto out; 3155 } 3156 3157 event_ring_deq = ir->event_ring->dequeue; 3158 /* FIXME this should be a delayed service routine 3159 * that clears the EHB. 3160 */ 3161 while (xhci_handle_event(xhci, ir) > 0) { 3162 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3163 continue; 3164 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3165 event_ring_deq = ir->event_ring->dequeue; 3166 3167 /* ring is half-full, force isoc trbs to interrupt more often */ 3168 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3169 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3170 3171 event_loop = 0; 3172 } 3173 3174 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3175 ret = IRQ_HANDLED; 3176 3177 out: 3178 spin_unlock(&xhci->lock); 3179 3180 return ret; 3181 } 3182 3183 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3184 { 3185 return xhci_irq(hcd); 3186 } 3187 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3188 3189 /**** Endpoint Ring Operations ****/ 3190 3191 /* 3192 * Generic function for queueing a TRB on a ring. 3193 * The caller must have checked to make sure there's room on the ring. 3194 * 3195 * @more_trbs_coming: Will you enqueue more TRBs before calling 3196 * prepare_transfer()? 3197 */ 3198 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3199 bool more_trbs_coming, 3200 u32 field1, u32 field2, u32 field3, u32 field4) 3201 { 3202 struct xhci_generic_trb *trb; 3203 3204 trb = &ring->enqueue->generic; 3205 trb->field[0] = cpu_to_le32(field1); 3206 trb->field[1] = cpu_to_le32(field2); 3207 trb->field[2] = cpu_to_le32(field3); 3208 /* make sure TRB is fully written before giving it to the controller */ 3209 wmb(); 3210 trb->field[3] = cpu_to_le32(field4); 3211 3212 trace_xhci_queue_trb(ring, trb); 3213 3214 inc_enq(xhci, ring, more_trbs_coming); 3215 } 3216 3217 /* 3218 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3219 * expand ring if it start to be full. 3220 */ 3221 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3222 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3223 { 3224 unsigned int link_trb_count = 0; 3225 unsigned int new_segs = 0; 3226 3227 /* Make sure the endpoint has been added to xHC schedule */ 3228 switch (ep_state) { 3229 case EP_STATE_DISABLED: 3230 /* 3231 * USB core changed config/interfaces without notifying us, 3232 * or hardware is reporting the wrong state. 3233 */ 3234 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3235 return -ENOENT; 3236 case EP_STATE_ERROR: 3237 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3238 /* FIXME event handling code for error needs to clear it */ 3239 /* XXX not sure if this should be -ENOENT or not */ 3240 return -EINVAL; 3241 case EP_STATE_HALTED: 3242 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3243 break; 3244 case EP_STATE_STOPPED: 3245 case EP_STATE_RUNNING: 3246 break; 3247 default: 3248 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3249 /* 3250 * FIXME issue Configure Endpoint command to try to get the HC 3251 * back into a known state. 3252 */ 3253 return -EINVAL; 3254 } 3255 3256 if (ep_ring != xhci->cmd_ring) { 3257 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3258 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3259 xhci_err(xhci, "Do not support expand command ring\n"); 3260 return -ENOMEM; 3261 } 3262 3263 if (new_segs) { 3264 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3265 "ERROR no room on ep ring, try ring expansion"); 3266 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3267 xhci_err(xhci, "Ring expansion failed\n"); 3268 return -ENOMEM; 3269 } 3270 } 3271 3272 while (trb_is_link(ep_ring->enqueue)) { 3273 /* If we're not dealing with 0.95 hardware or isoc rings 3274 * on AMD 0.96 host, clear the chain bit. 3275 */ 3276 if (!xhci_link_trb_quirk(xhci) && 3277 !(ep_ring->type == TYPE_ISOC && 3278 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3279 ep_ring->enqueue->link.control &= 3280 cpu_to_le32(~TRB_CHAIN); 3281 else 3282 ep_ring->enqueue->link.control |= 3283 cpu_to_le32(TRB_CHAIN); 3284 3285 wmb(); 3286 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3287 3288 /* Toggle the cycle bit after the last ring segment. */ 3289 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3290 ep_ring->cycle_state ^= 1; 3291 3292 ep_ring->enq_seg = ep_ring->enq_seg->next; 3293 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3294 3295 /* prevent infinite loop if all first trbs are link trbs */ 3296 if (link_trb_count++ > ep_ring->num_segs) { 3297 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3298 return -EINVAL; 3299 } 3300 } 3301 3302 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3303 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3304 return -EINVAL; 3305 } 3306 3307 return 0; 3308 } 3309 3310 static int prepare_transfer(struct xhci_hcd *xhci, 3311 struct xhci_virt_device *xdev, 3312 unsigned int ep_index, 3313 unsigned int stream_id, 3314 unsigned int num_trbs, 3315 struct urb *urb, 3316 unsigned int td_index, 3317 gfp_t mem_flags) 3318 { 3319 int ret; 3320 struct urb_priv *urb_priv; 3321 struct xhci_td *td; 3322 struct xhci_ring *ep_ring; 3323 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3324 3325 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3326 stream_id); 3327 if (!ep_ring) { 3328 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3329 stream_id); 3330 return -EINVAL; 3331 } 3332 3333 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3334 num_trbs, mem_flags); 3335 if (ret) 3336 return ret; 3337 3338 urb_priv = urb->hcpriv; 3339 td = &urb_priv->td[td_index]; 3340 3341 INIT_LIST_HEAD(&td->td_list); 3342 INIT_LIST_HEAD(&td->cancelled_td_list); 3343 3344 if (td_index == 0) { 3345 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3346 if (unlikely(ret)) 3347 return ret; 3348 } 3349 3350 td->urb = urb; 3351 /* Add this TD to the tail of the endpoint ring's TD list */ 3352 list_add_tail(&td->td_list, &ep_ring->td_list); 3353 td->start_seg = ep_ring->enq_seg; 3354 td->first_trb = ep_ring->enqueue; 3355 3356 return 0; 3357 } 3358 3359 unsigned int count_trbs(u64 addr, u64 len) 3360 { 3361 unsigned int num_trbs; 3362 3363 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3364 TRB_MAX_BUFF_SIZE); 3365 if (num_trbs == 0) 3366 num_trbs++; 3367 3368 return num_trbs; 3369 } 3370 3371 static inline unsigned int count_trbs_needed(struct urb *urb) 3372 { 3373 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3374 } 3375 3376 static unsigned int count_sg_trbs_needed(struct urb *urb) 3377 { 3378 struct scatterlist *sg; 3379 unsigned int i, len, full_len, num_trbs = 0; 3380 3381 full_len = urb->transfer_buffer_length; 3382 3383 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3384 len = sg_dma_len(sg); 3385 num_trbs += count_trbs(sg_dma_address(sg), len); 3386 len = min_t(unsigned int, len, full_len); 3387 full_len -= len; 3388 if (full_len == 0) 3389 break; 3390 } 3391 3392 return num_trbs; 3393 } 3394 3395 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3396 { 3397 u64 addr, len; 3398 3399 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3400 len = urb->iso_frame_desc[i].length; 3401 3402 return count_trbs(addr, len); 3403 } 3404 3405 static void check_trb_math(struct urb *urb, int running_total) 3406 { 3407 if (unlikely(running_total != urb->transfer_buffer_length)) 3408 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3409 "queued %#x (%d), asked for %#x (%d)\n", 3410 __func__, 3411 urb->ep->desc.bEndpointAddress, 3412 running_total, running_total, 3413 urb->transfer_buffer_length, 3414 urb->transfer_buffer_length); 3415 } 3416 3417 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3418 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3419 struct xhci_generic_trb *start_trb) 3420 { 3421 /* 3422 * Pass all the TRBs to the hardware at once and make sure this write 3423 * isn't reordered. 3424 */ 3425 wmb(); 3426 if (start_cycle) 3427 start_trb->field[3] |= cpu_to_le32(start_cycle); 3428 else 3429 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3430 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3431 } 3432 3433 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3434 struct xhci_ep_ctx *ep_ctx) 3435 { 3436 int xhci_interval; 3437 int ep_interval; 3438 3439 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3440 ep_interval = urb->interval; 3441 3442 /* Convert to microframes */ 3443 if (urb->dev->speed == USB_SPEED_LOW || 3444 urb->dev->speed == USB_SPEED_FULL) 3445 ep_interval *= 8; 3446 3447 /* FIXME change this to a warning and a suggestion to use the new API 3448 * to set the polling interval (once the API is added). 3449 */ 3450 if (xhci_interval != ep_interval) { 3451 dev_dbg_ratelimited(&urb->dev->dev, 3452 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3453 ep_interval, ep_interval == 1 ? "" : "s", 3454 xhci_interval, xhci_interval == 1 ? "" : "s"); 3455 urb->interval = xhci_interval; 3456 /* Convert back to frames for LS/FS devices */ 3457 if (urb->dev->speed == USB_SPEED_LOW || 3458 urb->dev->speed == USB_SPEED_FULL) 3459 urb->interval /= 8; 3460 } 3461 } 3462 3463 /* 3464 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3465 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3466 * (comprised of sg list entries) can take several service intervals to 3467 * transmit. 3468 */ 3469 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3470 struct urb *urb, int slot_id, unsigned int ep_index) 3471 { 3472 struct xhci_ep_ctx *ep_ctx; 3473 3474 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3475 check_interval(xhci, urb, ep_ctx); 3476 3477 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3478 } 3479 3480 /* 3481 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3482 * packets remaining in the TD (*not* including this TRB). 3483 * 3484 * Total TD packet count = total_packet_count = 3485 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3486 * 3487 * Packets transferred up to and including this TRB = packets_transferred = 3488 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3489 * 3490 * TD size = total_packet_count - packets_transferred 3491 * 3492 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3493 * including this TRB, right shifted by 10 3494 * 3495 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3496 * This is taken care of in the TRB_TD_SIZE() macro 3497 * 3498 * The last TRB in a TD must have the TD size set to zero. 3499 */ 3500 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3501 int trb_buff_len, unsigned int td_total_len, 3502 struct urb *urb, bool more_trbs_coming) 3503 { 3504 u32 maxp, total_packet_count; 3505 3506 /* MTK xHCI 0.96 contains some features from 1.0 */ 3507 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3508 return ((td_total_len - transferred) >> 10); 3509 3510 /* One TRB with a zero-length data packet. */ 3511 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3512 trb_buff_len == td_total_len) 3513 return 0; 3514 3515 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3516 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3517 trb_buff_len = 0; 3518 3519 maxp = usb_endpoint_maxp(&urb->ep->desc); 3520 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3521 3522 /* Queueing functions don't count the current TRB into transferred */ 3523 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3524 } 3525 3526 3527 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3528 u32 *trb_buff_len, struct xhci_segment *seg) 3529 { 3530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3531 unsigned int unalign; 3532 unsigned int max_pkt; 3533 u32 new_buff_len; 3534 size_t len; 3535 3536 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3537 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3538 3539 /* we got lucky, last normal TRB data on segment is packet aligned */ 3540 if (unalign == 0) 3541 return 0; 3542 3543 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3544 unalign, *trb_buff_len); 3545 3546 /* is the last nornal TRB alignable by splitting it */ 3547 if (*trb_buff_len > unalign) { 3548 *trb_buff_len -= unalign; 3549 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3550 return 0; 3551 } 3552 3553 /* 3554 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3555 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3556 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3557 */ 3558 new_buff_len = max_pkt - (enqd_len % max_pkt); 3559 3560 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3561 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3562 3563 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3564 if (usb_urb_dir_out(urb)) { 3565 if (urb->num_sgs) { 3566 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3567 seg->bounce_buf, new_buff_len, enqd_len); 3568 if (len != new_buff_len) 3569 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3570 len, new_buff_len); 3571 } else { 3572 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3573 } 3574 3575 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3576 max_pkt, DMA_TO_DEVICE); 3577 } else { 3578 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3579 max_pkt, DMA_FROM_DEVICE); 3580 } 3581 3582 if (dma_mapping_error(dev, seg->bounce_dma)) { 3583 /* try without aligning. Some host controllers survive */ 3584 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3585 return 0; 3586 } 3587 *trb_buff_len = new_buff_len; 3588 seg->bounce_len = new_buff_len; 3589 seg->bounce_offs = enqd_len; 3590 3591 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3592 3593 return 1; 3594 } 3595 3596 /* This is very similar to what ehci-q.c qtd_fill() does */ 3597 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3598 struct urb *urb, int slot_id, unsigned int ep_index) 3599 { 3600 struct xhci_ring *ring; 3601 struct urb_priv *urb_priv; 3602 struct xhci_td *td; 3603 struct xhci_generic_trb *start_trb; 3604 struct scatterlist *sg = NULL; 3605 bool more_trbs_coming = true; 3606 bool need_zero_pkt = false; 3607 bool first_trb = true; 3608 unsigned int num_trbs; 3609 unsigned int start_cycle, num_sgs = 0; 3610 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3611 int sent_len, ret; 3612 u32 field, length_field, remainder; 3613 u64 addr, send_addr; 3614 3615 ring = xhci_urb_to_transfer_ring(xhci, urb); 3616 if (!ring) 3617 return -EINVAL; 3618 3619 full_len = urb->transfer_buffer_length; 3620 /* If we have scatter/gather list, we use it. */ 3621 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3622 num_sgs = urb->num_mapped_sgs; 3623 sg = urb->sg; 3624 addr = (u64) sg_dma_address(sg); 3625 block_len = sg_dma_len(sg); 3626 num_trbs = count_sg_trbs_needed(urb); 3627 } else { 3628 num_trbs = count_trbs_needed(urb); 3629 addr = (u64) urb->transfer_dma; 3630 block_len = full_len; 3631 } 3632 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3633 ep_index, urb->stream_id, 3634 num_trbs, urb, 0, mem_flags); 3635 if (unlikely(ret < 0)) 3636 return ret; 3637 3638 urb_priv = urb->hcpriv; 3639 3640 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3641 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3642 need_zero_pkt = true; 3643 3644 td = &urb_priv->td[0]; 3645 3646 /* 3647 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3648 * until we've finished creating all the other TRBs. The ring's cycle 3649 * state may change as we enqueue the other TRBs, so save it too. 3650 */ 3651 start_trb = &ring->enqueue->generic; 3652 start_cycle = ring->cycle_state; 3653 send_addr = addr; 3654 3655 /* Queue the TRBs, even if they are zero-length */ 3656 for (enqd_len = 0; first_trb || enqd_len < full_len; 3657 enqd_len += trb_buff_len) { 3658 field = TRB_TYPE(TRB_NORMAL); 3659 3660 /* TRB buffer should not cross 64KB boundaries */ 3661 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3662 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3663 3664 if (enqd_len + trb_buff_len > full_len) 3665 trb_buff_len = full_len - enqd_len; 3666 3667 /* Don't change the cycle bit of the first TRB until later */ 3668 if (first_trb) { 3669 first_trb = false; 3670 if (start_cycle == 0) 3671 field |= TRB_CYCLE; 3672 } else 3673 field |= ring->cycle_state; 3674 3675 /* Chain all the TRBs together; clear the chain bit in the last 3676 * TRB to indicate it's the last TRB in the chain. 3677 */ 3678 if (enqd_len + trb_buff_len < full_len) { 3679 field |= TRB_CHAIN; 3680 if (trb_is_link(ring->enqueue + 1)) { 3681 if (xhci_align_td(xhci, urb, enqd_len, 3682 &trb_buff_len, 3683 ring->enq_seg)) { 3684 send_addr = ring->enq_seg->bounce_dma; 3685 /* assuming TD won't span 2 segs */ 3686 td->bounce_seg = ring->enq_seg; 3687 } 3688 } 3689 } 3690 if (enqd_len + trb_buff_len >= full_len) { 3691 field &= ~TRB_CHAIN; 3692 field |= TRB_IOC; 3693 more_trbs_coming = false; 3694 td->last_trb = ring->enqueue; 3695 td->last_trb_seg = ring->enq_seg; 3696 if (xhci_urb_suitable_for_idt(urb)) { 3697 memcpy(&send_addr, urb->transfer_buffer, 3698 trb_buff_len); 3699 le64_to_cpus(&send_addr); 3700 field |= TRB_IDT; 3701 } 3702 } 3703 3704 /* Only set interrupt on short packet for IN endpoints */ 3705 if (usb_urb_dir_in(urb)) 3706 field |= TRB_ISP; 3707 3708 /* Set the TRB length, TD size, and interrupter fields. */ 3709 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3710 full_len, urb, more_trbs_coming); 3711 3712 length_field = TRB_LEN(trb_buff_len) | 3713 TRB_TD_SIZE(remainder) | 3714 TRB_INTR_TARGET(0); 3715 3716 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3717 lower_32_bits(send_addr), 3718 upper_32_bits(send_addr), 3719 length_field, 3720 field); 3721 td->num_trbs++; 3722 addr += trb_buff_len; 3723 sent_len = trb_buff_len; 3724 3725 while (sg && sent_len >= block_len) { 3726 /* New sg entry */ 3727 --num_sgs; 3728 sent_len -= block_len; 3729 sg = sg_next(sg); 3730 if (num_sgs != 0 && sg) { 3731 block_len = sg_dma_len(sg); 3732 addr = (u64) sg_dma_address(sg); 3733 addr += sent_len; 3734 } 3735 } 3736 block_len -= sent_len; 3737 send_addr = addr; 3738 } 3739 3740 if (need_zero_pkt) { 3741 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3742 ep_index, urb->stream_id, 3743 1, urb, 1, mem_flags); 3744 urb_priv->td[1].last_trb = ring->enqueue; 3745 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3746 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3747 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3748 urb_priv->td[1].num_trbs++; 3749 } 3750 3751 check_trb_math(urb, enqd_len); 3752 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3753 start_cycle, start_trb); 3754 return 0; 3755 } 3756 3757 /* Caller must have locked xhci->lock */ 3758 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3759 struct urb *urb, int slot_id, unsigned int ep_index) 3760 { 3761 struct xhci_ring *ep_ring; 3762 int num_trbs; 3763 int ret; 3764 struct usb_ctrlrequest *setup; 3765 struct xhci_generic_trb *start_trb; 3766 int start_cycle; 3767 u32 field; 3768 struct urb_priv *urb_priv; 3769 struct xhci_td *td; 3770 3771 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3772 if (!ep_ring) 3773 return -EINVAL; 3774 3775 /* 3776 * Need to copy setup packet into setup TRB, so we can't use the setup 3777 * DMA address. 3778 */ 3779 if (!urb->setup_packet) 3780 return -EINVAL; 3781 3782 /* 1 TRB for setup, 1 for status */ 3783 num_trbs = 2; 3784 /* 3785 * Don't need to check if we need additional event data and normal TRBs, 3786 * since data in control transfers will never get bigger than 16MB 3787 * XXX: can we get a buffer that crosses 64KB boundaries? 3788 */ 3789 if (urb->transfer_buffer_length > 0) 3790 num_trbs++; 3791 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3792 ep_index, urb->stream_id, 3793 num_trbs, urb, 0, mem_flags); 3794 if (ret < 0) 3795 return ret; 3796 3797 urb_priv = urb->hcpriv; 3798 td = &urb_priv->td[0]; 3799 td->num_trbs = num_trbs; 3800 3801 /* 3802 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3803 * until we've finished creating all the other TRBs. The ring's cycle 3804 * state may change as we enqueue the other TRBs, so save it too. 3805 */ 3806 start_trb = &ep_ring->enqueue->generic; 3807 start_cycle = ep_ring->cycle_state; 3808 3809 /* Queue setup TRB - see section 6.4.1.2.1 */ 3810 /* FIXME better way to translate setup_packet into two u32 fields? */ 3811 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3812 field = 0; 3813 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3814 if (start_cycle == 0) 3815 field |= 0x1; 3816 3817 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3818 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3819 if (urb->transfer_buffer_length > 0) { 3820 if (setup->bRequestType & USB_DIR_IN) 3821 field |= TRB_TX_TYPE(TRB_DATA_IN); 3822 else 3823 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3824 } 3825 } 3826 3827 queue_trb(xhci, ep_ring, true, 3828 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3829 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3830 TRB_LEN(8) | TRB_INTR_TARGET(0), 3831 /* Immediate data in pointer */ 3832 field); 3833 3834 /* If there's data, queue data TRBs */ 3835 /* Only set interrupt on short packet for IN endpoints */ 3836 if (usb_urb_dir_in(urb)) 3837 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3838 else 3839 field = TRB_TYPE(TRB_DATA); 3840 3841 if (urb->transfer_buffer_length > 0) { 3842 u32 length_field, remainder; 3843 u64 addr; 3844 3845 if (xhci_urb_suitable_for_idt(urb)) { 3846 memcpy(&addr, urb->transfer_buffer, 3847 urb->transfer_buffer_length); 3848 le64_to_cpus(&addr); 3849 field |= TRB_IDT; 3850 } else { 3851 addr = (u64) urb->transfer_dma; 3852 } 3853 3854 remainder = xhci_td_remainder(xhci, 0, 3855 urb->transfer_buffer_length, 3856 urb->transfer_buffer_length, 3857 urb, 1); 3858 length_field = TRB_LEN(urb->transfer_buffer_length) | 3859 TRB_TD_SIZE(remainder) | 3860 TRB_INTR_TARGET(0); 3861 if (setup->bRequestType & USB_DIR_IN) 3862 field |= TRB_DIR_IN; 3863 queue_trb(xhci, ep_ring, true, 3864 lower_32_bits(addr), 3865 upper_32_bits(addr), 3866 length_field, 3867 field | ep_ring->cycle_state); 3868 } 3869 3870 /* Save the DMA address of the last TRB in the TD */ 3871 td->last_trb = ep_ring->enqueue; 3872 td->last_trb_seg = ep_ring->enq_seg; 3873 3874 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3875 /* If the device sent data, the status stage is an OUT transfer */ 3876 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3877 field = 0; 3878 else 3879 field = TRB_DIR_IN; 3880 queue_trb(xhci, ep_ring, false, 3881 0, 3882 0, 3883 TRB_INTR_TARGET(0), 3884 /* Event on completion */ 3885 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3886 3887 giveback_first_trb(xhci, slot_id, ep_index, 0, 3888 start_cycle, start_trb); 3889 return 0; 3890 } 3891 3892 /* 3893 * The transfer burst count field of the isochronous TRB defines the number of 3894 * bursts that are required to move all packets in this TD. Only SuperSpeed 3895 * devices can burst up to bMaxBurst number of packets per service interval. 3896 * This field is zero based, meaning a value of zero in the field means one 3897 * burst. Basically, for everything but SuperSpeed devices, this field will be 3898 * zero. Only xHCI 1.0 host controllers support this field. 3899 */ 3900 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3901 struct urb *urb, unsigned int total_packet_count) 3902 { 3903 unsigned int max_burst; 3904 3905 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3906 return 0; 3907 3908 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3909 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3910 } 3911 3912 /* 3913 * Returns the number of packets in the last "burst" of packets. This field is 3914 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3915 * the last burst packet count is equal to the total number of packets in the 3916 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3917 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3918 * contain 1 to (bMaxBurst + 1) packets. 3919 */ 3920 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3921 struct urb *urb, unsigned int total_packet_count) 3922 { 3923 unsigned int max_burst; 3924 unsigned int residue; 3925 3926 if (xhci->hci_version < 0x100) 3927 return 0; 3928 3929 if (urb->dev->speed >= USB_SPEED_SUPER) { 3930 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3931 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3932 residue = total_packet_count % (max_burst + 1); 3933 /* If residue is zero, the last burst contains (max_burst + 1) 3934 * number of packets, but the TLBPC field is zero-based. 3935 */ 3936 if (residue == 0) 3937 return max_burst; 3938 return residue - 1; 3939 } 3940 if (total_packet_count == 0) 3941 return 0; 3942 return total_packet_count - 1; 3943 } 3944 3945 /* 3946 * Calculates Frame ID field of the isochronous TRB identifies the 3947 * target frame that the Interval associated with this Isochronous 3948 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3949 * 3950 * Returns actual frame id on success, negative value on error. 3951 */ 3952 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3953 struct urb *urb, int index) 3954 { 3955 int start_frame, ist, ret = 0; 3956 int start_frame_id, end_frame_id, current_frame_id; 3957 3958 if (urb->dev->speed == USB_SPEED_LOW || 3959 urb->dev->speed == USB_SPEED_FULL) 3960 start_frame = urb->start_frame + index * urb->interval; 3961 else 3962 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3963 3964 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3965 * 3966 * If bit [3] of IST is cleared to '0', software can add a TRB no 3967 * later than IST[2:0] Microframes before that TRB is scheduled to 3968 * be executed. 3969 * If bit [3] of IST is set to '1', software can add a TRB no later 3970 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3971 */ 3972 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3973 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3974 ist <<= 3; 3975 3976 /* Software shall not schedule an Isoch TD with a Frame ID value that 3977 * is less than the Start Frame ID or greater than the End Frame ID, 3978 * where: 3979 * 3980 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3981 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3982 * 3983 * Both the End Frame ID and Start Frame ID values are calculated 3984 * in microframes. When software determines the valid Frame ID value; 3985 * The End Frame ID value should be rounded down to the nearest Frame 3986 * boundary, and the Start Frame ID value should be rounded up to the 3987 * nearest Frame boundary. 3988 */ 3989 current_frame_id = readl(&xhci->run_regs->microframe_index); 3990 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3991 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3992 3993 start_frame &= 0x7ff; 3994 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3995 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3996 3997 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3998 __func__, index, readl(&xhci->run_regs->microframe_index), 3999 start_frame_id, end_frame_id, start_frame); 4000 4001 if (start_frame_id < end_frame_id) { 4002 if (start_frame > end_frame_id || 4003 start_frame < start_frame_id) 4004 ret = -EINVAL; 4005 } else if (start_frame_id > end_frame_id) { 4006 if ((start_frame > end_frame_id && 4007 start_frame < start_frame_id)) 4008 ret = -EINVAL; 4009 } else { 4010 ret = -EINVAL; 4011 } 4012 4013 if (index == 0) { 4014 if (ret == -EINVAL || start_frame == start_frame_id) { 4015 start_frame = start_frame_id + 1; 4016 if (urb->dev->speed == USB_SPEED_LOW || 4017 urb->dev->speed == USB_SPEED_FULL) 4018 urb->start_frame = start_frame; 4019 else 4020 urb->start_frame = start_frame << 3; 4021 ret = 0; 4022 } 4023 } 4024 4025 if (ret) { 4026 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4027 start_frame, current_frame_id, index, 4028 start_frame_id, end_frame_id); 4029 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4030 return ret; 4031 } 4032 4033 return start_frame; 4034 } 4035 4036 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4037 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4038 { 4039 if (xhci->hci_version < 0x100) 4040 return false; 4041 /* always generate an event interrupt for the last TD */ 4042 if (i == num_tds - 1) 4043 return false; 4044 /* 4045 * If AVOID_BEI is set the host handles full event rings poorly, 4046 * generate an event at least every 8th TD to clear the event ring 4047 */ 4048 if (i && xhci->quirks & XHCI_AVOID_BEI) 4049 return !!(i % xhci->isoc_bei_interval); 4050 4051 return true; 4052 } 4053 4054 /* This is for isoc transfer */ 4055 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4056 struct urb *urb, int slot_id, unsigned int ep_index) 4057 { 4058 struct xhci_ring *ep_ring; 4059 struct urb_priv *urb_priv; 4060 struct xhci_td *td; 4061 int num_tds, trbs_per_td; 4062 struct xhci_generic_trb *start_trb; 4063 bool first_trb; 4064 int start_cycle; 4065 u32 field, length_field; 4066 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4067 u64 start_addr, addr; 4068 int i, j; 4069 bool more_trbs_coming; 4070 struct xhci_virt_ep *xep; 4071 int frame_id; 4072 4073 xep = &xhci->devs[slot_id]->eps[ep_index]; 4074 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4075 4076 num_tds = urb->number_of_packets; 4077 if (num_tds < 1) { 4078 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4079 return -EINVAL; 4080 } 4081 start_addr = (u64) urb->transfer_dma; 4082 start_trb = &ep_ring->enqueue->generic; 4083 start_cycle = ep_ring->cycle_state; 4084 4085 urb_priv = urb->hcpriv; 4086 /* Queue the TRBs for each TD, even if they are zero-length */ 4087 for (i = 0; i < num_tds; i++) { 4088 unsigned int total_pkt_count, max_pkt; 4089 unsigned int burst_count, last_burst_pkt_count; 4090 u32 sia_frame_id; 4091 4092 first_trb = true; 4093 running_total = 0; 4094 addr = start_addr + urb->iso_frame_desc[i].offset; 4095 td_len = urb->iso_frame_desc[i].length; 4096 td_remain_len = td_len; 4097 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4098 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4099 4100 /* A zero-length transfer still involves at least one packet. */ 4101 if (total_pkt_count == 0) 4102 total_pkt_count++; 4103 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4104 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4105 urb, total_pkt_count); 4106 4107 trbs_per_td = count_isoc_trbs_needed(urb, i); 4108 4109 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4110 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4111 if (ret < 0) { 4112 if (i == 0) 4113 return ret; 4114 goto cleanup; 4115 } 4116 td = &urb_priv->td[i]; 4117 td->num_trbs = trbs_per_td; 4118 /* use SIA as default, if frame id is used overwrite it */ 4119 sia_frame_id = TRB_SIA; 4120 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4121 HCC_CFC(xhci->hcc_params)) { 4122 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4123 if (frame_id >= 0) 4124 sia_frame_id = TRB_FRAME_ID(frame_id); 4125 } 4126 /* 4127 * Set isoc specific data for the first TRB in a TD. 4128 * Prevent HW from getting the TRBs by keeping the cycle state 4129 * inverted in the first TDs isoc TRB. 4130 */ 4131 field = TRB_TYPE(TRB_ISOC) | 4132 TRB_TLBPC(last_burst_pkt_count) | 4133 sia_frame_id | 4134 (i ? ep_ring->cycle_state : !start_cycle); 4135 4136 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4137 if (!xep->use_extended_tbc) 4138 field |= TRB_TBC(burst_count); 4139 4140 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4141 for (j = 0; j < trbs_per_td; j++) { 4142 u32 remainder = 0; 4143 4144 /* only first TRB is isoc, overwrite otherwise */ 4145 if (!first_trb) 4146 field = TRB_TYPE(TRB_NORMAL) | 4147 ep_ring->cycle_state; 4148 4149 /* Only set interrupt on short packet for IN EPs */ 4150 if (usb_urb_dir_in(urb)) 4151 field |= TRB_ISP; 4152 4153 /* Set the chain bit for all except the last TRB */ 4154 if (j < trbs_per_td - 1) { 4155 more_trbs_coming = true; 4156 field |= TRB_CHAIN; 4157 } else { 4158 more_trbs_coming = false; 4159 td->last_trb = ep_ring->enqueue; 4160 td->last_trb_seg = ep_ring->enq_seg; 4161 field |= TRB_IOC; 4162 if (trb_block_event_intr(xhci, num_tds, i)) 4163 field |= TRB_BEI; 4164 } 4165 /* Calculate TRB length */ 4166 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4167 if (trb_buff_len > td_remain_len) 4168 trb_buff_len = td_remain_len; 4169 4170 /* Set the TRB length, TD size, & interrupter fields. */ 4171 remainder = xhci_td_remainder(xhci, running_total, 4172 trb_buff_len, td_len, 4173 urb, more_trbs_coming); 4174 4175 length_field = TRB_LEN(trb_buff_len) | 4176 TRB_INTR_TARGET(0); 4177 4178 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4179 if (first_trb && xep->use_extended_tbc) 4180 length_field |= TRB_TD_SIZE_TBC(burst_count); 4181 else 4182 length_field |= TRB_TD_SIZE(remainder); 4183 first_trb = false; 4184 4185 queue_trb(xhci, ep_ring, more_trbs_coming, 4186 lower_32_bits(addr), 4187 upper_32_bits(addr), 4188 length_field, 4189 field); 4190 running_total += trb_buff_len; 4191 4192 addr += trb_buff_len; 4193 td_remain_len -= trb_buff_len; 4194 } 4195 4196 /* Check TD length */ 4197 if (running_total != td_len) { 4198 xhci_err(xhci, "ISOC TD length unmatch\n"); 4199 ret = -EINVAL; 4200 goto cleanup; 4201 } 4202 } 4203 4204 /* store the next frame id */ 4205 if (HCC_CFC(xhci->hcc_params)) 4206 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4207 4208 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4209 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4210 usb_amd_quirk_pll_disable(); 4211 } 4212 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4213 4214 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4215 start_cycle, start_trb); 4216 return 0; 4217 cleanup: 4218 /* Clean up a partially enqueued isoc transfer. */ 4219 4220 for (i--; i >= 0; i--) 4221 list_del_init(&urb_priv->td[i].td_list); 4222 4223 /* Use the first TD as a temporary variable to turn the TDs we've queued 4224 * into No-ops with a software-owned cycle bit. That way the hardware 4225 * won't accidentally start executing bogus TDs when we partially 4226 * overwrite them. td->first_trb and td->start_seg are already set. 4227 */ 4228 urb_priv->td[0].last_trb = ep_ring->enqueue; 4229 /* Every TRB except the first & last will have its cycle bit flipped. */ 4230 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4231 4232 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4233 ep_ring->enqueue = urb_priv->td[0].first_trb; 4234 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4235 ep_ring->cycle_state = start_cycle; 4236 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4237 return ret; 4238 } 4239 4240 /* 4241 * Check transfer ring to guarantee there is enough room for the urb. 4242 * Update ISO URB start_frame and interval. 4243 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4244 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4245 * Contiguous Frame ID is not supported by HC. 4246 */ 4247 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4248 struct urb *urb, int slot_id, unsigned int ep_index) 4249 { 4250 struct xhci_virt_device *xdev; 4251 struct xhci_ring *ep_ring; 4252 struct xhci_ep_ctx *ep_ctx; 4253 int start_frame; 4254 int num_tds, num_trbs, i; 4255 int ret; 4256 struct xhci_virt_ep *xep; 4257 int ist; 4258 4259 xdev = xhci->devs[slot_id]; 4260 xep = &xhci->devs[slot_id]->eps[ep_index]; 4261 ep_ring = xdev->eps[ep_index].ring; 4262 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4263 4264 num_trbs = 0; 4265 num_tds = urb->number_of_packets; 4266 for (i = 0; i < num_tds; i++) 4267 num_trbs += count_isoc_trbs_needed(urb, i); 4268 4269 /* Check the ring to guarantee there is enough room for the whole urb. 4270 * Do not insert any td of the urb to the ring if the check failed. 4271 */ 4272 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4273 num_trbs, mem_flags); 4274 if (ret) 4275 return ret; 4276 4277 /* 4278 * Check interval value. This should be done before we start to 4279 * calculate the start frame value. 4280 */ 4281 check_interval(xhci, urb, ep_ctx); 4282 4283 /* Calculate the start frame and put it in urb->start_frame. */ 4284 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4285 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4286 urb->start_frame = xep->next_frame_id; 4287 goto skip_start_over; 4288 } 4289 } 4290 4291 start_frame = readl(&xhci->run_regs->microframe_index); 4292 start_frame &= 0x3fff; 4293 /* 4294 * Round up to the next frame and consider the time before trb really 4295 * gets scheduled by hardare. 4296 */ 4297 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4298 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4299 ist <<= 3; 4300 start_frame += ist + XHCI_CFC_DELAY; 4301 start_frame = roundup(start_frame, 8); 4302 4303 /* 4304 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4305 * is greate than 8 microframes. 4306 */ 4307 if (urb->dev->speed == USB_SPEED_LOW || 4308 urb->dev->speed == USB_SPEED_FULL) { 4309 start_frame = roundup(start_frame, urb->interval << 3); 4310 urb->start_frame = start_frame >> 3; 4311 } else { 4312 start_frame = roundup(start_frame, urb->interval); 4313 urb->start_frame = start_frame; 4314 } 4315 4316 skip_start_over: 4317 4318 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4319 } 4320 4321 /**** Command Ring Operations ****/ 4322 4323 /* Generic function for queueing a command TRB on the command ring. 4324 * Check to make sure there's room on the command ring for one command TRB. 4325 * Also check that there's room reserved for commands that must not fail. 4326 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4327 * then only check for the number of reserved spots. 4328 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4329 * because the command event handler may want to resubmit a failed command. 4330 */ 4331 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4332 u32 field1, u32 field2, 4333 u32 field3, u32 field4, bool command_must_succeed) 4334 { 4335 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4336 int ret; 4337 4338 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4339 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4340 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4341 return -ESHUTDOWN; 4342 } 4343 4344 if (!command_must_succeed) 4345 reserved_trbs++; 4346 4347 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4348 reserved_trbs, GFP_ATOMIC); 4349 if (ret < 0) { 4350 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4351 if (command_must_succeed) 4352 xhci_err(xhci, "ERR: Reserved TRB counting for " 4353 "unfailable commands failed.\n"); 4354 return ret; 4355 } 4356 4357 cmd->command_trb = xhci->cmd_ring->enqueue; 4358 4359 /* if there are no other commands queued we start the timeout timer */ 4360 if (list_empty(&xhci->cmd_list)) { 4361 xhci->current_cmd = cmd; 4362 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4363 } 4364 4365 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4366 4367 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4368 field4 | xhci->cmd_ring->cycle_state); 4369 return 0; 4370 } 4371 4372 /* Queue a slot enable or disable request on the command ring */ 4373 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4374 u32 trb_type, u32 slot_id) 4375 { 4376 return queue_command(xhci, cmd, 0, 0, 0, 4377 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4378 } 4379 4380 /* Queue an address device command TRB */ 4381 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4382 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4383 { 4384 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4385 upper_32_bits(in_ctx_ptr), 0, 4386 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4387 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4388 } 4389 4390 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4391 u32 field1, u32 field2, u32 field3, u32 field4) 4392 { 4393 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4394 } 4395 4396 /* Queue a reset device command TRB */ 4397 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4398 u32 slot_id) 4399 { 4400 return queue_command(xhci, cmd, 0, 0, 0, 4401 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4402 false); 4403 } 4404 4405 /* Queue a configure endpoint command TRB */ 4406 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4407 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4408 u32 slot_id, bool command_must_succeed) 4409 { 4410 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4411 upper_32_bits(in_ctx_ptr), 0, 4412 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4413 command_must_succeed); 4414 } 4415 4416 /* Queue an evaluate context command TRB */ 4417 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4418 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4419 { 4420 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4421 upper_32_bits(in_ctx_ptr), 0, 4422 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4423 command_must_succeed); 4424 } 4425 4426 /* 4427 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4428 * activity on an endpoint that is about to be suspended. 4429 */ 4430 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4431 int slot_id, unsigned int ep_index, int suspend) 4432 { 4433 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4434 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4435 u32 type = TRB_TYPE(TRB_STOP_RING); 4436 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4437 4438 return queue_command(xhci, cmd, 0, 0, 0, 4439 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4440 } 4441 4442 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4443 int slot_id, unsigned int ep_index, 4444 enum xhci_ep_reset_type reset_type) 4445 { 4446 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4447 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4448 u32 type = TRB_TYPE(TRB_RESET_EP); 4449 4450 if (reset_type == EP_SOFT_RESET) 4451 type |= TRB_TSP; 4452 4453 return queue_command(xhci, cmd, 0, 0, 0, 4454 trb_slot_id | trb_ep_index | type, false); 4455 } 4456