1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 /* 330 * Consider expanding the ring already if num_trbs fills the current 331 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 332 * the next segment. Avoids confusing full ring with special empty ring 333 * case below 334 */ 335 if (trbs_past_seg < 0) 336 return 0; 337 338 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 339 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 340 return 0; 341 342 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 343 seg = ring->enq_seg; 344 345 while (new_segs > 0) { 346 seg = seg->next; 347 if (seg == ring->deq_seg) { 348 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 349 new_segs); 350 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 351 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 352 return new_segs; 353 } 354 new_segs--; 355 } 356 357 return 0; 358 } 359 360 /* Ring the host controller doorbell after placing a command on the ring */ 361 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 362 { 363 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 364 return; 365 366 xhci_dbg(xhci, "// Ding dong!\n"); 367 368 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 369 370 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 371 /* Flush PCI posted writes */ 372 readl(&xhci->dba->doorbell[0]); 373 } 374 375 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 376 { 377 return mod_delayed_work(system_wq, &xhci->cmd_timer, 378 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 379 } 380 381 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 382 { 383 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 384 cmd_list); 385 } 386 387 /* 388 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 389 * If there are other commands waiting then restart the ring and kick the timer. 390 * This must be called with command ring stopped and xhci->lock held. 391 */ 392 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 393 struct xhci_command *cur_cmd) 394 { 395 struct xhci_command *i_cmd; 396 397 /* Turn all aborted commands in list to no-ops, then restart */ 398 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 399 400 if (i_cmd->status != COMP_COMMAND_ABORTED) 401 continue; 402 403 i_cmd->status = COMP_COMMAND_RING_STOPPED; 404 405 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 406 i_cmd->command_trb); 407 408 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 409 410 /* 411 * caller waiting for completion is called when command 412 * completion event is received for these no-op commands 413 */ 414 } 415 416 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 417 418 /* ring command ring doorbell to restart the command ring */ 419 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 420 !(xhci->xhc_state & XHCI_STATE_DYING)) { 421 xhci->current_cmd = cur_cmd; 422 xhci_mod_cmd_timer(xhci); 423 xhci_ring_cmd_db(xhci); 424 } 425 } 426 427 /* Must be called with xhci->lock held, releases and aquires lock back */ 428 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 429 { 430 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 431 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 432 u64 crcr; 433 int ret; 434 435 xhci_dbg(xhci, "Abort command ring\n"); 436 437 reinit_completion(&xhci->cmd_ring_stop_completion); 438 439 /* 440 * The control bits like command stop, abort are located in lower 441 * dword of the command ring control register. 442 * Some controllers require all 64 bits to be written to abort the ring. 443 * Make sure the upper dword is valid, pointing to the next command, 444 * avoiding corrupting the command ring pointer in case the command ring 445 * is stopped by the time the upper dword is written. 446 */ 447 next_trb(xhci, NULL, &new_seg, &new_deq); 448 if (trb_is_link(new_deq)) 449 next_trb(xhci, NULL, &new_seg, &new_deq); 450 451 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 452 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 453 454 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 455 * completion of the Command Abort operation. If CRR is not negated in 5 456 * seconds then driver handles it as if host died (-ENODEV). 457 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 458 * and try to recover a -ETIMEDOUT with a host controller reset. 459 */ 460 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 461 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 462 if (ret < 0) { 463 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 464 xhci_halt(xhci); 465 xhci_hc_died(xhci); 466 return ret; 467 } 468 /* 469 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 470 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 471 * but the completion event in never sent. Wait 2 secs (arbitrary 472 * number) to handle those cases after negation of CMD_RING_RUNNING. 473 */ 474 spin_unlock_irqrestore(&xhci->lock, flags); 475 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 476 msecs_to_jiffies(2000)); 477 spin_lock_irqsave(&xhci->lock, flags); 478 if (!ret) { 479 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 480 xhci_cleanup_command_queue(xhci); 481 } else { 482 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 483 } 484 return 0; 485 } 486 487 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 488 unsigned int slot_id, 489 unsigned int ep_index, 490 unsigned int stream_id) 491 { 492 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 493 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 494 unsigned int ep_state = ep->ep_state; 495 496 /* Don't ring the doorbell for this endpoint if there are pending 497 * cancellations because we don't want to interrupt processing. 498 * We don't want to restart any stream rings if there's a set dequeue 499 * pointer command pending because the device can choose to start any 500 * stream once the endpoint is on the HW schedule. 501 */ 502 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 503 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 504 return; 505 506 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 507 508 writel(DB_VALUE(ep_index, stream_id), db_addr); 509 /* flush the write */ 510 readl(db_addr); 511 } 512 513 /* Ring the doorbell for any rings with pending URBs */ 514 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 515 unsigned int slot_id, 516 unsigned int ep_index) 517 { 518 unsigned int stream_id; 519 struct xhci_virt_ep *ep; 520 521 ep = &xhci->devs[slot_id]->eps[ep_index]; 522 523 /* A ring has pending URBs if its TD list is not empty */ 524 if (!(ep->ep_state & EP_HAS_STREAMS)) { 525 if (ep->ring && !(list_empty(&ep->ring->td_list))) 526 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 527 return; 528 } 529 530 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 531 stream_id++) { 532 struct xhci_stream_info *stream_info = ep->stream_info; 533 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 534 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 535 stream_id); 536 } 537 } 538 539 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 540 unsigned int slot_id, 541 unsigned int ep_index) 542 { 543 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 544 } 545 546 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 547 unsigned int slot_id, 548 unsigned int ep_index) 549 { 550 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 551 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 552 return NULL; 553 } 554 if (ep_index >= EP_CTX_PER_DEV) { 555 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 556 return NULL; 557 } 558 if (!xhci->devs[slot_id]) { 559 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 560 return NULL; 561 } 562 563 return &xhci->devs[slot_id]->eps[ep_index]; 564 } 565 566 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 567 struct xhci_virt_ep *ep, 568 unsigned int stream_id) 569 { 570 /* common case, no streams */ 571 if (!(ep->ep_state & EP_HAS_STREAMS)) 572 return ep->ring; 573 574 if (!ep->stream_info) 575 return NULL; 576 577 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 578 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 579 stream_id, ep->vdev->slot_id, ep->ep_index); 580 return NULL; 581 } 582 583 return ep->stream_info->stream_rings[stream_id]; 584 } 585 586 /* Get the right ring for the given slot_id, ep_index and stream_id. 587 * If the endpoint supports streams, boundary check the URB's stream ID. 588 * If the endpoint doesn't support streams, return the singular endpoint ring. 589 */ 590 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 591 unsigned int slot_id, unsigned int ep_index, 592 unsigned int stream_id) 593 { 594 struct xhci_virt_ep *ep; 595 596 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 597 if (!ep) 598 return NULL; 599 600 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 601 } 602 603 604 /* 605 * Get the hw dequeue pointer xHC stopped on, either directly from the 606 * endpoint context, or if streams are in use from the stream context. 607 * The returned hw_dequeue contains the lowest four bits with cycle state 608 * and possbile stream context type. 609 */ 610 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 611 unsigned int ep_index, unsigned int stream_id) 612 { 613 struct xhci_ep_ctx *ep_ctx; 614 struct xhci_stream_ctx *st_ctx; 615 struct xhci_virt_ep *ep; 616 617 ep = &vdev->eps[ep_index]; 618 619 if (ep->ep_state & EP_HAS_STREAMS) { 620 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 621 return le64_to_cpu(st_ctx->stream_ring); 622 } 623 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 624 return le64_to_cpu(ep_ctx->deq); 625 } 626 627 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 628 unsigned int slot_id, unsigned int ep_index, 629 unsigned int stream_id, struct xhci_td *td) 630 { 631 struct xhci_virt_device *dev = xhci->devs[slot_id]; 632 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 633 struct xhci_ring *ep_ring; 634 struct xhci_command *cmd; 635 struct xhci_segment *new_seg; 636 union xhci_trb *new_deq; 637 int new_cycle; 638 dma_addr_t addr; 639 u64 hw_dequeue; 640 bool cycle_found = false; 641 bool td_last_trb_found = false; 642 u32 trb_sct = 0; 643 int ret; 644 645 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 646 ep_index, stream_id); 647 if (!ep_ring) { 648 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 649 stream_id); 650 return -ENODEV; 651 } 652 /* 653 * A cancelled TD can complete with a stall if HW cached the trb. 654 * In this case driver can't find td, but if the ring is empty we 655 * can move the dequeue pointer to the current enqueue position. 656 * We shouldn't hit this anymore as cached cancelled TRBs are given back 657 * after clearing the cache, but be on the safe side and keep it anyway 658 */ 659 if (!td) { 660 if (list_empty(&ep_ring->td_list)) { 661 new_seg = ep_ring->enq_seg; 662 new_deq = ep_ring->enqueue; 663 new_cycle = ep_ring->cycle_state; 664 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 665 goto deq_found; 666 } else { 667 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 668 return -EINVAL; 669 } 670 } 671 672 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 673 new_seg = ep_ring->deq_seg; 674 new_deq = ep_ring->dequeue; 675 new_cycle = hw_dequeue & 0x1; 676 677 /* 678 * We want to find the pointer, segment and cycle state of the new trb 679 * (the one after current TD's last_trb). We know the cycle state at 680 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 681 * found. 682 */ 683 do { 684 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 685 == (dma_addr_t)(hw_dequeue & ~0xf)) { 686 cycle_found = true; 687 if (td_last_trb_found) 688 break; 689 } 690 if (new_deq == td->last_trb) 691 td_last_trb_found = true; 692 693 if (cycle_found && trb_is_link(new_deq) && 694 link_trb_toggles_cycle(new_deq)) 695 new_cycle ^= 0x1; 696 697 next_trb(xhci, ep_ring, &new_seg, &new_deq); 698 699 /* Search wrapped around, bail out */ 700 if (new_deq == ep->ring->dequeue) { 701 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 702 return -EINVAL; 703 } 704 705 } while (!cycle_found || !td_last_trb_found); 706 707 deq_found: 708 709 /* Don't update the ring cycle state for the producer (us). */ 710 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 711 if (addr == 0) { 712 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 713 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 714 return -EINVAL; 715 } 716 717 if ((ep->ep_state & SET_DEQ_PENDING)) { 718 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 719 &addr); 720 return -EBUSY; 721 } 722 723 /* This function gets called from contexts where it cannot sleep */ 724 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 725 if (!cmd) { 726 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 727 return -ENOMEM; 728 } 729 730 if (stream_id) 731 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 732 ret = queue_command(xhci, cmd, 733 lower_32_bits(addr) | trb_sct | new_cycle, 734 upper_32_bits(addr), 735 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 736 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 737 if (ret < 0) { 738 xhci_free_command(xhci, cmd); 739 return ret; 740 } 741 ep->queued_deq_seg = new_seg; 742 ep->queued_deq_ptr = new_deq; 743 744 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 745 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 746 747 /* Stop the TD queueing code from ringing the doorbell until 748 * this command completes. The HC won't set the dequeue pointer 749 * if the ring is running, and ringing the doorbell starts the 750 * ring running. 751 */ 752 ep->ep_state |= SET_DEQ_PENDING; 753 xhci_ring_cmd_db(xhci); 754 return 0; 755 } 756 757 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 758 * (The last TRB actually points to the ring enqueue pointer, which is not part 759 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 760 */ 761 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 762 struct xhci_td *td, bool flip_cycle) 763 { 764 struct xhci_segment *seg = td->start_seg; 765 union xhci_trb *trb = td->first_trb; 766 767 while (1) { 768 trb_to_noop(trb, TRB_TR_NOOP); 769 770 /* flip cycle if asked to */ 771 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 772 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 773 774 if (trb == td->last_trb) 775 break; 776 777 next_trb(xhci, ep_ring, &seg, &trb); 778 } 779 } 780 781 /* 782 * Must be called with xhci->lock held in interrupt context, 783 * releases and re-acquires xhci->lock 784 */ 785 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 786 struct xhci_td *cur_td, int status) 787 { 788 struct urb *urb = cur_td->urb; 789 struct urb_priv *urb_priv = urb->hcpriv; 790 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 791 792 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 793 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 794 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 795 if (xhci->quirks & XHCI_AMD_PLL_FIX) 796 usb_amd_quirk_pll_enable(); 797 } 798 } 799 xhci_urb_free_priv(urb_priv); 800 usb_hcd_unlink_urb_from_ep(hcd, urb); 801 trace_xhci_urb_giveback(urb); 802 usb_hcd_giveback_urb(hcd, urb, status); 803 } 804 805 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 806 struct xhci_ring *ring, struct xhci_td *td) 807 { 808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 809 struct xhci_segment *seg = td->bounce_seg; 810 struct urb *urb = td->urb; 811 size_t len; 812 813 if (!ring || !seg || !urb) 814 return; 815 816 if (usb_urb_dir_out(urb)) { 817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 818 DMA_TO_DEVICE); 819 return; 820 } 821 822 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 823 DMA_FROM_DEVICE); 824 /* for in tranfers we need to copy the data from bounce to sg */ 825 if (urb->num_sgs) { 826 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 827 seg->bounce_len, seg->bounce_offs); 828 if (len != seg->bounce_len) 829 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 830 len, seg->bounce_len); 831 } else { 832 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 833 seg->bounce_len); 834 } 835 seg->bounce_len = 0; 836 seg->bounce_offs = 0; 837 } 838 839 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 840 struct xhci_ring *ep_ring, int status) 841 { 842 struct urb *urb = NULL; 843 844 /* Clean up the endpoint's TD list */ 845 urb = td->urb; 846 847 /* if a bounce buffer was used to align this td then unmap it */ 848 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 849 850 /* Do one last check of the actual transfer length. 851 * If the host controller said we transferred more data than the buffer 852 * length, urb->actual_length will be a very big number (since it's 853 * unsigned). Play it safe and say we didn't transfer anything. 854 */ 855 if (urb->actual_length > urb->transfer_buffer_length) { 856 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 857 urb->transfer_buffer_length, urb->actual_length); 858 urb->actual_length = 0; 859 status = 0; 860 } 861 /* TD might be removed from td_list if we are giving back a cancelled URB */ 862 if (!list_empty(&td->td_list)) 863 list_del_init(&td->td_list); 864 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 865 if (!list_empty(&td->cancelled_td_list)) 866 list_del_init(&td->cancelled_td_list); 867 868 inc_td_cnt(urb); 869 /* Giveback the urb when all the tds are completed */ 870 if (last_td_in_urb(td)) { 871 if ((urb->actual_length != urb->transfer_buffer_length && 872 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 873 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 874 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 875 urb, urb->actual_length, 876 urb->transfer_buffer_length, status); 877 878 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 879 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 880 status = 0; 881 xhci_giveback_urb_in_irq(xhci, td, status); 882 } 883 884 return 0; 885 } 886 887 888 /* Complete the cancelled URBs we unlinked from td_list. */ 889 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 890 { 891 struct xhci_ring *ring; 892 struct xhci_td *td, *tmp_td; 893 894 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 895 cancelled_td_list) { 896 897 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 898 899 if (td->cancel_status == TD_CLEARED) { 900 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 901 __func__, td->urb); 902 xhci_td_cleanup(ep->xhci, td, ring, td->status); 903 } else { 904 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 905 __func__, td->urb, td->cancel_status); 906 } 907 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 908 return; 909 } 910 } 911 912 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 913 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 914 { 915 struct xhci_command *command; 916 int ret = 0; 917 918 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 919 if (!command) { 920 ret = -ENOMEM; 921 goto done; 922 } 923 924 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 925 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 926 ep_index, slot_id); 927 928 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 929 done: 930 if (ret) 931 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 932 slot_id, ep_index, ret); 933 return ret; 934 } 935 936 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 937 struct xhci_virt_ep *ep, 938 struct xhci_td *td, 939 enum xhci_ep_reset_type reset_type) 940 { 941 unsigned int slot_id = ep->vdev->slot_id; 942 int err; 943 944 /* 945 * Avoid resetting endpoint if link is inactive. Can cause host hang. 946 * Device will be reset soon to recover the link so don't do anything 947 */ 948 if (ep->vdev->flags & VDEV_PORT_ERROR) 949 return -ENODEV; 950 951 /* add td to cancelled list and let reset ep handler take care of it */ 952 if (reset_type == EP_HARD_RESET) { 953 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 954 if (td && list_empty(&td->cancelled_td_list)) { 955 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 956 td->cancel_status = TD_HALTED; 957 } 958 } 959 960 if (ep->ep_state & EP_HALTED) { 961 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 962 ep->ep_index); 963 return 0; 964 } 965 966 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 967 if (err) 968 return err; 969 970 ep->ep_state |= EP_HALTED; 971 972 xhci_ring_cmd_db(xhci); 973 974 return 0; 975 } 976 977 /* 978 * Fix up the ep ring first, so HW stops executing cancelled TDs. 979 * We have the xHCI lock, so nothing can modify this list until we drop it. 980 * We're also in the event handler, so we can't get re-interrupted if another 981 * Stop Endpoint command completes. 982 * 983 * only call this when ring is not in a running state 984 */ 985 986 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 987 { 988 struct xhci_hcd *xhci; 989 struct xhci_td *td = NULL; 990 struct xhci_td *tmp_td = NULL; 991 struct xhci_td *cached_td = NULL; 992 struct xhci_ring *ring; 993 u64 hw_deq; 994 unsigned int slot_id = ep->vdev->slot_id; 995 int err; 996 997 xhci = ep->xhci; 998 999 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1000 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1001 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1002 (unsigned long long)xhci_trb_virt_to_dma( 1003 td->start_seg, td->first_trb), 1004 td->urb->stream_id, td->urb); 1005 list_del_init(&td->td_list); 1006 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1007 if (!ring) { 1008 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1009 td->urb, td->urb->stream_id); 1010 continue; 1011 } 1012 /* 1013 * If a ring stopped on the TD we need to cancel then we have to 1014 * move the xHC endpoint ring dequeue pointer past this TD. 1015 * Rings halted due to STALL may show hw_deq is past the stalled 1016 * TD, but still require a set TR Deq command to flush xHC cache. 1017 */ 1018 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1019 td->urb->stream_id); 1020 hw_deq &= ~0xf; 1021 1022 if (td->cancel_status == TD_HALTED || 1023 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1024 switch (td->cancel_status) { 1025 case TD_CLEARED: /* TD is already no-op */ 1026 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1027 break; 1028 case TD_DIRTY: /* TD is cached, clear it */ 1029 case TD_HALTED: 1030 case TD_CLEARING_CACHE_DEFERRED: 1031 if (cached_td) { 1032 if (cached_td->urb->stream_id != td->urb->stream_id) { 1033 /* Multiple streams case, defer move dq */ 1034 xhci_dbg(xhci, 1035 "Move dq deferred: stream %u URB %p\n", 1036 td->urb->stream_id, td->urb); 1037 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1038 break; 1039 } 1040 1041 /* Should never happen, but clear the TD if it does */ 1042 xhci_warn(xhci, 1043 "Found multiple active URBs %p and %p in stream %u?\n", 1044 td->urb, cached_td->urb, 1045 td->urb->stream_id); 1046 td_to_noop(xhci, ring, cached_td, false); 1047 cached_td->cancel_status = TD_CLEARED; 1048 } 1049 1050 td->cancel_status = TD_CLEARING_CACHE; 1051 cached_td = td; 1052 break; 1053 } 1054 } else { 1055 td_to_noop(xhci, ring, td, false); 1056 td->cancel_status = TD_CLEARED; 1057 } 1058 } 1059 1060 /* If there's no need to move the dequeue pointer then we're done */ 1061 if (!cached_td) 1062 return 0; 1063 1064 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1065 cached_td->urb->stream_id, 1066 cached_td); 1067 if (err) { 1068 /* Failed to move past cached td, just set cached TDs to no-op */ 1069 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1070 /* 1071 * Deferred TDs need to have the deq pointer set after the above command 1072 * completes, so if that failed we just give up on all of them (and 1073 * complain loudly since this could cause issues due to caching). 1074 */ 1075 if (td->cancel_status != TD_CLEARING_CACHE && 1076 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1077 continue; 1078 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1079 td->urb); 1080 td_to_noop(xhci, ring, td, false); 1081 td->cancel_status = TD_CLEARED; 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 /* 1088 * Returns the TD the endpoint ring halted on. 1089 * Only call for non-running rings without streams. 1090 */ 1091 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1092 { 1093 struct xhci_td *td; 1094 u64 hw_deq; 1095 1096 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1097 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1098 hw_deq &= ~0xf; 1099 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1100 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1101 td->last_trb, hw_deq, false)) 1102 return td; 1103 } 1104 return NULL; 1105 } 1106 1107 /* 1108 * When we get a command completion for a Stop Endpoint Command, we need to 1109 * unlink any cancelled TDs from the ring. There are two ways to do that: 1110 * 1111 * 1. If the HW was in the middle of processing the TD that needs to be 1112 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1113 * in the TD with a Set Dequeue Pointer Command. 1114 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1115 * bit cleared) so that the HW will skip over them. 1116 */ 1117 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1118 union xhci_trb *trb, u32 comp_code) 1119 { 1120 unsigned int ep_index; 1121 struct xhci_virt_ep *ep; 1122 struct xhci_ep_ctx *ep_ctx; 1123 struct xhci_td *td = NULL; 1124 enum xhci_ep_reset_type reset_type; 1125 struct xhci_command *command; 1126 int err; 1127 1128 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1129 if (!xhci->devs[slot_id]) 1130 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1131 slot_id); 1132 return; 1133 } 1134 1135 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1136 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1137 if (!ep) 1138 return; 1139 1140 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1141 1142 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1143 1144 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1145 /* 1146 * If stop endpoint command raced with a halting endpoint we need to 1147 * reset the host side endpoint first. 1148 * If the TD we halted on isn't cancelled the TD should be given back 1149 * with a proper error code, and the ring dequeue moved past the TD. 1150 * If streams case we can't find hw_deq, or the TD we halted on so do a 1151 * soft reset. 1152 * 1153 * Proper error code is unknown here, it would be -EPIPE if device side 1154 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1155 * We use -EPROTO, if device is stalled it should return a stall error on 1156 * next transfer, which then will return -EPIPE, and device side stall is 1157 * noted and cleared by class driver. 1158 */ 1159 switch (GET_EP_CTX_STATE(ep_ctx)) { 1160 case EP_STATE_HALTED: 1161 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1162 if (ep->ep_state & EP_HAS_STREAMS) { 1163 reset_type = EP_SOFT_RESET; 1164 } else { 1165 reset_type = EP_HARD_RESET; 1166 td = find_halted_td(ep); 1167 if (td) 1168 td->status = -EPROTO; 1169 } 1170 /* reset ep, reset handler cleans up cancelled tds */ 1171 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1172 if (err) 1173 break; 1174 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1175 return; 1176 case EP_STATE_RUNNING: 1177 /* Race, HW handled stop ep cmd before ep was running */ 1178 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1179 1180 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1181 if (!command) { 1182 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1183 return; 1184 } 1185 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1186 xhci_ring_cmd_db(xhci); 1187 1188 return; 1189 default: 1190 break; 1191 } 1192 } 1193 1194 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1195 xhci_invalidate_cancelled_tds(ep); 1196 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1197 1198 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1199 xhci_giveback_invalidated_tds(ep); 1200 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1201 } 1202 1203 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1204 { 1205 struct xhci_td *cur_td; 1206 struct xhci_td *tmp; 1207 1208 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1209 list_del_init(&cur_td->td_list); 1210 1211 if (!list_empty(&cur_td->cancelled_td_list)) 1212 list_del_init(&cur_td->cancelled_td_list); 1213 1214 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1215 1216 inc_td_cnt(cur_td->urb); 1217 if (last_td_in_urb(cur_td)) 1218 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1219 } 1220 } 1221 1222 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1223 int slot_id, int ep_index) 1224 { 1225 struct xhci_td *cur_td; 1226 struct xhci_td *tmp; 1227 struct xhci_virt_ep *ep; 1228 struct xhci_ring *ring; 1229 1230 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1231 if (!ep) 1232 return; 1233 1234 if ((ep->ep_state & EP_HAS_STREAMS) || 1235 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1236 int stream_id; 1237 1238 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1239 stream_id++) { 1240 ring = ep->stream_info->stream_rings[stream_id]; 1241 if (!ring) 1242 continue; 1243 1244 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1245 "Killing URBs for slot ID %u, ep index %u, stream %u", 1246 slot_id, ep_index, stream_id); 1247 xhci_kill_ring_urbs(xhci, ring); 1248 } 1249 } else { 1250 ring = ep->ring; 1251 if (!ring) 1252 return; 1253 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1254 "Killing URBs for slot ID %u, ep index %u", 1255 slot_id, ep_index); 1256 xhci_kill_ring_urbs(xhci, ring); 1257 } 1258 1259 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1260 cancelled_td_list) { 1261 list_del_init(&cur_td->cancelled_td_list); 1262 inc_td_cnt(cur_td->urb); 1263 1264 if (last_td_in_urb(cur_td)) 1265 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1266 } 1267 } 1268 1269 /* 1270 * host controller died, register read returns 0xffffffff 1271 * Complete pending commands, mark them ABORTED. 1272 * URBs need to be given back as usb core might be waiting with device locks 1273 * held for the URBs to finish during device disconnect, blocking host remove. 1274 * 1275 * Call with xhci->lock held. 1276 * lock is relased and re-acquired while giving back urb. 1277 */ 1278 void xhci_hc_died(struct xhci_hcd *xhci) 1279 { 1280 int i, j; 1281 1282 if (xhci->xhc_state & XHCI_STATE_DYING) 1283 return; 1284 1285 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1286 xhci->xhc_state |= XHCI_STATE_DYING; 1287 1288 xhci_cleanup_command_queue(xhci); 1289 1290 /* return any pending urbs, remove may be waiting for them */ 1291 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1292 if (!xhci->devs[i]) 1293 continue; 1294 for (j = 0; j < 31; j++) 1295 xhci_kill_endpoint_urbs(xhci, i, j); 1296 } 1297 1298 /* inform usb core hc died if PCI remove isn't already handling it */ 1299 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1300 usb_hc_died(xhci_to_hcd(xhci)); 1301 } 1302 1303 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1304 struct xhci_virt_device *dev, 1305 struct xhci_ring *ep_ring, 1306 unsigned int ep_index) 1307 { 1308 union xhci_trb *dequeue_temp; 1309 1310 dequeue_temp = ep_ring->dequeue; 1311 1312 /* If we get two back-to-back stalls, and the first stalled transfer 1313 * ends just before a link TRB, the dequeue pointer will be left on 1314 * the link TRB by the code in the while loop. So we have to update 1315 * the dequeue pointer one segment further, or we'll jump off 1316 * the segment into la-la-land. 1317 */ 1318 if (trb_is_link(ep_ring->dequeue)) { 1319 ep_ring->deq_seg = ep_ring->deq_seg->next; 1320 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1321 } 1322 1323 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1324 /* We have more usable TRBs */ 1325 ep_ring->dequeue++; 1326 if (trb_is_link(ep_ring->dequeue)) { 1327 if (ep_ring->dequeue == 1328 dev->eps[ep_index].queued_deq_ptr) 1329 break; 1330 ep_ring->deq_seg = ep_ring->deq_seg->next; 1331 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1332 } 1333 if (ep_ring->dequeue == dequeue_temp) { 1334 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1335 break; 1336 } 1337 } 1338 } 1339 1340 /* 1341 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1342 * we need to clear the set deq pending flag in the endpoint ring state, so that 1343 * the TD queueing code can ring the doorbell again. We also need to ring the 1344 * endpoint doorbell to restart the ring, but only if there aren't more 1345 * cancellations pending. 1346 */ 1347 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1348 union xhci_trb *trb, u32 cmd_comp_code) 1349 { 1350 unsigned int ep_index; 1351 unsigned int stream_id; 1352 struct xhci_ring *ep_ring; 1353 struct xhci_virt_ep *ep; 1354 struct xhci_ep_ctx *ep_ctx; 1355 struct xhci_slot_ctx *slot_ctx; 1356 struct xhci_td *td, *tmp_td; 1357 bool deferred = false; 1358 1359 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1360 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1361 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1362 if (!ep) 1363 return; 1364 1365 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1366 if (!ep_ring) { 1367 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1368 stream_id); 1369 /* XXX: Harmless??? */ 1370 goto cleanup; 1371 } 1372 1373 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1374 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1375 trace_xhci_handle_cmd_set_deq(slot_ctx); 1376 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1377 1378 if (cmd_comp_code != COMP_SUCCESS) { 1379 unsigned int ep_state; 1380 unsigned int slot_state; 1381 1382 switch (cmd_comp_code) { 1383 case COMP_TRB_ERROR: 1384 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1385 break; 1386 case COMP_CONTEXT_STATE_ERROR: 1387 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1388 ep_state = GET_EP_CTX_STATE(ep_ctx); 1389 slot_state = le32_to_cpu(slot_ctx->dev_state); 1390 slot_state = GET_SLOT_STATE(slot_state); 1391 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1392 "Slot state = %u, EP state = %u", 1393 slot_state, ep_state); 1394 break; 1395 case COMP_SLOT_NOT_ENABLED_ERROR: 1396 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1397 slot_id); 1398 break; 1399 default: 1400 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1401 cmd_comp_code); 1402 break; 1403 } 1404 /* OK what do we do now? The endpoint state is hosed, and we 1405 * should never get to this point if the synchronization between 1406 * queueing, and endpoint state are correct. This might happen 1407 * if the device gets disconnected after we've finished 1408 * cancelling URBs, which might not be an error... 1409 */ 1410 } else { 1411 u64 deq; 1412 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1413 if (ep->ep_state & EP_HAS_STREAMS) { 1414 struct xhci_stream_ctx *ctx = 1415 &ep->stream_info->stream_ctx_array[stream_id]; 1416 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1417 } else { 1418 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1419 } 1420 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1421 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1422 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1423 ep->queued_deq_ptr) == deq) { 1424 /* Update the ring's dequeue segment and dequeue pointer 1425 * to reflect the new position. 1426 */ 1427 update_ring_for_set_deq_completion(xhci, ep->vdev, 1428 ep_ring, ep_index); 1429 } else { 1430 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1431 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1432 ep->queued_deq_seg, ep->queued_deq_ptr); 1433 } 1434 } 1435 /* HW cached TDs cleared from cache, give them back */ 1436 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1437 cancelled_td_list) { 1438 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1439 if (td->cancel_status == TD_CLEARING_CACHE) { 1440 td->cancel_status = TD_CLEARED; 1441 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1442 __func__, td->urb); 1443 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1444 } else if (td->cancel_status == TD_CLEARING_CACHE_DEFERRED) { 1445 deferred = true; 1446 } else { 1447 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1448 __func__, td->urb, td->cancel_status); 1449 } 1450 } 1451 cleanup: 1452 ep->ep_state &= ~SET_DEQ_PENDING; 1453 ep->queued_deq_seg = NULL; 1454 ep->queued_deq_ptr = NULL; 1455 1456 if (deferred) { 1457 /* We have more streams to clear */ 1458 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1459 __func__); 1460 xhci_invalidate_cancelled_tds(ep); 1461 } else { 1462 /* Restart any rings with pending URBs */ 1463 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1464 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1465 } 1466 } 1467 1468 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1469 union xhci_trb *trb, u32 cmd_comp_code) 1470 { 1471 struct xhci_virt_ep *ep; 1472 struct xhci_ep_ctx *ep_ctx; 1473 unsigned int ep_index; 1474 1475 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1476 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1477 if (!ep) 1478 return; 1479 1480 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1481 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1482 1483 /* This command will only fail if the endpoint wasn't halted, 1484 * but we don't care. 1485 */ 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1487 "Ignoring reset ep completion code of %u", cmd_comp_code); 1488 1489 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1490 xhci_invalidate_cancelled_tds(ep); 1491 1492 /* Clear our internal halted state */ 1493 ep->ep_state &= ~EP_HALTED; 1494 1495 xhci_giveback_invalidated_tds(ep); 1496 1497 /* if this was a soft reset, then restart */ 1498 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1499 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1500 } 1501 1502 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1503 struct xhci_command *command, u32 cmd_comp_code) 1504 { 1505 if (cmd_comp_code == COMP_SUCCESS) 1506 command->slot_id = slot_id; 1507 else 1508 command->slot_id = 0; 1509 } 1510 1511 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1512 { 1513 struct xhci_virt_device *virt_dev; 1514 struct xhci_slot_ctx *slot_ctx; 1515 1516 virt_dev = xhci->devs[slot_id]; 1517 if (!virt_dev) 1518 return; 1519 1520 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1521 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1522 1523 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1524 /* Delete default control endpoint resources */ 1525 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1526 } 1527 1528 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1529 u32 cmd_comp_code) 1530 { 1531 struct xhci_virt_device *virt_dev; 1532 struct xhci_input_control_ctx *ctrl_ctx; 1533 struct xhci_ep_ctx *ep_ctx; 1534 unsigned int ep_index; 1535 u32 add_flags; 1536 1537 /* 1538 * Configure endpoint commands can come from the USB core configuration 1539 * or alt setting changes, or when streams were being configured. 1540 */ 1541 1542 virt_dev = xhci->devs[slot_id]; 1543 if (!virt_dev) 1544 return; 1545 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1546 if (!ctrl_ctx) { 1547 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1548 return; 1549 } 1550 1551 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1552 1553 /* Input ctx add_flags are the endpoint index plus one */ 1554 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1555 1556 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1557 trace_xhci_handle_cmd_config_ep(ep_ctx); 1558 1559 return; 1560 } 1561 1562 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1563 { 1564 struct xhci_virt_device *vdev; 1565 struct xhci_slot_ctx *slot_ctx; 1566 1567 vdev = xhci->devs[slot_id]; 1568 if (!vdev) 1569 return; 1570 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1571 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1572 } 1573 1574 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1575 { 1576 struct xhci_virt_device *vdev; 1577 struct xhci_slot_ctx *slot_ctx; 1578 1579 vdev = xhci->devs[slot_id]; 1580 if (!vdev) { 1581 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1582 slot_id); 1583 return; 1584 } 1585 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1586 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1587 1588 xhci_dbg(xhci, "Completed reset device command.\n"); 1589 } 1590 1591 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1592 struct xhci_event_cmd *event) 1593 { 1594 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1595 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1596 return; 1597 } 1598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1599 "NEC firmware version %2x.%02x", 1600 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1601 NEC_FW_MINOR(le32_to_cpu(event->status))); 1602 } 1603 1604 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1605 { 1606 list_del(&cmd->cmd_list); 1607 1608 if (cmd->completion) { 1609 cmd->status = status; 1610 complete(cmd->completion); 1611 } else { 1612 kfree(cmd); 1613 } 1614 } 1615 1616 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1617 { 1618 struct xhci_command *cur_cmd, *tmp_cmd; 1619 xhci->current_cmd = NULL; 1620 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1621 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1622 } 1623 1624 void xhci_handle_command_timeout(struct work_struct *work) 1625 { 1626 struct xhci_hcd *xhci; 1627 unsigned long flags; 1628 char str[XHCI_MSG_MAX]; 1629 u64 hw_ring_state; 1630 u32 cmd_field3; 1631 u32 usbsts; 1632 1633 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1634 1635 spin_lock_irqsave(&xhci->lock, flags); 1636 1637 /* 1638 * If timeout work is pending, or current_cmd is NULL, it means we 1639 * raced with command completion. Command is handled so just return. 1640 */ 1641 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1642 spin_unlock_irqrestore(&xhci->lock, flags); 1643 return; 1644 } 1645 1646 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1647 usbsts = readl(&xhci->op_regs->status); 1648 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1649 1650 /* Bail out and tear down xhci if a stop endpoint command failed */ 1651 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1652 struct xhci_virt_ep *ep; 1653 1654 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1655 1656 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1657 TRB_TO_EP_INDEX(cmd_field3)); 1658 if (ep) 1659 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1660 1661 xhci_halt(xhci); 1662 xhci_hc_died(xhci); 1663 goto time_out_completed; 1664 } 1665 1666 /* mark this command to be cancelled */ 1667 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1668 1669 /* Make sure command ring is running before aborting it */ 1670 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1671 if (hw_ring_state == ~(u64)0) { 1672 xhci_hc_died(xhci); 1673 goto time_out_completed; 1674 } 1675 1676 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1677 (hw_ring_state & CMD_RING_RUNNING)) { 1678 /* Prevent new doorbell, and start command abort */ 1679 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1680 xhci_dbg(xhci, "Command timeout\n"); 1681 xhci_abort_cmd_ring(xhci, flags); 1682 goto time_out_completed; 1683 } 1684 1685 /* host removed. Bail out */ 1686 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1687 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1688 xhci_cleanup_command_queue(xhci); 1689 1690 goto time_out_completed; 1691 } 1692 1693 /* command timeout on stopped ring, ring can't be aborted */ 1694 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1695 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1696 1697 time_out_completed: 1698 spin_unlock_irqrestore(&xhci->lock, flags); 1699 return; 1700 } 1701 1702 static void handle_cmd_completion(struct xhci_hcd *xhci, 1703 struct xhci_event_cmd *event) 1704 { 1705 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1706 u64 cmd_dma; 1707 dma_addr_t cmd_dequeue_dma; 1708 u32 cmd_comp_code; 1709 union xhci_trb *cmd_trb; 1710 struct xhci_command *cmd; 1711 u32 cmd_type; 1712 1713 if (slot_id >= MAX_HC_SLOTS) { 1714 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1715 return; 1716 } 1717 1718 cmd_dma = le64_to_cpu(event->cmd_trb); 1719 cmd_trb = xhci->cmd_ring->dequeue; 1720 1721 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1722 1723 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1724 cmd_trb); 1725 /* 1726 * Check whether the completion event is for our internal kept 1727 * command. 1728 */ 1729 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1730 xhci_warn(xhci, 1731 "ERROR mismatched command completion event\n"); 1732 return; 1733 } 1734 1735 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1736 1737 cancel_delayed_work(&xhci->cmd_timer); 1738 1739 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1740 1741 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1742 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1743 complete_all(&xhci->cmd_ring_stop_completion); 1744 return; 1745 } 1746 1747 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1748 xhci_err(xhci, 1749 "Command completion event does not match command\n"); 1750 return; 1751 } 1752 1753 /* 1754 * Host aborted the command ring, check if the current command was 1755 * supposed to be aborted, otherwise continue normally. 1756 * The command ring is stopped now, but the xHC will issue a Command 1757 * Ring Stopped event which will cause us to restart it. 1758 */ 1759 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1760 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1761 if (cmd->status == COMP_COMMAND_ABORTED) { 1762 if (xhci->current_cmd == cmd) 1763 xhci->current_cmd = NULL; 1764 goto event_handled; 1765 } 1766 } 1767 1768 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1769 switch (cmd_type) { 1770 case TRB_ENABLE_SLOT: 1771 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1772 break; 1773 case TRB_DISABLE_SLOT: 1774 xhci_handle_cmd_disable_slot(xhci, slot_id); 1775 break; 1776 case TRB_CONFIG_EP: 1777 if (!cmd->completion) 1778 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1779 break; 1780 case TRB_EVAL_CONTEXT: 1781 break; 1782 case TRB_ADDR_DEV: 1783 xhci_handle_cmd_addr_dev(xhci, slot_id); 1784 break; 1785 case TRB_STOP_RING: 1786 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1787 le32_to_cpu(cmd_trb->generic.field[3]))); 1788 if (!cmd->completion) 1789 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1790 cmd_comp_code); 1791 break; 1792 case TRB_SET_DEQ: 1793 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1794 le32_to_cpu(cmd_trb->generic.field[3]))); 1795 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1796 break; 1797 case TRB_CMD_NOOP: 1798 /* Is this an aborted command turned to NO-OP? */ 1799 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1800 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1801 break; 1802 case TRB_RESET_EP: 1803 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1804 le32_to_cpu(cmd_trb->generic.field[3]))); 1805 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1806 break; 1807 case TRB_RESET_DEV: 1808 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1809 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1810 */ 1811 slot_id = TRB_TO_SLOT_ID( 1812 le32_to_cpu(cmd_trb->generic.field[3])); 1813 xhci_handle_cmd_reset_dev(xhci, slot_id); 1814 break; 1815 case TRB_NEC_GET_FW: 1816 xhci_handle_cmd_nec_get_fw(xhci, event); 1817 break; 1818 default: 1819 /* Skip over unknown commands on the event ring */ 1820 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1821 break; 1822 } 1823 1824 /* restart timer if this wasn't the last command */ 1825 if (!list_is_singular(&xhci->cmd_list)) { 1826 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1827 struct xhci_command, cmd_list); 1828 xhci_mod_cmd_timer(xhci); 1829 } else if (xhci->current_cmd == cmd) { 1830 xhci->current_cmd = NULL; 1831 } 1832 1833 event_handled: 1834 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1835 1836 inc_deq(xhci, xhci->cmd_ring); 1837 } 1838 1839 static void handle_vendor_event(struct xhci_hcd *xhci, 1840 union xhci_trb *event, u32 trb_type) 1841 { 1842 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1843 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1844 handle_cmd_completion(xhci, &event->event_cmd); 1845 } 1846 1847 static void handle_device_notification(struct xhci_hcd *xhci, 1848 union xhci_trb *event) 1849 { 1850 u32 slot_id; 1851 struct usb_device *udev; 1852 1853 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1854 if (!xhci->devs[slot_id]) { 1855 xhci_warn(xhci, "Device Notification event for " 1856 "unused slot %u\n", slot_id); 1857 return; 1858 } 1859 1860 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1861 slot_id); 1862 udev = xhci->devs[slot_id]->udev; 1863 if (udev && udev->parent) 1864 usb_wakeup_notification(udev->parent, udev->portnum); 1865 } 1866 1867 /* 1868 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1869 * Controller. 1870 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1871 * If a connection to a USB 1 device is followed by another connection 1872 * to a USB 2 device. 1873 * 1874 * Reset the PHY after the USB device is disconnected if device speed 1875 * is less than HCD_USB3. 1876 * Retry the reset sequence max of 4 times checking the PLL lock status. 1877 * 1878 */ 1879 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1880 { 1881 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1882 u32 pll_lock_check; 1883 u32 retry_count = 4; 1884 1885 do { 1886 /* Assert PHY reset */ 1887 writel(0x6F, hcd->regs + 0x1048); 1888 udelay(10); 1889 /* De-assert the PHY reset */ 1890 writel(0x7F, hcd->regs + 0x1048); 1891 udelay(200); 1892 pll_lock_check = readl(hcd->regs + 0x1070); 1893 } while (!(pll_lock_check & 0x1) && --retry_count); 1894 } 1895 1896 static void handle_port_status(struct xhci_hcd *xhci, 1897 struct xhci_interrupter *ir, 1898 union xhci_trb *event) 1899 { 1900 struct usb_hcd *hcd; 1901 u32 port_id; 1902 u32 portsc, cmd_reg; 1903 int max_ports; 1904 int slot_id; 1905 unsigned int hcd_portnum; 1906 struct xhci_bus_state *bus_state; 1907 bool bogus_port_status = false; 1908 struct xhci_port *port; 1909 1910 /* Port status change events always have a successful completion code */ 1911 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1912 xhci_warn(xhci, 1913 "WARN: xHC returned failed port status event\n"); 1914 1915 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1916 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1917 1918 if ((port_id <= 0) || (port_id > max_ports)) { 1919 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1920 port_id); 1921 inc_deq(xhci, ir->event_ring); 1922 return; 1923 } 1924 1925 port = &xhci->hw_ports[port_id - 1]; 1926 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1927 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1928 port_id); 1929 bogus_port_status = true; 1930 goto cleanup; 1931 } 1932 1933 /* We might get interrupts after shared_hcd is removed */ 1934 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1935 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1936 bogus_port_status = true; 1937 goto cleanup; 1938 } 1939 1940 hcd = port->rhub->hcd; 1941 bus_state = &port->rhub->bus_state; 1942 hcd_portnum = port->hcd_portnum; 1943 portsc = readl(port->addr); 1944 1945 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1946 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1947 1948 trace_xhci_handle_port_status(hcd_portnum, portsc); 1949 1950 if (hcd->state == HC_STATE_SUSPENDED) { 1951 xhci_dbg(xhci, "resume root hub\n"); 1952 usb_hcd_resume_root_hub(hcd); 1953 } 1954 1955 if (hcd->speed >= HCD_USB3 && 1956 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1957 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1958 if (slot_id && xhci->devs[slot_id]) 1959 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1960 } 1961 1962 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1963 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1964 1965 cmd_reg = readl(&xhci->op_regs->command); 1966 if (!(cmd_reg & CMD_RUN)) { 1967 xhci_warn(xhci, "xHC is not running.\n"); 1968 goto cleanup; 1969 } 1970 1971 if (DEV_SUPERSPEED_ANY(portsc)) { 1972 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1973 /* Set a flag to say the port signaled remote wakeup, 1974 * so we can tell the difference between the end of 1975 * device and host initiated resume. 1976 */ 1977 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1978 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1979 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1980 xhci_set_link_state(xhci, port, XDEV_U0); 1981 /* Need to wait until the next link state change 1982 * indicates the device is actually in U0. 1983 */ 1984 bogus_port_status = true; 1985 goto cleanup; 1986 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1987 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1988 port->resume_timestamp = jiffies + 1989 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1990 set_bit(hcd_portnum, &bus_state->resuming_ports); 1991 /* Do the rest in GetPortStatus after resume time delay. 1992 * Avoid polling roothub status before that so that a 1993 * usb device auto-resume latency around ~40ms. 1994 */ 1995 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1996 mod_timer(&hcd->rh_timer, 1997 port->resume_timestamp); 1998 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1999 bogus_port_status = true; 2000 } 2001 } 2002 2003 if ((portsc & PORT_PLC) && 2004 DEV_SUPERSPEED_ANY(portsc) && 2005 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2006 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2007 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2008 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2009 complete(&port->u3exit_done); 2010 /* We've just brought the device into U0/1/2 through either the 2011 * Resume state after a device remote wakeup, or through the 2012 * U3Exit state after a host-initiated resume. If it's a device 2013 * initiated remote wake, don't pass up the link state change, 2014 * so the roothub behavior is consistent with external 2015 * USB 3.0 hub behavior. 2016 */ 2017 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 2018 if (slot_id && xhci->devs[slot_id]) 2019 xhci_ring_device(xhci, slot_id); 2020 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2021 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2022 usb_wakeup_notification(hcd->self.root_hub, 2023 hcd_portnum + 1); 2024 bogus_port_status = true; 2025 goto cleanup; 2026 } 2027 } 2028 2029 /* 2030 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2031 * RExit to a disconnect state). If so, let the driver know it's 2032 * out of the RExit state. 2033 */ 2034 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2035 complete(&port->rexit_done); 2036 port->rexit_active = false; 2037 bogus_port_status = true; 2038 goto cleanup; 2039 } 2040 2041 if (hcd->speed < HCD_USB3) { 2042 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2043 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2044 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2045 xhci_cavium_reset_phy_quirk(xhci); 2046 } 2047 2048 cleanup: 2049 /* Update event ring dequeue pointer before dropping the lock */ 2050 inc_deq(xhci, ir->event_ring); 2051 2052 /* Don't make the USB core poll the roothub if we got a bad port status 2053 * change event. Besides, at that point we can't tell which roothub 2054 * (USB 2.0 or USB 3.0) to kick. 2055 */ 2056 if (bogus_port_status) 2057 return; 2058 2059 /* 2060 * xHCI port-status-change events occur when the "or" of all the 2061 * status-change bits in the portsc register changes from 0 to 1. 2062 * New status changes won't cause an event if any other change 2063 * bits are still set. When an event occurs, switch over to 2064 * polling to avoid losing status changes. 2065 */ 2066 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2067 __func__, hcd->self.busnum); 2068 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2069 spin_unlock(&xhci->lock); 2070 /* Pass this up to the core */ 2071 usb_hcd_poll_rh_status(hcd); 2072 spin_lock(&xhci->lock); 2073 } 2074 2075 /* 2076 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2077 * at end_trb, which may be in another segment. If the suspect DMA address is a 2078 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2079 * returns 0. 2080 */ 2081 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2082 struct xhci_segment *start_seg, 2083 union xhci_trb *start_trb, 2084 union xhci_trb *end_trb, 2085 dma_addr_t suspect_dma, 2086 bool debug) 2087 { 2088 dma_addr_t start_dma; 2089 dma_addr_t end_seg_dma; 2090 dma_addr_t end_trb_dma; 2091 struct xhci_segment *cur_seg; 2092 2093 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2094 cur_seg = start_seg; 2095 2096 do { 2097 if (start_dma == 0) 2098 return NULL; 2099 /* We may get an event for a Link TRB in the middle of a TD */ 2100 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2101 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2102 /* If the end TRB isn't in this segment, this is set to 0 */ 2103 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2104 2105 if (debug) 2106 xhci_warn(xhci, 2107 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2108 (unsigned long long)suspect_dma, 2109 (unsigned long long)start_dma, 2110 (unsigned long long)end_trb_dma, 2111 (unsigned long long)cur_seg->dma, 2112 (unsigned long long)end_seg_dma); 2113 2114 if (end_trb_dma > 0) { 2115 /* The end TRB is in this segment, so suspect should be here */ 2116 if (start_dma <= end_trb_dma) { 2117 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2118 return cur_seg; 2119 } else { 2120 /* Case for one segment with 2121 * a TD wrapped around to the top 2122 */ 2123 if ((suspect_dma >= start_dma && 2124 suspect_dma <= end_seg_dma) || 2125 (suspect_dma >= cur_seg->dma && 2126 suspect_dma <= end_trb_dma)) 2127 return cur_seg; 2128 } 2129 return NULL; 2130 } else { 2131 /* Might still be somewhere in this segment */ 2132 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2133 return cur_seg; 2134 } 2135 cur_seg = cur_seg->next; 2136 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2137 } while (cur_seg != start_seg); 2138 2139 return NULL; 2140 } 2141 2142 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2143 struct xhci_virt_ep *ep) 2144 { 2145 /* 2146 * As part of low/full-speed endpoint-halt processing 2147 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2148 */ 2149 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2150 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2151 !(ep->ep_state & EP_CLEARING_TT)) { 2152 ep->ep_state |= EP_CLEARING_TT; 2153 td->urb->ep->hcpriv = td->urb->dev; 2154 if (usb_hub_clear_tt_buffer(td->urb)) 2155 ep->ep_state &= ~EP_CLEARING_TT; 2156 } 2157 } 2158 2159 /* Check if an error has halted the endpoint ring. The class driver will 2160 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2161 * However, a babble and other errors also halt the endpoint ring, and the class 2162 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2163 * Ring Dequeue Pointer command manually. 2164 */ 2165 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2166 struct xhci_ep_ctx *ep_ctx, 2167 unsigned int trb_comp_code) 2168 { 2169 /* TRB completion codes that may require a manual halt cleanup */ 2170 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2171 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2172 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2173 /* The 0.95 spec says a babbling control endpoint 2174 * is not halted. The 0.96 spec says it is. Some HW 2175 * claims to be 0.95 compliant, but it halts the control 2176 * endpoint anyway. Check if a babble halted the 2177 * endpoint. 2178 */ 2179 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2180 return 1; 2181 2182 return 0; 2183 } 2184 2185 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2186 { 2187 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2188 /* Vendor defined "informational" completion code, 2189 * treat as not-an-error. 2190 */ 2191 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2192 trb_comp_code); 2193 xhci_dbg(xhci, "Treating code as success.\n"); 2194 return 1; 2195 } 2196 return 0; 2197 } 2198 2199 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2200 struct xhci_ring *ep_ring, struct xhci_td *td, 2201 u32 trb_comp_code) 2202 { 2203 struct xhci_ep_ctx *ep_ctx; 2204 2205 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2206 2207 switch (trb_comp_code) { 2208 case COMP_STOPPED_LENGTH_INVALID: 2209 case COMP_STOPPED_SHORT_PACKET: 2210 case COMP_STOPPED: 2211 /* 2212 * The "Stop Endpoint" completion will take care of any 2213 * stopped TDs. A stopped TD may be restarted, so don't update 2214 * the ring dequeue pointer or take this TD off any lists yet. 2215 */ 2216 return 0; 2217 case COMP_USB_TRANSACTION_ERROR: 2218 case COMP_BABBLE_DETECTED_ERROR: 2219 case COMP_SPLIT_TRANSACTION_ERROR: 2220 /* 2221 * If endpoint context state is not halted we might be 2222 * racing with a reset endpoint command issued by a unsuccessful 2223 * stop endpoint completion (context error). In that case the 2224 * td should be on the cancelled list, and EP_HALTED flag set. 2225 * 2226 * Or then it's not halted due to the 0.95 spec stating that a 2227 * babbling control endpoint should not halt. The 0.96 spec 2228 * again says it should. Some HW claims to be 0.95 compliant, 2229 * but it halts the control endpoint anyway. 2230 */ 2231 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2232 /* 2233 * If EP_HALTED is set and TD is on the cancelled list 2234 * the TD and dequeue pointer will be handled by reset 2235 * ep command completion 2236 */ 2237 if ((ep->ep_state & EP_HALTED) && 2238 !list_empty(&td->cancelled_td_list)) { 2239 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2240 (unsigned long long)xhci_trb_virt_to_dma( 2241 td->start_seg, td->first_trb)); 2242 return 0; 2243 } 2244 /* endpoint not halted, don't reset it */ 2245 break; 2246 } 2247 /* Almost same procedure as for STALL_ERROR below */ 2248 xhci_clear_hub_tt_buffer(xhci, td, ep); 2249 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2250 return 0; 2251 case COMP_STALL_ERROR: 2252 /* 2253 * xhci internal endpoint state will go to a "halt" state for 2254 * any stall, including default control pipe protocol stall. 2255 * To clear the host side halt we need to issue a reset endpoint 2256 * command, followed by a set dequeue command to move past the 2257 * TD. 2258 * Class drivers clear the device side halt from a functional 2259 * stall later. Hub TT buffer should only be cleared for FS/LS 2260 * devices behind HS hubs for functional stalls. 2261 */ 2262 if (ep->ep_index != 0) 2263 xhci_clear_hub_tt_buffer(xhci, td, ep); 2264 2265 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2266 2267 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2268 default: 2269 break; 2270 } 2271 2272 /* Update ring dequeue pointer */ 2273 ep_ring->dequeue = td->last_trb; 2274 ep_ring->deq_seg = td->last_trb_seg; 2275 inc_deq(xhci, ep_ring); 2276 2277 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2278 } 2279 2280 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2281 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2282 union xhci_trb *stop_trb) 2283 { 2284 u32 sum; 2285 union xhci_trb *trb = ring->dequeue; 2286 struct xhci_segment *seg = ring->deq_seg; 2287 2288 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2289 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2290 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2291 } 2292 return sum; 2293 } 2294 2295 /* 2296 * Process control tds, update urb status and actual_length. 2297 */ 2298 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2299 struct xhci_ring *ep_ring, struct xhci_td *td, 2300 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2301 { 2302 struct xhci_ep_ctx *ep_ctx; 2303 u32 trb_comp_code; 2304 u32 remaining, requested; 2305 u32 trb_type; 2306 2307 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2308 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2309 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2310 requested = td->urb->transfer_buffer_length; 2311 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2312 2313 switch (trb_comp_code) { 2314 case COMP_SUCCESS: 2315 if (trb_type != TRB_STATUS) { 2316 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2317 (trb_type == TRB_DATA) ? "data" : "setup"); 2318 td->status = -ESHUTDOWN; 2319 break; 2320 } 2321 td->status = 0; 2322 break; 2323 case COMP_SHORT_PACKET: 2324 td->status = 0; 2325 break; 2326 case COMP_STOPPED_SHORT_PACKET: 2327 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2328 td->urb->actual_length = remaining; 2329 else 2330 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2331 goto finish_td; 2332 case COMP_STOPPED: 2333 switch (trb_type) { 2334 case TRB_SETUP: 2335 td->urb->actual_length = 0; 2336 goto finish_td; 2337 case TRB_DATA: 2338 case TRB_NORMAL: 2339 td->urb->actual_length = requested - remaining; 2340 goto finish_td; 2341 case TRB_STATUS: 2342 td->urb->actual_length = requested; 2343 goto finish_td; 2344 default: 2345 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2346 trb_type); 2347 goto finish_td; 2348 } 2349 case COMP_STOPPED_LENGTH_INVALID: 2350 goto finish_td; 2351 default: 2352 if (!xhci_requires_manual_halt_cleanup(xhci, 2353 ep_ctx, trb_comp_code)) 2354 break; 2355 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2356 trb_comp_code, ep->ep_index); 2357 fallthrough; 2358 case COMP_STALL_ERROR: 2359 /* Did we transfer part of the data (middle) phase? */ 2360 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2361 td->urb->actual_length = requested - remaining; 2362 else if (!td->urb_length_set) 2363 td->urb->actual_length = 0; 2364 goto finish_td; 2365 } 2366 2367 /* stopped at setup stage, no data transferred */ 2368 if (trb_type == TRB_SETUP) 2369 goto finish_td; 2370 2371 /* 2372 * if on data stage then update the actual_length of the URB and flag it 2373 * as set, so it won't be overwritten in the event for the last TRB. 2374 */ 2375 if (trb_type == TRB_DATA || 2376 trb_type == TRB_NORMAL) { 2377 td->urb_length_set = true; 2378 td->urb->actual_length = requested - remaining; 2379 xhci_dbg(xhci, "Waiting for status stage event\n"); 2380 return 0; 2381 } 2382 2383 /* at status stage */ 2384 if (!td->urb_length_set) 2385 td->urb->actual_length = requested; 2386 2387 finish_td: 2388 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2389 } 2390 2391 /* 2392 * Process isochronous tds, update urb packet status and actual_length. 2393 */ 2394 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2395 struct xhci_ring *ep_ring, struct xhci_td *td, 2396 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2397 { 2398 struct urb_priv *urb_priv; 2399 int idx; 2400 struct usb_iso_packet_descriptor *frame; 2401 u32 trb_comp_code; 2402 bool sum_trbs_for_length = false; 2403 u32 remaining, requested, ep_trb_len; 2404 int short_framestatus; 2405 2406 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2407 urb_priv = td->urb->hcpriv; 2408 idx = urb_priv->num_tds_done; 2409 frame = &td->urb->iso_frame_desc[idx]; 2410 requested = frame->length; 2411 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2412 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2413 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2414 -EREMOTEIO : 0; 2415 2416 /* handle completion code */ 2417 switch (trb_comp_code) { 2418 case COMP_SUCCESS: 2419 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2420 if (td->error_mid_td) 2421 break; 2422 if (remaining) { 2423 frame->status = short_framestatus; 2424 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2425 sum_trbs_for_length = true; 2426 break; 2427 } 2428 frame->status = 0; 2429 break; 2430 case COMP_SHORT_PACKET: 2431 frame->status = short_framestatus; 2432 sum_trbs_for_length = true; 2433 break; 2434 case COMP_BANDWIDTH_OVERRUN_ERROR: 2435 frame->status = -ECOMM; 2436 break; 2437 case COMP_BABBLE_DETECTED_ERROR: 2438 sum_trbs_for_length = true; 2439 fallthrough; 2440 case COMP_ISOCH_BUFFER_OVERRUN: 2441 frame->status = -EOVERFLOW; 2442 if (ep_trb != td->last_trb) 2443 td->error_mid_td = true; 2444 break; 2445 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2446 case COMP_STALL_ERROR: 2447 frame->status = -EPROTO; 2448 break; 2449 case COMP_USB_TRANSACTION_ERROR: 2450 frame->status = -EPROTO; 2451 sum_trbs_for_length = true; 2452 if (ep_trb != td->last_trb) 2453 td->error_mid_td = true; 2454 break; 2455 case COMP_STOPPED: 2456 sum_trbs_for_length = true; 2457 break; 2458 case COMP_STOPPED_SHORT_PACKET: 2459 /* field normally containing residue now contains tranferred */ 2460 frame->status = short_framestatus; 2461 requested = remaining; 2462 break; 2463 case COMP_STOPPED_LENGTH_INVALID: 2464 requested = 0; 2465 remaining = 0; 2466 break; 2467 default: 2468 sum_trbs_for_length = true; 2469 frame->status = -1; 2470 break; 2471 } 2472 2473 if (td->urb_length_set) 2474 goto finish_td; 2475 2476 if (sum_trbs_for_length) 2477 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2478 ep_trb_len - remaining; 2479 else 2480 frame->actual_length = requested; 2481 2482 td->urb->actual_length += frame->actual_length; 2483 2484 finish_td: 2485 /* Don't give back TD yet if we encountered an error mid TD */ 2486 if (td->error_mid_td && ep_trb != td->last_trb) { 2487 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2488 td->urb_length_set = true; 2489 return 0; 2490 } 2491 2492 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2493 } 2494 2495 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2496 struct xhci_virt_ep *ep, int status) 2497 { 2498 struct urb_priv *urb_priv; 2499 struct usb_iso_packet_descriptor *frame; 2500 int idx; 2501 2502 urb_priv = td->urb->hcpriv; 2503 idx = urb_priv->num_tds_done; 2504 frame = &td->urb->iso_frame_desc[idx]; 2505 2506 /* The transfer is partly done. */ 2507 frame->status = -EXDEV; 2508 2509 /* calc actual length */ 2510 frame->actual_length = 0; 2511 2512 /* Update ring dequeue pointer */ 2513 ep->ring->dequeue = td->last_trb; 2514 ep->ring->deq_seg = td->last_trb_seg; 2515 inc_deq(xhci, ep->ring); 2516 2517 return xhci_td_cleanup(xhci, td, ep->ring, status); 2518 } 2519 2520 /* 2521 * Process bulk and interrupt tds, update urb status and actual_length. 2522 */ 2523 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2524 struct xhci_ring *ep_ring, struct xhci_td *td, 2525 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2526 { 2527 struct xhci_slot_ctx *slot_ctx; 2528 u32 trb_comp_code; 2529 u32 remaining, requested, ep_trb_len; 2530 2531 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2532 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2533 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2534 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2535 requested = td->urb->transfer_buffer_length; 2536 2537 switch (trb_comp_code) { 2538 case COMP_SUCCESS: 2539 ep->err_count = 0; 2540 /* handle success with untransferred data as short packet */ 2541 if (ep_trb != td->last_trb || remaining) { 2542 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2543 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2544 td->urb->ep->desc.bEndpointAddress, 2545 requested, remaining); 2546 } 2547 td->status = 0; 2548 break; 2549 case COMP_SHORT_PACKET: 2550 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2551 td->urb->ep->desc.bEndpointAddress, 2552 requested, remaining); 2553 td->status = 0; 2554 break; 2555 case COMP_STOPPED_SHORT_PACKET: 2556 td->urb->actual_length = remaining; 2557 goto finish_td; 2558 case COMP_STOPPED_LENGTH_INVALID: 2559 /* stopped on ep trb with invalid length, exclude it */ 2560 td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); 2561 goto finish_td; 2562 case COMP_USB_TRANSACTION_ERROR: 2563 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2564 (ep->err_count++ > MAX_SOFT_RETRY) || 2565 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2566 break; 2567 2568 td->status = 0; 2569 2570 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2571 return 0; 2572 default: 2573 /* do nothing */ 2574 break; 2575 } 2576 2577 if (ep_trb == td->last_trb) 2578 td->urb->actual_length = requested - remaining; 2579 else 2580 td->urb->actual_length = 2581 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2582 ep_trb_len - remaining; 2583 finish_td: 2584 if (remaining > requested) { 2585 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2586 remaining); 2587 td->urb->actual_length = 0; 2588 } 2589 2590 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2591 } 2592 2593 /* 2594 * If this function returns an error condition, it means it got a Transfer 2595 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2596 * At this point, the host controller is probably hosed and should be reset. 2597 */ 2598 static int handle_tx_event(struct xhci_hcd *xhci, 2599 struct xhci_interrupter *ir, 2600 struct xhci_transfer_event *event) 2601 { 2602 struct xhci_virt_ep *ep; 2603 struct xhci_ring *ep_ring; 2604 unsigned int slot_id; 2605 int ep_index; 2606 struct xhci_td *td = NULL; 2607 dma_addr_t ep_trb_dma; 2608 struct xhci_segment *ep_seg; 2609 union xhci_trb *ep_trb; 2610 int status = -EINPROGRESS; 2611 struct xhci_ep_ctx *ep_ctx; 2612 u32 trb_comp_code; 2613 int td_num = 0; 2614 bool handling_skipped_tds = false; 2615 2616 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2617 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2618 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2619 ep_trb_dma = le64_to_cpu(event->buffer); 2620 2621 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2622 if (!ep) { 2623 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2624 goto err_out; 2625 } 2626 2627 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2628 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2629 2630 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2631 xhci_err(xhci, 2632 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2633 slot_id, ep_index); 2634 goto err_out; 2635 } 2636 2637 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2638 if (!ep_ring) { 2639 switch (trb_comp_code) { 2640 case COMP_STALL_ERROR: 2641 case COMP_USB_TRANSACTION_ERROR: 2642 case COMP_INVALID_STREAM_TYPE_ERROR: 2643 case COMP_INVALID_STREAM_ID_ERROR: 2644 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2645 ep_index); 2646 if (ep->err_count++ > MAX_SOFT_RETRY) 2647 xhci_handle_halted_endpoint(xhci, ep, NULL, 2648 EP_HARD_RESET); 2649 else 2650 xhci_handle_halted_endpoint(xhci, ep, NULL, 2651 EP_SOFT_RESET); 2652 goto cleanup; 2653 case COMP_RING_UNDERRUN: 2654 case COMP_RING_OVERRUN: 2655 case COMP_STOPPED_LENGTH_INVALID: 2656 goto cleanup; 2657 default: 2658 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2659 slot_id, ep_index); 2660 goto err_out; 2661 } 2662 } 2663 2664 /* Count current td numbers if ep->skip is set */ 2665 if (ep->skip) 2666 td_num += list_count_nodes(&ep_ring->td_list); 2667 2668 /* Look for common error cases */ 2669 switch (trb_comp_code) { 2670 /* Skip codes that require special handling depending on 2671 * transfer type 2672 */ 2673 case COMP_SUCCESS: 2674 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2675 break; 2676 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2677 ep_ring->last_td_was_short) 2678 trb_comp_code = COMP_SHORT_PACKET; 2679 else 2680 xhci_warn_ratelimited(xhci, 2681 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2682 slot_id, ep_index); 2683 break; 2684 case COMP_SHORT_PACKET: 2685 break; 2686 /* Completion codes for endpoint stopped state */ 2687 case COMP_STOPPED: 2688 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2689 slot_id, ep_index); 2690 break; 2691 case COMP_STOPPED_LENGTH_INVALID: 2692 xhci_dbg(xhci, 2693 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2694 slot_id, ep_index); 2695 break; 2696 case COMP_STOPPED_SHORT_PACKET: 2697 xhci_dbg(xhci, 2698 "Stopped with short packet transfer detected for slot %u ep %u\n", 2699 slot_id, ep_index); 2700 break; 2701 /* Completion codes for endpoint halted state */ 2702 case COMP_STALL_ERROR: 2703 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2704 ep_index); 2705 status = -EPIPE; 2706 break; 2707 case COMP_SPLIT_TRANSACTION_ERROR: 2708 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2709 slot_id, ep_index); 2710 status = -EPROTO; 2711 break; 2712 case COMP_USB_TRANSACTION_ERROR: 2713 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2714 slot_id, ep_index); 2715 status = -EPROTO; 2716 break; 2717 case COMP_BABBLE_DETECTED_ERROR: 2718 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2719 slot_id, ep_index); 2720 status = -EOVERFLOW; 2721 break; 2722 /* Completion codes for endpoint error state */ 2723 case COMP_TRB_ERROR: 2724 xhci_warn(xhci, 2725 "WARN: TRB error for slot %u ep %u on endpoint\n", 2726 slot_id, ep_index); 2727 status = -EILSEQ; 2728 break; 2729 /* completion codes not indicating endpoint state change */ 2730 case COMP_DATA_BUFFER_ERROR: 2731 xhci_warn(xhci, 2732 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2733 slot_id, ep_index); 2734 status = -ENOSR; 2735 break; 2736 case COMP_BANDWIDTH_OVERRUN_ERROR: 2737 xhci_warn(xhci, 2738 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2739 slot_id, ep_index); 2740 break; 2741 case COMP_ISOCH_BUFFER_OVERRUN: 2742 xhci_warn(xhci, 2743 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2744 slot_id, ep_index); 2745 break; 2746 case COMP_RING_UNDERRUN: 2747 /* 2748 * When the Isoch ring is empty, the xHC will generate 2749 * a Ring Overrun Event for IN Isoch endpoint or Ring 2750 * Underrun Event for OUT Isoch endpoint. 2751 */ 2752 xhci_dbg(xhci, "underrun event on endpoint\n"); 2753 if (!list_empty(&ep_ring->td_list)) 2754 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2755 "still with TDs queued?\n", 2756 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2757 ep_index); 2758 goto cleanup; 2759 case COMP_RING_OVERRUN: 2760 xhci_dbg(xhci, "overrun event on endpoint\n"); 2761 if (!list_empty(&ep_ring->td_list)) 2762 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2763 "still with TDs queued?\n", 2764 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2765 ep_index); 2766 goto cleanup; 2767 case COMP_MISSED_SERVICE_ERROR: 2768 /* 2769 * When encounter missed service error, one or more isoc tds 2770 * may be missed by xHC. 2771 * Set skip flag of the ep_ring; Complete the missed tds as 2772 * short transfer when process the ep_ring next time. 2773 */ 2774 ep->skip = true; 2775 xhci_dbg(xhci, 2776 "Miss service interval error for slot %u ep %u, set skip flag\n", 2777 slot_id, ep_index); 2778 goto cleanup; 2779 case COMP_NO_PING_RESPONSE_ERROR: 2780 ep->skip = true; 2781 xhci_dbg(xhci, 2782 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2783 slot_id, ep_index); 2784 goto cleanup; 2785 2786 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2787 /* needs disable slot command to recover */ 2788 xhci_warn(xhci, 2789 "WARN: detect an incompatible device for slot %u ep %u", 2790 slot_id, ep_index); 2791 status = -EPROTO; 2792 break; 2793 default: 2794 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2795 status = 0; 2796 break; 2797 } 2798 xhci_warn(xhci, 2799 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2800 trb_comp_code, slot_id, ep_index); 2801 goto cleanup; 2802 } 2803 2804 do { 2805 /* This TRB should be in the TD at the head of this ring's 2806 * TD list. 2807 */ 2808 if (list_empty(&ep_ring->td_list)) { 2809 /* 2810 * Don't print wanings if it's due to a stopped endpoint 2811 * generating an extra completion event if the device 2812 * was suspended. Or, a event for the last TRB of a 2813 * short TD we already got a short event for. 2814 * The short TD is already removed from the TD list. 2815 */ 2816 2817 if (!(trb_comp_code == COMP_STOPPED || 2818 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2819 ep_ring->last_td_was_short)) { 2820 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2821 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2822 ep_index); 2823 } 2824 if (ep->skip) { 2825 ep->skip = false; 2826 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2827 slot_id, ep_index); 2828 } 2829 if (trb_comp_code == COMP_STALL_ERROR || 2830 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2831 trb_comp_code)) { 2832 xhci_handle_halted_endpoint(xhci, ep, NULL, 2833 EP_HARD_RESET); 2834 } 2835 goto cleanup; 2836 } 2837 2838 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2839 if (ep->skip && td_num == 0) { 2840 ep->skip = false; 2841 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2842 slot_id, ep_index); 2843 goto cleanup; 2844 } 2845 2846 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2847 td_list); 2848 if (ep->skip) 2849 td_num--; 2850 2851 /* Is this a TRB in the currently executing TD? */ 2852 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2853 td->last_trb, ep_trb_dma, false); 2854 2855 /* 2856 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2857 * is not in the current TD pointed by ep_ring->dequeue because 2858 * that the hardware dequeue pointer still at the previous TRB 2859 * of the current TD. The previous TRB maybe a Link TD or the 2860 * last TRB of the previous TD. The command completion handle 2861 * will take care the rest. 2862 */ 2863 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2864 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2865 goto cleanup; 2866 } 2867 2868 if (!ep_seg) { 2869 2870 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2871 skip_isoc_td(xhci, td, ep, status); 2872 goto cleanup; 2873 } 2874 2875 /* 2876 * Some hosts give a spurious success event after a short 2877 * transfer. Ignore it. 2878 */ 2879 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2880 ep_ring->last_td_was_short) { 2881 ep_ring->last_td_was_short = false; 2882 goto cleanup; 2883 } 2884 2885 /* 2886 * xhci 4.10.2 states isoc endpoints should continue 2887 * processing the next TD if there was an error mid TD. 2888 * So host like NEC don't generate an event for the last 2889 * isoc TRB even if the IOC flag is set. 2890 * xhci 4.9.1 states that if there are errors in mult-TRB 2891 * TDs xHC should generate an error for that TRB, and if xHC 2892 * proceeds to the next TD it should genete an event for 2893 * any TRB with IOC flag on the way. Other host follow this. 2894 * So this event might be for the next TD. 2895 */ 2896 if (td->error_mid_td && 2897 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2898 struct xhci_td *td_next = list_next_entry(td, td_list); 2899 2900 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2901 td_next->last_trb, ep_trb_dma, false); 2902 if (ep_seg) { 2903 /* give back previous TD, start handling new */ 2904 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2905 ep_ring->dequeue = td->last_trb; 2906 ep_ring->deq_seg = td->last_trb_seg; 2907 inc_deq(xhci, ep_ring); 2908 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2909 td = td_next; 2910 } 2911 } 2912 2913 if (!ep_seg) { 2914 /* HC is busted, give up! */ 2915 xhci_err(xhci, 2916 "ERROR Transfer event TRB DMA ptr not " 2917 "part of current TD ep_index %d " 2918 "comp_code %u\n", ep_index, 2919 trb_comp_code); 2920 trb_in_td(xhci, ep_ring->deq_seg, 2921 ep_ring->dequeue, td->last_trb, 2922 ep_trb_dma, true); 2923 return -ESHUTDOWN; 2924 } 2925 } 2926 if (trb_comp_code == COMP_SHORT_PACKET) 2927 ep_ring->last_td_was_short = true; 2928 else 2929 ep_ring->last_td_was_short = false; 2930 2931 if (ep->skip) { 2932 xhci_dbg(xhci, 2933 "Found td. Clear skip flag for slot %u ep %u.\n", 2934 slot_id, ep_index); 2935 ep->skip = false; 2936 } 2937 2938 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2939 sizeof(*ep_trb)]; 2940 2941 trace_xhci_handle_transfer(ep_ring, 2942 (struct xhci_generic_trb *) ep_trb); 2943 2944 /* 2945 * No-op TRB could trigger interrupts in a case where 2946 * a URB was killed and a STALL_ERROR happens right 2947 * after the endpoint ring stopped. Reset the halted 2948 * endpoint. Otherwise, the endpoint remains stalled 2949 * indefinitely. 2950 */ 2951 2952 if (trb_is_noop(ep_trb)) { 2953 if (trb_comp_code == COMP_STALL_ERROR || 2954 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2955 trb_comp_code)) 2956 xhci_handle_halted_endpoint(xhci, ep, td, 2957 EP_HARD_RESET); 2958 goto cleanup; 2959 } 2960 2961 td->status = status; 2962 2963 /* update the urb's actual_length and give back to the core */ 2964 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2965 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2966 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2967 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2968 else 2969 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2970 cleanup: 2971 handling_skipped_tds = ep->skip && 2972 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2973 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2974 2975 /* 2976 * Do not update event ring dequeue pointer if we're in a loop 2977 * processing missed tds. 2978 */ 2979 if (!handling_skipped_tds) 2980 inc_deq(xhci, ir->event_ring); 2981 2982 /* 2983 * If ep->skip is set, it means there are missed tds on the 2984 * endpoint ring need to take care of. 2985 * Process them as short transfer until reach the td pointed by 2986 * the event. 2987 */ 2988 } while (handling_skipped_tds); 2989 2990 return 0; 2991 2992 err_out: 2993 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2994 (unsigned long long) xhci_trb_virt_to_dma( 2995 ir->event_ring->deq_seg, 2996 ir->event_ring->dequeue), 2997 lower_32_bits(le64_to_cpu(event->buffer)), 2998 upper_32_bits(le64_to_cpu(event->buffer)), 2999 le32_to_cpu(event->transfer_len), 3000 le32_to_cpu(event->flags)); 3001 return -ENODEV; 3002 } 3003 3004 /* 3005 * This function handles all OS-owned events on the event ring. It may drop 3006 * xhci->lock between event processing (e.g. to pass up port status changes). 3007 * Returns >0 for "possibly more events to process" (caller should call again), 3008 * otherwise 0 if done. In future, <0 returns should indicate error code. 3009 */ 3010 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3011 { 3012 union xhci_trb *event; 3013 int update_ptrs = 1; 3014 u32 trb_type; 3015 int ret; 3016 3017 /* Event ring hasn't been allocated yet. */ 3018 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 3019 xhci_err(xhci, "ERROR interrupter not ready\n"); 3020 return -ENOMEM; 3021 } 3022 3023 event = ir->event_ring->dequeue; 3024 /* Does the HC or OS own the TRB? */ 3025 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 3026 ir->event_ring->cycle_state) 3027 return 0; 3028 3029 trace_xhci_handle_event(ir->event_ring, &event->generic); 3030 3031 /* 3032 * Barrier between reading the TRB_CYCLE (valid) flag above and any 3033 * speculative reads of the event's flags/data below. 3034 */ 3035 rmb(); 3036 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3037 /* FIXME: Handle more event types. */ 3038 3039 switch (trb_type) { 3040 case TRB_COMPLETION: 3041 handle_cmd_completion(xhci, &event->event_cmd); 3042 break; 3043 case TRB_PORT_STATUS: 3044 handle_port_status(xhci, ir, event); 3045 update_ptrs = 0; 3046 break; 3047 case TRB_TRANSFER: 3048 ret = handle_tx_event(xhci, ir, &event->trans_event); 3049 if (ret >= 0) 3050 update_ptrs = 0; 3051 break; 3052 case TRB_DEV_NOTE: 3053 handle_device_notification(xhci, event); 3054 break; 3055 default: 3056 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3057 handle_vendor_event(xhci, event, trb_type); 3058 else 3059 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3060 } 3061 /* Any of the above functions may drop and re-acquire the lock, so check 3062 * to make sure a watchdog timer didn't mark the host as non-responsive. 3063 */ 3064 if (xhci->xhc_state & XHCI_STATE_DYING) { 3065 xhci_dbg(xhci, "xHCI host dying, returning from " 3066 "event handler.\n"); 3067 return 0; 3068 } 3069 3070 if (update_ptrs) 3071 /* Update SW event ring dequeue pointer */ 3072 inc_deq(xhci, ir->event_ring); 3073 3074 /* Are there more items on the event ring? Caller will call us again to 3075 * check. 3076 */ 3077 return 1; 3078 } 3079 3080 /* 3081 * Update Event Ring Dequeue Pointer: 3082 * - When all events have finished 3083 * - To avoid "Event Ring Full Error" condition 3084 */ 3085 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3086 struct xhci_interrupter *ir, 3087 union xhci_trb *event_ring_deq, 3088 bool clear_ehb) 3089 { 3090 u64 temp_64; 3091 dma_addr_t deq; 3092 3093 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3094 /* If necessary, update the HW's version of the event ring deq ptr. */ 3095 if (event_ring_deq != ir->event_ring->dequeue) { 3096 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3097 ir->event_ring->dequeue); 3098 if (deq == 0) 3099 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3100 /* 3101 * Per 4.9.4, Software writes to the ERDP register shall 3102 * always advance the Event Ring Dequeue Pointer value. 3103 */ 3104 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3105 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3106 return; 3107 3108 /* Update HC event ring dequeue pointer */ 3109 temp_64 &= ERST_DESI_MASK; 3110 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3111 } 3112 3113 /* Clear the event handler busy flag (RW1C) */ 3114 if (clear_ehb) 3115 temp_64 |= ERST_EHB; 3116 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3117 } 3118 3119 /* 3120 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3121 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3122 * indicators of an event TRB error, but we check the status *first* to be safe. 3123 */ 3124 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3125 { 3126 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3127 union xhci_trb *event_ring_deq; 3128 struct xhci_interrupter *ir; 3129 irqreturn_t ret = IRQ_NONE; 3130 u64 temp_64; 3131 u32 status; 3132 int event_loop = 0; 3133 3134 spin_lock(&xhci->lock); 3135 /* Check if the xHC generated the interrupt, or the irq is shared */ 3136 status = readl(&xhci->op_regs->status); 3137 if (status == ~(u32)0) { 3138 xhci_hc_died(xhci); 3139 ret = IRQ_HANDLED; 3140 goto out; 3141 } 3142 3143 if (!(status & STS_EINT)) 3144 goto out; 3145 3146 if (status & STS_HCE) { 3147 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3148 goto out; 3149 } 3150 3151 if (status & STS_FATAL) { 3152 xhci_warn(xhci, "WARNING: Host System Error\n"); 3153 xhci_halt(xhci); 3154 ret = IRQ_HANDLED; 3155 goto out; 3156 } 3157 3158 /* 3159 * Clear the op reg interrupt status first, 3160 * so we can receive interrupts from other MSI-X interrupters. 3161 * Write 1 to clear the interrupt status. 3162 */ 3163 status |= STS_EINT; 3164 writel(status, &xhci->op_regs->status); 3165 3166 /* This is the handler of the primary interrupter */ 3167 ir = xhci->interrupter; 3168 if (!hcd->msi_enabled) { 3169 u32 irq_pending; 3170 irq_pending = readl(&ir->ir_set->irq_pending); 3171 irq_pending |= IMAN_IP; 3172 writel(irq_pending, &ir->ir_set->irq_pending); 3173 } 3174 3175 if (xhci->xhc_state & XHCI_STATE_DYING || 3176 xhci->xhc_state & XHCI_STATE_HALTED) { 3177 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3178 "Shouldn't IRQs be disabled?\n"); 3179 /* Clear the event handler busy flag (RW1C); 3180 * the event ring should be empty. 3181 */ 3182 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3183 xhci_write_64(xhci, temp_64 | ERST_EHB, 3184 &ir->ir_set->erst_dequeue); 3185 ret = IRQ_HANDLED; 3186 goto out; 3187 } 3188 3189 event_ring_deq = ir->event_ring->dequeue; 3190 /* FIXME this should be a delayed service routine 3191 * that clears the EHB. 3192 */ 3193 while (xhci_handle_event(xhci, ir) > 0) { 3194 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3195 continue; 3196 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3197 event_ring_deq = ir->event_ring->dequeue; 3198 3199 /* ring is half-full, force isoc trbs to interrupt more often */ 3200 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3201 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3202 3203 event_loop = 0; 3204 } 3205 3206 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3207 ret = IRQ_HANDLED; 3208 3209 out: 3210 spin_unlock(&xhci->lock); 3211 3212 return ret; 3213 } 3214 3215 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3216 { 3217 return xhci_irq(hcd); 3218 } 3219 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3220 3221 /**** Endpoint Ring Operations ****/ 3222 3223 /* 3224 * Generic function for queueing a TRB on a ring. 3225 * The caller must have checked to make sure there's room on the ring. 3226 * 3227 * @more_trbs_coming: Will you enqueue more TRBs before calling 3228 * prepare_transfer()? 3229 */ 3230 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3231 bool more_trbs_coming, 3232 u32 field1, u32 field2, u32 field3, u32 field4) 3233 { 3234 struct xhci_generic_trb *trb; 3235 3236 trb = &ring->enqueue->generic; 3237 trb->field[0] = cpu_to_le32(field1); 3238 trb->field[1] = cpu_to_le32(field2); 3239 trb->field[2] = cpu_to_le32(field3); 3240 /* make sure TRB is fully written before giving it to the controller */ 3241 wmb(); 3242 trb->field[3] = cpu_to_le32(field4); 3243 3244 trace_xhci_queue_trb(ring, trb); 3245 3246 inc_enq(xhci, ring, more_trbs_coming); 3247 } 3248 3249 /* 3250 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3251 * expand ring if it start to be full. 3252 */ 3253 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3254 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3255 { 3256 unsigned int link_trb_count = 0; 3257 unsigned int new_segs = 0; 3258 3259 /* Make sure the endpoint has been added to xHC schedule */ 3260 switch (ep_state) { 3261 case EP_STATE_DISABLED: 3262 /* 3263 * USB core changed config/interfaces without notifying us, 3264 * or hardware is reporting the wrong state. 3265 */ 3266 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3267 return -ENOENT; 3268 case EP_STATE_ERROR: 3269 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3270 /* FIXME event handling code for error needs to clear it */ 3271 /* XXX not sure if this should be -ENOENT or not */ 3272 return -EINVAL; 3273 case EP_STATE_HALTED: 3274 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3275 break; 3276 case EP_STATE_STOPPED: 3277 case EP_STATE_RUNNING: 3278 break; 3279 default: 3280 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3281 /* 3282 * FIXME issue Configure Endpoint command to try to get the HC 3283 * back into a known state. 3284 */ 3285 return -EINVAL; 3286 } 3287 3288 if (ep_ring != xhci->cmd_ring) { 3289 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3290 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3291 xhci_err(xhci, "Do not support expand command ring\n"); 3292 return -ENOMEM; 3293 } 3294 3295 if (new_segs) { 3296 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3297 "ERROR no room on ep ring, try ring expansion"); 3298 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3299 xhci_err(xhci, "Ring expansion failed\n"); 3300 return -ENOMEM; 3301 } 3302 } 3303 3304 while (trb_is_link(ep_ring->enqueue)) { 3305 /* If we're not dealing with 0.95 hardware or isoc rings 3306 * on AMD 0.96 host, clear the chain bit. 3307 */ 3308 if (!xhci_link_trb_quirk(xhci) && 3309 !(ep_ring->type == TYPE_ISOC && 3310 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3311 ep_ring->enqueue->link.control &= 3312 cpu_to_le32(~TRB_CHAIN); 3313 else 3314 ep_ring->enqueue->link.control |= 3315 cpu_to_le32(TRB_CHAIN); 3316 3317 wmb(); 3318 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3319 3320 /* Toggle the cycle bit after the last ring segment. */ 3321 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3322 ep_ring->cycle_state ^= 1; 3323 3324 ep_ring->enq_seg = ep_ring->enq_seg->next; 3325 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3326 3327 /* prevent infinite loop if all first trbs are link trbs */ 3328 if (link_trb_count++ > ep_ring->num_segs) { 3329 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3330 return -EINVAL; 3331 } 3332 } 3333 3334 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3335 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3336 return -EINVAL; 3337 } 3338 3339 return 0; 3340 } 3341 3342 static int prepare_transfer(struct xhci_hcd *xhci, 3343 struct xhci_virt_device *xdev, 3344 unsigned int ep_index, 3345 unsigned int stream_id, 3346 unsigned int num_trbs, 3347 struct urb *urb, 3348 unsigned int td_index, 3349 gfp_t mem_flags) 3350 { 3351 int ret; 3352 struct urb_priv *urb_priv; 3353 struct xhci_td *td; 3354 struct xhci_ring *ep_ring; 3355 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3356 3357 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3358 stream_id); 3359 if (!ep_ring) { 3360 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3361 stream_id); 3362 return -EINVAL; 3363 } 3364 3365 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3366 num_trbs, mem_flags); 3367 if (ret) 3368 return ret; 3369 3370 urb_priv = urb->hcpriv; 3371 td = &urb_priv->td[td_index]; 3372 3373 INIT_LIST_HEAD(&td->td_list); 3374 INIT_LIST_HEAD(&td->cancelled_td_list); 3375 3376 if (td_index == 0) { 3377 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3378 if (unlikely(ret)) 3379 return ret; 3380 } 3381 3382 td->urb = urb; 3383 /* Add this TD to the tail of the endpoint ring's TD list */ 3384 list_add_tail(&td->td_list, &ep_ring->td_list); 3385 td->start_seg = ep_ring->enq_seg; 3386 td->first_trb = ep_ring->enqueue; 3387 3388 return 0; 3389 } 3390 3391 unsigned int count_trbs(u64 addr, u64 len) 3392 { 3393 unsigned int num_trbs; 3394 3395 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3396 TRB_MAX_BUFF_SIZE); 3397 if (num_trbs == 0) 3398 num_trbs++; 3399 3400 return num_trbs; 3401 } 3402 3403 static inline unsigned int count_trbs_needed(struct urb *urb) 3404 { 3405 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3406 } 3407 3408 static unsigned int count_sg_trbs_needed(struct urb *urb) 3409 { 3410 struct scatterlist *sg; 3411 unsigned int i, len, full_len, num_trbs = 0; 3412 3413 full_len = urb->transfer_buffer_length; 3414 3415 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3416 len = sg_dma_len(sg); 3417 num_trbs += count_trbs(sg_dma_address(sg), len); 3418 len = min_t(unsigned int, len, full_len); 3419 full_len -= len; 3420 if (full_len == 0) 3421 break; 3422 } 3423 3424 return num_trbs; 3425 } 3426 3427 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3428 { 3429 u64 addr, len; 3430 3431 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3432 len = urb->iso_frame_desc[i].length; 3433 3434 return count_trbs(addr, len); 3435 } 3436 3437 static void check_trb_math(struct urb *urb, int running_total) 3438 { 3439 if (unlikely(running_total != urb->transfer_buffer_length)) 3440 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3441 "queued %#x (%d), asked for %#x (%d)\n", 3442 __func__, 3443 urb->ep->desc.bEndpointAddress, 3444 running_total, running_total, 3445 urb->transfer_buffer_length, 3446 urb->transfer_buffer_length); 3447 } 3448 3449 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3450 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3451 struct xhci_generic_trb *start_trb) 3452 { 3453 /* 3454 * Pass all the TRBs to the hardware at once and make sure this write 3455 * isn't reordered. 3456 */ 3457 wmb(); 3458 if (start_cycle) 3459 start_trb->field[3] |= cpu_to_le32(start_cycle); 3460 else 3461 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3462 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3463 } 3464 3465 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3466 struct xhci_ep_ctx *ep_ctx) 3467 { 3468 int xhci_interval; 3469 int ep_interval; 3470 3471 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3472 ep_interval = urb->interval; 3473 3474 /* Convert to microframes */ 3475 if (urb->dev->speed == USB_SPEED_LOW || 3476 urb->dev->speed == USB_SPEED_FULL) 3477 ep_interval *= 8; 3478 3479 /* FIXME change this to a warning and a suggestion to use the new API 3480 * to set the polling interval (once the API is added). 3481 */ 3482 if (xhci_interval != ep_interval) { 3483 dev_dbg_ratelimited(&urb->dev->dev, 3484 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3485 ep_interval, ep_interval == 1 ? "" : "s", 3486 xhci_interval, xhci_interval == 1 ? "" : "s"); 3487 urb->interval = xhci_interval; 3488 /* Convert back to frames for LS/FS devices */ 3489 if (urb->dev->speed == USB_SPEED_LOW || 3490 urb->dev->speed == USB_SPEED_FULL) 3491 urb->interval /= 8; 3492 } 3493 } 3494 3495 /* 3496 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3497 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3498 * (comprised of sg list entries) can take several service intervals to 3499 * transmit. 3500 */ 3501 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3502 struct urb *urb, int slot_id, unsigned int ep_index) 3503 { 3504 struct xhci_ep_ctx *ep_ctx; 3505 3506 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3507 check_interval(xhci, urb, ep_ctx); 3508 3509 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3510 } 3511 3512 /* 3513 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3514 * packets remaining in the TD (*not* including this TRB). 3515 * 3516 * Total TD packet count = total_packet_count = 3517 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3518 * 3519 * Packets transferred up to and including this TRB = packets_transferred = 3520 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3521 * 3522 * TD size = total_packet_count - packets_transferred 3523 * 3524 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3525 * including this TRB, right shifted by 10 3526 * 3527 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3528 * This is taken care of in the TRB_TD_SIZE() macro 3529 * 3530 * The last TRB in a TD must have the TD size set to zero. 3531 */ 3532 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3533 int trb_buff_len, unsigned int td_total_len, 3534 struct urb *urb, bool more_trbs_coming) 3535 { 3536 u32 maxp, total_packet_count; 3537 3538 /* MTK xHCI 0.96 contains some features from 1.0 */ 3539 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3540 return ((td_total_len - transferred) >> 10); 3541 3542 /* One TRB with a zero-length data packet. */ 3543 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3544 trb_buff_len == td_total_len) 3545 return 0; 3546 3547 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3548 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3549 trb_buff_len = 0; 3550 3551 maxp = usb_endpoint_maxp(&urb->ep->desc); 3552 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3553 3554 /* Queueing functions don't count the current TRB into transferred */ 3555 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3556 } 3557 3558 3559 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3560 u32 *trb_buff_len, struct xhci_segment *seg) 3561 { 3562 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3563 unsigned int unalign; 3564 unsigned int max_pkt; 3565 u32 new_buff_len; 3566 size_t len; 3567 3568 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3569 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3570 3571 /* we got lucky, last normal TRB data on segment is packet aligned */ 3572 if (unalign == 0) 3573 return 0; 3574 3575 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3576 unalign, *trb_buff_len); 3577 3578 /* is the last nornal TRB alignable by splitting it */ 3579 if (*trb_buff_len > unalign) { 3580 *trb_buff_len -= unalign; 3581 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3582 return 0; 3583 } 3584 3585 /* 3586 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3587 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3588 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3589 */ 3590 new_buff_len = max_pkt - (enqd_len % max_pkt); 3591 3592 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3593 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3594 3595 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3596 if (usb_urb_dir_out(urb)) { 3597 if (urb->num_sgs) { 3598 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3599 seg->bounce_buf, new_buff_len, enqd_len); 3600 if (len != new_buff_len) 3601 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3602 len, new_buff_len); 3603 } else { 3604 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3605 } 3606 3607 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3608 max_pkt, DMA_TO_DEVICE); 3609 } else { 3610 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3611 max_pkt, DMA_FROM_DEVICE); 3612 } 3613 3614 if (dma_mapping_error(dev, seg->bounce_dma)) { 3615 /* try without aligning. Some host controllers survive */ 3616 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3617 return 0; 3618 } 3619 *trb_buff_len = new_buff_len; 3620 seg->bounce_len = new_buff_len; 3621 seg->bounce_offs = enqd_len; 3622 3623 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3624 3625 return 1; 3626 } 3627 3628 /* This is very similar to what ehci-q.c qtd_fill() does */ 3629 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3630 struct urb *urb, int slot_id, unsigned int ep_index) 3631 { 3632 struct xhci_ring *ring; 3633 struct urb_priv *urb_priv; 3634 struct xhci_td *td; 3635 struct xhci_generic_trb *start_trb; 3636 struct scatterlist *sg = NULL; 3637 bool more_trbs_coming = true; 3638 bool need_zero_pkt = false; 3639 bool first_trb = true; 3640 unsigned int num_trbs; 3641 unsigned int start_cycle, num_sgs = 0; 3642 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3643 int sent_len, ret; 3644 u32 field, length_field, remainder; 3645 u64 addr, send_addr; 3646 3647 ring = xhci_urb_to_transfer_ring(xhci, urb); 3648 if (!ring) 3649 return -EINVAL; 3650 3651 full_len = urb->transfer_buffer_length; 3652 /* If we have scatter/gather list, we use it. */ 3653 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3654 num_sgs = urb->num_mapped_sgs; 3655 sg = urb->sg; 3656 addr = (u64) sg_dma_address(sg); 3657 block_len = sg_dma_len(sg); 3658 num_trbs = count_sg_trbs_needed(urb); 3659 } else { 3660 num_trbs = count_trbs_needed(urb); 3661 addr = (u64) urb->transfer_dma; 3662 block_len = full_len; 3663 } 3664 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3665 ep_index, urb->stream_id, 3666 num_trbs, urb, 0, mem_flags); 3667 if (unlikely(ret < 0)) 3668 return ret; 3669 3670 urb_priv = urb->hcpriv; 3671 3672 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3673 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3674 need_zero_pkt = true; 3675 3676 td = &urb_priv->td[0]; 3677 3678 /* 3679 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3680 * until we've finished creating all the other TRBs. The ring's cycle 3681 * state may change as we enqueue the other TRBs, so save it too. 3682 */ 3683 start_trb = &ring->enqueue->generic; 3684 start_cycle = ring->cycle_state; 3685 send_addr = addr; 3686 3687 /* Queue the TRBs, even if they are zero-length */ 3688 for (enqd_len = 0; first_trb || enqd_len < full_len; 3689 enqd_len += trb_buff_len) { 3690 field = TRB_TYPE(TRB_NORMAL); 3691 3692 /* TRB buffer should not cross 64KB boundaries */ 3693 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3694 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3695 3696 if (enqd_len + trb_buff_len > full_len) 3697 trb_buff_len = full_len - enqd_len; 3698 3699 /* Don't change the cycle bit of the first TRB until later */ 3700 if (first_trb) { 3701 first_trb = false; 3702 if (start_cycle == 0) 3703 field |= TRB_CYCLE; 3704 } else 3705 field |= ring->cycle_state; 3706 3707 /* Chain all the TRBs together; clear the chain bit in the last 3708 * TRB to indicate it's the last TRB in the chain. 3709 */ 3710 if (enqd_len + trb_buff_len < full_len) { 3711 field |= TRB_CHAIN; 3712 if (trb_is_link(ring->enqueue + 1)) { 3713 if (xhci_align_td(xhci, urb, enqd_len, 3714 &trb_buff_len, 3715 ring->enq_seg)) { 3716 send_addr = ring->enq_seg->bounce_dma; 3717 /* assuming TD won't span 2 segs */ 3718 td->bounce_seg = ring->enq_seg; 3719 } 3720 } 3721 } 3722 if (enqd_len + trb_buff_len >= full_len) { 3723 field &= ~TRB_CHAIN; 3724 field |= TRB_IOC; 3725 more_trbs_coming = false; 3726 td->last_trb = ring->enqueue; 3727 td->last_trb_seg = ring->enq_seg; 3728 if (xhci_urb_suitable_for_idt(urb)) { 3729 memcpy(&send_addr, urb->transfer_buffer, 3730 trb_buff_len); 3731 le64_to_cpus(&send_addr); 3732 field |= TRB_IDT; 3733 } 3734 } 3735 3736 /* Only set interrupt on short packet for IN endpoints */ 3737 if (usb_urb_dir_in(urb)) 3738 field |= TRB_ISP; 3739 3740 /* Set the TRB length, TD size, and interrupter fields. */ 3741 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3742 full_len, urb, more_trbs_coming); 3743 3744 length_field = TRB_LEN(trb_buff_len) | 3745 TRB_TD_SIZE(remainder) | 3746 TRB_INTR_TARGET(0); 3747 3748 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3749 lower_32_bits(send_addr), 3750 upper_32_bits(send_addr), 3751 length_field, 3752 field); 3753 td->num_trbs++; 3754 addr += trb_buff_len; 3755 sent_len = trb_buff_len; 3756 3757 while (sg && sent_len >= block_len) { 3758 /* New sg entry */ 3759 --num_sgs; 3760 sent_len -= block_len; 3761 sg = sg_next(sg); 3762 if (num_sgs != 0 && sg) { 3763 block_len = sg_dma_len(sg); 3764 addr = (u64) sg_dma_address(sg); 3765 addr += sent_len; 3766 } 3767 } 3768 block_len -= sent_len; 3769 send_addr = addr; 3770 } 3771 3772 if (need_zero_pkt) { 3773 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3774 ep_index, urb->stream_id, 3775 1, urb, 1, mem_flags); 3776 urb_priv->td[1].last_trb = ring->enqueue; 3777 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3778 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3779 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3780 urb_priv->td[1].num_trbs++; 3781 } 3782 3783 check_trb_math(urb, enqd_len); 3784 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3785 start_cycle, start_trb); 3786 return 0; 3787 } 3788 3789 /* Caller must have locked xhci->lock */ 3790 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3791 struct urb *urb, int slot_id, unsigned int ep_index) 3792 { 3793 struct xhci_ring *ep_ring; 3794 int num_trbs; 3795 int ret; 3796 struct usb_ctrlrequest *setup; 3797 struct xhci_generic_trb *start_trb; 3798 int start_cycle; 3799 u32 field; 3800 struct urb_priv *urb_priv; 3801 struct xhci_td *td; 3802 3803 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3804 if (!ep_ring) 3805 return -EINVAL; 3806 3807 /* 3808 * Need to copy setup packet into setup TRB, so we can't use the setup 3809 * DMA address. 3810 */ 3811 if (!urb->setup_packet) 3812 return -EINVAL; 3813 3814 /* 1 TRB for setup, 1 for status */ 3815 num_trbs = 2; 3816 /* 3817 * Don't need to check if we need additional event data and normal TRBs, 3818 * since data in control transfers will never get bigger than 16MB 3819 * XXX: can we get a buffer that crosses 64KB boundaries? 3820 */ 3821 if (urb->transfer_buffer_length > 0) 3822 num_trbs++; 3823 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3824 ep_index, urb->stream_id, 3825 num_trbs, urb, 0, mem_flags); 3826 if (ret < 0) 3827 return ret; 3828 3829 urb_priv = urb->hcpriv; 3830 td = &urb_priv->td[0]; 3831 td->num_trbs = num_trbs; 3832 3833 /* 3834 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3835 * until we've finished creating all the other TRBs. The ring's cycle 3836 * state may change as we enqueue the other TRBs, so save it too. 3837 */ 3838 start_trb = &ep_ring->enqueue->generic; 3839 start_cycle = ep_ring->cycle_state; 3840 3841 /* Queue setup TRB - see section 6.4.1.2.1 */ 3842 /* FIXME better way to translate setup_packet into two u32 fields? */ 3843 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3844 field = 0; 3845 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3846 if (start_cycle == 0) 3847 field |= 0x1; 3848 3849 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3850 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3851 if (urb->transfer_buffer_length > 0) { 3852 if (setup->bRequestType & USB_DIR_IN) 3853 field |= TRB_TX_TYPE(TRB_DATA_IN); 3854 else 3855 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3856 } 3857 } 3858 3859 queue_trb(xhci, ep_ring, true, 3860 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3861 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3862 TRB_LEN(8) | TRB_INTR_TARGET(0), 3863 /* Immediate data in pointer */ 3864 field); 3865 3866 /* If there's data, queue data TRBs */ 3867 /* Only set interrupt on short packet for IN endpoints */ 3868 if (usb_urb_dir_in(urb)) 3869 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3870 else 3871 field = TRB_TYPE(TRB_DATA); 3872 3873 if (urb->transfer_buffer_length > 0) { 3874 u32 length_field, remainder; 3875 u64 addr; 3876 3877 if (xhci_urb_suitable_for_idt(urb)) { 3878 memcpy(&addr, urb->transfer_buffer, 3879 urb->transfer_buffer_length); 3880 le64_to_cpus(&addr); 3881 field |= TRB_IDT; 3882 } else { 3883 addr = (u64) urb->transfer_dma; 3884 } 3885 3886 remainder = xhci_td_remainder(xhci, 0, 3887 urb->transfer_buffer_length, 3888 urb->transfer_buffer_length, 3889 urb, 1); 3890 length_field = TRB_LEN(urb->transfer_buffer_length) | 3891 TRB_TD_SIZE(remainder) | 3892 TRB_INTR_TARGET(0); 3893 if (setup->bRequestType & USB_DIR_IN) 3894 field |= TRB_DIR_IN; 3895 queue_trb(xhci, ep_ring, true, 3896 lower_32_bits(addr), 3897 upper_32_bits(addr), 3898 length_field, 3899 field | ep_ring->cycle_state); 3900 } 3901 3902 /* Save the DMA address of the last TRB in the TD */ 3903 td->last_trb = ep_ring->enqueue; 3904 td->last_trb_seg = ep_ring->enq_seg; 3905 3906 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3907 /* If the device sent data, the status stage is an OUT transfer */ 3908 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3909 field = 0; 3910 else 3911 field = TRB_DIR_IN; 3912 queue_trb(xhci, ep_ring, false, 3913 0, 3914 0, 3915 TRB_INTR_TARGET(0), 3916 /* Event on completion */ 3917 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3918 3919 giveback_first_trb(xhci, slot_id, ep_index, 0, 3920 start_cycle, start_trb); 3921 return 0; 3922 } 3923 3924 /* 3925 * The transfer burst count field of the isochronous TRB defines the number of 3926 * bursts that are required to move all packets in this TD. Only SuperSpeed 3927 * devices can burst up to bMaxBurst number of packets per service interval. 3928 * This field is zero based, meaning a value of zero in the field means one 3929 * burst. Basically, for everything but SuperSpeed devices, this field will be 3930 * zero. Only xHCI 1.0 host controllers support this field. 3931 */ 3932 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3933 struct urb *urb, unsigned int total_packet_count) 3934 { 3935 unsigned int max_burst; 3936 3937 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3938 return 0; 3939 3940 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3941 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3942 } 3943 3944 /* 3945 * Returns the number of packets in the last "burst" of packets. This field is 3946 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3947 * the last burst packet count is equal to the total number of packets in the 3948 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3949 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3950 * contain 1 to (bMaxBurst + 1) packets. 3951 */ 3952 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3953 struct urb *urb, unsigned int total_packet_count) 3954 { 3955 unsigned int max_burst; 3956 unsigned int residue; 3957 3958 if (xhci->hci_version < 0x100) 3959 return 0; 3960 3961 if (urb->dev->speed >= USB_SPEED_SUPER) { 3962 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3963 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3964 residue = total_packet_count % (max_burst + 1); 3965 /* If residue is zero, the last burst contains (max_burst + 1) 3966 * number of packets, but the TLBPC field is zero-based. 3967 */ 3968 if (residue == 0) 3969 return max_burst; 3970 return residue - 1; 3971 } 3972 if (total_packet_count == 0) 3973 return 0; 3974 return total_packet_count - 1; 3975 } 3976 3977 /* 3978 * Calculates Frame ID field of the isochronous TRB identifies the 3979 * target frame that the Interval associated with this Isochronous 3980 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3981 * 3982 * Returns actual frame id on success, negative value on error. 3983 */ 3984 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3985 struct urb *urb, int index) 3986 { 3987 int start_frame, ist, ret = 0; 3988 int start_frame_id, end_frame_id, current_frame_id; 3989 3990 if (urb->dev->speed == USB_SPEED_LOW || 3991 urb->dev->speed == USB_SPEED_FULL) 3992 start_frame = urb->start_frame + index * urb->interval; 3993 else 3994 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3995 3996 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3997 * 3998 * If bit [3] of IST is cleared to '0', software can add a TRB no 3999 * later than IST[2:0] Microframes before that TRB is scheduled to 4000 * be executed. 4001 * If bit [3] of IST is set to '1', software can add a TRB no later 4002 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4003 */ 4004 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4005 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4006 ist <<= 3; 4007 4008 /* Software shall not schedule an Isoch TD with a Frame ID value that 4009 * is less than the Start Frame ID or greater than the End Frame ID, 4010 * where: 4011 * 4012 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4013 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4014 * 4015 * Both the End Frame ID and Start Frame ID values are calculated 4016 * in microframes. When software determines the valid Frame ID value; 4017 * The End Frame ID value should be rounded down to the nearest Frame 4018 * boundary, and the Start Frame ID value should be rounded up to the 4019 * nearest Frame boundary. 4020 */ 4021 current_frame_id = readl(&xhci->run_regs->microframe_index); 4022 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4023 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4024 4025 start_frame &= 0x7ff; 4026 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4027 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4028 4029 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 4030 __func__, index, readl(&xhci->run_regs->microframe_index), 4031 start_frame_id, end_frame_id, start_frame); 4032 4033 if (start_frame_id < end_frame_id) { 4034 if (start_frame > end_frame_id || 4035 start_frame < start_frame_id) 4036 ret = -EINVAL; 4037 } else if (start_frame_id > end_frame_id) { 4038 if ((start_frame > end_frame_id && 4039 start_frame < start_frame_id)) 4040 ret = -EINVAL; 4041 } else { 4042 ret = -EINVAL; 4043 } 4044 4045 if (index == 0) { 4046 if (ret == -EINVAL || start_frame == start_frame_id) { 4047 start_frame = start_frame_id + 1; 4048 if (urb->dev->speed == USB_SPEED_LOW || 4049 urb->dev->speed == USB_SPEED_FULL) 4050 urb->start_frame = start_frame; 4051 else 4052 urb->start_frame = start_frame << 3; 4053 ret = 0; 4054 } 4055 } 4056 4057 if (ret) { 4058 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4059 start_frame, current_frame_id, index, 4060 start_frame_id, end_frame_id); 4061 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4062 return ret; 4063 } 4064 4065 return start_frame; 4066 } 4067 4068 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4069 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4070 { 4071 if (xhci->hci_version < 0x100) 4072 return false; 4073 /* always generate an event interrupt for the last TD */ 4074 if (i == num_tds - 1) 4075 return false; 4076 /* 4077 * If AVOID_BEI is set the host handles full event rings poorly, 4078 * generate an event at least every 8th TD to clear the event ring 4079 */ 4080 if (i && xhci->quirks & XHCI_AVOID_BEI) 4081 return !!(i % xhci->isoc_bei_interval); 4082 4083 return true; 4084 } 4085 4086 /* This is for isoc transfer */ 4087 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4088 struct urb *urb, int slot_id, unsigned int ep_index) 4089 { 4090 struct xhci_ring *ep_ring; 4091 struct urb_priv *urb_priv; 4092 struct xhci_td *td; 4093 int num_tds, trbs_per_td; 4094 struct xhci_generic_trb *start_trb; 4095 bool first_trb; 4096 int start_cycle; 4097 u32 field, length_field; 4098 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4099 u64 start_addr, addr; 4100 int i, j; 4101 bool more_trbs_coming; 4102 struct xhci_virt_ep *xep; 4103 int frame_id; 4104 4105 xep = &xhci->devs[slot_id]->eps[ep_index]; 4106 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4107 4108 num_tds = urb->number_of_packets; 4109 if (num_tds < 1) { 4110 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4111 return -EINVAL; 4112 } 4113 start_addr = (u64) urb->transfer_dma; 4114 start_trb = &ep_ring->enqueue->generic; 4115 start_cycle = ep_ring->cycle_state; 4116 4117 urb_priv = urb->hcpriv; 4118 /* Queue the TRBs for each TD, even if they are zero-length */ 4119 for (i = 0; i < num_tds; i++) { 4120 unsigned int total_pkt_count, max_pkt; 4121 unsigned int burst_count, last_burst_pkt_count; 4122 u32 sia_frame_id; 4123 4124 first_trb = true; 4125 running_total = 0; 4126 addr = start_addr + urb->iso_frame_desc[i].offset; 4127 td_len = urb->iso_frame_desc[i].length; 4128 td_remain_len = td_len; 4129 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4130 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4131 4132 /* A zero-length transfer still involves at least one packet. */ 4133 if (total_pkt_count == 0) 4134 total_pkt_count++; 4135 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4136 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4137 urb, total_pkt_count); 4138 4139 trbs_per_td = count_isoc_trbs_needed(urb, i); 4140 4141 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4142 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4143 if (ret < 0) { 4144 if (i == 0) 4145 return ret; 4146 goto cleanup; 4147 } 4148 td = &urb_priv->td[i]; 4149 td->num_trbs = trbs_per_td; 4150 /* use SIA as default, if frame id is used overwrite it */ 4151 sia_frame_id = TRB_SIA; 4152 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4153 HCC_CFC(xhci->hcc_params)) { 4154 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4155 if (frame_id >= 0) 4156 sia_frame_id = TRB_FRAME_ID(frame_id); 4157 } 4158 /* 4159 * Set isoc specific data for the first TRB in a TD. 4160 * Prevent HW from getting the TRBs by keeping the cycle state 4161 * inverted in the first TDs isoc TRB. 4162 */ 4163 field = TRB_TYPE(TRB_ISOC) | 4164 TRB_TLBPC(last_burst_pkt_count) | 4165 sia_frame_id | 4166 (i ? ep_ring->cycle_state : !start_cycle); 4167 4168 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4169 if (!xep->use_extended_tbc) 4170 field |= TRB_TBC(burst_count); 4171 4172 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4173 for (j = 0; j < trbs_per_td; j++) { 4174 u32 remainder = 0; 4175 4176 /* only first TRB is isoc, overwrite otherwise */ 4177 if (!first_trb) 4178 field = TRB_TYPE(TRB_NORMAL) | 4179 ep_ring->cycle_state; 4180 4181 /* Only set interrupt on short packet for IN EPs */ 4182 if (usb_urb_dir_in(urb)) 4183 field |= TRB_ISP; 4184 4185 /* Set the chain bit for all except the last TRB */ 4186 if (j < trbs_per_td - 1) { 4187 more_trbs_coming = true; 4188 field |= TRB_CHAIN; 4189 } else { 4190 more_trbs_coming = false; 4191 td->last_trb = ep_ring->enqueue; 4192 td->last_trb_seg = ep_ring->enq_seg; 4193 field |= TRB_IOC; 4194 if (trb_block_event_intr(xhci, num_tds, i)) 4195 field |= TRB_BEI; 4196 } 4197 /* Calculate TRB length */ 4198 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4199 if (trb_buff_len > td_remain_len) 4200 trb_buff_len = td_remain_len; 4201 4202 /* Set the TRB length, TD size, & interrupter fields. */ 4203 remainder = xhci_td_remainder(xhci, running_total, 4204 trb_buff_len, td_len, 4205 urb, more_trbs_coming); 4206 4207 length_field = TRB_LEN(trb_buff_len) | 4208 TRB_INTR_TARGET(0); 4209 4210 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4211 if (first_trb && xep->use_extended_tbc) 4212 length_field |= TRB_TD_SIZE_TBC(burst_count); 4213 else 4214 length_field |= TRB_TD_SIZE(remainder); 4215 first_trb = false; 4216 4217 queue_trb(xhci, ep_ring, more_trbs_coming, 4218 lower_32_bits(addr), 4219 upper_32_bits(addr), 4220 length_field, 4221 field); 4222 running_total += trb_buff_len; 4223 4224 addr += trb_buff_len; 4225 td_remain_len -= trb_buff_len; 4226 } 4227 4228 /* Check TD length */ 4229 if (running_total != td_len) { 4230 xhci_err(xhci, "ISOC TD length unmatch\n"); 4231 ret = -EINVAL; 4232 goto cleanup; 4233 } 4234 } 4235 4236 /* store the next frame id */ 4237 if (HCC_CFC(xhci->hcc_params)) 4238 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4239 4240 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4241 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4242 usb_amd_quirk_pll_disable(); 4243 } 4244 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4245 4246 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4247 start_cycle, start_trb); 4248 return 0; 4249 cleanup: 4250 /* Clean up a partially enqueued isoc transfer. */ 4251 4252 for (i--; i >= 0; i--) 4253 list_del_init(&urb_priv->td[i].td_list); 4254 4255 /* Use the first TD as a temporary variable to turn the TDs we've queued 4256 * into No-ops with a software-owned cycle bit. That way the hardware 4257 * won't accidentally start executing bogus TDs when we partially 4258 * overwrite them. td->first_trb and td->start_seg are already set. 4259 */ 4260 urb_priv->td[0].last_trb = ep_ring->enqueue; 4261 /* Every TRB except the first & last will have its cycle bit flipped. */ 4262 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4263 4264 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4265 ep_ring->enqueue = urb_priv->td[0].first_trb; 4266 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4267 ep_ring->cycle_state = start_cycle; 4268 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4269 return ret; 4270 } 4271 4272 /* 4273 * Check transfer ring to guarantee there is enough room for the urb. 4274 * Update ISO URB start_frame and interval. 4275 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4276 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4277 * Contiguous Frame ID is not supported by HC. 4278 */ 4279 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4280 struct urb *urb, int slot_id, unsigned int ep_index) 4281 { 4282 struct xhci_virt_device *xdev; 4283 struct xhci_ring *ep_ring; 4284 struct xhci_ep_ctx *ep_ctx; 4285 int start_frame; 4286 int num_tds, num_trbs, i; 4287 int ret; 4288 struct xhci_virt_ep *xep; 4289 int ist; 4290 4291 xdev = xhci->devs[slot_id]; 4292 xep = &xhci->devs[slot_id]->eps[ep_index]; 4293 ep_ring = xdev->eps[ep_index].ring; 4294 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4295 4296 num_trbs = 0; 4297 num_tds = urb->number_of_packets; 4298 for (i = 0; i < num_tds; i++) 4299 num_trbs += count_isoc_trbs_needed(urb, i); 4300 4301 /* Check the ring to guarantee there is enough room for the whole urb. 4302 * Do not insert any td of the urb to the ring if the check failed. 4303 */ 4304 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4305 num_trbs, mem_flags); 4306 if (ret) 4307 return ret; 4308 4309 /* 4310 * Check interval value. This should be done before we start to 4311 * calculate the start frame value. 4312 */ 4313 check_interval(xhci, urb, ep_ctx); 4314 4315 /* Calculate the start frame and put it in urb->start_frame. */ 4316 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4317 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4318 urb->start_frame = xep->next_frame_id; 4319 goto skip_start_over; 4320 } 4321 } 4322 4323 start_frame = readl(&xhci->run_regs->microframe_index); 4324 start_frame &= 0x3fff; 4325 /* 4326 * Round up to the next frame and consider the time before trb really 4327 * gets scheduled by hardare. 4328 */ 4329 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4330 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4331 ist <<= 3; 4332 start_frame += ist + XHCI_CFC_DELAY; 4333 start_frame = roundup(start_frame, 8); 4334 4335 /* 4336 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4337 * is greate than 8 microframes. 4338 */ 4339 if (urb->dev->speed == USB_SPEED_LOW || 4340 urb->dev->speed == USB_SPEED_FULL) { 4341 start_frame = roundup(start_frame, urb->interval << 3); 4342 urb->start_frame = start_frame >> 3; 4343 } else { 4344 start_frame = roundup(start_frame, urb->interval); 4345 urb->start_frame = start_frame; 4346 } 4347 4348 skip_start_over: 4349 4350 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4351 } 4352 4353 /**** Command Ring Operations ****/ 4354 4355 /* Generic function for queueing a command TRB on the command ring. 4356 * Check to make sure there's room on the command ring for one command TRB. 4357 * Also check that there's room reserved for commands that must not fail. 4358 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4359 * then only check for the number of reserved spots. 4360 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4361 * because the command event handler may want to resubmit a failed command. 4362 */ 4363 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4364 u32 field1, u32 field2, 4365 u32 field3, u32 field4, bool command_must_succeed) 4366 { 4367 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4368 int ret; 4369 4370 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4371 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4372 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4373 return -ESHUTDOWN; 4374 } 4375 4376 if (!command_must_succeed) 4377 reserved_trbs++; 4378 4379 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4380 reserved_trbs, GFP_ATOMIC); 4381 if (ret < 0) { 4382 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4383 if (command_must_succeed) 4384 xhci_err(xhci, "ERR: Reserved TRB counting for " 4385 "unfailable commands failed.\n"); 4386 return ret; 4387 } 4388 4389 cmd->command_trb = xhci->cmd_ring->enqueue; 4390 4391 /* if there are no other commands queued we start the timeout timer */ 4392 if (list_empty(&xhci->cmd_list)) { 4393 xhci->current_cmd = cmd; 4394 xhci_mod_cmd_timer(xhci); 4395 } 4396 4397 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4398 4399 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4400 field4 | xhci->cmd_ring->cycle_state); 4401 return 0; 4402 } 4403 4404 /* Queue a slot enable or disable request on the command ring */ 4405 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4406 u32 trb_type, u32 slot_id) 4407 { 4408 return queue_command(xhci, cmd, 0, 0, 0, 4409 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4410 } 4411 4412 /* Queue an address device command TRB */ 4413 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4414 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4415 { 4416 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4417 upper_32_bits(in_ctx_ptr), 0, 4418 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4419 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4420 } 4421 4422 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4423 u32 field1, u32 field2, u32 field3, u32 field4) 4424 { 4425 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4426 } 4427 4428 /* Queue a reset device command TRB */ 4429 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4430 u32 slot_id) 4431 { 4432 return queue_command(xhci, cmd, 0, 0, 0, 4433 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4434 false); 4435 } 4436 4437 /* Queue a configure endpoint command TRB */ 4438 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4439 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4440 u32 slot_id, bool command_must_succeed) 4441 { 4442 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4443 upper_32_bits(in_ctx_ptr), 0, 4444 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4445 command_must_succeed); 4446 } 4447 4448 /* Queue an evaluate context command TRB */ 4449 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4450 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4451 { 4452 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4453 upper_32_bits(in_ctx_ptr), 0, 4454 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4455 command_must_succeed); 4456 } 4457 4458 /* 4459 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4460 * activity on an endpoint that is about to be suspended. 4461 */ 4462 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4463 int slot_id, unsigned int ep_index, int suspend) 4464 { 4465 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4466 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4467 u32 type = TRB_TYPE(TRB_STOP_RING); 4468 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4469 4470 return queue_command(xhci, cmd, 0, 0, 0, 4471 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4472 } 4473 4474 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4475 int slot_id, unsigned int ep_index, 4476 enum xhci_ep_reset_type reset_type) 4477 { 4478 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4479 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4480 u32 type = TRB_TYPE(TRB_RESET_EP); 4481 4482 if (reset_type == EP_SOFT_RESET) 4483 type |= TRB_TSP; 4484 4485 return queue_command(xhci, cmd, 0, 0, 0, 4486 trb_slot_id | trb_ep_index | type, false); 4487 } 4488