1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include <linux/dma-mapping.h> 70 #include "xhci.h" 71 #include "xhci-trace.h" 72 #include "xhci-mtk.h" 73 74 /* 75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 76 * address of the TRB. 77 */ 78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 79 union xhci_trb *trb) 80 { 81 unsigned long segment_offset; 82 83 if (!seg || !trb || trb < seg->trbs) 84 return 0; 85 /* offset in TRBs */ 86 segment_offset = trb - seg->trbs; 87 if (segment_offset >= TRBS_PER_SEGMENT) 88 return 0; 89 return seg->dma + (segment_offset * sizeof(*trb)); 90 } 91 92 static bool trb_is_noop(union xhci_trb *trb) 93 { 94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 95 } 96 97 static bool trb_is_link(union xhci_trb *trb) 98 { 99 return TRB_TYPE_LINK_LE32(trb->link.control); 100 } 101 102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 103 { 104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 105 } 106 107 static bool last_trb_on_ring(struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 111 } 112 113 static bool link_trb_toggles_cycle(union xhci_trb *trb) 114 { 115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 116 } 117 118 static bool last_td_in_urb(struct xhci_td *td) 119 { 120 struct urb_priv *urb_priv = td->urb->hcpriv; 121 122 return urb_priv->num_tds_done == urb_priv->num_tds; 123 } 124 125 static void inc_td_cnt(struct urb *urb) 126 { 127 struct urb_priv *urb_priv = urb->hcpriv; 128 129 urb_priv->num_tds_done++; 130 } 131 132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 133 { 134 if (trb_is_link(trb)) { 135 /* unchain chained link TRBs */ 136 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 137 } else { 138 trb->generic.field[0] = 0; 139 trb->generic.field[1] = 0; 140 trb->generic.field[2] = 0; 141 /* Preserve only the cycle bit of this TRB */ 142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 144 } 145 } 146 147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 148 * TRB is in a new segment. This does not skip over link TRBs, and it does not 149 * effect the ring dequeue or enqueue pointers. 150 */ 151 static void next_trb(struct xhci_hcd *xhci, 152 struct xhci_ring *ring, 153 struct xhci_segment **seg, 154 union xhci_trb **trb) 155 { 156 if (trb_is_link(*trb)) { 157 *seg = (*seg)->next; 158 *trb = ((*seg)->trbs); 159 } else { 160 (*trb)++; 161 } 162 } 163 164 /* 165 * See Cycle bit rules. SW is the consumer for the event ring only. 166 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 167 */ 168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 169 { 170 /* event ring doesn't have link trbs, check for last trb */ 171 if (ring->type == TYPE_EVENT) { 172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 173 ring->dequeue++; 174 return; 175 } 176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 177 ring->cycle_state ^= 1; 178 ring->deq_seg = ring->deq_seg->next; 179 ring->dequeue = ring->deq_seg->trbs; 180 return; 181 } 182 183 /* All other rings have link trbs */ 184 if (!trb_is_link(ring->dequeue)) { 185 ring->dequeue++; 186 ring->num_trbs_free++; 187 } 188 while (trb_is_link(ring->dequeue)) { 189 ring->deq_seg = ring->deq_seg->next; 190 ring->dequeue = ring->deq_seg->trbs; 191 } 192 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 201 * 202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 203 * chain bit is set), then set the chain bit in all the following link TRBs. 204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 205 * have their chain bit cleared (so that each Link TRB is a separate TD). 206 * 207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 208 * set, but other sections talk about dealing with the chain bit set. This was 209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 210 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 211 * 212 * @more_trbs_coming: Will you enqueue more TRBs before calling 213 * prepare_transfer()? 214 */ 215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 216 bool more_trbs_coming) 217 { 218 u32 chain; 219 union xhci_trb *next; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 /* If this is not event ring, there is one less usable TRB */ 223 if (!trb_is_link(ring->enqueue)) 224 ring->num_trbs_free--; 225 next = ++(ring->enqueue); 226 227 /* Update the dequeue pointer further if that was a link TRB */ 228 while (trb_is_link(next)) { 229 230 /* 231 * If the caller doesn't plan on enqueueing more TDs before 232 * ringing the doorbell, then we don't want to give the link TRB 233 * to the hardware just yet. We'll give the link TRB back in 234 * prepare_ring() just before we enqueue the TD at the top of 235 * the ring. 236 */ 237 if (!chain && !more_trbs_coming) 238 break; 239 240 /* If we're not dealing with 0.95 hardware or isoc rings on 241 * AMD 0.96 host, carry over the chain bit of the previous TRB 242 * (which may mean the chain bit is cleared). 243 */ 244 if (!(ring->type == TYPE_ISOC && 245 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 246 !xhci_link_trb_quirk(xhci)) { 247 next->link.control &= cpu_to_le32(~TRB_CHAIN); 248 next->link.control |= cpu_to_le32(chain); 249 } 250 /* Give this link TRB to the hardware */ 251 wmb(); 252 next->link.control ^= cpu_to_le32(TRB_CYCLE); 253 254 /* Toggle the cycle bit after the last ring segment. */ 255 if (link_trb_toggles_cycle(next)) 256 ring->cycle_state ^= 1; 257 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 263 trace_xhci_inc_enq(ring); 264 } 265 266 /* 267 * Check to see if there's room to enqueue num_trbs on the ring and make sure 268 * enqueue pointer will not advance into dequeue segment. See rules above. 269 */ 270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 271 unsigned int num_trbs) 272 { 273 int num_trbs_in_deq_seg; 274 275 if (ring->num_trbs_free < num_trbs) 276 return 0; 277 278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 281 return 0; 282 } 283 284 return 1; 285 } 286 287 /* Ring the host controller doorbell after placing a command on the ring */ 288 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 289 { 290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 291 return; 292 293 xhci_dbg(xhci, "// Ding dong!\n"); 294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 295 /* Flush PCI posted writes */ 296 readl(&xhci->dba->doorbell[0]); 297 } 298 299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 300 { 301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 302 } 303 304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 305 { 306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 307 cmd_list); 308 } 309 310 /* 311 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 312 * If there are other commands waiting then restart the ring and kick the timer. 313 * This must be called with command ring stopped and xhci->lock held. 314 */ 315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 316 struct xhci_command *cur_cmd) 317 { 318 struct xhci_command *i_cmd; 319 320 /* Turn all aborted commands in list to no-ops, then restart */ 321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 322 323 if (i_cmd->status != COMP_COMMAND_ABORTED) 324 continue; 325 326 i_cmd->status = COMP_COMMAND_RING_STOPPED; 327 328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 329 i_cmd->command_trb); 330 331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 332 333 /* 334 * caller waiting for completion is called when command 335 * completion event is received for these no-op commands 336 */ 337 } 338 339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 340 341 /* ring command ring doorbell to restart the command ring */ 342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 343 !(xhci->xhc_state & XHCI_STATE_DYING)) { 344 xhci->current_cmd = cur_cmd; 345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 346 xhci_ring_cmd_db(xhci); 347 } 348 } 349 350 /* Must be called with xhci->lock held, releases and aquires lock back */ 351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 352 { 353 u64 temp_64; 354 int ret; 355 356 xhci_dbg(xhci, "Abort command ring\n"); 357 358 reinit_completion(&xhci->cmd_ring_stop_completion); 359 360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 362 &xhci->op_regs->cmd_ring); 363 364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 365 * completion of the Command Abort operation. If CRR is not negated in 5 366 * seconds then driver handles it as if host died (-ENODEV). 367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 368 * and try to recover a -ETIMEDOUT with a host controller reset. 369 */ 370 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 372 if (ret < 0) { 373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 374 xhci_halt(xhci); 375 xhci_hc_died(xhci); 376 return ret; 377 } 378 /* 379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 381 * but the completion event in never sent. Wait 2 secs (arbitrary 382 * number) to handle those cases after negation of CMD_RING_RUNNING. 383 */ 384 spin_unlock_irqrestore(&xhci->lock, flags); 385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 386 msecs_to_jiffies(2000)); 387 spin_lock_irqsave(&xhci->lock, flags); 388 if (!ret) { 389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 390 xhci_cleanup_command_queue(xhci); 391 } else { 392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 393 } 394 return 0; 395 } 396 397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 398 unsigned int slot_id, 399 unsigned int ep_index, 400 unsigned int stream_id) 401 { 402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 404 unsigned int ep_state = ep->ep_state; 405 406 /* Don't ring the doorbell for this endpoint if there are pending 407 * cancellations because we don't want to interrupt processing. 408 * We don't want to restart any stream rings if there's a set dequeue 409 * pointer command pending because the device can choose to start any 410 * stream once the endpoint is on the HW schedule. 411 */ 412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 413 (ep_state & EP_HALTED)) 414 return; 415 writel(DB_VALUE(ep_index, stream_id), db_addr); 416 /* The CPU has better things to do at this point than wait for a 417 * write-posting flush. It'll get there soon enough. 418 */ 419 } 420 421 /* Ring the doorbell for any rings with pending URBs */ 422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 423 unsigned int slot_id, 424 unsigned int ep_index) 425 { 426 unsigned int stream_id; 427 struct xhci_virt_ep *ep; 428 429 ep = &xhci->devs[slot_id]->eps[ep_index]; 430 431 /* A ring has pending URBs if its TD list is not empty */ 432 if (!(ep->ep_state & EP_HAS_STREAMS)) { 433 if (ep->ring && !(list_empty(&ep->ring->td_list))) 434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 435 return; 436 } 437 438 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 439 stream_id++) { 440 struct xhci_stream_info *stream_info = ep->stream_info; 441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 443 stream_id); 444 } 445 } 446 447 /* Get the right ring for the given slot_id, ep_index and stream_id. 448 * If the endpoint supports streams, boundary check the URB's stream ID. 449 * If the endpoint doesn't support streams, return the singular endpoint ring. 450 */ 451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 452 unsigned int slot_id, unsigned int ep_index, 453 unsigned int stream_id) 454 { 455 struct xhci_virt_ep *ep; 456 457 ep = &xhci->devs[slot_id]->eps[ep_index]; 458 /* Common case: no streams */ 459 if (!(ep->ep_state & EP_HAS_STREAMS)) 460 return ep->ring; 461 462 if (stream_id == 0) { 463 xhci_warn(xhci, 464 "WARN: Slot ID %u, ep index %u has streams, " 465 "but URB has no stream ID.\n", 466 slot_id, ep_index); 467 return NULL; 468 } 469 470 if (stream_id < ep->stream_info->num_streams) 471 return ep->stream_info->stream_rings[stream_id]; 472 473 xhci_warn(xhci, 474 "WARN: Slot ID %u, ep index %u has " 475 "stream IDs 1 to %u allocated, " 476 "but stream ID %u is requested.\n", 477 slot_id, ep_index, 478 ep->stream_info->num_streams - 1, 479 stream_id); 480 return NULL; 481 } 482 483 484 /* 485 * Get the hw dequeue pointer xHC stopped on, either directly from the 486 * endpoint context, or if streams are in use from the stream context. 487 * The returned hw_dequeue contains the lowest four bits with cycle state 488 * and possbile stream context type. 489 */ 490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 491 unsigned int ep_index, unsigned int stream_id) 492 { 493 struct xhci_ep_ctx *ep_ctx; 494 struct xhci_stream_ctx *st_ctx; 495 struct xhci_virt_ep *ep; 496 497 ep = &vdev->eps[ep_index]; 498 499 if (ep->ep_state & EP_HAS_STREAMS) { 500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 501 return le64_to_cpu(st_ctx->stream_ring); 502 } 503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 504 return le64_to_cpu(ep_ctx->deq); 505 } 506 507 /* 508 * Move the xHC's endpoint ring dequeue pointer past cur_td. 509 * Record the new state of the xHC's endpoint ring dequeue segment, 510 * dequeue pointer, stream id, and new consumer cycle state in state. 511 * Update our internal representation of the ring's dequeue pointer. 512 * 513 * We do this in three jumps: 514 * - First we update our new ring state to be the same as when the xHC stopped. 515 * - Then we traverse the ring to find the segment that contains 516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 517 * any link TRBs with the toggle cycle bit set. 518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 519 * if we've moved it past a link TRB with the toggle cycle bit set. 520 * 521 * Some of the uses of xhci_generic_trb are grotty, but if they're done 522 * with correct __le32 accesses they should work fine. Only users of this are 523 * in here. 524 */ 525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 526 unsigned int slot_id, unsigned int ep_index, 527 unsigned int stream_id, struct xhci_td *cur_td, 528 struct xhci_dequeue_state *state) 529 { 530 struct xhci_virt_device *dev = xhci->devs[slot_id]; 531 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 532 struct xhci_ring *ep_ring; 533 struct xhci_segment *new_seg; 534 union xhci_trb *new_deq; 535 dma_addr_t addr; 536 u64 hw_dequeue; 537 bool cycle_found = false; 538 bool td_last_trb_found = false; 539 540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 541 ep_index, stream_id); 542 if (!ep_ring) { 543 xhci_warn(xhci, "WARN can't find new dequeue state " 544 "for invalid stream ID %u.\n", 545 stream_id); 546 return; 547 } 548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 550 "Finding endpoint context"); 551 552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 553 new_seg = ep_ring->deq_seg; 554 new_deq = ep_ring->dequeue; 555 state->new_cycle_state = hw_dequeue & 0x1; 556 state->stream_id = stream_id; 557 558 /* 559 * We want to find the pointer, segment and cycle state of the new trb 560 * (the one after current TD's last_trb). We know the cycle state at 561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 562 * found. 563 */ 564 do { 565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 566 == (dma_addr_t)(hw_dequeue & ~0xf)) { 567 cycle_found = true; 568 if (td_last_trb_found) 569 break; 570 } 571 if (new_deq == cur_td->last_trb) 572 td_last_trb_found = true; 573 574 if (cycle_found && trb_is_link(new_deq) && 575 link_trb_toggles_cycle(new_deq)) 576 state->new_cycle_state ^= 0x1; 577 578 next_trb(xhci, ep_ring, &new_seg, &new_deq); 579 580 /* Search wrapped around, bail out */ 581 if (new_deq == ep->ring->dequeue) { 582 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 583 state->new_deq_seg = NULL; 584 state->new_deq_ptr = NULL; 585 return; 586 } 587 588 } while (!cycle_found || !td_last_trb_found); 589 590 state->new_deq_seg = new_seg; 591 state->new_deq_ptr = new_deq; 592 593 /* Don't update the ring cycle state for the producer (us). */ 594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 595 "Cycle state = 0x%x", state->new_cycle_state); 596 597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 598 "New dequeue segment = %p (virtual)", 599 state->new_deq_seg); 600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 602 "New dequeue pointer = 0x%llx (DMA)", 603 (unsigned long long) addr); 604 } 605 606 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 607 * (The last TRB actually points to the ring enqueue pointer, which is not part 608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 609 */ 610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 611 struct xhci_td *td, bool flip_cycle) 612 { 613 struct xhci_segment *seg = td->start_seg; 614 union xhci_trb *trb = td->first_trb; 615 616 while (1) { 617 trb_to_noop(trb, TRB_TR_NOOP); 618 619 /* flip cycle if asked to */ 620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 622 623 if (trb == td->last_trb) 624 break; 625 626 next_trb(xhci, ep_ring, &seg, &trb); 627 } 628 } 629 630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 631 struct xhci_virt_ep *ep) 632 { 633 ep->ep_state &= ~EP_STOP_CMD_PENDING; 634 /* Can't del_timer_sync in interrupt */ 635 del_timer(&ep->stop_cmd_timer); 636 } 637 638 /* 639 * Must be called with xhci->lock held in interrupt context, 640 * releases and re-acquires xhci->lock 641 */ 642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 643 struct xhci_td *cur_td, int status) 644 { 645 struct urb *urb = cur_td->urb; 646 struct urb_priv *urb_priv = urb->hcpriv; 647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 648 649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 652 if (xhci->quirks & XHCI_AMD_PLL_FIX) 653 usb_amd_quirk_pll_enable(); 654 } 655 } 656 xhci_urb_free_priv(urb_priv); 657 usb_hcd_unlink_urb_from_ep(hcd, urb); 658 spin_unlock(&xhci->lock); 659 trace_xhci_urb_giveback(urb); 660 usb_hcd_giveback_urb(hcd, urb, status); 661 spin_lock(&xhci->lock); 662 } 663 664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 665 struct xhci_ring *ring, struct xhci_td *td) 666 { 667 struct device *dev = xhci_to_hcd(xhci)->self.controller; 668 struct xhci_segment *seg = td->bounce_seg; 669 struct urb *urb = td->urb; 670 671 if (!ring || !seg || !urb) 672 return; 673 674 if (usb_urb_dir_out(urb)) { 675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 676 DMA_TO_DEVICE); 677 return; 678 } 679 680 /* for in tranfers we need to copy the data from bounce to sg */ 681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 682 seg->bounce_len, seg->bounce_offs); 683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 684 DMA_FROM_DEVICE); 685 seg->bounce_len = 0; 686 seg->bounce_offs = 0; 687 } 688 689 /* 690 * When we get a command completion for a Stop Endpoint Command, we need to 691 * unlink any cancelled TDs from the ring. There are two ways to do that: 692 * 693 * 1. If the HW was in the middle of processing the TD that needs to be 694 * cancelled, then we must move the ring's dequeue pointer past the last TRB 695 * in the TD with a Set Dequeue Pointer Command. 696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 697 * bit cleared) so that the HW will skip over them. 698 */ 699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 700 union xhci_trb *trb, struct xhci_event_cmd *event) 701 { 702 unsigned int ep_index; 703 struct xhci_ring *ep_ring; 704 struct xhci_virt_ep *ep; 705 struct xhci_td *cur_td = NULL; 706 struct xhci_td *last_unlinked_td; 707 struct xhci_ep_ctx *ep_ctx; 708 struct xhci_virt_device *vdev; 709 u64 hw_deq; 710 struct xhci_dequeue_state deq_state; 711 712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 713 if (!xhci->devs[slot_id]) 714 xhci_warn(xhci, "Stop endpoint command " 715 "completion for disabled slot %u\n", 716 slot_id); 717 return; 718 } 719 720 memset(&deq_state, 0, sizeof(deq_state)); 721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 722 723 vdev = xhci->devs[slot_id]; 724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 725 trace_xhci_handle_cmd_stop_ep(ep_ctx); 726 727 ep = &xhci->devs[slot_id]->eps[ep_index]; 728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 729 struct xhci_td, cancelled_td_list); 730 731 if (list_empty(&ep->cancelled_td_list)) { 732 xhci_stop_watchdog_timer_in_irq(xhci, ep); 733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 734 return; 735 } 736 737 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 738 * We have the xHCI lock, so nothing can modify this list until we drop 739 * it. We're also in the event handler, so we can't get re-interrupted 740 * if another Stop Endpoint command completes 741 */ 742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 744 "Removing canceled TD starting at 0x%llx (dma).", 745 (unsigned long long)xhci_trb_virt_to_dma( 746 cur_td->start_seg, cur_td->first_trb)); 747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 748 if (!ep_ring) { 749 /* This shouldn't happen unless a driver is mucking 750 * with the stream ID after submission. This will 751 * leave the TD on the hardware ring, and the hardware 752 * will try to execute it, and may access a buffer 753 * that has already been freed. In the best case, the 754 * hardware will execute it, and the event handler will 755 * ignore the completion event for that TD, since it was 756 * removed from the td_list for that endpoint. In 757 * short, don't muck with the stream ID after 758 * submission. 759 */ 760 xhci_warn(xhci, "WARN Cancelled URB %p " 761 "has invalid stream ID %u.\n", 762 cur_td->urb, 763 cur_td->urb->stream_id); 764 goto remove_finished_td; 765 } 766 /* 767 * If we stopped on the TD we need to cancel, then we have to 768 * move the xHC endpoint ring dequeue pointer past this TD. 769 */ 770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 771 cur_td->urb->stream_id); 772 hw_deq &= ~0xf; 773 774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 775 cur_td->last_trb, hw_deq, false)) { 776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 777 cur_td->urb->stream_id, 778 cur_td, &deq_state); 779 } else { 780 td_to_noop(xhci, ep_ring, cur_td, false); 781 } 782 783 remove_finished_td: 784 /* 785 * The event handler won't see a completion for this TD anymore, 786 * so remove it from the endpoint ring's TD list. Keep it in 787 * the cancelled TD list for URB completion later. 788 */ 789 list_del_init(&cur_td->td_list); 790 } 791 792 xhci_stop_watchdog_timer_in_irq(xhci, ep); 793 794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 797 &deq_state); 798 xhci_ring_cmd_db(xhci); 799 } else { 800 /* Otherwise ring the doorbell(s) to restart queued transfers */ 801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 802 } 803 804 /* 805 * Drop the lock and complete the URBs in the cancelled TD list. 806 * New TDs to be cancelled might be added to the end of the list before 807 * we can complete all the URBs for the TDs we already unlinked. 808 * So stop when we've completed the URB for the last TD we unlinked. 809 */ 810 do { 811 cur_td = list_first_entry(&ep->cancelled_td_list, 812 struct xhci_td, cancelled_td_list); 813 list_del_init(&cur_td->cancelled_td_list); 814 815 /* Clean up the cancelled URB */ 816 /* Doesn't matter what we pass for status, since the core will 817 * just overwrite it (because the URB has been unlinked). 818 */ 819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 821 inc_td_cnt(cur_td->urb); 822 if (last_td_in_urb(cur_td)) 823 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 824 825 /* Stop processing the cancelled list if the watchdog timer is 826 * running. 827 */ 828 if (xhci->xhc_state & XHCI_STATE_DYING) 829 return; 830 } while (cur_td != last_unlinked_td); 831 832 /* Return to the event handler with xhci->lock re-acquired */ 833 } 834 835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 836 { 837 struct xhci_td *cur_td; 838 struct xhci_td *tmp; 839 840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 841 list_del_init(&cur_td->td_list); 842 843 if (!list_empty(&cur_td->cancelled_td_list)) 844 list_del_init(&cur_td->cancelled_td_list); 845 846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 847 848 inc_td_cnt(cur_td->urb); 849 if (last_td_in_urb(cur_td)) 850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 851 } 852 } 853 854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 855 int slot_id, int ep_index) 856 { 857 struct xhci_td *cur_td; 858 struct xhci_td *tmp; 859 struct xhci_virt_ep *ep; 860 struct xhci_ring *ring; 861 862 ep = &xhci->devs[slot_id]->eps[ep_index]; 863 if ((ep->ep_state & EP_HAS_STREAMS) || 864 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 865 int stream_id; 866 867 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 868 stream_id++) { 869 ring = ep->stream_info->stream_rings[stream_id]; 870 if (!ring) 871 continue; 872 873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 874 "Killing URBs for slot ID %u, ep index %u, stream %u", 875 slot_id, ep_index, stream_id); 876 xhci_kill_ring_urbs(xhci, ring); 877 } 878 } else { 879 ring = ep->ring; 880 if (!ring) 881 return; 882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 883 "Killing URBs for slot ID %u, ep index %u", 884 slot_id, ep_index); 885 xhci_kill_ring_urbs(xhci, ring); 886 } 887 888 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 889 cancelled_td_list) { 890 list_del_init(&cur_td->cancelled_td_list); 891 inc_td_cnt(cur_td->urb); 892 893 if (last_td_in_urb(cur_td)) 894 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 895 } 896 } 897 898 /* 899 * host controller died, register read returns 0xffffffff 900 * Complete pending commands, mark them ABORTED. 901 * URBs need to be given back as usb core might be waiting with device locks 902 * held for the URBs to finish during device disconnect, blocking host remove. 903 * 904 * Call with xhci->lock held. 905 * lock is relased and re-acquired while giving back urb. 906 */ 907 void xhci_hc_died(struct xhci_hcd *xhci) 908 { 909 int i, j; 910 911 if (xhci->xhc_state & XHCI_STATE_DYING) 912 return; 913 914 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 915 xhci->xhc_state |= XHCI_STATE_DYING; 916 917 xhci_cleanup_command_queue(xhci); 918 919 /* return any pending urbs, remove may be waiting for them */ 920 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 921 if (!xhci->devs[i]) 922 continue; 923 for (j = 0; j < 31; j++) 924 xhci_kill_endpoint_urbs(xhci, i, j); 925 } 926 927 /* inform usb core hc died if PCI remove isn't already handling it */ 928 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 929 usb_hc_died(xhci_to_hcd(xhci)); 930 } 931 932 /* Watchdog timer function for when a stop endpoint command fails to complete. 933 * In this case, we assume the host controller is broken or dying or dead. The 934 * host may still be completing some other events, so we have to be careful to 935 * let the event ring handler and the URB dequeueing/enqueueing functions know 936 * through xhci->state. 937 * 938 * The timer may also fire if the host takes a very long time to respond to the 939 * command, and the stop endpoint command completion handler cannot delete the 940 * timer before the timer function is called. Another endpoint cancellation may 941 * sneak in before the timer function can grab the lock, and that may queue 942 * another stop endpoint command and add the timer back. So we cannot use a 943 * simple flag to say whether there is a pending stop endpoint command for a 944 * particular endpoint. 945 * 946 * Instead we use a combination of that flag and checking if a new timer is 947 * pending. 948 */ 949 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 950 { 951 struct xhci_hcd *xhci; 952 struct xhci_virt_ep *ep; 953 unsigned long flags; 954 955 ep = (struct xhci_virt_ep *) arg; 956 xhci = ep->xhci; 957 958 spin_lock_irqsave(&xhci->lock, flags); 959 960 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 961 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 962 timer_pending(&ep->stop_cmd_timer)) { 963 spin_unlock_irqrestore(&xhci->lock, flags); 964 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 965 return; 966 } 967 968 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 969 ep->ep_state &= ~EP_STOP_CMD_PENDING; 970 971 xhci_halt(xhci); 972 973 /* 974 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 975 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 976 * and try to recover a -ETIMEDOUT with a host controller reset 977 */ 978 xhci_hc_died(xhci); 979 980 spin_unlock_irqrestore(&xhci->lock, flags); 981 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 982 "xHCI host controller is dead."); 983 } 984 985 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 986 struct xhci_virt_device *dev, 987 struct xhci_ring *ep_ring, 988 unsigned int ep_index) 989 { 990 union xhci_trb *dequeue_temp; 991 int num_trbs_free_temp; 992 bool revert = false; 993 994 num_trbs_free_temp = ep_ring->num_trbs_free; 995 dequeue_temp = ep_ring->dequeue; 996 997 /* If we get two back-to-back stalls, and the first stalled transfer 998 * ends just before a link TRB, the dequeue pointer will be left on 999 * the link TRB by the code in the while loop. So we have to update 1000 * the dequeue pointer one segment further, or we'll jump off 1001 * the segment into la-la-land. 1002 */ 1003 if (trb_is_link(ep_ring->dequeue)) { 1004 ep_ring->deq_seg = ep_ring->deq_seg->next; 1005 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1006 } 1007 1008 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1009 /* We have more usable TRBs */ 1010 ep_ring->num_trbs_free++; 1011 ep_ring->dequeue++; 1012 if (trb_is_link(ep_ring->dequeue)) { 1013 if (ep_ring->dequeue == 1014 dev->eps[ep_index].queued_deq_ptr) 1015 break; 1016 ep_ring->deq_seg = ep_ring->deq_seg->next; 1017 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1018 } 1019 if (ep_ring->dequeue == dequeue_temp) { 1020 revert = true; 1021 break; 1022 } 1023 } 1024 1025 if (revert) { 1026 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1027 ep_ring->num_trbs_free = num_trbs_free_temp; 1028 } 1029 } 1030 1031 /* 1032 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1033 * we need to clear the set deq pending flag in the endpoint ring state, so that 1034 * the TD queueing code can ring the doorbell again. We also need to ring the 1035 * endpoint doorbell to restart the ring, but only if there aren't more 1036 * cancellations pending. 1037 */ 1038 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1039 union xhci_trb *trb, u32 cmd_comp_code) 1040 { 1041 unsigned int ep_index; 1042 unsigned int stream_id; 1043 struct xhci_ring *ep_ring; 1044 struct xhci_virt_device *dev; 1045 struct xhci_virt_ep *ep; 1046 struct xhci_ep_ctx *ep_ctx; 1047 struct xhci_slot_ctx *slot_ctx; 1048 1049 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1050 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1051 dev = xhci->devs[slot_id]; 1052 ep = &dev->eps[ep_index]; 1053 1054 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1055 if (!ep_ring) { 1056 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1057 stream_id); 1058 /* XXX: Harmless??? */ 1059 goto cleanup; 1060 } 1061 1062 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1063 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1064 trace_xhci_handle_cmd_set_deq(slot_ctx); 1065 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1066 1067 if (cmd_comp_code != COMP_SUCCESS) { 1068 unsigned int ep_state; 1069 unsigned int slot_state; 1070 1071 switch (cmd_comp_code) { 1072 case COMP_TRB_ERROR: 1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1074 break; 1075 case COMP_CONTEXT_STATE_ERROR: 1076 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1077 ep_state = GET_EP_CTX_STATE(ep_ctx); 1078 slot_state = le32_to_cpu(slot_ctx->dev_state); 1079 slot_state = GET_SLOT_STATE(slot_state); 1080 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1081 "Slot state = %u, EP state = %u", 1082 slot_state, ep_state); 1083 break; 1084 case COMP_SLOT_NOT_ENABLED_ERROR: 1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1086 slot_id); 1087 break; 1088 default: 1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1090 cmd_comp_code); 1091 break; 1092 } 1093 /* OK what do we do now? The endpoint state is hosed, and we 1094 * should never get to this point if the synchronization between 1095 * queueing, and endpoint state are correct. This might happen 1096 * if the device gets disconnected after we've finished 1097 * cancelling URBs, which might not be an error... 1098 */ 1099 } else { 1100 u64 deq; 1101 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1102 if (ep->ep_state & EP_HAS_STREAMS) { 1103 struct xhci_stream_ctx *ctx = 1104 &ep->stream_info->stream_ctx_array[stream_id]; 1105 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1106 } else { 1107 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1108 } 1109 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1110 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1111 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1112 ep->queued_deq_ptr) == deq) { 1113 /* Update the ring's dequeue segment and dequeue pointer 1114 * to reflect the new position. 1115 */ 1116 update_ring_for_set_deq_completion(xhci, dev, 1117 ep_ring, ep_index); 1118 } else { 1119 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1120 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1121 ep->queued_deq_seg, ep->queued_deq_ptr); 1122 } 1123 } 1124 1125 cleanup: 1126 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1127 dev->eps[ep_index].queued_deq_seg = NULL; 1128 dev->eps[ep_index].queued_deq_ptr = NULL; 1129 /* Restart any rings with pending URBs */ 1130 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1131 } 1132 1133 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1134 union xhci_trb *trb, u32 cmd_comp_code) 1135 { 1136 struct xhci_virt_device *vdev; 1137 struct xhci_ep_ctx *ep_ctx; 1138 unsigned int ep_index; 1139 1140 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1141 vdev = xhci->devs[slot_id]; 1142 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1143 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1144 1145 /* This command will only fail if the endpoint wasn't halted, 1146 * but we don't care. 1147 */ 1148 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1149 "Ignoring reset ep completion code of %u", cmd_comp_code); 1150 1151 /* HW with the reset endpoint quirk needs to have a configure endpoint 1152 * command complete before the endpoint can be used. Queue that here 1153 * because the HW can't handle two commands being queued in a row. 1154 */ 1155 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1156 struct xhci_command *command; 1157 1158 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1159 if (!command) 1160 return; 1161 1162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1163 "Queueing configure endpoint command"); 1164 xhci_queue_configure_endpoint(xhci, command, 1165 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1166 false); 1167 xhci_ring_cmd_db(xhci); 1168 } else { 1169 /* Clear our internal halted state */ 1170 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1171 } 1172 } 1173 1174 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1175 struct xhci_command *command, u32 cmd_comp_code) 1176 { 1177 if (cmd_comp_code == COMP_SUCCESS) 1178 command->slot_id = slot_id; 1179 else 1180 command->slot_id = 0; 1181 } 1182 1183 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1184 { 1185 struct xhci_virt_device *virt_dev; 1186 struct xhci_slot_ctx *slot_ctx; 1187 1188 virt_dev = xhci->devs[slot_id]; 1189 if (!virt_dev) 1190 return; 1191 1192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1193 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1194 1195 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1196 /* Delete default control endpoint resources */ 1197 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1198 xhci_free_virt_device(xhci, slot_id); 1199 } 1200 1201 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1202 struct xhci_event_cmd *event, u32 cmd_comp_code) 1203 { 1204 struct xhci_virt_device *virt_dev; 1205 struct xhci_input_control_ctx *ctrl_ctx; 1206 struct xhci_ep_ctx *ep_ctx; 1207 unsigned int ep_index; 1208 unsigned int ep_state; 1209 u32 add_flags, drop_flags; 1210 1211 /* 1212 * Configure endpoint commands can come from the USB core 1213 * configuration or alt setting changes, or because the HW 1214 * needed an extra configure endpoint command after a reset 1215 * endpoint command or streams were being configured. 1216 * If the command was for a halted endpoint, the xHCI driver 1217 * is not waiting on the configure endpoint command. 1218 */ 1219 virt_dev = xhci->devs[slot_id]; 1220 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1221 if (!ctrl_ctx) { 1222 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1223 return; 1224 } 1225 1226 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1227 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1228 /* Input ctx add_flags are the endpoint index plus one */ 1229 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1230 1231 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1232 trace_xhci_handle_cmd_config_ep(ep_ctx); 1233 1234 /* A usb_set_interface() call directly after clearing a halted 1235 * condition may race on this quirky hardware. Not worth 1236 * worrying about, since this is prototype hardware. Not sure 1237 * if this will work for streams, but streams support was 1238 * untested on this prototype. 1239 */ 1240 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1241 ep_index != (unsigned int) -1 && 1242 add_flags - SLOT_FLAG == drop_flags) { 1243 ep_state = virt_dev->eps[ep_index].ep_state; 1244 if (!(ep_state & EP_HALTED)) 1245 return; 1246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1247 "Completed config ep cmd - " 1248 "last ep index = %d, state = %d", 1249 ep_index, ep_state); 1250 /* Clear internal halted state and restart ring(s) */ 1251 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1252 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1253 return; 1254 } 1255 return; 1256 } 1257 1258 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1259 { 1260 struct xhci_virt_device *vdev; 1261 struct xhci_slot_ctx *slot_ctx; 1262 1263 vdev = xhci->devs[slot_id]; 1264 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1265 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1266 } 1267 1268 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1269 struct xhci_event_cmd *event) 1270 { 1271 struct xhci_virt_device *vdev; 1272 struct xhci_slot_ctx *slot_ctx; 1273 1274 vdev = xhci->devs[slot_id]; 1275 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1276 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1277 1278 xhci_dbg(xhci, "Completed reset device command.\n"); 1279 if (!xhci->devs[slot_id]) 1280 xhci_warn(xhci, "Reset device command completion " 1281 "for disabled slot %u\n", slot_id); 1282 } 1283 1284 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1285 struct xhci_event_cmd *event) 1286 { 1287 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1288 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1289 return; 1290 } 1291 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1292 "NEC firmware version %2x.%02x", 1293 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1294 NEC_FW_MINOR(le32_to_cpu(event->status))); 1295 } 1296 1297 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1298 { 1299 list_del(&cmd->cmd_list); 1300 1301 if (cmd->completion) { 1302 cmd->status = status; 1303 complete(cmd->completion); 1304 } else { 1305 kfree(cmd); 1306 } 1307 } 1308 1309 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1310 { 1311 struct xhci_command *cur_cmd, *tmp_cmd; 1312 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1313 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1314 } 1315 1316 void xhci_handle_command_timeout(struct work_struct *work) 1317 { 1318 struct xhci_hcd *xhci; 1319 unsigned long flags; 1320 u64 hw_ring_state; 1321 1322 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1323 1324 spin_lock_irqsave(&xhci->lock, flags); 1325 1326 /* 1327 * If timeout work is pending, or current_cmd is NULL, it means we 1328 * raced with command completion. Command is handled so just return. 1329 */ 1330 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1331 spin_unlock_irqrestore(&xhci->lock, flags); 1332 return; 1333 } 1334 /* mark this command to be cancelled */ 1335 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1336 1337 /* Make sure command ring is running before aborting it */ 1338 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1339 if (hw_ring_state == ~(u64)0) { 1340 xhci_hc_died(xhci); 1341 goto time_out_completed; 1342 } 1343 1344 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1345 (hw_ring_state & CMD_RING_RUNNING)) { 1346 /* Prevent new doorbell, and start command abort */ 1347 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1348 xhci_dbg(xhci, "Command timeout\n"); 1349 xhci_abort_cmd_ring(xhci, flags); 1350 goto time_out_completed; 1351 } 1352 1353 /* host removed. Bail out */ 1354 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1355 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1356 xhci_cleanup_command_queue(xhci); 1357 1358 goto time_out_completed; 1359 } 1360 1361 /* command timeout on stopped ring, ring can't be aborted */ 1362 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1363 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1364 1365 time_out_completed: 1366 spin_unlock_irqrestore(&xhci->lock, flags); 1367 return; 1368 } 1369 1370 static void handle_cmd_completion(struct xhci_hcd *xhci, 1371 struct xhci_event_cmd *event) 1372 { 1373 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1374 u64 cmd_dma; 1375 dma_addr_t cmd_dequeue_dma; 1376 u32 cmd_comp_code; 1377 union xhci_trb *cmd_trb; 1378 struct xhci_command *cmd; 1379 u32 cmd_type; 1380 1381 cmd_dma = le64_to_cpu(event->cmd_trb); 1382 cmd_trb = xhci->cmd_ring->dequeue; 1383 1384 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1385 1386 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1387 cmd_trb); 1388 /* 1389 * Check whether the completion event is for our internal kept 1390 * command. 1391 */ 1392 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1393 xhci_warn(xhci, 1394 "ERROR mismatched command completion event\n"); 1395 return; 1396 } 1397 1398 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1399 1400 cancel_delayed_work(&xhci->cmd_timer); 1401 1402 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1403 1404 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1405 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1406 complete_all(&xhci->cmd_ring_stop_completion); 1407 return; 1408 } 1409 1410 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1411 xhci_err(xhci, 1412 "Command completion event does not match command\n"); 1413 return; 1414 } 1415 1416 /* 1417 * Host aborted the command ring, check if the current command was 1418 * supposed to be aborted, otherwise continue normally. 1419 * The command ring is stopped now, but the xHC will issue a Command 1420 * Ring Stopped event which will cause us to restart it. 1421 */ 1422 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1423 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1424 if (cmd->status == COMP_COMMAND_ABORTED) { 1425 if (xhci->current_cmd == cmd) 1426 xhci->current_cmd = NULL; 1427 goto event_handled; 1428 } 1429 } 1430 1431 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1432 switch (cmd_type) { 1433 case TRB_ENABLE_SLOT: 1434 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1435 break; 1436 case TRB_DISABLE_SLOT: 1437 xhci_handle_cmd_disable_slot(xhci, slot_id); 1438 break; 1439 case TRB_CONFIG_EP: 1440 if (!cmd->completion) 1441 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1442 cmd_comp_code); 1443 break; 1444 case TRB_EVAL_CONTEXT: 1445 break; 1446 case TRB_ADDR_DEV: 1447 xhci_handle_cmd_addr_dev(xhci, slot_id); 1448 break; 1449 case TRB_STOP_RING: 1450 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1451 le32_to_cpu(cmd_trb->generic.field[3]))); 1452 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1453 break; 1454 case TRB_SET_DEQ: 1455 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1456 le32_to_cpu(cmd_trb->generic.field[3]))); 1457 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1458 break; 1459 case TRB_CMD_NOOP: 1460 /* Is this an aborted command turned to NO-OP? */ 1461 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1462 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1463 break; 1464 case TRB_RESET_EP: 1465 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1466 le32_to_cpu(cmd_trb->generic.field[3]))); 1467 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1468 break; 1469 case TRB_RESET_DEV: 1470 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1471 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1472 */ 1473 slot_id = TRB_TO_SLOT_ID( 1474 le32_to_cpu(cmd_trb->generic.field[3])); 1475 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1476 break; 1477 case TRB_NEC_GET_FW: 1478 xhci_handle_cmd_nec_get_fw(xhci, event); 1479 break; 1480 default: 1481 /* Skip over unknown commands on the event ring */ 1482 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1483 break; 1484 } 1485 1486 /* restart timer if this wasn't the last command */ 1487 if (!list_is_singular(&xhci->cmd_list)) { 1488 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1489 struct xhci_command, cmd_list); 1490 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1491 } else if (xhci->current_cmd == cmd) { 1492 xhci->current_cmd = NULL; 1493 } 1494 1495 event_handled: 1496 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1497 1498 inc_deq(xhci, xhci->cmd_ring); 1499 } 1500 1501 static void handle_vendor_event(struct xhci_hcd *xhci, 1502 union xhci_trb *event) 1503 { 1504 u32 trb_type; 1505 1506 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1507 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1508 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1509 handle_cmd_completion(xhci, &event->event_cmd); 1510 } 1511 1512 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1513 * port registers -- USB 3.0 and USB 2.0). 1514 * 1515 * Returns a zero-based port number, which is suitable for indexing into each of 1516 * the split roothubs' port arrays and bus state arrays. 1517 * Add one to it in order to call xhci_find_slot_id_by_port. 1518 */ 1519 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1520 struct xhci_hcd *xhci, u32 port_id) 1521 { 1522 unsigned int i; 1523 unsigned int num_similar_speed_ports = 0; 1524 1525 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1526 * and usb2_ports are 0-based indexes. Count the number of similar 1527 * speed ports, up to 1 port before this port. 1528 */ 1529 for (i = 0; i < (port_id - 1); i++) { 1530 u8 port_speed = xhci->port_array[i]; 1531 1532 /* 1533 * Skip ports that don't have known speeds, or have duplicate 1534 * Extended Capabilities port speed entries. 1535 */ 1536 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1537 continue; 1538 1539 /* 1540 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1541 * 1.1 ports are under the USB 2.0 hub. If the port speed 1542 * matches the device speed, it's a similar speed port. 1543 */ 1544 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1545 num_similar_speed_ports++; 1546 } 1547 return num_similar_speed_ports; 1548 } 1549 1550 static void handle_device_notification(struct xhci_hcd *xhci, 1551 union xhci_trb *event) 1552 { 1553 u32 slot_id; 1554 struct usb_device *udev; 1555 1556 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1557 if (!xhci->devs[slot_id]) { 1558 xhci_warn(xhci, "Device Notification event for " 1559 "unused slot %u\n", slot_id); 1560 return; 1561 } 1562 1563 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1564 slot_id); 1565 udev = xhci->devs[slot_id]->udev; 1566 if (udev && udev->parent) 1567 usb_wakeup_notification(udev->parent, udev->portnum); 1568 } 1569 1570 static void handle_port_status(struct xhci_hcd *xhci, 1571 union xhci_trb *event) 1572 { 1573 struct usb_hcd *hcd; 1574 u32 port_id; 1575 u32 temp, temp1; 1576 int max_ports; 1577 int slot_id; 1578 unsigned int faked_port_index; 1579 u8 major_revision; 1580 struct xhci_bus_state *bus_state; 1581 __le32 __iomem **port_array; 1582 bool bogus_port_status = false; 1583 1584 /* Port status change events always have a successful completion code */ 1585 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1586 xhci_warn(xhci, 1587 "WARN: xHC returned failed port status event\n"); 1588 1589 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1590 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1591 1592 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1593 if ((port_id <= 0) || (port_id > max_ports)) { 1594 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1595 inc_deq(xhci, xhci->event_ring); 1596 return; 1597 } 1598 1599 /* Figure out which usb_hcd this port is attached to: 1600 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1601 */ 1602 major_revision = xhci->port_array[port_id - 1]; 1603 1604 /* Find the right roothub. */ 1605 hcd = xhci_to_hcd(xhci); 1606 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1607 hcd = xhci->shared_hcd; 1608 1609 if (major_revision == 0) { 1610 xhci_warn(xhci, "Event for port %u not in " 1611 "Extended Capabilities, ignoring.\n", 1612 port_id); 1613 bogus_port_status = true; 1614 goto cleanup; 1615 } 1616 if (major_revision == DUPLICATE_ENTRY) { 1617 xhci_warn(xhci, "Event for port %u duplicated in" 1618 "Extended Capabilities, ignoring.\n", 1619 port_id); 1620 bogus_port_status = true; 1621 goto cleanup; 1622 } 1623 1624 /* 1625 * Hardware port IDs reported by a Port Status Change Event include USB 1626 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1627 * resume event, but we first need to translate the hardware port ID 1628 * into the index into the ports on the correct split roothub, and the 1629 * correct bus_state structure. 1630 */ 1631 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1632 if (hcd->speed >= HCD_USB3) 1633 port_array = xhci->usb3_ports; 1634 else 1635 port_array = xhci->usb2_ports; 1636 /* Find the faked port hub number */ 1637 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1638 port_id); 1639 1640 temp = readl(port_array[faked_port_index]); 1641 if (hcd->state == HC_STATE_SUSPENDED) { 1642 xhci_dbg(xhci, "resume root hub\n"); 1643 usb_hcd_resume_root_hub(hcd); 1644 } 1645 1646 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1647 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1648 1649 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1650 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1651 1652 temp1 = readl(&xhci->op_regs->command); 1653 if (!(temp1 & CMD_RUN)) { 1654 xhci_warn(xhci, "xHC is not running.\n"); 1655 goto cleanup; 1656 } 1657 1658 if (DEV_SUPERSPEED_ANY(temp)) { 1659 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1660 /* Set a flag to say the port signaled remote wakeup, 1661 * so we can tell the difference between the end of 1662 * device and host initiated resume. 1663 */ 1664 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1665 xhci_test_and_clear_bit(xhci, port_array, 1666 faked_port_index, PORT_PLC); 1667 xhci_set_link_state(xhci, port_array, faked_port_index, 1668 XDEV_U0); 1669 /* Need to wait until the next link state change 1670 * indicates the device is actually in U0. 1671 */ 1672 bogus_port_status = true; 1673 goto cleanup; 1674 } else if (!test_bit(faked_port_index, 1675 &bus_state->resuming_ports)) { 1676 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1677 bus_state->resume_done[faked_port_index] = jiffies + 1678 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1679 set_bit(faked_port_index, &bus_state->resuming_ports); 1680 mod_timer(&hcd->rh_timer, 1681 bus_state->resume_done[faked_port_index]); 1682 /* Do the rest in GetPortStatus */ 1683 } 1684 } 1685 1686 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1687 DEV_SUPERSPEED_ANY(temp)) { 1688 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1689 /* We've just brought the device into U0 through either the 1690 * Resume state after a device remote wakeup, or through the 1691 * U3Exit state after a host-initiated resume. If it's a device 1692 * initiated remote wake, don't pass up the link state change, 1693 * so the roothub behavior is consistent with external 1694 * USB 3.0 hub behavior. 1695 */ 1696 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1697 faked_port_index + 1); 1698 if (slot_id && xhci->devs[slot_id]) 1699 xhci_ring_device(xhci, slot_id); 1700 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1701 bus_state->port_remote_wakeup &= 1702 ~(1 << faked_port_index); 1703 xhci_test_and_clear_bit(xhci, port_array, 1704 faked_port_index, PORT_PLC); 1705 usb_wakeup_notification(hcd->self.root_hub, 1706 faked_port_index + 1); 1707 bogus_port_status = true; 1708 goto cleanup; 1709 } 1710 } 1711 1712 /* 1713 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1714 * RExit to a disconnect state). If so, let the the driver know it's 1715 * out of the RExit state. 1716 */ 1717 if (!DEV_SUPERSPEED_ANY(temp) && 1718 test_and_clear_bit(faked_port_index, 1719 &bus_state->rexit_ports)) { 1720 complete(&bus_state->rexit_done[faked_port_index]); 1721 bogus_port_status = true; 1722 goto cleanup; 1723 } 1724 1725 if (hcd->speed < HCD_USB3) 1726 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1727 PORT_PLC); 1728 1729 cleanup: 1730 /* Update event ring dequeue pointer before dropping the lock */ 1731 inc_deq(xhci, xhci->event_ring); 1732 1733 /* Don't make the USB core poll the roothub if we got a bad port status 1734 * change event. Besides, at that point we can't tell which roothub 1735 * (USB 2.0 or USB 3.0) to kick. 1736 */ 1737 if (bogus_port_status) 1738 return; 1739 1740 /* 1741 * xHCI port-status-change events occur when the "or" of all the 1742 * status-change bits in the portsc register changes from 0 to 1. 1743 * New status changes won't cause an event if any other change 1744 * bits are still set. When an event occurs, switch over to 1745 * polling to avoid losing status changes. 1746 */ 1747 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1748 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1749 spin_unlock(&xhci->lock); 1750 /* Pass this up to the core */ 1751 usb_hcd_poll_rh_status(hcd); 1752 spin_lock(&xhci->lock); 1753 } 1754 1755 /* 1756 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1757 * at end_trb, which may be in another segment. If the suspect DMA address is a 1758 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1759 * returns 0. 1760 */ 1761 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1762 struct xhci_segment *start_seg, 1763 union xhci_trb *start_trb, 1764 union xhci_trb *end_trb, 1765 dma_addr_t suspect_dma, 1766 bool debug) 1767 { 1768 dma_addr_t start_dma; 1769 dma_addr_t end_seg_dma; 1770 dma_addr_t end_trb_dma; 1771 struct xhci_segment *cur_seg; 1772 1773 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1774 cur_seg = start_seg; 1775 1776 do { 1777 if (start_dma == 0) 1778 return NULL; 1779 /* We may get an event for a Link TRB in the middle of a TD */ 1780 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1781 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1782 /* If the end TRB isn't in this segment, this is set to 0 */ 1783 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1784 1785 if (debug) 1786 xhci_warn(xhci, 1787 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1788 (unsigned long long)suspect_dma, 1789 (unsigned long long)start_dma, 1790 (unsigned long long)end_trb_dma, 1791 (unsigned long long)cur_seg->dma, 1792 (unsigned long long)end_seg_dma); 1793 1794 if (end_trb_dma > 0) { 1795 /* The end TRB is in this segment, so suspect should be here */ 1796 if (start_dma <= end_trb_dma) { 1797 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1798 return cur_seg; 1799 } else { 1800 /* Case for one segment with 1801 * a TD wrapped around to the top 1802 */ 1803 if ((suspect_dma >= start_dma && 1804 suspect_dma <= end_seg_dma) || 1805 (suspect_dma >= cur_seg->dma && 1806 suspect_dma <= end_trb_dma)) 1807 return cur_seg; 1808 } 1809 return NULL; 1810 } else { 1811 /* Might still be somewhere in this segment */ 1812 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1813 return cur_seg; 1814 } 1815 cur_seg = cur_seg->next; 1816 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1817 } while (cur_seg != start_seg); 1818 1819 return NULL; 1820 } 1821 1822 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1823 unsigned int slot_id, unsigned int ep_index, 1824 unsigned int stream_id, 1825 struct xhci_td *td, union xhci_trb *ep_trb, 1826 enum xhci_ep_reset_type reset_type) 1827 { 1828 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1829 struct xhci_command *command; 1830 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1831 if (!command) 1832 return; 1833 1834 ep->ep_state |= EP_HALTED; 1835 1836 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1837 1838 if (reset_type == EP_HARD_RESET) 1839 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1840 1841 xhci_ring_cmd_db(xhci); 1842 } 1843 1844 /* Check if an error has halted the endpoint ring. The class driver will 1845 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1846 * However, a babble and other errors also halt the endpoint ring, and the class 1847 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1848 * Ring Dequeue Pointer command manually. 1849 */ 1850 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1851 struct xhci_ep_ctx *ep_ctx, 1852 unsigned int trb_comp_code) 1853 { 1854 /* TRB completion codes that may require a manual halt cleanup */ 1855 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1856 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1857 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1858 /* The 0.95 spec says a babbling control endpoint 1859 * is not halted. The 0.96 spec says it is. Some HW 1860 * claims to be 0.95 compliant, but it halts the control 1861 * endpoint anyway. Check if a babble halted the 1862 * endpoint. 1863 */ 1864 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1865 return 1; 1866 1867 return 0; 1868 } 1869 1870 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1871 { 1872 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1873 /* Vendor defined "informational" completion code, 1874 * treat as not-an-error. 1875 */ 1876 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1877 trb_comp_code); 1878 xhci_dbg(xhci, "Treating code as success.\n"); 1879 return 1; 1880 } 1881 return 0; 1882 } 1883 1884 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1885 struct xhci_ring *ep_ring, int *status) 1886 { 1887 struct urb_priv *urb_priv; 1888 struct urb *urb = NULL; 1889 1890 /* Clean up the endpoint's TD list */ 1891 urb = td->urb; 1892 urb_priv = urb->hcpriv; 1893 1894 /* if a bounce buffer was used to align this td then unmap it */ 1895 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1896 1897 /* Do one last check of the actual transfer length. 1898 * If the host controller said we transferred more data than the buffer 1899 * length, urb->actual_length will be a very big number (since it's 1900 * unsigned). Play it safe and say we didn't transfer anything. 1901 */ 1902 if (urb->actual_length > urb->transfer_buffer_length) { 1903 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1904 urb->transfer_buffer_length, urb->actual_length); 1905 urb->actual_length = 0; 1906 *status = 0; 1907 } 1908 list_del_init(&td->td_list); 1909 /* Was this TD slated to be cancelled but completed anyway? */ 1910 if (!list_empty(&td->cancelled_td_list)) 1911 list_del_init(&td->cancelled_td_list); 1912 1913 inc_td_cnt(urb); 1914 /* Giveback the urb when all the tds are completed */ 1915 if (last_td_in_urb(td)) { 1916 if ((urb->actual_length != urb->transfer_buffer_length && 1917 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1918 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1919 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1920 urb, urb->actual_length, 1921 urb->transfer_buffer_length, *status); 1922 1923 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1924 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1925 *status = 0; 1926 xhci_giveback_urb_in_irq(xhci, td, *status); 1927 } 1928 1929 return 0; 1930 } 1931 1932 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1933 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1934 struct xhci_virt_ep *ep, int *status) 1935 { 1936 struct xhci_virt_device *xdev; 1937 struct xhci_ep_ctx *ep_ctx; 1938 struct xhci_ring *ep_ring; 1939 unsigned int slot_id; 1940 u32 trb_comp_code; 1941 int ep_index; 1942 1943 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1944 xdev = xhci->devs[slot_id]; 1945 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1946 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1947 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1948 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1949 1950 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1951 trb_comp_code == COMP_STOPPED || 1952 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1953 /* The Endpoint Stop Command completion will take care of any 1954 * stopped TDs. A stopped TD may be restarted, so don't update 1955 * the ring dequeue pointer or take this TD off any lists yet. 1956 */ 1957 return 0; 1958 } 1959 if (trb_comp_code == COMP_STALL_ERROR || 1960 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1961 trb_comp_code)) { 1962 /* Issue a reset endpoint command to clear the host side 1963 * halt, followed by a set dequeue command to move the 1964 * dequeue pointer past the TD. 1965 * The class driver clears the device side halt later. 1966 */ 1967 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1968 ep_ring->stream_id, td, ep_trb, 1969 EP_HARD_RESET); 1970 } else { 1971 /* Update ring dequeue pointer */ 1972 while (ep_ring->dequeue != td->last_trb) 1973 inc_deq(xhci, ep_ring); 1974 inc_deq(xhci, ep_ring); 1975 } 1976 1977 return xhci_td_cleanup(xhci, td, ep_ring, status); 1978 } 1979 1980 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1981 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1982 union xhci_trb *stop_trb) 1983 { 1984 u32 sum; 1985 union xhci_trb *trb = ring->dequeue; 1986 struct xhci_segment *seg = ring->deq_seg; 1987 1988 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1989 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1990 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1991 } 1992 return sum; 1993 } 1994 1995 /* 1996 * Process control tds, update urb status and actual_length. 1997 */ 1998 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1999 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2000 struct xhci_virt_ep *ep, int *status) 2001 { 2002 struct xhci_virt_device *xdev; 2003 struct xhci_ring *ep_ring; 2004 unsigned int slot_id; 2005 int ep_index; 2006 struct xhci_ep_ctx *ep_ctx; 2007 u32 trb_comp_code; 2008 u32 remaining, requested; 2009 u32 trb_type; 2010 2011 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2012 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2013 xdev = xhci->devs[slot_id]; 2014 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2015 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2016 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2017 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2018 requested = td->urb->transfer_buffer_length; 2019 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2020 2021 switch (trb_comp_code) { 2022 case COMP_SUCCESS: 2023 if (trb_type != TRB_STATUS) { 2024 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2025 (trb_type == TRB_DATA) ? "data" : "setup"); 2026 *status = -ESHUTDOWN; 2027 break; 2028 } 2029 *status = 0; 2030 break; 2031 case COMP_SHORT_PACKET: 2032 *status = 0; 2033 break; 2034 case COMP_STOPPED_SHORT_PACKET: 2035 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2036 td->urb->actual_length = remaining; 2037 else 2038 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2039 goto finish_td; 2040 case COMP_STOPPED: 2041 switch (trb_type) { 2042 case TRB_SETUP: 2043 td->urb->actual_length = 0; 2044 goto finish_td; 2045 case TRB_DATA: 2046 case TRB_NORMAL: 2047 td->urb->actual_length = requested - remaining; 2048 goto finish_td; 2049 case TRB_STATUS: 2050 td->urb->actual_length = requested; 2051 goto finish_td; 2052 default: 2053 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2054 trb_type); 2055 goto finish_td; 2056 } 2057 case COMP_STOPPED_LENGTH_INVALID: 2058 goto finish_td; 2059 default: 2060 if (!xhci_requires_manual_halt_cleanup(xhci, 2061 ep_ctx, trb_comp_code)) 2062 break; 2063 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2064 trb_comp_code, ep_index); 2065 /* else fall through */ 2066 case COMP_STALL_ERROR: 2067 /* Did we transfer part of the data (middle) phase? */ 2068 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2069 td->urb->actual_length = requested - remaining; 2070 else if (!td->urb_length_set) 2071 td->urb->actual_length = 0; 2072 goto finish_td; 2073 } 2074 2075 /* stopped at setup stage, no data transferred */ 2076 if (trb_type == TRB_SETUP) 2077 goto finish_td; 2078 2079 /* 2080 * if on data stage then update the actual_length of the URB and flag it 2081 * as set, so it won't be overwritten in the event for the last TRB. 2082 */ 2083 if (trb_type == TRB_DATA || 2084 trb_type == TRB_NORMAL) { 2085 td->urb_length_set = true; 2086 td->urb->actual_length = requested - remaining; 2087 xhci_dbg(xhci, "Waiting for status stage event\n"); 2088 return 0; 2089 } 2090 2091 /* at status stage */ 2092 if (!td->urb_length_set) 2093 td->urb->actual_length = requested; 2094 2095 finish_td: 2096 return finish_td(xhci, td, ep_trb, event, ep, status); 2097 } 2098 2099 /* 2100 * Process isochronous tds, update urb packet status and actual_length. 2101 */ 2102 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2103 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2104 struct xhci_virt_ep *ep, int *status) 2105 { 2106 struct xhci_ring *ep_ring; 2107 struct urb_priv *urb_priv; 2108 int idx; 2109 struct usb_iso_packet_descriptor *frame; 2110 u32 trb_comp_code; 2111 bool sum_trbs_for_length = false; 2112 u32 remaining, requested, ep_trb_len; 2113 int short_framestatus; 2114 2115 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2116 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2117 urb_priv = td->urb->hcpriv; 2118 idx = urb_priv->num_tds_done; 2119 frame = &td->urb->iso_frame_desc[idx]; 2120 requested = frame->length; 2121 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2122 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2123 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2124 -EREMOTEIO : 0; 2125 2126 /* handle completion code */ 2127 switch (trb_comp_code) { 2128 case COMP_SUCCESS: 2129 if (remaining) { 2130 frame->status = short_framestatus; 2131 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2132 sum_trbs_for_length = true; 2133 break; 2134 } 2135 frame->status = 0; 2136 break; 2137 case COMP_SHORT_PACKET: 2138 frame->status = short_framestatus; 2139 sum_trbs_for_length = true; 2140 break; 2141 case COMP_BANDWIDTH_OVERRUN_ERROR: 2142 frame->status = -ECOMM; 2143 break; 2144 case COMP_ISOCH_BUFFER_OVERRUN: 2145 case COMP_BABBLE_DETECTED_ERROR: 2146 frame->status = -EOVERFLOW; 2147 break; 2148 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2149 case COMP_STALL_ERROR: 2150 frame->status = -EPROTO; 2151 break; 2152 case COMP_USB_TRANSACTION_ERROR: 2153 frame->status = -EPROTO; 2154 if (ep_trb != td->last_trb) 2155 return 0; 2156 break; 2157 case COMP_STOPPED: 2158 sum_trbs_for_length = true; 2159 break; 2160 case COMP_STOPPED_SHORT_PACKET: 2161 /* field normally containing residue now contains tranferred */ 2162 frame->status = short_framestatus; 2163 requested = remaining; 2164 break; 2165 case COMP_STOPPED_LENGTH_INVALID: 2166 requested = 0; 2167 remaining = 0; 2168 break; 2169 default: 2170 sum_trbs_for_length = true; 2171 frame->status = -1; 2172 break; 2173 } 2174 2175 if (sum_trbs_for_length) 2176 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2177 ep_trb_len - remaining; 2178 else 2179 frame->actual_length = requested; 2180 2181 td->urb->actual_length += frame->actual_length; 2182 2183 return finish_td(xhci, td, ep_trb, event, ep, status); 2184 } 2185 2186 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2187 struct xhci_transfer_event *event, 2188 struct xhci_virt_ep *ep, int *status) 2189 { 2190 struct xhci_ring *ep_ring; 2191 struct urb_priv *urb_priv; 2192 struct usb_iso_packet_descriptor *frame; 2193 int idx; 2194 2195 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2196 urb_priv = td->urb->hcpriv; 2197 idx = urb_priv->num_tds_done; 2198 frame = &td->urb->iso_frame_desc[idx]; 2199 2200 /* The transfer is partly done. */ 2201 frame->status = -EXDEV; 2202 2203 /* calc actual length */ 2204 frame->actual_length = 0; 2205 2206 /* Update ring dequeue pointer */ 2207 while (ep_ring->dequeue != td->last_trb) 2208 inc_deq(xhci, ep_ring); 2209 inc_deq(xhci, ep_ring); 2210 2211 return xhci_td_cleanup(xhci, td, ep_ring, status); 2212 } 2213 2214 /* 2215 * Process bulk and interrupt tds, update urb status and actual_length. 2216 */ 2217 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2218 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2219 struct xhci_virt_ep *ep, int *status) 2220 { 2221 struct xhci_ring *ep_ring; 2222 u32 trb_comp_code; 2223 u32 remaining, requested, ep_trb_len; 2224 2225 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2226 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2227 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2228 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2229 requested = td->urb->transfer_buffer_length; 2230 2231 switch (trb_comp_code) { 2232 case COMP_SUCCESS: 2233 /* handle success with untransferred data as short packet */ 2234 if (ep_trb != td->last_trb || remaining) { 2235 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2236 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2237 td->urb->ep->desc.bEndpointAddress, 2238 requested, remaining); 2239 } 2240 *status = 0; 2241 break; 2242 case COMP_SHORT_PACKET: 2243 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2244 td->urb->ep->desc.bEndpointAddress, 2245 requested, remaining); 2246 *status = 0; 2247 break; 2248 case COMP_STOPPED_SHORT_PACKET: 2249 td->urb->actual_length = remaining; 2250 goto finish_td; 2251 case COMP_STOPPED_LENGTH_INVALID: 2252 /* stopped on ep trb with invalid length, exclude it */ 2253 ep_trb_len = 0; 2254 remaining = 0; 2255 break; 2256 default: 2257 /* do nothing */ 2258 break; 2259 } 2260 2261 if (ep_trb == td->last_trb) 2262 td->urb->actual_length = requested - remaining; 2263 else 2264 td->urb->actual_length = 2265 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2266 ep_trb_len - remaining; 2267 finish_td: 2268 if (remaining > requested) { 2269 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2270 remaining); 2271 td->urb->actual_length = 0; 2272 } 2273 return finish_td(xhci, td, ep_trb, event, ep, status); 2274 } 2275 2276 /* 2277 * If this function returns an error condition, it means it got a Transfer 2278 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2279 * At this point, the host controller is probably hosed and should be reset. 2280 */ 2281 static int handle_tx_event(struct xhci_hcd *xhci, 2282 struct xhci_transfer_event *event) 2283 { 2284 struct xhci_virt_device *xdev; 2285 struct xhci_virt_ep *ep; 2286 struct xhci_ring *ep_ring; 2287 unsigned int slot_id; 2288 int ep_index; 2289 struct xhci_td *td = NULL; 2290 dma_addr_t ep_trb_dma; 2291 struct xhci_segment *ep_seg; 2292 union xhci_trb *ep_trb; 2293 int status = -EINPROGRESS; 2294 struct xhci_ep_ctx *ep_ctx; 2295 struct list_head *tmp; 2296 u32 trb_comp_code; 2297 int td_num = 0; 2298 bool handling_skipped_tds = false; 2299 2300 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2301 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2302 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2303 ep_trb_dma = le64_to_cpu(event->buffer); 2304 2305 xdev = xhci->devs[slot_id]; 2306 if (!xdev) { 2307 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2308 slot_id); 2309 goto err_out; 2310 } 2311 2312 ep = &xdev->eps[ep_index]; 2313 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2314 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2315 2316 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2317 xhci_err(xhci, 2318 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2319 slot_id, ep_index); 2320 goto err_out; 2321 } 2322 2323 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2324 if (!ep_ring) { 2325 switch (trb_comp_code) { 2326 case COMP_STALL_ERROR: 2327 case COMP_USB_TRANSACTION_ERROR: 2328 case COMP_INVALID_STREAM_TYPE_ERROR: 2329 case COMP_INVALID_STREAM_ID_ERROR: 2330 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2331 NULL, NULL, EP_SOFT_RESET); 2332 goto cleanup; 2333 case COMP_RING_UNDERRUN: 2334 case COMP_RING_OVERRUN: 2335 goto cleanup; 2336 default: 2337 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2338 slot_id, ep_index); 2339 goto err_out; 2340 } 2341 } 2342 2343 /* Count current td numbers if ep->skip is set */ 2344 if (ep->skip) { 2345 list_for_each(tmp, &ep_ring->td_list) 2346 td_num++; 2347 } 2348 2349 /* Look for common error cases */ 2350 switch (trb_comp_code) { 2351 /* Skip codes that require special handling depending on 2352 * transfer type 2353 */ 2354 case COMP_SUCCESS: 2355 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2356 break; 2357 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2358 trb_comp_code = COMP_SHORT_PACKET; 2359 else 2360 xhci_warn_ratelimited(xhci, 2361 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2362 slot_id, ep_index); 2363 case COMP_SHORT_PACKET: 2364 break; 2365 /* Completion codes for endpoint stopped state */ 2366 case COMP_STOPPED: 2367 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2368 slot_id, ep_index); 2369 break; 2370 case COMP_STOPPED_LENGTH_INVALID: 2371 xhci_dbg(xhci, 2372 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2373 slot_id, ep_index); 2374 break; 2375 case COMP_STOPPED_SHORT_PACKET: 2376 xhci_dbg(xhci, 2377 "Stopped with short packet transfer detected for slot %u ep %u\n", 2378 slot_id, ep_index); 2379 break; 2380 /* Completion codes for endpoint halted state */ 2381 case COMP_STALL_ERROR: 2382 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2383 ep_index); 2384 ep->ep_state |= EP_HALTED; 2385 status = -EPIPE; 2386 break; 2387 case COMP_SPLIT_TRANSACTION_ERROR: 2388 case COMP_USB_TRANSACTION_ERROR: 2389 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2390 slot_id, ep_index); 2391 status = -EPROTO; 2392 break; 2393 case COMP_BABBLE_DETECTED_ERROR: 2394 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2395 slot_id, ep_index); 2396 status = -EOVERFLOW; 2397 break; 2398 /* Completion codes for endpoint error state */ 2399 case COMP_TRB_ERROR: 2400 xhci_warn(xhci, 2401 "WARN: TRB error for slot %u ep %u on endpoint\n", 2402 slot_id, ep_index); 2403 status = -EILSEQ; 2404 break; 2405 /* completion codes not indicating endpoint state change */ 2406 case COMP_DATA_BUFFER_ERROR: 2407 xhci_warn(xhci, 2408 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2409 slot_id, ep_index); 2410 status = -ENOSR; 2411 break; 2412 case COMP_BANDWIDTH_OVERRUN_ERROR: 2413 xhci_warn(xhci, 2414 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2415 slot_id, ep_index); 2416 break; 2417 case COMP_ISOCH_BUFFER_OVERRUN: 2418 xhci_warn(xhci, 2419 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2420 slot_id, ep_index); 2421 break; 2422 case COMP_RING_UNDERRUN: 2423 /* 2424 * When the Isoch ring is empty, the xHC will generate 2425 * a Ring Overrun Event for IN Isoch endpoint or Ring 2426 * Underrun Event for OUT Isoch endpoint. 2427 */ 2428 xhci_dbg(xhci, "underrun event on endpoint\n"); 2429 if (!list_empty(&ep_ring->td_list)) 2430 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2431 "still with TDs queued?\n", 2432 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2433 ep_index); 2434 goto cleanup; 2435 case COMP_RING_OVERRUN: 2436 xhci_dbg(xhci, "overrun event on endpoint\n"); 2437 if (!list_empty(&ep_ring->td_list)) 2438 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2439 "still with TDs queued?\n", 2440 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2441 ep_index); 2442 goto cleanup; 2443 case COMP_MISSED_SERVICE_ERROR: 2444 /* 2445 * When encounter missed service error, one or more isoc tds 2446 * may be missed by xHC. 2447 * Set skip flag of the ep_ring; Complete the missed tds as 2448 * short transfer when process the ep_ring next time. 2449 */ 2450 ep->skip = true; 2451 xhci_dbg(xhci, 2452 "Miss service interval error for slot %u ep %u, set skip flag\n", 2453 slot_id, ep_index); 2454 goto cleanup; 2455 case COMP_NO_PING_RESPONSE_ERROR: 2456 ep->skip = true; 2457 xhci_dbg(xhci, 2458 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2459 slot_id, ep_index); 2460 goto cleanup; 2461 2462 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2463 /* needs disable slot command to recover */ 2464 xhci_warn(xhci, 2465 "WARN: detect an incompatible device for slot %u ep %u", 2466 slot_id, ep_index); 2467 status = -EPROTO; 2468 break; 2469 default: 2470 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2471 status = 0; 2472 break; 2473 } 2474 xhci_warn(xhci, 2475 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2476 trb_comp_code, slot_id, ep_index); 2477 goto cleanup; 2478 } 2479 2480 do { 2481 /* This TRB should be in the TD at the head of this ring's 2482 * TD list. 2483 */ 2484 if (list_empty(&ep_ring->td_list)) { 2485 /* 2486 * A stopped endpoint may generate an extra completion 2487 * event if the device was suspended. Don't print 2488 * warnings. 2489 */ 2490 if (!(trb_comp_code == COMP_STOPPED || 2491 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2492 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2493 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2494 ep_index); 2495 } 2496 if (ep->skip) { 2497 ep->skip = false; 2498 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2499 slot_id, ep_index); 2500 } 2501 goto cleanup; 2502 } 2503 2504 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2505 if (ep->skip && td_num == 0) { 2506 ep->skip = false; 2507 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2508 slot_id, ep_index); 2509 goto cleanup; 2510 } 2511 2512 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2513 td_list); 2514 if (ep->skip) 2515 td_num--; 2516 2517 /* Is this a TRB in the currently executing TD? */ 2518 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2519 td->last_trb, ep_trb_dma, false); 2520 2521 /* 2522 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2523 * is not in the current TD pointed by ep_ring->dequeue because 2524 * that the hardware dequeue pointer still at the previous TRB 2525 * of the current TD. The previous TRB maybe a Link TD or the 2526 * last TRB of the previous TD. The command completion handle 2527 * will take care the rest. 2528 */ 2529 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2530 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2531 goto cleanup; 2532 } 2533 2534 if (!ep_seg) { 2535 if (!ep->skip || 2536 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2537 /* Some host controllers give a spurious 2538 * successful event after a short transfer. 2539 * Ignore it. 2540 */ 2541 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2542 ep_ring->last_td_was_short) { 2543 ep_ring->last_td_was_short = false; 2544 goto cleanup; 2545 } 2546 /* HC is busted, give up! */ 2547 xhci_err(xhci, 2548 "ERROR Transfer event TRB DMA ptr not " 2549 "part of current TD ep_index %d " 2550 "comp_code %u\n", ep_index, 2551 trb_comp_code); 2552 trb_in_td(xhci, ep_ring->deq_seg, 2553 ep_ring->dequeue, td->last_trb, 2554 ep_trb_dma, true); 2555 return -ESHUTDOWN; 2556 } 2557 2558 skip_isoc_td(xhci, td, event, ep, &status); 2559 goto cleanup; 2560 } 2561 if (trb_comp_code == COMP_SHORT_PACKET) 2562 ep_ring->last_td_was_short = true; 2563 else 2564 ep_ring->last_td_was_short = false; 2565 2566 if (ep->skip) { 2567 xhci_dbg(xhci, 2568 "Found td. Clear skip flag for slot %u ep %u.\n", 2569 slot_id, ep_index); 2570 ep->skip = false; 2571 } 2572 2573 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2574 sizeof(*ep_trb)]; 2575 2576 trace_xhci_handle_transfer(ep_ring, 2577 (struct xhci_generic_trb *) ep_trb); 2578 2579 /* 2580 * No-op TRB should not trigger interrupts. 2581 * If ep_trb is a no-op TRB, it means the 2582 * corresponding TD has been cancelled. Just ignore 2583 * the TD. 2584 */ 2585 if (trb_is_noop(ep_trb)) { 2586 xhci_dbg(xhci, 2587 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n", 2588 slot_id, ep_index); 2589 goto cleanup; 2590 } 2591 2592 /* update the urb's actual_length and give back to the core */ 2593 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2594 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2595 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2596 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2597 else 2598 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2599 &status); 2600 cleanup: 2601 handling_skipped_tds = ep->skip && 2602 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2603 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2604 2605 /* 2606 * Do not update event ring dequeue pointer if we're in a loop 2607 * processing missed tds. 2608 */ 2609 if (!handling_skipped_tds) 2610 inc_deq(xhci, xhci->event_ring); 2611 2612 /* 2613 * If ep->skip is set, it means there are missed tds on the 2614 * endpoint ring need to take care of. 2615 * Process them as short transfer until reach the td pointed by 2616 * the event. 2617 */ 2618 } while (handling_skipped_tds); 2619 2620 return 0; 2621 2622 err_out: 2623 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2624 (unsigned long long) xhci_trb_virt_to_dma( 2625 xhci->event_ring->deq_seg, 2626 xhci->event_ring->dequeue), 2627 lower_32_bits(le64_to_cpu(event->buffer)), 2628 upper_32_bits(le64_to_cpu(event->buffer)), 2629 le32_to_cpu(event->transfer_len), 2630 le32_to_cpu(event->flags)); 2631 return -ENODEV; 2632 } 2633 2634 /* 2635 * This function handles all OS-owned events on the event ring. It may drop 2636 * xhci->lock between event processing (e.g. to pass up port status changes). 2637 * Returns >0 for "possibly more events to process" (caller should call again), 2638 * otherwise 0 if done. In future, <0 returns should indicate error code. 2639 */ 2640 static int xhci_handle_event(struct xhci_hcd *xhci) 2641 { 2642 union xhci_trb *event; 2643 int update_ptrs = 1; 2644 int ret; 2645 2646 /* Event ring hasn't been allocated yet. */ 2647 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2648 xhci_err(xhci, "ERROR event ring not ready\n"); 2649 return -ENOMEM; 2650 } 2651 2652 event = xhci->event_ring->dequeue; 2653 /* Does the HC or OS own the TRB? */ 2654 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2655 xhci->event_ring->cycle_state) 2656 return 0; 2657 2658 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2659 2660 /* 2661 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2662 * speculative reads of the event's flags/data below. 2663 */ 2664 rmb(); 2665 /* FIXME: Handle more event types. */ 2666 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2667 case TRB_TYPE(TRB_COMPLETION): 2668 handle_cmd_completion(xhci, &event->event_cmd); 2669 break; 2670 case TRB_TYPE(TRB_PORT_STATUS): 2671 handle_port_status(xhci, event); 2672 update_ptrs = 0; 2673 break; 2674 case TRB_TYPE(TRB_TRANSFER): 2675 ret = handle_tx_event(xhci, &event->trans_event); 2676 if (ret >= 0) 2677 update_ptrs = 0; 2678 break; 2679 case TRB_TYPE(TRB_DEV_NOTE): 2680 handle_device_notification(xhci, event); 2681 break; 2682 default: 2683 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2684 TRB_TYPE(48)) 2685 handle_vendor_event(xhci, event); 2686 else 2687 xhci_warn(xhci, "ERROR unknown event type %d\n", 2688 TRB_FIELD_TO_TYPE( 2689 le32_to_cpu(event->event_cmd.flags))); 2690 } 2691 /* Any of the above functions may drop and re-acquire the lock, so check 2692 * to make sure a watchdog timer didn't mark the host as non-responsive. 2693 */ 2694 if (xhci->xhc_state & XHCI_STATE_DYING) { 2695 xhci_dbg(xhci, "xHCI host dying, returning from " 2696 "event handler.\n"); 2697 return 0; 2698 } 2699 2700 if (update_ptrs) 2701 /* Update SW event ring dequeue pointer */ 2702 inc_deq(xhci, xhci->event_ring); 2703 2704 /* Are there more items on the event ring? Caller will call us again to 2705 * check. 2706 */ 2707 return 1; 2708 } 2709 2710 /* 2711 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2712 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2713 * indicators of an event TRB error, but we check the status *first* to be safe. 2714 */ 2715 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2716 { 2717 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2718 union xhci_trb *event_ring_deq; 2719 irqreturn_t ret = IRQ_NONE; 2720 unsigned long flags; 2721 dma_addr_t deq; 2722 u64 temp_64; 2723 u32 status; 2724 2725 spin_lock_irqsave(&xhci->lock, flags); 2726 /* Check if the xHC generated the interrupt, or the irq is shared */ 2727 status = readl(&xhci->op_regs->status); 2728 if (status == ~(u32)0) { 2729 xhci_hc_died(xhci); 2730 ret = IRQ_HANDLED; 2731 goto out; 2732 } 2733 2734 if (!(status & STS_EINT)) 2735 goto out; 2736 2737 if (status & STS_FATAL) { 2738 xhci_warn(xhci, "WARNING: Host System Error\n"); 2739 xhci_halt(xhci); 2740 ret = IRQ_HANDLED; 2741 goto out; 2742 } 2743 2744 /* 2745 * Clear the op reg interrupt status first, 2746 * so we can receive interrupts from other MSI-X interrupters. 2747 * Write 1 to clear the interrupt status. 2748 */ 2749 status |= STS_EINT; 2750 writel(status, &xhci->op_regs->status); 2751 2752 if (!hcd->msi_enabled) { 2753 u32 irq_pending; 2754 irq_pending = readl(&xhci->ir_set->irq_pending); 2755 irq_pending |= IMAN_IP; 2756 writel(irq_pending, &xhci->ir_set->irq_pending); 2757 } 2758 2759 if (xhci->xhc_state & XHCI_STATE_DYING || 2760 xhci->xhc_state & XHCI_STATE_HALTED) { 2761 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2762 "Shouldn't IRQs be disabled?\n"); 2763 /* Clear the event handler busy flag (RW1C); 2764 * the event ring should be empty. 2765 */ 2766 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2767 xhci_write_64(xhci, temp_64 | ERST_EHB, 2768 &xhci->ir_set->erst_dequeue); 2769 ret = IRQ_HANDLED; 2770 goto out; 2771 } 2772 2773 event_ring_deq = xhci->event_ring->dequeue; 2774 /* FIXME this should be a delayed service routine 2775 * that clears the EHB. 2776 */ 2777 while (xhci_handle_event(xhci) > 0) {} 2778 2779 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2780 /* If necessary, update the HW's version of the event ring deq ptr. */ 2781 if (event_ring_deq != xhci->event_ring->dequeue) { 2782 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2783 xhci->event_ring->dequeue); 2784 if (deq == 0) 2785 xhci_warn(xhci, "WARN something wrong with SW event " 2786 "ring dequeue ptr.\n"); 2787 /* Update HC event ring dequeue pointer */ 2788 temp_64 &= ERST_PTR_MASK; 2789 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2790 } 2791 2792 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2793 temp_64 |= ERST_EHB; 2794 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2795 ret = IRQ_HANDLED; 2796 2797 out: 2798 spin_unlock_irqrestore(&xhci->lock, flags); 2799 2800 return ret; 2801 } 2802 2803 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2804 { 2805 return xhci_irq(hcd); 2806 } 2807 2808 /**** Endpoint Ring Operations ****/ 2809 2810 /* 2811 * Generic function for queueing a TRB on a ring. 2812 * The caller must have checked to make sure there's room on the ring. 2813 * 2814 * @more_trbs_coming: Will you enqueue more TRBs before calling 2815 * prepare_transfer()? 2816 */ 2817 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2818 bool more_trbs_coming, 2819 u32 field1, u32 field2, u32 field3, u32 field4) 2820 { 2821 struct xhci_generic_trb *trb; 2822 2823 trb = &ring->enqueue->generic; 2824 trb->field[0] = cpu_to_le32(field1); 2825 trb->field[1] = cpu_to_le32(field2); 2826 trb->field[2] = cpu_to_le32(field3); 2827 trb->field[3] = cpu_to_le32(field4); 2828 2829 trace_xhci_queue_trb(ring, trb); 2830 2831 inc_enq(xhci, ring, more_trbs_coming); 2832 } 2833 2834 /* 2835 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2836 * FIXME allocate segments if the ring is full. 2837 */ 2838 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2839 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2840 { 2841 unsigned int num_trbs_needed; 2842 2843 /* Make sure the endpoint has been added to xHC schedule */ 2844 switch (ep_state) { 2845 case EP_STATE_DISABLED: 2846 /* 2847 * USB core changed config/interfaces without notifying us, 2848 * or hardware is reporting the wrong state. 2849 */ 2850 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2851 return -ENOENT; 2852 case EP_STATE_ERROR: 2853 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2854 /* FIXME event handling code for error needs to clear it */ 2855 /* XXX not sure if this should be -ENOENT or not */ 2856 return -EINVAL; 2857 case EP_STATE_HALTED: 2858 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2859 case EP_STATE_STOPPED: 2860 case EP_STATE_RUNNING: 2861 break; 2862 default: 2863 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2864 /* 2865 * FIXME issue Configure Endpoint command to try to get the HC 2866 * back into a known state. 2867 */ 2868 return -EINVAL; 2869 } 2870 2871 while (1) { 2872 if (room_on_ring(xhci, ep_ring, num_trbs)) 2873 break; 2874 2875 if (ep_ring == xhci->cmd_ring) { 2876 xhci_err(xhci, "Do not support expand command ring\n"); 2877 return -ENOMEM; 2878 } 2879 2880 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2881 "ERROR no room on ep ring, try ring expansion"); 2882 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2883 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2884 mem_flags)) { 2885 xhci_err(xhci, "Ring expansion failed\n"); 2886 return -ENOMEM; 2887 } 2888 } 2889 2890 while (trb_is_link(ep_ring->enqueue)) { 2891 /* If we're not dealing with 0.95 hardware or isoc rings 2892 * on AMD 0.96 host, clear the chain bit. 2893 */ 2894 if (!xhci_link_trb_quirk(xhci) && 2895 !(ep_ring->type == TYPE_ISOC && 2896 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2897 ep_ring->enqueue->link.control &= 2898 cpu_to_le32(~TRB_CHAIN); 2899 else 2900 ep_ring->enqueue->link.control |= 2901 cpu_to_le32(TRB_CHAIN); 2902 2903 wmb(); 2904 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2905 2906 /* Toggle the cycle bit after the last ring segment. */ 2907 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2908 ep_ring->cycle_state ^= 1; 2909 2910 ep_ring->enq_seg = ep_ring->enq_seg->next; 2911 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2912 } 2913 return 0; 2914 } 2915 2916 static int prepare_transfer(struct xhci_hcd *xhci, 2917 struct xhci_virt_device *xdev, 2918 unsigned int ep_index, 2919 unsigned int stream_id, 2920 unsigned int num_trbs, 2921 struct urb *urb, 2922 unsigned int td_index, 2923 gfp_t mem_flags) 2924 { 2925 int ret; 2926 struct urb_priv *urb_priv; 2927 struct xhci_td *td; 2928 struct xhci_ring *ep_ring; 2929 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2930 2931 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2932 if (!ep_ring) { 2933 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2934 stream_id); 2935 return -EINVAL; 2936 } 2937 2938 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2939 num_trbs, mem_flags); 2940 if (ret) 2941 return ret; 2942 2943 urb_priv = urb->hcpriv; 2944 td = &urb_priv->td[td_index]; 2945 2946 INIT_LIST_HEAD(&td->td_list); 2947 INIT_LIST_HEAD(&td->cancelled_td_list); 2948 2949 if (td_index == 0) { 2950 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2951 if (unlikely(ret)) 2952 return ret; 2953 } 2954 2955 td->urb = urb; 2956 /* Add this TD to the tail of the endpoint ring's TD list */ 2957 list_add_tail(&td->td_list, &ep_ring->td_list); 2958 td->start_seg = ep_ring->enq_seg; 2959 td->first_trb = ep_ring->enqueue; 2960 2961 return 0; 2962 } 2963 2964 static unsigned int count_trbs(u64 addr, u64 len) 2965 { 2966 unsigned int num_trbs; 2967 2968 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2969 TRB_MAX_BUFF_SIZE); 2970 if (num_trbs == 0) 2971 num_trbs++; 2972 2973 return num_trbs; 2974 } 2975 2976 static inline unsigned int count_trbs_needed(struct urb *urb) 2977 { 2978 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2979 } 2980 2981 static unsigned int count_sg_trbs_needed(struct urb *urb) 2982 { 2983 struct scatterlist *sg; 2984 unsigned int i, len, full_len, num_trbs = 0; 2985 2986 full_len = urb->transfer_buffer_length; 2987 2988 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2989 len = sg_dma_len(sg); 2990 num_trbs += count_trbs(sg_dma_address(sg), len); 2991 len = min_t(unsigned int, len, full_len); 2992 full_len -= len; 2993 if (full_len == 0) 2994 break; 2995 } 2996 2997 return num_trbs; 2998 } 2999 3000 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3001 { 3002 u64 addr, len; 3003 3004 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3005 len = urb->iso_frame_desc[i].length; 3006 3007 return count_trbs(addr, len); 3008 } 3009 3010 static void check_trb_math(struct urb *urb, int running_total) 3011 { 3012 if (unlikely(running_total != urb->transfer_buffer_length)) 3013 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3014 "queued %#x (%d), asked for %#x (%d)\n", 3015 __func__, 3016 urb->ep->desc.bEndpointAddress, 3017 running_total, running_total, 3018 urb->transfer_buffer_length, 3019 urb->transfer_buffer_length); 3020 } 3021 3022 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3023 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3024 struct xhci_generic_trb *start_trb) 3025 { 3026 /* 3027 * Pass all the TRBs to the hardware at once and make sure this write 3028 * isn't reordered. 3029 */ 3030 wmb(); 3031 if (start_cycle) 3032 start_trb->field[3] |= cpu_to_le32(start_cycle); 3033 else 3034 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3035 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3036 } 3037 3038 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3039 struct xhci_ep_ctx *ep_ctx) 3040 { 3041 int xhci_interval; 3042 int ep_interval; 3043 3044 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3045 ep_interval = urb->interval; 3046 3047 /* Convert to microframes */ 3048 if (urb->dev->speed == USB_SPEED_LOW || 3049 urb->dev->speed == USB_SPEED_FULL) 3050 ep_interval *= 8; 3051 3052 /* FIXME change this to a warning and a suggestion to use the new API 3053 * to set the polling interval (once the API is added). 3054 */ 3055 if (xhci_interval != ep_interval) { 3056 dev_dbg_ratelimited(&urb->dev->dev, 3057 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3058 ep_interval, ep_interval == 1 ? "" : "s", 3059 xhci_interval, xhci_interval == 1 ? "" : "s"); 3060 urb->interval = xhci_interval; 3061 /* Convert back to frames for LS/FS devices */ 3062 if (urb->dev->speed == USB_SPEED_LOW || 3063 urb->dev->speed == USB_SPEED_FULL) 3064 urb->interval /= 8; 3065 } 3066 } 3067 3068 /* 3069 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3070 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3071 * (comprised of sg list entries) can take several service intervals to 3072 * transmit. 3073 */ 3074 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3075 struct urb *urb, int slot_id, unsigned int ep_index) 3076 { 3077 struct xhci_ep_ctx *ep_ctx; 3078 3079 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3080 check_interval(xhci, urb, ep_ctx); 3081 3082 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3083 } 3084 3085 /* 3086 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3087 * packets remaining in the TD (*not* including this TRB). 3088 * 3089 * Total TD packet count = total_packet_count = 3090 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3091 * 3092 * Packets transferred up to and including this TRB = packets_transferred = 3093 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3094 * 3095 * TD size = total_packet_count - packets_transferred 3096 * 3097 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3098 * including this TRB, right shifted by 10 3099 * 3100 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3101 * This is taken care of in the TRB_TD_SIZE() macro 3102 * 3103 * The last TRB in a TD must have the TD size set to zero. 3104 */ 3105 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3106 int trb_buff_len, unsigned int td_total_len, 3107 struct urb *urb, bool more_trbs_coming) 3108 { 3109 u32 maxp, total_packet_count; 3110 3111 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3112 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3113 return ((td_total_len - transferred) >> 10); 3114 3115 /* One TRB with a zero-length data packet. */ 3116 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3117 trb_buff_len == td_total_len) 3118 return 0; 3119 3120 /* for MTK xHCI, TD size doesn't include this TRB */ 3121 if (xhci->quirks & XHCI_MTK_HOST) 3122 trb_buff_len = 0; 3123 3124 maxp = usb_endpoint_maxp(&urb->ep->desc); 3125 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3126 3127 /* Queueing functions don't count the current TRB into transferred */ 3128 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3129 } 3130 3131 3132 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3133 u32 *trb_buff_len, struct xhci_segment *seg) 3134 { 3135 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3136 unsigned int unalign; 3137 unsigned int max_pkt; 3138 u32 new_buff_len; 3139 3140 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3141 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3142 3143 /* we got lucky, last normal TRB data on segment is packet aligned */ 3144 if (unalign == 0) 3145 return 0; 3146 3147 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3148 unalign, *trb_buff_len); 3149 3150 /* is the last nornal TRB alignable by splitting it */ 3151 if (*trb_buff_len > unalign) { 3152 *trb_buff_len -= unalign; 3153 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3154 return 0; 3155 } 3156 3157 /* 3158 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3159 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3160 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3161 */ 3162 new_buff_len = max_pkt - (enqd_len % max_pkt); 3163 3164 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3165 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3166 3167 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3168 if (usb_urb_dir_out(urb)) { 3169 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3170 seg->bounce_buf, new_buff_len, enqd_len); 3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3172 max_pkt, DMA_TO_DEVICE); 3173 } else { 3174 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3175 max_pkt, DMA_FROM_DEVICE); 3176 } 3177 3178 if (dma_mapping_error(dev, seg->bounce_dma)) { 3179 /* try without aligning. Some host controllers survive */ 3180 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3181 return 0; 3182 } 3183 *trb_buff_len = new_buff_len; 3184 seg->bounce_len = new_buff_len; 3185 seg->bounce_offs = enqd_len; 3186 3187 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3188 3189 return 1; 3190 } 3191 3192 /* This is very similar to what ehci-q.c qtd_fill() does */ 3193 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3194 struct urb *urb, int slot_id, unsigned int ep_index) 3195 { 3196 struct xhci_ring *ring; 3197 struct urb_priv *urb_priv; 3198 struct xhci_td *td; 3199 struct xhci_generic_trb *start_trb; 3200 struct scatterlist *sg = NULL; 3201 bool more_trbs_coming = true; 3202 bool need_zero_pkt = false; 3203 bool first_trb = true; 3204 unsigned int num_trbs; 3205 unsigned int start_cycle, num_sgs = 0; 3206 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3207 int sent_len, ret; 3208 u32 field, length_field, remainder; 3209 u64 addr, send_addr; 3210 3211 ring = xhci_urb_to_transfer_ring(xhci, urb); 3212 if (!ring) 3213 return -EINVAL; 3214 3215 full_len = urb->transfer_buffer_length; 3216 /* If we have scatter/gather list, we use it. */ 3217 if (urb->num_sgs) { 3218 num_sgs = urb->num_mapped_sgs; 3219 sg = urb->sg; 3220 addr = (u64) sg_dma_address(sg); 3221 block_len = sg_dma_len(sg); 3222 num_trbs = count_sg_trbs_needed(urb); 3223 } else { 3224 num_trbs = count_trbs_needed(urb); 3225 addr = (u64) urb->transfer_dma; 3226 block_len = full_len; 3227 } 3228 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3229 ep_index, urb->stream_id, 3230 num_trbs, urb, 0, mem_flags); 3231 if (unlikely(ret < 0)) 3232 return ret; 3233 3234 urb_priv = urb->hcpriv; 3235 3236 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3237 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3238 need_zero_pkt = true; 3239 3240 td = &urb_priv->td[0]; 3241 3242 /* 3243 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3244 * until we've finished creating all the other TRBs. The ring's cycle 3245 * state may change as we enqueue the other TRBs, so save it too. 3246 */ 3247 start_trb = &ring->enqueue->generic; 3248 start_cycle = ring->cycle_state; 3249 send_addr = addr; 3250 3251 /* Queue the TRBs, even if they are zero-length */ 3252 for (enqd_len = 0; first_trb || enqd_len < full_len; 3253 enqd_len += trb_buff_len) { 3254 field = TRB_TYPE(TRB_NORMAL); 3255 3256 /* TRB buffer should not cross 64KB boundaries */ 3257 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3258 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3259 3260 if (enqd_len + trb_buff_len > full_len) 3261 trb_buff_len = full_len - enqd_len; 3262 3263 /* Don't change the cycle bit of the first TRB until later */ 3264 if (first_trb) { 3265 first_trb = false; 3266 if (start_cycle == 0) 3267 field |= TRB_CYCLE; 3268 } else 3269 field |= ring->cycle_state; 3270 3271 /* Chain all the TRBs together; clear the chain bit in the last 3272 * TRB to indicate it's the last TRB in the chain. 3273 */ 3274 if (enqd_len + trb_buff_len < full_len) { 3275 field |= TRB_CHAIN; 3276 if (trb_is_link(ring->enqueue + 1)) { 3277 if (xhci_align_td(xhci, urb, enqd_len, 3278 &trb_buff_len, 3279 ring->enq_seg)) { 3280 send_addr = ring->enq_seg->bounce_dma; 3281 /* assuming TD won't span 2 segs */ 3282 td->bounce_seg = ring->enq_seg; 3283 } 3284 } 3285 } 3286 if (enqd_len + trb_buff_len >= full_len) { 3287 field &= ~TRB_CHAIN; 3288 field |= TRB_IOC; 3289 more_trbs_coming = false; 3290 td->last_trb = ring->enqueue; 3291 } 3292 3293 /* Only set interrupt on short packet for IN endpoints */ 3294 if (usb_urb_dir_in(urb)) 3295 field |= TRB_ISP; 3296 3297 /* Set the TRB length, TD size, and interrupter fields. */ 3298 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3299 full_len, urb, more_trbs_coming); 3300 3301 length_field = TRB_LEN(trb_buff_len) | 3302 TRB_TD_SIZE(remainder) | 3303 TRB_INTR_TARGET(0); 3304 3305 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3306 lower_32_bits(send_addr), 3307 upper_32_bits(send_addr), 3308 length_field, 3309 field); 3310 3311 addr += trb_buff_len; 3312 sent_len = trb_buff_len; 3313 3314 while (sg && sent_len >= block_len) { 3315 /* New sg entry */ 3316 --num_sgs; 3317 sent_len -= block_len; 3318 if (num_sgs != 0) { 3319 sg = sg_next(sg); 3320 block_len = sg_dma_len(sg); 3321 addr = (u64) sg_dma_address(sg); 3322 addr += sent_len; 3323 } 3324 } 3325 block_len -= sent_len; 3326 send_addr = addr; 3327 } 3328 3329 if (need_zero_pkt) { 3330 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3331 ep_index, urb->stream_id, 3332 1, urb, 1, mem_flags); 3333 urb_priv->td[1].last_trb = ring->enqueue; 3334 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3335 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3336 } 3337 3338 check_trb_math(urb, enqd_len); 3339 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3340 start_cycle, start_trb); 3341 return 0; 3342 } 3343 3344 /* Caller must have locked xhci->lock */ 3345 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3346 struct urb *urb, int slot_id, unsigned int ep_index) 3347 { 3348 struct xhci_ring *ep_ring; 3349 int num_trbs; 3350 int ret; 3351 struct usb_ctrlrequest *setup; 3352 struct xhci_generic_trb *start_trb; 3353 int start_cycle; 3354 u32 field; 3355 struct urb_priv *urb_priv; 3356 struct xhci_td *td; 3357 3358 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3359 if (!ep_ring) 3360 return -EINVAL; 3361 3362 /* 3363 * Need to copy setup packet into setup TRB, so we can't use the setup 3364 * DMA address. 3365 */ 3366 if (!urb->setup_packet) 3367 return -EINVAL; 3368 3369 /* 1 TRB for setup, 1 for status */ 3370 num_trbs = 2; 3371 /* 3372 * Don't need to check if we need additional event data and normal TRBs, 3373 * since data in control transfers will never get bigger than 16MB 3374 * XXX: can we get a buffer that crosses 64KB boundaries? 3375 */ 3376 if (urb->transfer_buffer_length > 0) 3377 num_trbs++; 3378 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3379 ep_index, urb->stream_id, 3380 num_trbs, urb, 0, mem_flags); 3381 if (ret < 0) 3382 return ret; 3383 3384 urb_priv = urb->hcpriv; 3385 td = &urb_priv->td[0]; 3386 3387 /* 3388 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3389 * until we've finished creating all the other TRBs. The ring's cycle 3390 * state may change as we enqueue the other TRBs, so save it too. 3391 */ 3392 start_trb = &ep_ring->enqueue->generic; 3393 start_cycle = ep_ring->cycle_state; 3394 3395 /* Queue setup TRB - see section 6.4.1.2.1 */ 3396 /* FIXME better way to translate setup_packet into two u32 fields? */ 3397 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3398 field = 0; 3399 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3400 if (start_cycle == 0) 3401 field |= 0x1; 3402 3403 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3404 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3405 if (urb->transfer_buffer_length > 0) { 3406 if (setup->bRequestType & USB_DIR_IN) 3407 field |= TRB_TX_TYPE(TRB_DATA_IN); 3408 else 3409 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3410 } 3411 } 3412 3413 queue_trb(xhci, ep_ring, true, 3414 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3415 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3416 TRB_LEN(8) | TRB_INTR_TARGET(0), 3417 /* Immediate data in pointer */ 3418 field); 3419 3420 /* If there's data, queue data TRBs */ 3421 /* Only set interrupt on short packet for IN endpoints */ 3422 if (usb_urb_dir_in(urb)) 3423 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3424 else 3425 field = TRB_TYPE(TRB_DATA); 3426 3427 if (urb->transfer_buffer_length > 0) { 3428 u32 length_field, remainder; 3429 3430 remainder = xhci_td_remainder(xhci, 0, 3431 urb->transfer_buffer_length, 3432 urb->transfer_buffer_length, 3433 urb, 1); 3434 length_field = TRB_LEN(urb->transfer_buffer_length) | 3435 TRB_TD_SIZE(remainder) | 3436 TRB_INTR_TARGET(0); 3437 if (setup->bRequestType & USB_DIR_IN) 3438 field |= TRB_DIR_IN; 3439 queue_trb(xhci, ep_ring, true, 3440 lower_32_bits(urb->transfer_dma), 3441 upper_32_bits(urb->transfer_dma), 3442 length_field, 3443 field | ep_ring->cycle_state); 3444 } 3445 3446 /* Save the DMA address of the last TRB in the TD */ 3447 td->last_trb = ep_ring->enqueue; 3448 3449 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3450 /* If the device sent data, the status stage is an OUT transfer */ 3451 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3452 field = 0; 3453 else 3454 field = TRB_DIR_IN; 3455 queue_trb(xhci, ep_ring, false, 3456 0, 3457 0, 3458 TRB_INTR_TARGET(0), 3459 /* Event on completion */ 3460 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3461 3462 giveback_first_trb(xhci, slot_id, ep_index, 0, 3463 start_cycle, start_trb); 3464 return 0; 3465 } 3466 3467 /* 3468 * The transfer burst count field of the isochronous TRB defines the number of 3469 * bursts that are required to move all packets in this TD. Only SuperSpeed 3470 * devices can burst up to bMaxBurst number of packets per service interval. 3471 * This field is zero based, meaning a value of zero in the field means one 3472 * burst. Basically, for everything but SuperSpeed devices, this field will be 3473 * zero. Only xHCI 1.0 host controllers support this field. 3474 */ 3475 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3476 struct urb *urb, unsigned int total_packet_count) 3477 { 3478 unsigned int max_burst; 3479 3480 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3481 return 0; 3482 3483 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3484 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3485 } 3486 3487 /* 3488 * Returns the number of packets in the last "burst" of packets. This field is 3489 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3490 * the last burst packet count is equal to the total number of packets in the 3491 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3492 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3493 * contain 1 to (bMaxBurst + 1) packets. 3494 */ 3495 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3496 struct urb *urb, unsigned int total_packet_count) 3497 { 3498 unsigned int max_burst; 3499 unsigned int residue; 3500 3501 if (xhci->hci_version < 0x100) 3502 return 0; 3503 3504 if (urb->dev->speed >= USB_SPEED_SUPER) { 3505 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3506 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3507 residue = total_packet_count % (max_burst + 1); 3508 /* If residue is zero, the last burst contains (max_burst + 1) 3509 * number of packets, but the TLBPC field is zero-based. 3510 */ 3511 if (residue == 0) 3512 return max_burst; 3513 return residue - 1; 3514 } 3515 if (total_packet_count == 0) 3516 return 0; 3517 return total_packet_count - 1; 3518 } 3519 3520 /* 3521 * Calculates Frame ID field of the isochronous TRB identifies the 3522 * target frame that the Interval associated with this Isochronous 3523 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3524 * 3525 * Returns actual frame id on success, negative value on error. 3526 */ 3527 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3528 struct urb *urb, int index) 3529 { 3530 int start_frame, ist, ret = 0; 3531 int start_frame_id, end_frame_id, current_frame_id; 3532 3533 if (urb->dev->speed == USB_SPEED_LOW || 3534 urb->dev->speed == USB_SPEED_FULL) 3535 start_frame = urb->start_frame + index * urb->interval; 3536 else 3537 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3538 3539 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3540 * 3541 * If bit [3] of IST is cleared to '0', software can add a TRB no 3542 * later than IST[2:0] Microframes before that TRB is scheduled to 3543 * be executed. 3544 * If bit [3] of IST is set to '1', software can add a TRB no later 3545 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3546 */ 3547 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3548 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3549 ist <<= 3; 3550 3551 /* Software shall not schedule an Isoch TD with a Frame ID value that 3552 * is less than the Start Frame ID or greater than the End Frame ID, 3553 * where: 3554 * 3555 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3556 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3557 * 3558 * Both the End Frame ID and Start Frame ID values are calculated 3559 * in microframes. When software determines the valid Frame ID value; 3560 * The End Frame ID value should be rounded down to the nearest Frame 3561 * boundary, and the Start Frame ID value should be rounded up to the 3562 * nearest Frame boundary. 3563 */ 3564 current_frame_id = readl(&xhci->run_regs->microframe_index); 3565 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3566 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3567 3568 start_frame &= 0x7ff; 3569 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3570 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3571 3572 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3573 __func__, index, readl(&xhci->run_regs->microframe_index), 3574 start_frame_id, end_frame_id, start_frame); 3575 3576 if (start_frame_id < end_frame_id) { 3577 if (start_frame > end_frame_id || 3578 start_frame < start_frame_id) 3579 ret = -EINVAL; 3580 } else if (start_frame_id > end_frame_id) { 3581 if ((start_frame > end_frame_id && 3582 start_frame < start_frame_id)) 3583 ret = -EINVAL; 3584 } else { 3585 ret = -EINVAL; 3586 } 3587 3588 if (index == 0) { 3589 if (ret == -EINVAL || start_frame == start_frame_id) { 3590 start_frame = start_frame_id + 1; 3591 if (urb->dev->speed == USB_SPEED_LOW || 3592 urb->dev->speed == USB_SPEED_FULL) 3593 urb->start_frame = start_frame; 3594 else 3595 urb->start_frame = start_frame << 3; 3596 ret = 0; 3597 } 3598 } 3599 3600 if (ret) { 3601 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3602 start_frame, current_frame_id, index, 3603 start_frame_id, end_frame_id); 3604 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3605 return ret; 3606 } 3607 3608 return start_frame; 3609 } 3610 3611 /* This is for isoc transfer */ 3612 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3613 struct urb *urb, int slot_id, unsigned int ep_index) 3614 { 3615 struct xhci_ring *ep_ring; 3616 struct urb_priv *urb_priv; 3617 struct xhci_td *td; 3618 int num_tds, trbs_per_td; 3619 struct xhci_generic_trb *start_trb; 3620 bool first_trb; 3621 int start_cycle; 3622 u32 field, length_field; 3623 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3624 u64 start_addr, addr; 3625 int i, j; 3626 bool more_trbs_coming; 3627 struct xhci_virt_ep *xep; 3628 int frame_id; 3629 3630 xep = &xhci->devs[slot_id]->eps[ep_index]; 3631 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3632 3633 num_tds = urb->number_of_packets; 3634 if (num_tds < 1) { 3635 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3636 return -EINVAL; 3637 } 3638 start_addr = (u64) urb->transfer_dma; 3639 start_trb = &ep_ring->enqueue->generic; 3640 start_cycle = ep_ring->cycle_state; 3641 3642 urb_priv = urb->hcpriv; 3643 /* Queue the TRBs for each TD, even if they are zero-length */ 3644 for (i = 0; i < num_tds; i++) { 3645 unsigned int total_pkt_count, max_pkt; 3646 unsigned int burst_count, last_burst_pkt_count; 3647 u32 sia_frame_id; 3648 3649 first_trb = true; 3650 running_total = 0; 3651 addr = start_addr + urb->iso_frame_desc[i].offset; 3652 td_len = urb->iso_frame_desc[i].length; 3653 td_remain_len = td_len; 3654 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3655 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3656 3657 /* A zero-length transfer still involves at least one packet. */ 3658 if (total_pkt_count == 0) 3659 total_pkt_count++; 3660 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3661 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3662 urb, total_pkt_count); 3663 3664 trbs_per_td = count_isoc_trbs_needed(urb, i); 3665 3666 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3667 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3668 if (ret < 0) { 3669 if (i == 0) 3670 return ret; 3671 goto cleanup; 3672 } 3673 td = &urb_priv->td[i]; 3674 3675 /* use SIA as default, if frame id is used overwrite it */ 3676 sia_frame_id = TRB_SIA; 3677 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3678 HCC_CFC(xhci->hcc_params)) { 3679 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3680 if (frame_id >= 0) 3681 sia_frame_id = TRB_FRAME_ID(frame_id); 3682 } 3683 /* 3684 * Set isoc specific data for the first TRB in a TD. 3685 * Prevent HW from getting the TRBs by keeping the cycle state 3686 * inverted in the first TDs isoc TRB. 3687 */ 3688 field = TRB_TYPE(TRB_ISOC) | 3689 TRB_TLBPC(last_burst_pkt_count) | 3690 sia_frame_id | 3691 (i ? ep_ring->cycle_state : !start_cycle); 3692 3693 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3694 if (!xep->use_extended_tbc) 3695 field |= TRB_TBC(burst_count); 3696 3697 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3698 for (j = 0; j < trbs_per_td; j++) { 3699 u32 remainder = 0; 3700 3701 /* only first TRB is isoc, overwrite otherwise */ 3702 if (!first_trb) 3703 field = TRB_TYPE(TRB_NORMAL) | 3704 ep_ring->cycle_state; 3705 3706 /* Only set interrupt on short packet for IN EPs */ 3707 if (usb_urb_dir_in(urb)) 3708 field |= TRB_ISP; 3709 3710 /* Set the chain bit for all except the last TRB */ 3711 if (j < trbs_per_td - 1) { 3712 more_trbs_coming = true; 3713 field |= TRB_CHAIN; 3714 } else { 3715 more_trbs_coming = false; 3716 td->last_trb = ep_ring->enqueue; 3717 field |= TRB_IOC; 3718 /* set BEI, except for the last TD */ 3719 if (xhci->hci_version >= 0x100 && 3720 !(xhci->quirks & XHCI_AVOID_BEI) && 3721 i < num_tds - 1) 3722 field |= TRB_BEI; 3723 } 3724 /* Calculate TRB length */ 3725 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3726 if (trb_buff_len > td_remain_len) 3727 trb_buff_len = td_remain_len; 3728 3729 /* Set the TRB length, TD size, & interrupter fields. */ 3730 remainder = xhci_td_remainder(xhci, running_total, 3731 trb_buff_len, td_len, 3732 urb, more_trbs_coming); 3733 3734 length_field = TRB_LEN(trb_buff_len) | 3735 TRB_INTR_TARGET(0); 3736 3737 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3738 if (first_trb && xep->use_extended_tbc) 3739 length_field |= TRB_TD_SIZE_TBC(burst_count); 3740 else 3741 length_field |= TRB_TD_SIZE(remainder); 3742 first_trb = false; 3743 3744 queue_trb(xhci, ep_ring, more_trbs_coming, 3745 lower_32_bits(addr), 3746 upper_32_bits(addr), 3747 length_field, 3748 field); 3749 running_total += trb_buff_len; 3750 3751 addr += trb_buff_len; 3752 td_remain_len -= trb_buff_len; 3753 } 3754 3755 /* Check TD length */ 3756 if (running_total != td_len) { 3757 xhci_err(xhci, "ISOC TD length unmatch\n"); 3758 ret = -EINVAL; 3759 goto cleanup; 3760 } 3761 } 3762 3763 /* store the next frame id */ 3764 if (HCC_CFC(xhci->hcc_params)) 3765 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3766 3767 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3768 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3769 usb_amd_quirk_pll_disable(); 3770 } 3771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3772 3773 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3774 start_cycle, start_trb); 3775 return 0; 3776 cleanup: 3777 /* Clean up a partially enqueued isoc transfer. */ 3778 3779 for (i--; i >= 0; i--) 3780 list_del_init(&urb_priv->td[i].td_list); 3781 3782 /* Use the first TD as a temporary variable to turn the TDs we've queued 3783 * into No-ops with a software-owned cycle bit. That way the hardware 3784 * won't accidentally start executing bogus TDs when we partially 3785 * overwrite them. td->first_trb and td->start_seg are already set. 3786 */ 3787 urb_priv->td[0].last_trb = ep_ring->enqueue; 3788 /* Every TRB except the first & last will have its cycle bit flipped. */ 3789 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3790 3791 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3792 ep_ring->enqueue = urb_priv->td[0].first_trb; 3793 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3794 ep_ring->cycle_state = start_cycle; 3795 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3796 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3797 return ret; 3798 } 3799 3800 /* 3801 * Check transfer ring to guarantee there is enough room for the urb. 3802 * Update ISO URB start_frame and interval. 3803 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3804 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3805 * Contiguous Frame ID is not supported by HC. 3806 */ 3807 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3808 struct urb *urb, int slot_id, unsigned int ep_index) 3809 { 3810 struct xhci_virt_device *xdev; 3811 struct xhci_ring *ep_ring; 3812 struct xhci_ep_ctx *ep_ctx; 3813 int start_frame; 3814 int num_tds, num_trbs, i; 3815 int ret; 3816 struct xhci_virt_ep *xep; 3817 int ist; 3818 3819 xdev = xhci->devs[slot_id]; 3820 xep = &xhci->devs[slot_id]->eps[ep_index]; 3821 ep_ring = xdev->eps[ep_index].ring; 3822 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3823 3824 num_trbs = 0; 3825 num_tds = urb->number_of_packets; 3826 for (i = 0; i < num_tds; i++) 3827 num_trbs += count_isoc_trbs_needed(urb, i); 3828 3829 /* Check the ring to guarantee there is enough room for the whole urb. 3830 * Do not insert any td of the urb to the ring if the check failed. 3831 */ 3832 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3833 num_trbs, mem_flags); 3834 if (ret) 3835 return ret; 3836 3837 /* 3838 * Check interval value. This should be done before we start to 3839 * calculate the start frame value. 3840 */ 3841 check_interval(xhci, urb, ep_ctx); 3842 3843 /* Calculate the start frame and put it in urb->start_frame. */ 3844 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3845 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3846 urb->start_frame = xep->next_frame_id; 3847 goto skip_start_over; 3848 } 3849 } 3850 3851 start_frame = readl(&xhci->run_regs->microframe_index); 3852 start_frame &= 0x3fff; 3853 /* 3854 * Round up to the next frame and consider the time before trb really 3855 * gets scheduled by hardare. 3856 */ 3857 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3858 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3859 ist <<= 3; 3860 start_frame += ist + XHCI_CFC_DELAY; 3861 start_frame = roundup(start_frame, 8); 3862 3863 /* 3864 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3865 * is greate than 8 microframes. 3866 */ 3867 if (urb->dev->speed == USB_SPEED_LOW || 3868 urb->dev->speed == USB_SPEED_FULL) { 3869 start_frame = roundup(start_frame, urb->interval << 3); 3870 urb->start_frame = start_frame >> 3; 3871 } else { 3872 start_frame = roundup(start_frame, urb->interval); 3873 urb->start_frame = start_frame; 3874 } 3875 3876 skip_start_over: 3877 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3878 3879 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3880 } 3881 3882 /**** Command Ring Operations ****/ 3883 3884 /* Generic function for queueing a command TRB on the command ring. 3885 * Check to make sure there's room on the command ring for one command TRB. 3886 * Also check that there's room reserved for commands that must not fail. 3887 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3888 * then only check for the number of reserved spots. 3889 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3890 * because the command event handler may want to resubmit a failed command. 3891 */ 3892 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3893 u32 field1, u32 field2, 3894 u32 field3, u32 field4, bool command_must_succeed) 3895 { 3896 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3897 int ret; 3898 3899 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3900 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3901 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3902 return -ESHUTDOWN; 3903 } 3904 3905 if (!command_must_succeed) 3906 reserved_trbs++; 3907 3908 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3909 reserved_trbs, GFP_ATOMIC); 3910 if (ret < 0) { 3911 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3912 if (command_must_succeed) 3913 xhci_err(xhci, "ERR: Reserved TRB counting for " 3914 "unfailable commands failed.\n"); 3915 return ret; 3916 } 3917 3918 cmd->command_trb = xhci->cmd_ring->enqueue; 3919 3920 /* if there are no other commands queued we start the timeout timer */ 3921 if (list_empty(&xhci->cmd_list)) { 3922 xhci->current_cmd = cmd; 3923 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3924 } 3925 3926 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3927 3928 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3929 field4 | xhci->cmd_ring->cycle_state); 3930 return 0; 3931 } 3932 3933 /* Queue a slot enable or disable request on the command ring */ 3934 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3935 u32 trb_type, u32 slot_id) 3936 { 3937 return queue_command(xhci, cmd, 0, 0, 0, 3938 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3939 } 3940 3941 /* Queue an address device command TRB */ 3942 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3943 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3944 { 3945 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3946 upper_32_bits(in_ctx_ptr), 0, 3947 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3948 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3949 } 3950 3951 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3952 u32 field1, u32 field2, u32 field3, u32 field4) 3953 { 3954 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3955 } 3956 3957 /* Queue a reset device command TRB */ 3958 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3959 u32 slot_id) 3960 { 3961 return queue_command(xhci, cmd, 0, 0, 0, 3962 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3963 false); 3964 } 3965 3966 /* Queue a configure endpoint command TRB */ 3967 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3968 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3969 u32 slot_id, bool command_must_succeed) 3970 { 3971 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3972 upper_32_bits(in_ctx_ptr), 0, 3973 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3974 command_must_succeed); 3975 } 3976 3977 /* Queue an evaluate context command TRB */ 3978 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3979 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3980 { 3981 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3982 upper_32_bits(in_ctx_ptr), 0, 3983 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3984 command_must_succeed); 3985 } 3986 3987 /* 3988 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3989 * activity on an endpoint that is about to be suspended. 3990 */ 3991 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3992 int slot_id, unsigned int ep_index, int suspend) 3993 { 3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3996 u32 type = TRB_TYPE(TRB_STOP_RING); 3997 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3998 3999 return queue_command(xhci, cmd, 0, 0, 0, 4000 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4001 } 4002 4003 /* Set Transfer Ring Dequeue Pointer command */ 4004 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4005 unsigned int slot_id, unsigned int ep_index, 4006 struct xhci_dequeue_state *deq_state) 4007 { 4008 dma_addr_t addr; 4009 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4010 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4011 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4012 u32 trb_sct = 0; 4013 u32 type = TRB_TYPE(TRB_SET_DEQ); 4014 struct xhci_virt_ep *ep; 4015 struct xhci_command *cmd; 4016 int ret; 4017 4018 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4019 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4020 deq_state->new_deq_seg, 4021 (unsigned long long)deq_state->new_deq_seg->dma, 4022 deq_state->new_deq_ptr, 4023 (unsigned long long)xhci_trb_virt_to_dma( 4024 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4025 deq_state->new_cycle_state); 4026 4027 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4028 deq_state->new_deq_ptr); 4029 if (addr == 0) { 4030 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4031 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4032 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4033 return; 4034 } 4035 ep = &xhci->devs[slot_id]->eps[ep_index]; 4036 if ((ep->ep_state & SET_DEQ_PENDING)) { 4037 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4038 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4039 return; 4040 } 4041 4042 /* This function gets called from contexts where it cannot sleep */ 4043 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4044 if (!cmd) 4045 return; 4046 4047 ep->queued_deq_seg = deq_state->new_deq_seg; 4048 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4049 if (deq_state->stream_id) 4050 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4051 ret = queue_command(xhci, cmd, 4052 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4053 upper_32_bits(addr), trb_stream_id, 4054 trb_slot_id | trb_ep_index | type, false); 4055 if (ret < 0) { 4056 xhci_free_command(xhci, cmd); 4057 return; 4058 } 4059 4060 /* Stop the TD queueing code from ringing the doorbell until 4061 * this command completes. The HC won't set the dequeue pointer 4062 * if the ring is running, and ringing the doorbell starts the 4063 * ring running. 4064 */ 4065 ep->ep_state |= SET_DEQ_PENDING; 4066 } 4067 4068 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4069 int slot_id, unsigned int ep_index, 4070 enum xhci_ep_reset_type reset_type) 4071 { 4072 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4073 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4074 u32 type = TRB_TYPE(TRB_RESET_EP); 4075 4076 if (reset_type == EP_SOFT_RESET) 4077 type |= TRB_TSP; 4078 4079 return queue_command(xhci, cmd, 0, 0, 0, 4080 trb_slot_id | trb_ep_index | type, false); 4081 } 4082