1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 284 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 285 286 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 287 /* Flush PCI posted writes */ 288 readl(&xhci->dba->doorbell[0]); 289 } 290 291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 292 { 293 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 294 } 295 296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 297 { 298 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 299 cmd_list); 300 } 301 302 /* 303 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 304 * If there are other commands waiting then restart the ring and kick the timer. 305 * This must be called with command ring stopped and xhci->lock held. 306 */ 307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 308 struct xhci_command *cur_cmd) 309 { 310 struct xhci_command *i_cmd; 311 312 /* Turn all aborted commands in list to no-ops, then restart */ 313 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 314 315 if (i_cmd->status != COMP_COMMAND_ABORTED) 316 continue; 317 318 i_cmd->status = COMP_COMMAND_RING_STOPPED; 319 320 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 321 i_cmd->command_trb); 322 323 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 324 325 /* 326 * caller waiting for completion is called when command 327 * completion event is received for these no-op commands 328 */ 329 } 330 331 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 332 333 /* ring command ring doorbell to restart the command ring */ 334 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 335 !(xhci->xhc_state & XHCI_STATE_DYING)) { 336 xhci->current_cmd = cur_cmd; 337 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 338 xhci_ring_cmd_db(xhci); 339 } 340 } 341 342 /* Must be called with xhci->lock held, releases and aquires lock back */ 343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 344 { 345 u64 temp_64; 346 int ret; 347 348 xhci_dbg(xhci, "Abort command ring\n"); 349 350 reinit_completion(&xhci->cmd_ring_stop_completion); 351 352 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 353 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 354 &xhci->op_regs->cmd_ring); 355 356 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 357 * completion of the Command Abort operation. If CRR is not negated in 5 358 * seconds then driver handles it as if host died (-ENODEV). 359 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 360 * and try to recover a -ETIMEDOUT with a host controller reset. 361 */ 362 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 363 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 364 if (ret < 0) { 365 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 366 xhci_halt(xhci); 367 xhci_hc_died(xhci); 368 return ret; 369 } 370 /* 371 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 372 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 373 * but the completion event in never sent. Wait 2 secs (arbitrary 374 * number) to handle those cases after negation of CMD_RING_RUNNING. 375 */ 376 spin_unlock_irqrestore(&xhci->lock, flags); 377 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 378 msecs_to_jiffies(2000)); 379 spin_lock_irqsave(&xhci->lock, flags); 380 if (!ret) { 381 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 382 xhci_cleanup_command_queue(xhci); 383 } else { 384 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 385 } 386 return 0; 387 } 388 389 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 390 unsigned int slot_id, 391 unsigned int ep_index, 392 unsigned int stream_id) 393 { 394 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 395 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 396 unsigned int ep_state = ep->ep_state; 397 398 /* Don't ring the doorbell for this endpoint if there are pending 399 * cancellations because we don't want to interrupt processing. 400 * We don't want to restart any stream rings if there's a set dequeue 401 * pointer command pending because the device can choose to start any 402 * stream once the endpoint is on the HW schedule. 403 */ 404 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 405 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 406 return; 407 408 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 409 410 writel(DB_VALUE(ep_index, stream_id), db_addr); 411 /* The CPU has better things to do at this point than wait for a 412 * write-posting flush. It'll get there soon enough. 413 */ 414 } 415 416 /* Ring the doorbell for any rings with pending URBs */ 417 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 418 unsigned int slot_id, 419 unsigned int ep_index) 420 { 421 unsigned int stream_id; 422 struct xhci_virt_ep *ep; 423 424 ep = &xhci->devs[slot_id]->eps[ep_index]; 425 426 /* A ring has pending URBs if its TD list is not empty */ 427 if (!(ep->ep_state & EP_HAS_STREAMS)) { 428 if (ep->ring && !(list_empty(&ep->ring->td_list))) 429 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 430 return; 431 } 432 433 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 434 stream_id++) { 435 struct xhci_stream_info *stream_info = ep->stream_info; 436 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 437 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 438 stream_id); 439 } 440 } 441 442 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 443 unsigned int slot_id, 444 unsigned int ep_index) 445 { 446 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 447 } 448 449 /* Get the right ring for the given slot_id, ep_index and stream_id. 450 * If the endpoint supports streams, boundary check the URB's stream ID. 451 * If the endpoint doesn't support streams, return the singular endpoint ring. 452 */ 453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 454 unsigned int slot_id, unsigned int ep_index, 455 unsigned int stream_id) 456 { 457 struct xhci_virt_ep *ep; 458 459 ep = &xhci->devs[slot_id]->eps[ep_index]; 460 /* Common case: no streams */ 461 if (!(ep->ep_state & EP_HAS_STREAMS)) 462 return ep->ring; 463 464 if (stream_id == 0) { 465 xhci_warn(xhci, 466 "WARN: Slot ID %u, ep index %u has streams, " 467 "but URB has no stream ID.\n", 468 slot_id, ep_index); 469 return NULL; 470 } 471 472 if (stream_id < ep->stream_info->num_streams) 473 return ep->stream_info->stream_rings[stream_id]; 474 475 xhci_warn(xhci, 476 "WARN: Slot ID %u, ep index %u has " 477 "stream IDs 1 to %u allocated, " 478 "but stream ID %u is requested.\n", 479 slot_id, ep_index, 480 ep->stream_info->num_streams - 1, 481 stream_id); 482 return NULL; 483 } 484 485 486 /* 487 * Get the hw dequeue pointer xHC stopped on, either directly from the 488 * endpoint context, or if streams are in use from the stream context. 489 * The returned hw_dequeue contains the lowest four bits with cycle state 490 * and possbile stream context type. 491 */ 492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 493 unsigned int ep_index, unsigned int stream_id) 494 { 495 struct xhci_ep_ctx *ep_ctx; 496 struct xhci_stream_ctx *st_ctx; 497 struct xhci_virt_ep *ep; 498 499 ep = &vdev->eps[ep_index]; 500 501 if (ep->ep_state & EP_HAS_STREAMS) { 502 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 503 return le64_to_cpu(st_ctx->stream_ring); 504 } 505 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 506 return le64_to_cpu(ep_ctx->deq); 507 } 508 509 /* 510 * Move the xHC's endpoint ring dequeue pointer past cur_td. 511 * Record the new state of the xHC's endpoint ring dequeue segment, 512 * dequeue pointer, stream id, and new consumer cycle state in state. 513 * Update our internal representation of the ring's dequeue pointer. 514 * 515 * We do this in three jumps: 516 * - First we update our new ring state to be the same as when the xHC stopped. 517 * - Then we traverse the ring to find the segment that contains 518 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 519 * any link TRBs with the toggle cycle bit set. 520 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 521 * if we've moved it past a link TRB with the toggle cycle bit set. 522 * 523 * Some of the uses of xhci_generic_trb are grotty, but if they're done 524 * with correct __le32 accesses they should work fine. Only users of this are 525 * in here. 526 */ 527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 528 unsigned int slot_id, unsigned int ep_index, 529 unsigned int stream_id, struct xhci_td *cur_td, 530 struct xhci_dequeue_state *state) 531 { 532 struct xhci_virt_device *dev = xhci->devs[slot_id]; 533 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 534 struct xhci_ring *ep_ring; 535 struct xhci_segment *new_seg; 536 union xhci_trb *new_deq; 537 dma_addr_t addr; 538 u64 hw_dequeue; 539 bool cycle_found = false; 540 bool td_last_trb_found = false; 541 542 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 543 ep_index, stream_id); 544 if (!ep_ring) { 545 xhci_warn(xhci, "WARN can't find new dequeue state " 546 "for invalid stream ID %u.\n", 547 stream_id); 548 return; 549 } 550 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 551 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 552 "Finding endpoint context"); 553 554 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 555 new_seg = ep_ring->deq_seg; 556 new_deq = ep_ring->dequeue; 557 state->new_cycle_state = hw_dequeue & 0x1; 558 state->stream_id = stream_id; 559 560 /* 561 * We want to find the pointer, segment and cycle state of the new trb 562 * (the one after current TD's last_trb). We know the cycle state at 563 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 564 * found. 565 */ 566 do { 567 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 568 == (dma_addr_t)(hw_dequeue & ~0xf)) { 569 cycle_found = true; 570 if (td_last_trb_found) 571 break; 572 } 573 if (new_deq == cur_td->last_trb) 574 td_last_trb_found = true; 575 576 if (cycle_found && trb_is_link(new_deq) && 577 link_trb_toggles_cycle(new_deq)) 578 state->new_cycle_state ^= 0x1; 579 580 next_trb(xhci, ep_ring, &new_seg, &new_deq); 581 582 /* Search wrapped around, bail out */ 583 if (new_deq == ep->ring->dequeue) { 584 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 585 state->new_deq_seg = NULL; 586 state->new_deq_ptr = NULL; 587 return; 588 } 589 590 } while (!cycle_found || !td_last_trb_found); 591 592 state->new_deq_seg = new_seg; 593 state->new_deq_ptr = new_deq; 594 595 /* Don't update the ring cycle state for the producer (us). */ 596 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 597 "Cycle state = 0x%x", state->new_cycle_state); 598 599 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 600 "New dequeue segment = %p (virtual)", 601 state->new_deq_seg); 602 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 603 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 604 "New dequeue pointer = 0x%llx (DMA)", 605 (unsigned long long) addr); 606 } 607 608 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 609 * (The last TRB actually points to the ring enqueue pointer, which is not part 610 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 611 */ 612 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 613 struct xhci_td *td, bool flip_cycle) 614 { 615 struct xhci_segment *seg = td->start_seg; 616 union xhci_trb *trb = td->first_trb; 617 618 while (1) { 619 trb_to_noop(trb, TRB_TR_NOOP); 620 621 /* flip cycle if asked to */ 622 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 623 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 624 625 if (trb == td->last_trb) 626 break; 627 628 next_trb(xhci, ep_ring, &seg, &trb); 629 } 630 } 631 632 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 633 struct xhci_virt_ep *ep) 634 { 635 ep->ep_state &= ~EP_STOP_CMD_PENDING; 636 /* Can't del_timer_sync in interrupt */ 637 del_timer(&ep->stop_cmd_timer); 638 } 639 640 /* 641 * Must be called with xhci->lock held in interrupt context, 642 * releases and re-acquires xhci->lock 643 */ 644 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 645 struct xhci_td *cur_td, int status) 646 { 647 struct urb *urb = cur_td->urb; 648 struct urb_priv *urb_priv = urb->hcpriv; 649 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 650 651 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 652 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 653 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 654 if (xhci->quirks & XHCI_AMD_PLL_FIX) 655 usb_amd_quirk_pll_enable(); 656 } 657 } 658 xhci_urb_free_priv(urb_priv); 659 usb_hcd_unlink_urb_from_ep(hcd, urb); 660 trace_xhci_urb_giveback(urb); 661 usb_hcd_giveback_urb(hcd, urb, status); 662 } 663 664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 665 struct xhci_ring *ring, struct xhci_td *td) 666 { 667 struct device *dev = xhci_to_hcd(xhci)->self.controller; 668 struct xhci_segment *seg = td->bounce_seg; 669 struct urb *urb = td->urb; 670 size_t len; 671 672 if (!ring || !seg || !urb) 673 return; 674 675 if (usb_urb_dir_out(urb)) { 676 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 677 DMA_TO_DEVICE); 678 return; 679 } 680 681 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 682 DMA_FROM_DEVICE); 683 /* for in tranfers we need to copy the data from bounce to sg */ 684 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 685 seg->bounce_len, seg->bounce_offs); 686 if (len != seg->bounce_len) 687 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 688 len, seg->bounce_len); 689 seg->bounce_len = 0; 690 seg->bounce_offs = 0; 691 } 692 693 /* 694 * When we get a command completion for a Stop Endpoint Command, we need to 695 * unlink any cancelled TDs from the ring. There are two ways to do that: 696 * 697 * 1. If the HW was in the middle of processing the TD that needs to be 698 * cancelled, then we must move the ring's dequeue pointer past the last TRB 699 * in the TD with a Set Dequeue Pointer Command. 700 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 701 * bit cleared) so that the HW will skip over them. 702 */ 703 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 704 union xhci_trb *trb, struct xhci_event_cmd *event) 705 { 706 unsigned int ep_index; 707 struct xhci_ring *ep_ring; 708 struct xhci_virt_ep *ep; 709 struct xhci_td *cur_td = NULL; 710 struct xhci_td *last_unlinked_td; 711 struct xhci_ep_ctx *ep_ctx; 712 struct xhci_virt_device *vdev; 713 u64 hw_deq; 714 struct xhci_dequeue_state deq_state; 715 716 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 717 if (!xhci->devs[slot_id]) 718 xhci_warn(xhci, "Stop endpoint command " 719 "completion for disabled slot %u\n", 720 slot_id); 721 return; 722 } 723 724 memset(&deq_state, 0, sizeof(deq_state)); 725 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 726 727 vdev = xhci->devs[slot_id]; 728 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 729 trace_xhci_handle_cmd_stop_ep(ep_ctx); 730 731 ep = &xhci->devs[slot_id]->eps[ep_index]; 732 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 733 struct xhci_td, cancelled_td_list); 734 735 if (list_empty(&ep->cancelled_td_list)) { 736 xhci_stop_watchdog_timer_in_irq(xhci, ep); 737 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 738 return; 739 } 740 741 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 742 * We have the xHCI lock, so nothing can modify this list until we drop 743 * it. We're also in the event handler, so we can't get re-interrupted 744 * if another Stop Endpoint command completes 745 */ 746 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 747 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 748 "Removing canceled TD starting at 0x%llx (dma).", 749 (unsigned long long)xhci_trb_virt_to_dma( 750 cur_td->start_seg, cur_td->first_trb)); 751 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 752 if (!ep_ring) { 753 /* This shouldn't happen unless a driver is mucking 754 * with the stream ID after submission. This will 755 * leave the TD on the hardware ring, and the hardware 756 * will try to execute it, and may access a buffer 757 * that has already been freed. In the best case, the 758 * hardware will execute it, and the event handler will 759 * ignore the completion event for that TD, since it was 760 * removed from the td_list for that endpoint. In 761 * short, don't muck with the stream ID after 762 * submission. 763 */ 764 xhci_warn(xhci, "WARN Cancelled URB %p " 765 "has invalid stream ID %u.\n", 766 cur_td->urb, 767 cur_td->urb->stream_id); 768 goto remove_finished_td; 769 } 770 /* 771 * If we stopped on the TD we need to cancel, then we have to 772 * move the xHC endpoint ring dequeue pointer past this TD. 773 */ 774 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 775 cur_td->urb->stream_id); 776 hw_deq &= ~0xf; 777 778 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 779 cur_td->last_trb, hw_deq, false)) { 780 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 781 cur_td->urb->stream_id, 782 cur_td, &deq_state); 783 } else { 784 td_to_noop(xhci, ep_ring, cur_td, false); 785 } 786 787 remove_finished_td: 788 /* 789 * The event handler won't see a completion for this TD anymore, 790 * so remove it from the endpoint ring's TD list. Keep it in 791 * the cancelled TD list for URB completion later. 792 */ 793 list_del_init(&cur_td->td_list); 794 } 795 796 xhci_stop_watchdog_timer_in_irq(xhci, ep); 797 798 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 799 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 800 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 801 &deq_state); 802 xhci_ring_cmd_db(xhci); 803 } else { 804 /* Otherwise ring the doorbell(s) to restart queued transfers */ 805 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 806 } 807 808 /* 809 * Drop the lock and complete the URBs in the cancelled TD list. 810 * New TDs to be cancelled might be added to the end of the list before 811 * we can complete all the URBs for the TDs we already unlinked. 812 * So stop when we've completed the URB for the last TD we unlinked. 813 */ 814 do { 815 cur_td = list_first_entry(&ep->cancelled_td_list, 816 struct xhci_td, cancelled_td_list); 817 list_del_init(&cur_td->cancelled_td_list); 818 819 /* Clean up the cancelled URB */ 820 /* Doesn't matter what we pass for status, since the core will 821 * just overwrite it (because the URB has been unlinked). 822 */ 823 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 824 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 825 inc_td_cnt(cur_td->urb); 826 if (last_td_in_urb(cur_td)) 827 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 828 829 /* Stop processing the cancelled list if the watchdog timer is 830 * running. 831 */ 832 if (xhci->xhc_state & XHCI_STATE_DYING) 833 return; 834 } while (cur_td != last_unlinked_td); 835 836 /* Return to the event handler with xhci->lock re-acquired */ 837 } 838 839 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 840 { 841 struct xhci_td *cur_td; 842 struct xhci_td *tmp; 843 844 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 845 list_del_init(&cur_td->td_list); 846 847 if (!list_empty(&cur_td->cancelled_td_list)) 848 list_del_init(&cur_td->cancelled_td_list); 849 850 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 851 852 inc_td_cnt(cur_td->urb); 853 if (last_td_in_urb(cur_td)) 854 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 855 } 856 } 857 858 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 859 int slot_id, int ep_index) 860 { 861 struct xhci_td *cur_td; 862 struct xhci_td *tmp; 863 struct xhci_virt_ep *ep; 864 struct xhci_ring *ring; 865 866 ep = &xhci->devs[slot_id]->eps[ep_index]; 867 if ((ep->ep_state & EP_HAS_STREAMS) || 868 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 869 int stream_id; 870 871 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 872 stream_id++) { 873 ring = ep->stream_info->stream_rings[stream_id]; 874 if (!ring) 875 continue; 876 877 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 878 "Killing URBs for slot ID %u, ep index %u, stream %u", 879 slot_id, ep_index, stream_id); 880 xhci_kill_ring_urbs(xhci, ring); 881 } 882 } else { 883 ring = ep->ring; 884 if (!ring) 885 return; 886 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 887 "Killing URBs for slot ID %u, ep index %u", 888 slot_id, ep_index); 889 xhci_kill_ring_urbs(xhci, ring); 890 } 891 892 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 893 cancelled_td_list) { 894 list_del_init(&cur_td->cancelled_td_list); 895 inc_td_cnt(cur_td->urb); 896 897 if (last_td_in_urb(cur_td)) 898 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 899 } 900 } 901 902 /* 903 * host controller died, register read returns 0xffffffff 904 * Complete pending commands, mark them ABORTED. 905 * URBs need to be given back as usb core might be waiting with device locks 906 * held for the URBs to finish during device disconnect, blocking host remove. 907 * 908 * Call with xhci->lock held. 909 * lock is relased and re-acquired while giving back urb. 910 */ 911 void xhci_hc_died(struct xhci_hcd *xhci) 912 { 913 int i, j; 914 915 if (xhci->xhc_state & XHCI_STATE_DYING) 916 return; 917 918 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 919 xhci->xhc_state |= XHCI_STATE_DYING; 920 921 xhci_cleanup_command_queue(xhci); 922 923 /* return any pending urbs, remove may be waiting for them */ 924 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 925 if (!xhci->devs[i]) 926 continue; 927 for (j = 0; j < 31; j++) 928 xhci_kill_endpoint_urbs(xhci, i, j); 929 } 930 931 /* inform usb core hc died if PCI remove isn't already handling it */ 932 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 933 usb_hc_died(xhci_to_hcd(xhci)); 934 } 935 936 /* Watchdog timer function for when a stop endpoint command fails to complete. 937 * In this case, we assume the host controller is broken or dying or dead. The 938 * host may still be completing some other events, so we have to be careful to 939 * let the event ring handler and the URB dequeueing/enqueueing functions know 940 * through xhci->state. 941 * 942 * The timer may also fire if the host takes a very long time to respond to the 943 * command, and the stop endpoint command completion handler cannot delete the 944 * timer before the timer function is called. Another endpoint cancellation may 945 * sneak in before the timer function can grab the lock, and that may queue 946 * another stop endpoint command and add the timer back. So we cannot use a 947 * simple flag to say whether there is a pending stop endpoint command for a 948 * particular endpoint. 949 * 950 * Instead we use a combination of that flag and checking if a new timer is 951 * pending. 952 */ 953 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 954 { 955 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 956 struct xhci_hcd *xhci = ep->xhci; 957 unsigned long flags; 958 u32 usbsts; 959 960 spin_lock_irqsave(&xhci->lock, flags); 961 962 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 963 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 964 timer_pending(&ep->stop_cmd_timer)) { 965 spin_unlock_irqrestore(&xhci->lock, flags); 966 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 967 return; 968 } 969 usbsts = readl(&xhci->op_regs->status); 970 971 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 972 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts)); 973 974 ep->ep_state &= ~EP_STOP_CMD_PENDING; 975 976 xhci_halt(xhci); 977 978 /* 979 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 980 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 981 * and try to recover a -ETIMEDOUT with a host controller reset 982 */ 983 xhci_hc_died(xhci); 984 985 spin_unlock_irqrestore(&xhci->lock, flags); 986 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 987 "xHCI host controller is dead."); 988 } 989 990 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 991 struct xhci_virt_device *dev, 992 struct xhci_ring *ep_ring, 993 unsigned int ep_index) 994 { 995 union xhci_trb *dequeue_temp; 996 int num_trbs_free_temp; 997 bool revert = false; 998 999 num_trbs_free_temp = ep_ring->num_trbs_free; 1000 dequeue_temp = ep_ring->dequeue; 1001 1002 /* If we get two back-to-back stalls, and the first stalled transfer 1003 * ends just before a link TRB, the dequeue pointer will be left on 1004 * the link TRB by the code in the while loop. So we have to update 1005 * the dequeue pointer one segment further, or we'll jump off 1006 * the segment into la-la-land. 1007 */ 1008 if (trb_is_link(ep_ring->dequeue)) { 1009 ep_ring->deq_seg = ep_ring->deq_seg->next; 1010 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1011 } 1012 1013 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1014 /* We have more usable TRBs */ 1015 ep_ring->num_trbs_free++; 1016 ep_ring->dequeue++; 1017 if (trb_is_link(ep_ring->dequeue)) { 1018 if (ep_ring->dequeue == 1019 dev->eps[ep_index].queued_deq_ptr) 1020 break; 1021 ep_ring->deq_seg = ep_ring->deq_seg->next; 1022 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1023 } 1024 if (ep_ring->dequeue == dequeue_temp) { 1025 revert = true; 1026 break; 1027 } 1028 } 1029 1030 if (revert) { 1031 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1032 ep_ring->num_trbs_free = num_trbs_free_temp; 1033 } 1034 } 1035 1036 /* 1037 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1038 * we need to clear the set deq pending flag in the endpoint ring state, so that 1039 * the TD queueing code can ring the doorbell again. We also need to ring the 1040 * endpoint doorbell to restart the ring, but only if there aren't more 1041 * cancellations pending. 1042 */ 1043 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1044 union xhci_trb *trb, u32 cmd_comp_code) 1045 { 1046 unsigned int ep_index; 1047 unsigned int stream_id; 1048 struct xhci_ring *ep_ring; 1049 struct xhci_virt_device *dev; 1050 struct xhci_virt_ep *ep; 1051 struct xhci_ep_ctx *ep_ctx; 1052 struct xhci_slot_ctx *slot_ctx; 1053 1054 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1055 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1056 dev = xhci->devs[slot_id]; 1057 ep = &dev->eps[ep_index]; 1058 1059 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1060 if (!ep_ring) { 1061 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1062 stream_id); 1063 /* XXX: Harmless??? */ 1064 goto cleanup; 1065 } 1066 1067 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1068 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1069 trace_xhci_handle_cmd_set_deq(slot_ctx); 1070 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1071 1072 if (cmd_comp_code != COMP_SUCCESS) { 1073 unsigned int ep_state; 1074 unsigned int slot_state; 1075 1076 switch (cmd_comp_code) { 1077 case COMP_TRB_ERROR: 1078 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1079 break; 1080 case COMP_CONTEXT_STATE_ERROR: 1081 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1082 ep_state = GET_EP_CTX_STATE(ep_ctx); 1083 slot_state = le32_to_cpu(slot_ctx->dev_state); 1084 slot_state = GET_SLOT_STATE(slot_state); 1085 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1086 "Slot state = %u, EP state = %u", 1087 slot_state, ep_state); 1088 break; 1089 case COMP_SLOT_NOT_ENABLED_ERROR: 1090 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1091 slot_id); 1092 break; 1093 default: 1094 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1095 cmd_comp_code); 1096 break; 1097 } 1098 /* OK what do we do now? The endpoint state is hosed, and we 1099 * should never get to this point if the synchronization between 1100 * queueing, and endpoint state are correct. This might happen 1101 * if the device gets disconnected after we've finished 1102 * cancelling URBs, which might not be an error... 1103 */ 1104 } else { 1105 u64 deq; 1106 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1107 if (ep->ep_state & EP_HAS_STREAMS) { 1108 struct xhci_stream_ctx *ctx = 1109 &ep->stream_info->stream_ctx_array[stream_id]; 1110 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1111 } else { 1112 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1113 } 1114 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1115 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1116 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1117 ep->queued_deq_ptr) == deq) { 1118 /* Update the ring's dequeue segment and dequeue pointer 1119 * to reflect the new position. 1120 */ 1121 update_ring_for_set_deq_completion(xhci, dev, 1122 ep_ring, ep_index); 1123 } else { 1124 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1125 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1126 ep->queued_deq_seg, ep->queued_deq_ptr); 1127 } 1128 } 1129 1130 cleanup: 1131 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1132 dev->eps[ep_index].queued_deq_seg = NULL; 1133 dev->eps[ep_index].queued_deq_ptr = NULL; 1134 /* Restart any rings with pending URBs */ 1135 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1136 } 1137 1138 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1139 union xhci_trb *trb, u32 cmd_comp_code) 1140 { 1141 struct xhci_virt_device *vdev; 1142 struct xhci_ep_ctx *ep_ctx; 1143 unsigned int ep_index; 1144 1145 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1146 vdev = xhci->devs[slot_id]; 1147 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1148 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1149 1150 /* This command will only fail if the endpoint wasn't halted, 1151 * but we don't care. 1152 */ 1153 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1154 "Ignoring reset ep completion code of %u", cmd_comp_code); 1155 1156 /* HW with the reset endpoint quirk needs to have a configure endpoint 1157 * command complete before the endpoint can be used. Queue that here 1158 * because the HW can't handle two commands being queued in a row. 1159 */ 1160 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1161 struct xhci_command *command; 1162 1163 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1164 if (!command) 1165 return; 1166 1167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1168 "Queueing configure endpoint command"); 1169 xhci_queue_configure_endpoint(xhci, command, 1170 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1171 false); 1172 xhci_ring_cmd_db(xhci); 1173 } else { 1174 /* Clear our internal halted state */ 1175 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1176 } 1177 1178 /* if this was a soft reset, then restart */ 1179 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1180 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1181 } 1182 1183 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1184 struct xhci_command *command, u32 cmd_comp_code) 1185 { 1186 if (cmd_comp_code == COMP_SUCCESS) 1187 command->slot_id = slot_id; 1188 else 1189 command->slot_id = 0; 1190 } 1191 1192 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1193 { 1194 struct xhci_virt_device *virt_dev; 1195 struct xhci_slot_ctx *slot_ctx; 1196 1197 virt_dev = xhci->devs[slot_id]; 1198 if (!virt_dev) 1199 return; 1200 1201 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1202 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1203 1204 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1205 /* Delete default control endpoint resources */ 1206 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1207 xhci_free_virt_device(xhci, slot_id); 1208 } 1209 1210 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1211 struct xhci_event_cmd *event, u32 cmd_comp_code) 1212 { 1213 struct xhci_virt_device *virt_dev; 1214 struct xhci_input_control_ctx *ctrl_ctx; 1215 struct xhci_ep_ctx *ep_ctx; 1216 unsigned int ep_index; 1217 unsigned int ep_state; 1218 u32 add_flags, drop_flags; 1219 1220 /* 1221 * Configure endpoint commands can come from the USB core 1222 * configuration or alt setting changes, or because the HW 1223 * needed an extra configure endpoint command after a reset 1224 * endpoint command or streams were being configured. 1225 * If the command was for a halted endpoint, the xHCI driver 1226 * is not waiting on the configure endpoint command. 1227 */ 1228 virt_dev = xhci->devs[slot_id]; 1229 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1230 if (!ctrl_ctx) { 1231 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1232 return; 1233 } 1234 1235 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1236 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1237 /* Input ctx add_flags are the endpoint index plus one */ 1238 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1239 1240 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1241 trace_xhci_handle_cmd_config_ep(ep_ctx); 1242 1243 /* A usb_set_interface() call directly after clearing a halted 1244 * condition may race on this quirky hardware. Not worth 1245 * worrying about, since this is prototype hardware. Not sure 1246 * if this will work for streams, but streams support was 1247 * untested on this prototype. 1248 */ 1249 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1250 ep_index != (unsigned int) -1 && 1251 add_flags - SLOT_FLAG == drop_flags) { 1252 ep_state = virt_dev->eps[ep_index].ep_state; 1253 if (!(ep_state & EP_HALTED)) 1254 return; 1255 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1256 "Completed config ep cmd - " 1257 "last ep index = %d, state = %d", 1258 ep_index, ep_state); 1259 /* Clear internal halted state and restart ring(s) */ 1260 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1261 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1262 return; 1263 } 1264 return; 1265 } 1266 1267 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1268 { 1269 struct xhci_virt_device *vdev; 1270 struct xhci_slot_ctx *slot_ctx; 1271 1272 vdev = xhci->devs[slot_id]; 1273 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1274 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1275 } 1276 1277 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1278 struct xhci_event_cmd *event) 1279 { 1280 struct xhci_virt_device *vdev; 1281 struct xhci_slot_ctx *slot_ctx; 1282 1283 vdev = xhci->devs[slot_id]; 1284 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1285 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1286 1287 xhci_dbg(xhci, "Completed reset device command.\n"); 1288 if (!xhci->devs[slot_id]) 1289 xhci_warn(xhci, "Reset device command completion " 1290 "for disabled slot %u\n", slot_id); 1291 } 1292 1293 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1294 struct xhci_event_cmd *event) 1295 { 1296 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1297 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1298 return; 1299 } 1300 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1301 "NEC firmware version %2x.%02x", 1302 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1303 NEC_FW_MINOR(le32_to_cpu(event->status))); 1304 } 1305 1306 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1307 { 1308 list_del(&cmd->cmd_list); 1309 1310 if (cmd->completion) { 1311 cmd->status = status; 1312 complete(cmd->completion); 1313 } else { 1314 kfree(cmd); 1315 } 1316 } 1317 1318 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1319 { 1320 struct xhci_command *cur_cmd, *tmp_cmd; 1321 xhci->current_cmd = NULL; 1322 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1323 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1324 } 1325 1326 void xhci_handle_command_timeout(struct work_struct *work) 1327 { 1328 struct xhci_hcd *xhci; 1329 unsigned long flags; 1330 u64 hw_ring_state; 1331 1332 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1333 1334 spin_lock_irqsave(&xhci->lock, flags); 1335 1336 /* 1337 * If timeout work is pending, or current_cmd is NULL, it means we 1338 * raced with command completion. Command is handled so just return. 1339 */ 1340 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1341 spin_unlock_irqrestore(&xhci->lock, flags); 1342 return; 1343 } 1344 /* mark this command to be cancelled */ 1345 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1346 1347 /* Make sure command ring is running before aborting it */ 1348 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1349 if (hw_ring_state == ~(u64)0) { 1350 xhci_hc_died(xhci); 1351 goto time_out_completed; 1352 } 1353 1354 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1355 (hw_ring_state & CMD_RING_RUNNING)) { 1356 /* Prevent new doorbell, and start command abort */ 1357 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1358 xhci_dbg(xhci, "Command timeout\n"); 1359 xhci_abort_cmd_ring(xhci, flags); 1360 goto time_out_completed; 1361 } 1362 1363 /* host removed. Bail out */ 1364 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1365 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1366 xhci_cleanup_command_queue(xhci); 1367 1368 goto time_out_completed; 1369 } 1370 1371 /* command timeout on stopped ring, ring can't be aborted */ 1372 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1373 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1374 1375 time_out_completed: 1376 spin_unlock_irqrestore(&xhci->lock, flags); 1377 return; 1378 } 1379 1380 static void handle_cmd_completion(struct xhci_hcd *xhci, 1381 struct xhci_event_cmd *event) 1382 { 1383 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1384 u64 cmd_dma; 1385 dma_addr_t cmd_dequeue_dma; 1386 u32 cmd_comp_code; 1387 union xhci_trb *cmd_trb; 1388 struct xhci_command *cmd; 1389 u32 cmd_type; 1390 1391 cmd_dma = le64_to_cpu(event->cmd_trb); 1392 cmd_trb = xhci->cmd_ring->dequeue; 1393 1394 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1395 1396 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1397 cmd_trb); 1398 /* 1399 * Check whether the completion event is for our internal kept 1400 * command. 1401 */ 1402 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1403 xhci_warn(xhci, 1404 "ERROR mismatched command completion event\n"); 1405 return; 1406 } 1407 1408 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1409 1410 cancel_delayed_work(&xhci->cmd_timer); 1411 1412 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1413 1414 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1415 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1416 complete_all(&xhci->cmd_ring_stop_completion); 1417 return; 1418 } 1419 1420 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1421 xhci_err(xhci, 1422 "Command completion event does not match command\n"); 1423 return; 1424 } 1425 1426 /* 1427 * Host aborted the command ring, check if the current command was 1428 * supposed to be aborted, otherwise continue normally. 1429 * The command ring is stopped now, but the xHC will issue a Command 1430 * Ring Stopped event which will cause us to restart it. 1431 */ 1432 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1433 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1434 if (cmd->status == COMP_COMMAND_ABORTED) { 1435 if (xhci->current_cmd == cmd) 1436 xhci->current_cmd = NULL; 1437 goto event_handled; 1438 } 1439 } 1440 1441 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1442 switch (cmd_type) { 1443 case TRB_ENABLE_SLOT: 1444 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1445 break; 1446 case TRB_DISABLE_SLOT: 1447 xhci_handle_cmd_disable_slot(xhci, slot_id); 1448 break; 1449 case TRB_CONFIG_EP: 1450 if (!cmd->completion) 1451 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1452 cmd_comp_code); 1453 break; 1454 case TRB_EVAL_CONTEXT: 1455 break; 1456 case TRB_ADDR_DEV: 1457 xhci_handle_cmd_addr_dev(xhci, slot_id); 1458 break; 1459 case TRB_STOP_RING: 1460 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1461 le32_to_cpu(cmd_trb->generic.field[3]))); 1462 if (!cmd->completion) 1463 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1464 break; 1465 case TRB_SET_DEQ: 1466 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1467 le32_to_cpu(cmd_trb->generic.field[3]))); 1468 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1469 break; 1470 case TRB_CMD_NOOP: 1471 /* Is this an aborted command turned to NO-OP? */ 1472 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1473 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1474 break; 1475 case TRB_RESET_EP: 1476 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1477 le32_to_cpu(cmd_trb->generic.field[3]))); 1478 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1479 break; 1480 case TRB_RESET_DEV: 1481 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1482 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1483 */ 1484 slot_id = TRB_TO_SLOT_ID( 1485 le32_to_cpu(cmd_trb->generic.field[3])); 1486 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1487 break; 1488 case TRB_NEC_GET_FW: 1489 xhci_handle_cmd_nec_get_fw(xhci, event); 1490 break; 1491 default: 1492 /* Skip over unknown commands on the event ring */ 1493 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1494 break; 1495 } 1496 1497 /* restart timer if this wasn't the last command */ 1498 if (!list_is_singular(&xhci->cmd_list)) { 1499 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1500 struct xhci_command, cmd_list); 1501 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1502 } else if (xhci->current_cmd == cmd) { 1503 xhci->current_cmd = NULL; 1504 } 1505 1506 event_handled: 1507 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1508 1509 inc_deq(xhci, xhci->cmd_ring); 1510 } 1511 1512 static void handle_vendor_event(struct xhci_hcd *xhci, 1513 union xhci_trb *event) 1514 { 1515 u32 trb_type; 1516 1517 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1518 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1519 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1520 handle_cmd_completion(xhci, &event->event_cmd); 1521 } 1522 1523 static void handle_device_notification(struct xhci_hcd *xhci, 1524 union xhci_trb *event) 1525 { 1526 u32 slot_id; 1527 struct usb_device *udev; 1528 1529 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1530 if (!xhci->devs[slot_id]) { 1531 xhci_warn(xhci, "Device Notification event for " 1532 "unused slot %u\n", slot_id); 1533 return; 1534 } 1535 1536 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1537 slot_id); 1538 udev = xhci->devs[slot_id]->udev; 1539 if (udev && udev->parent) 1540 usb_wakeup_notification(udev->parent, udev->portnum); 1541 } 1542 1543 /* 1544 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1545 * Controller. 1546 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1547 * If a connection to a USB 1 device is followed by another connection 1548 * to a USB 2 device. 1549 * 1550 * Reset the PHY after the USB device is disconnected if device speed 1551 * is less than HCD_USB3. 1552 * Retry the reset sequence max of 4 times checking the PLL lock status. 1553 * 1554 */ 1555 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1556 { 1557 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1558 u32 pll_lock_check; 1559 u32 retry_count = 4; 1560 1561 do { 1562 /* Assert PHY reset */ 1563 writel(0x6F, hcd->regs + 0x1048); 1564 udelay(10); 1565 /* De-assert the PHY reset */ 1566 writel(0x7F, hcd->regs + 0x1048); 1567 udelay(200); 1568 pll_lock_check = readl(hcd->regs + 0x1070); 1569 } while (!(pll_lock_check & 0x1) && --retry_count); 1570 } 1571 1572 static void handle_port_status(struct xhci_hcd *xhci, 1573 union xhci_trb *event) 1574 { 1575 struct usb_hcd *hcd; 1576 u32 port_id; 1577 u32 portsc, cmd_reg; 1578 int max_ports; 1579 int slot_id; 1580 unsigned int hcd_portnum; 1581 struct xhci_bus_state *bus_state; 1582 bool bogus_port_status = false; 1583 struct xhci_port *port; 1584 1585 /* Port status change events always have a successful completion code */ 1586 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1587 xhci_warn(xhci, 1588 "WARN: xHC returned failed port status event\n"); 1589 1590 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1591 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1592 1593 if ((port_id <= 0) || (port_id > max_ports)) { 1594 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1595 port_id); 1596 inc_deq(xhci, xhci->event_ring); 1597 return; 1598 } 1599 1600 port = &xhci->hw_ports[port_id - 1]; 1601 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1602 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1603 port_id); 1604 bogus_port_status = true; 1605 goto cleanup; 1606 } 1607 1608 /* We might get interrupts after shared_hcd is removed */ 1609 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1610 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1611 bogus_port_status = true; 1612 goto cleanup; 1613 } 1614 1615 hcd = port->rhub->hcd; 1616 bus_state = &port->rhub->bus_state; 1617 hcd_portnum = port->hcd_portnum; 1618 portsc = readl(port->addr); 1619 1620 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1621 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1622 1623 trace_xhci_handle_port_status(hcd_portnum, portsc); 1624 1625 if (hcd->state == HC_STATE_SUSPENDED) { 1626 xhci_dbg(xhci, "resume root hub\n"); 1627 usb_hcd_resume_root_hub(hcd); 1628 } 1629 1630 if (hcd->speed >= HCD_USB3 && 1631 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1632 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1633 if (slot_id && xhci->devs[slot_id]) 1634 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1635 } 1636 1637 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1638 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1639 1640 cmd_reg = readl(&xhci->op_regs->command); 1641 if (!(cmd_reg & CMD_RUN)) { 1642 xhci_warn(xhci, "xHC is not running.\n"); 1643 goto cleanup; 1644 } 1645 1646 if (DEV_SUPERSPEED_ANY(portsc)) { 1647 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1648 /* Set a flag to say the port signaled remote wakeup, 1649 * so we can tell the difference between the end of 1650 * device and host initiated resume. 1651 */ 1652 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1653 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1654 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1655 xhci_set_link_state(xhci, port, XDEV_U0); 1656 /* Need to wait until the next link state change 1657 * indicates the device is actually in U0. 1658 */ 1659 bogus_port_status = true; 1660 goto cleanup; 1661 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1662 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1663 bus_state->resume_done[hcd_portnum] = jiffies + 1664 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1665 set_bit(hcd_portnum, &bus_state->resuming_ports); 1666 /* Do the rest in GetPortStatus after resume time delay. 1667 * Avoid polling roothub status before that so that a 1668 * usb device auto-resume latency around ~40ms. 1669 */ 1670 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1671 mod_timer(&hcd->rh_timer, 1672 bus_state->resume_done[hcd_portnum]); 1673 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1674 bogus_port_status = true; 1675 } 1676 } 1677 1678 if ((portsc & PORT_PLC) && 1679 DEV_SUPERSPEED_ANY(portsc) && 1680 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1681 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1682 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1683 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1684 complete(&bus_state->u3exit_done[hcd_portnum]); 1685 /* We've just brought the device into U0/1/2 through either the 1686 * Resume state after a device remote wakeup, or through the 1687 * U3Exit state after a host-initiated resume. If it's a device 1688 * initiated remote wake, don't pass up the link state change, 1689 * so the roothub behavior is consistent with external 1690 * USB 3.0 hub behavior. 1691 */ 1692 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1693 if (slot_id && xhci->devs[slot_id]) 1694 xhci_ring_device(xhci, slot_id); 1695 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1696 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1697 usb_wakeup_notification(hcd->self.root_hub, 1698 hcd_portnum + 1); 1699 bogus_port_status = true; 1700 goto cleanup; 1701 } 1702 } 1703 1704 /* 1705 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1706 * RExit to a disconnect state). If so, let the the driver know it's 1707 * out of the RExit state. 1708 */ 1709 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1710 test_and_clear_bit(hcd_portnum, 1711 &bus_state->rexit_ports)) { 1712 complete(&bus_state->rexit_done[hcd_portnum]); 1713 bogus_port_status = true; 1714 goto cleanup; 1715 } 1716 1717 if (hcd->speed < HCD_USB3) { 1718 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1719 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1720 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1721 xhci_cavium_reset_phy_quirk(xhci); 1722 } 1723 1724 cleanup: 1725 /* Update event ring dequeue pointer before dropping the lock */ 1726 inc_deq(xhci, xhci->event_ring); 1727 1728 /* Don't make the USB core poll the roothub if we got a bad port status 1729 * change event. Besides, at that point we can't tell which roothub 1730 * (USB 2.0 or USB 3.0) to kick. 1731 */ 1732 if (bogus_port_status) 1733 return; 1734 1735 /* 1736 * xHCI port-status-change events occur when the "or" of all the 1737 * status-change bits in the portsc register changes from 0 to 1. 1738 * New status changes won't cause an event if any other change 1739 * bits are still set. When an event occurs, switch over to 1740 * polling to avoid losing status changes. 1741 */ 1742 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1743 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1744 spin_unlock(&xhci->lock); 1745 /* Pass this up to the core */ 1746 usb_hcd_poll_rh_status(hcd); 1747 spin_lock(&xhci->lock); 1748 } 1749 1750 /* 1751 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1752 * at end_trb, which may be in another segment. If the suspect DMA address is a 1753 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1754 * returns 0. 1755 */ 1756 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1757 struct xhci_segment *start_seg, 1758 union xhci_trb *start_trb, 1759 union xhci_trb *end_trb, 1760 dma_addr_t suspect_dma, 1761 bool debug) 1762 { 1763 dma_addr_t start_dma; 1764 dma_addr_t end_seg_dma; 1765 dma_addr_t end_trb_dma; 1766 struct xhci_segment *cur_seg; 1767 1768 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1769 cur_seg = start_seg; 1770 1771 do { 1772 if (start_dma == 0) 1773 return NULL; 1774 /* We may get an event for a Link TRB in the middle of a TD */ 1775 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1776 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1777 /* If the end TRB isn't in this segment, this is set to 0 */ 1778 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1779 1780 if (debug) 1781 xhci_warn(xhci, 1782 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1783 (unsigned long long)suspect_dma, 1784 (unsigned long long)start_dma, 1785 (unsigned long long)end_trb_dma, 1786 (unsigned long long)cur_seg->dma, 1787 (unsigned long long)end_seg_dma); 1788 1789 if (end_trb_dma > 0) { 1790 /* The end TRB is in this segment, so suspect should be here */ 1791 if (start_dma <= end_trb_dma) { 1792 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1793 return cur_seg; 1794 } else { 1795 /* Case for one segment with 1796 * a TD wrapped around to the top 1797 */ 1798 if ((suspect_dma >= start_dma && 1799 suspect_dma <= end_seg_dma) || 1800 (suspect_dma >= cur_seg->dma && 1801 suspect_dma <= end_trb_dma)) 1802 return cur_seg; 1803 } 1804 return NULL; 1805 } else { 1806 /* Might still be somewhere in this segment */ 1807 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1808 return cur_seg; 1809 } 1810 cur_seg = cur_seg->next; 1811 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1812 } while (cur_seg != start_seg); 1813 1814 return NULL; 1815 } 1816 1817 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 1818 struct xhci_virt_ep *ep) 1819 { 1820 /* 1821 * As part of low/full-speed endpoint-halt processing 1822 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 1823 */ 1824 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 1825 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 1826 !(ep->ep_state & EP_CLEARING_TT)) { 1827 ep->ep_state |= EP_CLEARING_TT; 1828 td->urb->ep->hcpriv = td->urb->dev; 1829 if (usb_hub_clear_tt_buffer(td->urb)) 1830 ep->ep_state &= ~EP_CLEARING_TT; 1831 } 1832 } 1833 1834 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1835 unsigned int slot_id, unsigned int ep_index, 1836 unsigned int stream_id, struct xhci_td *td, 1837 enum xhci_ep_reset_type reset_type) 1838 { 1839 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1840 struct xhci_command *command; 1841 1842 /* 1843 * Avoid resetting endpoint if link is inactive. Can cause host hang. 1844 * Device will be reset soon to recover the link so don't do anything 1845 */ 1846 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) 1847 return; 1848 1849 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1850 if (!command) 1851 return; 1852 1853 ep->ep_state |= EP_HALTED; 1854 1855 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1856 1857 if (reset_type == EP_HARD_RESET) { 1858 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1859 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1860 xhci_clear_hub_tt_buffer(xhci, td, ep); 1861 } 1862 xhci_ring_cmd_db(xhci); 1863 } 1864 1865 /* Check if an error has halted the endpoint ring. The class driver will 1866 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1867 * However, a babble and other errors also halt the endpoint ring, and the class 1868 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1869 * Ring Dequeue Pointer command manually. 1870 */ 1871 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1872 struct xhci_ep_ctx *ep_ctx, 1873 unsigned int trb_comp_code) 1874 { 1875 /* TRB completion codes that may require a manual halt cleanup */ 1876 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1877 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1878 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1879 /* The 0.95 spec says a babbling control endpoint 1880 * is not halted. The 0.96 spec says it is. Some HW 1881 * claims to be 0.95 compliant, but it halts the control 1882 * endpoint anyway. Check if a babble halted the 1883 * endpoint. 1884 */ 1885 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1886 return 1; 1887 1888 return 0; 1889 } 1890 1891 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1892 { 1893 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1894 /* Vendor defined "informational" completion code, 1895 * treat as not-an-error. 1896 */ 1897 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1898 trb_comp_code); 1899 xhci_dbg(xhci, "Treating code as success.\n"); 1900 return 1; 1901 } 1902 return 0; 1903 } 1904 1905 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1906 struct xhci_ring *ep_ring, int *status) 1907 { 1908 struct urb *urb = NULL; 1909 1910 /* Clean up the endpoint's TD list */ 1911 urb = td->urb; 1912 1913 /* if a bounce buffer was used to align this td then unmap it */ 1914 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1915 1916 /* Do one last check of the actual transfer length. 1917 * If the host controller said we transferred more data than the buffer 1918 * length, urb->actual_length will be a very big number (since it's 1919 * unsigned). Play it safe and say we didn't transfer anything. 1920 */ 1921 if (urb->actual_length > urb->transfer_buffer_length) { 1922 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1923 urb->transfer_buffer_length, urb->actual_length); 1924 urb->actual_length = 0; 1925 *status = 0; 1926 } 1927 list_del_init(&td->td_list); 1928 /* Was this TD slated to be cancelled but completed anyway? */ 1929 if (!list_empty(&td->cancelled_td_list)) 1930 list_del_init(&td->cancelled_td_list); 1931 1932 inc_td_cnt(urb); 1933 /* Giveback the urb when all the tds are completed */ 1934 if (last_td_in_urb(td)) { 1935 if ((urb->actual_length != urb->transfer_buffer_length && 1936 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1937 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1938 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1939 urb, urb->actual_length, 1940 urb->transfer_buffer_length, *status); 1941 1942 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1943 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1944 *status = 0; 1945 xhci_giveback_urb_in_irq(xhci, td, *status); 1946 } 1947 1948 return 0; 1949 } 1950 1951 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1952 struct xhci_transfer_event *event, 1953 struct xhci_virt_ep *ep, int *status) 1954 { 1955 struct xhci_virt_device *xdev; 1956 struct xhci_ep_ctx *ep_ctx; 1957 struct xhci_ring *ep_ring; 1958 unsigned int slot_id; 1959 u32 trb_comp_code; 1960 int ep_index; 1961 1962 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1963 xdev = xhci->devs[slot_id]; 1964 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1965 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1966 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1967 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1968 1969 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1970 trb_comp_code == COMP_STOPPED || 1971 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1972 /* The Endpoint Stop Command completion will take care of any 1973 * stopped TDs. A stopped TD may be restarted, so don't update 1974 * the ring dequeue pointer or take this TD off any lists yet. 1975 */ 1976 return 0; 1977 } 1978 if (trb_comp_code == COMP_STALL_ERROR || 1979 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1980 trb_comp_code)) { 1981 /* Issue a reset endpoint command to clear the host side 1982 * halt, followed by a set dequeue command to move the 1983 * dequeue pointer past the TD. 1984 * The class driver clears the device side halt later. 1985 */ 1986 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1987 ep_ring->stream_id, td, EP_HARD_RESET); 1988 } else { 1989 /* Update ring dequeue pointer */ 1990 while (ep_ring->dequeue != td->last_trb) 1991 inc_deq(xhci, ep_ring); 1992 inc_deq(xhci, ep_ring); 1993 } 1994 1995 return xhci_td_cleanup(xhci, td, ep_ring, status); 1996 } 1997 1998 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1999 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2000 union xhci_trb *stop_trb) 2001 { 2002 u32 sum; 2003 union xhci_trb *trb = ring->dequeue; 2004 struct xhci_segment *seg = ring->deq_seg; 2005 2006 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2007 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2008 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2009 } 2010 return sum; 2011 } 2012 2013 /* 2014 * Process control tds, update urb status and actual_length. 2015 */ 2016 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2017 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2018 struct xhci_virt_ep *ep, int *status) 2019 { 2020 struct xhci_virt_device *xdev; 2021 unsigned int slot_id; 2022 int ep_index; 2023 struct xhci_ep_ctx *ep_ctx; 2024 u32 trb_comp_code; 2025 u32 remaining, requested; 2026 u32 trb_type; 2027 2028 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2029 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2030 xdev = xhci->devs[slot_id]; 2031 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2032 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2033 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2034 requested = td->urb->transfer_buffer_length; 2035 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2036 2037 switch (trb_comp_code) { 2038 case COMP_SUCCESS: 2039 if (trb_type != TRB_STATUS) { 2040 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2041 (trb_type == TRB_DATA) ? "data" : "setup"); 2042 *status = -ESHUTDOWN; 2043 break; 2044 } 2045 *status = 0; 2046 break; 2047 case COMP_SHORT_PACKET: 2048 *status = 0; 2049 break; 2050 case COMP_STOPPED_SHORT_PACKET: 2051 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2052 td->urb->actual_length = remaining; 2053 else 2054 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2055 goto finish_td; 2056 case COMP_STOPPED: 2057 switch (trb_type) { 2058 case TRB_SETUP: 2059 td->urb->actual_length = 0; 2060 goto finish_td; 2061 case TRB_DATA: 2062 case TRB_NORMAL: 2063 td->urb->actual_length = requested - remaining; 2064 goto finish_td; 2065 case TRB_STATUS: 2066 td->urb->actual_length = requested; 2067 goto finish_td; 2068 default: 2069 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2070 trb_type); 2071 goto finish_td; 2072 } 2073 case COMP_STOPPED_LENGTH_INVALID: 2074 goto finish_td; 2075 default: 2076 if (!xhci_requires_manual_halt_cleanup(xhci, 2077 ep_ctx, trb_comp_code)) 2078 break; 2079 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2080 trb_comp_code, ep_index); 2081 /* else fall through */ 2082 case COMP_STALL_ERROR: 2083 /* Did we transfer part of the data (middle) phase? */ 2084 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2085 td->urb->actual_length = requested - remaining; 2086 else if (!td->urb_length_set) 2087 td->urb->actual_length = 0; 2088 goto finish_td; 2089 } 2090 2091 /* stopped at setup stage, no data transferred */ 2092 if (trb_type == TRB_SETUP) 2093 goto finish_td; 2094 2095 /* 2096 * if on data stage then update the actual_length of the URB and flag it 2097 * as set, so it won't be overwritten in the event for the last TRB. 2098 */ 2099 if (trb_type == TRB_DATA || 2100 trb_type == TRB_NORMAL) { 2101 td->urb_length_set = true; 2102 td->urb->actual_length = requested - remaining; 2103 xhci_dbg(xhci, "Waiting for status stage event\n"); 2104 return 0; 2105 } 2106 2107 /* at status stage */ 2108 if (!td->urb_length_set) 2109 td->urb->actual_length = requested; 2110 2111 finish_td: 2112 return finish_td(xhci, td, event, ep, status); 2113 } 2114 2115 /* 2116 * Process isochronous tds, update urb packet status and actual_length. 2117 */ 2118 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2119 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2120 struct xhci_virt_ep *ep, int *status) 2121 { 2122 struct xhci_ring *ep_ring; 2123 struct urb_priv *urb_priv; 2124 int idx; 2125 struct usb_iso_packet_descriptor *frame; 2126 u32 trb_comp_code; 2127 bool sum_trbs_for_length = false; 2128 u32 remaining, requested, ep_trb_len; 2129 int short_framestatus; 2130 2131 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2132 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2133 urb_priv = td->urb->hcpriv; 2134 idx = urb_priv->num_tds_done; 2135 frame = &td->urb->iso_frame_desc[idx]; 2136 requested = frame->length; 2137 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2138 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2139 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2140 -EREMOTEIO : 0; 2141 2142 /* handle completion code */ 2143 switch (trb_comp_code) { 2144 case COMP_SUCCESS: 2145 if (remaining) { 2146 frame->status = short_framestatus; 2147 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2148 sum_trbs_for_length = true; 2149 break; 2150 } 2151 frame->status = 0; 2152 break; 2153 case COMP_SHORT_PACKET: 2154 frame->status = short_framestatus; 2155 sum_trbs_for_length = true; 2156 break; 2157 case COMP_BANDWIDTH_OVERRUN_ERROR: 2158 frame->status = -ECOMM; 2159 break; 2160 case COMP_ISOCH_BUFFER_OVERRUN: 2161 case COMP_BABBLE_DETECTED_ERROR: 2162 frame->status = -EOVERFLOW; 2163 break; 2164 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2165 case COMP_STALL_ERROR: 2166 frame->status = -EPROTO; 2167 break; 2168 case COMP_USB_TRANSACTION_ERROR: 2169 frame->status = -EPROTO; 2170 if (ep_trb != td->last_trb) 2171 return 0; 2172 break; 2173 case COMP_STOPPED: 2174 sum_trbs_for_length = true; 2175 break; 2176 case COMP_STOPPED_SHORT_PACKET: 2177 /* field normally containing residue now contains tranferred */ 2178 frame->status = short_framestatus; 2179 requested = remaining; 2180 break; 2181 case COMP_STOPPED_LENGTH_INVALID: 2182 requested = 0; 2183 remaining = 0; 2184 break; 2185 default: 2186 sum_trbs_for_length = true; 2187 frame->status = -1; 2188 break; 2189 } 2190 2191 if (sum_trbs_for_length) 2192 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2193 ep_trb_len - remaining; 2194 else 2195 frame->actual_length = requested; 2196 2197 td->urb->actual_length += frame->actual_length; 2198 2199 return finish_td(xhci, td, event, ep, status); 2200 } 2201 2202 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2203 struct xhci_transfer_event *event, 2204 struct xhci_virt_ep *ep, int *status) 2205 { 2206 struct xhci_ring *ep_ring; 2207 struct urb_priv *urb_priv; 2208 struct usb_iso_packet_descriptor *frame; 2209 int idx; 2210 2211 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2212 urb_priv = td->urb->hcpriv; 2213 idx = urb_priv->num_tds_done; 2214 frame = &td->urb->iso_frame_desc[idx]; 2215 2216 /* The transfer is partly done. */ 2217 frame->status = -EXDEV; 2218 2219 /* calc actual length */ 2220 frame->actual_length = 0; 2221 2222 /* Update ring dequeue pointer */ 2223 while (ep_ring->dequeue != td->last_trb) 2224 inc_deq(xhci, ep_ring); 2225 inc_deq(xhci, ep_ring); 2226 2227 return xhci_td_cleanup(xhci, td, ep_ring, status); 2228 } 2229 2230 /* 2231 * Process bulk and interrupt tds, update urb status and actual_length. 2232 */ 2233 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2234 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2235 struct xhci_virt_ep *ep, int *status) 2236 { 2237 struct xhci_slot_ctx *slot_ctx; 2238 struct xhci_ring *ep_ring; 2239 u32 trb_comp_code; 2240 u32 remaining, requested, ep_trb_len; 2241 unsigned int slot_id; 2242 int ep_index; 2243 2244 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2245 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2246 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2247 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2248 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2249 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2250 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2251 requested = td->urb->transfer_buffer_length; 2252 2253 switch (trb_comp_code) { 2254 case COMP_SUCCESS: 2255 ep_ring->err_count = 0; 2256 /* handle success with untransferred data as short packet */ 2257 if (ep_trb != td->last_trb || remaining) { 2258 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2259 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2260 td->urb->ep->desc.bEndpointAddress, 2261 requested, remaining); 2262 } 2263 *status = 0; 2264 break; 2265 case COMP_SHORT_PACKET: 2266 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2267 td->urb->ep->desc.bEndpointAddress, 2268 requested, remaining); 2269 *status = 0; 2270 break; 2271 case COMP_STOPPED_SHORT_PACKET: 2272 td->urb->actual_length = remaining; 2273 goto finish_td; 2274 case COMP_STOPPED_LENGTH_INVALID: 2275 /* stopped on ep trb with invalid length, exclude it */ 2276 ep_trb_len = 0; 2277 remaining = 0; 2278 break; 2279 case COMP_USB_TRANSACTION_ERROR: 2280 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2281 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2282 break; 2283 *status = 0; 2284 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2285 ep_ring->stream_id, td, EP_SOFT_RESET); 2286 return 0; 2287 default: 2288 /* do nothing */ 2289 break; 2290 } 2291 2292 if (ep_trb == td->last_trb) 2293 td->urb->actual_length = requested - remaining; 2294 else 2295 td->urb->actual_length = 2296 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2297 ep_trb_len - remaining; 2298 finish_td: 2299 if (remaining > requested) { 2300 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2301 remaining); 2302 td->urb->actual_length = 0; 2303 } 2304 return finish_td(xhci, td, event, ep, status); 2305 } 2306 2307 /* 2308 * If this function returns an error condition, it means it got a Transfer 2309 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2310 * At this point, the host controller is probably hosed and should be reset. 2311 */ 2312 static int handle_tx_event(struct xhci_hcd *xhci, 2313 struct xhci_transfer_event *event) 2314 { 2315 struct xhci_virt_device *xdev; 2316 struct xhci_virt_ep *ep; 2317 struct xhci_ring *ep_ring; 2318 unsigned int slot_id; 2319 int ep_index; 2320 struct xhci_td *td = NULL; 2321 dma_addr_t ep_trb_dma; 2322 struct xhci_segment *ep_seg; 2323 union xhci_trb *ep_trb; 2324 int status = -EINPROGRESS; 2325 struct xhci_ep_ctx *ep_ctx; 2326 struct list_head *tmp; 2327 u32 trb_comp_code; 2328 int td_num = 0; 2329 bool handling_skipped_tds = false; 2330 2331 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2332 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2333 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2334 ep_trb_dma = le64_to_cpu(event->buffer); 2335 2336 xdev = xhci->devs[slot_id]; 2337 if (!xdev) { 2338 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2339 slot_id); 2340 goto err_out; 2341 } 2342 2343 ep = &xdev->eps[ep_index]; 2344 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2345 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2346 2347 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2348 xhci_err(xhci, 2349 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2350 slot_id, ep_index); 2351 goto err_out; 2352 } 2353 2354 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2355 if (!ep_ring) { 2356 switch (trb_comp_code) { 2357 case COMP_STALL_ERROR: 2358 case COMP_USB_TRANSACTION_ERROR: 2359 case COMP_INVALID_STREAM_TYPE_ERROR: 2360 case COMP_INVALID_STREAM_ID_ERROR: 2361 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2362 NULL, EP_SOFT_RESET); 2363 goto cleanup; 2364 case COMP_RING_UNDERRUN: 2365 case COMP_RING_OVERRUN: 2366 case COMP_STOPPED_LENGTH_INVALID: 2367 goto cleanup; 2368 default: 2369 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2370 slot_id, ep_index); 2371 goto err_out; 2372 } 2373 } 2374 2375 /* Count current td numbers if ep->skip is set */ 2376 if (ep->skip) { 2377 list_for_each(tmp, &ep_ring->td_list) 2378 td_num++; 2379 } 2380 2381 /* Look for common error cases */ 2382 switch (trb_comp_code) { 2383 /* Skip codes that require special handling depending on 2384 * transfer type 2385 */ 2386 case COMP_SUCCESS: 2387 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2388 break; 2389 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2390 ep_ring->last_td_was_short) 2391 trb_comp_code = COMP_SHORT_PACKET; 2392 else 2393 xhci_warn_ratelimited(xhci, 2394 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2395 slot_id, ep_index); 2396 case COMP_SHORT_PACKET: 2397 break; 2398 /* Completion codes for endpoint stopped state */ 2399 case COMP_STOPPED: 2400 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2401 slot_id, ep_index); 2402 break; 2403 case COMP_STOPPED_LENGTH_INVALID: 2404 xhci_dbg(xhci, 2405 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2406 slot_id, ep_index); 2407 break; 2408 case COMP_STOPPED_SHORT_PACKET: 2409 xhci_dbg(xhci, 2410 "Stopped with short packet transfer detected for slot %u ep %u\n", 2411 slot_id, ep_index); 2412 break; 2413 /* Completion codes for endpoint halted state */ 2414 case COMP_STALL_ERROR: 2415 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2416 ep_index); 2417 ep->ep_state |= EP_HALTED; 2418 status = -EPIPE; 2419 break; 2420 case COMP_SPLIT_TRANSACTION_ERROR: 2421 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2422 slot_id, ep_index); 2423 status = -EPROTO; 2424 break; 2425 case COMP_USB_TRANSACTION_ERROR: 2426 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2427 slot_id, ep_index); 2428 status = -EPROTO; 2429 break; 2430 case COMP_BABBLE_DETECTED_ERROR: 2431 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2432 slot_id, ep_index); 2433 status = -EOVERFLOW; 2434 break; 2435 /* Completion codes for endpoint error state */ 2436 case COMP_TRB_ERROR: 2437 xhci_warn(xhci, 2438 "WARN: TRB error for slot %u ep %u on endpoint\n", 2439 slot_id, ep_index); 2440 status = -EILSEQ; 2441 break; 2442 /* completion codes not indicating endpoint state change */ 2443 case COMP_DATA_BUFFER_ERROR: 2444 xhci_warn(xhci, 2445 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2446 slot_id, ep_index); 2447 status = -ENOSR; 2448 break; 2449 case COMP_BANDWIDTH_OVERRUN_ERROR: 2450 xhci_warn(xhci, 2451 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2452 slot_id, ep_index); 2453 break; 2454 case COMP_ISOCH_BUFFER_OVERRUN: 2455 xhci_warn(xhci, 2456 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2457 slot_id, ep_index); 2458 break; 2459 case COMP_RING_UNDERRUN: 2460 /* 2461 * When the Isoch ring is empty, the xHC will generate 2462 * a Ring Overrun Event for IN Isoch endpoint or Ring 2463 * Underrun Event for OUT Isoch endpoint. 2464 */ 2465 xhci_dbg(xhci, "underrun event on endpoint\n"); 2466 if (!list_empty(&ep_ring->td_list)) 2467 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2468 "still with TDs queued?\n", 2469 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2470 ep_index); 2471 goto cleanup; 2472 case COMP_RING_OVERRUN: 2473 xhci_dbg(xhci, "overrun event on endpoint\n"); 2474 if (!list_empty(&ep_ring->td_list)) 2475 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2476 "still with TDs queued?\n", 2477 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2478 ep_index); 2479 goto cleanup; 2480 case COMP_MISSED_SERVICE_ERROR: 2481 /* 2482 * When encounter missed service error, one or more isoc tds 2483 * may be missed by xHC. 2484 * Set skip flag of the ep_ring; Complete the missed tds as 2485 * short transfer when process the ep_ring next time. 2486 */ 2487 ep->skip = true; 2488 xhci_dbg(xhci, 2489 "Miss service interval error for slot %u ep %u, set skip flag\n", 2490 slot_id, ep_index); 2491 goto cleanup; 2492 case COMP_NO_PING_RESPONSE_ERROR: 2493 ep->skip = true; 2494 xhci_dbg(xhci, 2495 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2496 slot_id, ep_index); 2497 goto cleanup; 2498 2499 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2500 /* needs disable slot command to recover */ 2501 xhci_warn(xhci, 2502 "WARN: detect an incompatible device for slot %u ep %u", 2503 slot_id, ep_index); 2504 status = -EPROTO; 2505 break; 2506 default: 2507 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2508 status = 0; 2509 break; 2510 } 2511 xhci_warn(xhci, 2512 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2513 trb_comp_code, slot_id, ep_index); 2514 goto cleanup; 2515 } 2516 2517 do { 2518 /* This TRB should be in the TD at the head of this ring's 2519 * TD list. 2520 */ 2521 if (list_empty(&ep_ring->td_list)) { 2522 /* 2523 * Don't print wanings if it's due to a stopped endpoint 2524 * generating an extra completion event if the device 2525 * was suspended. Or, a event for the last TRB of a 2526 * short TD we already got a short event for. 2527 * The short TD is already removed from the TD list. 2528 */ 2529 2530 if (!(trb_comp_code == COMP_STOPPED || 2531 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2532 ep_ring->last_td_was_short)) { 2533 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2534 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2535 ep_index); 2536 } 2537 if (ep->skip) { 2538 ep->skip = false; 2539 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2540 slot_id, ep_index); 2541 } 2542 goto cleanup; 2543 } 2544 2545 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2546 if (ep->skip && td_num == 0) { 2547 ep->skip = false; 2548 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2549 slot_id, ep_index); 2550 goto cleanup; 2551 } 2552 2553 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2554 td_list); 2555 if (ep->skip) 2556 td_num--; 2557 2558 /* Is this a TRB in the currently executing TD? */ 2559 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2560 td->last_trb, ep_trb_dma, false); 2561 2562 /* 2563 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2564 * is not in the current TD pointed by ep_ring->dequeue because 2565 * that the hardware dequeue pointer still at the previous TRB 2566 * of the current TD. The previous TRB maybe a Link TD or the 2567 * last TRB of the previous TD. The command completion handle 2568 * will take care the rest. 2569 */ 2570 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2571 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2572 goto cleanup; 2573 } 2574 2575 if (!ep_seg) { 2576 if (!ep->skip || 2577 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2578 /* Some host controllers give a spurious 2579 * successful event after a short transfer. 2580 * Ignore it. 2581 */ 2582 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2583 ep_ring->last_td_was_short) { 2584 ep_ring->last_td_was_short = false; 2585 goto cleanup; 2586 } 2587 /* HC is busted, give up! */ 2588 xhci_err(xhci, 2589 "ERROR Transfer event TRB DMA ptr not " 2590 "part of current TD ep_index %d " 2591 "comp_code %u\n", ep_index, 2592 trb_comp_code); 2593 trb_in_td(xhci, ep_ring->deq_seg, 2594 ep_ring->dequeue, td->last_trb, 2595 ep_trb_dma, true); 2596 return -ESHUTDOWN; 2597 } 2598 2599 skip_isoc_td(xhci, td, event, ep, &status); 2600 goto cleanup; 2601 } 2602 if (trb_comp_code == COMP_SHORT_PACKET) 2603 ep_ring->last_td_was_short = true; 2604 else 2605 ep_ring->last_td_was_short = false; 2606 2607 if (ep->skip) { 2608 xhci_dbg(xhci, 2609 "Found td. Clear skip flag for slot %u ep %u.\n", 2610 slot_id, ep_index); 2611 ep->skip = false; 2612 } 2613 2614 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2615 sizeof(*ep_trb)]; 2616 2617 trace_xhci_handle_transfer(ep_ring, 2618 (struct xhci_generic_trb *) ep_trb); 2619 2620 /* 2621 * No-op TRB could trigger interrupts in a case where 2622 * a URB was killed and a STALL_ERROR happens right 2623 * after the endpoint ring stopped. Reset the halted 2624 * endpoint. Otherwise, the endpoint remains stalled 2625 * indefinitely. 2626 */ 2627 if (trb_is_noop(ep_trb)) { 2628 if (trb_comp_code == COMP_STALL_ERROR || 2629 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2630 trb_comp_code)) 2631 xhci_cleanup_halted_endpoint(xhci, slot_id, 2632 ep_index, 2633 ep_ring->stream_id, 2634 td, EP_HARD_RESET); 2635 goto cleanup; 2636 } 2637 2638 /* update the urb's actual_length and give back to the core */ 2639 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2640 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2641 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2642 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2643 else 2644 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2645 &status); 2646 cleanup: 2647 handling_skipped_tds = ep->skip && 2648 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2649 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2650 2651 /* 2652 * Do not update event ring dequeue pointer if we're in a loop 2653 * processing missed tds. 2654 */ 2655 if (!handling_skipped_tds) 2656 inc_deq(xhci, xhci->event_ring); 2657 2658 /* 2659 * If ep->skip is set, it means there are missed tds on the 2660 * endpoint ring need to take care of. 2661 * Process them as short transfer until reach the td pointed by 2662 * the event. 2663 */ 2664 } while (handling_skipped_tds); 2665 2666 return 0; 2667 2668 err_out: 2669 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2670 (unsigned long long) xhci_trb_virt_to_dma( 2671 xhci->event_ring->deq_seg, 2672 xhci->event_ring->dequeue), 2673 lower_32_bits(le64_to_cpu(event->buffer)), 2674 upper_32_bits(le64_to_cpu(event->buffer)), 2675 le32_to_cpu(event->transfer_len), 2676 le32_to_cpu(event->flags)); 2677 return -ENODEV; 2678 } 2679 2680 /* 2681 * This function handles all OS-owned events on the event ring. It may drop 2682 * xhci->lock between event processing (e.g. to pass up port status changes). 2683 * Returns >0 for "possibly more events to process" (caller should call again), 2684 * otherwise 0 if done. In future, <0 returns should indicate error code. 2685 */ 2686 static int xhci_handle_event(struct xhci_hcd *xhci) 2687 { 2688 union xhci_trb *event; 2689 int update_ptrs = 1; 2690 int ret; 2691 2692 /* Event ring hasn't been allocated yet. */ 2693 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2694 xhci_err(xhci, "ERROR event ring not ready\n"); 2695 return -ENOMEM; 2696 } 2697 2698 event = xhci->event_ring->dequeue; 2699 /* Does the HC or OS own the TRB? */ 2700 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2701 xhci->event_ring->cycle_state) 2702 return 0; 2703 2704 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2705 2706 /* 2707 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2708 * speculative reads of the event's flags/data below. 2709 */ 2710 rmb(); 2711 /* FIXME: Handle more event types. */ 2712 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2713 case TRB_TYPE(TRB_COMPLETION): 2714 handle_cmd_completion(xhci, &event->event_cmd); 2715 break; 2716 case TRB_TYPE(TRB_PORT_STATUS): 2717 handle_port_status(xhci, event); 2718 update_ptrs = 0; 2719 break; 2720 case TRB_TYPE(TRB_TRANSFER): 2721 ret = handle_tx_event(xhci, &event->trans_event); 2722 if (ret >= 0) 2723 update_ptrs = 0; 2724 break; 2725 case TRB_TYPE(TRB_DEV_NOTE): 2726 handle_device_notification(xhci, event); 2727 break; 2728 default: 2729 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2730 TRB_TYPE(48)) 2731 handle_vendor_event(xhci, event); 2732 else 2733 xhci_warn(xhci, "ERROR unknown event type %d\n", 2734 TRB_FIELD_TO_TYPE( 2735 le32_to_cpu(event->event_cmd.flags))); 2736 } 2737 /* Any of the above functions may drop and re-acquire the lock, so check 2738 * to make sure a watchdog timer didn't mark the host as non-responsive. 2739 */ 2740 if (xhci->xhc_state & XHCI_STATE_DYING) { 2741 xhci_dbg(xhci, "xHCI host dying, returning from " 2742 "event handler.\n"); 2743 return 0; 2744 } 2745 2746 if (update_ptrs) 2747 /* Update SW event ring dequeue pointer */ 2748 inc_deq(xhci, xhci->event_ring); 2749 2750 /* Are there more items on the event ring? Caller will call us again to 2751 * check. 2752 */ 2753 return 1; 2754 } 2755 2756 /* 2757 * Update Event Ring Dequeue Pointer: 2758 * - When all events have finished 2759 * - To avoid "Event Ring Full Error" condition 2760 */ 2761 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2762 union xhci_trb *event_ring_deq) 2763 { 2764 u64 temp_64; 2765 dma_addr_t deq; 2766 2767 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2768 /* If necessary, update the HW's version of the event ring deq ptr. */ 2769 if (event_ring_deq != xhci->event_ring->dequeue) { 2770 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2771 xhci->event_ring->dequeue); 2772 if (deq == 0) 2773 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2774 /* 2775 * Per 4.9.4, Software writes to the ERDP register shall 2776 * always advance the Event Ring Dequeue Pointer value. 2777 */ 2778 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2779 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2780 return; 2781 2782 /* Update HC event ring dequeue pointer */ 2783 temp_64 &= ERST_PTR_MASK; 2784 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2785 } 2786 2787 /* Clear the event handler busy flag (RW1C) */ 2788 temp_64 |= ERST_EHB; 2789 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2790 } 2791 2792 /* 2793 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2794 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2795 * indicators of an event TRB error, but we check the status *first* to be safe. 2796 */ 2797 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2798 { 2799 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2800 union xhci_trb *event_ring_deq; 2801 irqreturn_t ret = IRQ_NONE; 2802 unsigned long flags; 2803 u64 temp_64; 2804 u32 status; 2805 int event_loop = 0; 2806 2807 spin_lock_irqsave(&xhci->lock, flags); 2808 /* Check if the xHC generated the interrupt, or the irq is shared */ 2809 status = readl(&xhci->op_regs->status); 2810 if (status == ~(u32)0) { 2811 xhci_hc_died(xhci); 2812 ret = IRQ_HANDLED; 2813 goto out; 2814 } 2815 2816 if (!(status & STS_EINT)) 2817 goto out; 2818 2819 if (status & STS_FATAL) { 2820 xhci_warn(xhci, "WARNING: Host System Error\n"); 2821 xhci_halt(xhci); 2822 ret = IRQ_HANDLED; 2823 goto out; 2824 } 2825 2826 /* 2827 * Clear the op reg interrupt status first, 2828 * so we can receive interrupts from other MSI-X interrupters. 2829 * Write 1 to clear the interrupt status. 2830 */ 2831 status |= STS_EINT; 2832 writel(status, &xhci->op_regs->status); 2833 2834 if (!hcd->msi_enabled) { 2835 u32 irq_pending; 2836 irq_pending = readl(&xhci->ir_set->irq_pending); 2837 irq_pending |= IMAN_IP; 2838 writel(irq_pending, &xhci->ir_set->irq_pending); 2839 } 2840 2841 if (xhci->xhc_state & XHCI_STATE_DYING || 2842 xhci->xhc_state & XHCI_STATE_HALTED) { 2843 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2844 "Shouldn't IRQs be disabled?\n"); 2845 /* Clear the event handler busy flag (RW1C); 2846 * the event ring should be empty. 2847 */ 2848 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2849 xhci_write_64(xhci, temp_64 | ERST_EHB, 2850 &xhci->ir_set->erst_dequeue); 2851 ret = IRQ_HANDLED; 2852 goto out; 2853 } 2854 2855 event_ring_deq = xhci->event_ring->dequeue; 2856 /* FIXME this should be a delayed service routine 2857 * that clears the EHB. 2858 */ 2859 while (xhci_handle_event(xhci) > 0) { 2860 if (event_loop++ < TRBS_PER_SEGMENT / 2) 2861 continue; 2862 xhci_update_erst_dequeue(xhci, event_ring_deq); 2863 event_loop = 0; 2864 } 2865 2866 xhci_update_erst_dequeue(xhci, event_ring_deq); 2867 ret = IRQ_HANDLED; 2868 2869 out: 2870 spin_unlock_irqrestore(&xhci->lock, flags); 2871 2872 return ret; 2873 } 2874 2875 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2876 { 2877 return xhci_irq(hcd); 2878 } 2879 2880 /**** Endpoint Ring Operations ****/ 2881 2882 /* 2883 * Generic function for queueing a TRB on a ring. 2884 * The caller must have checked to make sure there's room on the ring. 2885 * 2886 * @more_trbs_coming: Will you enqueue more TRBs before calling 2887 * prepare_transfer()? 2888 */ 2889 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2890 bool more_trbs_coming, 2891 u32 field1, u32 field2, u32 field3, u32 field4) 2892 { 2893 struct xhci_generic_trb *trb; 2894 2895 trb = &ring->enqueue->generic; 2896 trb->field[0] = cpu_to_le32(field1); 2897 trb->field[1] = cpu_to_le32(field2); 2898 trb->field[2] = cpu_to_le32(field3); 2899 trb->field[3] = cpu_to_le32(field4); 2900 2901 trace_xhci_queue_trb(ring, trb); 2902 2903 inc_enq(xhci, ring, more_trbs_coming); 2904 } 2905 2906 /* 2907 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2908 * FIXME allocate segments if the ring is full. 2909 */ 2910 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2911 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2912 { 2913 unsigned int num_trbs_needed; 2914 2915 /* Make sure the endpoint has been added to xHC schedule */ 2916 switch (ep_state) { 2917 case EP_STATE_DISABLED: 2918 /* 2919 * USB core changed config/interfaces without notifying us, 2920 * or hardware is reporting the wrong state. 2921 */ 2922 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2923 return -ENOENT; 2924 case EP_STATE_ERROR: 2925 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2926 /* FIXME event handling code for error needs to clear it */ 2927 /* XXX not sure if this should be -ENOENT or not */ 2928 return -EINVAL; 2929 case EP_STATE_HALTED: 2930 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2931 case EP_STATE_STOPPED: 2932 case EP_STATE_RUNNING: 2933 break; 2934 default: 2935 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2936 /* 2937 * FIXME issue Configure Endpoint command to try to get the HC 2938 * back into a known state. 2939 */ 2940 return -EINVAL; 2941 } 2942 2943 while (1) { 2944 if (room_on_ring(xhci, ep_ring, num_trbs)) 2945 break; 2946 2947 if (ep_ring == xhci->cmd_ring) { 2948 xhci_err(xhci, "Do not support expand command ring\n"); 2949 return -ENOMEM; 2950 } 2951 2952 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2953 "ERROR no room on ep ring, try ring expansion"); 2954 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2955 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2956 mem_flags)) { 2957 xhci_err(xhci, "Ring expansion failed\n"); 2958 return -ENOMEM; 2959 } 2960 } 2961 2962 while (trb_is_link(ep_ring->enqueue)) { 2963 /* If we're not dealing with 0.95 hardware or isoc rings 2964 * on AMD 0.96 host, clear the chain bit. 2965 */ 2966 if (!xhci_link_trb_quirk(xhci) && 2967 !(ep_ring->type == TYPE_ISOC && 2968 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2969 ep_ring->enqueue->link.control &= 2970 cpu_to_le32(~TRB_CHAIN); 2971 else 2972 ep_ring->enqueue->link.control |= 2973 cpu_to_le32(TRB_CHAIN); 2974 2975 wmb(); 2976 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2977 2978 /* Toggle the cycle bit after the last ring segment. */ 2979 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2980 ep_ring->cycle_state ^= 1; 2981 2982 ep_ring->enq_seg = ep_ring->enq_seg->next; 2983 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2984 } 2985 return 0; 2986 } 2987 2988 static int prepare_transfer(struct xhci_hcd *xhci, 2989 struct xhci_virt_device *xdev, 2990 unsigned int ep_index, 2991 unsigned int stream_id, 2992 unsigned int num_trbs, 2993 struct urb *urb, 2994 unsigned int td_index, 2995 gfp_t mem_flags) 2996 { 2997 int ret; 2998 struct urb_priv *urb_priv; 2999 struct xhci_td *td; 3000 struct xhci_ring *ep_ring; 3001 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3002 3003 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3004 if (!ep_ring) { 3005 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3006 stream_id); 3007 return -EINVAL; 3008 } 3009 3010 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3011 num_trbs, mem_flags); 3012 if (ret) 3013 return ret; 3014 3015 urb_priv = urb->hcpriv; 3016 td = &urb_priv->td[td_index]; 3017 3018 INIT_LIST_HEAD(&td->td_list); 3019 INIT_LIST_HEAD(&td->cancelled_td_list); 3020 3021 if (td_index == 0) { 3022 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3023 if (unlikely(ret)) 3024 return ret; 3025 } 3026 3027 td->urb = urb; 3028 /* Add this TD to the tail of the endpoint ring's TD list */ 3029 list_add_tail(&td->td_list, &ep_ring->td_list); 3030 td->start_seg = ep_ring->enq_seg; 3031 td->first_trb = ep_ring->enqueue; 3032 3033 return 0; 3034 } 3035 3036 unsigned int count_trbs(u64 addr, u64 len) 3037 { 3038 unsigned int num_trbs; 3039 3040 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3041 TRB_MAX_BUFF_SIZE); 3042 if (num_trbs == 0) 3043 num_trbs++; 3044 3045 return num_trbs; 3046 } 3047 3048 static inline unsigned int count_trbs_needed(struct urb *urb) 3049 { 3050 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3051 } 3052 3053 static unsigned int count_sg_trbs_needed(struct urb *urb) 3054 { 3055 struct scatterlist *sg; 3056 unsigned int i, len, full_len, num_trbs = 0; 3057 3058 full_len = urb->transfer_buffer_length; 3059 3060 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3061 len = sg_dma_len(sg); 3062 num_trbs += count_trbs(sg_dma_address(sg), len); 3063 len = min_t(unsigned int, len, full_len); 3064 full_len -= len; 3065 if (full_len == 0) 3066 break; 3067 } 3068 3069 return num_trbs; 3070 } 3071 3072 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3073 { 3074 u64 addr, len; 3075 3076 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3077 len = urb->iso_frame_desc[i].length; 3078 3079 return count_trbs(addr, len); 3080 } 3081 3082 static void check_trb_math(struct urb *urb, int running_total) 3083 { 3084 if (unlikely(running_total != urb->transfer_buffer_length)) 3085 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3086 "queued %#x (%d), asked for %#x (%d)\n", 3087 __func__, 3088 urb->ep->desc.bEndpointAddress, 3089 running_total, running_total, 3090 urb->transfer_buffer_length, 3091 urb->transfer_buffer_length); 3092 } 3093 3094 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3095 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3096 struct xhci_generic_trb *start_trb) 3097 { 3098 /* 3099 * Pass all the TRBs to the hardware at once and make sure this write 3100 * isn't reordered. 3101 */ 3102 wmb(); 3103 if (start_cycle) 3104 start_trb->field[3] |= cpu_to_le32(start_cycle); 3105 else 3106 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3107 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3108 } 3109 3110 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3111 struct xhci_ep_ctx *ep_ctx) 3112 { 3113 int xhci_interval; 3114 int ep_interval; 3115 3116 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3117 ep_interval = urb->interval; 3118 3119 /* Convert to microframes */ 3120 if (urb->dev->speed == USB_SPEED_LOW || 3121 urb->dev->speed == USB_SPEED_FULL) 3122 ep_interval *= 8; 3123 3124 /* FIXME change this to a warning and a suggestion to use the new API 3125 * to set the polling interval (once the API is added). 3126 */ 3127 if (xhci_interval != ep_interval) { 3128 dev_dbg_ratelimited(&urb->dev->dev, 3129 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3130 ep_interval, ep_interval == 1 ? "" : "s", 3131 xhci_interval, xhci_interval == 1 ? "" : "s"); 3132 urb->interval = xhci_interval; 3133 /* Convert back to frames for LS/FS devices */ 3134 if (urb->dev->speed == USB_SPEED_LOW || 3135 urb->dev->speed == USB_SPEED_FULL) 3136 urb->interval /= 8; 3137 } 3138 } 3139 3140 /* 3141 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3142 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3143 * (comprised of sg list entries) can take several service intervals to 3144 * transmit. 3145 */ 3146 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3147 struct urb *urb, int slot_id, unsigned int ep_index) 3148 { 3149 struct xhci_ep_ctx *ep_ctx; 3150 3151 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3152 check_interval(xhci, urb, ep_ctx); 3153 3154 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3155 } 3156 3157 /* 3158 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3159 * packets remaining in the TD (*not* including this TRB). 3160 * 3161 * Total TD packet count = total_packet_count = 3162 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3163 * 3164 * Packets transferred up to and including this TRB = packets_transferred = 3165 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3166 * 3167 * TD size = total_packet_count - packets_transferred 3168 * 3169 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3170 * including this TRB, right shifted by 10 3171 * 3172 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3173 * This is taken care of in the TRB_TD_SIZE() macro 3174 * 3175 * The last TRB in a TD must have the TD size set to zero. 3176 */ 3177 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3178 int trb_buff_len, unsigned int td_total_len, 3179 struct urb *urb, bool more_trbs_coming) 3180 { 3181 u32 maxp, total_packet_count; 3182 3183 /* MTK xHCI 0.96 contains some features from 1.0 */ 3184 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3185 return ((td_total_len - transferred) >> 10); 3186 3187 /* One TRB with a zero-length data packet. */ 3188 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3189 trb_buff_len == td_total_len) 3190 return 0; 3191 3192 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3193 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3194 trb_buff_len = 0; 3195 3196 maxp = usb_endpoint_maxp(&urb->ep->desc); 3197 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3198 3199 /* Queueing functions don't count the current TRB into transferred */ 3200 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3201 } 3202 3203 3204 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3205 u32 *trb_buff_len, struct xhci_segment *seg) 3206 { 3207 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3208 unsigned int unalign; 3209 unsigned int max_pkt; 3210 u32 new_buff_len; 3211 size_t len; 3212 3213 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3214 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3215 3216 /* we got lucky, last normal TRB data on segment is packet aligned */ 3217 if (unalign == 0) 3218 return 0; 3219 3220 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3221 unalign, *trb_buff_len); 3222 3223 /* is the last nornal TRB alignable by splitting it */ 3224 if (*trb_buff_len > unalign) { 3225 *trb_buff_len -= unalign; 3226 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3227 return 0; 3228 } 3229 3230 /* 3231 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3232 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3233 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3234 */ 3235 new_buff_len = max_pkt - (enqd_len % max_pkt); 3236 3237 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3238 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3239 3240 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3241 if (usb_urb_dir_out(urb)) { 3242 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3243 seg->bounce_buf, new_buff_len, enqd_len); 3244 if (len != new_buff_len) 3245 xhci_warn(xhci, 3246 "WARN Wrong bounce buffer write length: %zu != %d\n", 3247 len, new_buff_len); 3248 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3249 max_pkt, DMA_TO_DEVICE); 3250 } else { 3251 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3252 max_pkt, DMA_FROM_DEVICE); 3253 } 3254 3255 if (dma_mapping_error(dev, seg->bounce_dma)) { 3256 /* try without aligning. Some host controllers survive */ 3257 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3258 return 0; 3259 } 3260 *trb_buff_len = new_buff_len; 3261 seg->bounce_len = new_buff_len; 3262 seg->bounce_offs = enqd_len; 3263 3264 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3265 3266 return 1; 3267 } 3268 3269 /* This is very similar to what ehci-q.c qtd_fill() does */ 3270 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3271 struct urb *urb, int slot_id, unsigned int ep_index) 3272 { 3273 struct xhci_ring *ring; 3274 struct urb_priv *urb_priv; 3275 struct xhci_td *td; 3276 struct xhci_generic_trb *start_trb; 3277 struct scatterlist *sg = NULL; 3278 bool more_trbs_coming = true; 3279 bool need_zero_pkt = false; 3280 bool first_trb = true; 3281 unsigned int num_trbs; 3282 unsigned int start_cycle, num_sgs = 0; 3283 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3284 int sent_len, ret; 3285 u32 field, length_field, remainder; 3286 u64 addr, send_addr; 3287 3288 ring = xhci_urb_to_transfer_ring(xhci, urb); 3289 if (!ring) 3290 return -EINVAL; 3291 3292 full_len = urb->transfer_buffer_length; 3293 /* If we have scatter/gather list, we use it. */ 3294 if (urb->num_sgs) { 3295 num_sgs = urb->num_mapped_sgs; 3296 sg = urb->sg; 3297 addr = (u64) sg_dma_address(sg); 3298 block_len = sg_dma_len(sg); 3299 num_trbs = count_sg_trbs_needed(urb); 3300 } else { 3301 num_trbs = count_trbs_needed(urb); 3302 addr = (u64) urb->transfer_dma; 3303 block_len = full_len; 3304 } 3305 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3306 ep_index, urb->stream_id, 3307 num_trbs, urb, 0, mem_flags); 3308 if (unlikely(ret < 0)) 3309 return ret; 3310 3311 urb_priv = urb->hcpriv; 3312 3313 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3314 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3315 need_zero_pkt = true; 3316 3317 td = &urb_priv->td[0]; 3318 3319 /* 3320 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3321 * until we've finished creating all the other TRBs. The ring's cycle 3322 * state may change as we enqueue the other TRBs, so save it too. 3323 */ 3324 start_trb = &ring->enqueue->generic; 3325 start_cycle = ring->cycle_state; 3326 send_addr = addr; 3327 3328 /* Queue the TRBs, even if they are zero-length */ 3329 for (enqd_len = 0; first_trb || enqd_len < full_len; 3330 enqd_len += trb_buff_len) { 3331 field = TRB_TYPE(TRB_NORMAL); 3332 3333 /* TRB buffer should not cross 64KB boundaries */ 3334 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3335 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3336 3337 if (enqd_len + trb_buff_len > full_len) 3338 trb_buff_len = full_len - enqd_len; 3339 3340 /* Don't change the cycle bit of the first TRB until later */ 3341 if (first_trb) { 3342 first_trb = false; 3343 if (start_cycle == 0) 3344 field |= TRB_CYCLE; 3345 } else 3346 field |= ring->cycle_state; 3347 3348 /* Chain all the TRBs together; clear the chain bit in the last 3349 * TRB to indicate it's the last TRB in the chain. 3350 */ 3351 if (enqd_len + trb_buff_len < full_len) { 3352 field |= TRB_CHAIN; 3353 if (trb_is_link(ring->enqueue + 1)) { 3354 if (xhci_align_td(xhci, urb, enqd_len, 3355 &trb_buff_len, 3356 ring->enq_seg)) { 3357 send_addr = ring->enq_seg->bounce_dma; 3358 /* assuming TD won't span 2 segs */ 3359 td->bounce_seg = ring->enq_seg; 3360 } 3361 } 3362 } 3363 if (enqd_len + trb_buff_len >= full_len) { 3364 field &= ~TRB_CHAIN; 3365 field |= TRB_IOC; 3366 more_trbs_coming = false; 3367 td->last_trb = ring->enqueue; 3368 3369 if (xhci_urb_suitable_for_idt(urb)) { 3370 memcpy(&send_addr, urb->transfer_buffer, 3371 trb_buff_len); 3372 le64_to_cpus(&send_addr); 3373 field |= TRB_IDT; 3374 } 3375 } 3376 3377 /* Only set interrupt on short packet for IN endpoints */ 3378 if (usb_urb_dir_in(urb)) 3379 field |= TRB_ISP; 3380 3381 /* Set the TRB length, TD size, and interrupter fields. */ 3382 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3383 full_len, urb, more_trbs_coming); 3384 3385 length_field = TRB_LEN(trb_buff_len) | 3386 TRB_TD_SIZE(remainder) | 3387 TRB_INTR_TARGET(0); 3388 3389 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3390 lower_32_bits(send_addr), 3391 upper_32_bits(send_addr), 3392 length_field, 3393 field); 3394 3395 addr += trb_buff_len; 3396 sent_len = trb_buff_len; 3397 3398 while (sg && sent_len >= block_len) { 3399 /* New sg entry */ 3400 --num_sgs; 3401 sent_len -= block_len; 3402 if (num_sgs != 0) { 3403 sg = sg_next(sg); 3404 block_len = sg_dma_len(sg); 3405 addr = (u64) sg_dma_address(sg); 3406 addr += sent_len; 3407 } 3408 } 3409 block_len -= sent_len; 3410 send_addr = addr; 3411 } 3412 3413 if (need_zero_pkt) { 3414 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3415 ep_index, urb->stream_id, 3416 1, urb, 1, mem_flags); 3417 urb_priv->td[1].last_trb = ring->enqueue; 3418 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3419 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3420 } 3421 3422 check_trb_math(urb, enqd_len); 3423 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3424 start_cycle, start_trb); 3425 return 0; 3426 } 3427 3428 /* Caller must have locked xhci->lock */ 3429 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3430 struct urb *urb, int slot_id, unsigned int ep_index) 3431 { 3432 struct xhci_ring *ep_ring; 3433 int num_trbs; 3434 int ret; 3435 struct usb_ctrlrequest *setup; 3436 struct xhci_generic_trb *start_trb; 3437 int start_cycle; 3438 u32 field; 3439 struct urb_priv *urb_priv; 3440 struct xhci_td *td; 3441 3442 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3443 if (!ep_ring) 3444 return -EINVAL; 3445 3446 /* 3447 * Need to copy setup packet into setup TRB, so we can't use the setup 3448 * DMA address. 3449 */ 3450 if (!urb->setup_packet) 3451 return -EINVAL; 3452 3453 /* 1 TRB for setup, 1 for status */ 3454 num_trbs = 2; 3455 /* 3456 * Don't need to check if we need additional event data and normal TRBs, 3457 * since data in control transfers will never get bigger than 16MB 3458 * XXX: can we get a buffer that crosses 64KB boundaries? 3459 */ 3460 if (urb->transfer_buffer_length > 0) 3461 num_trbs++; 3462 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3463 ep_index, urb->stream_id, 3464 num_trbs, urb, 0, mem_flags); 3465 if (ret < 0) 3466 return ret; 3467 3468 urb_priv = urb->hcpriv; 3469 td = &urb_priv->td[0]; 3470 3471 /* 3472 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3473 * until we've finished creating all the other TRBs. The ring's cycle 3474 * state may change as we enqueue the other TRBs, so save it too. 3475 */ 3476 start_trb = &ep_ring->enqueue->generic; 3477 start_cycle = ep_ring->cycle_state; 3478 3479 /* Queue setup TRB - see section 6.4.1.2.1 */ 3480 /* FIXME better way to translate setup_packet into two u32 fields? */ 3481 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3482 field = 0; 3483 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3484 if (start_cycle == 0) 3485 field |= 0x1; 3486 3487 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3488 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3489 if (urb->transfer_buffer_length > 0) { 3490 if (setup->bRequestType & USB_DIR_IN) 3491 field |= TRB_TX_TYPE(TRB_DATA_IN); 3492 else 3493 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3494 } 3495 } 3496 3497 queue_trb(xhci, ep_ring, true, 3498 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3499 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3500 TRB_LEN(8) | TRB_INTR_TARGET(0), 3501 /* Immediate data in pointer */ 3502 field); 3503 3504 /* If there's data, queue data TRBs */ 3505 /* Only set interrupt on short packet for IN endpoints */ 3506 if (usb_urb_dir_in(urb)) 3507 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3508 else 3509 field = TRB_TYPE(TRB_DATA); 3510 3511 if (urb->transfer_buffer_length > 0) { 3512 u32 length_field, remainder; 3513 u64 addr; 3514 3515 if (xhci_urb_suitable_for_idt(urb)) { 3516 memcpy(&addr, urb->transfer_buffer, 3517 urb->transfer_buffer_length); 3518 le64_to_cpus(&addr); 3519 field |= TRB_IDT; 3520 } else { 3521 addr = (u64) urb->transfer_dma; 3522 } 3523 3524 remainder = xhci_td_remainder(xhci, 0, 3525 urb->transfer_buffer_length, 3526 urb->transfer_buffer_length, 3527 urb, 1); 3528 length_field = TRB_LEN(urb->transfer_buffer_length) | 3529 TRB_TD_SIZE(remainder) | 3530 TRB_INTR_TARGET(0); 3531 if (setup->bRequestType & USB_DIR_IN) 3532 field |= TRB_DIR_IN; 3533 queue_trb(xhci, ep_ring, true, 3534 lower_32_bits(addr), 3535 upper_32_bits(addr), 3536 length_field, 3537 field | ep_ring->cycle_state); 3538 } 3539 3540 /* Save the DMA address of the last TRB in the TD */ 3541 td->last_trb = ep_ring->enqueue; 3542 3543 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3544 /* If the device sent data, the status stage is an OUT transfer */ 3545 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3546 field = 0; 3547 else 3548 field = TRB_DIR_IN; 3549 queue_trb(xhci, ep_ring, false, 3550 0, 3551 0, 3552 TRB_INTR_TARGET(0), 3553 /* Event on completion */ 3554 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3555 3556 giveback_first_trb(xhci, slot_id, ep_index, 0, 3557 start_cycle, start_trb); 3558 return 0; 3559 } 3560 3561 /* 3562 * The transfer burst count field of the isochronous TRB defines the number of 3563 * bursts that are required to move all packets in this TD. Only SuperSpeed 3564 * devices can burst up to bMaxBurst number of packets per service interval. 3565 * This field is zero based, meaning a value of zero in the field means one 3566 * burst. Basically, for everything but SuperSpeed devices, this field will be 3567 * zero. Only xHCI 1.0 host controllers support this field. 3568 */ 3569 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3570 struct urb *urb, unsigned int total_packet_count) 3571 { 3572 unsigned int max_burst; 3573 3574 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3575 return 0; 3576 3577 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3578 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3579 } 3580 3581 /* 3582 * Returns the number of packets in the last "burst" of packets. This field is 3583 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3584 * the last burst packet count is equal to the total number of packets in the 3585 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3586 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3587 * contain 1 to (bMaxBurst + 1) packets. 3588 */ 3589 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3590 struct urb *urb, unsigned int total_packet_count) 3591 { 3592 unsigned int max_burst; 3593 unsigned int residue; 3594 3595 if (xhci->hci_version < 0x100) 3596 return 0; 3597 3598 if (urb->dev->speed >= USB_SPEED_SUPER) { 3599 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3600 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3601 residue = total_packet_count % (max_burst + 1); 3602 /* If residue is zero, the last burst contains (max_burst + 1) 3603 * number of packets, but the TLBPC field is zero-based. 3604 */ 3605 if (residue == 0) 3606 return max_burst; 3607 return residue - 1; 3608 } 3609 if (total_packet_count == 0) 3610 return 0; 3611 return total_packet_count - 1; 3612 } 3613 3614 /* 3615 * Calculates Frame ID field of the isochronous TRB identifies the 3616 * target frame that the Interval associated with this Isochronous 3617 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3618 * 3619 * Returns actual frame id on success, negative value on error. 3620 */ 3621 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3622 struct urb *urb, int index) 3623 { 3624 int start_frame, ist, ret = 0; 3625 int start_frame_id, end_frame_id, current_frame_id; 3626 3627 if (urb->dev->speed == USB_SPEED_LOW || 3628 urb->dev->speed == USB_SPEED_FULL) 3629 start_frame = urb->start_frame + index * urb->interval; 3630 else 3631 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3632 3633 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3634 * 3635 * If bit [3] of IST is cleared to '0', software can add a TRB no 3636 * later than IST[2:0] Microframes before that TRB is scheduled to 3637 * be executed. 3638 * If bit [3] of IST is set to '1', software can add a TRB no later 3639 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3640 */ 3641 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3642 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3643 ist <<= 3; 3644 3645 /* Software shall not schedule an Isoch TD with a Frame ID value that 3646 * is less than the Start Frame ID or greater than the End Frame ID, 3647 * where: 3648 * 3649 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3650 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3651 * 3652 * Both the End Frame ID and Start Frame ID values are calculated 3653 * in microframes. When software determines the valid Frame ID value; 3654 * The End Frame ID value should be rounded down to the nearest Frame 3655 * boundary, and the Start Frame ID value should be rounded up to the 3656 * nearest Frame boundary. 3657 */ 3658 current_frame_id = readl(&xhci->run_regs->microframe_index); 3659 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3660 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3661 3662 start_frame &= 0x7ff; 3663 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3664 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3665 3666 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3667 __func__, index, readl(&xhci->run_regs->microframe_index), 3668 start_frame_id, end_frame_id, start_frame); 3669 3670 if (start_frame_id < end_frame_id) { 3671 if (start_frame > end_frame_id || 3672 start_frame < start_frame_id) 3673 ret = -EINVAL; 3674 } else if (start_frame_id > end_frame_id) { 3675 if ((start_frame > end_frame_id && 3676 start_frame < start_frame_id)) 3677 ret = -EINVAL; 3678 } else { 3679 ret = -EINVAL; 3680 } 3681 3682 if (index == 0) { 3683 if (ret == -EINVAL || start_frame == start_frame_id) { 3684 start_frame = start_frame_id + 1; 3685 if (urb->dev->speed == USB_SPEED_LOW || 3686 urb->dev->speed == USB_SPEED_FULL) 3687 urb->start_frame = start_frame; 3688 else 3689 urb->start_frame = start_frame << 3; 3690 ret = 0; 3691 } 3692 } 3693 3694 if (ret) { 3695 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3696 start_frame, current_frame_id, index, 3697 start_frame_id, end_frame_id); 3698 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3699 return ret; 3700 } 3701 3702 return start_frame; 3703 } 3704 3705 /* This is for isoc transfer */ 3706 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3707 struct urb *urb, int slot_id, unsigned int ep_index) 3708 { 3709 struct xhci_ring *ep_ring; 3710 struct urb_priv *urb_priv; 3711 struct xhci_td *td; 3712 int num_tds, trbs_per_td; 3713 struct xhci_generic_trb *start_trb; 3714 bool first_trb; 3715 int start_cycle; 3716 u32 field, length_field; 3717 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3718 u64 start_addr, addr; 3719 int i, j; 3720 bool more_trbs_coming; 3721 struct xhci_virt_ep *xep; 3722 int frame_id; 3723 3724 xep = &xhci->devs[slot_id]->eps[ep_index]; 3725 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3726 3727 num_tds = urb->number_of_packets; 3728 if (num_tds < 1) { 3729 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3730 return -EINVAL; 3731 } 3732 start_addr = (u64) urb->transfer_dma; 3733 start_trb = &ep_ring->enqueue->generic; 3734 start_cycle = ep_ring->cycle_state; 3735 3736 urb_priv = urb->hcpriv; 3737 /* Queue the TRBs for each TD, even if they are zero-length */ 3738 for (i = 0; i < num_tds; i++) { 3739 unsigned int total_pkt_count, max_pkt; 3740 unsigned int burst_count, last_burst_pkt_count; 3741 u32 sia_frame_id; 3742 3743 first_trb = true; 3744 running_total = 0; 3745 addr = start_addr + urb->iso_frame_desc[i].offset; 3746 td_len = urb->iso_frame_desc[i].length; 3747 td_remain_len = td_len; 3748 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3749 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3750 3751 /* A zero-length transfer still involves at least one packet. */ 3752 if (total_pkt_count == 0) 3753 total_pkt_count++; 3754 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3755 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3756 urb, total_pkt_count); 3757 3758 trbs_per_td = count_isoc_trbs_needed(urb, i); 3759 3760 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3761 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3762 if (ret < 0) { 3763 if (i == 0) 3764 return ret; 3765 goto cleanup; 3766 } 3767 td = &urb_priv->td[i]; 3768 3769 /* use SIA as default, if frame id is used overwrite it */ 3770 sia_frame_id = TRB_SIA; 3771 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3772 HCC_CFC(xhci->hcc_params)) { 3773 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3774 if (frame_id >= 0) 3775 sia_frame_id = TRB_FRAME_ID(frame_id); 3776 } 3777 /* 3778 * Set isoc specific data for the first TRB in a TD. 3779 * Prevent HW from getting the TRBs by keeping the cycle state 3780 * inverted in the first TDs isoc TRB. 3781 */ 3782 field = TRB_TYPE(TRB_ISOC) | 3783 TRB_TLBPC(last_burst_pkt_count) | 3784 sia_frame_id | 3785 (i ? ep_ring->cycle_state : !start_cycle); 3786 3787 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3788 if (!xep->use_extended_tbc) 3789 field |= TRB_TBC(burst_count); 3790 3791 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3792 for (j = 0; j < trbs_per_td; j++) { 3793 u32 remainder = 0; 3794 3795 /* only first TRB is isoc, overwrite otherwise */ 3796 if (!first_trb) 3797 field = TRB_TYPE(TRB_NORMAL) | 3798 ep_ring->cycle_state; 3799 3800 /* Only set interrupt on short packet for IN EPs */ 3801 if (usb_urb_dir_in(urb)) 3802 field |= TRB_ISP; 3803 3804 /* Set the chain bit for all except the last TRB */ 3805 if (j < trbs_per_td - 1) { 3806 more_trbs_coming = true; 3807 field |= TRB_CHAIN; 3808 } else { 3809 more_trbs_coming = false; 3810 td->last_trb = ep_ring->enqueue; 3811 field |= TRB_IOC; 3812 /* set BEI, except for the last TD */ 3813 if (xhci->hci_version >= 0x100 && 3814 !(xhci->quirks & XHCI_AVOID_BEI) && 3815 i < num_tds - 1) 3816 field |= TRB_BEI; 3817 } 3818 /* Calculate TRB length */ 3819 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3820 if (trb_buff_len > td_remain_len) 3821 trb_buff_len = td_remain_len; 3822 3823 /* Set the TRB length, TD size, & interrupter fields. */ 3824 remainder = xhci_td_remainder(xhci, running_total, 3825 trb_buff_len, td_len, 3826 urb, more_trbs_coming); 3827 3828 length_field = TRB_LEN(trb_buff_len) | 3829 TRB_INTR_TARGET(0); 3830 3831 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3832 if (first_trb && xep->use_extended_tbc) 3833 length_field |= TRB_TD_SIZE_TBC(burst_count); 3834 else 3835 length_field |= TRB_TD_SIZE(remainder); 3836 first_trb = false; 3837 3838 queue_trb(xhci, ep_ring, more_trbs_coming, 3839 lower_32_bits(addr), 3840 upper_32_bits(addr), 3841 length_field, 3842 field); 3843 running_total += trb_buff_len; 3844 3845 addr += trb_buff_len; 3846 td_remain_len -= trb_buff_len; 3847 } 3848 3849 /* Check TD length */ 3850 if (running_total != td_len) { 3851 xhci_err(xhci, "ISOC TD length unmatch\n"); 3852 ret = -EINVAL; 3853 goto cleanup; 3854 } 3855 } 3856 3857 /* store the next frame id */ 3858 if (HCC_CFC(xhci->hcc_params)) 3859 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3860 3861 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3862 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3863 usb_amd_quirk_pll_disable(); 3864 } 3865 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3866 3867 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3868 start_cycle, start_trb); 3869 return 0; 3870 cleanup: 3871 /* Clean up a partially enqueued isoc transfer. */ 3872 3873 for (i--; i >= 0; i--) 3874 list_del_init(&urb_priv->td[i].td_list); 3875 3876 /* Use the first TD as a temporary variable to turn the TDs we've queued 3877 * into No-ops with a software-owned cycle bit. That way the hardware 3878 * won't accidentally start executing bogus TDs when we partially 3879 * overwrite them. td->first_trb and td->start_seg are already set. 3880 */ 3881 urb_priv->td[0].last_trb = ep_ring->enqueue; 3882 /* Every TRB except the first & last will have its cycle bit flipped. */ 3883 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3884 3885 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3886 ep_ring->enqueue = urb_priv->td[0].first_trb; 3887 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3888 ep_ring->cycle_state = start_cycle; 3889 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3890 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3891 return ret; 3892 } 3893 3894 /* 3895 * Check transfer ring to guarantee there is enough room for the urb. 3896 * Update ISO URB start_frame and interval. 3897 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3898 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3899 * Contiguous Frame ID is not supported by HC. 3900 */ 3901 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3902 struct urb *urb, int slot_id, unsigned int ep_index) 3903 { 3904 struct xhci_virt_device *xdev; 3905 struct xhci_ring *ep_ring; 3906 struct xhci_ep_ctx *ep_ctx; 3907 int start_frame; 3908 int num_tds, num_trbs, i; 3909 int ret; 3910 struct xhci_virt_ep *xep; 3911 int ist; 3912 3913 xdev = xhci->devs[slot_id]; 3914 xep = &xhci->devs[slot_id]->eps[ep_index]; 3915 ep_ring = xdev->eps[ep_index].ring; 3916 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3917 3918 num_trbs = 0; 3919 num_tds = urb->number_of_packets; 3920 for (i = 0; i < num_tds; i++) 3921 num_trbs += count_isoc_trbs_needed(urb, i); 3922 3923 /* Check the ring to guarantee there is enough room for the whole urb. 3924 * Do not insert any td of the urb to the ring if the check failed. 3925 */ 3926 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3927 num_trbs, mem_flags); 3928 if (ret) 3929 return ret; 3930 3931 /* 3932 * Check interval value. This should be done before we start to 3933 * calculate the start frame value. 3934 */ 3935 check_interval(xhci, urb, ep_ctx); 3936 3937 /* Calculate the start frame and put it in urb->start_frame. */ 3938 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3939 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3940 urb->start_frame = xep->next_frame_id; 3941 goto skip_start_over; 3942 } 3943 } 3944 3945 start_frame = readl(&xhci->run_regs->microframe_index); 3946 start_frame &= 0x3fff; 3947 /* 3948 * Round up to the next frame and consider the time before trb really 3949 * gets scheduled by hardare. 3950 */ 3951 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3952 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3953 ist <<= 3; 3954 start_frame += ist + XHCI_CFC_DELAY; 3955 start_frame = roundup(start_frame, 8); 3956 3957 /* 3958 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3959 * is greate than 8 microframes. 3960 */ 3961 if (urb->dev->speed == USB_SPEED_LOW || 3962 urb->dev->speed == USB_SPEED_FULL) { 3963 start_frame = roundup(start_frame, urb->interval << 3); 3964 urb->start_frame = start_frame >> 3; 3965 } else { 3966 start_frame = roundup(start_frame, urb->interval); 3967 urb->start_frame = start_frame; 3968 } 3969 3970 skip_start_over: 3971 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3972 3973 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3974 } 3975 3976 /**** Command Ring Operations ****/ 3977 3978 /* Generic function for queueing a command TRB on the command ring. 3979 * Check to make sure there's room on the command ring for one command TRB. 3980 * Also check that there's room reserved for commands that must not fail. 3981 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3982 * then only check for the number of reserved spots. 3983 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3984 * because the command event handler may want to resubmit a failed command. 3985 */ 3986 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3987 u32 field1, u32 field2, 3988 u32 field3, u32 field4, bool command_must_succeed) 3989 { 3990 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3991 int ret; 3992 3993 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3994 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3995 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3996 return -ESHUTDOWN; 3997 } 3998 3999 if (!command_must_succeed) 4000 reserved_trbs++; 4001 4002 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4003 reserved_trbs, GFP_ATOMIC); 4004 if (ret < 0) { 4005 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4006 if (command_must_succeed) 4007 xhci_err(xhci, "ERR: Reserved TRB counting for " 4008 "unfailable commands failed.\n"); 4009 return ret; 4010 } 4011 4012 cmd->command_trb = xhci->cmd_ring->enqueue; 4013 4014 /* if there are no other commands queued we start the timeout timer */ 4015 if (list_empty(&xhci->cmd_list)) { 4016 xhci->current_cmd = cmd; 4017 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4018 } 4019 4020 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4021 4022 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4023 field4 | xhci->cmd_ring->cycle_state); 4024 return 0; 4025 } 4026 4027 /* Queue a slot enable or disable request on the command ring */ 4028 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4029 u32 trb_type, u32 slot_id) 4030 { 4031 return queue_command(xhci, cmd, 0, 0, 0, 4032 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4033 } 4034 4035 /* Queue an address device command TRB */ 4036 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4037 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4038 { 4039 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4040 upper_32_bits(in_ctx_ptr), 0, 4041 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4042 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4043 } 4044 4045 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4046 u32 field1, u32 field2, u32 field3, u32 field4) 4047 { 4048 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4049 } 4050 4051 /* Queue a reset device command TRB */ 4052 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4053 u32 slot_id) 4054 { 4055 return queue_command(xhci, cmd, 0, 0, 0, 4056 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4057 false); 4058 } 4059 4060 /* Queue a configure endpoint command TRB */ 4061 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4062 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4063 u32 slot_id, bool command_must_succeed) 4064 { 4065 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4066 upper_32_bits(in_ctx_ptr), 0, 4067 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4068 command_must_succeed); 4069 } 4070 4071 /* Queue an evaluate context command TRB */ 4072 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4073 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4074 { 4075 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4076 upper_32_bits(in_ctx_ptr), 0, 4077 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4078 command_must_succeed); 4079 } 4080 4081 /* 4082 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4083 * activity on an endpoint that is about to be suspended. 4084 */ 4085 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4086 int slot_id, unsigned int ep_index, int suspend) 4087 { 4088 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4089 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4090 u32 type = TRB_TYPE(TRB_STOP_RING); 4091 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4092 4093 return queue_command(xhci, cmd, 0, 0, 0, 4094 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4095 } 4096 4097 /* Set Transfer Ring Dequeue Pointer command */ 4098 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4099 unsigned int slot_id, unsigned int ep_index, 4100 struct xhci_dequeue_state *deq_state) 4101 { 4102 dma_addr_t addr; 4103 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4104 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4105 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4106 u32 trb_sct = 0; 4107 u32 type = TRB_TYPE(TRB_SET_DEQ); 4108 struct xhci_virt_ep *ep; 4109 struct xhci_command *cmd; 4110 int ret; 4111 4112 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4113 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4114 deq_state->new_deq_seg, 4115 (unsigned long long)deq_state->new_deq_seg->dma, 4116 deq_state->new_deq_ptr, 4117 (unsigned long long)xhci_trb_virt_to_dma( 4118 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4119 deq_state->new_cycle_state); 4120 4121 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4122 deq_state->new_deq_ptr); 4123 if (addr == 0) { 4124 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4125 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4126 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4127 return; 4128 } 4129 ep = &xhci->devs[slot_id]->eps[ep_index]; 4130 if ((ep->ep_state & SET_DEQ_PENDING)) { 4131 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4132 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4133 return; 4134 } 4135 4136 /* This function gets called from contexts where it cannot sleep */ 4137 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4138 if (!cmd) 4139 return; 4140 4141 ep->queued_deq_seg = deq_state->new_deq_seg; 4142 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4143 if (deq_state->stream_id) 4144 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4145 ret = queue_command(xhci, cmd, 4146 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4147 upper_32_bits(addr), trb_stream_id, 4148 trb_slot_id | trb_ep_index | type, false); 4149 if (ret < 0) { 4150 xhci_free_command(xhci, cmd); 4151 return; 4152 } 4153 4154 /* Stop the TD queueing code from ringing the doorbell until 4155 * this command completes. The HC won't set the dequeue pointer 4156 * if the ring is running, and ringing the doorbell starts the 4157 * ring running. 4158 */ 4159 ep->ep_state |= SET_DEQ_PENDING; 4160 } 4161 4162 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4163 int slot_id, unsigned int ep_index, 4164 enum xhci_ep_reset_type reset_type) 4165 { 4166 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4167 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4168 u32 type = TRB_TYPE(TRB_RESET_EP); 4169 4170 if (reset_type == EP_SOFT_RESET) 4171 type |= TRB_TSP; 4172 4173 return queue_command(xhci, cmd, 0, 0, 0, 4174 trb_slot_id | trb_ep_index | type, false); 4175 } 4176