xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision a89988a6)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73 
74 /*
75  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76  * address of the TRB.
77  */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 		union xhci_trb *trb)
80 {
81 	unsigned long segment_offset;
82 
83 	if (!seg || !trb || trb < seg->trbs)
84 		return 0;
85 	/* offset in TRBs */
86 	segment_offset = trb - seg->trbs;
87 	if (segment_offset >= TRBS_PER_SEGMENT)
88 		return 0;
89 	return seg->dma + (segment_offset * sizeof(*trb));
90 }
91 
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96 
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 	return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101 
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106 
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 			struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112 
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117 
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 	struct urb_priv *urb_priv = td->urb->hcpriv;
121 
122 	return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124 
125 static void inc_td_cnt(struct urb *urb)
126 {
127 	struct urb_priv *urb_priv = urb->hcpriv;
128 
129 	urb_priv->num_tds_done++;
130 }
131 
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 	if (trb_is_link(trb)) {
135 		/* unchain chained link TRBs */
136 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 	} else {
138 		trb->generic.field[0] = 0;
139 		trb->generic.field[1] = 0;
140 		trb->generic.field[2] = 0;
141 		/* Preserve only the cycle bit of this TRB */
142 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 	}
145 }
146 
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
149  * effect the ring dequeue or enqueue pointers.
150  */
151 static void next_trb(struct xhci_hcd *xhci,
152 		struct xhci_ring *ring,
153 		struct xhci_segment **seg,
154 		union xhci_trb **trb)
155 {
156 	if (trb_is_link(*trb)) {
157 		*seg = (*seg)->next;
158 		*trb = ((*seg)->trbs);
159 	} else {
160 		(*trb)++;
161 	}
162 }
163 
164 /*
165  * See Cycle bit rules. SW is the consumer for the event ring only.
166  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
167  */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 	/* event ring doesn't have link trbs, check for last trb */
171 	if (ring->type == TYPE_EVENT) {
172 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 			ring->dequeue++;
174 			return;
175 		}
176 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 			ring->cycle_state ^= 1;
178 		ring->deq_seg = ring->deq_seg->next;
179 		ring->dequeue = ring->deq_seg->trbs;
180 		return;
181 	}
182 
183 	/* All other rings have link trbs */
184 	if (!trb_is_link(ring->dequeue)) {
185 		ring->dequeue++;
186 		ring->num_trbs_free++;
187 	}
188 	while (trb_is_link(ring->dequeue)) {
189 		ring->deq_seg = ring->deq_seg->next;
190 		ring->dequeue = ring->deq_seg->trbs;
191 	}
192 
193 	trace_xhci_inc_deq(ring);
194 
195 	return;
196 }
197 
198 /*
199  * See Cycle bit rules. SW is the consumer for the event ring only.
200  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
201  *
202  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
203  * chain bit is set), then set the chain bit in all the following link TRBs.
204  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
205  * have their chain bit cleared (so that each Link TRB is a separate TD).
206  *
207  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
208  * set, but other sections talk about dealing with the chain bit set.  This was
209  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
210  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211  *
212  * @more_trbs_coming:	Will you enqueue more TRBs before calling
213  *			prepare_transfer()?
214  */
215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
216 			bool more_trbs_coming)
217 {
218 	u32 chain;
219 	union xhci_trb *next;
220 
221 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222 	/* If this is not event ring, there is one less usable TRB */
223 	if (!trb_is_link(ring->enqueue))
224 		ring->num_trbs_free--;
225 	next = ++(ring->enqueue);
226 
227 	/* Update the dequeue pointer further if that was a link TRB */
228 	while (trb_is_link(next)) {
229 
230 		/*
231 		 * If the caller doesn't plan on enqueueing more TDs before
232 		 * ringing the doorbell, then we don't want to give the link TRB
233 		 * to the hardware just yet. We'll give the link TRB back in
234 		 * prepare_ring() just before we enqueue the TD at the top of
235 		 * the ring.
236 		 */
237 		if (!chain && !more_trbs_coming)
238 			break;
239 
240 		/* If we're not dealing with 0.95 hardware or isoc rings on
241 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 		 * (which may mean the chain bit is cleared).
243 		 */
244 		if (!(ring->type == TYPE_ISOC &&
245 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 		    !xhci_link_trb_quirk(xhci)) {
247 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 			next->link.control |= cpu_to_le32(chain);
249 		}
250 		/* Give this link TRB to the hardware */
251 		wmb();
252 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
253 
254 		/* Toggle the cycle bit after the last ring segment. */
255 		if (link_trb_toggles_cycle(next))
256 			ring->cycle_state ^= 1;
257 
258 		ring->enq_seg = ring->enq_seg->next;
259 		ring->enqueue = ring->enq_seg->trbs;
260 		next = ring->enqueue;
261 	}
262 
263 	trace_xhci_inc_enq(ring);
264 }
265 
266 /*
267  * Check to see if there's room to enqueue num_trbs on the ring and make sure
268  * enqueue pointer will not advance into dequeue segment. See rules above.
269  */
270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
271 		unsigned int num_trbs)
272 {
273 	int num_trbs_in_deq_seg;
274 
275 	if (ring->num_trbs_free < num_trbs)
276 		return 0;
277 
278 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
279 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
280 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
281 			return 0;
282 	}
283 
284 	return 1;
285 }
286 
287 /* Ring the host controller doorbell after placing a command on the ring */
288 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
289 {
290 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
291 		return;
292 
293 	xhci_dbg(xhci, "// Ding dong!\n");
294 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
295 	/* Flush PCI posted writes */
296 	readl(&xhci->dba->doorbell[0]);
297 }
298 
299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
300 {
301 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
302 }
303 
304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
305 {
306 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
307 					cmd_list);
308 }
309 
310 /*
311  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
312  * If there are other commands waiting then restart the ring and kick the timer.
313  * This must be called with command ring stopped and xhci->lock held.
314  */
315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
316 					 struct xhci_command *cur_cmd)
317 {
318 	struct xhci_command *i_cmd;
319 
320 	/* Turn all aborted commands in list to no-ops, then restart */
321 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
322 
323 		if (i_cmd->status != COMP_COMMAND_ABORTED)
324 			continue;
325 
326 		i_cmd->status = COMP_STOPPED;
327 
328 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
329 			 i_cmd->command_trb);
330 
331 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
332 
333 		/*
334 		 * caller waiting for completion is called when command
335 		 *  completion event is received for these no-op commands
336 		 */
337 	}
338 
339 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
340 
341 	/* ring command ring doorbell to restart the command ring */
342 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
343 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
344 		xhci->current_cmd = cur_cmd;
345 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
346 		xhci_ring_cmd_db(xhci);
347 	}
348 }
349 
350 /* Must be called with xhci->lock held, releases and aquires lock back */
351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
352 {
353 	u64 temp_64;
354 	int ret;
355 
356 	xhci_dbg(xhci, "Abort command ring\n");
357 
358 	reinit_completion(&xhci->cmd_ring_stop_completion);
359 
360 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
361 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
362 			&xhci->op_regs->cmd_ring);
363 
364 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
365 	 * completion of the Command Abort operation. If CRR is not negated in 5
366 	 * seconds then driver handles it as if host died (-ENODEV).
367 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
368 	 * and try to recover a -ETIMEDOUT with a host controller reset.
369 	 */
370 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
371 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
372 	if (ret < 0) {
373 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
374 		xhci_halt(xhci);
375 		xhci_hc_died(xhci);
376 		return ret;
377 	}
378 	/*
379 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 	 * but the completion event in never sent. Wait 2 secs (arbitrary
382 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 	 */
384 	spin_unlock_irqrestore(&xhci->lock, flags);
385 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 					  msecs_to_jiffies(2000));
387 	spin_lock_irqsave(&xhci->lock, flags);
388 	if (!ret) {
389 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 		xhci_cleanup_command_queue(xhci);
391 	} else {
392 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 	}
394 	return 0;
395 }
396 
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 		unsigned int slot_id,
399 		unsigned int ep_index,
400 		unsigned int stream_id)
401 {
402 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 	unsigned int ep_state = ep->ep_state;
405 
406 	/* Don't ring the doorbell for this endpoint if there are pending
407 	 * cancellations because we don't want to interrupt processing.
408 	 * We don't want to restart any stream rings if there's a set dequeue
409 	 * pointer command pending because the device can choose to start any
410 	 * stream once the endpoint is on the HW schedule.
411 	 */
412 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 	    (ep_state & EP_HALTED))
414 		return;
415 	writel(DB_VALUE(ep_index, stream_id), db_addr);
416 	/* The CPU has better things to do at this point than wait for a
417 	 * write-posting flush.  It'll get there soon enough.
418 	 */
419 }
420 
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 		unsigned int slot_id,
424 		unsigned int ep_index)
425 {
426 	unsigned int stream_id;
427 	struct xhci_virt_ep *ep;
428 
429 	ep = &xhci->devs[slot_id]->eps[ep_index];
430 
431 	/* A ring has pending URBs if its TD list is not empty */
432 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 		return;
436 	}
437 
438 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 			stream_id++) {
440 		struct xhci_stream_info *stream_info = ep->stream_info;
441 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 						stream_id);
444 	}
445 }
446 
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448  * If the endpoint supports streams, boundary check the URB's stream ID.
449  * If the endpoint doesn't support streams, return the singular endpoint ring.
450  */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 		unsigned int slot_id, unsigned int ep_index,
453 		unsigned int stream_id)
454 {
455 	struct xhci_virt_ep *ep;
456 
457 	ep = &xhci->devs[slot_id]->eps[ep_index];
458 	/* Common case: no streams */
459 	if (!(ep->ep_state & EP_HAS_STREAMS))
460 		return ep->ring;
461 
462 	if (stream_id == 0) {
463 		xhci_warn(xhci,
464 				"WARN: Slot ID %u, ep index %u has streams, "
465 				"but URB has no stream ID.\n",
466 				slot_id, ep_index);
467 		return NULL;
468 	}
469 
470 	if (stream_id < ep->stream_info->num_streams)
471 		return ep->stream_info->stream_rings[stream_id];
472 
473 	xhci_warn(xhci,
474 			"WARN: Slot ID %u, ep index %u has "
475 			"stream IDs 1 to %u allocated, "
476 			"but stream ID %u is requested.\n",
477 			slot_id, ep_index,
478 			ep->stream_info->num_streams - 1,
479 			stream_id);
480 	return NULL;
481 }
482 
483 /*
484  * Move the xHC's endpoint ring dequeue pointer past cur_td.
485  * Record the new state of the xHC's endpoint ring dequeue segment,
486  * dequeue pointer, and new consumer cycle state in state.
487  * Update our internal representation of the ring's dequeue pointer.
488  *
489  * We do this in three jumps:
490  *  - First we update our new ring state to be the same as when the xHC stopped.
491  *  - Then we traverse the ring to find the segment that contains
492  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
493  *    any link TRBs with the toggle cycle bit set.
494  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
495  *    if we've moved it past a link TRB with the toggle cycle bit set.
496  *
497  * Some of the uses of xhci_generic_trb are grotty, but if they're done
498  * with correct __le32 accesses they should work fine.  Only users of this are
499  * in here.
500  */
501 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
502 		unsigned int slot_id, unsigned int ep_index,
503 		unsigned int stream_id, struct xhci_td *cur_td,
504 		struct xhci_dequeue_state *state)
505 {
506 	struct xhci_virt_device *dev = xhci->devs[slot_id];
507 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
508 	struct xhci_ring *ep_ring;
509 	struct xhci_segment *new_seg;
510 	union xhci_trb *new_deq;
511 	dma_addr_t addr;
512 	u64 hw_dequeue;
513 	bool cycle_found = false;
514 	bool td_last_trb_found = false;
515 
516 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
517 			ep_index, stream_id);
518 	if (!ep_ring) {
519 		xhci_warn(xhci, "WARN can't find new dequeue state "
520 				"for invalid stream ID %u.\n",
521 				stream_id);
522 		return;
523 	}
524 
525 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
526 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
527 			"Finding endpoint context");
528 	/* 4.6.9 the css flag is written to the stream context for streams */
529 	if (ep->ep_state & EP_HAS_STREAMS) {
530 		struct xhci_stream_ctx *ctx =
531 			&ep->stream_info->stream_ctx_array[stream_id];
532 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
533 	} else {
534 		struct xhci_ep_ctx *ep_ctx
535 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
536 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
537 	}
538 
539 	new_seg = ep_ring->deq_seg;
540 	new_deq = ep_ring->dequeue;
541 	state->new_cycle_state = hw_dequeue & 0x1;
542 
543 	/*
544 	 * We want to find the pointer, segment and cycle state of the new trb
545 	 * (the one after current TD's last_trb). We know the cycle state at
546 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
547 	 * found.
548 	 */
549 	do {
550 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
551 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
552 			cycle_found = true;
553 			if (td_last_trb_found)
554 				break;
555 		}
556 		if (new_deq == cur_td->last_trb)
557 			td_last_trb_found = true;
558 
559 		if (cycle_found && trb_is_link(new_deq) &&
560 		    link_trb_toggles_cycle(new_deq))
561 			state->new_cycle_state ^= 0x1;
562 
563 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
564 
565 		/* Search wrapped around, bail out */
566 		if (new_deq == ep->ring->dequeue) {
567 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
568 			state->new_deq_seg = NULL;
569 			state->new_deq_ptr = NULL;
570 			return;
571 		}
572 
573 	} while (!cycle_found || !td_last_trb_found);
574 
575 	state->new_deq_seg = new_seg;
576 	state->new_deq_ptr = new_deq;
577 
578 	/* Don't update the ring cycle state for the producer (us). */
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
580 			"Cycle state = 0x%x", state->new_cycle_state);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
583 			"New dequeue segment = %p (virtual)",
584 			state->new_deq_seg);
585 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
586 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 			"New dequeue pointer = 0x%llx (DMA)",
588 			(unsigned long long) addr);
589 }
590 
591 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
592  * (The last TRB actually points to the ring enqueue pointer, which is not part
593  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
594  */
595 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
596 		       struct xhci_td *td, bool flip_cycle)
597 {
598 	struct xhci_segment *seg	= td->start_seg;
599 	union xhci_trb *trb		= td->first_trb;
600 
601 	while (1) {
602 		trb_to_noop(trb, TRB_TR_NOOP);
603 
604 		/* flip cycle if asked to */
605 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
606 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
607 
608 		if (trb == td->last_trb)
609 			break;
610 
611 		next_trb(xhci, ep_ring, &seg, &trb);
612 	}
613 }
614 
615 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
616 		struct xhci_virt_ep *ep)
617 {
618 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
619 	/* Can't del_timer_sync in interrupt */
620 	del_timer(&ep->stop_cmd_timer);
621 }
622 
623 /*
624  * Must be called with xhci->lock held in interrupt context,
625  * releases and re-acquires xhci->lock
626  */
627 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
628 				     struct xhci_td *cur_td, int status)
629 {
630 	struct urb	*urb		= cur_td->urb;
631 	struct urb_priv	*urb_priv	= urb->hcpriv;
632 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
633 
634 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
635 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
636 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
637 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
638 				usb_amd_quirk_pll_enable();
639 		}
640 	}
641 	xhci_urb_free_priv(urb_priv);
642 	usb_hcd_unlink_urb_from_ep(hcd, urb);
643 	spin_unlock(&xhci->lock);
644 	usb_hcd_giveback_urb(hcd, urb, status);
645 	trace_xhci_urb_giveback(urb);
646 	spin_lock(&xhci->lock);
647 }
648 
649 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
650 		struct xhci_ring *ring, struct xhci_td *td)
651 {
652 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
653 	struct xhci_segment *seg = td->bounce_seg;
654 	struct urb *urb = td->urb;
655 
656 	if (!ring || !seg || !urb)
657 		return;
658 
659 	if (usb_urb_dir_out(urb)) {
660 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
661 				 DMA_TO_DEVICE);
662 		return;
663 	}
664 
665 	/* for in tranfers we need to copy the data from bounce to sg */
666 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
667 			     seg->bounce_len, seg->bounce_offs);
668 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
669 			 DMA_FROM_DEVICE);
670 	seg->bounce_len = 0;
671 	seg->bounce_offs = 0;
672 }
673 
674 /*
675  * When we get a command completion for a Stop Endpoint Command, we need to
676  * unlink any cancelled TDs from the ring.  There are two ways to do that:
677  *
678  *  1. If the HW was in the middle of processing the TD that needs to be
679  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
680  *     in the TD with a Set Dequeue Pointer Command.
681  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
682  *     bit cleared) so that the HW will skip over them.
683  */
684 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
685 		union xhci_trb *trb, struct xhci_event_cmd *event)
686 {
687 	unsigned int ep_index;
688 	struct xhci_ring *ep_ring;
689 	struct xhci_virt_ep *ep;
690 	struct xhci_td *cur_td = NULL;
691 	struct xhci_td *last_unlinked_td;
692 	struct xhci_ep_ctx *ep_ctx;
693 	struct xhci_virt_device *vdev;
694 
695 	struct xhci_dequeue_state deq_state;
696 
697 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
698 		if (!xhci->devs[slot_id])
699 			xhci_warn(xhci, "Stop endpoint command "
700 				"completion for disabled slot %u\n",
701 				slot_id);
702 		return;
703 	}
704 
705 	memset(&deq_state, 0, sizeof(deq_state));
706 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
707 
708 	vdev = xhci->devs[slot_id];
709 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
710 	trace_xhci_handle_cmd_stop_ep(ep_ctx);
711 
712 	ep = &xhci->devs[slot_id]->eps[ep_index];
713 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
714 			struct xhci_td, cancelled_td_list);
715 
716 	if (list_empty(&ep->cancelled_td_list)) {
717 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
718 		ep->stopped_td = NULL;
719 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
720 		return;
721 	}
722 
723 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
724 	 * We have the xHCI lock, so nothing can modify this list until we drop
725 	 * it.  We're also in the event handler, so we can't get re-interrupted
726 	 * if another Stop Endpoint command completes
727 	 */
728 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
729 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
730 				"Removing canceled TD starting at 0x%llx (dma).",
731 				(unsigned long long)xhci_trb_virt_to_dma(
732 					cur_td->start_seg, cur_td->first_trb));
733 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
734 		if (!ep_ring) {
735 			/* This shouldn't happen unless a driver is mucking
736 			 * with the stream ID after submission.  This will
737 			 * leave the TD on the hardware ring, and the hardware
738 			 * will try to execute it, and may access a buffer
739 			 * that has already been freed.  In the best case, the
740 			 * hardware will execute it, and the event handler will
741 			 * ignore the completion event for that TD, since it was
742 			 * removed from the td_list for that endpoint.  In
743 			 * short, don't muck with the stream ID after
744 			 * submission.
745 			 */
746 			xhci_warn(xhci, "WARN Cancelled URB %p "
747 					"has invalid stream ID %u.\n",
748 					cur_td->urb,
749 					cur_td->urb->stream_id);
750 			goto remove_finished_td;
751 		}
752 		/*
753 		 * If we stopped on the TD we need to cancel, then we have to
754 		 * move the xHC endpoint ring dequeue pointer past this TD.
755 		 */
756 		if (cur_td == ep->stopped_td)
757 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
758 					cur_td->urb->stream_id,
759 					cur_td, &deq_state);
760 		else
761 			td_to_noop(xhci, ep_ring, cur_td, false);
762 remove_finished_td:
763 		/*
764 		 * The event handler won't see a completion for this TD anymore,
765 		 * so remove it from the endpoint ring's TD list.  Keep it in
766 		 * the cancelled TD list for URB completion later.
767 		 */
768 		list_del_init(&cur_td->td_list);
769 	}
770 
771 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
772 
773 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
774 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
775 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
776 				ep->stopped_td->urb->stream_id, &deq_state);
777 		xhci_ring_cmd_db(xhci);
778 	} else {
779 		/* Otherwise ring the doorbell(s) to restart queued transfers */
780 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
781 	}
782 
783 	ep->stopped_td = NULL;
784 
785 	/*
786 	 * Drop the lock and complete the URBs in the cancelled TD list.
787 	 * New TDs to be cancelled might be added to the end of the list before
788 	 * we can complete all the URBs for the TDs we already unlinked.
789 	 * So stop when we've completed the URB for the last TD we unlinked.
790 	 */
791 	do {
792 		cur_td = list_first_entry(&ep->cancelled_td_list,
793 				struct xhci_td, cancelled_td_list);
794 		list_del_init(&cur_td->cancelled_td_list);
795 
796 		/* Clean up the cancelled URB */
797 		/* Doesn't matter what we pass for status, since the core will
798 		 * just overwrite it (because the URB has been unlinked).
799 		 */
800 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
801 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
802 		inc_td_cnt(cur_td->urb);
803 		if (last_td_in_urb(cur_td))
804 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
805 
806 		/* Stop processing the cancelled list if the watchdog timer is
807 		 * running.
808 		 */
809 		if (xhci->xhc_state & XHCI_STATE_DYING)
810 			return;
811 	} while (cur_td != last_unlinked_td);
812 
813 	/* Return to the event handler with xhci->lock re-acquired */
814 }
815 
816 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
817 {
818 	struct xhci_td *cur_td;
819 	struct xhci_td *tmp;
820 
821 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
822 		list_del_init(&cur_td->td_list);
823 
824 		if (!list_empty(&cur_td->cancelled_td_list))
825 			list_del_init(&cur_td->cancelled_td_list);
826 
827 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
828 
829 		inc_td_cnt(cur_td->urb);
830 		if (last_td_in_urb(cur_td))
831 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
832 	}
833 }
834 
835 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
836 		int slot_id, int ep_index)
837 {
838 	struct xhci_td *cur_td;
839 	struct xhci_td *tmp;
840 	struct xhci_virt_ep *ep;
841 	struct xhci_ring *ring;
842 
843 	ep = &xhci->devs[slot_id]->eps[ep_index];
844 	if ((ep->ep_state & EP_HAS_STREAMS) ||
845 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
846 		int stream_id;
847 
848 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
849 				stream_id++) {
850 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
851 					"Killing URBs for slot ID %u, ep index %u, stream %u",
852 					slot_id, ep_index, stream_id + 1);
853 			xhci_kill_ring_urbs(xhci,
854 					ep->stream_info->stream_rings[stream_id]);
855 		}
856 	} else {
857 		ring = ep->ring;
858 		if (!ring)
859 			return;
860 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
861 				"Killing URBs for slot ID %u, ep index %u",
862 				slot_id, ep_index);
863 		xhci_kill_ring_urbs(xhci, ring);
864 	}
865 
866 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
867 			cancelled_td_list) {
868 		list_del_init(&cur_td->cancelled_td_list);
869 		inc_td_cnt(cur_td->urb);
870 
871 		if (last_td_in_urb(cur_td))
872 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
873 	}
874 }
875 
876 /*
877  * host controller died, register read returns 0xffffffff
878  * Complete pending commands, mark them ABORTED.
879  * URBs need to be given back as usb core might be waiting with device locks
880  * held for the URBs to finish during device disconnect, blocking host remove.
881  *
882  * Call with xhci->lock held.
883  * lock is relased and re-acquired while giving back urb.
884  */
885 void xhci_hc_died(struct xhci_hcd *xhci)
886 {
887 	int i, j;
888 
889 	if (xhci->xhc_state & XHCI_STATE_DYING)
890 		return;
891 
892 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
893 	xhci->xhc_state |= XHCI_STATE_DYING;
894 
895 	xhci_cleanup_command_queue(xhci);
896 
897 	/* return any pending urbs, remove may be waiting for them */
898 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
899 		if (!xhci->devs[i])
900 			continue;
901 		for (j = 0; j < 31; j++)
902 			xhci_kill_endpoint_urbs(xhci, i, j);
903 	}
904 
905 	/* inform usb core hc died if PCI remove isn't already handling it */
906 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
907 		usb_hc_died(xhci_to_hcd(xhci));
908 }
909 
910 /* Watchdog timer function for when a stop endpoint command fails to complete.
911  * In this case, we assume the host controller is broken or dying or dead.  The
912  * host may still be completing some other events, so we have to be careful to
913  * let the event ring handler and the URB dequeueing/enqueueing functions know
914  * through xhci->state.
915  *
916  * The timer may also fire if the host takes a very long time to respond to the
917  * command, and the stop endpoint command completion handler cannot delete the
918  * timer before the timer function is called.  Another endpoint cancellation may
919  * sneak in before the timer function can grab the lock, and that may queue
920  * another stop endpoint command and add the timer back.  So we cannot use a
921  * simple flag to say whether there is a pending stop endpoint command for a
922  * particular endpoint.
923  *
924  * Instead we use a combination of that flag and checking if a new timer is
925  * pending.
926  */
927 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
928 {
929 	struct xhci_hcd *xhci;
930 	struct xhci_virt_ep *ep;
931 	unsigned long flags;
932 
933 	ep = (struct xhci_virt_ep *) arg;
934 	xhci = ep->xhci;
935 
936 	spin_lock_irqsave(&xhci->lock, flags);
937 
938 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
939 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
940 	    timer_pending(&ep->stop_cmd_timer)) {
941 		spin_unlock_irqrestore(&xhci->lock, flags);
942 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
943 		return;
944 	}
945 
946 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
947 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
948 
949 	xhci_halt(xhci);
950 
951 	/*
952 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
953 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
954 	 * and try to recover a -ETIMEDOUT with a host controller reset
955 	 */
956 	xhci_hc_died(xhci);
957 
958 	spin_unlock_irqrestore(&xhci->lock, flags);
959 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
960 			"xHCI host controller is dead.");
961 }
962 
963 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
964 		struct xhci_virt_device *dev,
965 		struct xhci_ring *ep_ring,
966 		unsigned int ep_index)
967 {
968 	union xhci_trb *dequeue_temp;
969 	int num_trbs_free_temp;
970 	bool revert = false;
971 
972 	num_trbs_free_temp = ep_ring->num_trbs_free;
973 	dequeue_temp = ep_ring->dequeue;
974 
975 	/* If we get two back-to-back stalls, and the first stalled transfer
976 	 * ends just before a link TRB, the dequeue pointer will be left on
977 	 * the link TRB by the code in the while loop.  So we have to update
978 	 * the dequeue pointer one segment further, or we'll jump off
979 	 * the segment into la-la-land.
980 	 */
981 	if (trb_is_link(ep_ring->dequeue)) {
982 		ep_ring->deq_seg = ep_ring->deq_seg->next;
983 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
984 	}
985 
986 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
987 		/* We have more usable TRBs */
988 		ep_ring->num_trbs_free++;
989 		ep_ring->dequeue++;
990 		if (trb_is_link(ep_ring->dequeue)) {
991 			if (ep_ring->dequeue ==
992 					dev->eps[ep_index].queued_deq_ptr)
993 				break;
994 			ep_ring->deq_seg = ep_ring->deq_seg->next;
995 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
996 		}
997 		if (ep_ring->dequeue == dequeue_temp) {
998 			revert = true;
999 			break;
1000 		}
1001 	}
1002 
1003 	if (revert) {
1004 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1005 		ep_ring->num_trbs_free = num_trbs_free_temp;
1006 	}
1007 }
1008 
1009 /*
1010  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1011  * we need to clear the set deq pending flag in the endpoint ring state, so that
1012  * the TD queueing code can ring the doorbell again.  We also need to ring the
1013  * endpoint doorbell to restart the ring, but only if there aren't more
1014  * cancellations pending.
1015  */
1016 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1017 		union xhci_trb *trb, u32 cmd_comp_code)
1018 {
1019 	unsigned int ep_index;
1020 	unsigned int stream_id;
1021 	struct xhci_ring *ep_ring;
1022 	struct xhci_virt_device *dev;
1023 	struct xhci_virt_ep *ep;
1024 	struct xhci_ep_ctx *ep_ctx;
1025 	struct xhci_slot_ctx *slot_ctx;
1026 
1027 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1028 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1029 	dev = xhci->devs[slot_id];
1030 	ep = &dev->eps[ep_index];
1031 
1032 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1033 	if (!ep_ring) {
1034 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1035 				stream_id);
1036 		/* XXX: Harmless??? */
1037 		goto cleanup;
1038 	}
1039 
1040 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1041 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1042 	trace_xhci_handle_cmd_set_deq(slot_ctx);
1043 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1044 
1045 	if (cmd_comp_code != COMP_SUCCESS) {
1046 		unsigned int ep_state;
1047 		unsigned int slot_state;
1048 
1049 		switch (cmd_comp_code) {
1050 		case COMP_TRB_ERROR:
1051 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1052 			break;
1053 		case COMP_CONTEXT_STATE_ERROR:
1054 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1055 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1056 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1057 			slot_state = GET_SLOT_STATE(slot_state);
1058 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1059 					"Slot state = %u, EP state = %u",
1060 					slot_state, ep_state);
1061 			break;
1062 		case COMP_SLOT_NOT_ENABLED_ERROR:
1063 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1064 					slot_id);
1065 			break;
1066 		default:
1067 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1068 					cmd_comp_code);
1069 			break;
1070 		}
1071 		/* OK what do we do now?  The endpoint state is hosed, and we
1072 		 * should never get to this point if the synchronization between
1073 		 * queueing, and endpoint state are correct.  This might happen
1074 		 * if the device gets disconnected after we've finished
1075 		 * cancelling URBs, which might not be an error...
1076 		 */
1077 	} else {
1078 		u64 deq;
1079 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1080 		if (ep->ep_state & EP_HAS_STREAMS) {
1081 			struct xhci_stream_ctx *ctx =
1082 				&ep->stream_info->stream_ctx_array[stream_id];
1083 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1084 		} else {
1085 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1086 		}
1087 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1088 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1089 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1090 					 ep->queued_deq_ptr) == deq) {
1091 			/* Update the ring's dequeue segment and dequeue pointer
1092 			 * to reflect the new position.
1093 			 */
1094 			update_ring_for_set_deq_completion(xhci, dev,
1095 				ep_ring, ep_index);
1096 		} else {
1097 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1098 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1099 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1100 		}
1101 	}
1102 
1103 cleanup:
1104 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1105 	dev->eps[ep_index].queued_deq_seg = NULL;
1106 	dev->eps[ep_index].queued_deq_ptr = NULL;
1107 	/* Restart any rings with pending URBs */
1108 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1109 }
1110 
1111 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1112 		union xhci_trb *trb, u32 cmd_comp_code)
1113 {
1114 	struct xhci_virt_device *vdev;
1115 	struct xhci_ep_ctx *ep_ctx;
1116 	unsigned int ep_index;
1117 
1118 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1119 	vdev = xhci->devs[slot_id];
1120 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1121 	trace_xhci_handle_cmd_reset_ep(ep_ctx);
1122 
1123 	/* This command will only fail if the endpoint wasn't halted,
1124 	 * but we don't care.
1125 	 */
1126 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1127 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1128 
1129 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1130 	 * command complete before the endpoint can be used.  Queue that here
1131 	 * because the HW can't handle two commands being queued in a row.
1132 	 */
1133 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1134 		struct xhci_command *command;
1135 
1136 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1137 		if (!command)
1138 			return;
1139 
1140 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1141 				"Queueing configure endpoint command");
1142 		xhci_queue_configure_endpoint(xhci, command,
1143 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1144 				false);
1145 		xhci_ring_cmd_db(xhci);
1146 	} else {
1147 		/* Clear our internal halted state */
1148 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1149 	}
1150 }
1151 
1152 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1153 		struct xhci_command *command, u32 cmd_comp_code)
1154 {
1155 	if (cmd_comp_code == COMP_SUCCESS)
1156 		command->slot_id = slot_id;
1157 	else
1158 		command->slot_id = 0;
1159 }
1160 
1161 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1162 {
1163 	struct xhci_virt_device *virt_dev;
1164 	struct xhci_slot_ctx *slot_ctx;
1165 
1166 	virt_dev = xhci->devs[slot_id];
1167 	if (!virt_dev)
1168 		return;
1169 
1170 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1171 	trace_xhci_handle_cmd_disable_slot(slot_ctx);
1172 
1173 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1174 		/* Delete default control endpoint resources */
1175 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1176 	xhci_free_virt_device(xhci, slot_id);
1177 }
1178 
1179 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1180 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1181 {
1182 	struct xhci_virt_device *virt_dev;
1183 	struct xhci_input_control_ctx *ctrl_ctx;
1184 	struct xhci_ep_ctx *ep_ctx;
1185 	unsigned int ep_index;
1186 	unsigned int ep_state;
1187 	u32 add_flags, drop_flags;
1188 
1189 	/*
1190 	 * Configure endpoint commands can come from the USB core
1191 	 * configuration or alt setting changes, or because the HW
1192 	 * needed an extra configure endpoint command after a reset
1193 	 * endpoint command or streams were being configured.
1194 	 * If the command was for a halted endpoint, the xHCI driver
1195 	 * is not waiting on the configure endpoint command.
1196 	 */
1197 	virt_dev = xhci->devs[slot_id];
1198 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1199 	if (!ctrl_ctx) {
1200 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1201 		return;
1202 	}
1203 
1204 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1205 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1206 	/* Input ctx add_flags are the endpoint index plus one */
1207 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1208 
1209 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1210 	trace_xhci_handle_cmd_config_ep(ep_ctx);
1211 
1212 	/* A usb_set_interface() call directly after clearing a halted
1213 	 * condition may race on this quirky hardware.  Not worth
1214 	 * worrying about, since this is prototype hardware.  Not sure
1215 	 * if this will work for streams, but streams support was
1216 	 * untested on this prototype.
1217 	 */
1218 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1219 			ep_index != (unsigned int) -1 &&
1220 			add_flags - SLOT_FLAG == drop_flags) {
1221 		ep_state = virt_dev->eps[ep_index].ep_state;
1222 		if (!(ep_state & EP_HALTED))
1223 			return;
1224 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1225 				"Completed config ep cmd - "
1226 				"last ep index = %d, state = %d",
1227 				ep_index, ep_state);
1228 		/* Clear internal halted state and restart ring(s) */
1229 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1230 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1231 		return;
1232 	}
1233 	return;
1234 }
1235 
1236 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1237 {
1238 	struct xhci_virt_device *vdev;
1239 	struct xhci_slot_ctx *slot_ctx;
1240 
1241 	vdev = xhci->devs[slot_id];
1242 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1243 	trace_xhci_handle_cmd_addr_dev(slot_ctx);
1244 }
1245 
1246 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1247 		struct xhci_event_cmd *event)
1248 {
1249 	struct xhci_virt_device *vdev;
1250 	struct xhci_slot_ctx *slot_ctx;
1251 
1252 	vdev = xhci->devs[slot_id];
1253 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1254 	trace_xhci_handle_cmd_reset_dev(slot_ctx);
1255 
1256 	xhci_dbg(xhci, "Completed reset device command.\n");
1257 	if (!xhci->devs[slot_id])
1258 		xhci_warn(xhci, "Reset device command completion "
1259 				"for disabled slot %u\n", slot_id);
1260 }
1261 
1262 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1263 		struct xhci_event_cmd *event)
1264 {
1265 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1266 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1267 		return;
1268 	}
1269 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1270 			"NEC firmware version %2x.%02x",
1271 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1272 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1273 }
1274 
1275 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1276 {
1277 	list_del(&cmd->cmd_list);
1278 
1279 	if (cmd->completion) {
1280 		cmd->status = status;
1281 		complete(cmd->completion);
1282 	} else {
1283 		kfree(cmd);
1284 	}
1285 }
1286 
1287 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1288 {
1289 	struct xhci_command *cur_cmd, *tmp_cmd;
1290 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1291 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1292 }
1293 
1294 void xhci_handle_command_timeout(struct work_struct *work)
1295 {
1296 	struct xhci_hcd *xhci;
1297 	unsigned long flags;
1298 	u64 hw_ring_state;
1299 
1300 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1301 
1302 	spin_lock_irqsave(&xhci->lock, flags);
1303 
1304 	/*
1305 	 * If timeout work is pending, or current_cmd is NULL, it means we
1306 	 * raced with command completion. Command is handled so just return.
1307 	 */
1308 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1309 		spin_unlock_irqrestore(&xhci->lock, flags);
1310 		return;
1311 	}
1312 	/* mark this command to be cancelled */
1313 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1314 
1315 	/* Make sure command ring is running before aborting it */
1316 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1317 	if (hw_ring_state == ~(u64)0) {
1318 		xhci_hc_died(xhci);
1319 		goto time_out_completed;
1320 	}
1321 
1322 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1323 	    (hw_ring_state & CMD_RING_RUNNING))  {
1324 		/* Prevent new doorbell, and start command abort */
1325 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1326 		xhci_dbg(xhci, "Command timeout\n");
1327 		xhci_abort_cmd_ring(xhci, flags);
1328 		goto time_out_completed;
1329 	}
1330 
1331 	/* host removed. Bail out */
1332 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1333 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1334 		xhci_cleanup_command_queue(xhci);
1335 
1336 		goto time_out_completed;
1337 	}
1338 
1339 	/* command timeout on stopped ring, ring can't be aborted */
1340 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1341 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1342 
1343 time_out_completed:
1344 	spin_unlock_irqrestore(&xhci->lock, flags);
1345 	return;
1346 }
1347 
1348 static void handle_cmd_completion(struct xhci_hcd *xhci,
1349 		struct xhci_event_cmd *event)
1350 {
1351 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1352 	u64 cmd_dma;
1353 	dma_addr_t cmd_dequeue_dma;
1354 	u32 cmd_comp_code;
1355 	union xhci_trb *cmd_trb;
1356 	struct xhci_command *cmd;
1357 	u32 cmd_type;
1358 
1359 	cmd_dma = le64_to_cpu(event->cmd_trb);
1360 	cmd_trb = xhci->cmd_ring->dequeue;
1361 
1362 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1363 
1364 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1365 			cmd_trb);
1366 	/*
1367 	 * Check whether the completion event is for our internal kept
1368 	 * command.
1369 	 */
1370 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1371 		xhci_warn(xhci,
1372 			  "ERROR mismatched command completion event\n");
1373 		return;
1374 	}
1375 
1376 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1377 
1378 	cancel_delayed_work(&xhci->cmd_timer);
1379 
1380 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1381 
1382 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1383 	if (cmd_comp_code == COMP_STOPPED) {
1384 		complete_all(&xhci->cmd_ring_stop_completion);
1385 		return;
1386 	}
1387 
1388 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1389 		xhci_err(xhci,
1390 			 "Command completion event does not match command\n");
1391 		return;
1392 	}
1393 
1394 	/*
1395 	 * Host aborted the command ring, check if the current command was
1396 	 * supposed to be aborted, otherwise continue normally.
1397 	 * The command ring is stopped now, but the xHC will issue a Command
1398 	 * Ring Stopped event which will cause us to restart it.
1399 	 */
1400 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1401 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1402 		if (cmd->status == COMP_COMMAND_ABORTED) {
1403 			if (xhci->current_cmd == cmd)
1404 				xhci->current_cmd = NULL;
1405 			goto event_handled;
1406 		}
1407 	}
1408 
1409 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1410 	switch (cmd_type) {
1411 	case TRB_ENABLE_SLOT:
1412 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1413 		break;
1414 	case TRB_DISABLE_SLOT:
1415 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1416 		break;
1417 	case TRB_CONFIG_EP:
1418 		if (!cmd->completion)
1419 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1420 						  cmd_comp_code);
1421 		break;
1422 	case TRB_EVAL_CONTEXT:
1423 		break;
1424 	case TRB_ADDR_DEV:
1425 		xhci_handle_cmd_addr_dev(xhci, slot_id);
1426 		break;
1427 	case TRB_STOP_RING:
1428 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1429 				le32_to_cpu(cmd_trb->generic.field[3])));
1430 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1431 		break;
1432 	case TRB_SET_DEQ:
1433 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1434 				le32_to_cpu(cmd_trb->generic.field[3])));
1435 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1436 		break;
1437 	case TRB_CMD_NOOP:
1438 		/* Is this an aborted command turned to NO-OP? */
1439 		if (cmd->status == COMP_STOPPED)
1440 			cmd_comp_code = COMP_STOPPED;
1441 		break;
1442 	case TRB_RESET_EP:
1443 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1444 				le32_to_cpu(cmd_trb->generic.field[3])));
1445 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1446 		break;
1447 	case TRB_RESET_DEV:
1448 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1449 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1450 		 */
1451 		slot_id = TRB_TO_SLOT_ID(
1452 				le32_to_cpu(cmd_trb->generic.field[3]));
1453 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1454 		break;
1455 	case TRB_NEC_GET_FW:
1456 		xhci_handle_cmd_nec_get_fw(xhci, event);
1457 		break;
1458 	default:
1459 		/* Skip over unknown commands on the event ring */
1460 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1461 		break;
1462 	}
1463 
1464 	/* restart timer if this wasn't the last command */
1465 	if (!list_is_singular(&xhci->cmd_list)) {
1466 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1467 						struct xhci_command, cmd_list);
1468 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1469 	} else if (xhci->current_cmd == cmd) {
1470 		xhci->current_cmd = NULL;
1471 	}
1472 
1473 event_handled:
1474 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1475 
1476 	inc_deq(xhci, xhci->cmd_ring);
1477 }
1478 
1479 static void handle_vendor_event(struct xhci_hcd *xhci,
1480 		union xhci_trb *event)
1481 {
1482 	u32 trb_type;
1483 
1484 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1485 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1486 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1487 		handle_cmd_completion(xhci, &event->event_cmd);
1488 }
1489 
1490 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1491  * port registers -- USB 3.0 and USB 2.0).
1492  *
1493  * Returns a zero-based port number, which is suitable for indexing into each of
1494  * the split roothubs' port arrays and bus state arrays.
1495  * Add one to it in order to call xhci_find_slot_id_by_port.
1496  */
1497 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1498 		struct xhci_hcd *xhci, u32 port_id)
1499 {
1500 	unsigned int i;
1501 	unsigned int num_similar_speed_ports = 0;
1502 
1503 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1504 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1505 	 * speed ports, up to 1 port before this port.
1506 	 */
1507 	for (i = 0; i < (port_id - 1); i++) {
1508 		u8 port_speed = xhci->port_array[i];
1509 
1510 		/*
1511 		 * Skip ports that don't have known speeds, or have duplicate
1512 		 * Extended Capabilities port speed entries.
1513 		 */
1514 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1515 			continue;
1516 
1517 		/*
1518 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1519 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1520 		 * matches the device speed, it's a similar speed port.
1521 		 */
1522 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1523 			num_similar_speed_ports++;
1524 	}
1525 	return num_similar_speed_ports;
1526 }
1527 
1528 static void handle_device_notification(struct xhci_hcd *xhci,
1529 		union xhci_trb *event)
1530 {
1531 	u32 slot_id;
1532 	struct usb_device *udev;
1533 
1534 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1535 	if (!xhci->devs[slot_id]) {
1536 		xhci_warn(xhci, "Device Notification event for "
1537 				"unused slot %u\n", slot_id);
1538 		return;
1539 	}
1540 
1541 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1542 			slot_id);
1543 	udev = xhci->devs[slot_id]->udev;
1544 	if (udev && udev->parent)
1545 		usb_wakeup_notification(udev->parent, udev->portnum);
1546 }
1547 
1548 static void handle_port_status(struct xhci_hcd *xhci,
1549 		union xhci_trb *event)
1550 {
1551 	struct usb_hcd *hcd;
1552 	u32 port_id;
1553 	u32 temp, temp1;
1554 	int max_ports;
1555 	int slot_id;
1556 	unsigned int faked_port_index;
1557 	u8 major_revision;
1558 	struct xhci_bus_state *bus_state;
1559 	__le32 __iomem **port_array;
1560 	bool bogus_port_status = false;
1561 
1562 	/* Port status change events always have a successful completion code */
1563 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1564 		xhci_warn(xhci,
1565 			  "WARN: xHC returned failed port status event\n");
1566 
1567 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1568 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1569 
1570 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1571 	if ((port_id <= 0) || (port_id > max_ports)) {
1572 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1573 		inc_deq(xhci, xhci->event_ring);
1574 		return;
1575 	}
1576 
1577 	/* Figure out which usb_hcd this port is attached to:
1578 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1579 	 */
1580 	major_revision = xhci->port_array[port_id - 1];
1581 
1582 	/* Find the right roothub. */
1583 	hcd = xhci_to_hcd(xhci);
1584 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1585 		hcd = xhci->shared_hcd;
1586 
1587 	if (major_revision == 0) {
1588 		xhci_warn(xhci, "Event for port %u not in "
1589 				"Extended Capabilities, ignoring.\n",
1590 				port_id);
1591 		bogus_port_status = true;
1592 		goto cleanup;
1593 	}
1594 	if (major_revision == DUPLICATE_ENTRY) {
1595 		xhci_warn(xhci, "Event for port %u duplicated in"
1596 				"Extended Capabilities, ignoring.\n",
1597 				port_id);
1598 		bogus_port_status = true;
1599 		goto cleanup;
1600 	}
1601 
1602 	/*
1603 	 * Hardware port IDs reported by a Port Status Change Event include USB
1604 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1605 	 * resume event, but we first need to translate the hardware port ID
1606 	 * into the index into the ports on the correct split roothub, and the
1607 	 * correct bus_state structure.
1608 	 */
1609 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1610 	if (hcd->speed >= HCD_USB3)
1611 		port_array = xhci->usb3_ports;
1612 	else
1613 		port_array = xhci->usb2_ports;
1614 	/* Find the faked port hub number */
1615 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1616 			port_id);
1617 
1618 	temp = readl(port_array[faked_port_index]);
1619 	if (hcd->state == HC_STATE_SUSPENDED) {
1620 		xhci_dbg(xhci, "resume root hub\n");
1621 		usb_hcd_resume_root_hub(hcd);
1622 	}
1623 
1624 	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1625 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1626 
1627 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1628 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1629 
1630 		temp1 = readl(&xhci->op_regs->command);
1631 		if (!(temp1 & CMD_RUN)) {
1632 			xhci_warn(xhci, "xHC is not running.\n");
1633 			goto cleanup;
1634 		}
1635 
1636 		if (DEV_SUPERSPEED_ANY(temp)) {
1637 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1638 			/* Set a flag to say the port signaled remote wakeup,
1639 			 * so we can tell the difference between the end of
1640 			 * device and host initiated resume.
1641 			 */
1642 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1643 			xhci_test_and_clear_bit(xhci, port_array,
1644 					faked_port_index, PORT_PLC);
1645 			xhci_set_link_state(xhci, port_array, faked_port_index,
1646 						XDEV_U0);
1647 			/* Need to wait until the next link state change
1648 			 * indicates the device is actually in U0.
1649 			 */
1650 			bogus_port_status = true;
1651 			goto cleanup;
1652 		} else if (!test_bit(faked_port_index,
1653 				     &bus_state->resuming_ports)) {
1654 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1655 			bus_state->resume_done[faked_port_index] = jiffies +
1656 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1657 			set_bit(faked_port_index, &bus_state->resuming_ports);
1658 			mod_timer(&hcd->rh_timer,
1659 				  bus_state->resume_done[faked_port_index]);
1660 			/* Do the rest in GetPortStatus */
1661 		}
1662 	}
1663 
1664 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1665 			DEV_SUPERSPEED_ANY(temp)) {
1666 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1667 		/* We've just brought the device into U0 through either the
1668 		 * Resume state after a device remote wakeup, or through the
1669 		 * U3Exit state after a host-initiated resume.  If it's a device
1670 		 * initiated remote wake, don't pass up the link state change,
1671 		 * so the roothub behavior is consistent with external
1672 		 * USB 3.0 hub behavior.
1673 		 */
1674 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1675 				faked_port_index + 1);
1676 		if (slot_id && xhci->devs[slot_id])
1677 			xhci_ring_device(xhci, slot_id);
1678 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1679 			bus_state->port_remote_wakeup &=
1680 				~(1 << faked_port_index);
1681 			xhci_test_and_clear_bit(xhci, port_array,
1682 					faked_port_index, PORT_PLC);
1683 			usb_wakeup_notification(hcd->self.root_hub,
1684 					faked_port_index + 1);
1685 			bogus_port_status = true;
1686 			goto cleanup;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1692 	 * RExit to a disconnect state).  If so, let the the driver know it's
1693 	 * out of the RExit state.
1694 	 */
1695 	if (!DEV_SUPERSPEED_ANY(temp) &&
1696 			test_and_clear_bit(faked_port_index,
1697 				&bus_state->rexit_ports)) {
1698 		complete(&bus_state->rexit_done[faked_port_index]);
1699 		bogus_port_status = true;
1700 		goto cleanup;
1701 	}
1702 
1703 	if (hcd->speed < HCD_USB3)
1704 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1705 					PORT_PLC);
1706 
1707 cleanup:
1708 	/* Update event ring dequeue pointer before dropping the lock */
1709 	inc_deq(xhci, xhci->event_ring);
1710 
1711 	/* Don't make the USB core poll the roothub if we got a bad port status
1712 	 * change event.  Besides, at that point we can't tell which roothub
1713 	 * (USB 2.0 or USB 3.0) to kick.
1714 	 */
1715 	if (bogus_port_status)
1716 		return;
1717 
1718 	/*
1719 	 * xHCI port-status-change events occur when the "or" of all the
1720 	 * status-change bits in the portsc register changes from 0 to 1.
1721 	 * New status changes won't cause an event if any other change
1722 	 * bits are still set.  When an event occurs, switch over to
1723 	 * polling to avoid losing status changes.
1724 	 */
1725 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1726 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1727 	spin_unlock(&xhci->lock);
1728 	/* Pass this up to the core */
1729 	usb_hcd_poll_rh_status(hcd);
1730 	spin_lock(&xhci->lock);
1731 }
1732 
1733 /*
1734  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1735  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1736  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1737  * returns 0.
1738  */
1739 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1740 		struct xhci_segment *start_seg,
1741 		union xhci_trb	*start_trb,
1742 		union xhci_trb	*end_trb,
1743 		dma_addr_t	suspect_dma,
1744 		bool		debug)
1745 {
1746 	dma_addr_t start_dma;
1747 	dma_addr_t end_seg_dma;
1748 	dma_addr_t end_trb_dma;
1749 	struct xhci_segment *cur_seg;
1750 
1751 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1752 	cur_seg = start_seg;
1753 
1754 	do {
1755 		if (start_dma == 0)
1756 			return NULL;
1757 		/* We may get an event for a Link TRB in the middle of a TD */
1758 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1759 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1760 		/* If the end TRB isn't in this segment, this is set to 0 */
1761 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1762 
1763 		if (debug)
1764 			xhci_warn(xhci,
1765 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1766 				(unsigned long long)suspect_dma,
1767 				(unsigned long long)start_dma,
1768 				(unsigned long long)end_trb_dma,
1769 				(unsigned long long)cur_seg->dma,
1770 				(unsigned long long)end_seg_dma);
1771 
1772 		if (end_trb_dma > 0) {
1773 			/* The end TRB is in this segment, so suspect should be here */
1774 			if (start_dma <= end_trb_dma) {
1775 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1776 					return cur_seg;
1777 			} else {
1778 				/* Case for one segment with
1779 				 * a TD wrapped around to the top
1780 				 */
1781 				if ((suspect_dma >= start_dma &&
1782 							suspect_dma <= end_seg_dma) ||
1783 						(suspect_dma >= cur_seg->dma &&
1784 						 suspect_dma <= end_trb_dma))
1785 					return cur_seg;
1786 			}
1787 			return NULL;
1788 		} else {
1789 			/* Might still be somewhere in this segment */
1790 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1791 				return cur_seg;
1792 		}
1793 		cur_seg = cur_seg->next;
1794 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1795 	} while (cur_seg != start_seg);
1796 
1797 	return NULL;
1798 }
1799 
1800 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1801 		unsigned int slot_id, unsigned int ep_index,
1802 		unsigned int stream_id,
1803 		struct xhci_td *td, union xhci_trb *ep_trb)
1804 {
1805 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1806 	struct xhci_command *command;
1807 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1808 	if (!command)
1809 		return;
1810 
1811 	ep->ep_state |= EP_HALTED;
1812 	ep->stopped_stream = stream_id;
1813 
1814 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1815 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1816 
1817 	ep->stopped_stream = 0;
1818 
1819 	xhci_ring_cmd_db(xhci);
1820 }
1821 
1822 /* Check if an error has halted the endpoint ring.  The class driver will
1823  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1824  * However, a babble and other errors also halt the endpoint ring, and the class
1825  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1826  * Ring Dequeue Pointer command manually.
1827  */
1828 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1829 		struct xhci_ep_ctx *ep_ctx,
1830 		unsigned int trb_comp_code)
1831 {
1832 	/* TRB completion codes that may require a manual halt cleanup */
1833 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1834 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1835 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1836 		/* The 0.95 spec says a babbling control endpoint
1837 		 * is not halted. The 0.96 spec says it is.  Some HW
1838 		 * claims to be 0.95 compliant, but it halts the control
1839 		 * endpoint anyway.  Check if a babble halted the
1840 		 * endpoint.
1841 		 */
1842 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1843 			return 1;
1844 
1845 	return 0;
1846 }
1847 
1848 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1849 {
1850 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1851 		/* Vendor defined "informational" completion code,
1852 		 * treat as not-an-error.
1853 		 */
1854 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1855 				trb_comp_code);
1856 		xhci_dbg(xhci, "Treating code as success.\n");
1857 		return 1;
1858 	}
1859 	return 0;
1860 }
1861 
1862 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1863 		struct xhci_ring *ep_ring, int *status)
1864 {
1865 	struct urb_priv	*urb_priv;
1866 	struct urb *urb = NULL;
1867 
1868 	/* Clean up the endpoint's TD list */
1869 	urb = td->urb;
1870 	urb_priv = urb->hcpriv;
1871 
1872 	/* if a bounce buffer was used to align this td then unmap it */
1873 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1874 
1875 	/* Do one last check of the actual transfer length.
1876 	 * If the host controller said we transferred more data than the buffer
1877 	 * length, urb->actual_length will be a very big number (since it's
1878 	 * unsigned).  Play it safe and say we didn't transfer anything.
1879 	 */
1880 	if (urb->actual_length > urb->transfer_buffer_length) {
1881 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1882 			  urb->transfer_buffer_length, urb->actual_length);
1883 		urb->actual_length = 0;
1884 		*status = 0;
1885 	}
1886 	list_del_init(&td->td_list);
1887 	/* Was this TD slated to be cancelled but completed anyway? */
1888 	if (!list_empty(&td->cancelled_td_list))
1889 		list_del_init(&td->cancelled_td_list);
1890 
1891 	inc_td_cnt(urb);
1892 	/* Giveback the urb when all the tds are completed */
1893 	if (last_td_in_urb(td)) {
1894 		if ((urb->actual_length != urb->transfer_buffer_length &&
1895 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1896 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1897 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1898 				 urb, urb->actual_length,
1899 				 urb->transfer_buffer_length, *status);
1900 
1901 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1902 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1903 			*status = 0;
1904 		xhci_giveback_urb_in_irq(xhci, td, *status);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1911 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1912 	struct xhci_virt_ep *ep, int *status, bool skip)
1913 {
1914 	struct xhci_virt_device *xdev;
1915 	struct xhci_ep_ctx *ep_ctx;
1916 	struct xhci_ring *ep_ring;
1917 	unsigned int slot_id;
1918 	u32 trb_comp_code;
1919 	int ep_index;
1920 
1921 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1922 	xdev = xhci->devs[slot_id];
1923 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1924 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1925 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1926 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1927 
1928 	if (skip)
1929 		goto td_cleanup;
1930 
1931 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1932 			trb_comp_code == COMP_STOPPED ||
1933 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1934 		/* The Endpoint Stop Command completion will take care of any
1935 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1936 		 * the ring dequeue pointer or take this TD off any lists yet.
1937 		 */
1938 		ep->stopped_td = td;
1939 		return 0;
1940 	}
1941 	if (trb_comp_code == COMP_STALL_ERROR ||
1942 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1943 						trb_comp_code)) {
1944 		/* Issue a reset endpoint command to clear the host side
1945 		 * halt, followed by a set dequeue command to move the
1946 		 * dequeue pointer past the TD.
1947 		 * The class driver clears the device side halt later.
1948 		 */
1949 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1950 					ep_ring->stream_id, td, ep_trb);
1951 	} else {
1952 		/* Update ring dequeue pointer */
1953 		while (ep_ring->dequeue != td->last_trb)
1954 			inc_deq(xhci, ep_ring);
1955 		inc_deq(xhci, ep_ring);
1956 	}
1957 
1958 td_cleanup:
1959 	return xhci_td_cleanup(xhci, td, ep_ring, status);
1960 }
1961 
1962 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1963 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1964 			   union xhci_trb *stop_trb)
1965 {
1966 	u32 sum;
1967 	union xhci_trb *trb = ring->dequeue;
1968 	struct xhci_segment *seg = ring->deq_seg;
1969 
1970 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1971 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1972 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1973 	}
1974 	return sum;
1975 }
1976 
1977 /*
1978  * Process control tds, update urb status and actual_length.
1979  */
1980 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1981 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1982 	struct xhci_virt_ep *ep, int *status)
1983 {
1984 	struct xhci_virt_device *xdev;
1985 	struct xhci_ring *ep_ring;
1986 	unsigned int slot_id;
1987 	int ep_index;
1988 	struct xhci_ep_ctx *ep_ctx;
1989 	u32 trb_comp_code;
1990 	u32 remaining, requested;
1991 	u32 trb_type;
1992 
1993 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
1994 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1995 	xdev = xhci->devs[slot_id];
1996 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1997 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1998 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1999 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2000 	requested = td->urb->transfer_buffer_length;
2001 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2002 
2003 	switch (trb_comp_code) {
2004 	case COMP_SUCCESS:
2005 		if (trb_type != TRB_STATUS) {
2006 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2007 				  (trb_type == TRB_DATA) ? "data" : "setup");
2008 			*status = -ESHUTDOWN;
2009 			break;
2010 		}
2011 		*status = 0;
2012 		break;
2013 	case COMP_SHORT_PACKET:
2014 		*status = 0;
2015 		break;
2016 	case COMP_STOPPED_SHORT_PACKET:
2017 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2018 			td->urb->actual_length = remaining;
2019 		else
2020 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2021 		goto finish_td;
2022 	case COMP_STOPPED:
2023 		switch (trb_type) {
2024 		case TRB_SETUP:
2025 			td->urb->actual_length = 0;
2026 			goto finish_td;
2027 		case TRB_DATA:
2028 		case TRB_NORMAL:
2029 			td->urb->actual_length = requested - remaining;
2030 			goto finish_td;
2031 		case TRB_STATUS:
2032 			td->urb->actual_length = requested;
2033 			goto finish_td;
2034 		default:
2035 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2036 				  trb_type);
2037 			goto finish_td;
2038 		}
2039 	case COMP_STOPPED_LENGTH_INVALID:
2040 		goto finish_td;
2041 	default:
2042 		if (!xhci_requires_manual_halt_cleanup(xhci,
2043 						       ep_ctx, trb_comp_code))
2044 			break;
2045 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2046 			 trb_comp_code, ep_index);
2047 		/* else fall through */
2048 	case COMP_STALL_ERROR:
2049 		/* Did we transfer part of the data (middle) phase? */
2050 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2051 			td->urb->actual_length = requested - remaining;
2052 		else if (!td->urb_length_set)
2053 			td->urb->actual_length = 0;
2054 		goto finish_td;
2055 	}
2056 
2057 	/* stopped at setup stage, no data transferred */
2058 	if (trb_type == TRB_SETUP)
2059 		goto finish_td;
2060 
2061 	/*
2062 	 * if on data stage then update the actual_length of the URB and flag it
2063 	 * as set, so it won't be overwritten in the event for the last TRB.
2064 	 */
2065 	if (trb_type == TRB_DATA ||
2066 		trb_type == TRB_NORMAL) {
2067 		td->urb_length_set = true;
2068 		td->urb->actual_length = requested - remaining;
2069 		xhci_dbg(xhci, "Waiting for status stage event\n");
2070 		return 0;
2071 	}
2072 
2073 	/* at status stage */
2074 	if (!td->urb_length_set)
2075 		td->urb->actual_length = requested;
2076 
2077 finish_td:
2078 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2079 }
2080 
2081 /*
2082  * Process isochronous tds, update urb packet status and actual_length.
2083  */
2084 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2085 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2086 	struct xhci_virt_ep *ep, int *status)
2087 {
2088 	struct xhci_ring *ep_ring;
2089 	struct urb_priv *urb_priv;
2090 	int idx;
2091 	struct usb_iso_packet_descriptor *frame;
2092 	u32 trb_comp_code;
2093 	bool sum_trbs_for_length = false;
2094 	u32 remaining, requested, ep_trb_len;
2095 	int short_framestatus;
2096 
2097 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2098 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2099 	urb_priv = td->urb->hcpriv;
2100 	idx = urb_priv->num_tds_done;
2101 	frame = &td->urb->iso_frame_desc[idx];
2102 	requested = frame->length;
2103 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2104 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2105 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2106 		-EREMOTEIO : 0;
2107 
2108 	/* handle completion code */
2109 	switch (trb_comp_code) {
2110 	case COMP_SUCCESS:
2111 		if (remaining) {
2112 			frame->status = short_framestatus;
2113 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2114 				sum_trbs_for_length = true;
2115 			break;
2116 		}
2117 		frame->status = 0;
2118 		break;
2119 	case COMP_SHORT_PACKET:
2120 		frame->status = short_framestatus;
2121 		sum_trbs_for_length = true;
2122 		break;
2123 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2124 		frame->status = -ECOMM;
2125 		break;
2126 	case COMP_ISOCH_BUFFER_OVERRUN:
2127 	case COMP_BABBLE_DETECTED_ERROR:
2128 		frame->status = -EOVERFLOW;
2129 		break;
2130 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2131 	case COMP_STALL_ERROR:
2132 		frame->status = -EPROTO;
2133 		break;
2134 	case COMP_USB_TRANSACTION_ERROR:
2135 		frame->status = -EPROTO;
2136 		if (ep_trb != td->last_trb)
2137 			return 0;
2138 		break;
2139 	case COMP_STOPPED:
2140 		sum_trbs_for_length = true;
2141 		break;
2142 	case COMP_STOPPED_SHORT_PACKET:
2143 		/* field normally containing residue now contains tranferred */
2144 		frame->status = short_framestatus;
2145 		requested = remaining;
2146 		break;
2147 	case COMP_STOPPED_LENGTH_INVALID:
2148 		requested = 0;
2149 		remaining = 0;
2150 		break;
2151 	default:
2152 		sum_trbs_for_length = true;
2153 		frame->status = -1;
2154 		break;
2155 	}
2156 
2157 	if (sum_trbs_for_length)
2158 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2159 			ep_trb_len - remaining;
2160 	else
2161 		frame->actual_length = requested;
2162 
2163 	td->urb->actual_length += frame->actual_length;
2164 
2165 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2166 }
2167 
2168 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2169 			struct xhci_transfer_event *event,
2170 			struct xhci_virt_ep *ep, int *status)
2171 {
2172 	struct xhci_ring *ep_ring;
2173 	struct urb_priv *urb_priv;
2174 	struct usb_iso_packet_descriptor *frame;
2175 	int idx;
2176 
2177 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2178 	urb_priv = td->urb->hcpriv;
2179 	idx = urb_priv->num_tds_done;
2180 	frame = &td->urb->iso_frame_desc[idx];
2181 
2182 	/* The transfer is partly done. */
2183 	frame->status = -EXDEV;
2184 
2185 	/* calc actual length */
2186 	frame->actual_length = 0;
2187 
2188 	/* Update ring dequeue pointer */
2189 	while (ep_ring->dequeue != td->last_trb)
2190 		inc_deq(xhci, ep_ring);
2191 	inc_deq(xhci, ep_ring);
2192 
2193 	return finish_td(xhci, td, NULL, event, ep, status, true);
2194 }
2195 
2196 /*
2197  * Process bulk and interrupt tds, update urb status and actual_length.
2198  */
2199 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2200 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2201 	struct xhci_virt_ep *ep, int *status)
2202 {
2203 	struct xhci_ring *ep_ring;
2204 	u32 trb_comp_code;
2205 	u32 remaining, requested, ep_trb_len;
2206 
2207 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2208 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2209 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2210 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2211 	requested = td->urb->transfer_buffer_length;
2212 
2213 	switch (trb_comp_code) {
2214 	case COMP_SUCCESS:
2215 		/* handle success with untransferred data as short packet */
2216 		if (ep_trb != td->last_trb || remaining) {
2217 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2218 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2219 				 td->urb->ep->desc.bEndpointAddress,
2220 				 requested, remaining);
2221 		}
2222 		*status = 0;
2223 		break;
2224 	case COMP_SHORT_PACKET:
2225 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2226 			 td->urb->ep->desc.bEndpointAddress,
2227 			 requested, remaining);
2228 		*status = 0;
2229 		break;
2230 	case COMP_STOPPED_SHORT_PACKET:
2231 		td->urb->actual_length = remaining;
2232 		goto finish_td;
2233 	case COMP_STOPPED_LENGTH_INVALID:
2234 		/* stopped on ep trb with invalid length, exclude it */
2235 		ep_trb_len	= 0;
2236 		remaining	= 0;
2237 		break;
2238 	default:
2239 		/* do nothing */
2240 		break;
2241 	}
2242 
2243 	if (ep_trb == td->last_trb)
2244 		td->urb->actual_length = requested - remaining;
2245 	else
2246 		td->urb->actual_length =
2247 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2248 			ep_trb_len - remaining;
2249 finish_td:
2250 	if (remaining > requested) {
2251 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2252 			  remaining);
2253 		td->urb->actual_length = 0;
2254 	}
2255 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2256 }
2257 
2258 /*
2259  * If this function returns an error condition, it means it got a Transfer
2260  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2261  * At this point, the host controller is probably hosed and should be reset.
2262  */
2263 static int handle_tx_event(struct xhci_hcd *xhci,
2264 		struct xhci_transfer_event *event)
2265 {
2266 	struct xhci_virt_device *xdev;
2267 	struct xhci_virt_ep *ep;
2268 	struct xhci_ring *ep_ring;
2269 	unsigned int slot_id;
2270 	int ep_index;
2271 	struct xhci_td *td = NULL;
2272 	dma_addr_t ep_trb_dma;
2273 	struct xhci_segment *ep_seg;
2274 	union xhci_trb *ep_trb;
2275 	int status = -EINPROGRESS;
2276 	struct xhci_ep_ctx *ep_ctx;
2277 	struct list_head *tmp;
2278 	u32 trb_comp_code;
2279 	int td_num = 0;
2280 	bool handling_skipped_tds = false;
2281 
2282 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2283 	xdev = xhci->devs[slot_id];
2284 	if (!xdev) {
2285 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2286 			 slot_id);
2287 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2288 			 (unsigned long long) xhci_trb_virt_to_dma(
2289 				 xhci->event_ring->deq_seg,
2290 				 xhci->event_ring->dequeue),
2291 			 lower_32_bits(le64_to_cpu(event->buffer)),
2292 			 upper_32_bits(le64_to_cpu(event->buffer)),
2293 			 le32_to_cpu(event->transfer_len),
2294 			 le32_to_cpu(event->flags));
2295 		return -ENODEV;
2296 	}
2297 
2298 	/* Endpoint ID is 1 based, our index is zero based */
2299 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2300 	ep = &xdev->eps[ep_index];
2301 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2302 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2303 	if (!ep_ring ||  GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2304 		xhci_err(xhci,
2305 			 "ERROR Transfer event for disabled endpoint slot %u ep %u or incorrect stream ring\n",
2306 			  slot_id, ep_index);
2307 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2308 			 (unsigned long long) xhci_trb_virt_to_dma(
2309 				 xhci->event_ring->deq_seg,
2310 				 xhci->event_ring->dequeue),
2311 			 lower_32_bits(le64_to_cpu(event->buffer)),
2312 			 upper_32_bits(le64_to_cpu(event->buffer)),
2313 			 le32_to_cpu(event->transfer_len),
2314 			 le32_to_cpu(event->flags));
2315 		return -ENODEV;
2316 	}
2317 
2318 	/* Count current td numbers if ep->skip is set */
2319 	if (ep->skip) {
2320 		list_for_each(tmp, &ep_ring->td_list)
2321 			td_num++;
2322 	}
2323 
2324 	ep_trb_dma = le64_to_cpu(event->buffer);
2325 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2326 	/* Look for common error cases */
2327 	switch (trb_comp_code) {
2328 	/* Skip codes that require special handling depending on
2329 	 * transfer type
2330 	 */
2331 	case COMP_SUCCESS:
2332 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2333 			break;
2334 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2335 			trb_comp_code = COMP_SHORT_PACKET;
2336 		else
2337 			xhci_warn_ratelimited(xhci,
2338 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2339 					      slot_id, ep_index);
2340 	case COMP_SHORT_PACKET:
2341 		break;
2342 	case COMP_STOPPED:
2343 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2344 			 slot_id, ep_index);
2345 		break;
2346 	case COMP_STOPPED_LENGTH_INVALID:
2347 		xhci_dbg(xhci,
2348 			 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2349 			 slot_id, ep_index);
2350 		break;
2351 	case COMP_STOPPED_SHORT_PACKET:
2352 		xhci_dbg(xhci,
2353 			 "Stopped with short packet transfer detected for slot %u ep %u\n",
2354 			 slot_id, ep_index);
2355 		break;
2356 	case COMP_STALL_ERROR:
2357 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2358 			 ep_index);
2359 		ep->ep_state |= EP_HALTED;
2360 		status = -EPIPE;
2361 		break;
2362 	case COMP_TRB_ERROR:
2363 		xhci_warn(xhci,
2364 			  "WARN: TRB error for slot %u ep %u on endpoint\n",
2365 			  slot_id, ep_index);
2366 		status = -EILSEQ;
2367 		break;
2368 	case COMP_SPLIT_TRANSACTION_ERROR:
2369 	case COMP_USB_TRANSACTION_ERROR:
2370 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2371 			 slot_id, ep_index);
2372 		status = -EPROTO;
2373 		break;
2374 	case COMP_BABBLE_DETECTED_ERROR:
2375 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2376 			 slot_id, ep_index);
2377 		status = -EOVERFLOW;
2378 		break;
2379 	case COMP_DATA_BUFFER_ERROR:
2380 		xhci_warn(xhci,
2381 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2382 			  slot_id, ep_index);
2383 		status = -ENOSR;
2384 		break;
2385 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2386 		xhci_warn(xhci,
2387 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2388 			  slot_id, ep_index);
2389 		break;
2390 	case COMP_ISOCH_BUFFER_OVERRUN:
2391 		xhci_warn(xhci,
2392 			  "WARN: buffer overrun event for slot %u ep %u on endpoint",
2393 			  slot_id, ep_index);
2394 		break;
2395 	case COMP_RING_UNDERRUN:
2396 		/*
2397 		 * When the Isoch ring is empty, the xHC will generate
2398 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2399 		 * Underrun Event for OUT Isoch endpoint.
2400 		 */
2401 		xhci_dbg(xhci, "underrun event on endpoint\n");
2402 		if (!list_empty(&ep_ring->td_list))
2403 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2404 					"still with TDs queued?\n",
2405 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2406 				 ep_index);
2407 		goto cleanup;
2408 	case COMP_RING_OVERRUN:
2409 		xhci_dbg(xhci, "overrun event on endpoint\n");
2410 		if (!list_empty(&ep_ring->td_list))
2411 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2412 					"still with TDs queued?\n",
2413 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2414 				 ep_index);
2415 		goto cleanup;
2416 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2417 		xhci_warn(xhci,
2418 			  "WARN: detect an incompatible device for slot %u ep %u",
2419 			  slot_id, ep_index);
2420 		status = -EPROTO;
2421 		break;
2422 	case COMP_MISSED_SERVICE_ERROR:
2423 		/*
2424 		 * When encounter missed service error, one or more isoc tds
2425 		 * may be missed by xHC.
2426 		 * Set skip flag of the ep_ring; Complete the missed tds as
2427 		 * short transfer when process the ep_ring next time.
2428 		 */
2429 		ep->skip = true;
2430 		xhci_dbg(xhci,
2431 			 "Miss service interval error for slot %u ep %u, set skip flag\n",
2432 			 slot_id, ep_index);
2433 		goto cleanup;
2434 	case COMP_NO_PING_RESPONSE_ERROR:
2435 		ep->skip = true;
2436 		xhci_dbg(xhci,
2437 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2438 			 slot_id, ep_index);
2439 		goto cleanup;
2440 	default:
2441 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2442 			status = 0;
2443 			break;
2444 		}
2445 		xhci_warn(xhci,
2446 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2447 			  trb_comp_code, slot_id, ep_index);
2448 		goto cleanup;
2449 	}
2450 
2451 	do {
2452 		/* This TRB should be in the TD at the head of this ring's
2453 		 * TD list.
2454 		 */
2455 		if (list_empty(&ep_ring->td_list)) {
2456 			/*
2457 			 * A stopped endpoint may generate an extra completion
2458 			 * event if the device was suspended.  Don't print
2459 			 * warnings.
2460 			 */
2461 			if (!(trb_comp_code == COMP_STOPPED ||
2462 				trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2463 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2464 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2465 						ep_index);
2466 			}
2467 			if (ep->skip) {
2468 				ep->skip = false;
2469 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2470 					 slot_id, ep_index);
2471 			}
2472 			goto cleanup;
2473 		}
2474 
2475 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2476 		if (ep->skip && td_num == 0) {
2477 			ep->skip = false;
2478 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2479 				 slot_id, ep_index);
2480 			goto cleanup;
2481 		}
2482 
2483 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2484 				      td_list);
2485 		if (ep->skip)
2486 			td_num--;
2487 
2488 		/* Is this a TRB in the currently executing TD? */
2489 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2490 				td->last_trb, ep_trb_dma, false);
2491 
2492 		/*
2493 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2494 		 * is not in the current TD pointed by ep_ring->dequeue because
2495 		 * that the hardware dequeue pointer still at the previous TRB
2496 		 * of the current TD. The previous TRB maybe a Link TD or the
2497 		 * last TRB of the previous TD. The command completion handle
2498 		 * will take care the rest.
2499 		 */
2500 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2501 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2502 			goto cleanup;
2503 		}
2504 
2505 		if (!ep_seg) {
2506 			if (!ep->skip ||
2507 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2508 				/* Some host controllers give a spurious
2509 				 * successful event after a short transfer.
2510 				 * Ignore it.
2511 				 */
2512 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2513 						ep_ring->last_td_was_short) {
2514 					ep_ring->last_td_was_short = false;
2515 					goto cleanup;
2516 				}
2517 				/* HC is busted, give up! */
2518 				xhci_err(xhci,
2519 					"ERROR Transfer event TRB DMA ptr not "
2520 					"part of current TD ep_index %d "
2521 					"comp_code %u\n", ep_index,
2522 					trb_comp_code);
2523 				trb_in_td(xhci, ep_ring->deq_seg,
2524 					  ep_ring->dequeue, td->last_trb,
2525 					  ep_trb_dma, true);
2526 				return -ESHUTDOWN;
2527 			}
2528 
2529 			skip_isoc_td(xhci, td, event, ep, &status);
2530 			goto cleanup;
2531 		}
2532 		if (trb_comp_code == COMP_SHORT_PACKET)
2533 			ep_ring->last_td_was_short = true;
2534 		else
2535 			ep_ring->last_td_was_short = false;
2536 
2537 		if (ep->skip) {
2538 			xhci_dbg(xhci,
2539 				 "Found td. Clear skip flag for slot %u ep %u.\n",
2540 				 slot_id, ep_index);
2541 			ep->skip = false;
2542 		}
2543 
2544 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2545 						sizeof(*ep_trb)];
2546 
2547 		trace_xhci_handle_transfer(ep_ring,
2548 				(struct xhci_generic_trb *) ep_trb);
2549 
2550 		/*
2551 		 * No-op TRB should not trigger interrupts.
2552 		 * If ep_trb is a no-op TRB, it means the
2553 		 * corresponding TD has been cancelled. Just ignore
2554 		 * the TD.
2555 		 */
2556 		if (trb_is_noop(ep_trb)) {
2557 			xhci_dbg(xhci,
2558 				 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n",
2559 				 slot_id, ep_index);
2560 			goto cleanup;
2561 		}
2562 
2563 		/* update the urb's actual_length and give back to the core */
2564 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2565 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2566 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2567 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2568 		else
2569 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2570 					     &status);
2571 cleanup:
2572 		handling_skipped_tds = ep->skip &&
2573 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2574 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2575 
2576 		/*
2577 		 * Do not update event ring dequeue pointer if we're in a loop
2578 		 * processing missed tds.
2579 		 */
2580 		if (!handling_skipped_tds)
2581 			inc_deq(xhci, xhci->event_ring);
2582 
2583 	/*
2584 	 * If ep->skip is set, it means there are missed tds on the
2585 	 * endpoint ring need to take care of.
2586 	 * Process them as short transfer until reach the td pointed by
2587 	 * the event.
2588 	 */
2589 	} while (handling_skipped_tds);
2590 
2591 	return 0;
2592 }
2593 
2594 /*
2595  * This function handles all OS-owned events on the event ring.  It may drop
2596  * xhci->lock between event processing (e.g. to pass up port status changes).
2597  * Returns >0 for "possibly more events to process" (caller should call again),
2598  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2599  */
2600 static int xhci_handle_event(struct xhci_hcd *xhci)
2601 {
2602 	union xhci_trb *event;
2603 	int update_ptrs = 1;
2604 	int ret;
2605 
2606 	/* Event ring hasn't been allocated yet. */
2607 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2608 		xhci_err(xhci, "ERROR event ring not ready\n");
2609 		return -ENOMEM;
2610 	}
2611 
2612 	event = xhci->event_ring->dequeue;
2613 	/* Does the HC or OS own the TRB? */
2614 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2615 	    xhci->event_ring->cycle_state)
2616 		return 0;
2617 
2618 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2619 
2620 	/*
2621 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2622 	 * speculative reads of the event's flags/data below.
2623 	 */
2624 	rmb();
2625 	/* FIXME: Handle more event types. */
2626 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2627 	case TRB_TYPE(TRB_COMPLETION):
2628 		handle_cmd_completion(xhci, &event->event_cmd);
2629 		break;
2630 	case TRB_TYPE(TRB_PORT_STATUS):
2631 		handle_port_status(xhci, event);
2632 		update_ptrs = 0;
2633 		break;
2634 	case TRB_TYPE(TRB_TRANSFER):
2635 		ret = handle_tx_event(xhci, &event->trans_event);
2636 		if (ret >= 0)
2637 			update_ptrs = 0;
2638 		break;
2639 	case TRB_TYPE(TRB_DEV_NOTE):
2640 		handle_device_notification(xhci, event);
2641 		break;
2642 	default:
2643 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2644 		    TRB_TYPE(48))
2645 			handle_vendor_event(xhci, event);
2646 		else
2647 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2648 				  TRB_FIELD_TO_TYPE(
2649 				  le32_to_cpu(event->event_cmd.flags)));
2650 	}
2651 	/* Any of the above functions may drop and re-acquire the lock, so check
2652 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2653 	 */
2654 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2655 		xhci_dbg(xhci, "xHCI host dying, returning from "
2656 				"event handler.\n");
2657 		return 0;
2658 	}
2659 
2660 	if (update_ptrs)
2661 		/* Update SW event ring dequeue pointer */
2662 		inc_deq(xhci, xhci->event_ring);
2663 
2664 	/* Are there more items on the event ring?  Caller will call us again to
2665 	 * check.
2666 	 */
2667 	return 1;
2668 }
2669 
2670 /*
2671  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2672  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2673  * indicators of an event TRB error, but we check the status *first* to be safe.
2674  */
2675 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2676 {
2677 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2678 	union xhci_trb *event_ring_deq;
2679 	irqreturn_t ret = IRQ_NONE;
2680 	dma_addr_t deq;
2681 	u64 temp_64;
2682 	u32 status;
2683 
2684 	spin_lock(&xhci->lock);
2685 	/* Check if the xHC generated the interrupt, or the irq is shared */
2686 	status = readl(&xhci->op_regs->status);
2687 	if (status == ~(u32)0) {
2688 		xhci_hc_died(xhci);
2689 		ret = IRQ_HANDLED;
2690 		goto out;
2691 	}
2692 
2693 	if (!(status & STS_EINT))
2694 		goto out;
2695 
2696 	if (status & STS_FATAL) {
2697 		xhci_warn(xhci, "WARNING: Host System Error\n");
2698 		xhci_halt(xhci);
2699 		ret = IRQ_HANDLED;
2700 		goto out;
2701 	}
2702 
2703 	/*
2704 	 * Clear the op reg interrupt status first,
2705 	 * so we can receive interrupts from other MSI-X interrupters.
2706 	 * Write 1 to clear the interrupt status.
2707 	 */
2708 	status |= STS_EINT;
2709 	writel(status, &xhci->op_regs->status);
2710 	/* FIXME when MSI-X is supported and there are multiple vectors */
2711 	/* Clear the MSI-X event interrupt status */
2712 
2713 	if (hcd->irq) {
2714 		u32 irq_pending;
2715 		/* Acknowledge the PCI interrupt */
2716 		irq_pending = readl(&xhci->ir_set->irq_pending);
2717 		irq_pending |= IMAN_IP;
2718 		writel(irq_pending, &xhci->ir_set->irq_pending);
2719 	}
2720 
2721 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2722 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2723 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2724 				"Shouldn't IRQs be disabled?\n");
2725 		/* Clear the event handler busy flag (RW1C);
2726 		 * the event ring should be empty.
2727 		 */
2728 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2729 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2730 				&xhci->ir_set->erst_dequeue);
2731 		ret = IRQ_HANDLED;
2732 		goto out;
2733 	}
2734 
2735 	event_ring_deq = xhci->event_ring->dequeue;
2736 	/* FIXME this should be a delayed service routine
2737 	 * that clears the EHB.
2738 	 */
2739 	while (xhci_handle_event(xhci) > 0) {}
2740 
2741 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2742 	/* If necessary, update the HW's version of the event ring deq ptr. */
2743 	if (event_ring_deq != xhci->event_ring->dequeue) {
2744 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2745 				xhci->event_ring->dequeue);
2746 		if (deq == 0)
2747 			xhci_warn(xhci, "WARN something wrong with SW event "
2748 					"ring dequeue ptr.\n");
2749 		/* Update HC event ring dequeue pointer */
2750 		temp_64 &= ERST_PTR_MASK;
2751 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2752 	}
2753 
2754 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2755 	temp_64 |= ERST_EHB;
2756 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2757 	ret = IRQ_HANDLED;
2758 
2759 out:
2760 	spin_unlock(&xhci->lock);
2761 
2762 	return ret;
2763 }
2764 
2765 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2766 {
2767 	return xhci_irq(hcd);
2768 }
2769 
2770 /****		Endpoint Ring Operations	****/
2771 
2772 /*
2773  * Generic function for queueing a TRB on a ring.
2774  * The caller must have checked to make sure there's room on the ring.
2775  *
2776  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2777  *			prepare_transfer()?
2778  */
2779 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2780 		bool more_trbs_coming,
2781 		u32 field1, u32 field2, u32 field3, u32 field4)
2782 {
2783 	struct xhci_generic_trb *trb;
2784 
2785 	trb = &ring->enqueue->generic;
2786 	trb->field[0] = cpu_to_le32(field1);
2787 	trb->field[1] = cpu_to_le32(field2);
2788 	trb->field[2] = cpu_to_le32(field3);
2789 	trb->field[3] = cpu_to_le32(field4);
2790 
2791 	trace_xhci_queue_trb(ring, trb);
2792 
2793 	inc_enq(xhci, ring, more_trbs_coming);
2794 }
2795 
2796 /*
2797  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2798  * FIXME allocate segments if the ring is full.
2799  */
2800 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2801 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2802 {
2803 	unsigned int num_trbs_needed;
2804 
2805 	/* Make sure the endpoint has been added to xHC schedule */
2806 	switch (ep_state) {
2807 	case EP_STATE_DISABLED:
2808 		/*
2809 		 * USB core changed config/interfaces without notifying us,
2810 		 * or hardware is reporting the wrong state.
2811 		 */
2812 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2813 		return -ENOENT;
2814 	case EP_STATE_ERROR:
2815 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2816 		/* FIXME event handling code for error needs to clear it */
2817 		/* XXX not sure if this should be -ENOENT or not */
2818 		return -EINVAL;
2819 	case EP_STATE_HALTED:
2820 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2821 	case EP_STATE_STOPPED:
2822 	case EP_STATE_RUNNING:
2823 		break;
2824 	default:
2825 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2826 		/*
2827 		 * FIXME issue Configure Endpoint command to try to get the HC
2828 		 * back into a known state.
2829 		 */
2830 		return -EINVAL;
2831 	}
2832 
2833 	while (1) {
2834 		if (room_on_ring(xhci, ep_ring, num_trbs))
2835 			break;
2836 
2837 		if (ep_ring == xhci->cmd_ring) {
2838 			xhci_err(xhci, "Do not support expand command ring\n");
2839 			return -ENOMEM;
2840 		}
2841 
2842 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2843 				"ERROR no room on ep ring, try ring expansion");
2844 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2845 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2846 					mem_flags)) {
2847 			xhci_err(xhci, "Ring expansion failed\n");
2848 			return -ENOMEM;
2849 		}
2850 	}
2851 
2852 	while (trb_is_link(ep_ring->enqueue)) {
2853 		/* If we're not dealing with 0.95 hardware or isoc rings
2854 		 * on AMD 0.96 host, clear the chain bit.
2855 		 */
2856 		if (!xhci_link_trb_quirk(xhci) &&
2857 		    !(ep_ring->type == TYPE_ISOC &&
2858 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2859 			ep_ring->enqueue->link.control &=
2860 				cpu_to_le32(~TRB_CHAIN);
2861 		else
2862 			ep_ring->enqueue->link.control |=
2863 				cpu_to_le32(TRB_CHAIN);
2864 
2865 		wmb();
2866 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2867 
2868 		/* Toggle the cycle bit after the last ring segment. */
2869 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2870 			ep_ring->cycle_state ^= 1;
2871 
2872 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2873 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2874 	}
2875 	return 0;
2876 }
2877 
2878 static int prepare_transfer(struct xhci_hcd *xhci,
2879 		struct xhci_virt_device *xdev,
2880 		unsigned int ep_index,
2881 		unsigned int stream_id,
2882 		unsigned int num_trbs,
2883 		struct urb *urb,
2884 		unsigned int td_index,
2885 		gfp_t mem_flags)
2886 {
2887 	int ret;
2888 	struct urb_priv *urb_priv;
2889 	struct xhci_td	*td;
2890 	struct xhci_ring *ep_ring;
2891 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2892 
2893 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2894 	if (!ep_ring) {
2895 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2896 				stream_id);
2897 		return -EINVAL;
2898 	}
2899 
2900 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2901 			   num_trbs, mem_flags);
2902 	if (ret)
2903 		return ret;
2904 
2905 	urb_priv = urb->hcpriv;
2906 	td = &urb_priv->td[td_index];
2907 
2908 	INIT_LIST_HEAD(&td->td_list);
2909 	INIT_LIST_HEAD(&td->cancelled_td_list);
2910 
2911 	if (td_index == 0) {
2912 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2913 		if (unlikely(ret))
2914 			return ret;
2915 	}
2916 
2917 	td->urb = urb;
2918 	/* Add this TD to the tail of the endpoint ring's TD list */
2919 	list_add_tail(&td->td_list, &ep_ring->td_list);
2920 	td->start_seg = ep_ring->enq_seg;
2921 	td->first_trb = ep_ring->enqueue;
2922 
2923 	return 0;
2924 }
2925 
2926 static unsigned int count_trbs(u64 addr, u64 len)
2927 {
2928 	unsigned int num_trbs;
2929 
2930 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2931 			TRB_MAX_BUFF_SIZE);
2932 	if (num_trbs == 0)
2933 		num_trbs++;
2934 
2935 	return num_trbs;
2936 }
2937 
2938 static inline unsigned int count_trbs_needed(struct urb *urb)
2939 {
2940 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2941 }
2942 
2943 static unsigned int count_sg_trbs_needed(struct urb *urb)
2944 {
2945 	struct scatterlist *sg;
2946 	unsigned int i, len, full_len, num_trbs = 0;
2947 
2948 	full_len = urb->transfer_buffer_length;
2949 
2950 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2951 		len = sg_dma_len(sg);
2952 		num_trbs += count_trbs(sg_dma_address(sg), len);
2953 		len = min_t(unsigned int, len, full_len);
2954 		full_len -= len;
2955 		if (full_len == 0)
2956 			break;
2957 	}
2958 
2959 	return num_trbs;
2960 }
2961 
2962 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2963 {
2964 	u64 addr, len;
2965 
2966 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2967 	len = urb->iso_frame_desc[i].length;
2968 
2969 	return count_trbs(addr, len);
2970 }
2971 
2972 static void check_trb_math(struct urb *urb, int running_total)
2973 {
2974 	if (unlikely(running_total != urb->transfer_buffer_length))
2975 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2976 				"queued %#x (%d), asked for %#x (%d)\n",
2977 				__func__,
2978 				urb->ep->desc.bEndpointAddress,
2979 				running_total, running_total,
2980 				urb->transfer_buffer_length,
2981 				urb->transfer_buffer_length);
2982 }
2983 
2984 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2985 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2986 		struct xhci_generic_trb *start_trb)
2987 {
2988 	/*
2989 	 * Pass all the TRBs to the hardware at once and make sure this write
2990 	 * isn't reordered.
2991 	 */
2992 	wmb();
2993 	if (start_cycle)
2994 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2995 	else
2996 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2997 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2998 }
2999 
3000 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3001 						struct xhci_ep_ctx *ep_ctx)
3002 {
3003 	int xhci_interval;
3004 	int ep_interval;
3005 
3006 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3007 	ep_interval = urb->interval;
3008 
3009 	/* Convert to microframes */
3010 	if (urb->dev->speed == USB_SPEED_LOW ||
3011 			urb->dev->speed == USB_SPEED_FULL)
3012 		ep_interval *= 8;
3013 
3014 	/* FIXME change this to a warning and a suggestion to use the new API
3015 	 * to set the polling interval (once the API is added).
3016 	 */
3017 	if (xhci_interval != ep_interval) {
3018 		dev_dbg_ratelimited(&urb->dev->dev,
3019 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3020 				ep_interval, ep_interval == 1 ? "" : "s",
3021 				xhci_interval, xhci_interval == 1 ? "" : "s");
3022 		urb->interval = xhci_interval;
3023 		/* Convert back to frames for LS/FS devices */
3024 		if (urb->dev->speed == USB_SPEED_LOW ||
3025 				urb->dev->speed == USB_SPEED_FULL)
3026 			urb->interval /= 8;
3027 	}
3028 }
3029 
3030 /*
3031  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3032  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3033  * (comprised of sg list entries) can take several service intervals to
3034  * transmit.
3035  */
3036 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3037 		struct urb *urb, int slot_id, unsigned int ep_index)
3038 {
3039 	struct xhci_ep_ctx *ep_ctx;
3040 
3041 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3042 	check_interval(xhci, urb, ep_ctx);
3043 
3044 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3045 }
3046 
3047 /*
3048  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3049  * packets remaining in the TD (*not* including this TRB).
3050  *
3051  * Total TD packet count = total_packet_count =
3052  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3053  *
3054  * Packets transferred up to and including this TRB = packets_transferred =
3055  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3056  *
3057  * TD size = total_packet_count - packets_transferred
3058  *
3059  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3060  * including this TRB, right shifted by 10
3061  *
3062  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3063  * This is taken care of in the TRB_TD_SIZE() macro
3064  *
3065  * The last TRB in a TD must have the TD size set to zero.
3066  */
3067 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3068 			      int trb_buff_len, unsigned int td_total_len,
3069 			      struct urb *urb, bool more_trbs_coming)
3070 {
3071 	u32 maxp, total_packet_count;
3072 
3073 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3074 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3075 		return ((td_total_len - transferred) >> 10);
3076 
3077 	/* One TRB with a zero-length data packet. */
3078 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3079 	    trb_buff_len == td_total_len)
3080 		return 0;
3081 
3082 	/* for MTK xHCI, TD size doesn't include this TRB */
3083 	if (xhci->quirks & XHCI_MTK_HOST)
3084 		trb_buff_len = 0;
3085 
3086 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3087 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3088 
3089 	/* Queueing functions don't count the current TRB into transferred */
3090 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3091 }
3092 
3093 
3094 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3095 			 u32 *trb_buff_len, struct xhci_segment *seg)
3096 {
3097 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3098 	unsigned int unalign;
3099 	unsigned int max_pkt;
3100 	u32 new_buff_len;
3101 
3102 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3103 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3104 
3105 	/* we got lucky, last normal TRB data on segment is packet aligned */
3106 	if (unalign == 0)
3107 		return 0;
3108 
3109 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3110 		 unalign, *trb_buff_len);
3111 
3112 	/* is the last nornal TRB alignable by splitting it */
3113 	if (*trb_buff_len > unalign) {
3114 		*trb_buff_len -= unalign;
3115 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3116 		return 0;
3117 	}
3118 
3119 	/*
3120 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3121 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3122 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3123 	 */
3124 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3125 
3126 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3127 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3128 
3129 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3130 	if (usb_urb_dir_out(urb)) {
3131 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3132 				   seg->bounce_buf, new_buff_len, enqd_len);
3133 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3134 						 max_pkt, DMA_TO_DEVICE);
3135 	} else {
3136 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3137 						 max_pkt, DMA_FROM_DEVICE);
3138 	}
3139 
3140 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3141 		/* try without aligning. Some host controllers survive */
3142 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3143 		return 0;
3144 	}
3145 	*trb_buff_len = new_buff_len;
3146 	seg->bounce_len = new_buff_len;
3147 	seg->bounce_offs = enqd_len;
3148 
3149 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3150 
3151 	return 1;
3152 }
3153 
3154 /* This is very similar to what ehci-q.c qtd_fill() does */
3155 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3156 		struct urb *urb, int slot_id, unsigned int ep_index)
3157 {
3158 	struct xhci_ring *ring;
3159 	struct urb_priv *urb_priv;
3160 	struct xhci_td *td;
3161 	struct xhci_generic_trb *start_trb;
3162 	struct scatterlist *sg = NULL;
3163 	bool more_trbs_coming = true;
3164 	bool need_zero_pkt = false;
3165 	bool first_trb = true;
3166 	unsigned int num_trbs;
3167 	unsigned int start_cycle, num_sgs = 0;
3168 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3169 	int sent_len, ret;
3170 	u32 field, length_field, remainder;
3171 	u64 addr, send_addr;
3172 
3173 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3174 	if (!ring)
3175 		return -EINVAL;
3176 
3177 	full_len = urb->transfer_buffer_length;
3178 	/* If we have scatter/gather list, we use it. */
3179 	if (urb->num_sgs) {
3180 		num_sgs = urb->num_mapped_sgs;
3181 		sg = urb->sg;
3182 		addr = (u64) sg_dma_address(sg);
3183 		block_len = sg_dma_len(sg);
3184 		num_trbs = count_sg_trbs_needed(urb);
3185 	} else {
3186 		num_trbs = count_trbs_needed(urb);
3187 		addr = (u64) urb->transfer_dma;
3188 		block_len = full_len;
3189 	}
3190 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3191 			ep_index, urb->stream_id,
3192 			num_trbs, urb, 0, mem_flags);
3193 	if (unlikely(ret < 0))
3194 		return ret;
3195 
3196 	urb_priv = urb->hcpriv;
3197 
3198 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3199 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3200 		need_zero_pkt = true;
3201 
3202 	td = &urb_priv->td[0];
3203 
3204 	/*
3205 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3206 	 * until we've finished creating all the other TRBs.  The ring's cycle
3207 	 * state may change as we enqueue the other TRBs, so save it too.
3208 	 */
3209 	start_trb = &ring->enqueue->generic;
3210 	start_cycle = ring->cycle_state;
3211 	send_addr = addr;
3212 
3213 	/* Queue the TRBs, even if they are zero-length */
3214 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3215 			enqd_len += trb_buff_len) {
3216 		field = TRB_TYPE(TRB_NORMAL);
3217 
3218 		/* TRB buffer should not cross 64KB boundaries */
3219 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3220 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3221 
3222 		if (enqd_len + trb_buff_len > full_len)
3223 			trb_buff_len = full_len - enqd_len;
3224 
3225 		/* Don't change the cycle bit of the first TRB until later */
3226 		if (first_trb) {
3227 			first_trb = false;
3228 			if (start_cycle == 0)
3229 				field |= TRB_CYCLE;
3230 		} else
3231 			field |= ring->cycle_state;
3232 
3233 		/* Chain all the TRBs together; clear the chain bit in the last
3234 		 * TRB to indicate it's the last TRB in the chain.
3235 		 */
3236 		if (enqd_len + trb_buff_len < full_len) {
3237 			field |= TRB_CHAIN;
3238 			if (trb_is_link(ring->enqueue + 1)) {
3239 				if (xhci_align_td(xhci, urb, enqd_len,
3240 						  &trb_buff_len,
3241 						  ring->enq_seg)) {
3242 					send_addr = ring->enq_seg->bounce_dma;
3243 					/* assuming TD won't span 2 segs */
3244 					td->bounce_seg = ring->enq_seg;
3245 				}
3246 			}
3247 		}
3248 		if (enqd_len + trb_buff_len >= full_len) {
3249 			field &= ~TRB_CHAIN;
3250 			field |= TRB_IOC;
3251 			more_trbs_coming = false;
3252 			td->last_trb = ring->enqueue;
3253 		}
3254 
3255 		/* Only set interrupt on short packet for IN endpoints */
3256 		if (usb_urb_dir_in(urb))
3257 			field |= TRB_ISP;
3258 
3259 		/* Set the TRB length, TD size, and interrupter fields. */
3260 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3261 					      full_len, urb, more_trbs_coming);
3262 
3263 		length_field = TRB_LEN(trb_buff_len) |
3264 			TRB_TD_SIZE(remainder) |
3265 			TRB_INTR_TARGET(0);
3266 
3267 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3268 				lower_32_bits(send_addr),
3269 				upper_32_bits(send_addr),
3270 				length_field,
3271 				field);
3272 
3273 		addr += trb_buff_len;
3274 		sent_len = trb_buff_len;
3275 
3276 		while (sg && sent_len >= block_len) {
3277 			/* New sg entry */
3278 			--num_sgs;
3279 			sent_len -= block_len;
3280 			if (num_sgs != 0) {
3281 				sg = sg_next(sg);
3282 				block_len = sg_dma_len(sg);
3283 				addr = (u64) sg_dma_address(sg);
3284 				addr += sent_len;
3285 			}
3286 		}
3287 		block_len -= sent_len;
3288 		send_addr = addr;
3289 	}
3290 
3291 	if (need_zero_pkt) {
3292 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3293 				       ep_index, urb->stream_id,
3294 				       1, urb, 1, mem_flags);
3295 		urb_priv->td[1].last_trb = ring->enqueue;
3296 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3297 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3298 	}
3299 
3300 	check_trb_math(urb, enqd_len);
3301 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3302 			start_cycle, start_trb);
3303 	return 0;
3304 }
3305 
3306 /* Caller must have locked xhci->lock */
3307 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3308 		struct urb *urb, int slot_id, unsigned int ep_index)
3309 {
3310 	struct xhci_ring *ep_ring;
3311 	int num_trbs;
3312 	int ret;
3313 	struct usb_ctrlrequest *setup;
3314 	struct xhci_generic_trb *start_trb;
3315 	int start_cycle;
3316 	u32 field;
3317 	struct urb_priv *urb_priv;
3318 	struct xhci_td *td;
3319 
3320 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3321 	if (!ep_ring)
3322 		return -EINVAL;
3323 
3324 	/*
3325 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3326 	 * DMA address.
3327 	 */
3328 	if (!urb->setup_packet)
3329 		return -EINVAL;
3330 
3331 	/* 1 TRB for setup, 1 for status */
3332 	num_trbs = 2;
3333 	/*
3334 	 * Don't need to check if we need additional event data and normal TRBs,
3335 	 * since data in control transfers will never get bigger than 16MB
3336 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3337 	 */
3338 	if (urb->transfer_buffer_length > 0)
3339 		num_trbs++;
3340 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3341 			ep_index, urb->stream_id,
3342 			num_trbs, urb, 0, mem_flags);
3343 	if (ret < 0)
3344 		return ret;
3345 
3346 	urb_priv = urb->hcpriv;
3347 	td = &urb_priv->td[0];
3348 
3349 	/*
3350 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3351 	 * until we've finished creating all the other TRBs.  The ring's cycle
3352 	 * state may change as we enqueue the other TRBs, so save it too.
3353 	 */
3354 	start_trb = &ep_ring->enqueue->generic;
3355 	start_cycle = ep_ring->cycle_state;
3356 
3357 	/* Queue setup TRB - see section 6.4.1.2.1 */
3358 	/* FIXME better way to translate setup_packet into two u32 fields? */
3359 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3360 	field = 0;
3361 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3362 	if (start_cycle == 0)
3363 		field |= 0x1;
3364 
3365 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3366 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3367 		if (urb->transfer_buffer_length > 0) {
3368 			if (setup->bRequestType & USB_DIR_IN)
3369 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3370 			else
3371 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3372 		}
3373 	}
3374 
3375 	queue_trb(xhci, ep_ring, true,
3376 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3377 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3378 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3379 		  /* Immediate data in pointer */
3380 		  field);
3381 
3382 	/* If there's data, queue data TRBs */
3383 	/* Only set interrupt on short packet for IN endpoints */
3384 	if (usb_urb_dir_in(urb))
3385 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3386 	else
3387 		field = TRB_TYPE(TRB_DATA);
3388 
3389 	if (urb->transfer_buffer_length > 0) {
3390 		u32 length_field, remainder;
3391 
3392 		remainder = xhci_td_remainder(xhci, 0,
3393 				urb->transfer_buffer_length,
3394 				urb->transfer_buffer_length,
3395 				urb, 1);
3396 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3397 				TRB_TD_SIZE(remainder) |
3398 				TRB_INTR_TARGET(0);
3399 		if (setup->bRequestType & USB_DIR_IN)
3400 			field |= TRB_DIR_IN;
3401 		queue_trb(xhci, ep_ring, true,
3402 				lower_32_bits(urb->transfer_dma),
3403 				upper_32_bits(urb->transfer_dma),
3404 				length_field,
3405 				field | ep_ring->cycle_state);
3406 	}
3407 
3408 	/* Save the DMA address of the last TRB in the TD */
3409 	td->last_trb = ep_ring->enqueue;
3410 
3411 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3412 	/* If the device sent data, the status stage is an OUT transfer */
3413 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3414 		field = 0;
3415 	else
3416 		field = TRB_DIR_IN;
3417 	queue_trb(xhci, ep_ring, false,
3418 			0,
3419 			0,
3420 			TRB_INTR_TARGET(0),
3421 			/* Event on completion */
3422 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3423 
3424 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3425 			start_cycle, start_trb);
3426 	return 0;
3427 }
3428 
3429 /*
3430  * The transfer burst count field of the isochronous TRB defines the number of
3431  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3432  * devices can burst up to bMaxBurst number of packets per service interval.
3433  * This field is zero based, meaning a value of zero in the field means one
3434  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3435  * zero.  Only xHCI 1.0 host controllers support this field.
3436  */
3437 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3438 		struct urb *urb, unsigned int total_packet_count)
3439 {
3440 	unsigned int max_burst;
3441 
3442 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3443 		return 0;
3444 
3445 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3446 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3447 }
3448 
3449 /*
3450  * Returns the number of packets in the last "burst" of packets.  This field is
3451  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3452  * the last burst packet count is equal to the total number of packets in the
3453  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3454  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3455  * contain 1 to (bMaxBurst + 1) packets.
3456  */
3457 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3458 		struct urb *urb, unsigned int total_packet_count)
3459 {
3460 	unsigned int max_burst;
3461 	unsigned int residue;
3462 
3463 	if (xhci->hci_version < 0x100)
3464 		return 0;
3465 
3466 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3467 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3468 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3469 		residue = total_packet_count % (max_burst + 1);
3470 		/* If residue is zero, the last burst contains (max_burst + 1)
3471 		 * number of packets, but the TLBPC field is zero-based.
3472 		 */
3473 		if (residue == 0)
3474 			return max_burst;
3475 		return residue - 1;
3476 	}
3477 	if (total_packet_count == 0)
3478 		return 0;
3479 	return total_packet_count - 1;
3480 }
3481 
3482 /*
3483  * Calculates Frame ID field of the isochronous TRB identifies the
3484  * target frame that the Interval associated with this Isochronous
3485  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3486  *
3487  * Returns actual frame id on success, negative value on error.
3488  */
3489 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3490 		struct urb *urb, int index)
3491 {
3492 	int start_frame, ist, ret = 0;
3493 	int start_frame_id, end_frame_id, current_frame_id;
3494 
3495 	if (urb->dev->speed == USB_SPEED_LOW ||
3496 			urb->dev->speed == USB_SPEED_FULL)
3497 		start_frame = urb->start_frame + index * urb->interval;
3498 	else
3499 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3500 
3501 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3502 	 *
3503 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3504 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3505 	 * be executed.
3506 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3507 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3508 	 */
3509 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3510 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3511 		ist <<= 3;
3512 
3513 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3514 	 * is less than the Start Frame ID or greater than the End Frame ID,
3515 	 * where:
3516 	 *
3517 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3518 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3519 	 *
3520 	 * Both the End Frame ID and Start Frame ID values are calculated
3521 	 * in microframes. When software determines the valid Frame ID value;
3522 	 * The End Frame ID value should be rounded down to the nearest Frame
3523 	 * boundary, and the Start Frame ID value should be rounded up to the
3524 	 * nearest Frame boundary.
3525 	 */
3526 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3527 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3528 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3529 
3530 	start_frame &= 0x7ff;
3531 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3532 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3533 
3534 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3535 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3536 		 start_frame_id, end_frame_id, start_frame);
3537 
3538 	if (start_frame_id < end_frame_id) {
3539 		if (start_frame > end_frame_id ||
3540 				start_frame < start_frame_id)
3541 			ret = -EINVAL;
3542 	} else if (start_frame_id > end_frame_id) {
3543 		if ((start_frame > end_frame_id &&
3544 				start_frame < start_frame_id))
3545 			ret = -EINVAL;
3546 	} else {
3547 			ret = -EINVAL;
3548 	}
3549 
3550 	if (index == 0) {
3551 		if (ret == -EINVAL || start_frame == start_frame_id) {
3552 			start_frame = start_frame_id + 1;
3553 			if (urb->dev->speed == USB_SPEED_LOW ||
3554 					urb->dev->speed == USB_SPEED_FULL)
3555 				urb->start_frame = start_frame;
3556 			else
3557 				urb->start_frame = start_frame << 3;
3558 			ret = 0;
3559 		}
3560 	}
3561 
3562 	if (ret) {
3563 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3564 				start_frame, current_frame_id, index,
3565 				start_frame_id, end_frame_id);
3566 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3567 		return ret;
3568 	}
3569 
3570 	return start_frame;
3571 }
3572 
3573 /* This is for isoc transfer */
3574 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3575 		struct urb *urb, int slot_id, unsigned int ep_index)
3576 {
3577 	struct xhci_ring *ep_ring;
3578 	struct urb_priv *urb_priv;
3579 	struct xhci_td *td;
3580 	int num_tds, trbs_per_td;
3581 	struct xhci_generic_trb *start_trb;
3582 	bool first_trb;
3583 	int start_cycle;
3584 	u32 field, length_field;
3585 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3586 	u64 start_addr, addr;
3587 	int i, j;
3588 	bool more_trbs_coming;
3589 	struct xhci_virt_ep *xep;
3590 	int frame_id;
3591 
3592 	xep = &xhci->devs[slot_id]->eps[ep_index];
3593 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3594 
3595 	num_tds = urb->number_of_packets;
3596 	if (num_tds < 1) {
3597 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3598 		return -EINVAL;
3599 	}
3600 	start_addr = (u64) urb->transfer_dma;
3601 	start_trb = &ep_ring->enqueue->generic;
3602 	start_cycle = ep_ring->cycle_state;
3603 
3604 	urb_priv = urb->hcpriv;
3605 	/* Queue the TRBs for each TD, even if they are zero-length */
3606 	for (i = 0; i < num_tds; i++) {
3607 		unsigned int total_pkt_count, max_pkt;
3608 		unsigned int burst_count, last_burst_pkt_count;
3609 		u32 sia_frame_id;
3610 
3611 		first_trb = true;
3612 		running_total = 0;
3613 		addr = start_addr + urb->iso_frame_desc[i].offset;
3614 		td_len = urb->iso_frame_desc[i].length;
3615 		td_remain_len = td_len;
3616 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3617 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3618 
3619 		/* A zero-length transfer still involves at least one packet. */
3620 		if (total_pkt_count == 0)
3621 			total_pkt_count++;
3622 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3623 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3624 							urb, total_pkt_count);
3625 
3626 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3627 
3628 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3629 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3630 		if (ret < 0) {
3631 			if (i == 0)
3632 				return ret;
3633 			goto cleanup;
3634 		}
3635 		td = &urb_priv->td[i];
3636 
3637 		/* use SIA as default, if frame id is used overwrite it */
3638 		sia_frame_id = TRB_SIA;
3639 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3640 		    HCC_CFC(xhci->hcc_params)) {
3641 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3642 			if (frame_id >= 0)
3643 				sia_frame_id = TRB_FRAME_ID(frame_id);
3644 		}
3645 		/*
3646 		 * Set isoc specific data for the first TRB in a TD.
3647 		 * Prevent HW from getting the TRBs by keeping the cycle state
3648 		 * inverted in the first TDs isoc TRB.
3649 		 */
3650 		field = TRB_TYPE(TRB_ISOC) |
3651 			TRB_TLBPC(last_burst_pkt_count) |
3652 			sia_frame_id |
3653 			(i ? ep_ring->cycle_state : !start_cycle);
3654 
3655 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3656 		if (!xep->use_extended_tbc)
3657 			field |= TRB_TBC(burst_count);
3658 
3659 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3660 		for (j = 0; j < trbs_per_td; j++) {
3661 			u32 remainder = 0;
3662 
3663 			/* only first TRB is isoc, overwrite otherwise */
3664 			if (!first_trb)
3665 				field = TRB_TYPE(TRB_NORMAL) |
3666 					ep_ring->cycle_state;
3667 
3668 			/* Only set interrupt on short packet for IN EPs */
3669 			if (usb_urb_dir_in(urb))
3670 				field |= TRB_ISP;
3671 
3672 			/* Set the chain bit for all except the last TRB  */
3673 			if (j < trbs_per_td - 1) {
3674 				more_trbs_coming = true;
3675 				field |= TRB_CHAIN;
3676 			} else {
3677 				more_trbs_coming = false;
3678 				td->last_trb = ep_ring->enqueue;
3679 				field |= TRB_IOC;
3680 				/* set BEI, except for the last TD */
3681 				if (xhci->hci_version >= 0x100 &&
3682 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3683 				    i < num_tds - 1)
3684 					field |= TRB_BEI;
3685 			}
3686 			/* Calculate TRB length */
3687 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3688 			if (trb_buff_len > td_remain_len)
3689 				trb_buff_len = td_remain_len;
3690 
3691 			/* Set the TRB length, TD size, & interrupter fields. */
3692 			remainder = xhci_td_remainder(xhci, running_total,
3693 						   trb_buff_len, td_len,
3694 						   urb, more_trbs_coming);
3695 
3696 			length_field = TRB_LEN(trb_buff_len) |
3697 				TRB_INTR_TARGET(0);
3698 
3699 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3700 			if (first_trb && xep->use_extended_tbc)
3701 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3702 			else
3703 				length_field |= TRB_TD_SIZE(remainder);
3704 			first_trb = false;
3705 
3706 			queue_trb(xhci, ep_ring, more_trbs_coming,
3707 				lower_32_bits(addr),
3708 				upper_32_bits(addr),
3709 				length_field,
3710 				field);
3711 			running_total += trb_buff_len;
3712 
3713 			addr += trb_buff_len;
3714 			td_remain_len -= trb_buff_len;
3715 		}
3716 
3717 		/* Check TD length */
3718 		if (running_total != td_len) {
3719 			xhci_err(xhci, "ISOC TD length unmatch\n");
3720 			ret = -EINVAL;
3721 			goto cleanup;
3722 		}
3723 	}
3724 
3725 	/* store the next frame id */
3726 	if (HCC_CFC(xhci->hcc_params))
3727 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3728 
3729 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3730 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3731 			usb_amd_quirk_pll_disable();
3732 	}
3733 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3734 
3735 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3736 			start_cycle, start_trb);
3737 	return 0;
3738 cleanup:
3739 	/* Clean up a partially enqueued isoc transfer. */
3740 
3741 	for (i--; i >= 0; i--)
3742 		list_del_init(&urb_priv->td[i].td_list);
3743 
3744 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3745 	 * into No-ops with a software-owned cycle bit. That way the hardware
3746 	 * won't accidentally start executing bogus TDs when we partially
3747 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3748 	 */
3749 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3750 	/* Every TRB except the first & last will have its cycle bit flipped. */
3751 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3752 
3753 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3754 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3755 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3756 	ep_ring->cycle_state = start_cycle;
3757 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3758 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3759 	return ret;
3760 }
3761 
3762 /*
3763  * Check transfer ring to guarantee there is enough room for the urb.
3764  * Update ISO URB start_frame and interval.
3765  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3766  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3767  * Contiguous Frame ID is not supported by HC.
3768  */
3769 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3770 		struct urb *urb, int slot_id, unsigned int ep_index)
3771 {
3772 	struct xhci_virt_device *xdev;
3773 	struct xhci_ring *ep_ring;
3774 	struct xhci_ep_ctx *ep_ctx;
3775 	int start_frame;
3776 	int num_tds, num_trbs, i;
3777 	int ret;
3778 	struct xhci_virt_ep *xep;
3779 	int ist;
3780 
3781 	xdev = xhci->devs[slot_id];
3782 	xep = &xhci->devs[slot_id]->eps[ep_index];
3783 	ep_ring = xdev->eps[ep_index].ring;
3784 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3785 
3786 	num_trbs = 0;
3787 	num_tds = urb->number_of_packets;
3788 	for (i = 0; i < num_tds; i++)
3789 		num_trbs += count_isoc_trbs_needed(urb, i);
3790 
3791 	/* Check the ring to guarantee there is enough room for the whole urb.
3792 	 * Do not insert any td of the urb to the ring if the check failed.
3793 	 */
3794 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3795 			   num_trbs, mem_flags);
3796 	if (ret)
3797 		return ret;
3798 
3799 	/*
3800 	 * Check interval value. This should be done before we start to
3801 	 * calculate the start frame value.
3802 	 */
3803 	check_interval(xhci, urb, ep_ctx);
3804 
3805 	/* Calculate the start frame and put it in urb->start_frame. */
3806 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3807 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3808 			urb->start_frame = xep->next_frame_id;
3809 			goto skip_start_over;
3810 		}
3811 	}
3812 
3813 	start_frame = readl(&xhci->run_regs->microframe_index);
3814 	start_frame &= 0x3fff;
3815 	/*
3816 	 * Round up to the next frame and consider the time before trb really
3817 	 * gets scheduled by hardare.
3818 	 */
3819 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3820 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3821 		ist <<= 3;
3822 	start_frame += ist + XHCI_CFC_DELAY;
3823 	start_frame = roundup(start_frame, 8);
3824 
3825 	/*
3826 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3827 	 * is greate than 8 microframes.
3828 	 */
3829 	if (urb->dev->speed == USB_SPEED_LOW ||
3830 			urb->dev->speed == USB_SPEED_FULL) {
3831 		start_frame = roundup(start_frame, urb->interval << 3);
3832 		urb->start_frame = start_frame >> 3;
3833 	} else {
3834 		start_frame = roundup(start_frame, urb->interval);
3835 		urb->start_frame = start_frame;
3836 	}
3837 
3838 skip_start_over:
3839 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3840 
3841 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3842 }
3843 
3844 /****		Command Ring Operations		****/
3845 
3846 /* Generic function for queueing a command TRB on the command ring.
3847  * Check to make sure there's room on the command ring for one command TRB.
3848  * Also check that there's room reserved for commands that must not fail.
3849  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3850  * then only check for the number of reserved spots.
3851  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3852  * because the command event handler may want to resubmit a failed command.
3853  */
3854 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3855 			 u32 field1, u32 field2,
3856 			 u32 field3, u32 field4, bool command_must_succeed)
3857 {
3858 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3859 	int ret;
3860 
3861 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3862 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3863 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3864 		return -ESHUTDOWN;
3865 	}
3866 
3867 	if (!command_must_succeed)
3868 		reserved_trbs++;
3869 
3870 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3871 			reserved_trbs, GFP_ATOMIC);
3872 	if (ret < 0) {
3873 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3874 		if (command_must_succeed)
3875 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3876 					"unfailable commands failed.\n");
3877 		return ret;
3878 	}
3879 
3880 	cmd->command_trb = xhci->cmd_ring->enqueue;
3881 
3882 	/* if there are no other commands queued we start the timeout timer */
3883 	if (list_empty(&xhci->cmd_list)) {
3884 		xhci->current_cmd = cmd;
3885 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3886 	}
3887 
3888 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3889 
3890 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3891 			field4 | xhci->cmd_ring->cycle_state);
3892 	return 0;
3893 }
3894 
3895 /* Queue a slot enable or disable request on the command ring */
3896 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3897 		u32 trb_type, u32 slot_id)
3898 {
3899 	return queue_command(xhci, cmd, 0, 0, 0,
3900 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3901 }
3902 
3903 /* Queue an address device command TRB */
3904 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3905 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3906 {
3907 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3908 			upper_32_bits(in_ctx_ptr), 0,
3909 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3910 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3911 }
3912 
3913 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3914 		u32 field1, u32 field2, u32 field3, u32 field4)
3915 {
3916 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3917 }
3918 
3919 /* Queue a reset device command TRB */
3920 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3921 		u32 slot_id)
3922 {
3923 	return queue_command(xhci, cmd, 0, 0, 0,
3924 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3925 			false);
3926 }
3927 
3928 /* Queue a configure endpoint command TRB */
3929 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3930 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3931 		u32 slot_id, bool command_must_succeed)
3932 {
3933 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3934 			upper_32_bits(in_ctx_ptr), 0,
3935 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3936 			command_must_succeed);
3937 }
3938 
3939 /* Queue an evaluate context command TRB */
3940 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3941 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3942 {
3943 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3944 			upper_32_bits(in_ctx_ptr), 0,
3945 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3946 			command_must_succeed);
3947 }
3948 
3949 /*
3950  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3951  * activity on an endpoint that is about to be suspended.
3952  */
3953 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3954 			     int slot_id, unsigned int ep_index, int suspend)
3955 {
3956 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3957 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3958 	u32 type = TRB_TYPE(TRB_STOP_RING);
3959 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3960 
3961 	return queue_command(xhci, cmd, 0, 0, 0,
3962 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3963 }
3964 
3965 /* Set Transfer Ring Dequeue Pointer command */
3966 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3967 		unsigned int slot_id, unsigned int ep_index,
3968 		unsigned int stream_id,
3969 		struct xhci_dequeue_state *deq_state)
3970 {
3971 	dma_addr_t addr;
3972 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3973 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3974 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3975 	u32 trb_sct = 0;
3976 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3977 	struct xhci_virt_ep *ep;
3978 	struct xhci_command *cmd;
3979 	int ret;
3980 
3981 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3982 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3983 		deq_state->new_deq_seg,
3984 		(unsigned long long)deq_state->new_deq_seg->dma,
3985 		deq_state->new_deq_ptr,
3986 		(unsigned long long)xhci_trb_virt_to_dma(
3987 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3988 		deq_state->new_cycle_state);
3989 
3990 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3991 				    deq_state->new_deq_ptr);
3992 	if (addr == 0) {
3993 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3994 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3995 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3996 		return;
3997 	}
3998 	ep = &xhci->devs[slot_id]->eps[ep_index];
3999 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4000 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4001 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4002 		return;
4003 	}
4004 
4005 	/* This function gets called from contexts where it cannot sleep */
4006 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4007 	if (!cmd)
4008 		return;
4009 
4010 	ep->queued_deq_seg = deq_state->new_deq_seg;
4011 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4012 	if (stream_id)
4013 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4014 	ret = queue_command(xhci, cmd,
4015 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4016 		upper_32_bits(addr), trb_stream_id,
4017 		trb_slot_id | trb_ep_index | type, false);
4018 	if (ret < 0) {
4019 		xhci_free_command(xhci, cmd);
4020 		return;
4021 	}
4022 
4023 	/* Stop the TD queueing code from ringing the doorbell until
4024 	 * this command completes.  The HC won't set the dequeue pointer
4025 	 * if the ring is running, and ringing the doorbell starts the
4026 	 * ring running.
4027 	 */
4028 	ep->ep_state |= SET_DEQ_PENDING;
4029 }
4030 
4031 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4032 			int slot_id, unsigned int ep_index)
4033 {
4034 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4035 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4036 	u32 type = TRB_TYPE(TRB_RESET_EP);
4037 
4038 	return queue_command(xhci, cmd, 0, 0, 0,
4039 			trb_slot_id | trb_ep_index | type, false);
4040 }
4041