xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision a2cce7a9)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 
72 /*
73  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
74  * address of the TRB.
75  */
76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
77 		union xhci_trb *trb)
78 {
79 	unsigned long segment_offset;
80 
81 	if (!seg || !trb || trb < seg->trbs)
82 		return 0;
83 	/* offset in TRBs */
84 	segment_offset = trb - seg->trbs;
85 	if (segment_offset >= TRBS_PER_SEGMENT)
86 		return 0;
87 	return seg->dma + (segment_offset * sizeof(*trb));
88 }
89 
90 /* Does this link TRB point to the first segment in a ring,
91  * or was the previous TRB the last TRB on the last segment in the ERST?
92  */
93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
94 		struct xhci_segment *seg, union xhci_trb *trb)
95 {
96 	if (ring == xhci->event_ring)
97 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
98 			(seg->next == xhci->event_ring->first_seg);
99 	else
100 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
101 }
102 
103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
104  * segment?  I.e. would the updated event TRB pointer step off the end of the
105  * event seg?
106  */
107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
108 		struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	if (ring == xhci->event_ring)
111 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
112 	else
113 		return TRB_TYPE_LINK_LE32(trb->link.control);
114 }
115 
116 static int enqueue_is_link_trb(struct xhci_ring *ring)
117 {
118 	struct xhci_link_trb *link = &ring->enqueue->link;
119 	return TRB_TYPE_LINK_LE32(link->control);
120 }
121 
122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
123  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
124  * effect the ring dequeue or enqueue pointers.
125  */
126 static void next_trb(struct xhci_hcd *xhci,
127 		struct xhci_ring *ring,
128 		struct xhci_segment **seg,
129 		union xhci_trb **trb)
130 {
131 	if (last_trb(xhci, ring, *seg, *trb)) {
132 		*seg = (*seg)->next;
133 		*trb = ((*seg)->trbs);
134 	} else {
135 		(*trb)++;
136 	}
137 }
138 
139 /*
140  * See Cycle bit rules. SW is the consumer for the event ring only.
141  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
142  */
143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
144 {
145 	ring->deq_updates++;
146 
147 	/*
148 	 * If this is not event ring, and the dequeue pointer
149 	 * is not on a link TRB, there is one more usable TRB
150 	 */
151 	if (ring->type != TYPE_EVENT &&
152 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
153 		ring->num_trbs_free++;
154 
155 	do {
156 		/*
157 		 * Update the dequeue pointer further if that was a link TRB or
158 		 * we're at the end of an event ring segment (which doesn't have
159 		 * link TRBS)
160 		 */
161 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
162 			if (ring->type == TYPE_EVENT &&
163 					last_trb_on_last_seg(xhci, ring,
164 						ring->deq_seg, ring->dequeue)) {
165 				ring->cycle_state ^= 1;
166 			}
167 			ring->deq_seg = ring->deq_seg->next;
168 			ring->dequeue = ring->deq_seg->trbs;
169 		} else {
170 			ring->dequeue++;
171 		}
172 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
173 }
174 
175 /*
176  * See Cycle bit rules. SW is the consumer for the event ring only.
177  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
178  *
179  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
180  * chain bit is set), then set the chain bit in all the following link TRBs.
181  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
182  * have their chain bit cleared (so that each Link TRB is a separate TD).
183  *
184  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
185  * set, but other sections talk about dealing with the chain bit set.  This was
186  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
187  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
188  *
189  * @more_trbs_coming:	Will you enqueue more TRBs before calling
190  *			prepare_transfer()?
191  */
192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
193 			bool more_trbs_coming)
194 {
195 	u32 chain;
196 	union xhci_trb *next;
197 
198 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
199 	/* If this is not event ring, there is one less usable TRB */
200 	if (ring->type != TYPE_EVENT &&
201 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
202 		ring->num_trbs_free--;
203 	next = ++(ring->enqueue);
204 
205 	ring->enq_updates++;
206 	/* Update the dequeue pointer further if that was a link TRB or we're at
207 	 * the end of an event ring segment (which doesn't have link TRBS)
208 	 */
209 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 		if (ring->type != TYPE_EVENT) {
211 			/*
212 			 * If the caller doesn't plan on enqueueing more
213 			 * TDs before ringing the doorbell, then we
214 			 * don't want to give the link TRB to the
215 			 * hardware just yet.  We'll give the link TRB
216 			 * back in prepare_ring() just before we enqueue
217 			 * the TD at the top of the ring.
218 			 */
219 			if (!chain && !more_trbs_coming)
220 				break;
221 
222 			/* If we're not dealing with 0.95 hardware or
223 			 * isoc rings on AMD 0.96 host,
224 			 * carry over the chain bit of the previous TRB
225 			 * (which may mean the chain bit is cleared).
226 			 */
227 			if (!(ring->type == TYPE_ISOC &&
228 					(xhci->quirks & XHCI_AMD_0x96_HOST))
229 						&& !xhci_link_trb_quirk(xhci)) {
230 				next->link.control &=
231 					cpu_to_le32(~TRB_CHAIN);
232 				next->link.control |=
233 					cpu_to_le32(chain);
234 			}
235 			/* Give this link TRB to the hardware */
236 			wmb();
237 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
238 
239 			/* Toggle the cycle bit after the last ring segment. */
240 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
241 				ring->cycle_state ^= 1;
242 			}
243 		}
244 		ring->enq_seg = ring->enq_seg->next;
245 		ring->enqueue = ring->enq_seg->trbs;
246 		next = ring->enqueue;
247 	}
248 }
249 
250 /*
251  * Check to see if there's room to enqueue num_trbs on the ring and make sure
252  * enqueue pointer will not advance into dequeue segment. See rules above.
253  */
254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
255 		unsigned int num_trbs)
256 {
257 	int num_trbs_in_deq_seg;
258 
259 	if (ring->num_trbs_free < num_trbs)
260 		return 0;
261 
262 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
263 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
264 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
265 			return 0;
266 	}
267 
268 	return 1;
269 }
270 
271 /* Ring the host controller doorbell after placing a command on the ring */
272 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
273 {
274 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
275 		return;
276 
277 	xhci_dbg(xhci, "// Ding dong!\n");
278 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
279 	/* Flush PCI posted writes */
280 	readl(&xhci->dba->doorbell[0]);
281 }
282 
283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
284 {
285 	u64 temp_64;
286 	int ret;
287 
288 	xhci_dbg(xhci, "Abort command ring\n");
289 
290 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
291 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
292 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
293 			&xhci->op_regs->cmd_ring);
294 
295 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
296 	 * time the completion od all xHCI commands, including
297 	 * the Command Abort operation. If software doesn't see
298 	 * CRR negated in a timely manner (e.g. longer than 5
299 	 * seconds), then it should assume that the there are
300 	 * larger problems with the xHC and assert HCRST.
301 	 */
302 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
303 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
304 	if (ret < 0) {
305 		/* we are about to kill xhci, give it one more chance */
306 		xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
307 			      &xhci->op_regs->cmd_ring);
308 		udelay(1000);
309 		ret = xhci_handshake(&xhci->op_regs->cmd_ring,
310 				     CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
311 		if (ret == 0)
312 			return 0;
313 
314 		xhci_err(xhci, "Stopped the command ring failed, "
315 				"maybe the host is dead\n");
316 		xhci->xhc_state |= XHCI_STATE_DYING;
317 		xhci_quiesce(xhci);
318 		xhci_halt(xhci);
319 		return -ESHUTDOWN;
320 	}
321 
322 	return 0;
323 }
324 
325 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
326 		unsigned int slot_id,
327 		unsigned int ep_index,
328 		unsigned int stream_id)
329 {
330 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
331 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
332 	unsigned int ep_state = ep->ep_state;
333 
334 	/* Don't ring the doorbell for this endpoint if there are pending
335 	 * cancellations because we don't want to interrupt processing.
336 	 * We don't want to restart any stream rings if there's a set dequeue
337 	 * pointer command pending because the device can choose to start any
338 	 * stream once the endpoint is on the HW schedule.
339 	 */
340 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
341 	    (ep_state & EP_HALTED))
342 		return;
343 	writel(DB_VALUE(ep_index, stream_id), db_addr);
344 	/* The CPU has better things to do at this point than wait for a
345 	 * write-posting flush.  It'll get there soon enough.
346 	 */
347 }
348 
349 /* Ring the doorbell for any rings with pending URBs */
350 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
351 		unsigned int slot_id,
352 		unsigned int ep_index)
353 {
354 	unsigned int stream_id;
355 	struct xhci_virt_ep *ep;
356 
357 	ep = &xhci->devs[slot_id]->eps[ep_index];
358 
359 	/* A ring has pending URBs if its TD list is not empty */
360 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
361 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
362 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
363 		return;
364 	}
365 
366 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
367 			stream_id++) {
368 		struct xhci_stream_info *stream_info = ep->stream_info;
369 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
370 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
371 						stream_id);
372 	}
373 }
374 
375 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
376 		unsigned int slot_id, unsigned int ep_index,
377 		unsigned int stream_id)
378 {
379 	struct xhci_virt_ep *ep;
380 
381 	ep = &xhci->devs[slot_id]->eps[ep_index];
382 	/* Common case: no streams */
383 	if (!(ep->ep_state & EP_HAS_STREAMS))
384 		return ep->ring;
385 
386 	if (stream_id == 0) {
387 		xhci_warn(xhci,
388 				"WARN: Slot ID %u, ep index %u has streams, "
389 				"but URB has no stream ID.\n",
390 				slot_id, ep_index);
391 		return NULL;
392 	}
393 
394 	if (stream_id < ep->stream_info->num_streams)
395 		return ep->stream_info->stream_rings[stream_id];
396 
397 	xhci_warn(xhci,
398 			"WARN: Slot ID %u, ep index %u has "
399 			"stream IDs 1 to %u allocated, "
400 			"but stream ID %u is requested.\n",
401 			slot_id, ep_index,
402 			ep->stream_info->num_streams - 1,
403 			stream_id);
404 	return NULL;
405 }
406 
407 /* Get the right ring for the given URB.
408  * If the endpoint supports streams, boundary check the URB's stream ID.
409  * If the endpoint doesn't support streams, return the singular endpoint ring.
410  */
411 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
412 		struct urb *urb)
413 {
414 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
415 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
416 }
417 
418 /*
419  * Move the xHC's endpoint ring dequeue pointer past cur_td.
420  * Record the new state of the xHC's endpoint ring dequeue segment,
421  * dequeue pointer, and new consumer cycle state in state.
422  * Update our internal representation of the ring's dequeue pointer.
423  *
424  * We do this in three jumps:
425  *  - First we update our new ring state to be the same as when the xHC stopped.
426  *  - Then we traverse the ring to find the segment that contains
427  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
428  *    any link TRBs with the toggle cycle bit set.
429  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
430  *    if we've moved it past a link TRB with the toggle cycle bit set.
431  *
432  * Some of the uses of xhci_generic_trb are grotty, but if they're done
433  * with correct __le32 accesses they should work fine.  Only users of this are
434  * in here.
435  */
436 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
437 		unsigned int slot_id, unsigned int ep_index,
438 		unsigned int stream_id, struct xhci_td *cur_td,
439 		struct xhci_dequeue_state *state)
440 {
441 	struct xhci_virt_device *dev = xhci->devs[slot_id];
442 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
443 	struct xhci_ring *ep_ring;
444 	struct xhci_segment *new_seg;
445 	union xhci_trb *new_deq;
446 	dma_addr_t addr;
447 	u64 hw_dequeue;
448 	bool cycle_found = false;
449 	bool td_last_trb_found = false;
450 
451 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
452 			ep_index, stream_id);
453 	if (!ep_ring) {
454 		xhci_warn(xhci, "WARN can't find new dequeue state "
455 				"for invalid stream ID %u.\n",
456 				stream_id);
457 		return;
458 	}
459 
460 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
461 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
462 			"Finding endpoint context");
463 	/* 4.6.9 the css flag is written to the stream context for streams */
464 	if (ep->ep_state & EP_HAS_STREAMS) {
465 		struct xhci_stream_ctx *ctx =
466 			&ep->stream_info->stream_ctx_array[stream_id];
467 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
468 	} else {
469 		struct xhci_ep_ctx *ep_ctx
470 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
471 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
472 	}
473 
474 	new_seg = ep_ring->deq_seg;
475 	new_deq = ep_ring->dequeue;
476 	state->new_cycle_state = hw_dequeue & 0x1;
477 
478 	/*
479 	 * We want to find the pointer, segment and cycle state of the new trb
480 	 * (the one after current TD's last_trb). We know the cycle state at
481 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
482 	 * found.
483 	 */
484 	do {
485 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
486 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
487 			cycle_found = true;
488 			if (td_last_trb_found)
489 				break;
490 		}
491 		if (new_deq == cur_td->last_trb)
492 			td_last_trb_found = true;
493 
494 		if (cycle_found &&
495 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
496 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
497 			state->new_cycle_state ^= 0x1;
498 
499 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
500 
501 		/* Search wrapped around, bail out */
502 		if (new_deq == ep->ring->dequeue) {
503 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
504 			state->new_deq_seg = NULL;
505 			state->new_deq_ptr = NULL;
506 			return;
507 		}
508 
509 	} while (!cycle_found || !td_last_trb_found);
510 
511 	state->new_deq_seg = new_seg;
512 	state->new_deq_ptr = new_deq;
513 
514 	/* Don't update the ring cycle state for the producer (us). */
515 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
516 			"Cycle state = 0x%x", state->new_cycle_state);
517 
518 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
519 			"New dequeue segment = %p (virtual)",
520 			state->new_deq_seg);
521 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
522 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
523 			"New dequeue pointer = 0x%llx (DMA)",
524 			(unsigned long long) addr);
525 }
526 
527 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
528  * (The last TRB actually points to the ring enqueue pointer, which is not part
529  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
530  */
531 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
532 		struct xhci_td *cur_td, bool flip_cycle)
533 {
534 	struct xhci_segment *cur_seg;
535 	union xhci_trb *cur_trb;
536 
537 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
538 			true;
539 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
540 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
541 			/* Unchain any chained Link TRBs, but
542 			 * leave the pointers intact.
543 			 */
544 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
545 			/* Flip the cycle bit (link TRBs can't be the first
546 			 * or last TRB).
547 			 */
548 			if (flip_cycle)
549 				cur_trb->generic.field[3] ^=
550 					cpu_to_le32(TRB_CYCLE);
551 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
552 					"Cancel (unchain) link TRB");
553 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
554 					"Address = %p (0x%llx dma); "
555 					"in seg %p (0x%llx dma)",
556 					cur_trb,
557 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
558 					cur_seg,
559 					(unsigned long long)cur_seg->dma);
560 		} else {
561 			cur_trb->generic.field[0] = 0;
562 			cur_trb->generic.field[1] = 0;
563 			cur_trb->generic.field[2] = 0;
564 			/* Preserve only the cycle bit of this TRB */
565 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
566 			/* Flip the cycle bit except on the first or last TRB */
567 			if (flip_cycle && cur_trb != cur_td->first_trb &&
568 					cur_trb != cur_td->last_trb)
569 				cur_trb->generic.field[3] ^=
570 					cpu_to_le32(TRB_CYCLE);
571 			cur_trb->generic.field[3] |= cpu_to_le32(
572 				TRB_TYPE(TRB_TR_NOOP));
573 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
574 					"TRB to noop at offset 0x%llx",
575 					(unsigned long long)
576 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
577 		}
578 		if (cur_trb == cur_td->last_trb)
579 			break;
580 	}
581 }
582 
583 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
584 		struct xhci_virt_ep *ep)
585 {
586 	ep->ep_state &= ~EP_HALT_PENDING;
587 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
588 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
589 	 * (since we didn't successfully stop the watchdog timer).
590 	 */
591 	if (del_timer(&ep->stop_cmd_timer))
592 		ep->stop_cmds_pending--;
593 }
594 
595 /* Must be called with xhci->lock held in interrupt context */
596 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
597 		struct xhci_td *cur_td, int status)
598 {
599 	struct usb_hcd *hcd;
600 	struct urb	*urb;
601 	struct urb_priv	*urb_priv;
602 
603 	urb = cur_td->urb;
604 	urb_priv = urb->hcpriv;
605 	urb_priv->td_cnt++;
606 	hcd = bus_to_hcd(urb->dev->bus);
607 
608 	/* Only giveback urb when this is the last td in urb */
609 	if (urb_priv->td_cnt == urb_priv->length) {
610 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
611 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
612 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
613 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
614 					usb_amd_quirk_pll_enable();
615 			}
616 		}
617 		usb_hcd_unlink_urb_from_ep(hcd, urb);
618 
619 		spin_unlock(&xhci->lock);
620 		usb_hcd_giveback_urb(hcd, urb, status);
621 		xhci_urb_free_priv(urb_priv);
622 		spin_lock(&xhci->lock);
623 	}
624 }
625 
626 /*
627  * When we get a command completion for a Stop Endpoint Command, we need to
628  * unlink any cancelled TDs from the ring.  There are two ways to do that:
629  *
630  *  1. If the HW was in the middle of processing the TD that needs to be
631  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
632  *     in the TD with a Set Dequeue Pointer Command.
633  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
634  *     bit cleared) so that the HW will skip over them.
635  */
636 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
637 		union xhci_trb *trb, struct xhci_event_cmd *event)
638 {
639 	unsigned int ep_index;
640 	struct xhci_ring *ep_ring;
641 	struct xhci_virt_ep *ep;
642 	struct list_head *entry;
643 	struct xhci_td *cur_td = NULL;
644 	struct xhci_td *last_unlinked_td;
645 
646 	struct xhci_dequeue_state deq_state;
647 
648 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
649 		if (!xhci->devs[slot_id])
650 			xhci_warn(xhci, "Stop endpoint command "
651 				"completion for disabled slot %u\n",
652 				slot_id);
653 		return;
654 	}
655 
656 	memset(&deq_state, 0, sizeof(deq_state));
657 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
658 	ep = &xhci->devs[slot_id]->eps[ep_index];
659 
660 	if (list_empty(&ep->cancelled_td_list)) {
661 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
662 		ep->stopped_td = NULL;
663 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
664 		return;
665 	}
666 
667 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
668 	 * We have the xHCI lock, so nothing can modify this list until we drop
669 	 * it.  We're also in the event handler, so we can't get re-interrupted
670 	 * if another Stop Endpoint command completes
671 	 */
672 	list_for_each(entry, &ep->cancelled_td_list) {
673 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
674 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
675 				"Removing canceled TD starting at 0x%llx (dma).",
676 				(unsigned long long)xhci_trb_virt_to_dma(
677 					cur_td->start_seg, cur_td->first_trb));
678 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
679 		if (!ep_ring) {
680 			/* This shouldn't happen unless a driver is mucking
681 			 * with the stream ID after submission.  This will
682 			 * leave the TD on the hardware ring, and the hardware
683 			 * will try to execute it, and may access a buffer
684 			 * that has already been freed.  In the best case, the
685 			 * hardware will execute it, and the event handler will
686 			 * ignore the completion event for that TD, since it was
687 			 * removed from the td_list for that endpoint.  In
688 			 * short, don't muck with the stream ID after
689 			 * submission.
690 			 */
691 			xhci_warn(xhci, "WARN Cancelled URB %p "
692 					"has invalid stream ID %u.\n",
693 					cur_td->urb,
694 					cur_td->urb->stream_id);
695 			goto remove_finished_td;
696 		}
697 		/*
698 		 * If we stopped on the TD we need to cancel, then we have to
699 		 * move the xHC endpoint ring dequeue pointer past this TD.
700 		 */
701 		if (cur_td == ep->stopped_td)
702 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
703 					cur_td->urb->stream_id,
704 					cur_td, &deq_state);
705 		else
706 			td_to_noop(xhci, ep_ring, cur_td, false);
707 remove_finished_td:
708 		/*
709 		 * The event handler won't see a completion for this TD anymore,
710 		 * so remove it from the endpoint ring's TD list.  Keep it in
711 		 * the cancelled TD list for URB completion later.
712 		 */
713 		list_del_init(&cur_td->td_list);
714 	}
715 	last_unlinked_td = cur_td;
716 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
717 
718 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
719 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
720 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
721 				ep->stopped_td->urb->stream_id, &deq_state);
722 		xhci_ring_cmd_db(xhci);
723 	} else {
724 		/* Otherwise ring the doorbell(s) to restart queued transfers */
725 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
726 	}
727 
728 	ep->stopped_td = NULL;
729 
730 	/*
731 	 * Drop the lock and complete the URBs in the cancelled TD list.
732 	 * New TDs to be cancelled might be added to the end of the list before
733 	 * we can complete all the URBs for the TDs we already unlinked.
734 	 * So stop when we've completed the URB for the last TD we unlinked.
735 	 */
736 	do {
737 		cur_td = list_entry(ep->cancelled_td_list.next,
738 				struct xhci_td, cancelled_td_list);
739 		list_del_init(&cur_td->cancelled_td_list);
740 
741 		/* Clean up the cancelled URB */
742 		/* Doesn't matter what we pass for status, since the core will
743 		 * just overwrite it (because the URB has been unlinked).
744 		 */
745 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
746 
747 		/* Stop processing the cancelled list if the watchdog timer is
748 		 * running.
749 		 */
750 		if (xhci->xhc_state & XHCI_STATE_DYING)
751 			return;
752 	} while (cur_td != last_unlinked_td);
753 
754 	/* Return to the event handler with xhci->lock re-acquired */
755 }
756 
757 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
758 {
759 	struct xhci_td *cur_td;
760 
761 	while (!list_empty(&ring->td_list)) {
762 		cur_td = list_first_entry(&ring->td_list,
763 				struct xhci_td, td_list);
764 		list_del_init(&cur_td->td_list);
765 		if (!list_empty(&cur_td->cancelled_td_list))
766 			list_del_init(&cur_td->cancelled_td_list);
767 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
768 	}
769 }
770 
771 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
772 		int slot_id, int ep_index)
773 {
774 	struct xhci_td *cur_td;
775 	struct xhci_virt_ep *ep;
776 	struct xhci_ring *ring;
777 
778 	ep = &xhci->devs[slot_id]->eps[ep_index];
779 	if ((ep->ep_state & EP_HAS_STREAMS) ||
780 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
781 		int stream_id;
782 
783 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
784 				stream_id++) {
785 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
786 					"Killing URBs for slot ID %u, ep index %u, stream %u",
787 					slot_id, ep_index, stream_id + 1);
788 			xhci_kill_ring_urbs(xhci,
789 					ep->stream_info->stream_rings[stream_id]);
790 		}
791 	} else {
792 		ring = ep->ring;
793 		if (!ring)
794 			return;
795 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
796 				"Killing URBs for slot ID %u, ep index %u",
797 				slot_id, ep_index);
798 		xhci_kill_ring_urbs(xhci, ring);
799 	}
800 	while (!list_empty(&ep->cancelled_td_list)) {
801 		cur_td = list_first_entry(&ep->cancelled_td_list,
802 				struct xhci_td, cancelled_td_list);
803 		list_del_init(&cur_td->cancelled_td_list);
804 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
805 	}
806 }
807 
808 /* Watchdog timer function for when a stop endpoint command fails to complete.
809  * In this case, we assume the host controller is broken or dying or dead.  The
810  * host may still be completing some other events, so we have to be careful to
811  * let the event ring handler and the URB dequeueing/enqueueing functions know
812  * through xhci->state.
813  *
814  * The timer may also fire if the host takes a very long time to respond to the
815  * command, and the stop endpoint command completion handler cannot delete the
816  * timer before the timer function is called.  Another endpoint cancellation may
817  * sneak in before the timer function can grab the lock, and that may queue
818  * another stop endpoint command and add the timer back.  So we cannot use a
819  * simple flag to say whether there is a pending stop endpoint command for a
820  * particular endpoint.
821  *
822  * Instead we use a combination of that flag and a counter for the number of
823  * pending stop endpoint commands.  If the timer is the tail end of the last
824  * stop endpoint command, and the endpoint's command is still pending, we assume
825  * the host is dying.
826  */
827 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
828 {
829 	struct xhci_hcd *xhci;
830 	struct xhci_virt_ep *ep;
831 	int ret, i, j;
832 	unsigned long flags;
833 
834 	ep = (struct xhci_virt_ep *) arg;
835 	xhci = ep->xhci;
836 
837 	spin_lock_irqsave(&xhci->lock, flags);
838 
839 	ep->stop_cmds_pending--;
840 	if (xhci->xhc_state & XHCI_STATE_DYING) {
841 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
842 				"Stop EP timer ran, but another timer marked "
843 				"xHCI as DYING, exiting.");
844 		spin_unlock_irqrestore(&xhci->lock, flags);
845 		return;
846 	}
847 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
848 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
849 				"Stop EP timer ran, but no command pending, "
850 				"exiting.");
851 		spin_unlock_irqrestore(&xhci->lock, flags);
852 		return;
853 	}
854 
855 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
856 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
857 	/* Oops, HC is dead or dying or at least not responding to the stop
858 	 * endpoint command.
859 	 */
860 	xhci->xhc_state |= XHCI_STATE_DYING;
861 	/* Disable interrupts from the host controller and start halting it */
862 	xhci_quiesce(xhci);
863 	spin_unlock_irqrestore(&xhci->lock, flags);
864 
865 	ret = xhci_halt(xhci);
866 
867 	spin_lock_irqsave(&xhci->lock, flags);
868 	if (ret < 0) {
869 		/* This is bad; the host is not responding to commands and it's
870 		 * not allowing itself to be halted.  At least interrupts are
871 		 * disabled. If we call usb_hc_died(), it will attempt to
872 		 * disconnect all device drivers under this host.  Those
873 		 * disconnect() methods will wait for all URBs to be unlinked,
874 		 * so we must complete them.
875 		 */
876 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
877 		xhci_warn(xhci, "Completing active URBs anyway.\n");
878 		/* We could turn all TDs on the rings to no-ops.  This won't
879 		 * help if the host has cached part of the ring, and is slow if
880 		 * we want to preserve the cycle bit.  Skip it and hope the host
881 		 * doesn't touch the memory.
882 		 */
883 	}
884 	for (i = 0; i < MAX_HC_SLOTS; i++) {
885 		if (!xhci->devs[i])
886 			continue;
887 		for (j = 0; j < 31; j++)
888 			xhci_kill_endpoint_urbs(xhci, i, j);
889 	}
890 	spin_unlock_irqrestore(&xhci->lock, flags);
891 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
892 			"Calling usb_hc_died()");
893 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
894 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
895 			"xHCI host controller is dead.");
896 }
897 
898 
899 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
900 		struct xhci_virt_device *dev,
901 		struct xhci_ring *ep_ring,
902 		unsigned int ep_index)
903 {
904 	union xhci_trb *dequeue_temp;
905 	int num_trbs_free_temp;
906 	bool revert = false;
907 
908 	num_trbs_free_temp = ep_ring->num_trbs_free;
909 	dequeue_temp = ep_ring->dequeue;
910 
911 	/* If we get two back-to-back stalls, and the first stalled transfer
912 	 * ends just before a link TRB, the dequeue pointer will be left on
913 	 * the link TRB by the code in the while loop.  So we have to update
914 	 * the dequeue pointer one segment further, or we'll jump off
915 	 * the segment into la-la-land.
916 	 */
917 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
918 		ep_ring->deq_seg = ep_ring->deq_seg->next;
919 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
920 	}
921 
922 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
923 		/* We have more usable TRBs */
924 		ep_ring->num_trbs_free++;
925 		ep_ring->dequeue++;
926 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
927 				ep_ring->dequeue)) {
928 			if (ep_ring->dequeue ==
929 					dev->eps[ep_index].queued_deq_ptr)
930 				break;
931 			ep_ring->deq_seg = ep_ring->deq_seg->next;
932 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
933 		}
934 		if (ep_ring->dequeue == dequeue_temp) {
935 			revert = true;
936 			break;
937 		}
938 	}
939 
940 	if (revert) {
941 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
942 		ep_ring->num_trbs_free = num_trbs_free_temp;
943 	}
944 }
945 
946 /*
947  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
948  * we need to clear the set deq pending flag in the endpoint ring state, so that
949  * the TD queueing code can ring the doorbell again.  We also need to ring the
950  * endpoint doorbell to restart the ring, but only if there aren't more
951  * cancellations pending.
952  */
953 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
954 		union xhci_trb *trb, u32 cmd_comp_code)
955 {
956 	unsigned int ep_index;
957 	unsigned int stream_id;
958 	struct xhci_ring *ep_ring;
959 	struct xhci_virt_device *dev;
960 	struct xhci_virt_ep *ep;
961 	struct xhci_ep_ctx *ep_ctx;
962 	struct xhci_slot_ctx *slot_ctx;
963 
964 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
965 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
966 	dev = xhci->devs[slot_id];
967 	ep = &dev->eps[ep_index];
968 
969 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
970 	if (!ep_ring) {
971 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
972 				stream_id);
973 		/* XXX: Harmless??? */
974 		goto cleanup;
975 	}
976 
977 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
978 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
979 
980 	if (cmd_comp_code != COMP_SUCCESS) {
981 		unsigned int ep_state;
982 		unsigned int slot_state;
983 
984 		switch (cmd_comp_code) {
985 		case COMP_TRB_ERR:
986 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
987 			break;
988 		case COMP_CTX_STATE:
989 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
990 			ep_state = le32_to_cpu(ep_ctx->ep_info);
991 			ep_state &= EP_STATE_MASK;
992 			slot_state = le32_to_cpu(slot_ctx->dev_state);
993 			slot_state = GET_SLOT_STATE(slot_state);
994 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
995 					"Slot state = %u, EP state = %u",
996 					slot_state, ep_state);
997 			break;
998 		case COMP_EBADSLT:
999 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1000 					slot_id);
1001 			break;
1002 		default:
1003 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1004 					cmd_comp_code);
1005 			break;
1006 		}
1007 		/* OK what do we do now?  The endpoint state is hosed, and we
1008 		 * should never get to this point if the synchronization between
1009 		 * queueing, and endpoint state are correct.  This might happen
1010 		 * if the device gets disconnected after we've finished
1011 		 * cancelling URBs, which might not be an error...
1012 		 */
1013 	} else {
1014 		u64 deq;
1015 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1016 		if (ep->ep_state & EP_HAS_STREAMS) {
1017 			struct xhci_stream_ctx *ctx =
1018 				&ep->stream_info->stream_ctx_array[stream_id];
1019 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1020 		} else {
1021 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1022 		}
1023 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1024 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1025 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1026 					 ep->queued_deq_ptr) == deq) {
1027 			/* Update the ring's dequeue segment and dequeue pointer
1028 			 * to reflect the new position.
1029 			 */
1030 			update_ring_for_set_deq_completion(xhci, dev,
1031 				ep_ring, ep_index);
1032 		} else {
1033 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1034 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1035 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1036 		}
1037 	}
1038 
1039 cleanup:
1040 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1041 	dev->eps[ep_index].queued_deq_seg = NULL;
1042 	dev->eps[ep_index].queued_deq_ptr = NULL;
1043 	/* Restart any rings with pending URBs */
1044 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1045 }
1046 
1047 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1048 		union xhci_trb *trb, u32 cmd_comp_code)
1049 {
1050 	unsigned int ep_index;
1051 
1052 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1053 	/* This command will only fail if the endpoint wasn't halted,
1054 	 * but we don't care.
1055 	 */
1056 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1057 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1058 
1059 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1060 	 * command complete before the endpoint can be used.  Queue that here
1061 	 * because the HW can't handle two commands being queued in a row.
1062 	 */
1063 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1064 		struct xhci_command *command;
1065 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1066 		if (!command) {
1067 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1068 			return;
1069 		}
1070 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1071 				"Queueing configure endpoint command");
1072 		xhci_queue_configure_endpoint(xhci, command,
1073 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1074 				false);
1075 		xhci_ring_cmd_db(xhci);
1076 	} else {
1077 		/* Clear our internal halted state */
1078 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1079 	}
1080 }
1081 
1082 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1083 		u32 cmd_comp_code)
1084 {
1085 	if (cmd_comp_code == COMP_SUCCESS)
1086 		xhci->slot_id = slot_id;
1087 	else
1088 		xhci->slot_id = 0;
1089 }
1090 
1091 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1092 {
1093 	struct xhci_virt_device *virt_dev;
1094 
1095 	virt_dev = xhci->devs[slot_id];
1096 	if (!virt_dev)
1097 		return;
1098 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1099 		/* Delete default control endpoint resources */
1100 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1101 	xhci_free_virt_device(xhci, slot_id);
1102 }
1103 
1104 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1105 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1106 {
1107 	struct xhci_virt_device *virt_dev;
1108 	struct xhci_input_control_ctx *ctrl_ctx;
1109 	unsigned int ep_index;
1110 	unsigned int ep_state;
1111 	u32 add_flags, drop_flags;
1112 
1113 	/*
1114 	 * Configure endpoint commands can come from the USB core
1115 	 * configuration or alt setting changes, or because the HW
1116 	 * needed an extra configure endpoint command after a reset
1117 	 * endpoint command or streams were being configured.
1118 	 * If the command was for a halted endpoint, the xHCI driver
1119 	 * is not waiting on the configure endpoint command.
1120 	 */
1121 	virt_dev = xhci->devs[slot_id];
1122 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1123 	if (!ctrl_ctx) {
1124 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1125 		return;
1126 	}
1127 
1128 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1129 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1130 	/* Input ctx add_flags are the endpoint index plus one */
1131 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1132 
1133 	/* A usb_set_interface() call directly after clearing a halted
1134 	 * condition may race on this quirky hardware.  Not worth
1135 	 * worrying about, since this is prototype hardware.  Not sure
1136 	 * if this will work for streams, but streams support was
1137 	 * untested on this prototype.
1138 	 */
1139 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1140 			ep_index != (unsigned int) -1 &&
1141 			add_flags - SLOT_FLAG == drop_flags) {
1142 		ep_state = virt_dev->eps[ep_index].ep_state;
1143 		if (!(ep_state & EP_HALTED))
1144 			return;
1145 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1146 				"Completed config ep cmd - "
1147 				"last ep index = %d, state = %d",
1148 				ep_index, ep_state);
1149 		/* Clear internal halted state and restart ring(s) */
1150 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1151 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1152 		return;
1153 	}
1154 	return;
1155 }
1156 
1157 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1158 		struct xhci_event_cmd *event)
1159 {
1160 	xhci_dbg(xhci, "Completed reset device command.\n");
1161 	if (!xhci->devs[slot_id])
1162 		xhci_warn(xhci, "Reset device command completion "
1163 				"for disabled slot %u\n", slot_id);
1164 }
1165 
1166 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1167 		struct xhci_event_cmd *event)
1168 {
1169 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1170 		xhci->error_bitmask |= 1 << 6;
1171 		return;
1172 	}
1173 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1174 			"NEC firmware version %2x.%02x",
1175 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1176 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1177 }
1178 
1179 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1180 {
1181 	list_del(&cmd->cmd_list);
1182 
1183 	if (cmd->completion) {
1184 		cmd->status = status;
1185 		complete(cmd->completion);
1186 	} else {
1187 		kfree(cmd);
1188 	}
1189 }
1190 
1191 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1192 {
1193 	struct xhci_command *cur_cmd, *tmp_cmd;
1194 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1195 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1196 }
1197 
1198 /*
1199  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1200  * If there are other commands waiting then restart the ring and kick the timer.
1201  * This must be called with command ring stopped and xhci->lock held.
1202  */
1203 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1204 					 struct xhci_command *cur_cmd)
1205 {
1206 	struct xhci_command *i_cmd, *tmp_cmd;
1207 	u32 cycle_state;
1208 
1209 	/* Turn all aborted commands in list to no-ops, then restart */
1210 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1211 				 cmd_list) {
1212 
1213 		if (i_cmd->status != COMP_CMD_ABORT)
1214 			continue;
1215 
1216 		i_cmd->status = COMP_CMD_STOP;
1217 
1218 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1219 			 i_cmd->command_trb);
1220 		/* get cycle state from the original cmd trb */
1221 		cycle_state = le32_to_cpu(
1222 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1223 		/* modify the command trb to no-op command */
1224 		i_cmd->command_trb->generic.field[0] = 0;
1225 		i_cmd->command_trb->generic.field[1] = 0;
1226 		i_cmd->command_trb->generic.field[2] = 0;
1227 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1228 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1229 
1230 		/*
1231 		 * caller waiting for completion is called when command
1232 		 *  completion event is received for these no-op commands
1233 		 */
1234 	}
1235 
1236 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1237 
1238 	/* ring command ring doorbell to restart the command ring */
1239 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1240 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1241 		xhci->current_cmd = cur_cmd;
1242 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1243 		xhci_ring_cmd_db(xhci);
1244 	}
1245 	return;
1246 }
1247 
1248 
1249 void xhci_handle_command_timeout(unsigned long data)
1250 {
1251 	struct xhci_hcd *xhci;
1252 	int ret;
1253 	unsigned long flags;
1254 	u64 hw_ring_state;
1255 	struct xhci_command *cur_cmd = NULL;
1256 	xhci = (struct xhci_hcd *) data;
1257 
1258 	/* mark this command to be cancelled */
1259 	spin_lock_irqsave(&xhci->lock, flags);
1260 	if (xhci->current_cmd) {
1261 		cur_cmd = xhci->current_cmd;
1262 		cur_cmd->status = COMP_CMD_ABORT;
1263 	}
1264 
1265 
1266 	/* Make sure command ring is running before aborting it */
1267 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1268 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1269 	    (hw_ring_state & CMD_RING_RUNNING))  {
1270 
1271 		spin_unlock_irqrestore(&xhci->lock, flags);
1272 		xhci_dbg(xhci, "Command timeout\n");
1273 		ret = xhci_abort_cmd_ring(xhci);
1274 		if (unlikely(ret == -ESHUTDOWN)) {
1275 			xhci_err(xhci, "Abort command ring failed\n");
1276 			xhci_cleanup_command_queue(xhci);
1277 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1278 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1279 		}
1280 		return;
1281 	}
1282 	/* command timeout on stopped ring, ring can't be aborted */
1283 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1284 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1285 	spin_unlock_irqrestore(&xhci->lock, flags);
1286 	return;
1287 }
1288 
1289 static void handle_cmd_completion(struct xhci_hcd *xhci,
1290 		struct xhci_event_cmd *event)
1291 {
1292 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1293 	u64 cmd_dma;
1294 	dma_addr_t cmd_dequeue_dma;
1295 	u32 cmd_comp_code;
1296 	union xhci_trb *cmd_trb;
1297 	struct xhci_command *cmd;
1298 	u32 cmd_type;
1299 
1300 	cmd_dma = le64_to_cpu(event->cmd_trb);
1301 	cmd_trb = xhci->cmd_ring->dequeue;
1302 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1303 			cmd_trb);
1304 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1305 	if (cmd_dequeue_dma == 0) {
1306 		xhci->error_bitmask |= 1 << 4;
1307 		return;
1308 	}
1309 	/* Does the DMA address match our internal dequeue pointer address? */
1310 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1311 		xhci->error_bitmask |= 1 << 5;
1312 		return;
1313 	}
1314 
1315 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1316 
1317 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1318 		xhci_err(xhci,
1319 			 "Command completion event does not match command\n");
1320 		return;
1321 	}
1322 
1323 	del_timer(&xhci->cmd_timer);
1324 
1325 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1326 
1327 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1328 
1329 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1330 	if (cmd_comp_code == COMP_CMD_STOP) {
1331 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1332 		return;
1333 	}
1334 	/*
1335 	 * Host aborted the command ring, check if the current command was
1336 	 * supposed to be aborted, otherwise continue normally.
1337 	 * The command ring is stopped now, but the xHC will issue a Command
1338 	 * Ring Stopped event which will cause us to restart it.
1339 	 */
1340 	if (cmd_comp_code == COMP_CMD_ABORT) {
1341 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1342 		if (cmd->status == COMP_CMD_ABORT)
1343 			goto event_handled;
1344 	}
1345 
1346 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1347 	switch (cmd_type) {
1348 	case TRB_ENABLE_SLOT:
1349 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1350 		break;
1351 	case TRB_DISABLE_SLOT:
1352 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1353 		break;
1354 	case TRB_CONFIG_EP:
1355 		if (!cmd->completion)
1356 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1357 						  cmd_comp_code);
1358 		break;
1359 	case TRB_EVAL_CONTEXT:
1360 		break;
1361 	case TRB_ADDR_DEV:
1362 		break;
1363 	case TRB_STOP_RING:
1364 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1365 				le32_to_cpu(cmd_trb->generic.field[3])));
1366 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1367 		break;
1368 	case TRB_SET_DEQ:
1369 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1370 				le32_to_cpu(cmd_trb->generic.field[3])));
1371 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1372 		break;
1373 	case TRB_CMD_NOOP:
1374 		/* Is this an aborted command turned to NO-OP? */
1375 		if (cmd->status == COMP_CMD_STOP)
1376 			cmd_comp_code = COMP_CMD_STOP;
1377 		break;
1378 	case TRB_RESET_EP:
1379 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1380 				le32_to_cpu(cmd_trb->generic.field[3])));
1381 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1382 		break;
1383 	case TRB_RESET_DEV:
1384 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1385 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1386 		 */
1387 		slot_id = TRB_TO_SLOT_ID(
1388 				le32_to_cpu(cmd_trb->generic.field[3]));
1389 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1390 		break;
1391 	case TRB_NEC_GET_FW:
1392 		xhci_handle_cmd_nec_get_fw(xhci, event);
1393 		break;
1394 	default:
1395 		/* Skip over unknown commands on the event ring */
1396 		xhci->error_bitmask |= 1 << 6;
1397 		break;
1398 	}
1399 
1400 	/* restart timer if this wasn't the last command */
1401 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1402 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1403 					       struct xhci_command, cmd_list);
1404 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1405 	}
1406 
1407 event_handled:
1408 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1409 
1410 	inc_deq(xhci, xhci->cmd_ring);
1411 }
1412 
1413 static void handle_vendor_event(struct xhci_hcd *xhci,
1414 		union xhci_trb *event)
1415 {
1416 	u32 trb_type;
1417 
1418 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1419 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1420 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1421 		handle_cmd_completion(xhci, &event->event_cmd);
1422 }
1423 
1424 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1425  * port registers -- USB 3.0 and USB 2.0).
1426  *
1427  * Returns a zero-based port number, which is suitable for indexing into each of
1428  * the split roothubs' port arrays and bus state arrays.
1429  * Add one to it in order to call xhci_find_slot_id_by_port.
1430  */
1431 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1432 		struct xhci_hcd *xhci, u32 port_id)
1433 {
1434 	unsigned int i;
1435 	unsigned int num_similar_speed_ports = 0;
1436 
1437 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1438 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1439 	 * speed ports, up to 1 port before this port.
1440 	 */
1441 	for (i = 0; i < (port_id - 1); i++) {
1442 		u8 port_speed = xhci->port_array[i];
1443 
1444 		/*
1445 		 * Skip ports that don't have known speeds, or have duplicate
1446 		 * Extended Capabilities port speed entries.
1447 		 */
1448 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1449 			continue;
1450 
1451 		/*
1452 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1453 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1454 		 * matches the device speed, it's a similar speed port.
1455 		 */
1456 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1457 			num_similar_speed_ports++;
1458 	}
1459 	return num_similar_speed_ports;
1460 }
1461 
1462 static void handle_device_notification(struct xhci_hcd *xhci,
1463 		union xhci_trb *event)
1464 {
1465 	u32 slot_id;
1466 	struct usb_device *udev;
1467 
1468 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1469 	if (!xhci->devs[slot_id]) {
1470 		xhci_warn(xhci, "Device Notification event for "
1471 				"unused slot %u\n", slot_id);
1472 		return;
1473 	}
1474 
1475 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1476 			slot_id);
1477 	udev = xhci->devs[slot_id]->udev;
1478 	if (udev && udev->parent)
1479 		usb_wakeup_notification(udev->parent, udev->portnum);
1480 }
1481 
1482 static void handle_port_status(struct xhci_hcd *xhci,
1483 		union xhci_trb *event)
1484 {
1485 	struct usb_hcd *hcd;
1486 	u32 port_id;
1487 	u32 temp, temp1;
1488 	int max_ports;
1489 	int slot_id;
1490 	unsigned int faked_port_index;
1491 	u8 major_revision;
1492 	struct xhci_bus_state *bus_state;
1493 	__le32 __iomem **port_array;
1494 	bool bogus_port_status = false;
1495 
1496 	/* Port status change events always have a successful completion code */
1497 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1498 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1499 		xhci->error_bitmask |= 1 << 8;
1500 	}
1501 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1502 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1503 
1504 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1505 	if ((port_id <= 0) || (port_id > max_ports)) {
1506 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1507 		inc_deq(xhci, xhci->event_ring);
1508 		return;
1509 	}
1510 
1511 	/* Figure out which usb_hcd this port is attached to:
1512 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1513 	 */
1514 	major_revision = xhci->port_array[port_id - 1];
1515 
1516 	/* Find the right roothub. */
1517 	hcd = xhci_to_hcd(xhci);
1518 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1519 		hcd = xhci->shared_hcd;
1520 
1521 	if (major_revision == 0) {
1522 		xhci_warn(xhci, "Event for port %u not in "
1523 				"Extended Capabilities, ignoring.\n",
1524 				port_id);
1525 		bogus_port_status = true;
1526 		goto cleanup;
1527 	}
1528 	if (major_revision == DUPLICATE_ENTRY) {
1529 		xhci_warn(xhci, "Event for port %u duplicated in"
1530 				"Extended Capabilities, ignoring.\n",
1531 				port_id);
1532 		bogus_port_status = true;
1533 		goto cleanup;
1534 	}
1535 
1536 	/*
1537 	 * Hardware port IDs reported by a Port Status Change Event include USB
1538 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1539 	 * resume event, but we first need to translate the hardware port ID
1540 	 * into the index into the ports on the correct split roothub, and the
1541 	 * correct bus_state structure.
1542 	 */
1543 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1544 	if (hcd->speed == HCD_USB3)
1545 		port_array = xhci->usb3_ports;
1546 	else
1547 		port_array = xhci->usb2_ports;
1548 	/* Find the faked port hub number */
1549 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1550 			port_id);
1551 
1552 	temp = readl(port_array[faked_port_index]);
1553 	if (hcd->state == HC_STATE_SUSPENDED) {
1554 		xhci_dbg(xhci, "resume root hub\n");
1555 		usb_hcd_resume_root_hub(hcd);
1556 	}
1557 
1558 	if (hcd->speed == HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1559 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1560 
1561 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1562 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1563 
1564 		temp1 = readl(&xhci->op_regs->command);
1565 		if (!(temp1 & CMD_RUN)) {
1566 			xhci_warn(xhci, "xHC is not running.\n");
1567 			goto cleanup;
1568 		}
1569 
1570 		if (DEV_SUPERSPEED(temp)) {
1571 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1572 			/* Set a flag to say the port signaled remote wakeup,
1573 			 * so we can tell the difference between the end of
1574 			 * device and host initiated resume.
1575 			 */
1576 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1577 			xhci_test_and_clear_bit(xhci, port_array,
1578 					faked_port_index, PORT_PLC);
1579 			xhci_set_link_state(xhci, port_array, faked_port_index,
1580 						XDEV_U0);
1581 			/* Need to wait until the next link state change
1582 			 * indicates the device is actually in U0.
1583 			 */
1584 			bogus_port_status = true;
1585 			goto cleanup;
1586 		} else {
1587 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1588 			bus_state->resume_done[faked_port_index] = jiffies +
1589 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1590 			set_bit(faked_port_index, &bus_state->resuming_ports);
1591 			mod_timer(&hcd->rh_timer,
1592 				  bus_state->resume_done[faked_port_index]);
1593 			/* Do the rest in GetPortStatus */
1594 		}
1595 	}
1596 
1597 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1598 			DEV_SUPERSPEED(temp)) {
1599 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1600 		/* We've just brought the device into U0 through either the
1601 		 * Resume state after a device remote wakeup, or through the
1602 		 * U3Exit state after a host-initiated resume.  If it's a device
1603 		 * initiated remote wake, don't pass up the link state change,
1604 		 * so the roothub behavior is consistent with external
1605 		 * USB 3.0 hub behavior.
1606 		 */
1607 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1608 				faked_port_index + 1);
1609 		if (slot_id && xhci->devs[slot_id])
1610 			xhci_ring_device(xhci, slot_id);
1611 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1612 			bus_state->port_remote_wakeup &=
1613 				~(1 << faked_port_index);
1614 			xhci_test_and_clear_bit(xhci, port_array,
1615 					faked_port_index, PORT_PLC);
1616 			usb_wakeup_notification(hcd->self.root_hub,
1617 					faked_port_index + 1);
1618 			bogus_port_status = true;
1619 			goto cleanup;
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1625 	 * RExit to a disconnect state).  If so, let the the driver know it's
1626 	 * out of the RExit state.
1627 	 */
1628 	if (!DEV_SUPERSPEED(temp) &&
1629 			test_and_clear_bit(faked_port_index,
1630 				&bus_state->rexit_ports)) {
1631 		complete(&bus_state->rexit_done[faked_port_index]);
1632 		bogus_port_status = true;
1633 		goto cleanup;
1634 	}
1635 
1636 	if (hcd->speed != HCD_USB3)
1637 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1638 					PORT_PLC);
1639 
1640 cleanup:
1641 	/* Update event ring dequeue pointer before dropping the lock */
1642 	inc_deq(xhci, xhci->event_ring);
1643 
1644 	/* Don't make the USB core poll the roothub if we got a bad port status
1645 	 * change event.  Besides, at that point we can't tell which roothub
1646 	 * (USB 2.0 or USB 3.0) to kick.
1647 	 */
1648 	if (bogus_port_status)
1649 		return;
1650 
1651 	/*
1652 	 * xHCI port-status-change events occur when the "or" of all the
1653 	 * status-change bits in the portsc register changes from 0 to 1.
1654 	 * New status changes won't cause an event if any other change
1655 	 * bits are still set.  When an event occurs, switch over to
1656 	 * polling to avoid losing status changes.
1657 	 */
1658 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1659 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1660 	spin_unlock(&xhci->lock);
1661 	/* Pass this up to the core */
1662 	usb_hcd_poll_rh_status(hcd);
1663 	spin_lock(&xhci->lock);
1664 }
1665 
1666 /*
1667  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1668  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1669  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1670  * returns 0.
1671  */
1672 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1673 		struct xhci_segment *start_seg,
1674 		union xhci_trb	*start_trb,
1675 		union xhci_trb	*end_trb,
1676 		dma_addr_t	suspect_dma,
1677 		bool		debug)
1678 {
1679 	dma_addr_t start_dma;
1680 	dma_addr_t end_seg_dma;
1681 	dma_addr_t end_trb_dma;
1682 	struct xhci_segment *cur_seg;
1683 
1684 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1685 	cur_seg = start_seg;
1686 
1687 	do {
1688 		if (start_dma == 0)
1689 			return NULL;
1690 		/* We may get an event for a Link TRB in the middle of a TD */
1691 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1692 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1693 		/* If the end TRB isn't in this segment, this is set to 0 */
1694 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1695 
1696 		if (debug)
1697 			xhci_warn(xhci,
1698 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1699 				(unsigned long long)suspect_dma,
1700 				(unsigned long long)start_dma,
1701 				(unsigned long long)end_trb_dma,
1702 				(unsigned long long)cur_seg->dma,
1703 				(unsigned long long)end_seg_dma);
1704 
1705 		if (end_trb_dma > 0) {
1706 			/* The end TRB is in this segment, so suspect should be here */
1707 			if (start_dma <= end_trb_dma) {
1708 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1709 					return cur_seg;
1710 			} else {
1711 				/* Case for one segment with
1712 				 * a TD wrapped around to the top
1713 				 */
1714 				if ((suspect_dma >= start_dma &&
1715 							suspect_dma <= end_seg_dma) ||
1716 						(suspect_dma >= cur_seg->dma &&
1717 						 suspect_dma <= end_trb_dma))
1718 					return cur_seg;
1719 			}
1720 			return NULL;
1721 		} else {
1722 			/* Might still be somewhere in this segment */
1723 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1724 				return cur_seg;
1725 		}
1726 		cur_seg = cur_seg->next;
1727 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1728 	} while (cur_seg != start_seg);
1729 
1730 	return NULL;
1731 }
1732 
1733 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1734 		unsigned int slot_id, unsigned int ep_index,
1735 		unsigned int stream_id,
1736 		struct xhci_td *td, union xhci_trb *event_trb)
1737 {
1738 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1739 	struct xhci_command *command;
1740 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1741 	if (!command)
1742 		return;
1743 
1744 	ep->ep_state |= EP_HALTED;
1745 	ep->stopped_stream = stream_id;
1746 
1747 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1748 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1749 
1750 	ep->stopped_stream = 0;
1751 
1752 	xhci_ring_cmd_db(xhci);
1753 }
1754 
1755 /* Check if an error has halted the endpoint ring.  The class driver will
1756  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1757  * However, a babble and other errors also halt the endpoint ring, and the class
1758  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1759  * Ring Dequeue Pointer command manually.
1760  */
1761 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1762 		struct xhci_ep_ctx *ep_ctx,
1763 		unsigned int trb_comp_code)
1764 {
1765 	/* TRB completion codes that may require a manual halt cleanup */
1766 	if (trb_comp_code == COMP_TX_ERR ||
1767 			trb_comp_code == COMP_BABBLE ||
1768 			trb_comp_code == COMP_SPLIT_ERR)
1769 		/* The 0.96 spec says a babbling control endpoint
1770 		 * is not halted. The 0.96 spec says it is.  Some HW
1771 		 * claims to be 0.95 compliant, but it halts the control
1772 		 * endpoint anyway.  Check if a babble halted the
1773 		 * endpoint.
1774 		 */
1775 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1776 		    cpu_to_le32(EP_STATE_HALTED))
1777 			return 1;
1778 
1779 	return 0;
1780 }
1781 
1782 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1783 {
1784 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1785 		/* Vendor defined "informational" completion code,
1786 		 * treat as not-an-error.
1787 		 */
1788 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1789 				trb_comp_code);
1790 		xhci_dbg(xhci, "Treating code as success.\n");
1791 		return 1;
1792 	}
1793 	return 0;
1794 }
1795 
1796 /*
1797  * Finish the td processing, remove the td from td list;
1798  * Return 1 if the urb can be given back.
1799  */
1800 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1801 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1802 	struct xhci_virt_ep *ep, int *status, bool skip)
1803 {
1804 	struct xhci_virt_device *xdev;
1805 	struct xhci_ring *ep_ring;
1806 	unsigned int slot_id;
1807 	int ep_index;
1808 	struct urb *urb = NULL;
1809 	struct xhci_ep_ctx *ep_ctx;
1810 	int ret = 0;
1811 	struct urb_priv	*urb_priv;
1812 	u32 trb_comp_code;
1813 
1814 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1815 	xdev = xhci->devs[slot_id];
1816 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1817 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1818 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1819 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1820 
1821 	if (skip)
1822 		goto td_cleanup;
1823 
1824 	if (trb_comp_code == COMP_STOP_INVAL ||
1825 			trb_comp_code == COMP_STOP ||
1826 			trb_comp_code == COMP_STOP_SHORT) {
1827 		/* The Endpoint Stop Command completion will take care of any
1828 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1829 		 * the ring dequeue pointer or take this TD off any lists yet.
1830 		 */
1831 		ep->stopped_td = td;
1832 		return 0;
1833 	}
1834 	if (trb_comp_code == COMP_STALL ||
1835 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1836 						trb_comp_code)) {
1837 		/* Issue a reset endpoint command to clear the host side
1838 		 * halt, followed by a set dequeue command to move the
1839 		 * dequeue pointer past the TD.
1840 		 * The class driver clears the device side halt later.
1841 		 */
1842 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1843 					ep_ring->stream_id, td, event_trb);
1844 	} else {
1845 		/* Update ring dequeue pointer */
1846 		while (ep_ring->dequeue != td->last_trb)
1847 			inc_deq(xhci, ep_ring);
1848 		inc_deq(xhci, ep_ring);
1849 	}
1850 
1851 td_cleanup:
1852 	/* Clean up the endpoint's TD list */
1853 	urb = td->urb;
1854 	urb_priv = urb->hcpriv;
1855 
1856 	/* Do one last check of the actual transfer length.
1857 	 * If the host controller said we transferred more data than the buffer
1858 	 * length, urb->actual_length will be a very big number (since it's
1859 	 * unsigned).  Play it safe and say we didn't transfer anything.
1860 	 */
1861 	if (urb->actual_length > urb->transfer_buffer_length) {
1862 		xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1863 			urb->transfer_buffer_length,
1864 			urb->actual_length);
1865 		urb->actual_length = 0;
1866 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1867 			*status = -EREMOTEIO;
1868 		else
1869 			*status = 0;
1870 	}
1871 	list_del_init(&td->td_list);
1872 	/* Was this TD slated to be cancelled but completed anyway? */
1873 	if (!list_empty(&td->cancelled_td_list))
1874 		list_del_init(&td->cancelled_td_list);
1875 
1876 	urb_priv->td_cnt++;
1877 	/* Giveback the urb when all the tds are completed */
1878 	if (urb_priv->td_cnt == urb_priv->length) {
1879 		ret = 1;
1880 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1881 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1882 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1883 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
1884 					usb_amd_quirk_pll_enable();
1885 			}
1886 		}
1887 	}
1888 
1889 	return ret;
1890 }
1891 
1892 /*
1893  * Process control tds, update urb status and actual_length.
1894  */
1895 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1896 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1897 	struct xhci_virt_ep *ep, int *status)
1898 {
1899 	struct xhci_virt_device *xdev;
1900 	struct xhci_ring *ep_ring;
1901 	unsigned int slot_id;
1902 	int ep_index;
1903 	struct xhci_ep_ctx *ep_ctx;
1904 	u32 trb_comp_code;
1905 
1906 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1907 	xdev = xhci->devs[slot_id];
1908 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1909 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1910 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1911 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1912 
1913 	switch (trb_comp_code) {
1914 	case COMP_SUCCESS:
1915 		if (event_trb == ep_ring->dequeue) {
1916 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1917 					"without IOC set??\n");
1918 			*status = -ESHUTDOWN;
1919 		} else if (event_trb != td->last_trb) {
1920 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1921 					"without IOC set??\n");
1922 			*status = -ESHUTDOWN;
1923 		} else {
1924 			*status = 0;
1925 		}
1926 		break;
1927 	case COMP_SHORT_TX:
1928 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1929 			*status = -EREMOTEIO;
1930 		else
1931 			*status = 0;
1932 		break;
1933 	case COMP_STOP_SHORT:
1934 		if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1935 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1936 		else
1937 			td->urb->actual_length =
1938 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1939 
1940 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1941 	case COMP_STOP:
1942 		/* Did we stop at data stage? */
1943 		if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1944 			td->urb->actual_length =
1945 				td->urb->transfer_buffer_length -
1946 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1947 		/* fall through */
1948 	case COMP_STOP_INVAL:
1949 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1950 	default:
1951 		if (!xhci_requires_manual_halt_cleanup(xhci,
1952 					ep_ctx, trb_comp_code))
1953 			break;
1954 		xhci_dbg(xhci, "TRB error code %u, "
1955 				"halted endpoint index = %u\n",
1956 				trb_comp_code, ep_index);
1957 		/* else fall through */
1958 	case COMP_STALL:
1959 		/* Did we transfer part of the data (middle) phase? */
1960 		if (event_trb != ep_ring->dequeue &&
1961 				event_trb != td->last_trb)
1962 			td->urb->actual_length =
1963 				td->urb->transfer_buffer_length -
1964 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1965 		else if (!td->urb_length_set)
1966 			td->urb->actual_length = 0;
1967 
1968 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1969 	}
1970 	/*
1971 	 * Did we transfer any data, despite the errors that might have
1972 	 * happened?  I.e. did we get past the setup stage?
1973 	 */
1974 	if (event_trb != ep_ring->dequeue) {
1975 		/* The event was for the status stage */
1976 		if (event_trb == td->last_trb) {
1977 			if (td->urb_length_set) {
1978 				/* Don't overwrite a previously set error code
1979 				 */
1980 				if ((*status == -EINPROGRESS || *status == 0) &&
1981 						(td->urb->transfer_flags
1982 						 & URB_SHORT_NOT_OK))
1983 					/* Did we already see a short data
1984 					 * stage? */
1985 					*status = -EREMOTEIO;
1986 			} else {
1987 				td->urb->actual_length =
1988 					td->urb->transfer_buffer_length;
1989 			}
1990 		} else {
1991 			/*
1992 			 * Maybe the event was for the data stage? If so, update
1993 			 * already the actual_length of the URB and flag it as
1994 			 * set, so that it is not overwritten in the event for
1995 			 * the last TRB.
1996 			 */
1997 			td->urb_length_set = true;
1998 			td->urb->actual_length =
1999 				td->urb->transfer_buffer_length -
2000 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2001 			xhci_dbg(xhci, "Waiting for status "
2002 					"stage event\n");
2003 			return 0;
2004 		}
2005 	}
2006 
2007 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2008 }
2009 
2010 /*
2011  * Process isochronous tds, update urb packet status and actual_length.
2012  */
2013 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2014 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2015 	struct xhci_virt_ep *ep, int *status)
2016 {
2017 	struct xhci_ring *ep_ring;
2018 	struct urb_priv *urb_priv;
2019 	int idx;
2020 	int len = 0;
2021 	union xhci_trb *cur_trb;
2022 	struct xhci_segment *cur_seg;
2023 	struct usb_iso_packet_descriptor *frame;
2024 	u32 trb_comp_code;
2025 	bool skip_td = false;
2026 
2027 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2028 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2029 	urb_priv = td->urb->hcpriv;
2030 	idx = urb_priv->td_cnt;
2031 	frame = &td->urb->iso_frame_desc[idx];
2032 
2033 	/* handle completion code */
2034 	switch (trb_comp_code) {
2035 	case COMP_SUCCESS:
2036 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2037 			frame->status = 0;
2038 			break;
2039 		}
2040 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2041 			trb_comp_code = COMP_SHORT_TX;
2042 	/* fallthrough */
2043 	case COMP_STOP_SHORT:
2044 	case COMP_SHORT_TX:
2045 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2046 				-EREMOTEIO : 0;
2047 		break;
2048 	case COMP_BW_OVER:
2049 		frame->status = -ECOMM;
2050 		skip_td = true;
2051 		break;
2052 	case COMP_BUFF_OVER:
2053 	case COMP_BABBLE:
2054 		frame->status = -EOVERFLOW;
2055 		skip_td = true;
2056 		break;
2057 	case COMP_DEV_ERR:
2058 	case COMP_STALL:
2059 		frame->status = -EPROTO;
2060 		skip_td = true;
2061 		break;
2062 	case COMP_TX_ERR:
2063 		frame->status = -EPROTO;
2064 		if (event_trb != td->last_trb)
2065 			return 0;
2066 		skip_td = true;
2067 		break;
2068 	case COMP_STOP:
2069 	case COMP_STOP_INVAL:
2070 		break;
2071 	default:
2072 		frame->status = -1;
2073 		break;
2074 	}
2075 
2076 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2077 		frame->actual_length = frame->length;
2078 		td->urb->actual_length += frame->length;
2079 	} else if (trb_comp_code == COMP_STOP_SHORT) {
2080 		frame->actual_length =
2081 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2082 		td->urb->actual_length += frame->actual_length;
2083 	} else {
2084 		for (cur_trb = ep_ring->dequeue,
2085 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2086 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2087 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2088 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2089 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2090 		}
2091 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2092 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2093 
2094 		if (trb_comp_code != COMP_STOP_INVAL) {
2095 			frame->actual_length = len;
2096 			td->urb->actual_length += len;
2097 		}
2098 	}
2099 
2100 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2101 }
2102 
2103 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2104 			struct xhci_transfer_event *event,
2105 			struct xhci_virt_ep *ep, int *status)
2106 {
2107 	struct xhci_ring *ep_ring;
2108 	struct urb_priv *urb_priv;
2109 	struct usb_iso_packet_descriptor *frame;
2110 	int idx;
2111 
2112 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2113 	urb_priv = td->urb->hcpriv;
2114 	idx = urb_priv->td_cnt;
2115 	frame = &td->urb->iso_frame_desc[idx];
2116 
2117 	/* The transfer is partly done. */
2118 	frame->status = -EXDEV;
2119 
2120 	/* calc actual length */
2121 	frame->actual_length = 0;
2122 
2123 	/* Update ring dequeue pointer */
2124 	while (ep_ring->dequeue != td->last_trb)
2125 		inc_deq(xhci, ep_ring);
2126 	inc_deq(xhci, ep_ring);
2127 
2128 	return finish_td(xhci, td, NULL, event, ep, status, true);
2129 }
2130 
2131 /*
2132  * Process bulk and interrupt tds, update urb status and actual_length.
2133  */
2134 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2135 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2136 	struct xhci_virt_ep *ep, int *status)
2137 {
2138 	struct xhci_ring *ep_ring;
2139 	union xhci_trb *cur_trb;
2140 	struct xhci_segment *cur_seg;
2141 	u32 trb_comp_code;
2142 
2143 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2144 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2145 
2146 	switch (trb_comp_code) {
2147 	case COMP_SUCCESS:
2148 		/* Double check that the HW transferred everything. */
2149 		if (event_trb != td->last_trb ||
2150 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2151 			xhci_warn(xhci, "WARN Successful completion "
2152 					"on short TX\n");
2153 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2154 				*status = -EREMOTEIO;
2155 			else
2156 				*status = 0;
2157 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2158 				trb_comp_code = COMP_SHORT_TX;
2159 		} else {
2160 			*status = 0;
2161 		}
2162 		break;
2163 	case COMP_STOP_SHORT:
2164 	case COMP_SHORT_TX:
2165 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2166 			*status = -EREMOTEIO;
2167 		else
2168 			*status = 0;
2169 		break;
2170 	default:
2171 		/* Others already handled above */
2172 		break;
2173 	}
2174 	if (trb_comp_code == COMP_SHORT_TX)
2175 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2176 				"%d bytes untransferred\n",
2177 				td->urb->ep->desc.bEndpointAddress,
2178 				td->urb->transfer_buffer_length,
2179 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2180 	/* Stopped - short packet completion */
2181 	if (trb_comp_code == COMP_STOP_SHORT) {
2182 		td->urb->actual_length =
2183 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2184 
2185 		if (td->urb->transfer_buffer_length <
2186 				td->urb->actual_length) {
2187 			xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2188 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2189 			td->urb->actual_length = 0;
2190 			 /* status will be set by usb core for canceled urbs */
2191 		}
2192 	/* Fast path - was this the last TRB in the TD for this URB? */
2193 	} else if (event_trb == td->last_trb) {
2194 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2195 			td->urb->actual_length =
2196 				td->urb->transfer_buffer_length -
2197 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2198 			if (td->urb->transfer_buffer_length <
2199 					td->urb->actual_length) {
2200 				xhci_warn(xhci, "HC gave bad length "
2201 						"of %d bytes left\n",
2202 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2203 				td->urb->actual_length = 0;
2204 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2205 					*status = -EREMOTEIO;
2206 				else
2207 					*status = 0;
2208 			}
2209 			/* Don't overwrite a previously set error code */
2210 			if (*status == -EINPROGRESS) {
2211 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2212 					*status = -EREMOTEIO;
2213 				else
2214 					*status = 0;
2215 			}
2216 		} else {
2217 			td->urb->actual_length =
2218 				td->urb->transfer_buffer_length;
2219 			/* Ignore a short packet completion if the
2220 			 * untransferred length was zero.
2221 			 */
2222 			if (*status == -EREMOTEIO)
2223 				*status = 0;
2224 		}
2225 	} else {
2226 		/* Slow path - walk the list, starting from the dequeue
2227 		 * pointer, to get the actual length transferred.
2228 		 */
2229 		td->urb->actual_length = 0;
2230 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2231 				cur_trb != event_trb;
2232 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2233 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2234 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2235 				td->urb->actual_length +=
2236 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2237 		}
2238 		/* If the ring didn't stop on a Link or No-op TRB, add
2239 		 * in the actual bytes transferred from the Normal TRB
2240 		 */
2241 		if (trb_comp_code != COMP_STOP_INVAL)
2242 			td->urb->actual_length +=
2243 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2244 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2245 	}
2246 
2247 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2248 }
2249 
2250 /*
2251  * If this function returns an error condition, it means it got a Transfer
2252  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2253  * At this point, the host controller is probably hosed and should be reset.
2254  */
2255 static int handle_tx_event(struct xhci_hcd *xhci,
2256 		struct xhci_transfer_event *event)
2257 	__releases(&xhci->lock)
2258 	__acquires(&xhci->lock)
2259 {
2260 	struct xhci_virt_device *xdev;
2261 	struct xhci_virt_ep *ep;
2262 	struct xhci_ring *ep_ring;
2263 	unsigned int slot_id;
2264 	int ep_index;
2265 	struct xhci_td *td = NULL;
2266 	dma_addr_t event_dma;
2267 	struct xhci_segment *event_seg;
2268 	union xhci_trb *event_trb;
2269 	struct urb *urb = NULL;
2270 	int status = -EINPROGRESS;
2271 	struct urb_priv *urb_priv;
2272 	struct xhci_ep_ctx *ep_ctx;
2273 	struct list_head *tmp;
2274 	u32 trb_comp_code;
2275 	int ret = 0;
2276 	int td_num = 0;
2277 
2278 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2279 	xdev = xhci->devs[slot_id];
2280 	if (!xdev) {
2281 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2282 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2283 			 (unsigned long long) xhci_trb_virt_to_dma(
2284 				 xhci->event_ring->deq_seg,
2285 				 xhci->event_ring->dequeue),
2286 			 lower_32_bits(le64_to_cpu(event->buffer)),
2287 			 upper_32_bits(le64_to_cpu(event->buffer)),
2288 			 le32_to_cpu(event->transfer_len),
2289 			 le32_to_cpu(event->flags));
2290 		xhci_dbg(xhci, "Event ring:\n");
2291 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2292 		return -ENODEV;
2293 	}
2294 
2295 	/* Endpoint ID is 1 based, our index is zero based */
2296 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2297 	ep = &xdev->eps[ep_index];
2298 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2299 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2300 	if (!ep_ring ||
2301 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2302 	    EP_STATE_DISABLED) {
2303 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2304 				"or incorrect stream ring\n");
2305 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2306 			 (unsigned long long) xhci_trb_virt_to_dma(
2307 				 xhci->event_ring->deq_seg,
2308 				 xhci->event_ring->dequeue),
2309 			 lower_32_bits(le64_to_cpu(event->buffer)),
2310 			 upper_32_bits(le64_to_cpu(event->buffer)),
2311 			 le32_to_cpu(event->transfer_len),
2312 			 le32_to_cpu(event->flags));
2313 		xhci_dbg(xhci, "Event ring:\n");
2314 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2315 		return -ENODEV;
2316 	}
2317 
2318 	/* Count current td numbers if ep->skip is set */
2319 	if (ep->skip) {
2320 		list_for_each(tmp, &ep_ring->td_list)
2321 			td_num++;
2322 	}
2323 
2324 	event_dma = le64_to_cpu(event->buffer);
2325 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2326 	/* Look for common error cases */
2327 	switch (trb_comp_code) {
2328 	/* Skip codes that require special handling depending on
2329 	 * transfer type
2330 	 */
2331 	case COMP_SUCCESS:
2332 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2333 			break;
2334 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2335 			trb_comp_code = COMP_SHORT_TX;
2336 		else
2337 			xhci_warn_ratelimited(xhci,
2338 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2339 	case COMP_SHORT_TX:
2340 		break;
2341 	case COMP_STOP:
2342 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2343 		break;
2344 	case COMP_STOP_INVAL:
2345 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2346 		break;
2347 	case COMP_STOP_SHORT:
2348 		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2349 		break;
2350 	case COMP_STALL:
2351 		xhci_dbg(xhci, "Stalled endpoint\n");
2352 		ep->ep_state |= EP_HALTED;
2353 		status = -EPIPE;
2354 		break;
2355 	case COMP_TRB_ERR:
2356 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2357 		status = -EILSEQ;
2358 		break;
2359 	case COMP_SPLIT_ERR:
2360 	case COMP_TX_ERR:
2361 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2362 		status = -EPROTO;
2363 		break;
2364 	case COMP_BABBLE:
2365 		xhci_dbg(xhci, "Babble error on endpoint\n");
2366 		status = -EOVERFLOW;
2367 		break;
2368 	case COMP_DB_ERR:
2369 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2370 		status = -ENOSR;
2371 		break;
2372 	case COMP_BW_OVER:
2373 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2374 		break;
2375 	case COMP_BUFF_OVER:
2376 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2377 		break;
2378 	case COMP_UNDERRUN:
2379 		/*
2380 		 * When the Isoch ring is empty, the xHC will generate
2381 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2382 		 * Underrun Event for OUT Isoch endpoint.
2383 		 */
2384 		xhci_dbg(xhci, "underrun event on endpoint\n");
2385 		if (!list_empty(&ep_ring->td_list))
2386 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2387 					"still with TDs queued?\n",
2388 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2389 				 ep_index);
2390 		goto cleanup;
2391 	case COMP_OVERRUN:
2392 		xhci_dbg(xhci, "overrun event on endpoint\n");
2393 		if (!list_empty(&ep_ring->td_list))
2394 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2395 					"still with TDs queued?\n",
2396 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2397 				 ep_index);
2398 		goto cleanup;
2399 	case COMP_DEV_ERR:
2400 		xhci_warn(xhci, "WARN: detect an incompatible device");
2401 		status = -EPROTO;
2402 		break;
2403 	case COMP_MISSED_INT:
2404 		/*
2405 		 * When encounter missed service error, one or more isoc tds
2406 		 * may be missed by xHC.
2407 		 * Set skip flag of the ep_ring; Complete the missed tds as
2408 		 * short transfer when process the ep_ring next time.
2409 		 */
2410 		ep->skip = true;
2411 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2412 		goto cleanup;
2413 	default:
2414 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2415 			status = 0;
2416 			break;
2417 		}
2418 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2419 			  trb_comp_code);
2420 		goto cleanup;
2421 	}
2422 
2423 	do {
2424 		/* This TRB should be in the TD at the head of this ring's
2425 		 * TD list.
2426 		 */
2427 		if (list_empty(&ep_ring->td_list)) {
2428 			/*
2429 			 * A stopped endpoint may generate an extra completion
2430 			 * event if the device was suspended.  Don't print
2431 			 * warnings.
2432 			 */
2433 			if (!(trb_comp_code == COMP_STOP ||
2434 						trb_comp_code == COMP_STOP_INVAL)) {
2435 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2436 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2437 						ep_index);
2438 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2439 						(le32_to_cpu(event->flags) &
2440 						 TRB_TYPE_BITMASK)>>10);
2441 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2442 			}
2443 			if (ep->skip) {
2444 				ep->skip = false;
2445 				xhci_dbg(xhci, "td_list is empty while skip "
2446 						"flag set. Clear skip flag.\n");
2447 			}
2448 			ret = 0;
2449 			goto cleanup;
2450 		}
2451 
2452 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2453 		if (ep->skip && td_num == 0) {
2454 			ep->skip = false;
2455 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2456 						"Clear skip flag.\n");
2457 			ret = 0;
2458 			goto cleanup;
2459 		}
2460 
2461 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2462 		if (ep->skip)
2463 			td_num--;
2464 
2465 		/* Is this a TRB in the currently executing TD? */
2466 		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2467 				td->last_trb, event_dma, false);
2468 
2469 		/*
2470 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2471 		 * is not in the current TD pointed by ep_ring->dequeue because
2472 		 * that the hardware dequeue pointer still at the previous TRB
2473 		 * of the current TD. The previous TRB maybe a Link TD or the
2474 		 * last TRB of the previous TD. The command completion handle
2475 		 * will take care the rest.
2476 		 */
2477 		if (!event_seg && (trb_comp_code == COMP_STOP ||
2478 				   trb_comp_code == COMP_STOP_INVAL)) {
2479 			ret = 0;
2480 			goto cleanup;
2481 		}
2482 
2483 		if (!event_seg) {
2484 			if (!ep->skip ||
2485 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2486 				/* Some host controllers give a spurious
2487 				 * successful event after a short transfer.
2488 				 * Ignore it.
2489 				 */
2490 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2491 						ep_ring->last_td_was_short) {
2492 					ep_ring->last_td_was_short = false;
2493 					ret = 0;
2494 					goto cleanup;
2495 				}
2496 				/* HC is busted, give up! */
2497 				xhci_err(xhci,
2498 					"ERROR Transfer event TRB DMA ptr not "
2499 					"part of current TD ep_index %d "
2500 					"comp_code %u\n", ep_index,
2501 					trb_comp_code);
2502 				trb_in_td(xhci, ep_ring->deq_seg,
2503 					  ep_ring->dequeue, td->last_trb,
2504 					  event_dma, true);
2505 				return -ESHUTDOWN;
2506 			}
2507 
2508 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2509 			goto cleanup;
2510 		}
2511 		if (trb_comp_code == COMP_SHORT_TX)
2512 			ep_ring->last_td_was_short = true;
2513 		else
2514 			ep_ring->last_td_was_short = false;
2515 
2516 		if (ep->skip) {
2517 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2518 			ep->skip = false;
2519 		}
2520 
2521 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2522 						sizeof(*event_trb)];
2523 		/*
2524 		 * No-op TRB should not trigger interrupts.
2525 		 * If event_trb is a no-op TRB, it means the
2526 		 * corresponding TD has been cancelled. Just ignore
2527 		 * the TD.
2528 		 */
2529 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2530 			xhci_dbg(xhci,
2531 				 "event_trb is a no-op TRB. Skip it\n");
2532 			goto cleanup;
2533 		}
2534 
2535 		/* Now update the urb's actual_length and give back to
2536 		 * the core
2537 		 */
2538 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2539 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2540 						 &status);
2541 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2542 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2543 						 &status);
2544 		else
2545 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2546 						 ep, &status);
2547 
2548 cleanup:
2549 		/*
2550 		 * Do not update event ring dequeue pointer if ep->skip is set.
2551 		 * Will roll back to continue process missed tds.
2552 		 */
2553 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2554 			inc_deq(xhci, xhci->event_ring);
2555 		}
2556 
2557 		if (ret) {
2558 			urb = td->urb;
2559 			urb_priv = urb->hcpriv;
2560 
2561 			xhci_urb_free_priv(urb_priv);
2562 
2563 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2564 			if ((urb->actual_length != urb->transfer_buffer_length &&
2565 						(urb->transfer_flags &
2566 						 URB_SHORT_NOT_OK)) ||
2567 					(status != 0 &&
2568 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2569 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2570 						"expected = %d, status = %d\n",
2571 						urb, urb->actual_length,
2572 						urb->transfer_buffer_length,
2573 						status);
2574 			spin_unlock(&xhci->lock);
2575 			/* EHCI, UHCI, and OHCI always unconditionally set the
2576 			 * urb->status of an isochronous endpoint to 0.
2577 			 */
2578 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2579 				status = 0;
2580 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2581 			spin_lock(&xhci->lock);
2582 		}
2583 
2584 	/*
2585 	 * If ep->skip is set, it means there are missed tds on the
2586 	 * endpoint ring need to take care of.
2587 	 * Process them as short transfer until reach the td pointed by
2588 	 * the event.
2589 	 */
2590 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2591 
2592 	return 0;
2593 }
2594 
2595 /*
2596  * This function handles all OS-owned events on the event ring.  It may drop
2597  * xhci->lock between event processing (e.g. to pass up port status changes).
2598  * Returns >0 for "possibly more events to process" (caller should call again),
2599  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2600  */
2601 static int xhci_handle_event(struct xhci_hcd *xhci)
2602 {
2603 	union xhci_trb *event;
2604 	int update_ptrs = 1;
2605 	int ret;
2606 
2607 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2608 		xhci->error_bitmask |= 1 << 1;
2609 		return 0;
2610 	}
2611 
2612 	event = xhci->event_ring->dequeue;
2613 	/* Does the HC or OS own the TRB? */
2614 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2615 	    xhci->event_ring->cycle_state) {
2616 		xhci->error_bitmask |= 1 << 2;
2617 		return 0;
2618 	}
2619 
2620 	/*
2621 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2622 	 * speculative reads of the event's flags/data below.
2623 	 */
2624 	rmb();
2625 	/* FIXME: Handle more event types. */
2626 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2627 	case TRB_TYPE(TRB_COMPLETION):
2628 		handle_cmd_completion(xhci, &event->event_cmd);
2629 		break;
2630 	case TRB_TYPE(TRB_PORT_STATUS):
2631 		handle_port_status(xhci, event);
2632 		update_ptrs = 0;
2633 		break;
2634 	case TRB_TYPE(TRB_TRANSFER):
2635 		ret = handle_tx_event(xhci, &event->trans_event);
2636 		if (ret < 0)
2637 			xhci->error_bitmask |= 1 << 9;
2638 		else
2639 			update_ptrs = 0;
2640 		break;
2641 	case TRB_TYPE(TRB_DEV_NOTE):
2642 		handle_device_notification(xhci, event);
2643 		break;
2644 	default:
2645 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2646 		    TRB_TYPE(48))
2647 			handle_vendor_event(xhci, event);
2648 		else
2649 			xhci->error_bitmask |= 1 << 3;
2650 	}
2651 	/* Any of the above functions may drop and re-acquire the lock, so check
2652 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2653 	 */
2654 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2655 		xhci_dbg(xhci, "xHCI host dying, returning from "
2656 				"event handler.\n");
2657 		return 0;
2658 	}
2659 
2660 	if (update_ptrs)
2661 		/* Update SW event ring dequeue pointer */
2662 		inc_deq(xhci, xhci->event_ring);
2663 
2664 	/* Are there more items on the event ring?  Caller will call us again to
2665 	 * check.
2666 	 */
2667 	return 1;
2668 }
2669 
2670 /*
2671  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2672  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2673  * indicators of an event TRB error, but we check the status *first* to be safe.
2674  */
2675 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2676 {
2677 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2678 	u32 status;
2679 	u64 temp_64;
2680 	union xhci_trb *event_ring_deq;
2681 	dma_addr_t deq;
2682 
2683 	spin_lock(&xhci->lock);
2684 	/* Check if the xHC generated the interrupt, or the irq is shared */
2685 	status = readl(&xhci->op_regs->status);
2686 	if (status == 0xffffffff)
2687 		goto hw_died;
2688 
2689 	if (!(status & STS_EINT)) {
2690 		spin_unlock(&xhci->lock);
2691 		return IRQ_NONE;
2692 	}
2693 	if (status & STS_FATAL) {
2694 		xhci_warn(xhci, "WARNING: Host System Error\n");
2695 		xhci_halt(xhci);
2696 hw_died:
2697 		spin_unlock(&xhci->lock);
2698 		return IRQ_HANDLED;
2699 	}
2700 
2701 	/*
2702 	 * Clear the op reg interrupt status first,
2703 	 * so we can receive interrupts from other MSI-X interrupters.
2704 	 * Write 1 to clear the interrupt status.
2705 	 */
2706 	status |= STS_EINT;
2707 	writel(status, &xhci->op_regs->status);
2708 	/* FIXME when MSI-X is supported and there are multiple vectors */
2709 	/* Clear the MSI-X event interrupt status */
2710 
2711 	if (hcd->irq) {
2712 		u32 irq_pending;
2713 		/* Acknowledge the PCI interrupt */
2714 		irq_pending = readl(&xhci->ir_set->irq_pending);
2715 		irq_pending |= IMAN_IP;
2716 		writel(irq_pending, &xhci->ir_set->irq_pending);
2717 	}
2718 
2719 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2720 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2721 				"Shouldn't IRQs be disabled?\n");
2722 		/* Clear the event handler busy flag (RW1C);
2723 		 * the event ring should be empty.
2724 		 */
2725 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2726 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2727 				&xhci->ir_set->erst_dequeue);
2728 		spin_unlock(&xhci->lock);
2729 
2730 		return IRQ_HANDLED;
2731 	}
2732 
2733 	event_ring_deq = xhci->event_ring->dequeue;
2734 	/* FIXME this should be a delayed service routine
2735 	 * that clears the EHB.
2736 	 */
2737 	while (xhci_handle_event(xhci) > 0) {}
2738 
2739 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2740 	/* If necessary, update the HW's version of the event ring deq ptr. */
2741 	if (event_ring_deq != xhci->event_ring->dequeue) {
2742 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2743 				xhci->event_ring->dequeue);
2744 		if (deq == 0)
2745 			xhci_warn(xhci, "WARN something wrong with SW event "
2746 					"ring dequeue ptr.\n");
2747 		/* Update HC event ring dequeue pointer */
2748 		temp_64 &= ERST_PTR_MASK;
2749 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2750 	}
2751 
2752 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2753 	temp_64 |= ERST_EHB;
2754 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2755 
2756 	spin_unlock(&xhci->lock);
2757 
2758 	return IRQ_HANDLED;
2759 }
2760 
2761 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2762 {
2763 	return xhci_irq(hcd);
2764 }
2765 
2766 /****		Endpoint Ring Operations	****/
2767 
2768 /*
2769  * Generic function for queueing a TRB on a ring.
2770  * The caller must have checked to make sure there's room on the ring.
2771  *
2772  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2773  *			prepare_transfer()?
2774  */
2775 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2776 		bool more_trbs_coming,
2777 		u32 field1, u32 field2, u32 field3, u32 field4)
2778 {
2779 	struct xhci_generic_trb *trb;
2780 
2781 	trb = &ring->enqueue->generic;
2782 	trb->field[0] = cpu_to_le32(field1);
2783 	trb->field[1] = cpu_to_le32(field2);
2784 	trb->field[2] = cpu_to_le32(field3);
2785 	trb->field[3] = cpu_to_le32(field4);
2786 	inc_enq(xhci, ring, more_trbs_coming);
2787 }
2788 
2789 /*
2790  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2791  * FIXME allocate segments if the ring is full.
2792  */
2793 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2794 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2795 {
2796 	unsigned int num_trbs_needed;
2797 
2798 	/* Make sure the endpoint has been added to xHC schedule */
2799 	switch (ep_state) {
2800 	case EP_STATE_DISABLED:
2801 		/*
2802 		 * USB core changed config/interfaces without notifying us,
2803 		 * or hardware is reporting the wrong state.
2804 		 */
2805 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2806 		return -ENOENT;
2807 	case EP_STATE_ERROR:
2808 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2809 		/* FIXME event handling code for error needs to clear it */
2810 		/* XXX not sure if this should be -ENOENT or not */
2811 		return -EINVAL;
2812 	case EP_STATE_HALTED:
2813 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2814 	case EP_STATE_STOPPED:
2815 	case EP_STATE_RUNNING:
2816 		break;
2817 	default:
2818 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2819 		/*
2820 		 * FIXME issue Configure Endpoint command to try to get the HC
2821 		 * back into a known state.
2822 		 */
2823 		return -EINVAL;
2824 	}
2825 
2826 	while (1) {
2827 		if (room_on_ring(xhci, ep_ring, num_trbs))
2828 			break;
2829 
2830 		if (ep_ring == xhci->cmd_ring) {
2831 			xhci_err(xhci, "Do not support expand command ring\n");
2832 			return -ENOMEM;
2833 		}
2834 
2835 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2836 				"ERROR no room on ep ring, try ring expansion");
2837 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2838 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2839 					mem_flags)) {
2840 			xhci_err(xhci, "Ring expansion failed\n");
2841 			return -ENOMEM;
2842 		}
2843 	}
2844 
2845 	if (enqueue_is_link_trb(ep_ring)) {
2846 		struct xhci_ring *ring = ep_ring;
2847 		union xhci_trb *next;
2848 
2849 		next = ring->enqueue;
2850 
2851 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2852 			/* If we're not dealing with 0.95 hardware or isoc rings
2853 			 * on AMD 0.96 host, clear the chain bit.
2854 			 */
2855 			if (!xhci_link_trb_quirk(xhci) &&
2856 					!(ring->type == TYPE_ISOC &&
2857 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2858 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2859 			else
2860 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2861 
2862 			wmb();
2863 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2864 
2865 			/* Toggle the cycle bit after the last ring segment. */
2866 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2867 				ring->cycle_state ^= 1;
2868 			}
2869 			ring->enq_seg = ring->enq_seg->next;
2870 			ring->enqueue = ring->enq_seg->trbs;
2871 			next = ring->enqueue;
2872 		}
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static int prepare_transfer(struct xhci_hcd *xhci,
2879 		struct xhci_virt_device *xdev,
2880 		unsigned int ep_index,
2881 		unsigned int stream_id,
2882 		unsigned int num_trbs,
2883 		struct urb *urb,
2884 		unsigned int td_index,
2885 		gfp_t mem_flags)
2886 {
2887 	int ret;
2888 	struct urb_priv *urb_priv;
2889 	struct xhci_td	*td;
2890 	struct xhci_ring *ep_ring;
2891 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2892 
2893 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2894 	if (!ep_ring) {
2895 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2896 				stream_id);
2897 		return -EINVAL;
2898 	}
2899 
2900 	ret = prepare_ring(xhci, ep_ring,
2901 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2902 			   num_trbs, mem_flags);
2903 	if (ret)
2904 		return ret;
2905 
2906 	urb_priv = urb->hcpriv;
2907 	td = urb_priv->td[td_index];
2908 
2909 	INIT_LIST_HEAD(&td->td_list);
2910 	INIT_LIST_HEAD(&td->cancelled_td_list);
2911 
2912 	if (td_index == 0) {
2913 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2914 		if (unlikely(ret))
2915 			return ret;
2916 	}
2917 
2918 	td->urb = urb;
2919 	/* Add this TD to the tail of the endpoint ring's TD list */
2920 	list_add_tail(&td->td_list, &ep_ring->td_list);
2921 	td->start_seg = ep_ring->enq_seg;
2922 	td->first_trb = ep_ring->enqueue;
2923 
2924 	urb_priv->td[td_index] = td;
2925 
2926 	return 0;
2927 }
2928 
2929 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2930 {
2931 	int num_sgs, num_trbs, running_total, temp, i;
2932 	struct scatterlist *sg;
2933 
2934 	sg = NULL;
2935 	num_sgs = urb->num_mapped_sgs;
2936 	temp = urb->transfer_buffer_length;
2937 
2938 	num_trbs = 0;
2939 	for_each_sg(urb->sg, sg, num_sgs, i) {
2940 		unsigned int len = sg_dma_len(sg);
2941 
2942 		/* Scatter gather list entries may cross 64KB boundaries */
2943 		running_total = TRB_MAX_BUFF_SIZE -
2944 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2945 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2946 		if (running_total != 0)
2947 			num_trbs++;
2948 
2949 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2950 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2951 			num_trbs++;
2952 			running_total += TRB_MAX_BUFF_SIZE;
2953 		}
2954 		len = min_t(int, len, temp);
2955 		temp -= len;
2956 		if (temp == 0)
2957 			break;
2958 	}
2959 	return num_trbs;
2960 }
2961 
2962 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2963 {
2964 	if (num_trbs != 0)
2965 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2966 				"TRBs, %d left\n", __func__,
2967 				urb->ep->desc.bEndpointAddress, num_trbs);
2968 	if (running_total != urb->transfer_buffer_length)
2969 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2970 				"queued %#x (%d), asked for %#x (%d)\n",
2971 				__func__,
2972 				urb->ep->desc.bEndpointAddress,
2973 				running_total, running_total,
2974 				urb->transfer_buffer_length,
2975 				urb->transfer_buffer_length);
2976 }
2977 
2978 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2979 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2980 		struct xhci_generic_trb *start_trb)
2981 {
2982 	/*
2983 	 * Pass all the TRBs to the hardware at once and make sure this write
2984 	 * isn't reordered.
2985 	 */
2986 	wmb();
2987 	if (start_cycle)
2988 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2989 	else
2990 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2991 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2992 }
2993 
2994 /*
2995  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2996  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2997  * (comprised of sg list entries) can take several service intervals to
2998  * transmit.
2999  */
3000 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3001 		struct urb *urb, int slot_id, unsigned int ep_index)
3002 {
3003 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3004 			xhci->devs[slot_id]->out_ctx, ep_index);
3005 	int xhci_interval;
3006 	int ep_interval;
3007 
3008 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3009 	ep_interval = urb->interval;
3010 	/* Convert to microframes */
3011 	if (urb->dev->speed == USB_SPEED_LOW ||
3012 			urb->dev->speed == USB_SPEED_FULL)
3013 		ep_interval *= 8;
3014 	/* FIXME change this to a warning and a suggestion to use the new API
3015 	 * to set the polling interval (once the API is added).
3016 	 */
3017 	if (xhci_interval != ep_interval) {
3018 		dev_dbg_ratelimited(&urb->dev->dev,
3019 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3020 				ep_interval, ep_interval == 1 ? "" : "s",
3021 				xhci_interval, xhci_interval == 1 ? "" : "s");
3022 		urb->interval = xhci_interval;
3023 		/* Convert back to frames for LS/FS devices */
3024 		if (urb->dev->speed == USB_SPEED_LOW ||
3025 				urb->dev->speed == USB_SPEED_FULL)
3026 			urb->interval /= 8;
3027 	}
3028 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3029 }
3030 
3031 /*
3032  * The TD size is the number of bytes remaining in the TD (including this TRB),
3033  * right shifted by 10.
3034  * It must fit in bits 21:17, so it can't be bigger than 31.
3035  */
3036 static u32 xhci_td_remainder(unsigned int remainder)
3037 {
3038 	u32 max = (1 << (21 - 17 + 1)) - 1;
3039 
3040 	if ((remainder >> 10) >= max)
3041 		return max << 17;
3042 	else
3043 		return (remainder >> 10) << 17;
3044 }
3045 
3046 /*
3047  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3048  * packets remaining in the TD (*not* including this TRB).
3049  *
3050  * Total TD packet count = total_packet_count =
3051  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3052  *
3053  * Packets transferred up to and including this TRB = packets_transferred =
3054  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3055  *
3056  * TD size = total_packet_count - packets_transferred
3057  *
3058  * It must fit in bits 21:17, so it can't be bigger than 31.
3059  * The last TRB in a TD must have the TD size set to zero.
3060  */
3061 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3062 		unsigned int total_packet_count, struct urb *urb,
3063 		unsigned int num_trbs_left)
3064 {
3065 	int packets_transferred;
3066 
3067 	/* One TRB with a zero-length data packet. */
3068 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3069 		return 0;
3070 
3071 	/* All the TRB queueing functions don't count the current TRB in
3072 	 * running_total.
3073 	 */
3074 	packets_transferred = (running_total + trb_buff_len) /
3075 		GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3076 
3077 	if ((total_packet_count - packets_transferred) > 31)
3078 		return 31 << 17;
3079 	return (total_packet_count - packets_transferred) << 17;
3080 }
3081 
3082 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3083 		struct urb *urb, int slot_id, unsigned int ep_index)
3084 {
3085 	struct xhci_ring *ep_ring;
3086 	unsigned int num_trbs;
3087 	struct urb_priv *urb_priv;
3088 	struct xhci_td *td;
3089 	struct scatterlist *sg;
3090 	int num_sgs;
3091 	int trb_buff_len, this_sg_len, running_total, ret;
3092 	unsigned int total_packet_count;
3093 	bool zero_length_needed;
3094 	bool first_trb;
3095 	int last_trb_num;
3096 	u64 addr;
3097 	bool more_trbs_coming;
3098 
3099 	struct xhci_generic_trb *start_trb;
3100 	int start_cycle;
3101 
3102 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3103 	if (!ep_ring)
3104 		return -EINVAL;
3105 
3106 	num_trbs = count_sg_trbs_needed(xhci, urb);
3107 	num_sgs = urb->num_mapped_sgs;
3108 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3109 			usb_endpoint_maxp(&urb->ep->desc));
3110 
3111 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3112 			ep_index, urb->stream_id,
3113 			num_trbs, urb, 0, mem_flags);
3114 	if (ret < 0)
3115 		return ret;
3116 
3117 	urb_priv = urb->hcpriv;
3118 
3119 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3120 	zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3121 		urb_priv->length == 2;
3122 	if (zero_length_needed) {
3123 		num_trbs++;
3124 		xhci_dbg(xhci, "Creating zero length td.\n");
3125 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3126 				ep_index, urb->stream_id,
3127 				1, urb, 1, mem_flags);
3128 		if (ret < 0)
3129 			return ret;
3130 	}
3131 
3132 	td = urb_priv->td[0];
3133 
3134 	/*
3135 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3136 	 * until we've finished creating all the other TRBs.  The ring's cycle
3137 	 * state may change as we enqueue the other TRBs, so save it too.
3138 	 */
3139 	start_trb = &ep_ring->enqueue->generic;
3140 	start_cycle = ep_ring->cycle_state;
3141 
3142 	running_total = 0;
3143 	/*
3144 	 * How much data is in the first TRB?
3145 	 *
3146 	 * There are three forces at work for TRB buffer pointers and lengths:
3147 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3148 	 * 2. The transfer length that the driver requested may be smaller than
3149 	 *    the amount of memory allocated for this scatter-gather list.
3150 	 * 3. TRBs buffers can't cross 64KB boundaries.
3151 	 */
3152 	sg = urb->sg;
3153 	addr = (u64) sg_dma_address(sg);
3154 	this_sg_len = sg_dma_len(sg);
3155 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3156 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3157 	if (trb_buff_len > urb->transfer_buffer_length)
3158 		trb_buff_len = urb->transfer_buffer_length;
3159 
3160 	first_trb = true;
3161 	last_trb_num = zero_length_needed ? 2 : 1;
3162 	/* Queue the first TRB, even if it's zero-length */
3163 	do {
3164 		u32 field = 0;
3165 		u32 length_field = 0;
3166 		u32 remainder = 0;
3167 
3168 		/* Don't change the cycle bit of the first TRB until later */
3169 		if (first_trb) {
3170 			first_trb = false;
3171 			if (start_cycle == 0)
3172 				field |= 0x1;
3173 		} else
3174 			field |= ep_ring->cycle_state;
3175 
3176 		/* Chain all the TRBs together; clear the chain bit in the last
3177 		 * TRB to indicate it's the last TRB in the chain.
3178 		 */
3179 		if (num_trbs > last_trb_num) {
3180 			field |= TRB_CHAIN;
3181 		} else if (num_trbs == last_trb_num) {
3182 			td->last_trb = ep_ring->enqueue;
3183 			field |= TRB_IOC;
3184 		} else if (zero_length_needed && num_trbs == 1) {
3185 			trb_buff_len = 0;
3186 			urb_priv->td[1]->last_trb = ep_ring->enqueue;
3187 			field |= TRB_IOC;
3188 		}
3189 
3190 		/* Only set interrupt on short packet for IN endpoints */
3191 		if (usb_urb_dir_in(urb))
3192 			field |= TRB_ISP;
3193 
3194 		if (TRB_MAX_BUFF_SIZE -
3195 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3196 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3197 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3198 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3199 					(unsigned int) addr + trb_buff_len);
3200 		}
3201 
3202 		/* Set the TRB length, TD size, and interrupter fields. */
3203 		if (xhci->hci_version < 0x100) {
3204 			remainder = xhci_td_remainder(
3205 					urb->transfer_buffer_length -
3206 					running_total);
3207 		} else {
3208 			remainder = xhci_v1_0_td_remainder(running_total,
3209 					trb_buff_len, total_packet_count, urb,
3210 					num_trbs - 1);
3211 		}
3212 		length_field = TRB_LEN(trb_buff_len) |
3213 			remainder |
3214 			TRB_INTR_TARGET(0);
3215 
3216 		if (num_trbs > 1)
3217 			more_trbs_coming = true;
3218 		else
3219 			more_trbs_coming = false;
3220 		queue_trb(xhci, ep_ring, more_trbs_coming,
3221 				lower_32_bits(addr),
3222 				upper_32_bits(addr),
3223 				length_field,
3224 				field | TRB_TYPE(TRB_NORMAL));
3225 		--num_trbs;
3226 		running_total += trb_buff_len;
3227 
3228 		/* Calculate length for next transfer --
3229 		 * Are we done queueing all the TRBs for this sg entry?
3230 		 */
3231 		this_sg_len -= trb_buff_len;
3232 		if (this_sg_len == 0) {
3233 			--num_sgs;
3234 			if (num_sgs == 0)
3235 				break;
3236 			sg = sg_next(sg);
3237 			addr = (u64) sg_dma_address(sg);
3238 			this_sg_len = sg_dma_len(sg);
3239 		} else {
3240 			addr += trb_buff_len;
3241 		}
3242 
3243 		trb_buff_len = TRB_MAX_BUFF_SIZE -
3244 			(addr & (TRB_MAX_BUFF_SIZE - 1));
3245 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3246 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3247 			trb_buff_len =
3248 				urb->transfer_buffer_length - running_total;
3249 	} while (num_trbs > 0);
3250 
3251 	check_trb_math(urb, num_trbs, running_total);
3252 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3253 			start_cycle, start_trb);
3254 	return 0;
3255 }
3256 
3257 /* This is very similar to what ehci-q.c qtd_fill() does */
3258 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3259 		struct urb *urb, int slot_id, unsigned int ep_index)
3260 {
3261 	struct xhci_ring *ep_ring;
3262 	struct urb_priv *urb_priv;
3263 	struct xhci_td *td;
3264 	int num_trbs;
3265 	struct xhci_generic_trb *start_trb;
3266 	bool first_trb;
3267 	int last_trb_num;
3268 	bool more_trbs_coming;
3269 	bool zero_length_needed;
3270 	int start_cycle;
3271 	u32 field, length_field;
3272 
3273 	int running_total, trb_buff_len, ret;
3274 	unsigned int total_packet_count;
3275 	u64 addr;
3276 
3277 	if (urb->num_sgs)
3278 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3279 
3280 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3281 	if (!ep_ring)
3282 		return -EINVAL;
3283 
3284 	num_trbs = 0;
3285 	/* How much data is (potentially) left before the 64KB boundary? */
3286 	running_total = TRB_MAX_BUFF_SIZE -
3287 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3288 	running_total &= TRB_MAX_BUFF_SIZE - 1;
3289 
3290 	/* If there's some data on this 64KB chunk, or we have to send a
3291 	 * zero-length transfer, we need at least one TRB
3292 	 */
3293 	if (running_total != 0 || urb->transfer_buffer_length == 0)
3294 		num_trbs++;
3295 	/* How many more 64KB chunks to transfer, how many more TRBs? */
3296 	while (running_total < urb->transfer_buffer_length) {
3297 		num_trbs++;
3298 		running_total += TRB_MAX_BUFF_SIZE;
3299 	}
3300 
3301 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3302 			ep_index, urb->stream_id,
3303 			num_trbs, urb, 0, mem_flags);
3304 	if (ret < 0)
3305 		return ret;
3306 
3307 	urb_priv = urb->hcpriv;
3308 
3309 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3310 	zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3311 		urb_priv->length == 2;
3312 	if (zero_length_needed) {
3313 		num_trbs++;
3314 		xhci_dbg(xhci, "Creating zero length td.\n");
3315 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3316 				ep_index, urb->stream_id,
3317 				1, urb, 1, mem_flags);
3318 		if (ret < 0)
3319 			return ret;
3320 	}
3321 
3322 	td = urb_priv->td[0];
3323 
3324 	/*
3325 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3326 	 * until we've finished creating all the other TRBs.  The ring's cycle
3327 	 * state may change as we enqueue the other TRBs, so save it too.
3328 	 */
3329 	start_trb = &ep_ring->enqueue->generic;
3330 	start_cycle = ep_ring->cycle_state;
3331 
3332 	running_total = 0;
3333 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3334 			usb_endpoint_maxp(&urb->ep->desc));
3335 	/* How much data is in the first TRB? */
3336 	addr = (u64) urb->transfer_dma;
3337 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3338 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3339 	if (trb_buff_len > urb->transfer_buffer_length)
3340 		trb_buff_len = urb->transfer_buffer_length;
3341 
3342 	first_trb = true;
3343 	last_trb_num = zero_length_needed ? 2 : 1;
3344 	/* Queue the first TRB, even if it's zero-length */
3345 	do {
3346 		u32 remainder = 0;
3347 		field = 0;
3348 
3349 		/* Don't change the cycle bit of the first TRB until later */
3350 		if (first_trb) {
3351 			first_trb = false;
3352 			if (start_cycle == 0)
3353 				field |= 0x1;
3354 		} else
3355 			field |= ep_ring->cycle_state;
3356 
3357 		/* Chain all the TRBs together; clear the chain bit in the last
3358 		 * TRB to indicate it's the last TRB in the chain.
3359 		 */
3360 		if (num_trbs > last_trb_num) {
3361 			field |= TRB_CHAIN;
3362 		} else if (num_trbs == last_trb_num) {
3363 			td->last_trb = ep_ring->enqueue;
3364 			field |= TRB_IOC;
3365 		} else if (zero_length_needed && num_trbs == 1) {
3366 			trb_buff_len = 0;
3367 			urb_priv->td[1]->last_trb = ep_ring->enqueue;
3368 			field |= TRB_IOC;
3369 		}
3370 
3371 		/* Only set interrupt on short packet for IN endpoints */
3372 		if (usb_urb_dir_in(urb))
3373 			field |= TRB_ISP;
3374 
3375 		/* Set the TRB length, TD size, and interrupter fields. */
3376 		if (xhci->hci_version < 0x100) {
3377 			remainder = xhci_td_remainder(
3378 					urb->transfer_buffer_length -
3379 					running_total);
3380 		} else {
3381 			remainder = xhci_v1_0_td_remainder(running_total,
3382 					trb_buff_len, total_packet_count, urb,
3383 					num_trbs - 1);
3384 		}
3385 		length_field = TRB_LEN(trb_buff_len) |
3386 			remainder |
3387 			TRB_INTR_TARGET(0);
3388 
3389 		if (num_trbs > 1)
3390 			more_trbs_coming = true;
3391 		else
3392 			more_trbs_coming = false;
3393 		queue_trb(xhci, ep_ring, more_trbs_coming,
3394 				lower_32_bits(addr),
3395 				upper_32_bits(addr),
3396 				length_field,
3397 				field | TRB_TYPE(TRB_NORMAL));
3398 		--num_trbs;
3399 		running_total += trb_buff_len;
3400 
3401 		/* Calculate length for next transfer */
3402 		addr += trb_buff_len;
3403 		trb_buff_len = urb->transfer_buffer_length - running_total;
3404 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3405 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3406 	} while (num_trbs > 0);
3407 
3408 	check_trb_math(urb, num_trbs, running_total);
3409 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3410 			start_cycle, start_trb);
3411 	return 0;
3412 }
3413 
3414 /* Caller must have locked xhci->lock */
3415 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3416 		struct urb *urb, int slot_id, unsigned int ep_index)
3417 {
3418 	struct xhci_ring *ep_ring;
3419 	int num_trbs;
3420 	int ret;
3421 	struct usb_ctrlrequest *setup;
3422 	struct xhci_generic_trb *start_trb;
3423 	int start_cycle;
3424 	u32 field, length_field;
3425 	struct urb_priv *urb_priv;
3426 	struct xhci_td *td;
3427 
3428 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3429 	if (!ep_ring)
3430 		return -EINVAL;
3431 
3432 	/*
3433 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3434 	 * DMA address.
3435 	 */
3436 	if (!urb->setup_packet)
3437 		return -EINVAL;
3438 
3439 	/* 1 TRB for setup, 1 for status */
3440 	num_trbs = 2;
3441 	/*
3442 	 * Don't need to check if we need additional event data and normal TRBs,
3443 	 * since data in control transfers will never get bigger than 16MB
3444 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3445 	 */
3446 	if (urb->transfer_buffer_length > 0)
3447 		num_trbs++;
3448 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3449 			ep_index, urb->stream_id,
3450 			num_trbs, urb, 0, mem_flags);
3451 	if (ret < 0)
3452 		return ret;
3453 
3454 	urb_priv = urb->hcpriv;
3455 	td = urb_priv->td[0];
3456 
3457 	/*
3458 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3459 	 * until we've finished creating all the other TRBs.  The ring's cycle
3460 	 * state may change as we enqueue the other TRBs, so save it too.
3461 	 */
3462 	start_trb = &ep_ring->enqueue->generic;
3463 	start_cycle = ep_ring->cycle_state;
3464 
3465 	/* Queue setup TRB - see section 6.4.1.2.1 */
3466 	/* FIXME better way to translate setup_packet into two u32 fields? */
3467 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3468 	field = 0;
3469 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3470 	if (start_cycle == 0)
3471 		field |= 0x1;
3472 
3473 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3474 	if (xhci->hci_version >= 0x100) {
3475 		if (urb->transfer_buffer_length > 0) {
3476 			if (setup->bRequestType & USB_DIR_IN)
3477 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3478 			else
3479 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3480 		}
3481 	}
3482 
3483 	queue_trb(xhci, ep_ring, true,
3484 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3485 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3486 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3487 		  /* Immediate data in pointer */
3488 		  field);
3489 
3490 	/* If there's data, queue data TRBs */
3491 	/* Only set interrupt on short packet for IN endpoints */
3492 	if (usb_urb_dir_in(urb))
3493 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3494 	else
3495 		field = TRB_TYPE(TRB_DATA);
3496 
3497 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3498 		xhci_td_remainder(urb->transfer_buffer_length) |
3499 		TRB_INTR_TARGET(0);
3500 	if (urb->transfer_buffer_length > 0) {
3501 		if (setup->bRequestType & USB_DIR_IN)
3502 			field |= TRB_DIR_IN;
3503 		queue_trb(xhci, ep_ring, true,
3504 				lower_32_bits(urb->transfer_dma),
3505 				upper_32_bits(urb->transfer_dma),
3506 				length_field,
3507 				field | ep_ring->cycle_state);
3508 	}
3509 
3510 	/* Save the DMA address of the last TRB in the TD */
3511 	td->last_trb = ep_ring->enqueue;
3512 
3513 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3514 	/* If the device sent data, the status stage is an OUT transfer */
3515 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3516 		field = 0;
3517 	else
3518 		field = TRB_DIR_IN;
3519 	queue_trb(xhci, ep_ring, false,
3520 			0,
3521 			0,
3522 			TRB_INTR_TARGET(0),
3523 			/* Event on completion */
3524 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3525 
3526 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3527 			start_cycle, start_trb);
3528 	return 0;
3529 }
3530 
3531 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3532 		struct urb *urb, int i)
3533 {
3534 	int num_trbs = 0;
3535 	u64 addr, td_len;
3536 
3537 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3538 	td_len = urb->iso_frame_desc[i].length;
3539 
3540 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3541 			TRB_MAX_BUFF_SIZE);
3542 	if (num_trbs == 0)
3543 		num_trbs++;
3544 
3545 	return num_trbs;
3546 }
3547 
3548 /*
3549  * The transfer burst count field of the isochronous TRB defines the number of
3550  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3551  * devices can burst up to bMaxBurst number of packets per service interval.
3552  * This field is zero based, meaning a value of zero in the field means one
3553  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3554  * zero.  Only xHCI 1.0 host controllers support this field.
3555  */
3556 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3557 		struct usb_device *udev,
3558 		struct urb *urb, unsigned int total_packet_count)
3559 {
3560 	unsigned int max_burst;
3561 
3562 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3563 		return 0;
3564 
3565 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3566 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3567 }
3568 
3569 /*
3570  * Returns the number of packets in the last "burst" of packets.  This field is
3571  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3572  * the last burst packet count is equal to the total number of packets in the
3573  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3574  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3575  * contain 1 to (bMaxBurst + 1) packets.
3576  */
3577 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3578 		struct usb_device *udev,
3579 		struct urb *urb, unsigned int total_packet_count)
3580 {
3581 	unsigned int max_burst;
3582 	unsigned int residue;
3583 
3584 	if (xhci->hci_version < 0x100)
3585 		return 0;
3586 
3587 	switch (udev->speed) {
3588 	case USB_SPEED_SUPER:
3589 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3590 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3591 		residue = total_packet_count % (max_burst + 1);
3592 		/* If residue is zero, the last burst contains (max_burst + 1)
3593 		 * number of packets, but the TLBPC field is zero-based.
3594 		 */
3595 		if (residue == 0)
3596 			return max_burst;
3597 		return residue - 1;
3598 	default:
3599 		if (total_packet_count == 0)
3600 			return 0;
3601 		return total_packet_count - 1;
3602 	}
3603 }
3604 
3605 /*
3606  * Calculates Frame ID field of the isochronous TRB identifies the
3607  * target frame that the Interval associated with this Isochronous
3608  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3609  *
3610  * Returns actual frame id on success, negative value on error.
3611  */
3612 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3613 		struct urb *urb, int index)
3614 {
3615 	int start_frame, ist, ret = 0;
3616 	int start_frame_id, end_frame_id, current_frame_id;
3617 
3618 	if (urb->dev->speed == USB_SPEED_LOW ||
3619 			urb->dev->speed == USB_SPEED_FULL)
3620 		start_frame = urb->start_frame + index * urb->interval;
3621 	else
3622 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3623 
3624 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3625 	 *
3626 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3627 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3628 	 * be executed.
3629 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3630 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3631 	 */
3632 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3633 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3634 		ist <<= 3;
3635 
3636 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3637 	 * is less than the Start Frame ID or greater than the End Frame ID,
3638 	 * where:
3639 	 *
3640 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3641 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3642 	 *
3643 	 * Both the End Frame ID and Start Frame ID values are calculated
3644 	 * in microframes. When software determines the valid Frame ID value;
3645 	 * The End Frame ID value should be rounded down to the nearest Frame
3646 	 * boundary, and the Start Frame ID value should be rounded up to the
3647 	 * nearest Frame boundary.
3648 	 */
3649 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3650 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3651 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3652 
3653 	start_frame &= 0x7ff;
3654 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3655 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3656 
3657 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3658 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3659 		 start_frame_id, end_frame_id, start_frame);
3660 
3661 	if (start_frame_id < end_frame_id) {
3662 		if (start_frame > end_frame_id ||
3663 				start_frame < start_frame_id)
3664 			ret = -EINVAL;
3665 	} else if (start_frame_id > end_frame_id) {
3666 		if ((start_frame > end_frame_id &&
3667 				start_frame < start_frame_id))
3668 			ret = -EINVAL;
3669 	} else {
3670 			ret = -EINVAL;
3671 	}
3672 
3673 	if (index == 0) {
3674 		if (ret == -EINVAL || start_frame == start_frame_id) {
3675 			start_frame = start_frame_id + 1;
3676 			if (urb->dev->speed == USB_SPEED_LOW ||
3677 					urb->dev->speed == USB_SPEED_FULL)
3678 				urb->start_frame = start_frame;
3679 			else
3680 				urb->start_frame = start_frame << 3;
3681 			ret = 0;
3682 		}
3683 	}
3684 
3685 	if (ret) {
3686 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3687 				start_frame, current_frame_id, index,
3688 				start_frame_id, end_frame_id);
3689 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3690 		return ret;
3691 	}
3692 
3693 	return start_frame;
3694 }
3695 
3696 /* This is for isoc transfer */
3697 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3698 		struct urb *urb, int slot_id, unsigned int ep_index)
3699 {
3700 	struct xhci_ring *ep_ring;
3701 	struct urb_priv *urb_priv;
3702 	struct xhci_td *td;
3703 	int num_tds, trbs_per_td;
3704 	struct xhci_generic_trb *start_trb;
3705 	bool first_trb;
3706 	int start_cycle;
3707 	u32 field, length_field;
3708 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3709 	u64 start_addr, addr;
3710 	int i, j;
3711 	bool more_trbs_coming;
3712 	struct xhci_virt_ep *xep;
3713 
3714 	xep = &xhci->devs[slot_id]->eps[ep_index];
3715 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3716 
3717 	num_tds = urb->number_of_packets;
3718 	if (num_tds < 1) {
3719 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3720 		return -EINVAL;
3721 	}
3722 
3723 	start_addr = (u64) urb->transfer_dma;
3724 	start_trb = &ep_ring->enqueue->generic;
3725 	start_cycle = ep_ring->cycle_state;
3726 
3727 	urb_priv = urb->hcpriv;
3728 	/* Queue the first TRB, even if it's zero-length */
3729 	for (i = 0; i < num_tds; i++) {
3730 		unsigned int total_packet_count;
3731 		unsigned int burst_count;
3732 		unsigned int residue;
3733 
3734 		first_trb = true;
3735 		running_total = 0;
3736 		addr = start_addr + urb->iso_frame_desc[i].offset;
3737 		td_len = urb->iso_frame_desc[i].length;
3738 		td_remain_len = td_len;
3739 		total_packet_count = DIV_ROUND_UP(td_len,
3740 				GET_MAX_PACKET(
3741 					usb_endpoint_maxp(&urb->ep->desc)));
3742 		/* A zero-length transfer still involves at least one packet. */
3743 		if (total_packet_count == 0)
3744 			total_packet_count++;
3745 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3746 				total_packet_count);
3747 		residue = xhci_get_last_burst_packet_count(xhci,
3748 				urb->dev, urb, total_packet_count);
3749 
3750 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3751 
3752 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3753 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3754 		if (ret < 0) {
3755 			if (i == 0)
3756 				return ret;
3757 			goto cleanup;
3758 		}
3759 
3760 		td = urb_priv->td[i];
3761 		for (j = 0; j < trbs_per_td; j++) {
3762 			int frame_id = 0;
3763 			u32 remainder = 0;
3764 			field = 0;
3765 
3766 			if (first_trb) {
3767 				field = TRB_TBC(burst_count) |
3768 					TRB_TLBPC(residue);
3769 				/* Queue the isoc TRB */
3770 				field |= TRB_TYPE(TRB_ISOC);
3771 
3772 				/* Calculate Frame ID and SIA fields */
3773 				if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3774 						HCC_CFC(xhci->hcc_params)) {
3775 					frame_id = xhci_get_isoc_frame_id(xhci,
3776 									  urb,
3777 									  i);
3778 					if (frame_id >= 0)
3779 						field |= TRB_FRAME_ID(frame_id);
3780 					else
3781 						field |= TRB_SIA;
3782 				} else
3783 					field |= TRB_SIA;
3784 
3785 				if (i == 0) {
3786 					if (start_cycle == 0)
3787 						field |= 0x1;
3788 				} else
3789 					field |= ep_ring->cycle_state;
3790 				first_trb = false;
3791 			} else {
3792 				/* Queue other normal TRBs */
3793 				field |= TRB_TYPE(TRB_NORMAL);
3794 				field |= ep_ring->cycle_state;
3795 			}
3796 
3797 			/* Only set interrupt on short packet for IN EPs */
3798 			if (usb_urb_dir_in(urb))
3799 				field |= TRB_ISP;
3800 
3801 			/* Chain all the TRBs together; clear the chain bit in
3802 			 * the last TRB to indicate it's the last TRB in the
3803 			 * chain.
3804 			 */
3805 			if (j < trbs_per_td - 1) {
3806 				field |= TRB_CHAIN;
3807 				more_trbs_coming = true;
3808 			} else {
3809 				td->last_trb = ep_ring->enqueue;
3810 				field |= TRB_IOC;
3811 				if (xhci->hci_version == 0x100 &&
3812 						!(xhci->quirks &
3813 							XHCI_AVOID_BEI)) {
3814 					/* Set BEI bit except for the last td */
3815 					if (i < num_tds - 1)
3816 						field |= TRB_BEI;
3817 				}
3818 				more_trbs_coming = false;
3819 			}
3820 
3821 			/* Calculate TRB length */
3822 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3823 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3824 			if (trb_buff_len > td_remain_len)
3825 				trb_buff_len = td_remain_len;
3826 
3827 			/* Set the TRB length, TD size, & interrupter fields. */
3828 			if (xhci->hci_version < 0x100) {
3829 				remainder = xhci_td_remainder(
3830 						td_len - running_total);
3831 			} else {
3832 				remainder = xhci_v1_0_td_remainder(
3833 						running_total, trb_buff_len,
3834 						total_packet_count, urb,
3835 						(trbs_per_td - j - 1));
3836 			}
3837 			length_field = TRB_LEN(trb_buff_len) |
3838 				remainder |
3839 				TRB_INTR_TARGET(0);
3840 
3841 			queue_trb(xhci, ep_ring, more_trbs_coming,
3842 				lower_32_bits(addr),
3843 				upper_32_bits(addr),
3844 				length_field,
3845 				field);
3846 			running_total += trb_buff_len;
3847 
3848 			addr += trb_buff_len;
3849 			td_remain_len -= trb_buff_len;
3850 		}
3851 
3852 		/* Check TD length */
3853 		if (running_total != td_len) {
3854 			xhci_err(xhci, "ISOC TD length unmatch\n");
3855 			ret = -EINVAL;
3856 			goto cleanup;
3857 		}
3858 	}
3859 
3860 	/* store the next frame id */
3861 	if (HCC_CFC(xhci->hcc_params))
3862 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3863 
3864 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3865 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3866 			usb_amd_quirk_pll_disable();
3867 	}
3868 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3869 
3870 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3871 			start_cycle, start_trb);
3872 	return 0;
3873 cleanup:
3874 	/* Clean up a partially enqueued isoc transfer. */
3875 
3876 	for (i--; i >= 0; i--)
3877 		list_del_init(&urb_priv->td[i]->td_list);
3878 
3879 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3880 	 * into No-ops with a software-owned cycle bit. That way the hardware
3881 	 * won't accidentally start executing bogus TDs when we partially
3882 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3883 	 */
3884 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3885 	/* Every TRB except the first & last will have its cycle bit flipped. */
3886 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3887 
3888 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3889 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3890 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3891 	ep_ring->cycle_state = start_cycle;
3892 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3893 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3894 	return ret;
3895 }
3896 
3897 static int ep_ring_is_processing(struct xhci_hcd *xhci,
3898 		int slot_id, unsigned int ep_index)
3899 {
3900 	struct xhci_virt_device *xdev;
3901 	struct xhci_ring *ep_ring;
3902 	struct xhci_ep_ctx *ep_ctx;
3903 	struct xhci_virt_ep *xep;
3904 	dma_addr_t hw_deq;
3905 
3906 	xdev = xhci->devs[slot_id];
3907 	xep = &xhci->devs[slot_id]->eps[ep_index];
3908 	ep_ring = xep->ring;
3909 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3910 
3911 	if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) != EP_STATE_RUNNING)
3912 		return 0;
3913 
3914 	hw_deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
3915 	return (hw_deq !=
3916 		xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue));
3917 }
3918 
3919 /*
3920  * Check transfer ring to guarantee there is enough room for the urb.
3921  * Update ISO URB start_frame and interval.
3922  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3923  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3924  * Contiguous Frame ID is not supported by HC.
3925  */
3926 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3927 		struct urb *urb, int slot_id, unsigned int ep_index)
3928 {
3929 	struct xhci_virt_device *xdev;
3930 	struct xhci_ring *ep_ring;
3931 	struct xhci_ep_ctx *ep_ctx;
3932 	int start_frame;
3933 	int xhci_interval;
3934 	int ep_interval;
3935 	int num_tds, num_trbs, i;
3936 	int ret;
3937 	struct xhci_virt_ep *xep;
3938 	int ist;
3939 
3940 	xdev = xhci->devs[slot_id];
3941 	xep = &xhci->devs[slot_id]->eps[ep_index];
3942 	ep_ring = xdev->eps[ep_index].ring;
3943 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3944 
3945 	num_trbs = 0;
3946 	num_tds = urb->number_of_packets;
3947 	for (i = 0; i < num_tds; i++)
3948 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3949 
3950 	/* Check the ring to guarantee there is enough room for the whole urb.
3951 	 * Do not insert any td of the urb to the ring if the check failed.
3952 	 */
3953 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3954 			   num_trbs, mem_flags);
3955 	if (ret)
3956 		return ret;
3957 
3958 	/*
3959 	 * Check interval value. This should be done before we start to
3960 	 * calculate the start frame value.
3961 	 */
3962 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3963 	ep_interval = urb->interval;
3964 	/* Convert to microframes */
3965 	if (urb->dev->speed == USB_SPEED_LOW ||
3966 			urb->dev->speed == USB_SPEED_FULL)
3967 		ep_interval *= 8;
3968 	/* FIXME change this to a warning and a suggestion to use the new API
3969 	 * to set the polling interval (once the API is added).
3970 	 */
3971 	if (xhci_interval != ep_interval) {
3972 		dev_dbg_ratelimited(&urb->dev->dev,
3973 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3974 				ep_interval, ep_interval == 1 ? "" : "s",
3975 				xhci_interval, xhci_interval == 1 ? "" : "s");
3976 		urb->interval = xhci_interval;
3977 		/* Convert back to frames for LS/FS devices */
3978 		if (urb->dev->speed == USB_SPEED_LOW ||
3979 				urb->dev->speed == USB_SPEED_FULL)
3980 			urb->interval /= 8;
3981 	}
3982 
3983 	/* Calculate the start frame and put it in urb->start_frame. */
3984 	if (HCC_CFC(xhci->hcc_params) &&
3985 			ep_ring_is_processing(xhci, slot_id, ep_index)) {
3986 		urb->start_frame = xep->next_frame_id;
3987 		goto skip_start_over;
3988 	}
3989 
3990 	start_frame = readl(&xhci->run_regs->microframe_index);
3991 	start_frame &= 0x3fff;
3992 	/*
3993 	 * Round up to the next frame and consider the time before trb really
3994 	 * gets scheduled by hardare.
3995 	 */
3996 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3997 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3998 		ist <<= 3;
3999 	start_frame += ist + XHCI_CFC_DELAY;
4000 	start_frame = roundup(start_frame, 8);
4001 
4002 	/*
4003 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
4004 	 * is greate than 8 microframes.
4005 	 */
4006 	if (urb->dev->speed == USB_SPEED_LOW ||
4007 			urb->dev->speed == USB_SPEED_FULL) {
4008 		start_frame = roundup(start_frame, urb->interval << 3);
4009 		urb->start_frame = start_frame >> 3;
4010 	} else {
4011 		start_frame = roundup(start_frame, urb->interval);
4012 		urb->start_frame = start_frame;
4013 	}
4014 
4015 skip_start_over:
4016 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
4017 
4018 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4019 }
4020 
4021 /****		Command Ring Operations		****/
4022 
4023 /* Generic function for queueing a command TRB on the command ring.
4024  * Check to make sure there's room on the command ring for one command TRB.
4025  * Also check that there's room reserved for commands that must not fail.
4026  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4027  * then only check for the number of reserved spots.
4028  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4029  * because the command event handler may want to resubmit a failed command.
4030  */
4031 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4032 			 u32 field1, u32 field2,
4033 			 u32 field3, u32 field4, bool command_must_succeed)
4034 {
4035 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4036 	int ret;
4037 
4038 	if (xhci->xhc_state) {
4039 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4040 		return -ESHUTDOWN;
4041 	}
4042 
4043 	if (!command_must_succeed)
4044 		reserved_trbs++;
4045 
4046 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4047 			reserved_trbs, GFP_ATOMIC);
4048 	if (ret < 0) {
4049 		xhci_err(xhci, "ERR: No room for command on command ring\n");
4050 		if (command_must_succeed)
4051 			xhci_err(xhci, "ERR: Reserved TRB counting for "
4052 					"unfailable commands failed.\n");
4053 		return ret;
4054 	}
4055 
4056 	cmd->command_trb = xhci->cmd_ring->enqueue;
4057 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4058 
4059 	/* if there are no other commands queued we start the timeout timer */
4060 	if (xhci->cmd_list.next == &cmd->cmd_list &&
4061 	    !timer_pending(&xhci->cmd_timer)) {
4062 		xhci->current_cmd = cmd;
4063 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
4064 	}
4065 
4066 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4067 			field4 | xhci->cmd_ring->cycle_state);
4068 	return 0;
4069 }
4070 
4071 /* Queue a slot enable or disable request on the command ring */
4072 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4073 		u32 trb_type, u32 slot_id)
4074 {
4075 	return queue_command(xhci, cmd, 0, 0, 0,
4076 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4077 }
4078 
4079 /* Queue an address device command TRB */
4080 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4081 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4082 {
4083 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4084 			upper_32_bits(in_ctx_ptr), 0,
4085 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4086 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4087 }
4088 
4089 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4090 		u32 field1, u32 field2, u32 field3, u32 field4)
4091 {
4092 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4093 }
4094 
4095 /* Queue a reset device command TRB */
4096 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4097 		u32 slot_id)
4098 {
4099 	return queue_command(xhci, cmd, 0, 0, 0,
4100 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4101 			false);
4102 }
4103 
4104 /* Queue a configure endpoint command TRB */
4105 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4106 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4107 		u32 slot_id, bool command_must_succeed)
4108 {
4109 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4110 			upper_32_bits(in_ctx_ptr), 0,
4111 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4112 			command_must_succeed);
4113 }
4114 
4115 /* Queue an evaluate context command TRB */
4116 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4117 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4118 {
4119 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4120 			upper_32_bits(in_ctx_ptr), 0,
4121 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4122 			command_must_succeed);
4123 }
4124 
4125 /*
4126  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4127  * activity on an endpoint that is about to be suspended.
4128  */
4129 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4130 			     int slot_id, unsigned int ep_index, int suspend)
4131 {
4132 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4133 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4134 	u32 type = TRB_TYPE(TRB_STOP_RING);
4135 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4136 
4137 	return queue_command(xhci, cmd, 0, 0, 0,
4138 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
4139 }
4140 
4141 /* Set Transfer Ring Dequeue Pointer command */
4142 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4143 		unsigned int slot_id, unsigned int ep_index,
4144 		unsigned int stream_id,
4145 		struct xhci_dequeue_state *deq_state)
4146 {
4147 	dma_addr_t addr;
4148 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4149 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4150 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4151 	u32 trb_sct = 0;
4152 	u32 type = TRB_TYPE(TRB_SET_DEQ);
4153 	struct xhci_virt_ep *ep;
4154 	struct xhci_command *cmd;
4155 	int ret;
4156 
4157 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4158 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4159 		deq_state->new_deq_seg,
4160 		(unsigned long long)deq_state->new_deq_seg->dma,
4161 		deq_state->new_deq_ptr,
4162 		(unsigned long long)xhci_trb_virt_to_dma(
4163 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
4164 		deq_state->new_cycle_state);
4165 
4166 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4167 				    deq_state->new_deq_ptr);
4168 	if (addr == 0) {
4169 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4170 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4171 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
4172 		return;
4173 	}
4174 	ep = &xhci->devs[slot_id]->eps[ep_index];
4175 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4176 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4177 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4178 		return;
4179 	}
4180 
4181 	/* This function gets called from contexts where it cannot sleep */
4182 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4183 	if (!cmd) {
4184 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
4185 		return;
4186 	}
4187 
4188 	ep->queued_deq_seg = deq_state->new_deq_seg;
4189 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4190 	if (stream_id)
4191 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4192 	ret = queue_command(xhci, cmd,
4193 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4194 		upper_32_bits(addr), trb_stream_id,
4195 		trb_slot_id | trb_ep_index | type, false);
4196 	if (ret < 0) {
4197 		xhci_free_command(xhci, cmd);
4198 		return;
4199 	}
4200 
4201 	/* Stop the TD queueing code from ringing the doorbell until
4202 	 * this command completes.  The HC won't set the dequeue pointer
4203 	 * if the ring is running, and ringing the doorbell starts the
4204 	 * ring running.
4205 	 */
4206 	ep->ep_state |= SET_DEQ_PENDING;
4207 }
4208 
4209 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4210 			int slot_id, unsigned int ep_index)
4211 {
4212 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4213 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4214 	u32 type = TRB_TYPE(TRB_RESET_EP);
4215 
4216 	return queue_command(xhci, cmd, 0, 0, 0,
4217 			trb_slot_id | trb_ep_index | type, false);
4218 }
4219