1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 284 /* Flush PCI posted writes */ 285 readl(&xhci->dba->doorbell[0]); 286 } 287 288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 289 { 290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 291 } 292 293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 294 { 295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 296 cmd_list); 297 } 298 299 /* 300 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 301 * If there are other commands waiting then restart the ring and kick the timer. 302 * This must be called with command ring stopped and xhci->lock held. 303 */ 304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 305 struct xhci_command *cur_cmd) 306 { 307 struct xhci_command *i_cmd; 308 309 /* Turn all aborted commands in list to no-ops, then restart */ 310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 311 312 if (i_cmd->status != COMP_COMMAND_ABORTED) 313 continue; 314 315 i_cmd->status = COMP_COMMAND_RING_STOPPED; 316 317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 318 i_cmd->command_trb); 319 320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 321 322 /* 323 * caller waiting for completion is called when command 324 * completion event is received for these no-op commands 325 */ 326 } 327 328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 329 330 /* ring command ring doorbell to restart the command ring */ 331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 332 !(xhci->xhc_state & XHCI_STATE_DYING)) { 333 xhci->current_cmd = cur_cmd; 334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 335 xhci_ring_cmd_db(xhci); 336 } 337 } 338 339 /* Must be called with xhci->lock held, releases and aquires lock back */ 340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 341 { 342 u64 temp_64; 343 int ret; 344 345 xhci_dbg(xhci, "Abort command ring\n"); 346 347 reinit_completion(&xhci->cmd_ring_stop_completion); 348 349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 351 &xhci->op_regs->cmd_ring); 352 353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 354 * completion of the Command Abort operation. If CRR is not negated in 5 355 * seconds then driver handles it as if host died (-ENODEV). 356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 357 * and try to recover a -ETIMEDOUT with a host controller reset. 358 */ 359 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 361 if (ret < 0) { 362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 363 xhci_halt(xhci); 364 xhci_hc_died(xhci); 365 return ret; 366 } 367 /* 368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 370 * but the completion event in never sent. Wait 2 secs (arbitrary 371 * number) to handle those cases after negation of CMD_RING_RUNNING. 372 */ 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 375 msecs_to_jiffies(2000)); 376 spin_lock_irqsave(&xhci->lock, flags); 377 if (!ret) { 378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 379 xhci_cleanup_command_queue(xhci); 380 } else { 381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 382 } 383 return 0; 384 } 385 386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 387 unsigned int slot_id, 388 unsigned int ep_index, 389 unsigned int stream_id) 390 { 391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 393 unsigned int ep_state = ep->ep_state; 394 395 /* Don't ring the doorbell for this endpoint if there are pending 396 * cancellations because we don't want to interrupt processing. 397 * We don't want to restart any stream rings if there's a set dequeue 398 * pointer command pending because the device can choose to start any 399 * stream once the endpoint is on the HW schedule. 400 */ 401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 402 (ep_state & EP_HALTED)) 403 return; 404 writel(DB_VALUE(ep_index, stream_id), db_addr); 405 /* The CPU has better things to do at this point than wait for a 406 * write-posting flush. It'll get there soon enough. 407 */ 408 } 409 410 /* Ring the doorbell for any rings with pending URBs */ 411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index) 414 { 415 unsigned int stream_id; 416 struct xhci_virt_ep *ep; 417 418 ep = &xhci->devs[slot_id]->eps[ep_index]; 419 420 /* A ring has pending URBs if its TD list is not empty */ 421 if (!(ep->ep_state & EP_HAS_STREAMS)) { 422 if (ep->ring && !(list_empty(&ep->ring->td_list))) 423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 424 return; 425 } 426 427 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 428 stream_id++) { 429 struct xhci_stream_info *stream_info = ep->stream_info; 430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 432 stream_id); 433 } 434 } 435 436 /* Get the right ring for the given slot_id, ep_index and stream_id. 437 * If the endpoint supports streams, boundary check the URB's stream ID. 438 * If the endpoint doesn't support streams, return the singular endpoint ring. 439 */ 440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 441 unsigned int slot_id, unsigned int ep_index, 442 unsigned int stream_id) 443 { 444 struct xhci_virt_ep *ep; 445 446 ep = &xhci->devs[slot_id]->eps[ep_index]; 447 /* Common case: no streams */ 448 if (!(ep->ep_state & EP_HAS_STREAMS)) 449 return ep->ring; 450 451 if (stream_id == 0) { 452 xhci_warn(xhci, 453 "WARN: Slot ID %u, ep index %u has streams, " 454 "but URB has no stream ID.\n", 455 slot_id, ep_index); 456 return NULL; 457 } 458 459 if (stream_id < ep->stream_info->num_streams) 460 return ep->stream_info->stream_rings[stream_id]; 461 462 xhci_warn(xhci, 463 "WARN: Slot ID %u, ep index %u has " 464 "stream IDs 1 to %u allocated, " 465 "but stream ID %u is requested.\n", 466 slot_id, ep_index, 467 ep->stream_info->num_streams - 1, 468 stream_id); 469 return NULL; 470 } 471 472 473 /* 474 * Get the hw dequeue pointer xHC stopped on, either directly from the 475 * endpoint context, or if streams are in use from the stream context. 476 * The returned hw_dequeue contains the lowest four bits with cycle state 477 * and possbile stream context type. 478 */ 479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 480 unsigned int ep_index, unsigned int stream_id) 481 { 482 struct xhci_ep_ctx *ep_ctx; 483 struct xhci_stream_ctx *st_ctx; 484 struct xhci_virt_ep *ep; 485 486 ep = &vdev->eps[ep_index]; 487 488 if (ep->ep_state & EP_HAS_STREAMS) { 489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 490 return le64_to_cpu(st_ctx->stream_ring); 491 } 492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 493 return le64_to_cpu(ep_ctx->deq); 494 } 495 496 /* 497 * Move the xHC's endpoint ring dequeue pointer past cur_td. 498 * Record the new state of the xHC's endpoint ring dequeue segment, 499 * dequeue pointer, stream id, and new consumer cycle state in state. 500 * Update our internal representation of the ring's dequeue pointer. 501 * 502 * We do this in three jumps: 503 * - First we update our new ring state to be the same as when the xHC stopped. 504 * - Then we traverse the ring to find the segment that contains 505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 506 * any link TRBs with the toggle cycle bit set. 507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 508 * if we've moved it past a link TRB with the toggle cycle bit set. 509 * 510 * Some of the uses of xhci_generic_trb are grotty, but if they're done 511 * with correct __le32 accesses they should work fine. Only users of this are 512 * in here. 513 */ 514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 515 unsigned int slot_id, unsigned int ep_index, 516 unsigned int stream_id, struct xhci_td *cur_td, 517 struct xhci_dequeue_state *state) 518 { 519 struct xhci_virt_device *dev = xhci->devs[slot_id]; 520 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 521 struct xhci_ring *ep_ring; 522 struct xhci_segment *new_seg; 523 union xhci_trb *new_deq; 524 dma_addr_t addr; 525 u64 hw_dequeue; 526 bool cycle_found = false; 527 bool td_last_trb_found = false; 528 529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 530 ep_index, stream_id); 531 if (!ep_ring) { 532 xhci_warn(xhci, "WARN can't find new dequeue state " 533 "for invalid stream ID %u.\n", 534 stream_id); 535 return; 536 } 537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 539 "Finding endpoint context"); 540 541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 542 new_seg = ep_ring->deq_seg; 543 new_deq = ep_ring->dequeue; 544 state->new_cycle_state = hw_dequeue & 0x1; 545 state->stream_id = stream_id; 546 547 /* 548 * We want to find the pointer, segment and cycle state of the new trb 549 * (the one after current TD's last_trb). We know the cycle state at 550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 551 * found. 552 */ 553 do { 554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 555 == (dma_addr_t)(hw_dequeue & ~0xf)) { 556 cycle_found = true; 557 if (td_last_trb_found) 558 break; 559 } 560 if (new_deq == cur_td->last_trb) 561 td_last_trb_found = true; 562 563 if (cycle_found && trb_is_link(new_deq) && 564 link_trb_toggles_cycle(new_deq)) 565 state->new_cycle_state ^= 0x1; 566 567 next_trb(xhci, ep_ring, &new_seg, &new_deq); 568 569 /* Search wrapped around, bail out */ 570 if (new_deq == ep->ring->dequeue) { 571 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 572 state->new_deq_seg = NULL; 573 state->new_deq_ptr = NULL; 574 return; 575 } 576 577 } while (!cycle_found || !td_last_trb_found); 578 579 state->new_deq_seg = new_seg; 580 state->new_deq_ptr = new_deq; 581 582 /* Don't update the ring cycle state for the producer (us). */ 583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 584 "Cycle state = 0x%x", state->new_cycle_state); 585 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue segment = %p (virtual)", 588 state->new_deq_seg); 589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 591 "New dequeue pointer = 0x%llx (DMA)", 592 (unsigned long long) addr); 593 } 594 595 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 596 * (The last TRB actually points to the ring enqueue pointer, which is not part 597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 598 */ 599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 600 struct xhci_td *td, bool flip_cycle) 601 { 602 struct xhci_segment *seg = td->start_seg; 603 union xhci_trb *trb = td->first_trb; 604 605 while (1) { 606 trb_to_noop(trb, TRB_TR_NOOP); 607 608 /* flip cycle if asked to */ 609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 611 612 if (trb == td->last_trb) 613 break; 614 615 next_trb(xhci, ep_ring, &seg, &trb); 616 } 617 } 618 619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 620 struct xhci_virt_ep *ep) 621 { 622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 623 /* Can't del_timer_sync in interrupt */ 624 del_timer(&ep->stop_cmd_timer); 625 } 626 627 /* 628 * Must be called with xhci->lock held in interrupt context, 629 * releases and re-acquires xhci->lock 630 */ 631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 632 struct xhci_td *cur_td, int status) 633 { 634 struct urb *urb = cur_td->urb; 635 struct urb_priv *urb_priv = urb->hcpriv; 636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 637 638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_quirk_pll_enable(); 643 } 644 } 645 xhci_urb_free_priv(urb_priv); 646 usb_hcd_unlink_urb_from_ep(hcd, urb); 647 spin_unlock(&xhci->lock); 648 trace_xhci_urb_giveback(urb); 649 usb_hcd_giveback_urb(hcd, urb, status); 650 spin_lock(&xhci->lock); 651 } 652 653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 654 struct xhci_ring *ring, struct xhci_td *td) 655 { 656 struct device *dev = xhci_to_hcd(xhci)->self.controller; 657 struct xhci_segment *seg = td->bounce_seg; 658 struct urb *urb = td->urb; 659 660 if (!ring || !seg || !urb) 661 return; 662 663 if (usb_urb_dir_out(urb)) { 664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 665 DMA_TO_DEVICE); 666 return; 667 } 668 669 /* for in tranfers we need to copy the data from bounce to sg */ 670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 671 seg->bounce_len, seg->bounce_offs); 672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 673 DMA_FROM_DEVICE); 674 seg->bounce_len = 0; 675 seg->bounce_offs = 0; 676 } 677 678 /* 679 * When we get a command completion for a Stop Endpoint Command, we need to 680 * unlink any cancelled TDs from the ring. There are two ways to do that: 681 * 682 * 1. If the HW was in the middle of processing the TD that needs to be 683 * cancelled, then we must move the ring's dequeue pointer past the last TRB 684 * in the TD with a Set Dequeue Pointer Command. 685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 686 * bit cleared) so that the HW will skip over them. 687 */ 688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 689 union xhci_trb *trb, struct xhci_event_cmd *event) 690 { 691 unsigned int ep_index; 692 struct xhci_ring *ep_ring; 693 struct xhci_virt_ep *ep; 694 struct xhci_td *cur_td = NULL; 695 struct xhci_td *last_unlinked_td; 696 struct xhci_ep_ctx *ep_ctx; 697 struct xhci_virt_device *vdev; 698 u64 hw_deq; 699 struct xhci_dequeue_state deq_state; 700 701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 702 if (!xhci->devs[slot_id]) 703 xhci_warn(xhci, "Stop endpoint command " 704 "completion for disabled slot %u\n", 705 slot_id); 706 return; 707 } 708 709 memset(&deq_state, 0, sizeof(deq_state)); 710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 711 712 vdev = xhci->devs[slot_id]; 713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 714 trace_xhci_handle_cmd_stop_ep(ep_ctx); 715 716 ep = &xhci->devs[slot_id]->eps[ep_index]; 717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 718 struct xhci_td, cancelled_td_list); 719 720 if (list_empty(&ep->cancelled_td_list)) { 721 xhci_stop_watchdog_timer_in_irq(xhci, ep); 722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 723 return; 724 } 725 726 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 727 * We have the xHCI lock, so nothing can modify this list until we drop 728 * it. We're also in the event handler, so we can't get re-interrupted 729 * if another Stop Endpoint command completes 730 */ 731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 733 "Removing canceled TD starting at 0x%llx (dma).", 734 (unsigned long long)xhci_trb_virt_to_dma( 735 cur_td->start_seg, cur_td->first_trb)); 736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 737 if (!ep_ring) { 738 /* This shouldn't happen unless a driver is mucking 739 * with the stream ID after submission. This will 740 * leave the TD on the hardware ring, and the hardware 741 * will try to execute it, and may access a buffer 742 * that has already been freed. In the best case, the 743 * hardware will execute it, and the event handler will 744 * ignore the completion event for that TD, since it was 745 * removed from the td_list for that endpoint. In 746 * short, don't muck with the stream ID after 747 * submission. 748 */ 749 xhci_warn(xhci, "WARN Cancelled URB %p " 750 "has invalid stream ID %u.\n", 751 cur_td->urb, 752 cur_td->urb->stream_id); 753 goto remove_finished_td; 754 } 755 /* 756 * If we stopped on the TD we need to cancel, then we have to 757 * move the xHC endpoint ring dequeue pointer past this TD. 758 */ 759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 760 cur_td->urb->stream_id); 761 hw_deq &= ~0xf; 762 763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 764 cur_td->last_trb, hw_deq, false)) { 765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 766 cur_td->urb->stream_id, 767 cur_td, &deq_state); 768 } else { 769 td_to_noop(xhci, ep_ring, cur_td, false); 770 } 771 772 remove_finished_td: 773 /* 774 * The event handler won't see a completion for this TD anymore, 775 * so remove it from the endpoint ring's TD list. Keep it in 776 * the cancelled TD list for URB completion later. 777 */ 778 list_del_init(&cur_td->td_list); 779 } 780 781 xhci_stop_watchdog_timer_in_irq(xhci, ep); 782 783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 786 &deq_state); 787 xhci_ring_cmd_db(xhci); 788 } else { 789 /* Otherwise ring the doorbell(s) to restart queued transfers */ 790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 791 } 792 793 /* 794 * Drop the lock and complete the URBs in the cancelled TD list. 795 * New TDs to be cancelled might be added to the end of the list before 796 * we can complete all the URBs for the TDs we already unlinked. 797 * So stop when we've completed the URB for the last TD we unlinked. 798 */ 799 do { 800 cur_td = list_first_entry(&ep->cancelled_td_list, 801 struct xhci_td, cancelled_td_list); 802 list_del_init(&cur_td->cancelled_td_list); 803 804 /* Clean up the cancelled URB */ 805 /* Doesn't matter what we pass for status, since the core will 806 * just overwrite it (because the URB has been unlinked). 807 */ 808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 810 inc_td_cnt(cur_td->urb); 811 if (last_td_in_urb(cur_td)) 812 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 813 814 /* Stop processing the cancelled list if the watchdog timer is 815 * running. 816 */ 817 if (xhci->xhc_state & XHCI_STATE_DYING) 818 return; 819 } while (cur_td != last_unlinked_td); 820 821 /* Return to the event handler with xhci->lock re-acquired */ 822 } 823 824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 825 { 826 struct xhci_td *cur_td; 827 struct xhci_td *tmp; 828 829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 830 list_del_init(&cur_td->td_list); 831 832 if (!list_empty(&cur_td->cancelled_td_list)) 833 list_del_init(&cur_td->cancelled_td_list); 834 835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 836 837 inc_td_cnt(cur_td->urb); 838 if (last_td_in_urb(cur_td)) 839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 840 } 841 } 842 843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 844 int slot_id, int ep_index) 845 { 846 struct xhci_td *cur_td; 847 struct xhci_td *tmp; 848 struct xhci_virt_ep *ep; 849 struct xhci_ring *ring; 850 851 ep = &xhci->devs[slot_id]->eps[ep_index]; 852 if ((ep->ep_state & EP_HAS_STREAMS) || 853 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 854 int stream_id; 855 856 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 857 stream_id++) { 858 ring = ep->stream_info->stream_rings[stream_id]; 859 if (!ring) 860 continue; 861 862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 863 "Killing URBs for slot ID %u, ep index %u, stream %u", 864 slot_id, ep_index, stream_id); 865 xhci_kill_ring_urbs(xhci, ring); 866 } 867 } else { 868 ring = ep->ring; 869 if (!ring) 870 return; 871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 872 "Killing URBs for slot ID %u, ep index %u", 873 slot_id, ep_index); 874 xhci_kill_ring_urbs(xhci, ring); 875 } 876 877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 878 cancelled_td_list) { 879 list_del_init(&cur_td->cancelled_td_list); 880 inc_td_cnt(cur_td->urb); 881 882 if (last_td_in_urb(cur_td)) 883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 884 } 885 } 886 887 /* 888 * host controller died, register read returns 0xffffffff 889 * Complete pending commands, mark them ABORTED. 890 * URBs need to be given back as usb core might be waiting with device locks 891 * held for the URBs to finish during device disconnect, blocking host remove. 892 * 893 * Call with xhci->lock held. 894 * lock is relased and re-acquired while giving back urb. 895 */ 896 void xhci_hc_died(struct xhci_hcd *xhci) 897 { 898 int i, j; 899 900 if (xhci->xhc_state & XHCI_STATE_DYING) 901 return; 902 903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 904 xhci->xhc_state |= XHCI_STATE_DYING; 905 906 xhci_cleanup_command_queue(xhci); 907 908 /* return any pending urbs, remove may be waiting for them */ 909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 910 if (!xhci->devs[i]) 911 continue; 912 for (j = 0; j < 31; j++) 913 xhci_kill_endpoint_urbs(xhci, i, j); 914 } 915 916 /* inform usb core hc died if PCI remove isn't already handling it */ 917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 918 usb_hc_died(xhci_to_hcd(xhci)); 919 } 920 921 /* Watchdog timer function for when a stop endpoint command fails to complete. 922 * In this case, we assume the host controller is broken or dying or dead. The 923 * host may still be completing some other events, so we have to be careful to 924 * let the event ring handler and the URB dequeueing/enqueueing functions know 925 * through xhci->state. 926 * 927 * The timer may also fire if the host takes a very long time to respond to the 928 * command, and the stop endpoint command completion handler cannot delete the 929 * timer before the timer function is called. Another endpoint cancellation may 930 * sneak in before the timer function can grab the lock, and that may queue 931 * another stop endpoint command and add the timer back. So we cannot use a 932 * simple flag to say whether there is a pending stop endpoint command for a 933 * particular endpoint. 934 * 935 * Instead we use a combination of that flag and checking if a new timer is 936 * pending. 937 */ 938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 939 { 940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 941 struct xhci_hcd *xhci = ep->xhci; 942 unsigned long flags; 943 944 spin_lock_irqsave(&xhci->lock, flags); 945 946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 948 timer_pending(&ep->stop_cmd_timer)) { 949 spin_unlock_irqrestore(&xhci->lock, flags); 950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 951 return; 952 } 953 954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 955 ep->ep_state &= ~EP_STOP_CMD_PENDING; 956 957 xhci_halt(xhci); 958 959 /* 960 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 962 * and try to recover a -ETIMEDOUT with a host controller reset 963 */ 964 xhci_hc_died(xhci); 965 966 spin_unlock_irqrestore(&xhci->lock, flags); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 968 "xHCI host controller is dead."); 969 } 970 971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 972 struct xhci_virt_device *dev, 973 struct xhci_ring *ep_ring, 974 unsigned int ep_index) 975 { 976 union xhci_trb *dequeue_temp; 977 int num_trbs_free_temp; 978 bool revert = false; 979 980 num_trbs_free_temp = ep_ring->num_trbs_free; 981 dequeue_temp = ep_ring->dequeue; 982 983 /* If we get two back-to-back stalls, and the first stalled transfer 984 * ends just before a link TRB, the dequeue pointer will be left on 985 * the link TRB by the code in the while loop. So we have to update 986 * the dequeue pointer one segment further, or we'll jump off 987 * the segment into la-la-land. 988 */ 989 if (trb_is_link(ep_ring->dequeue)) { 990 ep_ring->deq_seg = ep_ring->deq_seg->next; 991 ep_ring->dequeue = ep_ring->deq_seg->trbs; 992 } 993 994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 995 /* We have more usable TRBs */ 996 ep_ring->num_trbs_free++; 997 ep_ring->dequeue++; 998 if (trb_is_link(ep_ring->dequeue)) { 999 if (ep_ring->dequeue == 1000 dev->eps[ep_index].queued_deq_ptr) 1001 break; 1002 ep_ring->deq_seg = ep_ring->deq_seg->next; 1003 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1004 } 1005 if (ep_ring->dequeue == dequeue_temp) { 1006 revert = true; 1007 break; 1008 } 1009 } 1010 1011 if (revert) { 1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1013 ep_ring->num_trbs_free = num_trbs_free_temp; 1014 } 1015 } 1016 1017 /* 1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1019 * we need to clear the set deq pending flag in the endpoint ring state, so that 1020 * the TD queueing code can ring the doorbell again. We also need to ring the 1021 * endpoint doorbell to restart the ring, but only if there aren't more 1022 * cancellations pending. 1023 */ 1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1025 union xhci_trb *trb, u32 cmd_comp_code) 1026 { 1027 unsigned int ep_index; 1028 unsigned int stream_id; 1029 struct xhci_ring *ep_ring; 1030 struct xhci_virt_device *dev; 1031 struct xhci_virt_ep *ep; 1032 struct xhci_ep_ctx *ep_ctx; 1033 struct xhci_slot_ctx *slot_ctx; 1034 1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1037 dev = xhci->devs[slot_id]; 1038 ep = &dev->eps[ep_index]; 1039 1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1041 if (!ep_ring) { 1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1043 stream_id); 1044 /* XXX: Harmless??? */ 1045 goto cleanup; 1046 } 1047 1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1050 trace_xhci_handle_cmd_set_deq(slot_ctx); 1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1052 1053 if (cmd_comp_code != COMP_SUCCESS) { 1054 unsigned int ep_state; 1055 unsigned int slot_state; 1056 1057 switch (cmd_comp_code) { 1058 case COMP_TRB_ERROR: 1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1060 break; 1061 case COMP_CONTEXT_STATE_ERROR: 1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1063 ep_state = GET_EP_CTX_STATE(ep_ctx); 1064 slot_state = le32_to_cpu(slot_ctx->dev_state); 1065 slot_state = GET_SLOT_STATE(slot_state); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1067 "Slot state = %u, EP state = %u", 1068 slot_state, ep_state); 1069 break; 1070 case COMP_SLOT_NOT_ENABLED_ERROR: 1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1072 slot_id); 1073 break; 1074 default: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1076 cmd_comp_code); 1077 break; 1078 } 1079 /* OK what do we do now? The endpoint state is hosed, and we 1080 * should never get to this point if the synchronization between 1081 * queueing, and endpoint state are correct. This might happen 1082 * if the device gets disconnected after we've finished 1083 * cancelling URBs, which might not be an error... 1084 */ 1085 } else { 1086 u64 deq; 1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1088 if (ep->ep_state & EP_HAS_STREAMS) { 1089 struct xhci_stream_ctx *ctx = 1090 &ep->stream_info->stream_ctx_array[stream_id]; 1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1092 } else { 1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1094 } 1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1098 ep->queued_deq_ptr) == deq) { 1099 /* Update the ring's dequeue segment and dequeue pointer 1100 * to reflect the new position. 1101 */ 1102 update_ring_for_set_deq_completion(xhci, dev, 1103 ep_ring, ep_index); 1104 } else { 1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1107 ep->queued_deq_seg, ep->queued_deq_ptr); 1108 } 1109 } 1110 1111 cleanup: 1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1113 dev->eps[ep_index].queued_deq_seg = NULL; 1114 dev->eps[ep_index].queued_deq_ptr = NULL; 1115 /* Restart any rings with pending URBs */ 1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1117 } 1118 1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1120 union xhci_trb *trb, u32 cmd_comp_code) 1121 { 1122 struct xhci_virt_device *vdev; 1123 struct xhci_ep_ctx *ep_ctx; 1124 unsigned int ep_index; 1125 1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1127 vdev = xhci->devs[slot_id]; 1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1129 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1130 1131 /* This command will only fail if the endpoint wasn't halted, 1132 * but we don't care. 1133 */ 1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1135 "Ignoring reset ep completion code of %u", cmd_comp_code); 1136 1137 /* HW with the reset endpoint quirk needs to have a configure endpoint 1138 * command complete before the endpoint can be used. Queue that here 1139 * because the HW can't handle two commands being queued in a row. 1140 */ 1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1142 struct xhci_command *command; 1143 1144 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1145 if (!command) 1146 return; 1147 1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1149 "Queueing configure endpoint command"); 1150 xhci_queue_configure_endpoint(xhci, command, 1151 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1152 false); 1153 xhci_ring_cmd_db(xhci); 1154 } else { 1155 /* Clear our internal halted state */ 1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1157 } 1158 1159 /* if this was a soft reset, then restart */ 1160 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1161 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1162 } 1163 1164 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1165 struct xhci_command *command, u32 cmd_comp_code) 1166 { 1167 if (cmd_comp_code == COMP_SUCCESS) 1168 command->slot_id = slot_id; 1169 else 1170 command->slot_id = 0; 1171 } 1172 1173 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1174 { 1175 struct xhci_virt_device *virt_dev; 1176 struct xhci_slot_ctx *slot_ctx; 1177 1178 virt_dev = xhci->devs[slot_id]; 1179 if (!virt_dev) 1180 return; 1181 1182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1183 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1184 1185 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1186 /* Delete default control endpoint resources */ 1187 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1188 xhci_free_virt_device(xhci, slot_id); 1189 } 1190 1191 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1192 struct xhci_event_cmd *event, u32 cmd_comp_code) 1193 { 1194 struct xhci_virt_device *virt_dev; 1195 struct xhci_input_control_ctx *ctrl_ctx; 1196 struct xhci_ep_ctx *ep_ctx; 1197 unsigned int ep_index; 1198 unsigned int ep_state; 1199 u32 add_flags, drop_flags; 1200 1201 /* 1202 * Configure endpoint commands can come from the USB core 1203 * configuration or alt setting changes, or because the HW 1204 * needed an extra configure endpoint command after a reset 1205 * endpoint command or streams were being configured. 1206 * If the command was for a halted endpoint, the xHCI driver 1207 * is not waiting on the configure endpoint command. 1208 */ 1209 virt_dev = xhci->devs[slot_id]; 1210 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1211 if (!ctrl_ctx) { 1212 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1213 return; 1214 } 1215 1216 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1217 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1218 /* Input ctx add_flags are the endpoint index plus one */ 1219 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1220 1221 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1222 trace_xhci_handle_cmd_config_ep(ep_ctx); 1223 1224 /* A usb_set_interface() call directly after clearing a halted 1225 * condition may race on this quirky hardware. Not worth 1226 * worrying about, since this is prototype hardware. Not sure 1227 * if this will work for streams, but streams support was 1228 * untested on this prototype. 1229 */ 1230 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1231 ep_index != (unsigned int) -1 && 1232 add_flags - SLOT_FLAG == drop_flags) { 1233 ep_state = virt_dev->eps[ep_index].ep_state; 1234 if (!(ep_state & EP_HALTED)) 1235 return; 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1237 "Completed config ep cmd - " 1238 "last ep index = %d, state = %d", 1239 ep_index, ep_state); 1240 /* Clear internal halted state and restart ring(s) */ 1241 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1242 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1243 return; 1244 } 1245 return; 1246 } 1247 1248 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1249 { 1250 struct xhci_virt_device *vdev; 1251 struct xhci_slot_ctx *slot_ctx; 1252 1253 vdev = xhci->devs[slot_id]; 1254 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1255 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1256 } 1257 1258 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1259 struct xhci_event_cmd *event) 1260 { 1261 struct xhci_virt_device *vdev; 1262 struct xhci_slot_ctx *slot_ctx; 1263 1264 vdev = xhci->devs[slot_id]; 1265 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1266 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1267 1268 xhci_dbg(xhci, "Completed reset device command.\n"); 1269 if (!xhci->devs[slot_id]) 1270 xhci_warn(xhci, "Reset device command completion " 1271 "for disabled slot %u\n", slot_id); 1272 } 1273 1274 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1275 struct xhci_event_cmd *event) 1276 { 1277 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1278 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1279 return; 1280 } 1281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1282 "NEC firmware version %2x.%02x", 1283 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1284 NEC_FW_MINOR(le32_to_cpu(event->status))); 1285 } 1286 1287 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1288 { 1289 list_del(&cmd->cmd_list); 1290 1291 if (cmd->completion) { 1292 cmd->status = status; 1293 complete(cmd->completion); 1294 } else { 1295 kfree(cmd); 1296 } 1297 } 1298 1299 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1300 { 1301 struct xhci_command *cur_cmd, *tmp_cmd; 1302 xhci->current_cmd = NULL; 1303 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1304 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1305 } 1306 1307 void xhci_handle_command_timeout(struct work_struct *work) 1308 { 1309 struct xhci_hcd *xhci; 1310 unsigned long flags; 1311 u64 hw_ring_state; 1312 1313 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1314 1315 spin_lock_irqsave(&xhci->lock, flags); 1316 1317 /* 1318 * If timeout work is pending, or current_cmd is NULL, it means we 1319 * raced with command completion. Command is handled so just return. 1320 */ 1321 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1322 spin_unlock_irqrestore(&xhci->lock, flags); 1323 return; 1324 } 1325 /* mark this command to be cancelled */ 1326 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1327 1328 /* Make sure command ring is running before aborting it */ 1329 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1330 if (hw_ring_state == ~(u64)0) { 1331 xhci_hc_died(xhci); 1332 goto time_out_completed; 1333 } 1334 1335 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1336 (hw_ring_state & CMD_RING_RUNNING)) { 1337 /* Prevent new doorbell, and start command abort */ 1338 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1339 xhci_dbg(xhci, "Command timeout\n"); 1340 xhci_abort_cmd_ring(xhci, flags); 1341 goto time_out_completed; 1342 } 1343 1344 /* host removed. Bail out */ 1345 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1346 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1347 xhci_cleanup_command_queue(xhci); 1348 1349 goto time_out_completed; 1350 } 1351 1352 /* command timeout on stopped ring, ring can't be aborted */ 1353 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1354 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1355 1356 time_out_completed: 1357 spin_unlock_irqrestore(&xhci->lock, flags); 1358 return; 1359 } 1360 1361 static void handle_cmd_completion(struct xhci_hcd *xhci, 1362 struct xhci_event_cmd *event) 1363 { 1364 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1365 u64 cmd_dma; 1366 dma_addr_t cmd_dequeue_dma; 1367 u32 cmd_comp_code; 1368 union xhci_trb *cmd_trb; 1369 struct xhci_command *cmd; 1370 u32 cmd_type; 1371 1372 cmd_dma = le64_to_cpu(event->cmd_trb); 1373 cmd_trb = xhci->cmd_ring->dequeue; 1374 1375 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1376 1377 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1378 cmd_trb); 1379 /* 1380 * Check whether the completion event is for our internal kept 1381 * command. 1382 */ 1383 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1384 xhci_warn(xhci, 1385 "ERROR mismatched command completion event\n"); 1386 return; 1387 } 1388 1389 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1390 1391 cancel_delayed_work(&xhci->cmd_timer); 1392 1393 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1394 1395 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1396 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1397 complete_all(&xhci->cmd_ring_stop_completion); 1398 return; 1399 } 1400 1401 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1402 xhci_err(xhci, 1403 "Command completion event does not match command\n"); 1404 return; 1405 } 1406 1407 /* 1408 * Host aborted the command ring, check if the current command was 1409 * supposed to be aborted, otherwise continue normally. 1410 * The command ring is stopped now, but the xHC will issue a Command 1411 * Ring Stopped event which will cause us to restart it. 1412 */ 1413 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1414 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1415 if (cmd->status == COMP_COMMAND_ABORTED) { 1416 if (xhci->current_cmd == cmd) 1417 xhci->current_cmd = NULL; 1418 goto event_handled; 1419 } 1420 } 1421 1422 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1423 switch (cmd_type) { 1424 case TRB_ENABLE_SLOT: 1425 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1426 break; 1427 case TRB_DISABLE_SLOT: 1428 xhci_handle_cmd_disable_slot(xhci, slot_id); 1429 break; 1430 case TRB_CONFIG_EP: 1431 if (!cmd->completion) 1432 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1433 cmd_comp_code); 1434 break; 1435 case TRB_EVAL_CONTEXT: 1436 break; 1437 case TRB_ADDR_DEV: 1438 xhci_handle_cmd_addr_dev(xhci, slot_id); 1439 break; 1440 case TRB_STOP_RING: 1441 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1442 le32_to_cpu(cmd_trb->generic.field[3]))); 1443 if (!cmd->completion) 1444 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1445 break; 1446 case TRB_SET_DEQ: 1447 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1448 le32_to_cpu(cmd_trb->generic.field[3]))); 1449 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1450 break; 1451 case TRB_CMD_NOOP: 1452 /* Is this an aborted command turned to NO-OP? */ 1453 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1454 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1455 break; 1456 case TRB_RESET_EP: 1457 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1458 le32_to_cpu(cmd_trb->generic.field[3]))); 1459 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1460 break; 1461 case TRB_RESET_DEV: 1462 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1463 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1464 */ 1465 slot_id = TRB_TO_SLOT_ID( 1466 le32_to_cpu(cmd_trb->generic.field[3])); 1467 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1468 break; 1469 case TRB_NEC_GET_FW: 1470 xhci_handle_cmd_nec_get_fw(xhci, event); 1471 break; 1472 default: 1473 /* Skip over unknown commands on the event ring */ 1474 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1475 break; 1476 } 1477 1478 /* restart timer if this wasn't the last command */ 1479 if (!list_is_singular(&xhci->cmd_list)) { 1480 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1481 struct xhci_command, cmd_list); 1482 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1483 } else if (xhci->current_cmd == cmd) { 1484 xhci->current_cmd = NULL; 1485 } 1486 1487 event_handled: 1488 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1489 1490 inc_deq(xhci, xhci->cmd_ring); 1491 } 1492 1493 static void handle_vendor_event(struct xhci_hcd *xhci, 1494 union xhci_trb *event) 1495 { 1496 u32 trb_type; 1497 1498 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1499 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1500 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1501 handle_cmd_completion(xhci, &event->event_cmd); 1502 } 1503 1504 static void handle_device_notification(struct xhci_hcd *xhci, 1505 union xhci_trb *event) 1506 { 1507 u32 slot_id; 1508 struct usb_device *udev; 1509 1510 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1511 if (!xhci->devs[slot_id]) { 1512 xhci_warn(xhci, "Device Notification event for " 1513 "unused slot %u\n", slot_id); 1514 return; 1515 } 1516 1517 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1518 slot_id); 1519 udev = xhci->devs[slot_id]->udev; 1520 if (udev && udev->parent) 1521 usb_wakeup_notification(udev->parent, udev->portnum); 1522 } 1523 1524 /* 1525 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1526 * Controller. 1527 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1528 * If a connection to a USB 1 device is followed by another connection 1529 * to a USB 2 device. 1530 * 1531 * Reset the PHY after the USB device is disconnected if device speed 1532 * is less than HCD_USB3. 1533 * Retry the reset sequence max of 4 times checking the PLL lock status. 1534 * 1535 */ 1536 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1537 { 1538 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1539 u32 pll_lock_check; 1540 u32 retry_count = 4; 1541 1542 do { 1543 /* Assert PHY reset */ 1544 writel(0x6F, hcd->regs + 0x1048); 1545 udelay(10); 1546 /* De-assert the PHY reset */ 1547 writel(0x7F, hcd->regs + 0x1048); 1548 udelay(200); 1549 pll_lock_check = readl(hcd->regs + 0x1070); 1550 } while (!(pll_lock_check & 0x1) && --retry_count); 1551 } 1552 1553 static void handle_port_status(struct xhci_hcd *xhci, 1554 union xhci_trb *event) 1555 { 1556 struct usb_hcd *hcd; 1557 u32 port_id; 1558 u32 portsc, cmd_reg; 1559 int max_ports; 1560 int slot_id; 1561 unsigned int hcd_portnum; 1562 struct xhci_bus_state *bus_state; 1563 bool bogus_port_status = false; 1564 struct xhci_port *port; 1565 1566 /* Port status change events always have a successful completion code */ 1567 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1568 xhci_warn(xhci, 1569 "WARN: xHC returned failed port status event\n"); 1570 1571 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1572 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1573 1574 if ((port_id <= 0) || (port_id > max_ports)) { 1575 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1576 port_id); 1577 inc_deq(xhci, xhci->event_ring); 1578 return; 1579 } 1580 1581 port = &xhci->hw_ports[port_id - 1]; 1582 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1583 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1584 port_id); 1585 bogus_port_status = true; 1586 goto cleanup; 1587 } 1588 1589 /* We might get interrupts after shared_hcd is removed */ 1590 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1591 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1592 bogus_port_status = true; 1593 goto cleanup; 1594 } 1595 1596 hcd = port->rhub->hcd; 1597 bus_state = &port->rhub->bus_state; 1598 hcd_portnum = port->hcd_portnum; 1599 portsc = readl(port->addr); 1600 1601 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1602 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1603 1604 trace_xhci_handle_port_status(hcd_portnum, portsc); 1605 1606 if (hcd->state == HC_STATE_SUSPENDED) { 1607 xhci_dbg(xhci, "resume root hub\n"); 1608 usb_hcd_resume_root_hub(hcd); 1609 } 1610 1611 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1612 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1613 1614 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1615 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1616 1617 cmd_reg = readl(&xhci->op_regs->command); 1618 if (!(cmd_reg & CMD_RUN)) { 1619 xhci_warn(xhci, "xHC is not running.\n"); 1620 goto cleanup; 1621 } 1622 1623 if (DEV_SUPERSPEED_ANY(portsc)) { 1624 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1625 /* Set a flag to say the port signaled remote wakeup, 1626 * so we can tell the difference between the end of 1627 * device and host initiated resume. 1628 */ 1629 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1630 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1631 xhci_set_link_state(xhci, port, XDEV_U0); 1632 /* Need to wait until the next link state change 1633 * indicates the device is actually in U0. 1634 */ 1635 bogus_port_status = true; 1636 goto cleanup; 1637 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1638 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1639 bus_state->resume_done[hcd_portnum] = jiffies + 1640 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1641 set_bit(hcd_portnum, &bus_state->resuming_ports); 1642 /* Do the rest in GetPortStatus after resume time delay. 1643 * Avoid polling roothub status before that so that a 1644 * usb device auto-resume latency around ~40ms. 1645 */ 1646 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1647 mod_timer(&hcd->rh_timer, 1648 bus_state->resume_done[hcd_portnum]); 1649 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1650 bogus_port_status = true; 1651 } 1652 } 1653 1654 if ((portsc & PORT_PLC) && 1655 DEV_SUPERSPEED_ANY(portsc) && 1656 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1657 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1658 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1659 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1660 /* We've just brought the device into U0/1/2 through either the 1661 * Resume state after a device remote wakeup, or through the 1662 * U3Exit state after a host-initiated resume. If it's a device 1663 * initiated remote wake, don't pass up the link state change, 1664 * so the roothub behavior is consistent with external 1665 * USB 3.0 hub behavior. 1666 */ 1667 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1668 if (slot_id && xhci->devs[slot_id]) 1669 xhci_ring_device(xhci, slot_id); 1670 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1671 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1672 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1673 usb_wakeup_notification(hcd->self.root_hub, 1674 hcd_portnum + 1); 1675 bogus_port_status = true; 1676 goto cleanup; 1677 } 1678 } 1679 1680 /* 1681 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1682 * RExit to a disconnect state). If so, let the the driver know it's 1683 * out of the RExit state. 1684 */ 1685 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1686 test_and_clear_bit(hcd_portnum, 1687 &bus_state->rexit_ports)) { 1688 complete(&bus_state->rexit_done[hcd_portnum]); 1689 bogus_port_status = true; 1690 goto cleanup; 1691 } 1692 1693 if (hcd->speed < HCD_USB3) { 1694 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1695 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1696 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1697 xhci_cavium_reset_phy_quirk(xhci); 1698 } 1699 1700 cleanup: 1701 /* Update event ring dequeue pointer before dropping the lock */ 1702 inc_deq(xhci, xhci->event_ring); 1703 1704 /* Don't make the USB core poll the roothub if we got a bad port status 1705 * change event. Besides, at that point we can't tell which roothub 1706 * (USB 2.0 or USB 3.0) to kick. 1707 */ 1708 if (bogus_port_status) 1709 return; 1710 1711 /* 1712 * xHCI port-status-change events occur when the "or" of all the 1713 * status-change bits in the portsc register changes from 0 to 1. 1714 * New status changes won't cause an event if any other change 1715 * bits are still set. When an event occurs, switch over to 1716 * polling to avoid losing status changes. 1717 */ 1718 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1719 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1720 spin_unlock(&xhci->lock); 1721 /* Pass this up to the core */ 1722 usb_hcd_poll_rh_status(hcd); 1723 spin_lock(&xhci->lock); 1724 } 1725 1726 /* 1727 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1728 * at end_trb, which may be in another segment. If the suspect DMA address is a 1729 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1730 * returns 0. 1731 */ 1732 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1733 struct xhci_segment *start_seg, 1734 union xhci_trb *start_trb, 1735 union xhci_trb *end_trb, 1736 dma_addr_t suspect_dma, 1737 bool debug) 1738 { 1739 dma_addr_t start_dma; 1740 dma_addr_t end_seg_dma; 1741 dma_addr_t end_trb_dma; 1742 struct xhci_segment *cur_seg; 1743 1744 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1745 cur_seg = start_seg; 1746 1747 do { 1748 if (start_dma == 0) 1749 return NULL; 1750 /* We may get an event for a Link TRB in the middle of a TD */ 1751 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1752 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1753 /* If the end TRB isn't in this segment, this is set to 0 */ 1754 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1755 1756 if (debug) 1757 xhci_warn(xhci, 1758 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1759 (unsigned long long)suspect_dma, 1760 (unsigned long long)start_dma, 1761 (unsigned long long)end_trb_dma, 1762 (unsigned long long)cur_seg->dma, 1763 (unsigned long long)end_seg_dma); 1764 1765 if (end_trb_dma > 0) { 1766 /* The end TRB is in this segment, so suspect should be here */ 1767 if (start_dma <= end_trb_dma) { 1768 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1769 return cur_seg; 1770 } else { 1771 /* Case for one segment with 1772 * a TD wrapped around to the top 1773 */ 1774 if ((suspect_dma >= start_dma && 1775 suspect_dma <= end_seg_dma) || 1776 (suspect_dma >= cur_seg->dma && 1777 suspect_dma <= end_trb_dma)) 1778 return cur_seg; 1779 } 1780 return NULL; 1781 } else { 1782 /* Might still be somewhere in this segment */ 1783 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1784 return cur_seg; 1785 } 1786 cur_seg = cur_seg->next; 1787 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1788 } while (cur_seg != start_seg); 1789 1790 return NULL; 1791 } 1792 1793 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1794 unsigned int slot_id, unsigned int ep_index, 1795 unsigned int stream_id, struct xhci_td *td, 1796 enum xhci_ep_reset_type reset_type) 1797 { 1798 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1799 struct xhci_command *command; 1800 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1801 if (!command) 1802 return; 1803 1804 ep->ep_state |= EP_HALTED; 1805 1806 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1807 1808 if (reset_type == EP_HARD_RESET) { 1809 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1810 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1811 } 1812 xhci_ring_cmd_db(xhci); 1813 } 1814 1815 /* Check if an error has halted the endpoint ring. The class driver will 1816 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1817 * However, a babble and other errors also halt the endpoint ring, and the class 1818 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1819 * Ring Dequeue Pointer command manually. 1820 */ 1821 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1822 struct xhci_ep_ctx *ep_ctx, 1823 unsigned int trb_comp_code) 1824 { 1825 /* TRB completion codes that may require a manual halt cleanup */ 1826 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1827 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1828 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1829 /* The 0.95 spec says a babbling control endpoint 1830 * is not halted. The 0.96 spec says it is. Some HW 1831 * claims to be 0.95 compliant, but it halts the control 1832 * endpoint anyway. Check if a babble halted the 1833 * endpoint. 1834 */ 1835 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1836 return 1; 1837 1838 return 0; 1839 } 1840 1841 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1842 { 1843 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1844 /* Vendor defined "informational" completion code, 1845 * treat as not-an-error. 1846 */ 1847 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1848 trb_comp_code); 1849 xhci_dbg(xhci, "Treating code as success.\n"); 1850 return 1; 1851 } 1852 return 0; 1853 } 1854 1855 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1856 struct xhci_ring *ep_ring, int *status) 1857 { 1858 struct urb *urb = NULL; 1859 1860 /* Clean up the endpoint's TD list */ 1861 urb = td->urb; 1862 1863 /* if a bounce buffer was used to align this td then unmap it */ 1864 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1865 1866 /* Do one last check of the actual transfer length. 1867 * If the host controller said we transferred more data than the buffer 1868 * length, urb->actual_length will be a very big number (since it's 1869 * unsigned). Play it safe and say we didn't transfer anything. 1870 */ 1871 if (urb->actual_length > urb->transfer_buffer_length) { 1872 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1873 urb->transfer_buffer_length, urb->actual_length); 1874 urb->actual_length = 0; 1875 *status = 0; 1876 } 1877 list_del_init(&td->td_list); 1878 /* Was this TD slated to be cancelled but completed anyway? */ 1879 if (!list_empty(&td->cancelled_td_list)) 1880 list_del_init(&td->cancelled_td_list); 1881 1882 inc_td_cnt(urb); 1883 /* Giveback the urb when all the tds are completed */ 1884 if (last_td_in_urb(td)) { 1885 if ((urb->actual_length != urb->transfer_buffer_length && 1886 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1887 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1888 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1889 urb, urb->actual_length, 1890 urb->transfer_buffer_length, *status); 1891 1892 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1893 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1894 *status = 0; 1895 xhci_giveback_urb_in_irq(xhci, td, *status); 1896 } 1897 1898 return 0; 1899 } 1900 1901 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1902 struct xhci_transfer_event *event, 1903 struct xhci_virt_ep *ep, int *status) 1904 { 1905 struct xhci_virt_device *xdev; 1906 struct xhci_ep_ctx *ep_ctx; 1907 struct xhci_ring *ep_ring; 1908 unsigned int slot_id; 1909 u32 trb_comp_code; 1910 int ep_index; 1911 1912 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1913 xdev = xhci->devs[slot_id]; 1914 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1915 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1916 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1917 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1918 1919 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1920 trb_comp_code == COMP_STOPPED || 1921 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1922 /* The Endpoint Stop Command completion will take care of any 1923 * stopped TDs. A stopped TD may be restarted, so don't update 1924 * the ring dequeue pointer or take this TD off any lists yet. 1925 */ 1926 return 0; 1927 } 1928 if (trb_comp_code == COMP_STALL_ERROR || 1929 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1930 trb_comp_code)) { 1931 /* Issue a reset endpoint command to clear the host side 1932 * halt, followed by a set dequeue command to move the 1933 * dequeue pointer past the TD. 1934 * The class driver clears the device side halt later. 1935 */ 1936 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1937 ep_ring->stream_id, td, EP_HARD_RESET); 1938 } else { 1939 /* Update ring dequeue pointer */ 1940 while (ep_ring->dequeue != td->last_trb) 1941 inc_deq(xhci, ep_ring); 1942 inc_deq(xhci, ep_ring); 1943 } 1944 1945 return xhci_td_cleanup(xhci, td, ep_ring, status); 1946 } 1947 1948 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1949 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1950 union xhci_trb *stop_trb) 1951 { 1952 u32 sum; 1953 union xhci_trb *trb = ring->dequeue; 1954 struct xhci_segment *seg = ring->deq_seg; 1955 1956 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1957 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1958 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1959 } 1960 return sum; 1961 } 1962 1963 /* 1964 * Process control tds, update urb status and actual_length. 1965 */ 1966 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1967 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1968 struct xhci_virt_ep *ep, int *status) 1969 { 1970 struct xhci_virt_device *xdev; 1971 unsigned int slot_id; 1972 int ep_index; 1973 struct xhci_ep_ctx *ep_ctx; 1974 u32 trb_comp_code; 1975 u32 remaining, requested; 1976 u32 trb_type; 1977 1978 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1979 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1980 xdev = xhci->devs[slot_id]; 1981 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1982 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1983 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1984 requested = td->urb->transfer_buffer_length; 1985 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1986 1987 switch (trb_comp_code) { 1988 case COMP_SUCCESS: 1989 if (trb_type != TRB_STATUS) { 1990 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 1991 (trb_type == TRB_DATA) ? "data" : "setup"); 1992 *status = -ESHUTDOWN; 1993 break; 1994 } 1995 *status = 0; 1996 break; 1997 case COMP_SHORT_PACKET: 1998 *status = 0; 1999 break; 2000 case COMP_STOPPED_SHORT_PACKET: 2001 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2002 td->urb->actual_length = remaining; 2003 else 2004 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2005 goto finish_td; 2006 case COMP_STOPPED: 2007 switch (trb_type) { 2008 case TRB_SETUP: 2009 td->urb->actual_length = 0; 2010 goto finish_td; 2011 case TRB_DATA: 2012 case TRB_NORMAL: 2013 td->urb->actual_length = requested - remaining; 2014 goto finish_td; 2015 case TRB_STATUS: 2016 td->urb->actual_length = requested; 2017 goto finish_td; 2018 default: 2019 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2020 trb_type); 2021 goto finish_td; 2022 } 2023 case COMP_STOPPED_LENGTH_INVALID: 2024 goto finish_td; 2025 default: 2026 if (!xhci_requires_manual_halt_cleanup(xhci, 2027 ep_ctx, trb_comp_code)) 2028 break; 2029 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2030 trb_comp_code, ep_index); 2031 /* else fall through */ 2032 case COMP_STALL_ERROR: 2033 /* Did we transfer part of the data (middle) phase? */ 2034 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2035 td->urb->actual_length = requested - remaining; 2036 else if (!td->urb_length_set) 2037 td->urb->actual_length = 0; 2038 goto finish_td; 2039 } 2040 2041 /* stopped at setup stage, no data transferred */ 2042 if (trb_type == TRB_SETUP) 2043 goto finish_td; 2044 2045 /* 2046 * if on data stage then update the actual_length of the URB and flag it 2047 * as set, so it won't be overwritten in the event for the last TRB. 2048 */ 2049 if (trb_type == TRB_DATA || 2050 trb_type == TRB_NORMAL) { 2051 td->urb_length_set = true; 2052 td->urb->actual_length = requested - remaining; 2053 xhci_dbg(xhci, "Waiting for status stage event\n"); 2054 return 0; 2055 } 2056 2057 /* at status stage */ 2058 if (!td->urb_length_set) 2059 td->urb->actual_length = requested; 2060 2061 finish_td: 2062 return finish_td(xhci, td, event, ep, status); 2063 } 2064 2065 /* 2066 * Process isochronous tds, update urb packet status and actual_length. 2067 */ 2068 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2069 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2070 struct xhci_virt_ep *ep, int *status) 2071 { 2072 struct xhci_ring *ep_ring; 2073 struct urb_priv *urb_priv; 2074 int idx; 2075 struct usb_iso_packet_descriptor *frame; 2076 u32 trb_comp_code; 2077 bool sum_trbs_for_length = false; 2078 u32 remaining, requested, ep_trb_len; 2079 int short_framestatus; 2080 2081 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2082 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2083 urb_priv = td->urb->hcpriv; 2084 idx = urb_priv->num_tds_done; 2085 frame = &td->urb->iso_frame_desc[idx]; 2086 requested = frame->length; 2087 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2088 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2089 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2090 -EREMOTEIO : 0; 2091 2092 /* handle completion code */ 2093 switch (trb_comp_code) { 2094 case COMP_SUCCESS: 2095 if (remaining) { 2096 frame->status = short_framestatus; 2097 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2098 sum_trbs_for_length = true; 2099 break; 2100 } 2101 frame->status = 0; 2102 break; 2103 case COMP_SHORT_PACKET: 2104 frame->status = short_framestatus; 2105 sum_trbs_for_length = true; 2106 break; 2107 case COMP_BANDWIDTH_OVERRUN_ERROR: 2108 frame->status = -ECOMM; 2109 break; 2110 case COMP_ISOCH_BUFFER_OVERRUN: 2111 case COMP_BABBLE_DETECTED_ERROR: 2112 frame->status = -EOVERFLOW; 2113 break; 2114 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2115 case COMP_STALL_ERROR: 2116 frame->status = -EPROTO; 2117 break; 2118 case COMP_USB_TRANSACTION_ERROR: 2119 frame->status = -EPROTO; 2120 if (ep_trb != td->last_trb) 2121 return 0; 2122 break; 2123 case COMP_STOPPED: 2124 sum_trbs_for_length = true; 2125 break; 2126 case COMP_STOPPED_SHORT_PACKET: 2127 /* field normally containing residue now contains tranferred */ 2128 frame->status = short_framestatus; 2129 requested = remaining; 2130 break; 2131 case COMP_STOPPED_LENGTH_INVALID: 2132 requested = 0; 2133 remaining = 0; 2134 break; 2135 default: 2136 sum_trbs_for_length = true; 2137 frame->status = -1; 2138 break; 2139 } 2140 2141 if (sum_trbs_for_length) 2142 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2143 ep_trb_len - remaining; 2144 else 2145 frame->actual_length = requested; 2146 2147 td->urb->actual_length += frame->actual_length; 2148 2149 return finish_td(xhci, td, event, ep, status); 2150 } 2151 2152 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2153 struct xhci_transfer_event *event, 2154 struct xhci_virt_ep *ep, int *status) 2155 { 2156 struct xhci_ring *ep_ring; 2157 struct urb_priv *urb_priv; 2158 struct usb_iso_packet_descriptor *frame; 2159 int idx; 2160 2161 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2162 urb_priv = td->urb->hcpriv; 2163 idx = urb_priv->num_tds_done; 2164 frame = &td->urb->iso_frame_desc[idx]; 2165 2166 /* The transfer is partly done. */ 2167 frame->status = -EXDEV; 2168 2169 /* calc actual length */ 2170 frame->actual_length = 0; 2171 2172 /* Update ring dequeue pointer */ 2173 while (ep_ring->dequeue != td->last_trb) 2174 inc_deq(xhci, ep_ring); 2175 inc_deq(xhci, ep_ring); 2176 2177 return xhci_td_cleanup(xhci, td, ep_ring, status); 2178 } 2179 2180 /* 2181 * Process bulk and interrupt tds, update urb status and actual_length. 2182 */ 2183 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2184 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2185 struct xhci_virt_ep *ep, int *status) 2186 { 2187 struct xhci_slot_ctx *slot_ctx; 2188 struct xhci_ring *ep_ring; 2189 u32 trb_comp_code; 2190 u32 remaining, requested, ep_trb_len; 2191 unsigned int slot_id; 2192 int ep_index; 2193 2194 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2195 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2196 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2197 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2198 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2199 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2200 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2201 requested = td->urb->transfer_buffer_length; 2202 2203 switch (trb_comp_code) { 2204 case COMP_SUCCESS: 2205 ep_ring->err_count = 0; 2206 /* handle success with untransferred data as short packet */ 2207 if (ep_trb != td->last_trb || remaining) { 2208 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2209 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2210 td->urb->ep->desc.bEndpointAddress, 2211 requested, remaining); 2212 } 2213 *status = 0; 2214 break; 2215 case COMP_SHORT_PACKET: 2216 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2217 td->urb->ep->desc.bEndpointAddress, 2218 requested, remaining); 2219 *status = 0; 2220 break; 2221 case COMP_STOPPED_SHORT_PACKET: 2222 td->urb->actual_length = remaining; 2223 goto finish_td; 2224 case COMP_STOPPED_LENGTH_INVALID: 2225 /* stopped on ep trb with invalid length, exclude it */ 2226 ep_trb_len = 0; 2227 remaining = 0; 2228 break; 2229 case COMP_USB_TRANSACTION_ERROR: 2230 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2231 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2232 break; 2233 *status = 0; 2234 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2235 ep_ring->stream_id, td, EP_SOFT_RESET); 2236 return 0; 2237 default: 2238 /* do nothing */ 2239 break; 2240 } 2241 2242 if (ep_trb == td->last_trb) 2243 td->urb->actual_length = requested - remaining; 2244 else 2245 td->urb->actual_length = 2246 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2247 ep_trb_len - remaining; 2248 finish_td: 2249 if (remaining > requested) { 2250 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2251 remaining); 2252 td->urb->actual_length = 0; 2253 } 2254 return finish_td(xhci, td, event, ep, status); 2255 } 2256 2257 /* 2258 * If this function returns an error condition, it means it got a Transfer 2259 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2260 * At this point, the host controller is probably hosed and should be reset. 2261 */ 2262 static int handle_tx_event(struct xhci_hcd *xhci, 2263 struct xhci_transfer_event *event) 2264 { 2265 struct xhci_virt_device *xdev; 2266 struct xhci_virt_ep *ep; 2267 struct xhci_ring *ep_ring; 2268 unsigned int slot_id; 2269 int ep_index; 2270 struct xhci_td *td = NULL; 2271 dma_addr_t ep_trb_dma; 2272 struct xhci_segment *ep_seg; 2273 union xhci_trb *ep_trb; 2274 int status = -EINPROGRESS; 2275 struct xhci_ep_ctx *ep_ctx; 2276 struct list_head *tmp; 2277 u32 trb_comp_code; 2278 int td_num = 0; 2279 bool handling_skipped_tds = false; 2280 2281 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2282 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2283 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2284 ep_trb_dma = le64_to_cpu(event->buffer); 2285 2286 xdev = xhci->devs[slot_id]; 2287 if (!xdev) { 2288 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2289 slot_id); 2290 goto err_out; 2291 } 2292 2293 ep = &xdev->eps[ep_index]; 2294 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2295 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2296 2297 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2298 xhci_err(xhci, 2299 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2300 slot_id, ep_index); 2301 goto err_out; 2302 } 2303 2304 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2305 if (!ep_ring) { 2306 switch (trb_comp_code) { 2307 case COMP_STALL_ERROR: 2308 case COMP_USB_TRANSACTION_ERROR: 2309 case COMP_INVALID_STREAM_TYPE_ERROR: 2310 case COMP_INVALID_STREAM_ID_ERROR: 2311 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2312 NULL, EP_SOFT_RESET); 2313 goto cleanup; 2314 case COMP_RING_UNDERRUN: 2315 case COMP_RING_OVERRUN: 2316 case COMP_STOPPED_LENGTH_INVALID: 2317 goto cleanup; 2318 default: 2319 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2320 slot_id, ep_index); 2321 goto err_out; 2322 } 2323 } 2324 2325 /* Count current td numbers if ep->skip is set */ 2326 if (ep->skip) { 2327 list_for_each(tmp, &ep_ring->td_list) 2328 td_num++; 2329 } 2330 2331 /* Look for common error cases */ 2332 switch (trb_comp_code) { 2333 /* Skip codes that require special handling depending on 2334 * transfer type 2335 */ 2336 case COMP_SUCCESS: 2337 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2338 break; 2339 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2340 trb_comp_code = COMP_SHORT_PACKET; 2341 else 2342 xhci_warn_ratelimited(xhci, 2343 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2344 slot_id, ep_index); 2345 case COMP_SHORT_PACKET: 2346 break; 2347 /* Completion codes for endpoint stopped state */ 2348 case COMP_STOPPED: 2349 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2350 slot_id, ep_index); 2351 break; 2352 case COMP_STOPPED_LENGTH_INVALID: 2353 xhci_dbg(xhci, 2354 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2355 slot_id, ep_index); 2356 break; 2357 case COMP_STOPPED_SHORT_PACKET: 2358 xhci_dbg(xhci, 2359 "Stopped with short packet transfer detected for slot %u ep %u\n", 2360 slot_id, ep_index); 2361 break; 2362 /* Completion codes for endpoint halted state */ 2363 case COMP_STALL_ERROR: 2364 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2365 ep_index); 2366 ep->ep_state |= EP_HALTED; 2367 status = -EPIPE; 2368 break; 2369 case COMP_SPLIT_TRANSACTION_ERROR: 2370 case COMP_USB_TRANSACTION_ERROR: 2371 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2372 slot_id, ep_index); 2373 status = -EPROTO; 2374 break; 2375 case COMP_BABBLE_DETECTED_ERROR: 2376 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2377 slot_id, ep_index); 2378 status = -EOVERFLOW; 2379 break; 2380 /* Completion codes for endpoint error state */ 2381 case COMP_TRB_ERROR: 2382 xhci_warn(xhci, 2383 "WARN: TRB error for slot %u ep %u on endpoint\n", 2384 slot_id, ep_index); 2385 status = -EILSEQ; 2386 break; 2387 /* completion codes not indicating endpoint state change */ 2388 case COMP_DATA_BUFFER_ERROR: 2389 xhci_warn(xhci, 2390 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2391 slot_id, ep_index); 2392 status = -ENOSR; 2393 break; 2394 case COMP_BANDWIDTH_OVERRUN_ERROR: 2395 xhci_warn(xhci, 2396 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2397 slot_id, ep_index); 2398 break; 2399 case COMP_ISOCH_BUFFER_OVERRUN: 2400 xhci_warn(xhci, 2401 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2402 slot_id, ep_index); 2403 break; 2404 case COMP_RING_UNDERRUN: 2405 /* 2406 * When the Isoch ring is empty, the xHC will generate 2407 * a Ring Overrun Event for IN Isoch endpoint or Ring 2408 * Underrun Event for OUT Isoch endpoint. 2409 */ 2410 xhci_dbg(xhci, "underrun event on endpoint\n"); 2411 if (!list_empty(&ep_ring->td_list)) 2412 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2413 "still with TDs queued?\n", 2414 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2415 ep_index); 2416 goto cleanup; 2417 case COMP_RING_OVERRUN: 2418 xhci_dbg(xhci, "overrun event on endpoint\n"); 2419 if (!list_empty(&ep_ring->td_list)) 2420 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2421 "still with TDs queued?\n", 2422 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2423 ep_index); 2424 goto cleanup; 2425 case COMP_MISSED_SERVICE_ERROR: 2426 /* 2427 * When encounter missed service error, one or more isoc tds 2428 * may be missed by xHC. 2429 * Set skip flag of the ep_ring; Complete the missed tds as 2430 * short transfer when process the ep_ring next time. 2431 */ 2432 ep->skip = true; 2433 xhci_dbg(xhci, 2434 "Miss service interval error for slot %u ep %u, set skip flag\n", 2435 slot_id, ep_index); 2436 goto cleanup; 2437 case COMP_NO_PING_RESPONSE_ERROR: 2438 ep->skip = true; 2439 xhci_dbg(xhci, 2440 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2441 slot_id, ep_index); 2442 goto cleanup; 2443 2444 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2445 /* needs disable slot command to recover */ 2446 xhci_warn(xhci, 2447 "WARN: detect an incompatible device for slot %u ep %u", 2448 slot_id, ep_index); 2449 status = -EPROTO; 2450 break; 2451 default: 2452 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2453 status = 0; 2454 break; 2455 } 2456 xhci_warn(xhci, 2457 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2458 trb_comp_code, slot_id, ep_index); 2459 goto cleanup; 2460 } 2461 2462 do { 2463 /* This TRB should be in the TD at the head of this ring's 2464 * TD list. 2465 */ 2466 if (list_empty(&ep_ring->td_list)) { 2467 /* 2468 * Don't print wanings if it's due to a stopped endpoint 2469 * generating an extra completion event if the device 2470 * was suspended. Or, a event for the last TRB of a 2471 * short TD we already got a short event for. 2472 * The short TD is already removed from the TD list. 2473 */ 2474 2475 if (!(trb_comp_code == COMP_STOPPED || 2476 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2477 ep_ring->last_td_was_short)) { 2478 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2479 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2480 ep_index); 2481 } 2482 if (ep->skip) { 2483 ep->skip = false; 2484 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2485 slot_id, ep_index); 2486 } 2487 goto cleanup; 2488 } 2489 2490 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2491 if (ep->skip && td_num == 0) { 2492 ep->skip = false; 2493 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2494 slot_id, ep_index); 2495 goto cleanup; 2496 } 2497 2498 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2499 td_list); 2500 if (ep->skip) 2501 td_num--; 2502 2503 /* Is this a TRB in the currently executing TD? */ 2504 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2505 td->last_trb, ep_trb_dma, false); 2506 2507 /* 2508 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2509 * is not in the current TD pointed by ep_ring->dequeue because 2510 * that the hardware dequeue pointer still at the previous TRB 2511 * of the current TD. The previous TRB maybe a Link TD or the 2512 * last TRB of the previous TD. The command completion handle 2513 * will take care the rest. 2514 */ 2515 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2516 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2517 goto cleanup; 2518 } 2519 2520 if (!ep_seg) { 2521 if (!ep->skip || 2522 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2523 /* Some host controllers give a spurious 2524 * successful event after a short transfer. 2525 * Ignore it. 2526 */ 2527 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2528 ep_ring->last_td_was_short) { 2529 ep_ring->last_td_was_short = false; 2530 goto cleanup; 2531 } 2532 /* HC is busted, give up! */ 2533 xhci_err(xhci, 2534 "ERROR Transfer event TRB DMA ptr not " 2535 "part of current TD ep_index %d " 2536 "comp_code %u\n", ep_index, 2537 trb_comp_code); 2538 trb_in_td(xhci, ep_ring->deq_seg, 2539 ep_ring->dequeue, td->last_trb, 2540 ep_trb_dma, true); 2541 return -ESHUTDOWN; 2542 } 2543 2544 skip_isoc_td(xhci, td, event, ep, &status); 2545 goto cleanup; 2546 } 2547 if (trb_comp_code == COMP_SHORT_PACKET) 2548 ep_ring->last_td_was_short = true; 2549 else 2550 ep_ring->last_td_was_short = false; 2551 2552 if (ep->skip) { 2553 xhci_dbg(xhci, 2554 "Found td. Clear skip flag for slot %u ep %u.\n", 2555 slot_id, ep_index); 2556 ep->skip = false; 2557 } 2558 2559 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2560 sizeof(*ep_trb)]; 2561 2562 trace_xhci_handle_transfer(ep_ring, 2563 (struct xhci_generic_trb *) ep_trb); 2564 2565 /* 2566 * No-op TRB could trigger interrupts in a case where 2567 * a URB was killed and a STALL_ERROR happens right 2568 * after the endpoint ring stopped. Reset the halted 2569 * endpoint. Otherwise, the endpoint remains stalled 2570 * indefinitely. 2571 */ 2572 if (trb_is_noop(ep_trb)) { 2573 if (trb_comp_code == COMP_STALL_ERROR || 2574 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2575 trb_comp_code)) 2576 xhci_cleanup_halted_endpoint(xhci, slot_id, 2577 ep_index, 2578 ep_ring->stream_id, 2579 td, EP_HARD_RESET); 2580 goto cleanup; 2581 } 2582 2583 /* update the urb's actual_length and give back to the core */ 2584 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2585 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2586 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2587 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2588 else 2589 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2590 &status); 2591 cleanup: 2592 handling_skipped_tds = ep->skip && 2593 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2594 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2595 2596 /* 2597 * Do not update event ring dequeue pointer if we're in a loop 2598 * processing missed tds. 2599 */ 2600 if (!handling_skipped_tds) 2601 inc_deq(xhci, xhci->event_ring); 2602 2603 /* 2604 * If ep->skip is set, it means there are missed tds on the 2605 * endpoint ring need to take care of. 2606 * Process them as short transfer until reach the td pointed by 2607 * the event. 2608 */ 2609 } while (handling_skipped_tds); 2610 2611 return 0; 2612 2613 err_out: 2614 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2615 (unsigned long long) xhci_trb_virt_to_dma( 2616 xhci->event_ring->deq_seg, 2617 xhci->event_ring->dequeue), 2618 lower_32_bits(le64_to_cpu(event->buffer)), 2619 upper_32_bits(le64_to_cpu(event->buffer)), 2620 le32_to_cpu(event->transfer_len), 2621 le32_to_cpu(event->flags)); 2622 return -ENODEV; 2623 } 2624 2625 /* 2626 * This function handles all OS-owned events on the event ring. It may drop 2627 * xhci->lock between event processing (e.g. to pass up port status changes). 2628 * Returns >0 for "possibly more events to process" (caller should call again), 2629 * otherwise 0 if done. In future, <0 returns should indicate error code. 2630 */ 2631 static int xhci_handle_event(struct xhci_hcd *xhci) 2632 { 2633 union xhci_trb *event; 2634 int update_ptrs = 1; 2635 int ret; 2636 2637 /* Event ring hasn't been allocated yet. */ 2638 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2639 xhci_err(xhci, "ERROR event ring not ready\n"); 2640 return -ENOMEM; 2641 } 2642 2643 event = xhci->event_ring->dequeue; 2644 /* Does the HC or OS own the TRB? */ 2645 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2646 xhci->event_ring->cycle_state) 2647 return 0; 2648 2649 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2650 2651 /* 2652 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2653 * speculative reads of the event's flags/data below. 2654 */ 2655 rmb(); 2656 /* FIXME: Handle more event types. */ 2657 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2658 case TRB_TYPE(TRB_COMPLETION): 2659 handle_cmd_completion(xhci, &event->event_cmd); 2660 break; 2661 case TRB_TYPE(TRB_PORT_STATUS): 2662 handle_port_status(xhci, event); 2663 update_ptrs = 0; 2664 break; 2665 case TRB_TYPE(TRB_TRANSFER): 2666 ret = handle_tx_event(xhci, &event->trans_event); 2667 if (ret >= 0) 2668 update_ptrs = 0; 2669 break; 2670 case TRB_TYPE(TRB_DEV_NOTE): 2671 handle_device_notification(xhci, event); 2672 break; 2673 default: 2674 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2675 TRB_TYPE(48)) 2676 handle_vendor_event(xhci, event); 2677 else 2678 xhci_warn(xhci, "ERROR unknown event type %d\n", 2679 TRB_FIELD_TO_TYPE( 2680 le32_to_cpu(event->event_cmd.flags))); 2681 } 2682 /* Any of the above functions may drop and re-acquire the lock, so check 2683 * to make sure a watchdog timer didn't mark the host as non-responsive. 2684 */ 2685 if (xhci->xhc_state & XHCI_STATE_DYING) { 2686 xhci_dbg(xhci, "xHCI host dying, returning from " 2687 "event handler.\n"); 2688 return 0; 2689 } 2690 2691 if (update_ptrs) 2692 /* Update SW event ring dequeue pointer */ 2693 inc_deq(xhci, xhci->event_ring); 2694 2695 /* Are there more items on the event ring? Caller will call us again to 2696 * check. 2697 */ 2698 return 1; 2699 } 2700 2701 /* 2702 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2703 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2704 * indicators of an event TRB error, but we check the status *first* to be safe. 2705 */ 2706 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2707 { 2708 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2709 union xhci_trb *event_ring_deq; 2710 irqreturn_t ret = IRQ_NONE; 2711 unsigned long flags; 2712 dma_addr_t deq; 2713 u64 temp_64; 2714 u32 status; 2715 2716 spin_lock_irqsave(&xhci->lock, flags); 2717 /* Check if the xHC generated the interrupt, or the irq is shared */ 2718 status = readl(&xhci->op_regs->status); 2719 if (status == ~(u32)0) { 2720 xhci_hc_died(xhci); 2721 ret = IRQ_HANDLED; 2722 goto out; 2723 } 2724 2725 if (!(status & STS_EINT)) 2726 goto out; 2727 2728 if (status & STS_FATAL) { 2729 xhci_warn(xhci, "WARNING: Host System Error\n"); 2730 xhci_halt(xhci); 2731 ret = IRQ_HANDLED; 2732 goto out; 2733 } 2734 2735 /* 2736 * Clear the op reg interrupt status first, 2737 * so we can receive interrupts from other MSI-X interrupters. 2738 * Write 1 to clear the interrupt status. 2739 */ 2740 status |= STS_EINT; 2741 writel(status, &xhci->op_regs->status); 2742 2743 if (!hcd->msi_enabled) { 2744 u32 irq_pending; 2745 irq_pending = readl(&xhci->ir_set->irq_pending); 2746 irq_pending |= IMAN_IP; 2747 writel(irq_pending, &xhci->ir_set->irq_pending); 2748 } 2749 2750 if (xhci->xhc_state & XHCI_STATE_DYING || 2751 xhci->xhc_state & XHCI_STATE_HALTED) { 2752 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2753 "Shouldn't IRQs be disabled?\n"); 2754 /* Clear the event handler busy flag (RW1C); 2755 * the event ring should be empty. 2756 */ 2757 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2758 xhci_write_64(xhci, temp_64 | ERST_EHB, 2759 &xhci->ir_set->erst_dequeue); 2760 ret = IRQ_HANDLED; 2761 goto out; 2762 } 2763 2764 event_ring_deq = xhci->event_ring->dequeue; 2765 /* FIXME this should be a delayed service routine 2766 * that clears the EHB. 2767 */ 2768 while (xhci_handle_event(xhci) > 0) {} 2769 2770 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2771 /* If necessary, update the HW's version of the event ring deq ptr. */ 2772 if (event_ring_deq != xhci->event_ring->dequeue) { 2773 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2774 xhci->event_ring->dequeue); 2775 if (deq == 0) 2776 xhci_warn(xhci, "WARN something wrong with SW event " 2777 "ring dequeue ptr.\n"); 2778 /* Update HC event ring dequeue pointer */ 2779 temp_64 &= ERST_PTR_MASK; 2780 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2781 } 2782 2783 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2784 temp_64 |= ERST_EHB; 2785 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2786 ret = IRQ_HANDLED; 2787 2788 out: 2789 spin_unlock_irqrestore(&xhci->lock, flags); 2790 2791 return ret; 2792 } 2793 2794 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2795 { 2796 return xhci_irq(hcd); 2797 } 2798 2799 /**** Endpoint Ring Operations ****/ 2800 2801 /* 2802 * Generic function for queueing a TRB on a ring. 2803 * The caller must have checked to make sure there's room on the ring. 2804 * 2805 * @more_trbs_coming: Will you enqueue more TRBs before calling 2806 * prepare_transfer()? 2807 */ 2808 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2809 bool more_trbs_coming, 2810 u32 field1, u32 field2, u32 field3, u32 field4) 2811 { 2812 struct xhci_generic_trb *trb; 2813 2814 trb = &ring->enqueue->generic; 2815 trb->field[0] = cpu_to_le32(field1); 2816 trb->field[1] = cpu_to_le32(field2); 2817 trb->field[2] = cpu_to_le32(field3); 2818 trb->field[3] = cpu_to_le32(field4); 2819 2820 trace_xhci_queue_trb(ring, trb); 2821 2822 inc_enq(xhci, ring, more_trbs_coming); 2823 } 2824 2825 /* 2826 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2827 * FIXME allocate segments if the ring is full. 2828 */ 2829 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2830 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2831 { 2832 unsigned int num_trbs_needed; 2833 2834 /* Make sure the endpoint has been added to xHC schedule */ 2835 switch (ep_state) { 2836 case EP_STATE_DISABLED: 2837 /* 2838 * USB core changed config/interfaces without notifying us, 2839 * or hardware is reporting the wrong state. 2840 */ 2841 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2842 return -ENOENT; 2843 case EP_STATE_ERROR: 2844 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2845 /* FIXME event handling code for error needs to clear it */ 2846 /* XXX not sure if this should be -ENOENT or not */ 2847 return -EINVAL; 2848 case EP_STATE_HALTED: 2849 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2850 case EP_STATE_STOPPED: 2851 case EP_STATE_RUNNING: 2852 break; 2853 default: 2854 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2855 /* 2856 * FIXME issue Configure Endpoint command to try to get the HC 2857 * back into a known state. 2858 */ 2859 return -EINVAL; 2860 } 2861 2862 while (1) { 2863 if (room_on_ring(xhci, ep_ring, num_trbs)) 2864 break; 2865 2866 if (ep_ring == xhci->cmd_ring) { 2867 xhci_err(xhci, "Do not support expand command ring\n"); 2868 return -ENOMEM; 2869 } 2870 2871 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2872 "ERROR no room on ep ring, try ring expansion"); 2873 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2874 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2875 mem_flags)) { 2876 xhci_err(xhci, "Ring expansion failed\n"); 2877 return -ENOMEM; 2878 } 2879 } 2880 2881 while (trb_is_link(ep_ring->enqueue)) { 2882 /* If we're not dealing with 0.95 hardware or isoc rings 2883 * on AMD 0.96 host, clear the chain bit. 2884 */ 2885 if (!xhci_link_trb_quirk(xhci) && 2886 !(ep_ring->type == TYPE_ISOC && 2887 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2888 ep_ring->enqueue->link.control &= 2889 cpu_to_le32(~TRB_CHAIN); 2890 else 2891 ep_ring->enqueue->link.control |= 2892 cpu_to_le32(TRB_CHAIN); 2893 2894 wmb(); 2895 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2896 2897 /* Toggle the cycle bit after the last ring segment. */ 2898 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2899 ep_ring->cycle_state ^= 1; 2900 2901 ep_ring->enq_seg = ep_ring->enq_seg->next; 2902 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2903 } 2904 return 0; 2905 } 2906 2907 static int prepare_transfer(struct xhci_hcd *xhci, 2908 struct xhci_virt_device *xdev, 2909 unsigned int ep_index, 2910 unsigned int stream_id, 2911 unsigned int num_trbs, 2912 struct urb *urb, 2913 unsigned int td_index, 2914 gfp_t mem_flags) 2915 { 2916 int ret; 2917 struct urb_priv *urb_priv; 2918 struct xhci_td *td; 2919 struct xhci_ring *ep_ring; 2920 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2921 2922 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2923 if (!ep_ring) { 2924 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2925 stream_id); 2926 return -EINVAL; 2927 } 2928 2929 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2930 num_trbs, mem_flags); 2931 if (ret) 2932 return ret; 2933 2934 urb_priv = urb->hcpriv; 2935 td = &urb_priv->td[td_index]; 2936 2937 INIT_LIST_HEAD(&td->td_list); 2938 INIT_LIST_HEAD(&td->cancelled_td_list); 2939 2940 if (td_index == 0) { 2941 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2942 if (unlikely(ret)) 2943 return ret; 2944 } 2945 2946 td->urb = urb; 2947 /* Add this TD to the tail of the endpoint ring's TD list */ 2948 list_add_tail(&td->td_list, &ep_ring->td_list); 2949 td->start_seg = ep_ring->enq_seg; 2950 td->first_trb = ep_ring->enqueue; 2951 2952 return 0; 2953 } 2954 2955 unsigned int count_trbs(u64 addr, u64 len) 2956 { 2957 unsigned int num_trbs; 2958 2959 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2960 TRB_MAX_BUFF_SIZE); 2961 if (num_trbs == 0) 2962 num_trbs++; 2963 2964 return num_trbs; 2965 } 2966 2967 static inline unsigned int count_trbs_needed(struct urb *urb) 2968 { 2969 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2970 } 2971 2972 static unsigned int count_sg_trbs_needed(struct urb *urb) 2973 { 2974 struct scatterlist *sg; 2975 unsigned int i, len, full_len, num_trbs = 0; 2976 2977 full_len = urb->transfer_buffer_length; 2978 2979 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2980 len = sg_dma_len(sg); 2981 num_trbs += count_trbs(sg_dma_address(sg), len); 2982 len = min_t(unsigned int, len, full_len); 2983 full_len -= len; 2984 if (full_len == 0) 2985 break; 2986 } 2987 2988 return num_trbs; 2989 } 2990 2991 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2992 { 2993 u64 addr, len; 2994 2995 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2996 len = urb->iso_frame_desc[i].length; 2997 2998 return count_trbs(addr, len); 2999 } 3000 3001 static void check_trb_math(struct urb *urb, int running_total) 3002 { 3003 if (unlikely(running_total != urb->transfer_buffer_length)) 3004 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3005 "queued %#x (%d), asked for %#x (%d)\n", 3006 __func__, 3007 urb->ep->desc.bEndpointAddress, 3008 running_total, running_total, 3009 urb->transfer_buffer_length, 3010 urb->transfer_buffer_length); 3011 } 3012 3013 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3014 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3015 struct xhci_generic_trb *start_trb) 3016 { 3017 /* 3018 * Pass all the TRBs to the hardware at once and make sure this write 3019 * isn't reordered. 3020 */ 3021 wmb(); 3022 if (start_cycle) 3023 start_trb->field[3] |= cpu_to_le32(start_cycle); 3024 else 3025 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3026 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3027 } 3028 3029 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3030 struct xhci_ep_ctx *ep_ctx) 3031 { 3032 int xhci_interval; 3033 int ep_interval; 3034 3035 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3036 ep_interval = urb->interval; 3037 3038 /* Convert to microframes */ 3039 if (urb->dev->speed == USB_SPEED_LOW || 3040 urb->dev->speed == USB_SPEED_FULL) 3041 ep_interval *= 8; 3042 3043 /* FIXME change this to a warning and a suggestion to use the new API 3044 * to set the polling interval (once the API is added). 3045 */ 3046 if (xhci_interval != ep_interval) { 3047 dev_dbg_ratelimited(&urb->dev->dev, 3048 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3049 ep_interval, ep_interval == 1 ? "" : "s", 3050 xhci_interval, xhci_interval == 1 ? "" : "s"); 3051 urb->interval = xhci_interval; 3052 /* Convert back to frames for LS/FS devices */ 3053 if (urb->dev->speed == USB_SPEED_LOW || 3054 urb->dev->speed == USB_SPEED_FULL) 3055 urb->interval /= 8; 3056 } 3057 } 3058 3059 /* 3060 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3061 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3062 * (comprised of sg list entries) can take several service intervals to 3063 * transmit. 3064 */ 3065 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3066 struct urb *urb, int slot_id, unsigned int ep_index) 3067 { 3068 struct xhci_ep_ctx *ep_ctx; 3069 3070 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3071 check_interval(xhci, urb, ep_ctx); 3072 3073 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3074 } 3075 3076 /* 3077 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3078 * packets remaining in the TD (*not* including this TRB). 3079 * 3080 * Total TD packet count = total_packet_count = 3081 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3082 * 3083 * Packets transferred up to and including this TRB = packets_transferred = 3084 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3085 * 3086 * TD size = total_packet_count - packets_transferred 3087 * 3088 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3089 * including this TRB, right shifted by 10 3090 * 3091 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3092 * This is taken care of in the TRB_TD_SIZE() macro 3093 * 3094 * The last TRB in a TD must have the TD size set to zero. 3095 */ 3096 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3097 int trb_buff_len, unsigned int td_total_len, 3098 struct urb *urb, bool more_trbs_coming) 3099 { 3100 u32 maxp, total_packet_count; 3101 3102 /* MTK xHCI 0.96 contains some features from 1.0 */ 3103 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3104 return ((td_total_len - transferred) >> 10); 3105 3106 /* One TRB with a zero-length data packet. */ 3107 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3108 trb_buff_len == td_total_len) 3109 return 0; 3110 3111 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3112 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3113 trb_buff_len = 0; 3114 3115 maxp = usb_endpoint_maxp(&urb->ep->desc); 3116 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3117 3118 /* Queueing functions don't count the current TRB into transferred */ 3119 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3120 } 3121 3122 3123 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3124 u32 *trb_buff_len, struct xhci_segment *seg) 3125 { 3126 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3127 unsigned int unalign; 3128 unsigned int max_pkt; 3129 u32 new_buff_len; 3130 3131 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3132 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3133 3134 /* we got lucky, last normal TRB data on segment is packet aligned */ 3135 if (unalign == 0) 3136 return 0; 3137 3138 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3139 unalign, *trb_buff_len); 3140 3141 /* is the last nornal TRB alignable by splitting it */ 3142 if (*trb_buff_len > unalign) { 3143 *trb_buff_len -= unalign; 3144 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3145 return 0; 3146 } 3147 3148 /* 3149 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3150 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3151 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3152 */ 3153 new_buff_len = max_pkt - (enqd_len % max_pkt); 3154 3155 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3156 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3157 3158 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3159 if (usb_urb_dir_out(urb)) { 3160 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3161 seg->bounce_buf, new_buff_len, enqd_len); 3162 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3163 max_pkt, DMA_TO_DEVICE); 3164 } else { 3165 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3166 max_pkt, DMA_FROM_DEVICE); 3167 } 3168 3169 if (dma_mapping_error(dev, seg->bounce_dma)) { 3170 /* try without aligning. Some host controllers survive */ 3171 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3172 return 0; 3173 } 3174 *trb_buff_len = new_buff_len; 3175 seg->bounce_len = new_buff_len; 3176 seg->bounce_offs = enqd_len; 3177 3178 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3179 3180 return 1; 3181 } 3182 3183 /* This is very similar to what ehci-q.c qtd_fill() does */ 3184 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3185 struct urb *urb, int slot_id, unsigned int ep_index) 3186 { 3187 struct xhci_ring *ring; 3188 struct urb_priv *urb_priv; 3189 struct xhci_td *td; 3190 struct xhci_generic_trb *start_trb; 3191 struct scatterlist *sg = NULL; 3192 bool more_trbs_coming = true; 3193 bool need_zero_pkt = false; 3194 bool first_trb = true; 3195 unsigned int num_trbs; 3196 unsigned int start_cycle, num_sgs = 0; 3197 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3198 int sent_len, ret; 3199 u32 field, length_field, remainder; 3200 u64 addr, send_addr; 3201 3202 ring = xhci_urb_to_transfer_ring(xhci, urb); 3203 if (!ring) 3204 return -EINVAL; 3205 3206 full_len = urb->transfer_buffer_length; 3207 /* If we have scatter/gather list, we use it. */ 3208 if (urb->num_sgs) { 3209 num_sgs = urb->num_mapped_sgs; 3210 sg = urb->sg; 3211 addr = (u64) sg_dma_address(sg); 3212 block_len = sg_dma_len(sg); 3213 num_trbs = count_sg_trbs_needed(urb); 3214 } else { 3215 num_trbs = count_trbs_needed(urb); 3216 addr = (u64) urb->transfer_dma; 3217 block_len = full_len; 3218 } 3219 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3220 ep_index, urb->stream_id, 3221 num_trbs, urb, 0, mem_flags); 3222 if (unlikely(ret < 0)) 3223 return ret; 3224 3225 urb_priv = urb->hcpriv; 3226 3227 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3228 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3229 need_zero_pkt = true; 3230 3231 td = &urb_priv->td[0]; 3232 3233 /* 3234 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3235 * until we've finished creating all the other TRBs. The ring's cycle 3236 * state may change as we enqueue the other TRBs, so save it too. 3237 */ 3238 start_trb = &ring->enqueue->generic; 3239 start_cycle = ring->cycle_state; 3240 send_addr = addr; 3241 3242 /* Queue the TRBs, even if they are zero-length */ 3243 for (enqd_len = 0; first_trb || enqd_len < full_len; 3244 enqd_len += trb_buff_len) { 3245 field = TRB_TYPE(TRB_NORMAL); 3246 3247 /* TRB buffer should not cross 64KB boundaries */ 3248 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3249 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3250 3251 if (enqd_len + trb_buff_len > full_len) 3252 trb_buff_len = full_len - enqd_len; 3253 3254 /* Don't change the cycle bit of the first TRB until later */ 3255 if (first_trb) { 3256 first_trb = false; 3257 if (start_cycle == 0) 3258 field |= TRB_CYCLE; 3259 } else 3260 field |= ring->cycle_state; 3261 3262 /* Chain all the TRBs together; clear the chain bit in the last 3263 * TRB to indicate it's the last TRB in the chain. 3264 */ 3265 if (enqd_len + trb_buff_len < full_len) { 3266 field |= TRB_CHAIN; 3267 if (trb_is_link(ring->enqueue + 1)) { 3268 if (xhci_align_td(xhci, urb, enqd_len, 3269 &trb_buff_len, 3270 ring->enq_seg)) { 3271 send_addr = ring->enq_seg->bounce_dma; 3272 /* assuming TD won't span 2 segs */ 3273 td->bounce_seg = ring->enq_seg; 3274 } 3275 } 3276 } 3277 if (enqd_len + trb_buff_len >= full_len) { 3278 field &= ~TRB_CHAIN; 3279 field |= TRB_IOC; 3280 more_trbs_coming = false; 3281 td->last_trb = ring->enqueue; 3282 3283 if (xhci_urb_suitable_for_idt(urb)) { 3284 memcpy(&send_addr, urb->transfer_buffer, 3285 trb_buff_len); 3286 field |= TRB_IDT; 3287 } 3288 } 3289 3290 /* Only set interrupt on short packet for IN endpoints */ 3291 if (usb_urb_dir_in(urb)) 3292 field |= TRB_ISP; 3293 3294 /* Set the TRB length, TD size, and interrupter fields. */ 3295 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3296 full_len, urb, more_trbs_coming); 3297 3298 length_field = TRB_LEN(trb_buff_len) | 3299 TRB_TD_SIZE(remainder) | 3300 TRB_INTR_TARGET(0); 3301 3302 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3303 lower_32_bits(send_addr), 3304 upper_32_bits(send_addr), 3305 length_field, 3306 field); 3307 3308 addr += trb_buff_len; 3309 sent_len = trb_buff_len; 3310 3311 while (sg && sent_len >= block_len) { 3312 /* New sg entry */ 3313 --num_sgs; 3314 sent_len -= block_len; 3315 if (num_sgs != 0) { 3316 sg = sg_next(sg); 3317 block_len = sg_dma_len(sg); 3318 addr = (u64) sg_dma_address(sg); 3319 addr += sent_len; 3320 } 3321 } 3322 block_len -= sent_len; 3323 send_addr = addr; 3324 } 3325 3326 if (need_zero_pkt) { 3327 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3328 ep_index, urb->stream_id, 3329 1, urb, 1, mem_flags); 3330 urb_priv->td[1].last_trb = ring->enqueue; 3331 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3332 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3333 } 3334 3335 check_trb_math(urb, enqd_len); 3336 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3337 start_cycle, start_trb); 3338 return 0; 3339 } 3340 3341 /* Caller must have locked xhci->lock */ 3342 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3343 struct urb *urb, int slot_id, unsigned int ep_index) 3344 { 3345 struct xhci_ring *ep_ring; 3346 int num_trbs; 3347 int ret; 3348 struct usb_ctrlrequest *setup; 3349 struct xhci_generic_trb *start_trb; 3350 int start_cycle; 3351 u32 field; 3352 struct urb_priv *urb_priv; 3353 struct xhci_td *td; 3354 3355 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3356 if (!ep_ring) 3357 return -EINVAL; 3358 3359 /* 3360 * Need to copy setup packet into setup TRB, so we can't use the setup 3361 * DMA address. 3362 */ 3363 if (!urb->setup_packet) 3364 return -EINVAL; 3365 3366 /* 1 TRB for setup, 1 for status */ 3367 num_trbs = 2; 3368 /* 3369 * Don't need to check if we need additional event data and normal TRBs, 3370 * since data in control transfers will never get bigger than 16MB 3371 * XXX: can we get a buffer that crosses 64KB boundaries? 3372 */ 3373 if (urb->transfer_buffer_length > 0) 3374 num_trbs++; 3375 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3376 ep_index, urb->stream_id, 3377 num_trbs, urb, 0, mem_flags); 3378 if (ret < 0) 3379 return ret; 3380 3381 urb_priv = urb->hcpriv; 3382 td = &urb_priv->td[0]; 3383 3384 /* 3385 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3386 * until we've finished creating all the other TRBs. The ring's cycle 3387 * state may change as we enqueue the other TRBs, so save it too. 3388 */ 3389 start_trb = &ep_ring->enqueue->generic; 3390 start_cycle = ep_ring->cycle_state; 3391 3392 /* Queue setup TRB - see section 6.4.1.2.1 */ 3393 /* FIXME better way to translate setup_packet into two u32 fields? */ 3394 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3395 field = 0; 3396 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3397 if (start_cycle == 0) 3398 field |= 0x1; 3399 3400 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3401 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3402 if (urb->transfer_buffer_length > 0) { 3403 if (setup->bRequestType & USB_DIR_IN) 3404 field |= TRB_TX_TYPE(TRB_DATA_IN); 3405 else 3406 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3407 } 3408 } 3409 3410 queue_trb(xhci, ep_ring, true, 3411 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3412 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3413 TRB_LEN(8) | TRB_INTR_TARGET(0), 3414 /* Immediate data in pointer */ 3415 field); 3416 3417 /* If there's data, queue data TRBs */ 3418 /* Only set interrupt on short packet for IN endpoints */ 3419 if (usb_urb_dir_in(urb)) 3420 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3421 else 3422 field = TRB_TYPE(TRB_DATA); 3423 3424 if (urb->transfer_buffer_length > 0) { 3425 u32 length_field, remainder; 3426 3427 if (xhci_urb_suitable_for_idt(urb)) { 3428 memcpy(&urb->transfer_dma, urb->transfer_buffer, 3429 urb->transfer_buffer_length); 3430 field |= TRB_IDT; 3431 } 3432 3433 remainder = xhci_td_remainder(xhci, 0, 3434 urb->transfer_buffer_length, 3435 urb->transfer_buffer_length, 3436 urb, 1); 3437 length_field = TRB_LEN(urb->transfer_buffer_length) | 3438 TRB_TD_SIZE(remainder) | 3439 TRB_INTR_TARGET(0); 3440 if (setup->bRequestType & USB_DIR_IN) 3441 field |= TRB_DIR_IN; 3442 queue_trb(xhci, ep_ring, true, 3443 lower_32_bits(urb->transfer_dma), 3444 upper_32_bits(urb->transfer_dma), 3445 length_field, 3446 field | ep_ring->cycle_state); 3447 } 3448 3449 /* Save the DMA address of the last TRB in the TD */ 3450 td->last_trb = ep_ring->enqueue; 3451 3452 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3453 /* If the device sent data, the status stage is an OUT transfer */ 3454 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3455 field = 0; 3456 else 3457 field = TRB_DIR_IN; 3458 queue_trb(xhci, ep_ring, false, 3459 0, 3460 0, 3461 TRB_INTR_TARGET(0), 3462 /* Event on completion */ 3463 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3464 3465 giveback_first_trb(xhci, slot_id, ep_index, 0, 3466 start_cycle, start_trb); 3467 return 0; 3468 } 3469 3470 /* 3471 * The transfer burst count field of the isochronous TRB defines the number of 3472 * bursts that are required to move all packets in this TD. Only SuperSpeed 3473 * devices can burst up to bMaxBurst number of packets per service interval. 3474 * This field is zero based, meaning a value of zero in the field means one 3475 * burst. Basically, for everything but SuperSpeed devices, this field will be 3476 * zero. Only xHCI 1.0 host controllers support this field. 3477 */ 3478 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3479 struct urb *urb, unsigned int total_packet_count) 3480 { 3481 unsigned int max_burst; 3482 3483 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3484 return 0; 3485 3486 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3487 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3488 } 3489 3490 /* 3491 * Returns the number of packets in the last "burst" of packets. This field is 3492 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3493 * the last burst packet count is equal to the total number of packets in the 3494 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3495 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3496 * contain 1 to (bMaxBurst + 1) packets. 3497 */ 3498 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3499 struct urb *urb, unsigned int total_packet_count) 3500 { 3501 unsigned int max_burst; 3502 unsigned int residue; 3503 3504 if (xhci->hci_version < 0x100) 3505 return 0; 3506 3507 if (urb->dev->speed >= USB_SPEED_SUPER) { 3508 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3509 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3510 residue = total_packet_count % (max_burst + 1); 3511 /* If residue is zero, the last burst contains (max_burst + 1) 3512 * number of packets, but the TLBPC field is zero-based. 3513 */ 3514 if (residue == 0) 3515 return max_burst; 3516 return residue - 1; 3517 } 3518 if (total_packet_count == 0) 3519 return 0; 3520 return total_packet_count - 1; 3521 } 3522 3523 /* 3524 * Calculates Frame ID field of the isochronous TRB identifies the 3525 * target frame that the Interval associated with this Isochronous 3526 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3527 * 3528 * Returns actual frame id on success, negative value on error. 3529 */ 3530 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3531 struct urb *urb, int index) 3532 { 3533 int start_frame, ist, ret = 0; 3534 int start_frame_id, end_frame_id, current_frame_id; 3535 3536 if (urb->dev->speed == USB_SPEED_LOW || 3537 urb->dev->speed == USB_SPEED_FULL) 3538 start_frame = urb->start_frame + index * urb->interval; 3539 else 3540 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3541 3542 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3543 * 3544 * If bit [3] of IST is cleared to '0', software can add a TRB no 3545 * later than IST[2:0] Microframes before that TRB is scheduled to 3546 * be executed. 3547 * If bit [3] of IST is set to '1', software can add a TRB no later 3548 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3549 */ 3550 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3551 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3552 ist <<= 3; 3553 3554 /* Software shall not schedule an Isoch TD with a Frame ID value that 3555 * is less than the Start Frame ID or greater than the End Frame ID, 3556 * where: 3557 * 3558 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3559 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3560 * 3561 * Both the End Frame ID and Start Frame ID values are calculated 3562 * in microframes. When software determines the valid Frame ID value; 3563 * The End Frame ID value should be rounded down to the nearest Frame 3564 * boundary, and the Start Frame ID value should be rounded up to the 3565 * nearest Frame boundary. 3566 */ 3567 current_frame_id = readl(&xhci->run_regs->microframe_index); 3568 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3569 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3570 3571 start_frame &= 0x7ff; 3572 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3573 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3574 3575 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3576 __func__, index, readl(&xhci->run_regs->microframe_index), 3577 start_frame_id, end_frame_id, start_frame); 3578 3579 if (start_frame_id < end_frame_id) { 3580 if (start_frame > end_frame_id || 3581 start_frame < start_frame_id) 3582 ret = -EINVAL; 3583 } else if (start_frame_id > end_frame_id) { 3584 if ((start_frame > end_frame_id && 3585 start_frame < start_frame_id)) 3586 ret = -EINVAL; 3587 } else { 3588 ret = -EINVAL; 3589 } 3590 3591 if (index == 0) { 3592 if (ret == -EINVAL || start_frame == start_frame_id) { 3593 start_frame = start_frame_id + 1; 3594 if (urb->dev->speed == USB_SPEED_LOW || 3595 urb->dev->speed == USB_SPEED_FULL) 3596 urb->start_frame = start_frame; 3597 else 3598 urb->start_frame = start_frame << 3; 3599 ret = 0; 3600 } 3601 } 3602 3603 if (ret) { 3604 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3605 start_frame, current_frame_id, index, 3606 start_frame_id, end_frame_id); 3607 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3608 return ret; 3609 } 3610 3611 return start_frame; 3612 } 3613 3614 /* This is for isoc transfer */ 3615 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3616 struct urb *urb, int slot_id, unsigned int ep_index) 3617 { 3618 struct xhci_ring *ep_ring; 3619 struct urb_priv *urb_priv; 3620 struct xhci_td *td; 3621 int num_tds, trbs_per_td; 3622 struct xhci_generic_trb *start_trb; 3623 bool first_trb; 3624 int start_cycle; 3625 u32 field, length_field; 3626 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3627 u64 start_addr, addr; 3628 int i, j; 3629 bool more_trbs_coming; 3630 struct xhci_virt_ep *xep; 3631 int frame_id; 3632 3633 xep = &xhci->devs[slot_id]->eps[ep_index]; 3634 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3635 3636 num_tds = urb->number_of_packets; 3637 if (num_tds < 1) { 3638 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3639 return -EINVAL; 3640 } 3641 start_addr = (u64) urb->transfer_dma; 3642 start_trb = &ep_ring->enqueue->generic; 3643 start_cycle = ep_ring->cycle_state; 3644 3645 urb_priv = urb->hcpriv; 3646 /* Queue the TRBs for each TD, even if they are zero-length */ 3647 for (i = 0; i < num_tds; i++) { 3648 unsigned int total_pkt_count, max_pkt; 3649 unsigned int burst_count, last_burst_pkt_count; 3650 u32 sia_frame_id; 3651 3652 first_trb = true; 3653 running_total = 0; 3654 addr = start_addr + urb->iso_frame_desc[i].offset; 3655 td_len = urb->iso_frame_desc[i].length; 3656 td_remain_len = td_len; 3657 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3658 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3659 3660 /* A zero-length transfer still involves at least one packet. */ 3661 if (total_pkt_count == 0) 3662 total_pkt_count++; 3663 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3664 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3665 urb, total_pkt_count); 3666 3667 trbs_per_td = count_isoc_trbs_needed(urb, i); 3668 3669 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3670 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3671 if (ret < 0) { 3672 if (i == 0) 3673 return ret; 3674 goto cleanup; 3675 } 3676 td = &urb_priv->td[i]; 3677 3678 /* use SIA as default, if frame id is used overwrite it */ 3679 sia_frame_id = TRB_SIA; 3680 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3681 HCC_CFC(xhci->hcc_params)) { 3682 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3683 if (frame_id >= 0) 3684 sia_frame_id = TRB_FRAME_ID(frame_id); 3685 } 3686 /* 3687 * Set isoc specific data for the first TRB in a TD. 3688 * Prevent HW from getting the TRBs by keeping the cycle state 3689 * inverted in the first TDs isoc TRB. 3690 */ 3691 field = TRB_TYPE(TRB_ISOC) | 3692 TRB_TLBPC(last_burst_pkt_count) | 3693 sia_frame_id | 3694 (i ? ep_ring->cycle_state : !start_cycle); 3695 3696 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3697 if (!xep->use_extended_tbc) 3698 field |= TRB_TBC(burst_count); 3699 3700 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3701 for (j = 0; j < trbs_per_td; j++) { 3702 u32 remainder = 0; 3703 3704 /* only first TRB is isoc, overwrite otherwise */ 3705 if (!first_trb) 3706 field = TRB_TYPE(TRB_NORMAL) | 3707 ep_ring->cycle_state; 3708 3709 /* Only set interrupt on short packet for IN EPs */ 3710 if (usb_urb_dir_in(urb)) 3711 field |= TRB_ISP; 3712 3713 /* Set the chain bit for all except the last TRB */ 3714 if (j < trbs_per_td - 1) { 3715 more_trbs_coming = true; 3716 field |= TRB_CHAIN; 3717 } else { 3718 more_trbs_coming = false; 3719 td->last_trb = ep_ring->enqueue; 3720 field |= TRB_IOC; 3721 /* set BEI, except for the last TD */ 3722 if (xhci->hci_version >= 0x100 && 3723 !(xhci->quirks & XHCI_AVOID_BEI) && 3724 i < num_tds - 1) 3725 field |= TRB_BEI; 3726 } 3727 /* Calculate TRB length */ 3728 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3729 if (trb_buff_len > td_remain_len) 3730 trb_buff_len = td_remain_len; 3731 3732 /* Set the TRB length, TD size, & interrupter fields. */ 3733 remainder = xhci_td_remainder(xhci, running_total, 3734 trb_buff_len, td_len, 3735 urb, more_trbs_coming); 3736 3737 length_field = TRB_LEN(trb_buff_len) | 3738 TRB_INTR_TARGET(0); 3739 3740 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3741 if (first_trb && xep->use_extended_tbc) 3742 length_field |= TRB_TD_SIZE_TBC(burst_count); 3743 else 3744 length_field |= TRB_TD_SIZE(remainder); 3745 first_trb = false; 3746 3747 queue_trb(xhci, ep_ring, more_trbs_coming, 3748 lower_32_bits(addr), 3749 upper_32_bits(addr), 3750 length_field, 3751 field); 3752 running_total += trb_buff_len; 3753 3754 addr += trb_buff_len; 3755 td_remain_len -= trb_buff_len; 3756 } 3757 3758 /* Check TD length */ 3759 if (running_total != td_len) { 3760 xhci_err(xhci, "ISOC TD length unmatch\n"); 3761 ret = -EINVAL; 3762 goto cleanup; 3763 } 3764 } 3765 3766 /* store the next frame id */ 3767 if (HCC_CFC(xhci->hcc_params)) 3768 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3769 3770 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3771 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3772 usb_amd_quirk_pll_disable(); 3773 } 3774 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3775 3776 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3777 start_cycle, start_trb); 3778 return 0; 3779 cleanup: 3780 /* Clean up a partially enqueued isoc transfer. */ 3781 3782 for (i--; i >= 0; i--) 3783 list_del_init(&urb_priv->td[i].td_list); 3784 3785 /* Use the first TD as a temporary variable to turn the TDs we've queued 3786 * into No-ops with a software-owned cycle bit. That way the hardware 3787 * won't accidentally start executing bogus TDs when we partially 3788 * overwrite them. td->first_trb and td->start_seg are already set. 3789 */ 3790 urb_priv->td[0].last_trb = ep_ring->enqueue; 3791 /* Every TRB except the first & last will have its cycle bit flipped. */ 3792 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3793 3794 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3795 ep_ring->enqueue = urb_priv->td[0].first_trb; 3796 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3797 ep_ring->cycle_state = start_cycle; 3798 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3799 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3800 return ret; 3801 } 3802 3803 /* 3804 * Check transfer ring to guarantee there is enough room for the urb. 3805 * Update ISO URB start_frame and interval. 3806 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3807 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3808 * Contiguous Frame ID is not supported by HC. 3809 */ 3810 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3811 struct urb *urb, int slot_id, unsigned int ep_index) 3812 { 3813 struct xhci_virt_device *xdev; 3814 struct xhci_ring *ep_ring; 3815 struct xhci_ep_ctx *ep_ctx; 3816 int start_frame; 3817 int num_tds, num_trbs, i; 3818 int ret; 3819 struct xhci_virt_ep *xep; 3820 int ist; 3821 3822 xdev = xhci->devs[slot_id]; 3823 xep = &xhci->devs[slot_id]->eps[ep_index]; 3824 ep_ring = xdev->eps[ep_index].ring; 3825 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3826 3827 num_trbs = 0; 3828 num_tds = urb->number_of_packets; 3829 for (i = 0; i < num_tds; i++) 3830 num_trbs += count_isoc_trbs_needed(urb, i); 3831 3832 /* Check the ring to guarantee there is enough room for the whole urb. 3833 * Do not insert any td of the urb to the ring if the check failed. 3834 */ 3835 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3836 num_trbs, mem_flags); 3837 if (ret) 3838 return ret; 3839 3840 /* 3841 * Check interval value. This should be done before we start to 3842 * calculate the start frame value. 3843 */ 3844 check_interval(xhci, urb, ep_ctx); 3845 3846 /* Calculate the start frame and put it in urb->start_frame. */ 3847 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3848 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3849 urb->start_frame = xep->next_frame_id; 3850 goto skip_start_over; 3851 } 3852 } 3853 3854 start_frame = readl(&xhci->run_regs->microframe_index); 3855 start_frame &= 0x3fff; 3856 /* 3857 * Round up to the next frame and consider the time before trb really 3858 * gets scheduled by hardare. 3859 */ 3860 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3861 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3862 ist <<= 3; 3863 start_frame += ist + XHCI_CFC_DELAY; 3864 start_frame = roundup(start_frame, 8); 3865 3866 /* 3867 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3868 * is greate than 8 microframes. 3869 */ 3870 if (urb->dev->speed == USB_SPEED_LOW || 3871 urb->dev->speed == USB_SPEED_FULL) { 3872 start_frame = roundup(start_frame, urb->interval << 3); 3873 urb->start_frame = start_frame >> 3; 3874 } else { 3875 start_frame = roundup(start_frame, urb->interval); 3876 urb->start_frame = start_frame; 3877 } 3878 3879 skip_start_over: 3880 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3881 3882 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3883 } 3884 3885 /**** Command Ring Operations ****/ 3886 3887 /* Generic function for queueing a command TRB on the command ring. 3888 * Check to make sure there's room on the command ring for one command TRB. 3889 * Also check that there's room reserved for commands that must not fail. 3890 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3891 * then only check for the number of reserved spots. 3892 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3893 * because the command event handler may want to resubmit a failed command. 3894 */ 3895 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3896 u32 field1, u32 field2, 3897 u32 field3, u32 field4, bool command_must_succeed) 3898 { 3899 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3900 int ret; 3901 3902 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3903 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3904 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3905 return -ESHUTDOWN; 3906 } 3907 3908 if (!command_must_succeed) 3909 reserved_trbs++; 3910 3911 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3912 reserved_trbs, GFP_ATOMIC); 3913 if (ret < 0) { 3914 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3915 if (command_must_succeed) 3916 xhci_err(xhci, "ERR: Reserved TRB counting for " 3917 "unfailable commands failed.\n"); 3918 return ret; 3919 } 3920 3921 cmd->command_trb = xhci->cmd_ring->enqueue; 3922 3923 /* if there are no other commands queued we start the timeout timer */ 3924 if (list_empty(&xhci->cmd_list)) { 3925 xhci->current_cmd = cmd; 3926 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3927 } 3928 3929 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3930 3931 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3932 field4 | xhci->cmd_ring->cycle_state); 3933 return 0; 3934 } 3935 3936 /* Queue a slot enable or disable request on the command ring */ 3937 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3938 u32 trb_type, u32 slot_id) 3939 { 3940 return queue_command(xhci, cmd, 0, 0, 0, 3941 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3942 } 3943 3944 /* Queue an address device command TRB */ 3945 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3946 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3947 { 3948 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3949 upper_32_bits(in_ctx_ptr), 0, 3950 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3951 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3952 } 3953 3954 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3955 u32 field1, u32 field2, u32 field3, u32 field4) 3956 { 3957 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3958 } 3959 3960 /* Queue a reset device command TRB */ 3961 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3962 u32 slot_id) 3963 { 3964 return queue_command(xhci, cmd, 0, 0, 0, 3965 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3966 false); 3967 } 3968 3969 /* Queue a configure endpoint command TRB */ 3970 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3971 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3972 u32 slot_id, bool command_must_succeed) 3973 { 3974 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3975 upper_32_bits(in_ctx_ptr), 0, 3976 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3977 command_must_succeed); 3978 } 3979 3980 /* Queue an evaluate context command TRB */ 3981 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3982 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3983 { 3984 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3985 upper_32_bits(in_ctx_ptr), 0, 3986 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3987 command_must_succeed); 3988 } 3989 3990 /* 3991 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3992 * activity on an endpoint that is about to be suspended. 3993 */ 3994 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3995 int slot_id, unsigned int ep_index, int suspend) 3996 { 3997 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3998 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3999 u32 type = TRB_TYPE(TRB_STOP_RING); 4000 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4001 4002 return queue_command(xhci, cmd, 0, 0, 0, 4003 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4004 } 4005 4006 /* Set Transfer Ring Dequeue Pointer command */ 4007 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4008 unsigned int slot_id, unsigned int ep_index, 4009 struct xhci_dequeue_state *deq_state) 4010 { 4011 dma_addr_t addr; 4012 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4013 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4014 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4015 u32 trb_sct = 0; 4016 u32 type = TRB_TYPE(TRB_SET_DEQ); 4017 struct xhci_virt_ep *ep; 4018 struct xhci_command *cmd; 4019 int ret; 4020 4021 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4022 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4023 deq_state->new_deq_seg, 4024 (unsigned long long)deq_state->new_deq_seg->dma, 4025 deq_state->new_deq_ptr, 4026 (unsigned long long)xhci_trb_virt_to_dma( 4027 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4028 deq_state->new_cycle_state); 4029 4030 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4031 deq_state->new_deq_ptr); 4032 if (addr == 0) { 4033 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4034 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4035 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4036 return; 4037 } 4038 ep = &xhci->devs[slot_id]->eps[ep_index]; 4039 if ((ep->ep_state & SET_DEQ_PENDING)) { 4040 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4041 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4042 return; 4043 } 4044 4045 /* This function gets called from contexts where it cannot sleep */ 4046 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4047 if (!cmd) 4048 return; 4049 4050 ep->queued_deq_seg = deq_state->new_deq_seg; 4051 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4052 if (deq_state->stream_id) 4053 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4054 ret = queue_command(xhci, cmd, 4055 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4056 upper_32_bits(addr), trb_stream_id, 4057 trb_slot_id | trb_ep_index | type, false); 4058 if (ret < 0) { 4059 xhci_free_command(xhci, cmd); 4060 return; 4061 } 4062 4063 /* Stop the TD queueing code from ringing the doorbell until 4064 * this command completes. The HC won't set the dequeue pointer 4065 * if the ring is running, and ringing the doorbell starts the 4066 * ring running. 4067 */ 4068 ep->ep_state |= SET_DEQ_PENDING; 4069 } 4070 4071 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4072 int slot_id, unsigned int ep_index, 4073 enum xhci_ep_reset_type reset_type) 4074 { 4075 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4076 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4077 u32 type = TRB_TYPE(TRB_RESET_EP); 4078 4079 if (reset_type == EP_SOFT_RESET) 4080 type |= TRB_TSP; 4081 4082 return queue_command(xhci, cmd, 0, 0, 0, 4083 trb_slot_id | trb_ep_index | type, false); 4084 } 4085