1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 /* 330 * Consider expanding the ring already if num_trbs fills the current 331 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 332 * the next segment. Avoids confusing full ring with special empty ring 333 * case below 334 */ 335 if (trbs_past_seg < 0) 336 return 0; 337 338 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 339 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 340 return 0; 341 342 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 343 seg = ring->enq_seg; 344 345 while (new_segs > 0) { 346 seg = seg->next; 347 if (seg == ring->deq_seg) { 348 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 349 new_segs); 350 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 351 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 352 return new_segs; 353 } 354 new_segs--; 355 } 356 357 return 0; 358 } 359 360 /* Ring the host controller doorbell after placing a command on the ring */ 361 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 362 { 363 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 364 return; 365 366 xhci_dbg(xhci, "// Ding dong!\n"); 367 368 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 369 370 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 371 /* Flush PCI posted writes */ 372 readl(&xhci->dba->doorbell[0]); 373 } 374 375 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 376 { 377 return mod_delayed_work(system_wq, &xhci->cmd_timer, 378 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 379 } 380 381 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 382 { 383 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 384 cmd_list); 385 } 386 387 /* 388 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 389 * If there are other commands waiting then restart the ring and kick the timer. 390 * This must be called with command ring stopped and xhci->lock held. 391 */ 392 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 393 struct xhci_command *cur_cmd) 394 { 395 struct xhci_command *i_cmd; 396 397 /* Turn all aborted commands in list to no-ops, then restart */ 398 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 399 400 if (i_cmd->status != COMP_COMMAND_ABORTED) 401 continue; 402 403 i_cmd->status = COMP_COMMAND_RING_STOPPED; 404 405 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 406 i_cmd->command_trb); 407 408 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 409 410 /* 411 * caller waiting for completion is called when command 412 * completion event is received for these no-op commands 413 */ 414 } 415 416 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 417 418 /* ring command ring doorbell to restart the command ring */ 419 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 420 !(xhci->xhc_state & XHCI_STATE_DYING)) { 421 xhci->current_cmd = cur_cmd; 422 xhci_mod_cmd_timer(xhci); 423 xhci_ring_cmd_db(xhci); 424 } 425 } 426 427 /* Must be called with xhci->lock held, releases and aquires lock back */ 428 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 429 { 430 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 431 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 432 u64 crcr; 433 int ret; 434 435 xhci_dbg(xhci, "Abort command ring\n"); 436 437 reinit_completion(&xhci->cmd_ring_stop_completion); 438 439 /* 440 * The control bits like command stop, abort are located in lower 441 * dword of the command ring control register. 442 * Some controllers require all 64 bits to be written to abort the ring. 443 * Make sure the upper dword is valid, pointing to the next command, 444 * avoiding corrupting the command ring pointer in case the command ring 445 * is stopped by the time the upper dword is written. 446 */ 447 next_trb(xhci, NULL, &new_seg, &new_deq); 448 if (trb_is_link(new_deq)) 449 next_trb(xhci, NULL, &new_seg, &new_deq); 450 451 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 452 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 453 454 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 455 * completion of the Command Abort operation. If CRR is not negated in 5 456 * seconds then driver handles it as if host died (-ENODEV). 457 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 458 * and try to recover a -ETIMEDOUT with a host controller reset. 459 */ 460 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 461 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 462 if (ret < 0) { 463 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 464 xhci_halt(xhci); 465 xhci_hc_died(xhci); 466 return ret; 467 } 468 /* 469 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 470 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 471 * but the completion event in never sent. Wait 2 secs (arbitrary 472 * number) to handle those cases after negation of CMD_RING_RUNNING. 473 */ 474 spin_unlock_irqrestore(&xhci->lock, flags); 475 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 476 msecs_to_jiffies(2000)); 477 spin_lock_irqsave(&xhci->lock, flags); 478 if (!ret) { 479 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 480 xhci_cleanup_command_queue(xhci); 481 } else { 482 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 483 } 484 return 0; 485 } 486 487 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 488 unsigned int slot_id, 489 unsigned int ep_index, 490 unsigned int stream_id) 491 { 492 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 493 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 494 unsigned int ep_state = ep->ep_state; 495 496 /* Don't ring the doorbell for this endpoint if there are pending 497 * cancellations because we don't want to interrupt processing. 498 * We don't want to restart any stream rings if there's a set dequeue 499 * pointer command pending because the device can choose to start any 500 * stream once the endpoint is on the HW schedule. 501 */ 502 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 503 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 504 return; 505 506 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 507 508 writel(DB_VALUE(ep_index, stream_id), db_addr); 509 /* flush the write */ 510 readl(db_addr); 511 } 512 513 /* Ring the doorbell for any rings with pending URBs */ 514 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 515 unsigned int slot_id, 516 unsigned int ep_index) 517 { 518 unsigned int stream_id; 519 struct xhci_virt_ep *ep; 520 521 ep = &xhci->devs[slot_id]->eps[ep_index]; 522 523 /* A ring has pending URBs if its TD list is not empty */ 524 if (!(ep->ep_state & EP_HAS_STREAMS)) { 525 if (ep->ring && !(list_empty(&ep->ring->td_list))) 526 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 527 return; 528 } 529 530 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 531 stream_id++) { 532 struct xhci_stream_info *stream_info = ep->stream_info; 533 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 534 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 535 stream_id); 536 } 537 } 538 539 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 540 unsigned int slot_id, 541 unsigned int ep_index) 542 { 543 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 544 } 545 546 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 547 unsigned int slot_id, 548 unsigned int ep_index) 549 { 550 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 551 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 552 return NULL; 553 } 554 if (ep_index >= EP_CTX_PER_DEV) { 555 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 556 return NULL; 557 } 558 if (!xhci->devs[slot_id]) { 559 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 560 return NULL; 561 } 562 563 return &xhci->devs[slot_id]->eps[ep_index]; 564 } 565 566 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 567 struct xhci_virt_ep *ep, 568 unsigned int stream_id) 569 { 570 /* common case, no streams */ 571 if (!(ep->ep_state & EP_HAS_STREAMS)) 572 return ep->ring; 573 574 if (!ep->stream_info) 575 return NULL; 576 577 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 578 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 579 stream_id, ep->vdev->slot_id, ep->ep_index); 580 return NULL; 581 } 582 583 return ep->stream_info->stream_rings[stream_id]; 584 } 585 586 /* Get the right ring for the given slot_id, ep_index and stream_id. 587 * If the endpoint supports streams, boundary check the URB's stream ID. 588 * If the endpoint doesn't support streams, return the singular endpoint ring. 589 */ 590 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 591 unsigned int slot_id, unsigned int ep_index, 592 unsigned int stream_id) 593 { 594 struct xhci_virt_ep *ep; 595 596 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 597 if (!ep) 598 return NULL; 599 600 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 601 } 602 603 604 /* 605 * Get the hw dequeue pointer xHC stopped on, either directly from the 606 * endpoint context, or if streams are in use from the stream context. 607 * The returned hw_dequeue contains the lowest four bits with cycle state 608 * and possbile stream context type. 609 */ 610 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 611 unsigned int ep_index, unsigned int stream_id) 612 { 613 struct xhci_ep_ctx *ep_ctx; 614 struct xhci_stream_ctx *st_ctx; 615 struct xhci_virt_ep *ep; 616 617 ep = &vdev->eps[ep_index]; 618 619 if (ep->ep_state & EP_HAS_STREAMS) { 620 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 621 return le64_to_cpu(st_ctx->stream_ring); 622 } 623 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 624 return le64_to_cpu(ep_ctx->deq); 625 } 626 627 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 628 unsigned int slot_id, unsigned int ep_index, 629 unsigned int stream_id, struct xhci_td *td) 630 { 631 struct xhci_virt_device *dev = xhci->devs[slot_id]; 632 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 633 struct xhci_ring *ep_ring; 634 struct xhci_command *cmd; 635 struct xhci_segment *new_seg; 636 union xhci_trb *new_deq; 637 int new_cycle; 638 dma_addr_t addr; 639 u64 hw_dequeue; 640 bool cycle_found = false; 641 bool td_last_trb_found = false; 642 u32 trb_sct = 0; 643 int ret; 644 645 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 646 ep_index, stream_id); 647 if (!ep_ring) { 648 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 649 stream_id); 650 return -ENODEV; 651 } 652 /* 653 * A cancelled TD can complete with a stall if HW cached the trb. 654 * In this case driver can't find td, but if the ring is empty we 655 * can move the dequeue pointer to the current enqueue position. 656 * We shouldn't hit this anymore as cached cancelled TRBs are given back 657 * after clearing the cache, but be on the safe side and keep it anyway 658 */ 659 if (!td) { 660 if (list_empty(&ep_ring->td_list)) { 661 new_seg = ep_ring->enq_seg; 662 new_deq = ep_ring->enqueue; 663 new_cycle = ep_ring->cycle_state; 664 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 665 goto deq_found; 666 } else { 667 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 668 return -EINVAL; 669 } 670 } 671 672 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 673 new_seg = ep_ring->deq_seg; 674 new_deq = ep_ring->dequeue; 675 new_cycle = hw_dequeue & 0x1; 676 677 /* 678 * We want to find the pointer, segment and cycle state of the new trb 679 * (the one after current TD's last_trb). We know the cycle state at 680 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 681 * found. 682 */ 683 do { 684 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 685 == (dma_addr_t)(hw_dequeue & ~0xf)) { 686 cycle_found = true; 687 if (td_last_trb_found) 688 break; 689 } 690 if (new_deq == td->last_trb) 691 td_last_trb_found = true; 692 693 if (cycle_found && trb_is_link(new_deq) && 694 link_trb_toggles_cycle(new_deq)) 695 new_cycle ^= 0x1; 696 697 next_trb(xhci, ep_ring, &new_seg, &new_deq); 698 699 /* Search wrapped around, bail out */ 700 if (new_deq == ep->ring->dequeue) { 701 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 702 return -EINVAL; 703 } 704 705 } while (!cycle_found || !td_last_trb_found); 706 707 deq_found: 708 709 /* Don't update the ring cycle state for the producer (us). */ 710 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 711 if (addr == 0) { 712 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 713 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 714 return -EINVAL; 715 } 716 717 if ((ep->ep_state & SET_DEQ_PENDING)) { 718 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 719 &addr); 720 return -EBUSY; 721 } 722 723 /* This function gets called from contexts where it cannot sleep */ 724 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 725 if (!cmd) { 726 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 727 return -ENOMEM; 728 } 729 730 if (stream_id) 731 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 732 ret = queue_command(xhci, cmd, 733 lower_32_bits(addr) | trb_sct | new_cycle, 734 upper_32_bits(addr), 735 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 736 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 737 if (ret < 0) { 738 xhci_free_command(xhci, cmd); 739 return ret; 740 } 741 ep->queued_deq_seg = new_seg; 742 ep->queued_deq_ptr = new_deq; 743 744 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 745 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 746 747 /* Stop the TD queueing code from ringing the doorbell until 748 * this command completes. The HC won't set the dequeue pointer 749 * if the ring is running, and ringing the doorbell starts the 750 * ring running. 751 */ 752 ep->ep_state |= SET_DEQ_PENDING; 753 xhci_ring_cmd_db(xhci); 754 return 0; 755 } 756 757 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 758 * (The last TRB actually points to the ring enqueue pointer, which is not part 759 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 760 */ 761 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 762 struct xhci_td *td, bool flip_cycle) 763 { 764 struct xhci_segment *seg = td->start_seg; 765 union xhci_trb *trb = td->first_trb; 766 767 while (1) { 768 trb_to_noop(trb, TRB_TR_NOOP); 769 770 /* flip cycle if asked to */ 771 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 772 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 773 774 if (trb == td->last_trb) 775 break; 776 777 next_trb(xhci, ep_ring, &seg, &trb); 778 } 779 } 780 781 /* 782 * Must be called with xhci->lock held in interrupt context, 783 * releases and re-acquires xhci->lock 784 */ 785 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 786 struct xhci_td *cur_td, int status) 787 { 788 struct urb *urb = cur_td->urb; 789 struct urb_priv *urb_priv = urb->hcpriv; 790 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 791 792 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 793 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 794 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 795 if (xhci->quirks & XHCI_AMD_PLL_FIX) 796 usb_amd_quirk_pll_enable(); 797 } 798 } 799 xhci_urb_free_priv(urb_priv); 800 usb_hcd_unlink_urb_from_ep(hcd, urb); 801 trace_xhci_urb_giveback(urb); 802 usb_hcd_giveback_urb(hcd, urb, status); 803 } 804 805 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 806 struct xhci_ring *ring, struct xhci_td *td) 807 { 808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 809 struct xhci_segment *seg = td->bounce_seg; 810 struct urb *urb = td->urb; 811 size_t len; 812 813 if (!ring || !seg || !urb) 814 return; 815 816 if (usb_urb_dir_out(urb)) { 817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 818 DMA_TO_DEVICE); 819 return; 820 } 821 822 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 823 DMA_FROM_DEVICE); 824 /* for in tranfers we need to copy the data from bounce to sg */ 825 if (urb->num_sgs) { 826 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 827 seg->bounce_len, seg->bounce_offs); 828 if (len != seg->bounce_len) 829 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 830 len, seg->bounce_len); 831 } else { 832 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 833 seg->bounce_len); 834 } 835 seg->bounce_len = 0; 836 seg->bounce_offs = 0; 837 } 838 839 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 840 struct xhci_ring *ep_ring, int status) 841 { 842 struct urb *urb = NULL; 843 844 /* Clean up the endpoint's TD list */ 845 urb = td->urb; 846 847 /* if a bounce buffer was used to align this td then unmap it */ 848 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 849 850 /* Do one last check of the actual transfer length. 851 * If the host controller said we transferred more data than the buffer 852 * length, urb->actual_length will be a very big number (since it's 853 * unsigned). Play it safe and say we didn't transfer anything. 854 */ 855 if (urb->actual_length > urb->transfer_buffer_length) { 856 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 857 urb->transfer_buffer_length, urb->actual_length); 858 urb->actual_length = 0; 859 status = 0; 860 } 861 /* TD might be removed from td_list if we are giving back a cancelled URB */ 862 if (!list_empty(&td->td_list)) 863 list_del_init(&td->td_list); 864 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 865 if (!list_empty(&td->cancelled_td_list)) 866 list_del_init(&td->cancelled_td_list); 867 868 inc_td_cnt(urb); 869 /* Giveback the urb when all the tds are completed */ 870 if (last_td_in_urb(td)) { 871 if ((urb->actual_length != urb->transfer_buffer_length && 872 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 873 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 874 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 875 urb, urb->actual_length, 876 urb->transfer_buffer_length, status); 877 878 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 879 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 880 status = 0; 881 xhci_giveback_urb_in_irq(xhci, td, status); 882 } 883 884 return 0; 885 } 886 887 888 /* Complete the cancelled URBs we unlinked from td_list. */ 889 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 890 { 891 struct xhci_ring *ring; 892 struct xhci_td *td, *tmp_td; 893 894 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 895 cancelled_td_list) { 896 897 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 898 899 if (td->cancel_status == TD_CLEARED) { 900 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 901 __func__, td->urb); 902 xhci_td_cleanup(ep->xhci, td, ring, td->status); 903 } else { 904 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 905 __func__, td->urb, td->cancel_status); 906 } 907 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 908 return; 909 } 910 } 911 912 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 913 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 914 { 915 struct xhci_command *command; 916 int ret = 0; 917 918 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 919 if (!command) { 920 ret = -ENOMEM; 921 goto done; 922 } 923 924 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 925 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 926 ep_index, slot_id); 927 928 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 929 done: 930 if (ret) 931 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 932 slot_id, ep_index, ret); 933 return ret; 934 } 935 936 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 937 struct xhci_virt_ep *ep, 938 struct xhci_td *td, 939 enum xhci_ep_reset_type reset_type) 940 { 941 unsigned int slot_id = ep->vdev->slot_id; 942 int err; 943 944 /* 945 * Avoid resetting endpoint if link is inactive. Can cause host hang. 946 * Device will be reset soon to recover the link so don't do anything 947 */ 948 if (ep->vdev->flags & VDEV_PORT_ERROR) 949 return -ENODEV; 950 951 /* add td to cancelled list and let reset ep handler take care of it */ 952 if (reset_type == EP_HARD_RESET) { 953 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 954 if (td && list_empty(&td->cancelled_td_list)) { 955 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 956 td->cancel_status = TD_HALTED; 957 } 958 } 959 960 if (ep->ep_state & EP_HALTED) { 961 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 962 ep->ep_index); 963 return 0; 964 } 965 966 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 967 if (err) 968 return err; 969 970 ep->ep_state |= EP_HALTED; 971 972 xhci_ring_cmd_db(xhci); 973 974 return 0; 975 } 976 977 /* 978 * Fix up the ep ring first, so HW stops executing cancelled TDs. 979 * We have the xHCI lock, so nothing can modify this list until we drop it. 980 * We're also in the event handler, so we can't get re-interrupted if another 981 * Stop Endpoint command completes. 982 * 983 * only call this when ring is not in a running state 984 */ 985 986 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 987 { 988 struct xhci_hcd *xhci; 989 struct xhci_td *td = NULL; 990 struct xhci_td *tmp_td = NULL; 991 struct xhci_td *cached_td = NULL; 992 struct xhci_ring *ring; 993 u64 hw_deq; 994 unsigned int slot_id = ep->vdev->slot_id; 995 int err; 996 997 /* 998 * This is not going to work if the hardware is changing its dequeue 999 * pointers as we look at them. Completion handler will call us later. 1000 */ 1001 if (ep->ep_state & SET_DEQ_PENDING) 1002 return 0; 1003 1004 xhci = ep->xhci; 1005 1006 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1008 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1009 (unsigned long long)xhci_trb_virt_to_dma( 1010 td->start_seg, td->first_trb), 1011 td->urb->stream_id, td->urb); 1012 list_del_init(&td->td_list); 1013 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1014 if (!ring) { 1015 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1016 td->urb, td->urb->stream_id); 1017 continue; 1018 } 1019 /* 1020 * If a ring stopped on the TD we need to cancel then we have to 1021 * move the xHC endpoint ring dequeue pointer past this TD. 1022 * Rings halted due to STALL may show hw_deq is past the stalled 1023 * TD, but still require a set TR Deq command to flush xHC cache. 1024 */ 1025 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1026 td->urb->stream_id); 1027 hw_deq &= ~0xf; 1028 1029 if (td->cancel_status == TD_HALTED || 1030 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1031 switch (td->cancel_status) { 1032 case TD_CLEARED: /* TD is already no-op */ 1033 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1034 break; 1035 case TD_DIRTY: /* TD is cached, clear it */ 1036 case TD_HALTED: 1037 case TD_CLEARING_CACHE_DEFERRED: 1038 if (cached_td) { 1039 if (cached_td->urb->stream_id != td->urb->stream_id) { 1040 /* Multiple streams case, defer move dq */ 1041 xhci_dbg(xhci, 1042 "Move dq deferred: stream %u URB %p\n", 1043 td->urb->stream_id, td->urb); 1044 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1045 break; 1046 } 1047 1048 /* Should never happen, but clear the TD if it does */ 1049 xhci_warn(xhci, 1050 "Found multiple active URBs %p and %p in stream %u?\n", 1051 td->urb, cached_td->urb, 1052 td->urb->stream_id); 1053 td_to_noop(xhci, ring, cached_td, false); 1054 cached_td->cancel_status = TD_CLEARED; 1055 } 1056 td_to_noop(xhci, ring, td, false); 1057 td->cancel_status = TD_CLEARING_CACHE; 1058 cached_td = td; 1059 break; 1060 } 1061 } else { 1062 td_to_noop(xhci, ring, td, false); 1063 td->cancel_status = TD_CLEARED; 1064 } 1065 } 1066 1067 /* If there's no need to move the dequeue pointer then we're done */ 1068 if (!cached_td) 1069 return 0; 1070 1071 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1072 cached_td->urb->stream_id, 1073 cached_td); 1074 if (err) { 1075 /* Failed to move past cached td, just set cached TDs to no-op */ 1076 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1077 /* 1078 * Deferred TDs need to have the deq pointer set after the above command 1079 * completes, so if that failed we just give up on all of them (and 1080 * complain loudly since this could cause issues due to caching). 1081 */ 1082 if (td->cancel_status != TD_CLEARING_CACHE && 1083 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1084 continue; 1085 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1086 td->urb); 1087 td_to_noop(xhci, ring, td, false); 1088 td->cancel_status = TD_CLEARED; 1089 } 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Returns the TD the endpoint ring halted on. 1096 * Only call for non-running rings without streams. 1097 */ 1098 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1099 { 1100 struct xhci_td *td; 1101 u64 hw_deq; 1102 1103 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1104 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1105 hw_deq &= ~0xf; 1106 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1107 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1108 td->last_trb, hw_deq, false)) 1109 return td; 1110 } 1111 return NULL; 1112 } 1113 1114 /* 1115 * When we get a command completion for a Stop Endpoint Command, we need to 1116 * unlink any cancelled TDs from the ring. There are two ways to do that: 1117 * 1118 * 1. If the HW was in the middle of processing the TD that needs to be 1119 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1120 * in the TD with a Set Dequeue Pointer Command. 1121 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1122 * bit cleared) so that the HW will skip over them. 1123 */ 1124 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1125 union xhci_trb *trb, u32 comp_code) 1126 { 1127 unsigned int ep_index; 1128 struct xhci_virt_ep *ep; 1129 struct xhci_ep_ctx *ep_ctx; 1130 struct xhci_td *td = NULL; 1131 enum xhci_ep_reset_type reset_type; 1132 struct xhci_command *command; 1133 int err; 1134 1135 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1136 if (!xhci->devs[slot_id]) 1137 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1138 slot_id); 1139 return; 1140 } 1141 1142 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1143 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1144 if (!ep) 1145 return; 1146 1147 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1148 1149 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1150 1151 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1152 /* 1153 * If stop endpoint command raced with a halting endpoint we need to 1154 * reset the host side endpoint first. 1155 * If the TD we halted on isn't cancelled the TD should be given back 1156 * with a proper error code, and the ring dequeue moved past the TD. 1157 * If streams case we can't find hw_deq, or the TD we halted on so do a 1158 * soft reset. 1159 * 1160 * Proper error code is unknown here, it would be -EPIPE if device side 1161 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1162 * We use -EPROTO, if device is stalled it should return a stall error on 1163 * next transfer, which then will return -EPIPE, and device side stall is 1164 * noted and cleared by class driver. 1165 */ 1166 switch (GET_EP_CTX_STATE(ep_ctx)) { 1167 case EP_STATE_HALTED: 1168 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1169 if (ep->ep_state & EP_HAS_STREAMS) { 1170 reset_type = EP_SOFT_RESET; 1171 } else { 1172 reset_type = EP_HARD_RESET; 1173 td = find_halted_td(ep); 1174 if (td) 1175 td->status = -EPROTO; 1176 } 1177 /* reset ep, reset handler cleans up cancelled tds */ 1178 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1179 if (err) 1180 break; 1181 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1182 return; 1183 case EP_STATE_RUNNING: 1184 /* Race, HW handled stop ep cmd before ep was running */ 1185 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1186 1187 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1188 if (!command) { 1189 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1190 return; 1191 } 1192 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1193 xhci_ring_cmd_db(xhci); 1194 1195 return; 1196 default: 1197 break; 1198 } 1199 } 1200 1201 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1202 xhci_invalidate_cancelled_tds(ep); 1203 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1204 1205 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1206 xhci_giveback_invalidated_tds(ep); 1207 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1208 } 1209 1210 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1211 { 1212 struct xhci_td *cur_td; 1213 struct xhci_td *tmp; 1214 1215 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1216 list_del_init(&cur_td->td_list); 1217 1218 if (!list_empty(&cur_td->cancelled_td_list)) 1219 list_del_init(&cur_td->cancelled_td_list); 1220 1221 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1222 1223 inc_td_cnt(cur_td->urb); 1224 if (last_td_in_urb(cur_td)) 1225 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1226 } 1227 } 1228 1229 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1230 int slot_id, int ep_index) 1231 { 1232 struct xhci_td *cur_td; 1233 struct xhci_td *tmp; 1234 struct xhci_virt_ep *ep; 1235 struct xhci_ring *ring; 1236 1237 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1238 if (!ep) 1239 return; 1240 1241 if ((ep->ep_state & EP_HAS_STREAMS) || 1242 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1243 int stream_id; 1244 1245 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1246 stream_id++) { 1247 ring = ep->stream_info->stream_rings[stream_id]; 1248 if (!ring) 1249 continue; 1250 1251 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1252 "Killing URBs for slot ID %u, ep index %u, stream %u", 1253 slot_id, ep_index, stream_id); 1254 xhci_kill_ring_urbs(xhci, ring); 1255 } 1256 } else { 1257 ring = ep->ring; 1258 if (!ring) 1259 return; 1260 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1261 "Killing URBs for slot ID %u, ep index %u", 1262 slot_id, ep_index); 1263 xhci_kill_ring_urbs(xhci, ring); 1264 } 1265 1266 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1267 cancelled_td_list) { 1268 list_del_init(&cur_td->cancelled_td_list); 1269 inc_td_cnt(cur_td->urb); 1270 1271 if (last_td_in_urb(cur_td)) 1272 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1273 } 1274 } 1275 1276 /* 1277 * host controller died, register read returns 0xffffffff 1278 * Complete pending commands, mark them ABORTED. 1279 * URBs need to be given back as usb core might be waiting with device locks 1280 * held for the URBs to finish during device disconnect, blocking host remove. 1281 * 1282 * Call with xhci->lock held. 1283 * lock is relased and re-acquired while giving back urb. 1284 */ 1285 void xhci_hc_died(struct xhci_hcd *xhci) 1286 { 1287 int i, j; 1288 1289 if (xhci->xhc_state & XHCI_STATE_DYING) 1290 return; 1291 1292 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1293 xhci->xhc_state |= XHCI_STATE_DYING; 1294 1295 xhci_cleanup_command_queue(xhci); 1296 1297 /* return any pending urbs, remove may be waiting for them */ 1298 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1299 if (!xhci->devs[i]) 1300 continue; 1301 for (j = 0; j < 31; j++) 1302 xhci_kill_endpoint_urbs(xhci, i, j); 1303 } 1304 1305 /* inform usb core hc died if PCI remove isn't already handling it */ 1306 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1307 usb_hc_died(xhci_to_hcd(xhci)); 1308 } 1309 1310 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1311 struct xhci_virt_device *dev, 1312 struct xhci_ring *ep_ring, 1313 unsigned int ep_index) 1314 { 1315 union xhci_trb *dequeue_temp; 1316 1317 dequeue_temp = ep_ring->dequeue; 1318 1319 /* If we get two back-to-back stalls, and the first stalled transfer 1320 * ends just before a link TRB, the dequeue pointer will be left on 1321 * the link TRB by the code in the while loop. So we have to update 1322 * the dequeue pointer one segment further, or we'll jump off 1323 * the segment into la-la-land. 1324 */ 1325 if (trb_is_link(ep_ring->dequeue)) { 1326 ep_ring->deq_seg = ep_ring->deq_seg->next; 1327 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1328 } 1329 1330 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1331 /* We have more usable TRBs */ 1332 ep_ring->dequeue++; 1333 if (trb_is_link(ep_ring->dequeue)) { 1334 if (ep_ring->dequeue == 1335 dev->eps[ep_index].queued_deq_ptr) 1336 break; 1337 ep_ring->deq_seg = ep_ring->deq_seg->next; 1338 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1339 } 1340 if (ep_ring->dequeue == dequeue_temp) { 1341 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1342 break; 1343 } 1344 } 1345 } 1346 1347 /* 1348 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1349 * we need to clear the set deq pending flag in the endpoint ring state, so that 1350 * the TD queueing code can ring the doorbell again. We also need to ring the 1351 * endpoint doorbell to restart the ring, but only if there aren't more 1352 * cancellations pending. 1353 */ 1354 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1355 union xhci_trb *trb, u32 cmd_comp_code) 1356 { 1357 unsigned int ep_index; 1358 unsigned int stream_id; 1359 struct xhci_ring *ep_ring; 1360 struct xhci_virt_ep *ep; 1361 struct xhci_ep_ctx *ep_ctx; 1362 struct xhci_slot_ctx *slot_ctx; 1363 struct xhci_td *td, *tmp_td; 1364 1365 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1366 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1367 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1368 if (!ep) 1369 return; 1370 1371 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1372 if (!ep_ring) { 1373 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1374 stream_id); 1375 /* XXX: Harmless??? */ 1376 goto cleanup; 1377 } 1378 1379 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1380 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1381 trace_xhci_handle_cmd_set_deq(slot_ctx); 1382 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1383 1384 if (cmd_comp_code != COMP_SUCCESS) { 1385 unsigned int ep_state; 1386 unsigned int slot_state; 1387 1388 switch (cmd_comp_code) { 1389 case COMP_TRB_ERROR: 1390 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1391 break; 1392 case COMP_CONTEXT_STATE_ERROR: 1393 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1394 ep_state = GET_EP_CTX_STATE(ep_ctx); 1395 slot_state = le32_to_cpu(slot_ctx->dev_state); 1396 slot_state = GET_SLOT_STATE(slot_state); 1397 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1398 "Slot state = %u, EP state = %u", 1399 slot_state, ep_state); 1400 break; 1401 case COMP_SLOT_NOT_ENABLED_ERROR: 1402 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1403 slot_id); 1404 break; 1405 default: 1406 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1407 cmd_comp_code); 1408 break; 1409 } 1410 /* OK what do we do now? The endpoint state is hosed, and we 1411 * should never get to this point if the synchronization between 1412 * queueing, and endpoint state are correct. This might happen 1413 * if the device gets disconnected after we've finished 1414 * cancelling URBs, which might not be an error... 1415 */ 1416 } else { 1417 u64 deq; 1418 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1419 if (ep->ep_state & EP_HAS_STREAMS) { 1420 struct xhci_stream_ctx *ctx = 1421 &ep->stream_info->stream_ctx_array[stream_id]; 1422 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1423 1424 /* 1425 * Cadence xHCI controllers store some endpoint state 1426 * information within Rsvd0 fields of Stream Endpoint 1427 * context. This field is not cleared during Set TR 1428 * Dequeue Pointer command which causes XDMA to skip 1429 * over transfer ring and leads to data loss on stream 1430 * pipe. 1431 * To fix this issue driver must clear Rsvd0 field. 1432 */ 1433 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1434 ctx->reserved[0] = 0; 1435 ctx->reserved[1] = 0; 1436 } 1437 } else { 1438 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1439 } 1440 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1441 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1442 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1443 ep->queued_deq_ptr) == deq) { 1444 /* Update the ring's dequeue segment and dequeue pointer 1445 * to reflect the new position. 1446 */ 1447 update_ring_for_set_deq_completion(xhci, ep->vdev, 1448 ep_ring, ep_index); 1449 } else { 1450 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1451 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1452 ep->queued_deq_seg, ep->queued_deq_ptr); 1453 } 1454 } 1455 /* HW cached TDs cleared from cache, give them back */ 1456 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1457 cancelled_td_list) { 1458 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1459 if (td->cancel_status == TD_CLEARING_CACHE) { 1460 td->cancel_status = TD_CLEARED; 1461 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1462 __func__, td->urb); 1463 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1464 } else { 1465 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1466 __func__, td->urb, td->cancel_status); 1467 } 1468 } 1469 cleanup: 1470 ep->ep_state &= ~SET_DEQ_PENDING; 1471 ep->queued_deq_seg = NULL; 1472 ep->queued_deq_ptr = NULL; 1473 1474 /* Check for deferred or newly cancelled TDs */ 1475 if (!list_empty(&ep->cancelled_td_list)) { 1476 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1477 __func__); 1478 xhci_invalidate_cancelled_tds(ep); 1479 /* Try to restart the endpoint if all is done */ 1480 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1481 /* Start giving back any TDs invalidated above */ 1482 xhci_giveback_invalidated_tds(ep); 1483 } else { 1484 /* Restart any rings with pending URBs */ 1485 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1486 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1487 } 1488 } 1489 1490 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1491 union xhci_trb *trb, u32 cmd_comp_code) 1492 { 1493 struct xhci_virt_ep *ep; 1494 struct xhci_ep_ctx *ep_ctx; 1495 unsigned int ep_index; 1496 1497 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1498 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1499 if (!ep) 1500 return; 1501 1502 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1503 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1504 1505 /* This command will only fail if the endpoint wasn't halted, 1506 * but we don't care. 1507 */ 1508 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1509 "Ignoring reset ep completion code of %u", cmd_comp_code); 1510 1511 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1512 xhci_invalidate_cancelled_tds(ep); 1513 1514 /* Clear our internal halted state */ 1515 ep->ep_state &= ~EP_HALTED; 1516 1517 xhci_giveback_invalidated_tds(ep); 1518 1519 /* if this was a soft reset, then restart */ 1520 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1521 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1522 } 1523 1524 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1525 struct xhci_command *command, u32 cmd_comp_code) 1526 { 1527 if (cmd_comp_code == COMP_SUCCESS) 1528 command->slot_id = slot_id; 1529 else 1530 command->slot_id = 0; 1531 } 1532 1533 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1534 { 1535 struct xhci_virt_device *virt_dev; 1536 struct xhci_slot_ctx *slot_ctx; 1537 1538 virt_dev = xhci->devs[slot_id]; 1539 if (!virt_dev) 1540 return; 1541 1542 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1543 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1544 1545 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1546 /* Delete default control endpoint resources */ 1547 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1548 } 1549 1550 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1551 u32 cmd_comp_code) 1552 { 1553 struct xhci_virt_device *virt_dev; 1554 struct xhci_input_control_ctx *ctrl_ctx; 1555 struct xhci_ep_ctx *ep_ctx; 1556 unsigned int ep_index; 1557 u32 add_flags; 1558 1559 /* 1560 * Configure endpoint commands can come from the USB core configuration 1561 * or alt setting changes, or when streams were being configured. 1562 */ 1563 1564 virt_dev = xhci->devs[slot_id]; 1565 if (!virt_dev) 1566 return; 1567 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1568 if (!ctrl_ctx) { 1569 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1570 return; 1571 } 1572 1573 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1574 1575 /* Input ctx add_flags are the endpoint index plus one */ 1576 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1577 1578 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1579 trace_xhci_handle_cmd_config_ep(ep_ctx); 1580 1581 return; 1582 } 1583 1584 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1585 { 1586 struct xhci_virt_device *vdev; 1587 struct xhci_slot_ctx *slot_ctx; 1588 1589 vdev = xhci->devs[slot_id]; 1590 if (!vdev) 1591 return; 1592 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1593 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1594 } 1595 1596 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1597 { 1598 struct xhci_virt_device *vdev; 1599 struct xhci_slot_ctx *slot_ctx; 1600 1601 vdev = xhci->devs[slot_id]; 1602 if (!vdev) { 1603 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1604 slot_id); 1605 return; 1606 } 1607 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1608 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1609 1610 xhci_dbg(xhci, "Completed reset device command.\n"); 1611 } 1612 1613 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1614 struct xhci_event_cmd *event) 1615 { 1616 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1617 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1618 return; 1619 } 1620 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1621 "NEC firmware version %2x.%02x", 1622 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1623 NEC_FW_MINOR(le32_to_cpu(event->status))); 1624 } 1625 1626 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1627 { 1628 list_del(&cmd->cmd_list); 1629 1630 if (cmd->completion) { 1631 cmd->status = status; 1632 complete(cmd->completion); 1633 } else { 1634 kfree(cmd); 1635 } 1636 } 1637 1638 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1639 { 1640 struct xhci_command *cur_cmd, *tmp_cmd; 1641 xhci->current_cmd = NULL; 1642 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1643 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1644 } 1645 1646 void xhci_handle_command_timeout(struct work_struct *work) 1647 { 1648 struct xhci_hcd *xhci; 1649 unsigned long flags; 1650 char str[XHCI_MSG_MAX]; 1651 u64 hw_ring_state; 1652 u32 cmd_field3; 1653 u32 usbsts; 1654 1655 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1656 1657 spin_lock_irqsave(&xhci->lock, flags); 1658 1659 /* 1660 * If timeout work is pending, or current_cmd is NULL, it means we 1661 * raced with command completion. Command is handled so just return. 1662 */ 1663 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1664 spin_unlock_irqrestore(&xhci->lock, flags); 1665 return; 1666 } 1667 1668 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1669 usbsts = readl(&xhci->op_regs->status); 1670 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1671 1672 /* Bail out and tear down xhci if a stop endpoint command failed */ 1673 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1674 struct xhci_virt_ep *ep; 1675 1676 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1677 1678 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1679 TRB_TO_EP_INDEX(cmd_field3)); 1680 if (ep) 1681 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1682 1683 xhci_halt(xhci); 1684 xhci_hc_died(xhci); 1685 goto time_out_completed; 1686 } 1687 1688 /* mark this command to be cancelled */ 1689 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1690 1691 /* Make sure command ring is running before aborting it */ 1692 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1693 if (hw_ring_state == ~(u64)0) { 1694 xhci_hc_died(xhci); 1695 goto time_out_completed; 1696 } 1697 1698 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1699 (hw_ring_state & CMD_RING_RUNNING)) { 1700 /* Prevent new doorbell, and start command abort */ 1701 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1702 xhci_dbg(xhci, "Command timeout\n"); 1703 xhci_abort_cmd_ring(xhci, flags); 1704 goto time_out_completed; 1705 } 1706 1707 /* host removed. Bail out */ 1708 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1709 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1710 xhci_cleanup_command_queue(xhci); 1711 1712 goto time_out_completed; 1713 } 1714 1715 /* command timeout on stopped ring, ring can't be aborted */ 1716 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1717 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1718 1719 time_out_completed: 1720 spin_unlock_irqrestore(&xhci->lock, flags); 1721 return; 1722 } 1723 1724 static void handle_cmd_completion(struct xhci_hcd *xhci, 1725 struct xhci_event_cmd *event) 1726 { 1727 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1728 u64 cmd_dma; 1729 dma_addr_t cmd_dequeue_dma; 1730 u32 cmd_comp_code; 1731 union xhci_trb *cmd_trb; 1732 struct xhci_command *cmd; 1733 u32 cmd_type; 1734 1735 if (slot_id >= MAX_HC_SLOTS) { 1736 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1737 return; 1738 } 1739 1740 cmd_dma = le64_to_cpu(event->cmd_trb); 1741 cmd_trb = xhci->cmd_ring->dequeue; 1742 1743 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1744 1745 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1746 1747 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1748 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1749 complete_all(&xhci->cmd_ring_stop_completion); 1750 return; 1751 } 1752 1753 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1754 cmd_trb); 1755 /* 1756 * Check whether the completion event is for our internal kept 1757 * command. 1758 */ 1759 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1760 xhci_warn(xhci, 1761 "ERROR mismatched command completion event\n"); 1762 return; 1763 } 1764 1765 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1766 1767 cancel_delayed_work(&xhci->cmd_timer); 1768 1769 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1770 xhci_err(xhci, 1771 "Command completion event does not match command\n"); 1772 return; 1773 } 1774 1775 /* 1776 * Host aborted the command ring, check if the current command was 1777 * supposed to be aborted, otherwise continue normally. 1778 * The command ring is stopped now, but the xHC will issue a Command 1779 * Ring Stopped event which will cause us to restart it. 1780 */ 1781 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1782 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1783 if (cmd->status == COMP_COMMAND_ABORTED) { 1784 if (xhci->current_cmd == cmd) 1785 xhci->current_cmd = NULL; 1786 goto event_handled; 1787 } 1788 } 1789 1790 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1791 switch (cmd_type) { 1792 case TRB_ENABLE_SLOT: 1793 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1794 break; 1795 case TRB_DISABLE_SLOT: 1796 xhci_handle_cmd_disable_slot(xhci, slot_id); 1797 break; 1798 case TRB_CONFIG_EP: 1799 if (!cmd->completion) 1800 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1801 break; 1802 case TRB_EVAL_CONTEXT: 1803 break; 1804 case TRB_ADDR_DEV: 1805 xhci_handle_cmd_addr_dev(xhci, slot_id); 1806 break; 1807 case TRB_STOP_RING: 1808 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1809 le32_to_cpu(cmd_trb->generic.field[3]))); 1810 if (!cmd->completion) 1811 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1812 cmd_comp_code); 1813 break; 1814 case TRB_SET_DEQ: 1815 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1816 le32_to_cpu(cmd_trb->generic.field[3]))); 1817 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1818 break; 1819 case TRB_CMD_NOOP: 1820 /* Is this an aborted command turned to NO-OP? */ 1821 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1822 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1823 break; 1824 case TRB_RESET_EP: 1825 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1826 le32_to_cpu(cmd_trb->generic.field[3]))); 1827 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1828 break; 1829 case TRB_RESET_DEV: 1830 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1831 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1832 */ 1833 slot_id = TRB_TO_SLOT_ID( 1834 le32_to_cpu(cmd_trb->generic.field[3])); 1835 xhci_handle_cmd_reset_dev(xhci, slot_id); 1836 break; 1837 case TRB_NEC_GET_FW: 1838 xhci_handle_cmd_nec_get_fw(xhci, event); 1839 break; 1840 default: 1841 /* Skip over unknown commands on the event ring */ 1842 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1843 break; 1844 } 1845 1846 /* restart timer if this wasn't the last command */ 1847 if (!list_is_singular(&xhci->cmd_list)) { 1848 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1849 struct xhci_command, cmd_list); 1850 xhci_mod_cmd_timer(xhci); 1851 } else if (xhci->current_cmd == cmd) { 1852 xhci->current_cmd = NULL; 1853 } 1854 1855 event_handled: 1856 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1857 1858 inc_deq(xhci, xhci->cmd_ring); 1859 } 1860 1861 static void handle_vendor_event(struct xhci_hcd *xhci, 1862 union xhci_trb *event, u32 trb_type) 1863 { 1864 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1865 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1866 handle_cmd_completion(xhci, &event->event_cmd); 1867 } 1868 1869 static void handle_device_notification(struct xhci_hcd *xhci, 1870 union xhci_trb *event) 1871 { 1872 u32 slot_id; 1873 struct usb_device *udev; 1874 1875 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1876 if (!xhci->devs[slot_id]) { 1877 xhci_warn(xhci, "Device Notification event for " 1878 "unused slot %u\n", slot_id); 1879 return; 1880 } 1881 1882 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1883 slot_id); 1884 udev = xhci->devs[slot_id]->udev; 1885 if (udev && udev->parent) 1886 usb_wakeup_notification(udev->parent, udev->portnum); 1887 } 1888 1889 /* 1890 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1891 * Controller. 1892 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1893 * If a connection to a USB 1 device is followed by another connection 1894 * to a USB 2 device. 1895 * 1896 * Reset the PHY after the USB device is disconnected if device speed 1897 * is less than HCD_USB3. 1898 * Retry the reset sequence max of 4 times checking the PLL lock status. 1899 * 1900 */ 1901 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1902 { 1903 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1904 u32 pll_lock_check; 1905 u32 retry_count = 4; 1906 1907 do { 1908 /* Assert PHY reset */ 1909 writel(0x6F, hcd->regs + 0x1048); 1910 udelay(10); 1911 /* De-assert the PHY reset */ 1912 writel(0x7F, hcd->regs + 0x1048); 1913 udelay(200); 1914 pll_lock_check = readl(hcd->regs + 0x1070); 1915 } while (!(pll_lock_check & 0x1) && --retry_count); 1916 } 1917 1918 static void handle_port_status(struct xhci_hcd *xhci, 1919 struct xhci_interrupter *ir, 1920 union xhci_trb *event) 1921 { 1922 struct usb_hcd *hcd; 1923 u32 port_id; 1924 u32 portsc, cmd_reg; 1925 int max_ports; 1926 int slot_id; 1927 unsigned int hcd_portnum; 1928 struct xhci_bus_state *bus_state; 1929 bool bogus_port_status = false; 1930 struct xhci_port *port; 1931 1932 /* Port status change events always have a successful completion code */ 1933 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1934 xhci_warn(xhci, 1935 "WARN: xHC returned failed port status event\n"); 1936 1937 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1938 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1939 1940 if ((port_id <= 0) || (port_id > max_ports)) { 1941 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1942 port_id); 1943 inc_deq(xhci, ir->event_ring); 1944 return; 1945 } 1946 1947 port = &xhci->hw_ports[port_id - 1]; 1948 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1949 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1950 port_id); 1951 bogus_port_status = true; 1952 goto cleanup; 1953 } 1954 1955 /* We might get interrupts after shared_hcd is removed */ 1956 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1957 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1958 bogus_port_status = true; 1959 goto cleanup; 1960 } 1961 1962 hcd = port->rhub->hcd; 1963 bus_state = &port->rhub->bus_state; 1964 hcd_portnum = port->hcd_portnum; 1965 portsc = readl(port->addr); 1966 1967 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1968 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1969 1970 trace_xhci_handle_port_status(hcd_portnum, portsc); 1971 1972 if (hcd->state == HC_STATE_SUSPENDED) { 1973 xhci_dbg(xhci, "resume root hub\n"); 1974 usb_hcd_resume_root_hub(hcd); 1975 } 1976 1977 if (hcd->speed >= HCD_USB3 && 1978 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1979 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1980 if (slot_id && xhci->devs[slot_id]) 1981 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1982 } 1983 1984 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1985 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1986 1987 cmd_reg = readl(&xhci->op_regs->command); 1988 if (!(cmd_reg & CMD_RUN)) { 1989 xhci_warn(xhci, "xHC is not running.\n"); 1990 goto cleanup; 1991 } 1992 1993 if (DEV_SUPERSPEED_ANY(portsc)) { 1994 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1995 /* Set a flag to say the port signaled remote wakeup, 1996 * so we can tell the difference between the end of 1997 * device and host initiated resume. 1998 */ 1999 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2000 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2001 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2002 xhci_set_link_state(xhci, port, XDEV_U0); 2003 /* Need to wait until the next link state change 2004 * indicates the device is actually in U0. 2005 */ 2006 bogus_port_status = true; 2007 goto cleanup; 2008 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2009 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2010 port->resume_timestamp = jiffies + 2011 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2012 set_bit(hcd_portnum, &bus_state->resuming_ports); 2013 /* Do the rest in GetPortStatus after resume time delay. 2014 * Avoid polling roothub status before that so that a 2015 * usb device auto-resume latency around ~40ms. 2016 */ 2017 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2018 mod_timer(&hcd->rh_timer, 2019 port->resume_timestamp); 2020 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2021 bogus_port_status = true; 2022 } 2023 } 2024 2025 if ((portsc & PORT_PLC) && 2026 DEV_SUPERSPEED_ANY(portsc) && 2027 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2028 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2029 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2030 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2031 complete(&port->u3exit_done); 2032 /* We've just brought the device into U0/1/2 through either the 2033 * Resume state after a device remote wakeup, or through the 2034 * U3Exit state after a host-initiated resume. If it's a device 2035 * initiated remote wake, don't pass up the link state change, 2036 * so the roothub behavior is consistent with external 2037 * USB 3.0 hub behavior. 2038 */ 2039 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 2040 if (slot_id && xhci->devs[slot_id]) 2041 xhci_ring_device(xhci, slot_id); 2042 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2043 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2044 usb_wakeup_notification(hcd->self.root_hub, 2045 hcd_portnum + 1); 2046 bogus_port_status = true; 2047 goto cleanup; 2048 } 2049 } 2050 2051 /* 2052 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2053 * RExit to a disconnect state). If so, let the driver know it's 2054 * out of the RExit state. 2055 */ 2056 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2057 complete(&port->rexit_done); 2058 port->rexit_active = false; 2059 bogus_port_status = true; 2060 goto cleanup; 2061 } 2062 2063 if (hcd->speed < HCD_USB3) { 2064 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2065 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2066 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2067 xhci_cavium_reset_phy_quirk(xhci); 2068 } 2069 2070 cleanup: 2071 /* Update event ring dequeue pointer before dropping the lock */ 2072 inc_deq(xhci, ir->event_ring); 2073 2074 /* Don't make the USB core poll the roothub if we got a bad port status 2075 * change event. Besides, at that point we can't tell which roothub 2076 * (USB 2.0 or USB 3.0) to kick. 2077 */ 2078 if (bogus_port_status) 2079 return; 2080 2081 /* 2082 * xHCI port-status-change events occur when the "or" of all the 2083 * status-change bits in the portsc register changes from 0 to 1. 2084 * New status changes won't cause an event if any other change 2085 * bits are still set. When an event occurs, switch over to 2086 * polling to avoid losing status changes. 2087 */ 2088 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2089 __func__, hcd->self.busnum); 2090 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2091 spin_unlock(&xhci->lock); 2092 /* Pass this up to the core */ 2093 usb_hcd_poll_rh_status(hcd); 2094 spin_lock(&xhci->lock); 2095 } 2096 2097 /* 2098 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2099 * at end_trb, which may be in another segment. If the suspect DMA address is a 2100 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2101 * returns 0. 2102 */ 2103 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2104 struct xhci_segment *start_seg, 2105 union xhci_trb *start_trb, 2106 union xhci_trb *end_trb, 2107 dma_addr_t suspect_dma, 2108 bool debug) 2109 { 2110 dma_addr_t start_dma; 2111 dma_addr_t end_seg_dma; 2112 dma_addr_t end_trb_dma; 2113 struct xhci_segment *cur_seg; 2114 2115 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2116 cur_seg = start_seg; 2117 2118 do { 2119 if (start_dma == 0) 2120 return NULL; 2121 /* We may get an event for a Link TRB in the middle of a TD */ 2122 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2123 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2124 /* If the end TRB isn't in this segment, this is set to 0 */ 2125 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2126 2127 if (debug) 2128 xhci_warn(xhci, 2129 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2130 (unsigned long long)suspect_dma, 2131 (unsigned long long)start_dma, 2132 (unsigned long long)end_trb_dma, 2133 (unsigned long long)cur_seg->dma, 2134 (unsigned long long)end_seg_dma); 2135 2136 if (end_trb_dma > 0) { 2137 /* The end TRB is in this segment, so suspect should be here */ 2138 if (start_dma <= end_trb_dma) { 2139 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2140 return cur_seg; 2141 } else { 2142 /* Case for one segment with 2143 * a TD wrapped around to the top 2144 */ 2145 if ((suspect_dma >= start_dma && 2146 suspect_dma <= end_seg_dma) || 2147 (suspect_dma >= cur_seg->dma && 2148 suspect_dma <= end_trb_dma)) 2149 return cur_seg; 2150 } 2151 return NULL; 2152 } else { 2153 /* Might still be somewhere in this segment */ 2154 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2155 return cur_seg; 2156 } 2157 cur_seg = cur_seg->next; 2158 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2159 } while (cur_seg != start_seg); 2160 2161 return NULL; 2162 } 2163 2164 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2165 struct xhci_virt_ep *ep) 2166 { 2167 /* 2168 * As part of low/full-speed endpoint-halt processing 2169 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2170 */ 2171 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2172 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2173 !(ep->ep_state & EP_CLEARING_TT)) { 2174 ep->ep_state |= EP_CLEARING_TT; 2175 td->urb->ep->hcpriv = td->urb->dev; 2176 if (usb_hub_clear_tt_buffer(td->urb)) 2177 ep->ep_state &= ~EP_CLEARING_TT; 2178 } 2179 } 2180 2181 /* Check if an error has halted the endpoint ring. The class driver will 2182 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2183 * However, a babble and other errors also halt the endpoint ring, and the class 2184 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2185 * Ring Dequeue Pointer command manually. 2186 */ 2187 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2188 struct xhci_ep_ctx *ep_ctx, 2189 unsigned int trb_comp_code) 2190 { 2191 /* TRB completion codes that may require a manual halt cleanup */ 2192 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2193 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2194 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2195 /* The 0.95 spec says a babbling control endpoint 2196 * is not halted. The 0.96 spec says it is. Some HW 2197 * claims to be 0.95 compliant, but it halts the control 2198 * endpoint anyway. Check if a babble halted the 2199 * endpoint. 2200 */ 2201 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2202 return 1; 2203 2204 return 0; 2205 } 2206 2207 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2208 { 2209 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2210 /* Vendor defined "informational" completion code, 2211 * treat as not-an-error. 2212 */ 2213 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2214 trb_comp_code); 2215 xhci_dbg(xhci, "Treating code as success.\n"); 2216 return 1; 2217 } 2218 return 0; 2219 } 2220 2221 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2222 struct xhci_ring *ep_ring, struct xhci_td *td, 2223 u32 trb_comp_code) 2224 { 2225 struct xhci_ep_ctx *ep_ctx; 2226 2227 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2228 2229 switch (trb_comp_code) { 2230 case COMP_STOPPED_LENGTH_INVALID: 2231 case COMP_STOPPED_SHORT_PACKET: 2232 case COMP_STOPPED: 2233 /* 2234 * The "Stop Endpoint" completion will take care of any 2235 * stopped TDs. A stopped TD may be restarted, so don't update 2236 * the ring dequeue pointer or take this TD off any lists yet. 2237 */ 2238 return 0; 2239 case COMP_USB_TRANSACTION_ERROR: 2240 case COMP_BABBLE_DETECTED_ERROR: 2241 case COMP_SPLIT_TRANSACTION_ERROR: 2242 /* 2243 * If endpoint context state is not halted we might be 2244 * racing with a reset endpoint command issued by a unsuccessful 2245 * stop endpoint completion (context error). In that case the 2246 * td should be on the cancelled list, and EP_HALTED flag set. 2247 * 2248 * Or then it's not halted due to the 0.95 spec stating that a 2249 * babbling control endpoint should not halt. The 0.96 spec 2250 * again says it should. Some HW claims to be 0.95 compliant, 2251 * but it halts the control endpoint anyway. 2252 */ 2253 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2254 /* 2255 * If EP_HALTED is set and TD is on the cancelled list 2256 * the TD and dequeue pointer will be handled by reset 2257 * ep command completion 2258 */ 2259 if ((ep->ep_state & EP_HALTED) && 2260 !list_empty(&td->cancelled_td_list)) { 2261 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2262 (unsigned long long)xhci_trb_virt_to_dma( 2263 td->start_seg, td->first_trb)); 2264 return 0; 2265 } 2266 /* endpoint not halted, don't reset it */ 2267 break; 2268 } 2269 /* Almost same procedure as for STALL_ERROR below */ 2270 xhci_clear_hub_tt_buffer(xhci, td, ep); 2271 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2272 return 0; 2273 case COMP_STALL_ERROR: 2274 /* 2275 * xhci internal endpoint state will go to a "halt" state for 2276 * any stall, including default control pipe protocol stall. 2277 * To clear the host side halt we need to issue a reset endpoint 2278 * command, followed by a set dequeue command to move past the 2279 * TD. 2280 * Class drivers clear the device side halt from a functional 2281 * stall later. Hub TT buffer should only be cleared for FS/LS 2282 * devices behind HS hubs for functional stalls. 2283 */ 2284 if (ep->ep_index != 0) 2285 xhci_clear_hub_tt_buffer(xhci, td, ep); 2286 2287 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2288 2289 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2290 default: 2291 break; 2292 } 2293 2294 /* Update ring dequeue pointer */ 2295 ep_ring->dequeue = td->last_trb; 2296 ep_ring->deq_seg = td->last_trb_seg; 2297 inc_deq(xhci, ep_ring); 2298 2299 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2300 } 2301 2302 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2303 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2304 union xhci_trb *stop_trb) 2305 { 2306 u32 sum; 2307 union xhci_trb *trb = ring->dequeue; 2308 struct xhci_segment *seg = ring->deq_seg; 2309 2310 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2311 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2312 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2313 } 2314 return sum; 2315 } 2316 2317 /* 2318 * Process control tds, update urb status and actual_length. 2319 */ 2320 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2321 struct xhci_ring *ep_ring, struct xhci_td *td, 2322 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2323 { 2324 struct xhci_ep_ctx *ep_ctx; 2325 u32 trb_comp_code; 2326 u32 remaining, requested; 2327 u32 trb_type; 2328 2329 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2330 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2331 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2332 requested = td->urb->transfer_buffer_length; 2333 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2334 2335 switch (trb_comp_code) { 2336 case COMP_SUCCESS: 2337 if (trb_type != TRB_STATUS) { 2338 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2339 (trb_type == TRB_DATA) ? "data" : "setup"); 2340 td->status = -ESHUTDOWN; 2341 break; 2342 } 2343 td->status = 0; 2344 break; 2345 case COMP_SHORT_PACKET: 2346 td->status = 0; 2347 break; 2348 case COMP_STOPPED_SHORT_PACKET: 2349 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2350 td->urb->actual_length = remaining; 2351 else 2352 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2353 goto finish_td; 2354 case COMP_STOPPED: 2355 switch (trb_type) { 2356 case TRB_SETUP: 2357 td->urb->actual_length = 0; 2358 goto finish_td; 2359 case TRB_DATA: 2360 case TRB_NORMAL: 2361 td->urb->actual_length = requested - remaining; 2362 goto finish_td; 2363 case TRB_STATUS: 2364 td->urb->actual_length = requested; 2365 goto finish_td; 2366 default: 2367 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2368 trb_type); 2369 goto finish_td; 2370 } 2371 case COMP_STOPPED_LENGTH_INVALID: 2372 goto finish_td; 2373 default: 2374 if (!xhci_requires_manual_halt_cleanup(xhci, 2375 ep_ctx, trb_comp_code)) 2376 break; 2377 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2378 trb_comp_code, ep->ep_index); 2379 fallthrough; 2380 case COMP_STALL_ERROR: 2381 /* Did we transfer part of the data (middle) phase? */ 2382 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2383 td->urb->actual_length = requested - remaining; 2384 else if (!td->urb_length_set) 2385 td->urb->actual_length = 0; 2386 goto finish_td; 2387 } 2388 2389 /* stopped at setup stage, no data transferred */ 2390 if (trb_type == TRB_SETUP) 2391 goto finish_td; 2392 2393 /* 2394 * if on data stage then update the actual_length of the URB and flag it 2395 * as set, so it won't be overwritten in the event for the last TRB. 2396 */ 2397 if (trb_type == TRB_DATA || 2398 trb_type == TRB_NORMAL) { 2399 td->urb_length_set = true; 2400 td->urb->actual_length = requested - remaining; 2401 xhci_dbg(xhci, "Waiting for status stage event\n"); 2402 return 0; 2403 } 2404 2405 /* at status stage */ 2406 if (!td->urb_length_set) 2407 td->urb->actual_length = requested; 2408 2409 finish_td: 2410 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2411 } 2412 2413 /* 2414 * Process isochronous tds, update urb packet status and actual_length. 2415 */ 2416 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2417 struct xhci_ring *ep_ring, struct xhci_td *td, 2418 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2419 { 2420 struct urb_priv *urb_priv; 2421 int idx; 2422 struct usb_iso_packet_descriptor *frame; 2423 u32 trb_comp_code; 2424 bool sum_trbs_for_length = false; 2425 u32 remaining, requested, ep_trb_len; 2426 int short_framestatus; 2427 2428 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2429 urb_priv = td->urb->hcpriv; 2430 idx = urb_priv->num_tds_done; 2431 frame = &td->urb->iso_frame_desc[idx]; 2432 requested = frame->length; 2433 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2434 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2435 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2436 -EREMOTEIO : 0; 2437 2438 /* handle completion code */ 2439 switch (trb_comp_code) { 2440 case COMP_SUCCESS: 2441 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2442 if (td->error_mid_td) 2443 break; 2444 if (remaining) { 2445 frame->status = short_framestatus; 2446 sum_trbs_for_length = true; 2447 break; 2448 } 2449 frame->status = 0; 2450 break; 2451 case COMP_SHORT_PACKET: 2452 frame->status = short_framestatus; 2453 sum_trbs_for_length = true; 2454 break; 2455 case COMP_BANDWIDTH_OVERRUN_ERROR: 2456 frame->status = -ECOMM; 2457 break; 2458 case COMP_BABBLE_DETECTED_ERROR: 2459 sum_trbs_for_length = true; 2460 fallthrough; 2461 case COMP_ISOCH_BUFFER_OVERRUN: 2462 frame->status = -EOVERFLOW; 2463 if (ep_trb != td->last_trb) 2464 td->error_mid_td = true; 2465 break; 2466 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2467 case COMP_STALL_ERROR: 2468 frame->status = -EPROTO; 2469 break; 2470 case COMP_USB_TRANSACTION_ERROR: 2471 frame->status = -EPROTO; 2472 sum_trbs_for_length = true; 2473 if (ep_trb != td->last_trb) 2474 td->error_mid_td = true; 2475 break; 2476 case COMP_STOPPED: 2477 sum_trbs_for_length = true; 2478 break; 2479 case COMP_STOPPED_SHORT_PACKET: 2480 /* field normally containing residue now contains tranferred */ 2481 frame->status = short_framestatus; 2482 requested = remaining; 2483 break; 2484 case COMP_STOPPED_LENGTH_INVALID: 2485 requested = 0; 2486 remaining = 0; 2487 break; 2488 default: 2489 sum_trbs_for_length = true; 2490 frame->status = -1; 2491 break; 2492 } 2493 2494 if (td->urb_length_set) 2495 goto finish_td; 2496 2497 if (sum_trbs_for_length) 2498 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2499 ep_trb_len - remaining; 2500 else 2501 frame->actual_length = requested; 2502 2503 td->urb->actual_length += frame->actual_length; 2504 2505 finish_td: 2506 /* Don't give back TD yet if we encountered an error mid TD */ 2507 if (td->error_mid_td && ep_trb != td->last_trb) { 2508 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2509 td->urb_length_set = true; 2510 return 0; 2511 } 2512 2513 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2514 } 2515 2516 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2517 struct xhci_virt_ep *ep, int status) 2518 { 2519 struct urb_priv *urb_priv; 2520 struct usb_iso_packet_descriptor *frame; 2521 int idx; 2522 2523 urb_priv = td->urb->hcpriv; 2524 idx = urb_priv->num_tds_done; 2525 frame = &td->urb->iso_frame_desc[idx]; 2526 2527 /* The transfer is partly done. */ 2528 frame->status = -EXDEV; 2529 2530 /* calc actual length */ 2531 frame->actual_length = 0; 2532 2533 /* Update ring dequeue pointer */ 2534 ep->ring->dequeue = td->last_trb; 2535 ep->ring->deq_seg = td->last_trb_seg; 2536 inc_deq(xhci, ep->ring); 2537 2538 return xhci_td_cleanup(xhci, td, ep->ring, status); 2539 } 2540 2541 /* 2542 * Process bulk and interrupt tds, update urb status and actual_length. 2543 */ 2544 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2545 struct xhci_ring *ep_ring, struct xhci_td *td, 2546 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2547 { 2548 struct xhci_slot_ctx *slot_ctx; 2549 u32 trb_comp_code; 2550 u32 remaining, requested, ep_trb_len; 2551 2552 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2553 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2554 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2555 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2556 requested = td->urb->transfer_buffer_length; 2557 2558 switch (trb_comp_code) { 2559 case COMP_SUCCESS: 2560 ep->err_count = 0; 2561 /* handle success with untransferred data as short packet */ 2562 if (ep_trb != td->last_trb || remaining) { 2563 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2564 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2565 td->urb->ep->desc.bEndpointAddress, 2566 requested, remaining); 2567 } 2568 td->status = 0; 2569 break; 2570 case COMP_SHORT_PACKET: 2571 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2572 td->urb->ep->desc.bEndpointAddress, 2573 requested, remaining); 2574 td->status = 0; 2575 break; 2576 case COMP_STOPPED_SHORT_PACKET: 2577 td->urb->actual_length = remaining; 2578 goto finish_td; 2579 case COMP_STOPPED_LENGTH_INVALID: 2580 /* stopped on ep trb with invalid length, exclude it */ 2581 td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); 2582 goto finish_td; 2583 case COMP_USB_TRANSACTION_ERROR: 2584 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2585 (ep->err_count++ > MAX_SOFT_RETRY) || 2586 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2587 break; 2588 2589 td->status = 0; 2590 2591 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2592 return 0; 2593 default: 2594 /* do nothing */ 2595 break; 2596 } 2597 2598 if (ep_trb == td->last_trb) 2599 td->urb->actual_length = requested - remaining; 2600 else 2601 td->urb->actual_length = 2602 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2603 ep_trb_len - remaining; 2604 finish_td: 2605 if (remaining > requested) { 2606 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2607 remaining); 2608 td->urb->actual_length = 0; 2609 } 2610 2611 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2612 } 2613 2614 /* 2615 * If this function returns an error condition, it means it got a Transfer 2616 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2617 * At this point, the host controller is probably hosed and should be reset. 2618 */ 2619 static int handle_tx_event(struct xhci_hcd *xhci, 2620 struct xhci_interrupter *ir, 2621 struct xhci_transfer_event *event) 2622 { 2623 struct xhci_virt_ep *ep; 2624 struct xhci_ring *ep_ring; 2625 unsigned int slot_id; 2626 int ep_index; 2627 struct xhci_td *td = NULL; 2628 dma_addr_t ep_trb_dma; 2629 struct xhci_segment *ep_seg; 2630 union xhci_trb *ep_trb; 2631 int status = -EINPROGRESS; 2632 struct xhci_ep_ctx *ep_ctx; 2633 u32 trb_comp_code; 2634 int td_num = 0; 2635 bool handling_skipped_tds = false; 2636 2637 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2638 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2639 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2640 ep_trb_dma = le64_to_cpu(event->buffer); 2641 2642 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2643 if (!ep) { 2644 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2645 goto err_out; 2646 } 2647 2648 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2649 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2650 2651 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2652 xhci_err(xhci, 2653 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2654 slot_id, ep_index); 2655 goto err_out; 2656 } 2657 2658 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2659 if (!ep_ring) { 2660 switch (trb_comp_code) { 2661 case COMP_STALL_ERROR: 2662 case COMP_USB_TRANSACTION_ERROR: 2663 case COMP_INVALID_STREAM_TYPE_ERROR: 2664 case COMP_INVALID_STREAM_ID_ERROR: 2665 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2666 ep_index); 2667 if (ep->err_count++ > MAX_SOFT_RETRY) 2668 xhci_handle_halted_endpoint(xhci, ep, NULL, 2669 EP_HARD_RESET); 2670 else 2671 xhci_handle_halted_endpoint(xhci, ep, NULL, 2672 EP_SOFT_RESET); 2673 goto cleanup; 2674 case COMP_RING_UNDERRUN: 2675 case COMP_RING_OVERRUN: 2676 case COMP_STOPPED_LENGTH_INVALID: 2677 goto cleanup; 2678 default: 2679 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2680 slot_id, ep_index); 2681 goto err_out; 2682 } 2683 } 2684 2685 /* Count current td numbers if ep->skip is set */ 2686 if (ep->skip) 2687 td_num += list_count_nodes(&ep_ring->td_list); 2688 2689 /* Look for common error cases */ 2690 switch (trb_comp_code) { 2691 /* Skip codes that require special handling depending on 2692 * transfer type 2693 */ 2694 case COMP_SUCCESS: 2695 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2696 trb_comp_code = COMP_SHORT_PACKET; 2697 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2698 slot_id, ep_index, ep_ring->last_td_was_short); 2699 } 2700 break; 2701 case COMP_SHORT_PACKET: 2702 break; 2703 /* Completion codes for endpoint stopped state */ 2704 case COMP_STOPPED: 2705 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2706 slot_id, ep_index); 2707 break; 2708 case COMP_STOPPED_LENGTH_INVALID: 2709 xhci_dbg(xhci, 2710 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2711 slot_id, ep_index); 2712 break; 2713 case COMP_STOPPED_SHORT_PACKET: 2714 xhci_dbg(xhci, 2715 "Stopped with short packet transfer detected for slot %u ep %u\n", 2716 slot_id, ep_index); 2717 break; 2718 /* Completion codes for endpoint halted state */ 2719 case COMP_STALL_ERROR: 2720 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2721 ep_index); 2722 status = -EPIPE; 2723 break; 2724 case COMP_SPLIT_TRANSACTION_ERROR: 2725 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2726 slot_id, ep_index); 2727 status = -EPROTO; 2728 break; 2729 case COMP_USB_TRANSACTION_ERROR: 2730 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2731 slot_id, ep_index); 2732 status = -EPROTO; 2733 break; 2734 case COMP_BABBLE_DETECTED_ERROR: 2735 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2736 slot_id, ep_index); 2737 status = -EOVERFLOW; 2738 break; 2739 /* Completion codes for endpoint error state */ 2740 case COMP_TRB_ERROR: 2741 xhci_warn(xhci, 2742 "WARN: TRB error for slot %u ep %u on endpoint\n", 2743 slot_id, ep_index); 2744 status = -EILSEQ; 2745 break; 2746 /* completion codes not indicating endpoint state change */ 2747 case COMP_DATA_BUFFER_ERROR: 2748 xhci_warn(xhci, 2749 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2750 slot_id, ep_index); 2751 status = -ENOSR; 2752 break; 2753 case COMP_BANDWIDTH_OVERRUN_ERROR: 2754 xhci_warn(xhci, 2755 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2756 slot_id, ep_index); 2757 break; 2758 case COMP_ISOCH_BUFFER_OVERRUN: 2759 xhci_warn(xhci, 2760 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2761 slot_id, ep_index); 2762 break; 2763 case COMP_RING_UNDERRUN: 2764 /* 2765 * When the Isoch ring is empty, the xHC will generate 2766 * a Ring Overrun Event for IN Isoch endpoint or Ring 2767 * Underrun Event for OUT Isoch endpoint. 2768 */ 2769 xhci_dbg(xhci, "underrun event on endpoint\n"); 2770 if (!list_empty(&ep_ring->td_list)) 2771 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2772 "still with TDs queued?\n", 2773 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2774 ep_index); 2775 goto cleanup; 2776 case COMP_RING_OVERRUN: 2777 xhci_dbg(xhci, "overrun event on endpoint\n"); 2778 if (!list_empty(&ep_ring->td_list)) 2779 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2780 "still with TDs queued?\n", 2781 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2782 ep_index); 2783 goto cleanup; 2784 case COMP_MISSED_SERVICE_ERROR: 2785 /* 2786 * When encounter missed service error, one or more isoc tds 2787 * may be missed by xHC. 2788 * Set skip flag of the ep_ring; Complete the missed tds as 2789 * short transfer when process the ep_ring next time. 2790 */ 2791 ep->skip = true; 2792 xhci_dbg(xhci, 2793 "Miss service interval error for slot %u ep %u, set skip flag\n", 2794 slot_id, ep_index); 2795 goto cleanup; 2796 case COMP_NO_PING_RESPONSE_ERROR: 2797 ep->skip = true; 2798 xhci_dbg(xhci, 2799 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2800 slot_id, ep_index); 2801 goto cleanup; 2802 2803 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2804 /* needs disable slot command to recover */ 2805 xhci_warn(xhci, 2806 "WARN: detect an incompatible device for slot %u ep %u", 2807 slot_id, ep_index); 2808 status = -EPROTO; 2809 break; 2810 default: 2811 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2812 status = 0; 2813 break; 2814 } 2815 xhci_warn(xhci, 2816 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2817 trb_comp_code, slot_id, ep_index); 2818 goto cleanup; 2819 } 2820 2821 do { 2822 /* This TRB should be in the TD at the head of this ring's 2823 * TD list. 2824 */ 2825 if (list_empty(&ep_ring->td_list)) { 2826 /* 2827 * Don't print wanings if it's due to a stopped endpoint 2828 * generating an extra completion event if the device 2829 * was suspended. Or, a event for the last TRB of a 2830 * short TD we already got a short event for. 2831 * The short TD is already removed from the TD list. 2832 */ 2833 2834 if (!(trb_comp_code == COMP_STOPPED || 2835 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2836 ep_ring->last_td_was_short)) { 2837 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2838 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2839 ep_index); 2840 } 2841 if (ep->skip) { 2842 ep->skip = false; 2843 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2844 slot_id, ep_index); 2845 } 2846 if (trb_comp_code == COMP_STALL_ERROR || 2847 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2848 trb_comp_code)) { 2849 xhci_handle_halted_endpoint(xhci, ep, NULL, 2850 EP_HARD_RESET); 2851 } 2852 goto cleanup; 2853 } 2854 2855 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2856 if (ep->skip && td_num == 0) { 2857 ep->skip = false; 2858 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2859 slot_id, ep_index); 2860 goto cleanup; 2861 } 2862 2863 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2864 td_list); 2865 if (ep->skip) 2866 td_num--; 2867 2868 /* Is this a TRB in the currently executing TD? */ 2869 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2870 td->last_trb, ep_trb_dma, false); 2871 2872 /* 2873 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2874 * is not in the current TD pointed by ep_ring->dequeue because 2875 * that the hardware dequeue pointer still at the previous TRB 2876 * of the current TD. The previous TRB maybe a Link TD or the 2877 * last TRB of the previous TD. The command completion handle 2878 * will take care the rest. 2879 */ 2880 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2881 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2882 goto cleanup; 2883 } 2884 2885 if (!ep_seg) { 2886 2887 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2888 skip_isoc_td(xhci, td, ep, status); 2889 goto cleanup; 2890 } 2891 2892 /* 2893 * Some hosts give a spurious success event after a short 2894 * transfer. Ignore it. 2895 */ 2896 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2897 ep_ring->last_td_was_short) { 2898 ep_ring->last_td_was_short = false; 2899 goto cleanup; 2900 } 2901 2902 /* 2903 * xhci 4.10.2 states isoc endpoints should continue 2904 * processing the next TD if there was an error mid TD. 2905 * So host like NEC don't generate an event for the last 2906 * isoc TRB even if the IOC flag is set. 2907 * xhci 4.9.1 states that if there are errors in mult-TRB 2908 * TDs xHC should generate an error for that TRB, and if xHC 2909 * proceeds to the next TD it should genete an event for 2910 * any TRB with IOC flag on the way. Other host follow this. 2911 * So this event might be for the next TD. 2912 */ 2913 if (td->error_mid_td && 2914 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2915 struct xhci_td *td_next = list_next_entry(td, td_list); 2916 2917 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2918 td_next->last_trb, ep_trb_dma, false); 2919 if (ep_seg) { 2920 /* give back previous TD, start handling new */ 2921 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2922 ep_ring->dequeue = td->last_trb; 2923 ep_ring->deq_seg = td->last_trb_seg; 2924 inc_deq(xhci, ep_ring); 2925 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2926 td = td_next; 2927 } 2928 } 2929 2930 if (!ep_seg) { 2931 /* HC is busted, give up! */ 2932 xhci_err(xhci, 2933 "ERROR Transfer event TRB DMA ptr not " 2934 "part of current TD ep_index %d " 2935 "comp_code %u\n", ep_index, 2936 trb_comp_code); 2937 trb_in_td(xhci, ep_ring->deq_seg, 2938 ep_ring->dequeue, td->last_trb, 2939 ep_trb_dma, true); 2940 return -ESHUTDOWN; 2941 } 2942 } 2943 if (trb_comp_code == COMP_SHORT_PACKET) 2944 ep_ring->last_td_was_short = true; 2945 else 2946 ep_ring->last_td_was_short = false; 2947 2948 if (ep->skip) { 2949 xhci_dbg(xhci, 2950 "Found td. Clear skip flag for slot %u ep %u.\n", 2951 slot_id, ep_index); 2952 ep->skip = false; 2953 } 2954 2955 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2956 sizeof(*ep_trb)]; 2957 2958 trace_xhci_handle_transfer(ep_ring, 2959 (struct xhci_generic_trb *) ep_trb); 2960 2961 /* 2962 * No-op TRB could trigger interrupts in a case where 2963 * a URB was killed and a STALL_ERROR happens right 2964 * after the endpoint ring stopped. Reset the halted 2965 * endpoint. Otherwise, the endpoint remains stalled 2966 * indefinitely. 2967 */ 2968 2969 if (trb_is_noop(ep_trb)) { 2970 if (trb_comp_code == COMP_STALL_ERROR || 2971 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2972 trb_comp_code)) 2973 xhci_handle_halted_endpoint(xhci, ep, td, 2974 EP_HARD_RESET); 2975 goto cleanup; 2976 } 2977 2978 td->status = status; 2979 2980 /* update the urb's actual_length and give back to the core */ 2981 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2982 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2983 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2984 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2985 else 2986 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2987 cleanup: 2988 handling_skipped_tds = ep->skip && 2989 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2990 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2991 2992 /* 2993 * Do not update event ring dequeue pointer if we're in a loop 2994 * processing missed tds. 2995 */ 2996 if (!handling_skipped_tds) 2997 inc_deq(xhci, ir->event_ring); 2998 2999 /* 3000 * If ep->skip is set, it means there are missed tds on the 3001 * endpoint ring need to take care of. 3002 * Process them as short transfer until reach the td pointed by 3003 * the event. 3004 */ 3005 } while (handling_skipped_tds); 3006 3007 return 0; 3008 3009 err_out: 3010 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 3011 (unsigned long long) xhci_trb_virt_to_dma( 3012 ir->event_ring->deq_seg, 3013 ir->event_ring->dequeue), 3014 lower_32_bits(le64_to_cpu(event->buffer)), 3015 upper_32_bits(le64_to_cpu(event->buffer)), 3016 le32_to_cpu(event->transfer_len), 3017 le32_to_cpu(event->flags)); 3018 return -ENODEV; 3019 } 3020 3021 /* 3022 * This function handles all OS-owned events on the event ring. It may drop 3023 * xhci->lock between event processing (e.g. to pass up port status changes). 3024 * Returns >0 for "possibly more events to process" (caller should call again), 3025 * otherwise 0 if done. In future, <0 returns should indicate error code. 3026 */ 3027 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3028 { 3029 union xhci_trb *event; 3030 int update_ptrs = 1; 3031 u32 trb_type; 3032 int ret; 3033 3034 /* Event ring hasn't been allocated yet. */ 3035 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 3036 xhci_err(xhci, "ERROR interrupter not ready\n"); 3037 return -ENOMEM; 3038 } 3039 3040 event = ir->event_ring->dequeue; 3041 /* Does the HC or OS own the TRB? */ 3042 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 3043 ir->event_ring->cycle_state) 3044 return 0; 3045 3046 trace_xhci_handle_event(ir->event_ring, &event->generic); 3047 3048 /* 3049 * Barrier between reading the TRB_CYCLE (valid) flag above and any 3050 * speculative reads of the event's flags/data below. 3051 */ 3052 rmb(); 3053 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3054 /* FIXME: Handle more event types. */ 3055 3056 switch (trb_type) { 3057 case TRB_COMPLETION: 3058 handle_cmd_completion(xhci, &event->event_cmd); 3059 break; 3060 case TRB_PORT_STATUS: 3061 handle_port_status(xhci, ir, event); 3062 update_ptrs = 0; 3063 break; 3064 case TRB_TRANSFER: 3065 ret = handle_tx_event(xhci, ir, &event->trans_event); 3066 if (ret >= 0) 3067 update_ptrs = 0; 3068 break; 3069 case TRB_DEV_NOTE: 3070 handle_device_notification(xhci, event); 3071 break; 3072 default: 3073 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3074 handle_vendor_event(xhci, event, trb_type); 3075 else 3076 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3077 } 3078 /* Any of the above functions may drop and re-acquire the lock, so check 3079 * to make sure a watchdog timer didn't mark the host as non-responsive. 3080 */ 3081 if (xhci->xhc_state & XHCI_STATE_DYING) { 3082 xhci_dbg(xhci, "xHCI host dying, returning from " 3083 "event handler.\n"); 3084 return 0; 3085 } 3086 3087 if (update_ptrs) 3088 /* Update SW event ring dequeue pointer */ 3089 inc_deq(xhci, ir->event_ring); 3090 3091 /* Are there more items on the event ring? Caller will call us again to 3092 * check. 3093 */ 3094 return 1; 3095 } 3096 3097 /* 3098 * Update Event Ring Dequeue Pointer: 3099 * - When all events have finished 3100 * - To avoid "Event Ring Full Error" condition 3101 */ 3102 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3103 struct xhci_interrupter *ir, 3104 union xhci_trb *event_ring_deq, 3105 bool clear_ehb) 3106 { 3107 u64 temp_64; 3108 dma_addr_t deq; 3109 3110 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3111 /* If necessary, update the HW's version of the event ring deq ptr. */ 3112 if (event_ring_deq != ir->event_ring->dequeue) { 3113 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3114 ir->event_ring->dequeue); 3115 if (deq == 0) 3116 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3117 /* 3118 * Per 4.9.4, Software writes to the ERDP register shall 3119 * always advance the Event Ring Dequeue Pointer value. 3120 */ 3121 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3122 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3123 return; 3124 3125 /* Update HC event ring dequeue pointer */ 3126 temp_64 &= ERST_DESI_MASK; 3127 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3128 } 3129 3130 /* Clear the event handler busy flag (RW1C) */ 3131 if (clear_ehb) 3132 temp_64 |= ERST_EHB; 3133 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3134 } 3135 3136 /* 3137 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3138 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3139 * indicators of an event TRB error, but we check the status *first* to be safe. 3140 */ 3141 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3142 { 3143 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3144 union xhci_trb *event_ring_deq; 3145 struct xhci_interrupter *ir; 3146 irqreturn_t ret = IRQ_NONE; 3147 u64 temp_64; 3148 u32 status; 3149 int event_loop = 0; 3150 3151 spin_lock(&xhci->lock); 3152 /* Check if the xHC generated the interrupt, or the irq is shared */ 3153 status = readl(&xhci->op_regs->status); 3154 if (status == ~(u32)0) { 3155 xhci_hc_died(xhci); 3156 ret = IRQ_HANDLED; 3157 goto out; 3158 } 3159 3160 if (!(status & STS_EINT)) 3161 goto out; 3162 3163 if (status & STS_HCE) { 3164 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3165 goto out; 3166 } 3167 3168 if (status & STS_FATAL) { 3169 xhci_warn(xhci, "WARNING: Host System Error\n"); 3170 xhci_halt(xhci); 3171 ret = IRQ_HANDLED; 3172 goto out; 3173 } 3174 3175 /* 3176 * Clear the op reg interrupt status first, 3177 * so we can receive interrupts from other MSI-X interrupters. 3178 * Write 1 to clear the interrupt status. 3179 */ 3180 status |= STS_EINT; 3181 writel(status, &xhci->op_regs->status); 3182 3183 /* This is the handler of the primary interrupter */ 3184 ir = xhci->interrupter; 3185 if (!hcd->msi_enabled) { 3186 u32 irq_pending; 3187 irq_pending = readl(&ir->ir_set->irq_pending); 3188 irq_pending |= IMAN_IP; 3189 writel(irq_pending, &ir->ir_set->irq_pending); 3190 } 3191 3192 if (xhci->xhc_state & XHCI_STATE_DYING || 3193 xhci->xhc_state & XHCI_STATE_HALTED) { 3194 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3195 "Shouldn't IRQs be disabled?\n"); 3196 /* Clear the event handler busy flag (RW1C); 3197 * the event ring should be empty. 3198 */ 3199 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3200 xhci_write_64(xhci, temp_64 | ERST_EHB, 3201 &ir->ir_set->erst_dequeue); 3202 ret = IRQ_HANDLED; 3203 goto out; 3204 } 3205 3206 event_ring_deq = ir->event_ring->dequeue; 3207 /* FIXME this should be a delayed service routine 3208 * that clears the EHB. 3209 */ 3210 while (xhci_handle_event(xhci, ir) > 0) { 3211 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3212 continue; 3213 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3214 event_ring_deq = ir->event_ring->dequeue; 3215 3216 /* ring is half-full, force isoc trbs to interrupt more often */ 3217 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3218 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3219 3220 event_loop = 0; 3221 } 3222 3223 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3224 ret = IRQ_HANDLED; 3225 3226 out: 3227 spin_unlock(&xhci->lock); 3228 3229 return ret; 3230 } 3231 3232 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3233 { 3234 return xhci_irq(hcd); 3235 } 3236 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3237 3238 /**** Endpoint Ring Operations ****/ 3239 3240 /* 3241 * Generic function for queueing a TRB on a ring. 3242 * The caller must have checked to make sure there's room on the ring. 3243 * 3244 * @more_trbs_coming: Will you enqueue more TRBs before calling 3245 * prepare_transfer()? 3246 */ 3247 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3248 bool more_trbs_coming, 3249 u32 field1, u32 field2, u32 field3, u32 field4) 3250 { 3251 struct xhci_generic_trb *trb; 3252 3253 trb = &ring->enqueue->generic; 3254 trb->field[0] = cpu_to_le32(field1); 3255 trb->field[1] = cpu_to_le32(field2); 3256 trb->field[2] = cpu_to_le32(field3); 3257 /* make sure TRB is fully written before giving it to the controller */ 3258 wmb(); 3259 trb->field[3] = cpu_to_le32(field4); 3260 3261 trace_xhci_queue_trb(ring, trb); 3262 3263 inc_enq(xhci, ring, more_trbs_coming); 3264 } 3265 3266 /* 3267 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3268 * expand ring if it start to be full. 3269 */ 3270 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3271 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3272 { 3273 unsigned int link_trb_count = 0; 3274 unsigned int new_segs = 0; 3275 3276 /* Make sure the endpoint has been added to xHC schedule */ 3277 switch (ep_state) { 3278 case EP_STATE_DISABLED: 3279 /* 3280 * USB core changed config/interfaces without notifying us, 3281 * or hardware is reporting the wrong state. 3282 */ 3283 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3284 return -ENOENT; 3285 case EP_STATE_ERROR: 3286 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3287 /* FIXME event handling code for error needs to clear it */ 3288 /* XXX not sure if this should be -ENOENT or not */ 3289 return -EINVAL; 3290 case EP_STATE_HALTED: 3291 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3292 break; 3293 case EP_STATE_STOPPED: 3294 case EP_STATE_RUNNING: 3295 break; 3296 default: 3297 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3298 /* 3299 * FIXME issue Configure Endpoint command to try to get the HC 3300 * back into a known state. 3301 */ 3302 return -EINVAL; 3303 } 3304 3305 if (ep_ring != xhci->cmd_ring) { 3306 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3307 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3308 xhci_err(xhci, "Do not support expand command ring\n"); 3309 return -ENOMEM; 3310 } 3311 3312 if (new_segs) { 3313 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3314 "ERROR no room on ep ring, try ring expansion"); 3315 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3316 xhci_err(xhci, "Ring expansion failed\n"); 3317 return -ENOMEM; 3318 } 3319 } 3320 3321 while (trb_is_link(ep_ring->enqueue)) { 3322 /* If we're not dealing with 0.95 hardware or isoc rings 3323 * on AMD 0.96 host, clear the chain bit. 3324 */ 3325 if (!xhci_link_trb_quirk(xhci) && 3326 !(ep_ring->type == TYPE_ISOC && 3327 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3328 ep_ring->enqueue->link.control &= 3329 cpu_to_le32(~TRB_CHAIN); 3330 else 3331 ep_ring->enqueue->link.control |= 3332 cpu_to_le32(TRB_CHAIN); 3333 3334 wmb(); 3335 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3336 3337 /* Toggle the cycle bit after the last ring segment. */ 3338 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3339 ep_ring->cycle_state ^= 1; 3340 3341 ep_ring->enq_seg = ep_ring->enq_seg->next; 3342 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3343 3344 /* prevent infinite loop if all first trbs are link trbs */ 3345 if (link_trb_count++ > ep_ring->num_segs) { 3346 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3347 return -EINVAL; 3348 } 3349 } 3350 3351 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3352 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3353 return -EINVAL; 3354 } 3355 3356 return 0; 3357 } 3358 3359 static int prepare_transfer(struct xhci_hcd *xhci, 3360 struct xhci_virt_device *xdev, 3361 unsigned int ep_index, 3362 unsigned int stream_id, 3363 unsigned int num_trbs, 3364 struct urb *urb, 3365 unsigned int td_index, 3366 gfp_t mem_flags) 3367 { 3368 int ret; 3369 struct urb_priv *urb_priv; 3370 struct xhci_td *td; 3371 struct xhci_ring *ep_ring; 3372 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3373 3374 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3375 stream_id); 3376 if (!ep_ring) { 3377 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3378 stream_id); 3379 return -EINVAL; 3380 } 3381 3382 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3383 num_trbs, mem_flags); 3384 if (ret) 3385 return ret; 3386 3387 urb_priv = urb->hcpriv; 3388 td = &urb_priv->td[td_index]; 3389 3390 INIT_LIST_HEAD(&td->td_list); 3391 INIT_LIST_HEAD(&td->cancelled_td_list); 3392 3393 if (td_index == 0) { 3394 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3395 if (unlikely(ret)) 3396 return ret; 3397 } 3398 3399 td->urb = urb; 3400 /* Add this TD to the tail of the endpoint ring's TD list */ 3401 list_add_tail(&td->td_list, &ep_ring->td_list); 3402 td->start_seg = ep_ring->enq_seg; 3403 td->first_trb = ep_ring->enqueue; 3404 3405 return 0; 3406 } 3407 3408 unsigned int count_trbs(u64 addr, u64 len) 3409 { 3410 unsigned int num_trbs; 3411 3412 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3413 TRB_MAX_BUFF_SIZE); 3414 if (num_trbs == 0) 3415 num_trbs++; 3416 3417 return num_trbs; 3418 } 3419 3420 static inline unsigned int count_trbs_needed(struct urb *urb) 3421 { 3422 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3423 } 3424 3425 static unsigned int count_sg_trbs_needed(struct urb *urb) 3426 { 3427 struct scatterlist *sg; 3428 unsigned int i, len, full_len, num_trbs = 0; 3429 3430 full_len = urb->transfer_buffer_length; 3431 3432 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3433 len = sg_dma_len(sg); 3434 num_trbs += count_trbs(sg_dma_address(sg), len); 3435 len = min_t(unsigned int, len, full_len); 3436 full_len -= len; 3437 if (full_len == 0) 3438 break; 3439 } 3440 3441 return num_trbs; 3442 } 3443 3444 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3445 { 3446 u64 addr, len; 3447 3448 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3449 len = urb->iso_frame_desc[i].length; 3450 3451 return count_trbs(addr, len); 3452 } 3453 3454 static void check_trb_math(struct urb *urb, int running_total) 3455 { 3456 if (unlikely(running_total != urb->transfer_buffer_length)) 3457 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3458 "queued %#x (%d), asked for %#x (%d)\n", 3459 __func__, 3460 urb->ep->desc.bEndpointAddress, 3461 running_total, running_total, 3462 urb->transfer_buffer_length, 3463 urb->transfer_buffer_length); 3464 } 3465 3466 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3467 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3468 struct xhci_generic_trb *start_trb) 3469 { 3470 /* 3471 * Pass all the TRBs to the hardware at once and make sure this write 3472 * isn't reordered. 3473 */ 3474 wmb(); 3475 if (start_cycle) 3476 start_trb->field[3] |= cpu_to_le32(start_cycle); 3477 else 3478 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3479 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3480 } 3481 3482 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3483 struct xhci_ep_ctx *ep_ctx) 3484 { 3485 int xhci_interval; 3486 int ep_interval; 3487 3488 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3489 ep_interval = urb->interval; 3490 3491 /* Convert to microframes */ 3492 if (urb->dev->speed == USB_SPEED_LOW || 3493 urb->dev->speed == USB_SPEED_FULL) 3494 ep_interval *= 8; 3495 3496 /* FIXME change this to a warning and a suggestion to use the new API 3497 * to set the polling interval (once the API is added). 3498 */ 3499 if (xhci_interval != ep_interval) { 3500 dev_dbg_ratelimited(&urb->dev->dev, 3501 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3502 ep_interval, ep_interval == 1 ? "" : "s", 3503 xhci_interval, xhci_interval == 1 ? "" : "s"); 3504 urb->interval = xhci_interval; 3505 /* Convert back to frames for LS/FS devices */ 3506 if (urb->dev->speed == USB_SPEED_LOW || 3507 urb->dev->speed == USB_SPEED_FULL) 3508 urb->interval /= 8; 3509 } 3510 } 3511 3512 /* 3513 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3514 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3515 * (comprised of sg list entries) can take several service intervals to 3516 * transmit. 3517 */ 3518 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3519 struct urb *urb, int slot_id, unsigned int ep_index) 3520 { 3521 struct xhci_ep_ctx *ep_ctx; 3522 3523 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3524 check_interval(xhci, urb, ep_ctx); 3525 3526 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3527 } 3528 3529 /* 3530 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3531 * packets remaining in the TD (*not* including this TRB). 3532 * 3533 * Total TD packet count = total_packet_count = 3534 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3535 * 3536 * Packets transferred up to and including this TRB = packets_transferred = 3537 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3538 * 3539 * TD size = total_packet_count - packets_transferred 3540 * 3541 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3542 * including this TRB, right shifted by 10 3543 * 3544 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3545 * This is taken care of in the TRB_TD_SIZE() macro 3546 * 3547 * The last TRB in a TD must have the TD size set to zero. 3548 */ 3549 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3550 int trb_buff_len, unsigned int td_total_len, 3551 struct urb *urb, bool more_trbs_coming) 3552 { 3553 u32 maxp, total_packet_count; 3554 3555 /* MTK xHCI 0.96 contains some features from 1.0 */ 3556 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3557 return ((td_total_len - transferred) >> 10); 3558 3559 /* One TRB with a zero-length data packet. */ 3560 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3561 trb_buff_len == td_total_len) 3562 return 0; 3563 3564 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3565 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3566 trb_buff_len = 0; 3567 3568 maxp = usb_endpoint_maxp(&urb->ep->desc); 3569 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3570 3571 /* Queueing functions don't count the current TRB into transferred */ 3572 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3573 } 3574 3575 3576 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3577 u32 *trb_buff_len, struct xhci_segment *seg) 3578 { 3579 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3580 unsigned int unalign; 3581 unsigned int max_pkt; 3582 u32 new_buff_len; 3583 size_t len; 3584 3585 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3586 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3587 3588 /* we got lucky, last normal TRB data on segment is packet aligned */ 3589 if (unalign == 0) 3590 return 0; 3591 3592 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3593 unalign, *trb_buff_len); 3594 3595 /* is the last nornal TRB alignable by splitting it */ 3596 if (*trb_buff_len > unalign) { 3597 *trb_buff_len -= unalign; 3598 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3599 return 0; 3600 } 3601 3602 /* 3603 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3604 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3605 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3606 */ 3607 new_buff_len = max_pkt - (enqd_len % max_pkt); 3608 3609 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3610 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3611 3612 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3613 if (usb_urb_dir_out(urb)) { 3614 if (urb->num_sgs) { 3615 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3616 seg->bounce_buf, new_buff_len, enqd_len); 3617 if (len != new_buff_len) 3618 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3619 len, new_buff_len); 3620 } else { 3621 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3622 } 3623 3624 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3625 max_pkt, DMA_TO_DEVICE); 3626 } else { 3627 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3628 max_pkt, DMA_FROM_DEVICE); 3629 } 3630 3631 if (dma_mapping_error(dev, seg->bounce_dma)) { 3632 /* try without aligning. Some host controllers survive */ 3633 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3634 return 0; 3635 } 3636 *trb_buff_len = new_buff_len; 3637 seg->bounce_len = new_buff_len; 3638 seg->bounce_offs = enqd_len; 3639 3640 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3641 3642 return 1; 3643 } 3644 3645 /* This is very similar to what ehci-q.c qtd_fill() does */ 3646 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3647 struct urb *urb, int slot_id, unsigned int ep_index) 3648 { 3649 struct xhci_ring *ring; 3650 struct urb_priv *urb_priv; 3651 struct xhci_td *td; 3652 struct xhci_generic_trb *start_trb; 3653 struct scatterlist *sg = NULL; 3654 bool more_trbs_coming = true; 3655 bool need_zero_pkt = false; 3656 bool first_trb = true; 3657 unsigned int num_trbs; 3658 unsigned int start_cycle, num_sgs = 0; 3659 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3660 int sent_len, ret; 3661 u32 field, length_field, remainder; 3662 u64 addr, send_addr; 3663 3664 ring = xhci_urb_to_transfer_ring(xhci, urb); 3665 if (!ring) 3666 return -EINVAL; 3667 3668 full_len = urb->transfer_buffer_length; 3669 /* If we have scatter/gather list, we use it. */ 3670 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3671 num_sgs = urb->num_mapped_sgs; 3672 sg = urb->sg; 3673 addr = (u64) sg_dma_address(sg); 3674 block_len = sg_dma_len(sg); 3675 num_trbs = count_sg_trbs_needed(urb); 3676 } else { 3677 num_trbs = count_trbs_needed(urb); 3678 addr = (u64) urb->transfer_dma; 3679 block_len = full_len; 3680 } 3681 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3682 ep_index, urb->stream_id, 3683 num_trbs, urb, 0, mem_flags); 3684 if (unlikely(ret < 0)) 3685 return ret; 3686 3687 urb_priv = urb->hcpriv; 3688 3689 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3690 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3691 need_zero_pkt = true; 3692 3693 td = &urb_priv->td[0]; 3694 3695 /* 3696 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3697 * until we've finished creating all the other TRBs. The ring's cycle 3698 * state may change as we enqueue the other TRBs, so save it too. 3699 */ 3700 start_trb = &ring->enqueue->generic; 3701 start_cycle = ring->cycle_state; 3702 send_addr = addr; 3703 3704 /* Queue the TRBs, even if they are zero-length */ 3705 for (enqd_len = 0; first_trb || enqd_len < full_len; 3706 enqd_len += trb_buff_len) { 3707 field = TRB_TYPE(TRB_NORMAL); 3708 3709 /* TRB buffer should not cross 64KB boundaries */ 3710 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3711 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3712 3713 if (enqd_len + trb_buff_len > full_len) 3714 trb_buff_len = full_len - enqd_len; 3715 3716 /* Don't change the cycle bit of the first TRB until later */ 3717 if (first_trb) { 3718 first_trb = false; 3719 if (start_cycle == 0) 3720 field |= TRB_CYCLE; 3721 } else 3722 field |= ring->cycle_state; 3723 3724 /* Chain all the TRBs together; clear the chain bit in the last 3725 * TRB to indicate it's the last TRB in the chain. 3726 */ 3727 if (enqd_len + trb_buff_len < full_len) { 3728 field |= TRB_CHAIN; 3729 if (trb_is_link(ring->enqueue + 1)) { 3730 if (xhci_align_td(xhci, urb, enqd_len, 3731 &trb_buff_len, 3732 ring->enq_seg)) { 3733 send_addr = ring->enq_seg->bounce_dma; 3734 /* assuming TD won't span 2 segs */ 3735 td->bounce_seg = ring->enq_seg; 3736 } 3737 } 3738 } 3739 if (enqd_len + trb_buff_len >= full_len) { 3740 field &= ~TRB_CHAIN; 3741 field |= TRB_IOC; 3742 more_trbs_coming = false; 3743 td->last_trb = ring->enqueue; 3744 td->last_trb_seg = ring->enq_seg; 3745 if (xhci_urb_suitable_for_idt(urb)) { 3746 memcpy(&send_addr, urb->transfer_buffer, 3747 trb_buff_len); 3748 le64_to_cpus(&send_addr); 3749 field |= TRB_IDT; 3750 } 3751 } 3752 3753 /* Only set interrupt on short packet for IN endpoints */ 3754 if (usb_urb_dir_in(urb)) 3755 field |= TRB_ISP; 3756 3757 /* Set the TRB length, TD size, and interrupter fields. */ 3758 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3759 full_len, urb, more_trbs_coming); 3760 3761 length_field = TRB_LEN(trb_buff_len) | 3762 TRB_TD_SIZE(remainder) | 3763 TRB_INTR_TARGET(0); 3764 3765 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3766 lower_32_bits(send_addr), 3767 upper_32_bits(send_addr), 3768 length_field, 3769 field); 3770 td->num_trbs++; 3771 addr += trb_buff_len; 3772 sent_len = trb_buff_len; 3773 3774 while (sg && sent_len >= block_len) { 3775 /* New sg entry */ 3776 --num_sgs; 3777 sent_len -= block_len; 3778 sg = sg_next(sg); 3779 if (num_sgs != 0 && sg) { 3780 block_len = sg_dma_len(sg); 3781 addr = (u64) sg_dma_address(sg); 3782 addr += sent_len; 3783 } 3784 } 3785 block_len -= sent_len; 3786 send_addr = addr; 3787 } 3788 3789 if (need_zero_pkt) { 3790 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3791 ep_index, urb->stream_id, 3792 1, urb, 1, mem_flags); 3793 urb_priv->td[1].last_trb = ring->enqueue; 3794 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3795 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3796 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3797 urb_priv->td[1].num_trbs++; 3798 } 3799 3800 check_trb_math(urb, enqd_len); 3801 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3802 start_cycle, start_trb); 3803 return 0; 3804 } 3805 3806 /* Caller must have locked xhci->lock */ 3807 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3808 struct urb *urb, int slot_id, unsigned int ep_index) 3809 { 3810 struct xhci_ring *ep_ring; 3811 int num_trbs; 3812 int ret; 3813 struct usb_ctrlrequest *setup; 3814 struct xhci_generic_trb *start_trb; 3815 int start_cycle; 3816 u32 field; 3817 struct urb_priv *urb_priv; 3818 struct xhci_td *td; 3819 3820 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3821 if (!ep_ring) 3822 return -EINVAL; 3823 3824 /* 3825 * Need to copy setup packet into setup TRB, so we can't use the setup 3826 * DMA address. 3827 */ 3828 if (!urb->setup_packet) 3829 return -EINVAL; 3830 3831 if ((xhci->quirks & XHCI_ETRON_HOST) && 3832 urb->dev->speed >= USB_SPEED_SUPER) { 3833 /* 3834 * If next available TRB is the Link TRB in the ring segment then 3835 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3836 * TRB to be breaked by the Link TRB. 3837 */ 3838 if (trb_is_link(ep_ring->enqueue + 1)) { 3839 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3840 queue_trb(xhci, ep_ring, false, 0, 0, 3841 TRB_INTR_TARGET(0), field); 3842 } 3843 } 3844 3845 /* 1 TRB for setup, 1 for status */ 3846 num_trbs = 2; 3847 /* 3848 * Don't need to check if we need additional event data and normal TRBs, 3849 * since data in control transfers will never get bigger than 16MB 3850 * XXX: can we get a buffer that crosses 64KB boundaries? 3851 */ 3852 if (urb->transfer_buffer_length > 0) 3853 num_trbs++; 3854 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3855 ep_index, urb->stream_id, 3856 num_trbs, urb, 0, mem_flags); 3857 if (ret < 0) 3858 return ret; 3859 3860 urb_priv = urb->hcpriv; 3861 td = &urb_priv->td[0]; 3862 td->num_trbs = num_trbs; 3863 3864 /* 3865 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3866 * until we've finished creating all the other TRBs. The ring's cycle 3867 * state may change as we enqueue the other TRBs, so save it too. 3868 */ 3869 start_trb = &ep_ring->enqueue->generic; 3870 start_cycle = ep_ring->cycle_state; 3871 3872 /* Queue setup TRB - see section 6.4.1.2.1 */ 3873 /* FIXME better way to translate setup_packet into two u32 fields? */ 3874 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3875 field = 0; 3876 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3877 if (start_cycle == 0) 3878 field |= 0x1; 3879 3880 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3881 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3882 if (urb->transfer_buffer_length > 0) { 3883 if (setup->bRequestType & USB_DIR_IN) 3884 field |= TRB_TX_TYPE(TRB_DATA_IN); 3885 else 3886 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3887 } 3888 } 3889 3890 queue_trb(xhci, ep_ring, true, 3891 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3892 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3893 TRB_LEN(8) | TRB_INTR_TARGET(0), 3894 /* Immediate data in pointer */ 3895 field); 3896 3897 /* If there's data, queue data TRBs */ 3898 /* Only set interrupt on short packet for IN endpoints */ 3899 if (usb_urb_dir_in(urb)) 3900 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3901 else 3902 field = TRB_TYPE(TRB_DATA); 3903 3904 if (urb->transfer_buffer_length > 0) { 3905 u32 length_field, remainder; 3906 u64 addr; 3907 3908 if (xhci_urb_suitable_for_idt(urb)) { 3909 memcpy(&addr, urb->transfer_buffer, 3910 urb->transfer_buffer_length); 3911 le64_to_cpus(&addr); 3912 field |= TRB_IDT; 3913 } else { 3914 addr = (u64) urb->transfer_dma; 3915 } 3916 3917 remainder = xhci_td_remainder(xhci, 0, 3918 urb->transfer_buffer_length, 3919 urb->transfer_buffer_length, 3920 urb, 1); 3921 length_field = TRB_LEN(urb->transfer_buffer_length) | 3922 TRB_TD_SIZE(remainder) | 3923 TRB_INTR_TARGET(0); 3924 if (setup->bRequestType & USB_DIR_IN) 3925 field |= TRB_DIR_IN; 3926 queue_trb(xhci, ep_ring, true, 3927 lower_32_bits(addr), 3928 upper_32_bits(addr), 3929 length_field, 3930 field | ep_ring->cycle_state); 3931 } 3932 3933 /* Save the DMA address of the last TRB in the TD */ 3934 td->last_trb = ep_ring->enqueue; 3935 td->last_trb_seg = ep_ring->enq_seg; 3936 3937 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3938 /* If the device sent data, the status stage is an OUT transfer */ 3939 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3940 field = 0; 3941 else 3942 field = TRB_DIR_IN; 3943 queue_trb(xhci, ep_ring, false, 3944 0, 3945 0, 3946 TRB_INTR_TARGET(0), 3947 /* Event on completion */ 3948 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3949 3950 giveback_first_trb(xhci, slot_id, ep_index, 0, 3951 start_cycle, start_trb); 3952 return 0; 3953 } 3954 3955 /* 3956 * The transfer burst count field of the isochronous TRB defines the number of 3957 * bursts that are required to move all packets in this TD. Only SuperSpeed 3958 * devices can burst up to bMaxBurst number of packets per service interval. 3959 * This field is zero based, meaning a value of zero in the field means one 3960 * burst. Basically, for everything but SuperSpeed devices, this field will be 3961 * zero. Only xHCI 1.0 host controllers support this field. 3962 */ 3963 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3964 struct urb *urb, unsigned int total_packet_count) 3965 { 3966 unsigned int max_burst; 3967 3968 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3969 return 0; 3970 3971 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3972 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3973 } 3974 3975 /* 3976 * Returns the number of packets in the last "burst" of packets. This field is 3977 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3978 * the last burst packet count is equal to the total number of packets in the 3979 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3980 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3981 * contain 1 to (bMaxBurst + 1) packets. 3982 */ 3983 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3984 struct urb *urb, unsigned int total_packet_count) 3985 { 3986 unsigned int max_burst; 3987 unsigned int residue; 3988 3989 if (xhci->hci_version < 0x100) 3990 return 0; 3991 3992 if (urb->dev->speed >= USB_SPEED_SUPER) { 3993 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3994 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3995 residue = total_packet_count % (max_burst + 1); 3996 /* If residue is zero, the last burst contains (max_burst + 1) 3997 * number of packets, but the TLBPC field is zero-based. 3998 */ 3999 if (residue == 0) 4000 return max_burst; 4001 return residue - 1; 4002 } 4003 if (total_packet_count == 0) 4004 return 0; 4005 return total_packet_count - 1; 4006 } 4007 4008 /* 4009 * Calculates Frame ID field of the isochronous TRB identifies the 4010 * target frame that the Interval associated with this Isochronous 4011 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 4012 * 4013 * Returns actual frame id on success, negative value on error. 4014 */ 4015 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 4016 struct urb *urb, int index) 4017 { 4018 int start_frame, ist, ret = 0; 4019 int start_frame_id, end_frame_id, current_frame_id; 4020 4021 if (urb->dev->speed == USB_SPEED_LOW || 4022 urb->dev->speed == USB_SPEED_FULL) 4023 start_frame = urb->start_frame + index * urb->interval; 4024 else 4025 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4026 4027 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4028 * 4029 * If bit [3] of IST is cleared to '0', software can add a TRB no 4030 * later than IST[2:0] Microframes before that TRB is scheduled to 4031 * be executed. 4032 * If bit [3] of IST is set to '1', software can add a TRB no later 4033 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4034 */ 4035 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4036 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4037 ist <<= 3; 4038 4039 /* Software shall not schedule an Isoch TD with a Frame ID value that 4040 * is less than the Start Frame ID or greater than the End Frame ID, 4041 * where: 4042 * 4043 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4044 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4045 * 4046 * Both the End Frame ID and Start Frame ID values are calculated 4047 * in microframes. When software determines the valid Frame ID value; 4048 * The End Frame ID value should be rounded down to the nearest Frame 4049 * boundary, and the Start Frame ID value should be rounded up to the 4050 * nearest Frame boundary. 4051 */ 4052 current_frame_id = readl(&xhci->run_regs->microframe_index); 4053 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4054 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4055 4056 start_frame &= 0x7ff; 4057 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4058 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4059 4060 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 4061 __func__, index, readl(&xhci->run_regs->microframe_index), 4062 start_frame_id, end_frame_id, start_frame); 4063 4064 if (start_frame_id < end_frame_id) { 4065 if (start_frame > end_frame_id || 4066 start_frame < start_frame_id) 4067 ret = -EINVAL; 4068 } else if (start_frame_id > end_frame_id) { 4069 if ((start_frame > end_frame_id && 4070 start_frame < start_frame_id)) 4071 ret = -EINVAL; 4072 } else { 4073 ret = -EINVAL; 4074 } 4075 4076 if (index == 0) { 4077 if (ret == -EINVAL || start_frame == start_frame_id) { 4078 start_frame = start_frame_id + 1; 4079 if (urb->dev->speed == USB_SPEED_LOW || 4080 urb->dev->speed == USB_SPEED_FULL) 4081 urb->start_frame = start_frame; 4082 else 4083 urb->start_frame = start_frame << 3; 4084 ret = 0; 4085 } 4086 } 4087 4088 if (ret) { 4089 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4090 start_frame, current_frame_id, index, 4091 start_frame_id, end_frame_id); 4092 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4093 return ret; 4094 } 4095 4096 return start_frame; 4097 } 4098 4099 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4100 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4101 { 4102 if (xhci->hci_version < 0x100) 4103 return false; 4104 /* always generate an event interrupt for the last TD */ 4105 if (i == num_tds - 1) 4106 return false; 4107 /* 4108 * If AVOID_BEI is set the host handles full event rings poorly, 4109 * generate an event at least every 8th TD to clear the event ring 4110 */ 4111 if (i && xhci->quirks & XHCI_AVOID_BEI) 4112 return !!(i % xhci->isoc_bei_interval); 4113 4114 return true; 4115 } 4116 4117 /* This is for isoc transfer */ 4118 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4119 struct urb *urb, int slot_id, unsigned int ep_index) 4120 { 4121 struct xhci_ring *ep_ring; 4122 struct urb_priv *urb_priv; 4123 struct xhci_td *td; 4124 int num_tds, trbs_per_td; 4125 struct xhci_generic_trb *start_trb; 4126 bool first_trb; 4127 int start_cycle; 4128 u32 field, length_field; 4129 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4130 u64 start_addr, addr; 4131 int i, j; 4132 bool more_trbs_coming; 4133 struct xhci_virt_ep *xep; 4134 int frame_id; 4135 4136 xep = &xhci->devs[slot_id]->eps[ep_index]; 4137 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4138 4139 num_tds = urb->number_of_packets; 4140 if (num_tds < 1) { 4141 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4142 return -EINVAL; 4143 } 4144 start_addr = (u64) urb->transfer_dma; 4145 start_trb = &ep_ring->enqueue->generic; 4146 start_cycle = ep_ring->cycle_state; 4147 4148 urb_priv = urb->hcpriv; 4149 /* Queue the TRBs for each TD, even if they are zero-length */ 4150 for (i = 0; i < num_tds; i++) { 4151 unsigned int total_pkt_count, max_pkt; 4152 unsigned int burst_count, last_burst_pkt_count; 4153 u32 sia_frame_id; 4154 4155 first_trb = true; 4156 running_total = 0; 4157 addr = start_addr + urb->iso_frame_desc[i].offset; 4158 td_len = urb->iso_frame_desc[i].length; 4159 td_remain_len = td_len; 4160 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4161 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4162 4163 /* A zero-length transfer still involves at least one packet. */ 4164 if (total_pkt_count == 0) 4165 total_pkt_count++; 4166 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4167 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4168 urb, total_pkt_count); 4169 4170 trbs_per_td = count_isoc_trbs_needed(urb, i); 4171 4172 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4173 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4174 if (ret < 0) { 4175 if (i == 0) 4176 return ret; 4177 goto cleanup; 4178 } 4179 td = &urb_priv->td[i]; 4180 td->num_trbs = trbs_per_td; 4181 /* use SIA as default, if frame id is used overwrite it */ 4182 sia_frame_id = TRB_SIA; 4183 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4184 HCC_CFC(xhci->hcc_params)) { 4185 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4186 if (frame_id >= 0) 4187 sia_frame_id = TRB_FRAME_ID(frame_id); 4188 } 4189 /* 4190 * Set isoc specific data for the first TRB in a TD. 4191 * Prevent HW from getting the TRBs by keeping the cycle state 4192 * inverted in the first TDs isoc TRB. 4193 */ 4194 field = TRB_TYPE(TRB_ISOC) | 4195 TRB_TLBPC(last_burst_pkt_count) | 4196 sia_frame_id | 4197 (i ? ep_ring->cycle_state : !start_cycle); 4198 4199 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4200 if (!xep->use_extended_tbc) 4201 field |= TRB_TBC(burst_count); 4202 4203 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4204 for (j = 0; j < trbs_per_td; j++) { 4205 u32 remainder = 0; 4206 4207 /* only first TRB is isoc, overwrite otherwise */ 4208 if (!first_trb) 4209 field = TRB_TYPE(TRB_NORMAL) | 4210 ep_ring->cycle_state; 4211 4212 /* Only set interrupt on short packet for IN EPs */ 4213 if (usb_urb_dir_in(urb)) 4214 field |= TRB_ISP; 4215 4216 /* Set the chain bit for all except the last TRB */ 4217 if (j < trbs_per_td - 1) { 4218 more_trbs_coming = true; 4219 field |= TRB_CHAIN; 4220 } else { 4221 more_trbs_coming = false; 4222 td->last_trb = ep_ring->enqueue; 4223 td->last_trb_seg = ep_ring->enq_seg; 4224 field |= TRB_IOC; 4225 if (trb_block_event_intr(xhci, num_tds, i)) 4226 field |= TRB_BEI; 4227 } 4228 /* Calculate TRB length */ 4229 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4230 if (trb_buff_len > td_remain_len) 4231 trb_buff_len = td_remain_len; 4232 4233 /* Set the TRB length, TD size, & interrupter fields. */ 4234 remainder = xhci_td_remainder(xhci, running_total, 4235 trb_buff_len, td_len, 4236 urb, more_trbs_coming); 4237 4238 length_field = TRB_LEN(trb_buff_len) | 4239 TRB_INTR_TARGET(0); 4240 4241 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4242 if (first_trb && xep->use_extended_tbc) 4243 length_field |= TRB_TD_SIZE_TBC(burst_count); 4244 else 4245 length_field |= TRB_TD_SIZE(remainder); 4246 first_trb = false; 4247 4248 queue_trb(xhci, ep_ring, more_trbs_coming, 4249 lower_32_bits(addr), 4250 upper_32_bits(addr), 4251 length_field, 4252 field); 4253 running_total += trb_buff_len; 4254 4255 addr += trb_buff_len; 4256 td_remain_len -= trb_buff_len; 4257 } 4258 4259 /* Check TD length */ 4260 if (running_total != td_len) { 4261 xhci_err(xhci, "ISOC TD length unmatch\n"); 4262 ret = -EINVAL; 4263 goto cleanup; 4264 } 4265 } 4266 4267 /* store the next frame id */ 4268 if (HCC_CFC(xhci->hcc_params)) 4269 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4270 4271 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4272 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4273 usb_amd_quirk_pll_disable(); 4274 } 4275 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4276 4277 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4278 start_cycle, start_trb); 4279 return 0; 4280 cleanup: 4281 /* Clean up a partially enqueued isoc transfer. */ 4282 4283 for (i--; i >= 0; i--) 4284 list_del_init(&urb_priv->td[i].td_list); 4285 4286 /* Use the first TD as a temporary variable to turn the TDs we've queued 4287 * into No-ops with a software-owned cycle bit. That way the hardware 4288 * won't accidentally start executing bogus TDs when we partially 4289 * overwrite them. td->first_trb and td->start_seg are already set. 4290 */ 4291 urb_priv->td[0].last_trb = ep_ring->enqueue; 4292 /* Every TRB except the first & last will have its cycle bit flipped. */ 4293 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4294 4295 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4296 ep_ring->enqueue = urb_priv->td[0].first_trb; 4297 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4298 ep_ring->cycle_state = start_cycle; 4299 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4300 return ret; 4301 } 4302 4303 /* 4304 * Check transfer ring to guarantee there is enough room for the urb. 4305 * Update ISO URB start_frame and interval. 4306 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4307 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4308 * Contiguous Frame ID is not supported by HC. 4309 */ 4310 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4311 struct urb *urb, int slot_id, unsigned int ep_index) 4312 { 4313 struct xhci_virt_device *xdev; 4314 struct xhci_ring *ep_ring; 4315 struct xhci_ep_ctx *ep_ctx; 4316 int start_frame; 4317 int num_tds, num_trbs, i; 4318 int ret; 4319 struct xhci_virt_ep *xep; 4320 int ist; 4321 4322 xdev = xhci->devs[slot_id]; 4323 xep = &xhci->devs[slot_id]->eps[ep_index]; 4324 ep_ring = xdev->eps[ep_index].ring; 4325 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4326 4327 num_trbs = 0; 4328 num_tds = urb->number_of_packets; 4329 for (i = 0; i < num_tds; i++) 4330 num_trbs += count_isoc_trbs_needed(urb, i); 4331 4332 /* Check the ring to guarantee there is enough room for the whole urb. 4333 * Do not insert any td of the urb to the ring if the check failed. 4334 */ 4335 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4336 num_trbs, mem_flags); 4337 if (ret) 4338 return ret; 4339 4340 /* 4341 * Check interval value. This should be done before we start to 4342 * calculate the start frame value. 4343 */ 4344 check_interval(xhci, urb, ep_ctx); 4345 4346 /* Calculate the start frame and put it in urb->start_frame. */ 4347 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4348 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4349 urb->start_frame = xep->next_frame_id; 4350 goto skip_start_over; 4351 } 4352 } 4353 4354 start_frame = readl(&xhci->run_regs->microframe_index); 4355 start_frame &= 0x3fff; 4356 /* 4357 * Round up to the next frame and consider the time before trb really 4358 * gets scheduled by hardare. 4359 */ 4360 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4361 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4362 ist <<= 3; 4363 start_frame += ist + XHCI_CFC_DELAY; 4364 start_frame = roundup(start_frame, 8); 4365 4366 /* 4367 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4368 * is greate than 8 microframes. 4369 */ 4370 if (urb->dev->speed == USB_SPEED_LOW || 4371 urb->dev->speed == USB_SPEED_FULL) { 4372 start_frame = roundup(start_frame, urb->interval << 3); 4373 urb->start_frame = start_frame >> 3; 4374 } else { 4375 start_frame = roundup(start_frame, urb->interval); 4376 urb->start_frame = start_frame; 4377 } 4378 4379 skip_start_over: 4380 4381 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4382 } 4383 4384 /**** Command Ring Operations ****/ 4385 4386 /* Generic function for queueing a command TRB on the command ring. 4387 * Check to make sure there's room on the command ring for one command TRB. 4388 * Also check that there's room reserved for commands that must not fail. 4389 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4390 * then only check for the number of reserved spots. 4391 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4392 * because the command event handler may want to resubmit a failed command. 4393 */ 4394 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4395 u32 field1, u32 field2, 4396 u32 field3, u32 field4, bool command_must_succeed) 4397 { 4398 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4399 int ret; 4400 4401 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4402 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4403 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4404 return -ESHUTDOWN; 4405 } 4406 4407 if (!command_must_succeed) 4408 reserved_trbs++; 4409 4410 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4411 reserved_trbs, GFP_ATOMIC); 4412 if (ret < 0) { 4413 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4414 if (command_must_succeed) 4415 xhci_err(xhci, "ERR: Reserved TRB counting for " 4416 "unfailable commands failed.\n"); 4417 return ret; 4418 } 4419 4420 cmd->command_trb = xhci->cmd_ring->enqueue; 4421 4422 /* if there are no other commands queued we start the timeout timer */ 4423 if (list_empty(&xhci->cmd_list)) { 4424 xhci->current_cmd = cmd; 4425 xhci_mod_cmd_timer(xhci); 4426 } 4427 4428 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4429 4430 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4431 field4 | xhci->cmd_ring->cycle_state); 4432 return 0; 4433 } 4434 4435 /* Queue a slot enable or disable request on the command ring */ 4436 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4437 u32 trb_type, u32 slot_id) 4438 { 4439 return queue_command(xhci, cmd, 0, 0, 0, 4440 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4441 } 4442 4443 /* Queue an address device command TRB */ 4444 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4445 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4446 { 4447 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4448 upper_32_bits(in_ctx_ptr), 0, 4449 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4450 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4451 } 4452 4453 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4454 u32 field1, u32 field2, u32 field3, u32 field4) 4455 { 4456 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4457 } 4458 4459 /* Queue a reset device command TRB */ 4460 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4461 u32 slot_id) 4462 { 4463 return queue_command(xhci, cmd, 0, 0, 0, 4464 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4465 false); 4466 } 4467 4468 /* Queue a configure endpoint command TRB */ 4469 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4470 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4471 u32 slot_id, bool command_must_succeed) 4472 { 4473 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4474 upper_32_bits(in_ctx_ptr), 0, 4475 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4476 command_must_succeed); 4477 } 4478 4479 /* Queue an evaluate context command TRB */ 4480 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4481 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4482 { 4483 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4484 upper_32_bits(in_ctx_ptr), 0, 4485 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4486 command_must_succeed); 4487 } 4488 4489 /* 4490 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4491 * activity on an endpoint that is about to be suspended. 4492 */ 4493 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4494 int slot_id, unsigned int ep_index, int suspend) 4495 { 4496 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4497 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4498 u32 type = TRB_TYPE(TRB_STOP_RING); 4499 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4500 4501 return queue_command(xhci, cmd, 0, 0, 0, 4502 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4503 } 4504 4505 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4506 int slot_id, unsigned int ep_index, 4507 enum xhci_ep_reset_type reset_type) 4508 { 4509 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4510 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4511 u32 type = TRB_TYPE(TRB_RESET_EP); 4512 4513 if (reset_type == EP_SOFT_RESET) 4514 type |= TRB_TSP; 4515 4516 return queue_command(xhci, cmd, 0, 0, 0, 4517 trb_slot_id | trb_ep_index | type, false); 4518 } 4519