1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 147 { 148 unsigned long long addr; 149 150 ring->deq_updates++; 151 152 /* 153 * If this is not event ring, and the dequeue pointer 154 * is not on a link TRB, there is one more usable TRB 155 */ 156 if (ring->type != TYPE_EVENT && 157 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 158 ring->num_trbs_free++; 159 160 do { 161 /* 162 * Update the dequeue pointer further if that was a link TRB or 163 * we're at the end of an event ring segment (which doesn't have 164 * link TRBS) 165 */ 166 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 167 if (ring->type == TYPE_EVENT && 168 last_trb_on_last_seg(xhci, ring, 169 ring->deq_seg, ring->dequeue)) { 170 ring->cycle_state = (ring->cycle_state ? 0 : 1); 171 } 172 ring->deq_seg = ring->deq_seg->next; 173 ring->dequeue = ring->deq_seg->trbs; 174 } else { 175 ring->dequeue++; 176 } 177 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 178 179 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 180 } 181 182 /* 183 * See Cycle bit rules. SW is the consumer for the event ring only. 184 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 185 * 186 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 187 * chain bit is set), then set the chain bit in all the following link TRBs. 188 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 189 * have their chain bit cleared (so that each Link TRB is a separate TD). 190 * 191 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 192 * set, but other sections talk about dealing with the chain bit set. This was 193 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 194 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 195 * 196 * @more_trbs_coming: Will you enqueue more TRBs before calling 197 * prepare_transfer()? 198 */ 199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 200 bool more_trbs_coming) 201 { 202 u32 chain; 203 union xhci_trb *next; 204 unsigned long long addr; 205 206 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 207 /* If this is not event ring, there is one less usable TRB */ 208 if (ring->type != TYPE_EVENT && 209 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 210 ring->num_trbs_free--; 211 next = ++(ring->enqueue); 212 213 ring->enq_updates++; 214 /* Update the dequeue pointer further if that was a link TRB or we're at 215 * the end of an event ring segment (which doesn't have link TRBS) 216 */ 217 while (last_trb(xhci, ring, ring->enq_seg, next)) { 218 if (ring->type != TYPE_EVENT) { 219 /* 220 * If the caller doesn't plan on enqueueing more 221 * TDs before ringing the doorbell, then we 222 * don't want to give the link TRB to the 223 * hardware just yet. We'll give the link TRB 224 * back in prepare_ring() just before we enqueue 225 * the TD at the top of the ring. 226 */ 227 if (!chain && !more_trbs_coming) 228 break; 229 230 /* If we're not dealing with 0.95 hardware or 231 * isoc rings on AMD 0.96 host, 232 * carry over the chain bit of the previous TRB 233 * (which may mean the chain bit is cleared). 234 */ 235 if (!(ring->type == TYPE_ISOC && 236 (xhci->quirks & XHCI_AMD_0x96_HOST)) 237 && !xhci_link_trb_quirk(xhci)) { 238 next->link.control &= 239 cpu_to_le32(~TRB_CHAIN); 240 next->link.control |= 241 cpu_to_le32(chain); 242 } 243 /* Give this link TRB to the hardware */ 244 wmb(); 245 next->link.control ^= cpu_to_le32(TRB_CYCLE); 246 247 /* Toggle the cycle bit after the last ring segment. */ 248 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 249 ring->cycle_state = (ring->cycle_state ? 0 : 1); 250 } 251 } 252 ring->enq_seg = ring->enq_seg->next; 253 ring->enqueue = ring->enq_seg->trbs; 254 next = ring->enqueue; 255 } 256 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 257 } 258 259 /* 260 * Check to see if there's room to enqueue num_trbs on the ring and make sure 261 * enqueue pointer will not advance into dequeue segment. See rules above. 262 */ 263 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 264 unsigned int num_trbs) 265 { 266 int num_trbs_in_deq_seg; 267 268 if (ring->num_trbs_free < num_trbs) 269 return 0; 270 271 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 272 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 273 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 274 return 0; 275 } 276 277 return 1; 278 } 279 280 /* Ring the host controller doorbell after placing a command on the ring */ 281 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 282 { 283 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 284 return; 285 286 xhci_dbg(xhci, "// Ding dong!\n"); 287 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 288 /* Flush PCI posted writes */ 289 xhci_readl(xhci, &xhci->dba->doorbell[0]); 290 } 291 292 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 293 { 294 u64 temp_64; 295 int ret; 296 297 xhci_dbg(xhci, "Abort command ring\n"); 298 299 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 300 xhci_dbg(xhci, "The command ring isn't running, " 301 "Have the command ring been stopped?\n"); 302 return 0; 303 } 304 305 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 306 if (!(temp_64 & CMD_RING_RUNNING)) { 307 xhci_dbg(xhci, "Command ring had been stopped\n"); 308 return 0; 309 } 310 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 311 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 312 &xhci->op_regs->cmd_ring); 313 314 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 315 * time the completion od all xHCI commands, including 316 * the Command Abort operation. If software doesn't see 317 * CRR negated in a timely manner (e.g. longer than 5 318 * seconds), then it should assume that the there are 319 * larger problems with the xHC and assert HCRST. 320 */ 321 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 322 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 323 if (ret < 0) { 324 xhci_err(xhci, "Stopped the command ring failed, " 325 "maybe the host is dead\n"); 326 xhci->xhc_state |= XHCI_STATE_DYING; 327 xhci_quiesce(xhci); 328 xhci_halt(xhci); 329 return -ESHUTDOWN; 330 } 331 332 return 0; 333 } 334 335 static int xhci_queue_cd(struct xhci_hcd *xhci, 336 struct xhci_command *command, 337 union xhci_trb *cmd_trb) 338 { 339 struct xhci_cd *cd; 340 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 341 if (!cd) 342 return -ENOMEM; 343 INIT_LIST_HEAD(&cd->cancel_cmd_list); 344 345 cd->command = command; 346 cd->cmd_trb = cmd_trb; 347 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 348 349 return 0; 350 } 351 352 /* 353 * Cancel the command which has issue. 354 * 355 * Some commands may hang due to waiting for acknowledgement from 356 * usb device. It is outside of the xHC's ability to control and 357 * will cause the command ring is blocked. When it occurs software 358 * should intervene to recover the command ring. 359 * See Section 4.6.1.1 and 4.6.1.2 360 */ 361 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 362 union xhci_trb *cmd_trb) 363 { 364 int retval = 0; 365 unsigned long flags; 366 367 spin_lock_irqsave(&xhci->lock, flags); 368 369 if (xhci->xhc_state & XHCI_STATE_DYING) { 370 xhci_warn(xhci, "Abort the command ring," 371 " but the xHCI is dead.\n"); 372 retval = -ESHUTDOWN; 373 goto fail; 374 } 375 376 /* queue the cmd desriptor to cancel_cmd_list */ 377 retval = xhci_queue_cd(xhci, command, cmd_trb); 378 if (retval) { 379 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 380 goto fail; 381 } 382 383 /* abort command ring */ 384 retval = xhci_abort_cmd_ring(xhci); 385 if (retval) { 386 xhci_err(xhci, "Abort command ring failed\n"); 387 if (unlikely(retval == -ESHUTDOWN)) { 388 spin_unlock_irqrestore(&xhci->lock, flags); 389 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 390 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 391 return retval; 392 } 393 } 394 395 fail: 396 spin_unlock_irqrestore(&xhci->lock, flags); 397 return retval; 398 } 399 400 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 401 unsigned int slot_id, 402 unsigned int ep_index, 403 unsigned int stream_id) 404 { 405 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 406 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 407 unsigned int ep_state = ep->ep_state; 408 409 /* Don't ring the doorbell for this endpoint if there are pending 410 * cancellations because we don't want to interrupt processing. 411 * We don't want to restart any stream rings if there's a set dequeue 412 * pointer command pending because the device can choose to start any 413 * stream once the endpoint is on the HW schedule. 414 * FIXME - check all the stream rings for pending cancellations. 415 */ 416 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 417 (ep_state & EP_HALTED)) 418 return; 419 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 420 /* The CPU has better things to do at this point than wait for a 421 * write-posting flush. It'll get there soon enough. 422 */ 423 } 424 425 /* Ring the doorbell for any rings with pending URBs */ 426 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index) 429 { 430 unsigned int stream_id; 431 struct xhci_virt_ep *ep; 432 433 ep = &xhci->devs[slot_id]->eps[ep_index]; 434 435 /* A ring has pending URBs if its TD list is not empty */ 436 if (!(ep->ep_state & EP_HAS_STREAMS)) { 437 if (!(list_empty(&ep->ring->td_list))) 438 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 439 return; 440 } 441 442 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 443 stream_id++) { 444 struct xhci_stream_info *stream_info = ep->stream_info; 445 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 446 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 447 stream_id); 448 } 449 } 450 451 /* 452 * Find the segment that trb is in. Start searching in start_seg. 453 * If we must move past a segment that has a link TRB with a toggle cycle state 454 * bit set, then we will toggle the value pointed at by cycle_state. 455 */ 456 static struct xhci_segment *find_trb_seg( 457 struct xhci_segment *start_seg, 458 union xhci_trb *trb, int *cycle_state) 459 { 460 struct xhci_segment *cur_seg = start_seg; 461 struct xhci_generic_trb *generic_trb; 462 463 while (cur_seg->trbs > trb || 464 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 465 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 466 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 467 *cycle_state ^= 0x1; 468 cur_seg = cur_seg->next; 469 if (cur_seg == start_seg) 470 /* Looped over the entire list. Oops! */ 471 return NULL; 472 } 473 return cur_seg; 474 } 475 476 477 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 478 unsigned int slot_id, unsigned int ep_index, 479 unsigned int stream_id) 480 { 481 struct xhci_virt_ep *ep; 482 483 ep = &xhci->devs[slot_id]->eps[ep_index]; 484 /* Common case: no streams */ 485 if (!(ep->ep_state & EP_HAS_STREAMS)) 486 return ep->ring; 487 488 if (stream_id == 0) { 489 xhci_warn(xhci, 490 "WARN: Slot ID %u, ep index %u has streams, " 491 "but URB has no stream ID.\n", 492 slot_id, ep_index); 493 return NULL; 494 } 495 496 if (stream_id < ep->stream_info->num_streams) 497 return ep->stream_info->stream_rings[stream_id]; 498 499 xhci_warn(xhci, 500 "WARN: Slot ID %u, ep index %u has " 501 "stream IDs 1 to %u allocated, " 502 "but stream ID %u is requested.\n", 503 slot_id, ep_index, 504 ep->stream_info->num_streams - 1, 505 stream_id); 506 return NULL; 507 } 508 509 /* Get the right ring for the given URB. 510 * If the endpoint supports streams, boundary check the URB's stream ID. 511 * If the endpoint doesn't support streams, return the singular endpoint ring. 512 */ 513 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 514 struct urb *urb) 515 { 516 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 517 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 518 } 519 520 /* 521 * Move the xHC's endpoint ring dequeue pointer past cur_td. 522 * Record the new state of the xHC's endpoint ring dequeue segment, 523 * dequeue pointer, and new consumer cycle state in state. 524 * Update our internal representation of the ring's dequeue pointer. 525 * 526 * We do this in three jumps: 527 * - First we update our new ring state to be the same as when the xHC stopped. 528 * - Then we traverse the ring to find the segment that contains 529 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 530 * any link TRBs with the toggle cycle bit set. 531 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 532 * if we've moved it past a link TRB with the toggle cycle bit set. 533 * 534 * Some of the uses of xhci_generic_trb are grotty, but if they're done 535 * with correct __le32 accesses they should work fine. Only users of this are 536 * in here. 537 */ 538 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 539 unsigned int slot_id, unsigned int ep_index, 540 unsigned int stream_id, struct xhci_td *cur_td, 541 struct xhci_dequeue_state *state) 542 { 543 struct xhci_virt_device *dev = xhci->devs[slot_id]; 544 struct xhci_ring *ep_ring; 545 struct xhci_generic_trb *trb; 546 struct xhci_ep_ctx *ep_ctx; 547 dma_addr_t addr; 548 549 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 550 ep_index, stream_id); 551 if (!ep_ring) { 552 xhci_warn(xhci, "WARN can't find new dequeue state " 553 "for invalid stream ID %u.\n", 554 stream_id); 555 return; 556 } 557 state->new_cycle_state = 0; 558 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 559 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 560 dev->eps[ep_index].stopped_trb, 561 &state->new_cycle_state); 562 if (!state->new_deq_seg) { 563 WARN_ON(1); 564 return; 565 } 566 567 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 568 xhci_dbg(xhci, "Finding endpoint context\n"); 569 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 570 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 571 572 state->new_deq_ptr = cur_td->last_trb; 573 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 574 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 575 state->new_deq_ptr, 576 &state->new_cycle_state); 577 if (!state->new_deq_seg) { 578 WARN_ON(1); 579 return; 580 } 581 582 trb = &state->new_deq_ptr->generic; 583 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 584 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 585 state->new_cycle_state ^= 0x1; 586 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 587 588 /* 589 * If there is only one segment in a ring, find_trb_seg()'s while loop 590 * will not run, and it will return before it has a chance to see if it 591 * needs to toggle the cycle bit. It can't tell if the stalled transfer 592 * ended just before the link TRB on a one-segment ring, or if the TD 593 * wrapped around the top of the ring, because it doesn't have the TD in 594 * question. Look for the one-segment case where stalled TRB's address 595 * is greater than the new dequeue pointer address. 596 */ 597 if (ep_ring->first_seg == ep_ring->first_seg->next && 598 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 599 state->new_cycle_state ^= 0x1; 600 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 601 602 /* Don't update the ring cycle state for the producer (us). */ 603 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 604 state->new_deq_seg); 605 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 606 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 607 (unsigned long long) addr); 608 } 609 610 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 611 * (The last TRB actually points to the ring enqueue pointer, which is not part 612 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 613 */ 614 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 615 struct xhci_td *cur_td, bool flip_cycle) 616 { 617 struct xhci_segment *cur_seg; 618 union xhci_trb *cur_trb; 619 620 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 621 true; 622 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 623 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 624 /* Unchain any chained Link TRBs, but 625 * leave the pointers intact. 626 */ 627 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 628 /* Flip the cycle bit (link TRBs can't be the first 629 * or last TRB). 630 */ 631 if (flip_cycle) 632 cur_trb->generic.field[3] ^= 633 cpu_to_le32(TRB_CYCLE); 634 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 635 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 636 "in seg %p (0x%llx dma)\n", 637 cur_trb, 638 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 639 cur_seg, 640 (unsigned long long)cur_seg->dma); 641 } else { 642 cur_trb->generic.field[0] = 0; 643 cur_trb->generic.field[1] = 0; 644 cur_trb->generic.field[2] = 0; 645 /* Preserve only the cycle bit of this TRB */ 646 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 647 /* Flip the cycle bit except on the first or last TRB */ 648 if (flip_cycle && cur_trb != cur_td->first_trb && 649 cur_trb != cur_td->last_trb) 650 cur_trb->generic.field[3] ^= 651 cpu_to_le32(TRB_CYCLE); 652 cur_trb->generic.field[3] |= cpu_to_le32( 653 TRB_TYPE(TRB_TR_NOOP)); 654 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 655 (unsigned long long) 656 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 657 } 658 if (cur_trb == cur_td->last_trb) 659 break; 660 } 661 } 662 663 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 664 unsigned int ep_index, unsigned int stream_id, 665 struct xhci_segment *deq_seg, 666 union xhci_trb *deq_ptr, u32 cycle_state); 667 668 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 669 unsigned int slot_id, unsigned int ep_index, 670 unsigned int stream_id, 671 struct xhci_dequeue_state *deq_state) 672 { 673 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 674 675 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 676 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 677 deq_state->new_deq_seg, 678 (unsigned long long)deq_state->new_deq_seg->dma, 679 deq_state->new_deq_ptr, 680 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 681 deq_state->new_cycle_state); 682 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 683 deq_state->new_deq_seg, 684 deq_state->new_deq_ptr, 685 (u32) deq_state->new_cycle_state); 686 /* Stop the TD queueing code from ringing the doorbell until 687 * this command completes. The HC won't set the dequeue pointer 688 * if the ring is running, and ringing the doorbell starts the 689 * ring running. 690 */ 691 ep->ep_state |= SET_DEQ_PENDING; 692 } 693 694 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 695 struct xhci_virt_ep *ep) 696 { 697 ep->ep_state &= ~EP_HALT_PENDING; 698 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 699 * timer is running on another CPU, we don't decrement stop_cmds_pending 700 * (since we didn't successfully stop the watchdog timer). 701 */ 702 if (del_timer(&ep->stop_cmd_timer)) 703 ep->stop_cmds_pending--; 704 } 705 706 /* Must be called with xhci->lock held in interrupt context */ 707 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 708 struct xhci_td *cur_td, int status, char *adjective) 709 { 710 struct usb_hcd *hcd; 711 struct urb *urb; 712 struct urb_priv *urb_priv; 713 714 urb = cur_td->urb; 715 urb_priv = urb->hcpriv; 716 urb_priv->td_cnt++; 717 hcd = bus_to_hcd(urb->dev->bus); 718 719 /* Only giveback urb when this is the last td in urb */ 720 if (urb_priv->td_cnt == urb_priv->length) { 721 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 722 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 723 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 724 if (xhci->quirks & XHCI_AMD_PLL_FIX) 725 usb_amd_quirk_pll_enable(); 726 } 727 } 728 usb_hcd_unlink_urb_from_ep(hcd, urb); 729 730 spin_unlock(&xhci->lock); 731 usb_hcd_giveback_urb(hcd, urb, status); 732 xhci_urb_free_priv(xhci, urb_priv); 733 spin_lock(&xhci->lock); 734 } 735 } 736 737 /* 738 * When we get a command completion for a Stop Endpoint Command, we need to 739 * unlink any cancelled TDs from the ring. There are two ways to do that: 740 * 741 * 1. If the HW was in the middle of processing the TD that needs to be 742 * cancelled, then we must move the ring's dequeue pointer past the last TRB 743 * in the TD with a Set Dequeue Pointer Command. 744 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 745 * bit cleared) so that the HW will skip over them. 746 */ 747 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 748 union xhci_trb *trb, struct xhci_event_cmd *event) 749 { 750 unsigned int slot_id; 751 unsigned int ep_index; 752 struct xhci_virt_device *virt_dev; 753 struct xhci_ring *ep_ring; 754 struct xhci_virt_ep *ep; 755 struct list_head *entry; 756 struct xhci_td *cur_td = NULL; 757 struct xhci_td *last_unlinked_td; 758 759 struct xhci_dequeue_state deq_state; 760 761 if (unlikely(TRB_TO_SUSPEND_PORT( 762 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 763 slot_id = TRB_TO_SLOT_ID( 764 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 765 virt_dev = xhci->devs[slot_id]; 766 if (virt_dev) 767 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 768 event); 769 else 770 xhci_warn(xhci, "Stop endpoint command " 771 "completion for disabled slot %u\n", 772 slot_id); 773 return; 774 } 775 776 memset(&deq_state, 0, sizeof(deq_state)); 777 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 778 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 779 ep = &xhci->devs[slot_id]->eps[ep_index]; 780 781 if (list_empty(&ep->cancelled_td_list)) { 782 xhci_stop_watchdog_timer_in_irq(xhci, ep); 783 ep->stopped_td = NULL; 784 ep->stopped_trb = NULL; 785 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 786 return; 787 } 788 789 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 790 * We have the xHCI lock, so nothing can modify this list until we drop 791 * it. We're also in the event handler, so we can't get re-interrupted 792 * if another Stop Endpoint command completes 793 */ 794 list_for_each(entry, &ep->cancelled_td_list) { 795 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 796 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 797 (unsigned long long)xhci_trb_virt_to_dma( 798 cur_td->start_seg, cur_td->first_trb)); 799 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 800 if (!ep_ring) { 801 /* This shouldn't happen unless a driver is mucking 802 * with the stream ID after submission. This will 803 * leave the TD on the hardware ring, and the hardware 804 * will try to execute it, and may access a buffer 805 * that has already been freed. In the best case, the 806 * hardware will execute it, and the event handler will 807 * ignore the completion event for that TD, since it was 808 * removed from the td_list for that endpoint. In 809 * short, don't muck with the stream ID after 810 * submission. 811 */ 812 xhci_warn(xhci, "WARN Cancelled URB %p " 813 "has invalid stream ID %u.\n", 814 cur_td->urb, 815 cur_td->urb->stream_id); 816 goto remove_finished_td; 817 } 818 /* 819 * If we stopped on the TD we need to cancel, then we have to 820 * move the xHC endpoint ring dequeue pointer past this TD. 821 */ 822 if (cur_td == ep->stopped_td) 823 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 824 cur_td->urb->stream_id, 825 cur_td, &deq_state); 826 else 827 td_to_noop(xhci, ep_ring, cur_td, false); 828 remove_finished_td: 829 /* 830 * The event handler won't see a completion for this TD anymore, 831 * so remove it from the endpoint ring's TD list. Keep it in 832 * the cancelled TD list for URB completion later. 833 */ 834 list_del_init(&cur_td->td_list); 835 } 836 last_unlinked_td = cur_td; 837 xhci_stop_watchdog_timer_in_irq(xhci, ep); 838 839 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 840 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 841 xhci_queue_new_dequeue_state(xhci, 842 slot_id, ep_index, 843 ep->stopped_td->urb->stream_id, 844 &deq_state); 845 xhci_ring_cmd_db(xhci); 846 } else { 847 /* Otherwise ring the doorbell(s) to restart queued transfers */ 848 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 849 } 850 ep->stopped_td = NULL; 851 ep->stopped_trb = NULL; 852 853 /* 854 * Drop the lock and complete the URBs in the cancelled TD list. 855 * New TDs to be cancelled might be added to the end of the list before 856 * we can complete all the URBs for the TDs we already unlinked. 857 * So stop when we've completed the URB for the last TD we unlinked. 858 */ 859 do { 860 cur_td = list_entry(ep->cancelled_td_list.next, 861 struct xhci_td, cancelled_td_list); 862 list_del_init(&cur_td->cancelled_td_list); 863 864 /* Clean up the cancelled URB */ 865 /* Doesn't matter what we pass for status, since the core will 866 * just overwrite it (because the URB has been unlinked). 867 */ 868 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 869 870 /* Stop processing the cancelled list if the watchdog timer is 871 * running. 872 */ 873 if (xhci->xhc_state & XHCI_STATE_DYING) 874 return; 875 } while (cur_td != last_unlinked_td); 876 877 /* Return to the event handler with xhci->lock re-acquired */ 878 } 879 880 /* Watchdog timer function for when a stop endpoint command fails to complete. 881 * In this case, we assume the host controller is broken or dying or dead. The 882 * host may still be completing some other events, so we have to be careful to 883 * let the event ring handler and the URB dequeueing/enqueueing functions know 884 * through xhci->state. 885 * 886 * The timer may also fire if the host takes a very long time to respond to the 887 * command, and the stop endpoint command completion handler cannot delete the 888 * timer before the timer function is called. Another endpoint cancellation may 889 * sneak in before the timer function can grab the lock, and that may queue 890 * another stop endpoint command and add the timer back. So we cannot use a 891 * simple flag to say whether there is a pending stop endpoint command for a 892 * particular endpoint. 893 * 894 * Instead we use a combination of that flag and a counter for the number of 895 * pending stop endpoint commands. If the timer is the tail end of the last 896 * stop endpoint command, and the endpoint's command is still pending, we assume 897 * the host is dying. 898 */ 899 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 900 { 901 struct xhci_hcd *xhci; 902 struct xhci_virt_ep *ep; 903 struct xhci_virt_ep *temp_ep; 904 struct xhci_ring *ring; 905 struct xhci_td *cur_td; 906 int ret, i, j; 907 unsigned long flags; 908 909 ep = (struct xhci_virt_ep *) arg; 910 xhci = ep->xhci; 911 912 spin_lock_irqsave(&xhci->lock, flags); 913 914 ep->stop_cmds_pending--; 915 if (xhci->xhc_state & XHCI_STATE_DYING) { 916 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 917 "xHCI as DYING, exiting.\n"); 918 spin_unlock_irqrestore(&xhci->lock, flags); 919 return; 920 } 921 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 922 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 923 "exiting.\n"); 924 spin_unlock_irqrestore(&xhci->lock, flags); 925 return; 926 } 927 928 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 929 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 930 /* Oops, HC is dead or dying or at least not responding to the stop 931 * endpoint command. 932 */ 933 xhci->xhc_state |= XHCI_STATE_DYING; 934 /* Disable interrupts from the host controller and start halting it */ 935 xhci_quiesce(xhci); 936 spin_unlock_irqrestore(&xhci->lock, flags); 937 938 ret = xhci_halt(xhci); 939 940 spin_lock_irqsave(&xhci->lock, flags); 941 if (ret < 0) { 942 /* This is bad; the host is not responding to commands and it's 943 * not allowing itself to be halted. At least interrupts are 944 * disabled. If we call usb_hc_died(), it will attempt to 945 * disconnect all device drivers under this host. Those 946 * disconnect() methods will wait for all URBs to be unlinked, 947 * so we must complete them. 948 */ 949 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 950 xhci_warn(xhci, "Completing active URBs anyway.\n"); 951 /* We could turn all TDs on the rings to no-ops. This won't 952 * help if the host has cached part of the ring, and is slow if 953 * we want to preserve the cycle bit. Skip it and hope the host 954 * doesn't touch the memory. 955 */ 956 } 957 for (i = 0; i < MAX_HC_SLOTS; i++) { 958 if (!xhci->devs[i]) 959 continue; 960 for (j = 0; j < 31; j++) { 961 temp_ep = &xhci->devs[i]->eps[j]; 962 ring = temp_ep->ring; 963 if (!ring) 964 continue; 965 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 966 "ep index %u\n", i, j); 967 while (!list_empty(&ring->td_list)) { 968 cur_td = list_first_entry(&ring->td_list, 969 struct xhci_td, 970 td_list); 971 list_del_init(&cur_td->td_list); 972 if (!list_empty(&cur_td->cancelled_td_list)) 973 list_del_init(&cur_td->cancelled_td_list); 974 xhci_giveback_urb_in_irq(xhci, cur_td, 975 -ESHUTDOWN, "killed"); 976 } 977 while (!list_empty(&temp_ep->cancelled_td_list)) { 978 cur_td = list_first_entry( 979 &temp_ep->cancelled_td_list, 980 struct xhci_td, 981 cancelled_td_list); 982 list_del_init(&cur_td->cancelled_td_list); 983 xhci_giveback_urb_in_irq(xhci, cur_td, 984 -ESHUTDOWN, "killed"); 985 } 986 } 987 } 988 spin_unlock_irqrestore(&xhci->lock, flags); 989 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 990 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 991 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 992 } 993 994 995 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 996 struct xhci_virt_device *dev, 997 struct xhci_ring *ep_ring, 998 unsigned int ep_index) 999 { 1000 union xhci_trb *dequeue_temp; 1001 int num_trbs_free_temp; 1002 bool revert = false; 1003 1004 num_trbs_free_temp = ep_ring->num_trbs_free; 1005 dequeue_temp = ep_ring->dequeue; 1006 1007 /* If we get two back-to-back stalls, and the first stalled transfer 1008 * ends just before a link TRB, the dequeue pointer will be left on 1009 * the link TRB by the code in the while loop. So we have to update 1010 * the dequeue pointer one segment further, or we'll jump off 1011 * the segment into la-la-land. 1012 */ 1013 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1014 ep_ring->deq_seg = ep_ring->deq_seg->next; 1015 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1016 } 1017 1018 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1019 /* We have more usable TRBs */ 1020 ep_ring->num_trbs_free++; 1021 ep_ring->dequeue++; 1022 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1023 ep_ring->dequeue)) { 1024 if (ep_ring->dequeue == 1025 dev->eps[ep_index].queued_deq_ptr) 1026 break; 1027 ep_ring->deq_seg = ep_ring->deq_seg->next; 1028 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1029 } 1030 if (ep_ring->dequeue == dequeue_temp) { 1031 revert = true; 1032 break; 1033 } 1034 } 1035 1036 if (revert) { 1037 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1038 ep_ring->num_trbs_free = num_trbs_free_temp; 1039 } 1040 } 1041 1042 /* 1043 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1044 * we need to clear the set deq pending flag in the endpoint ring state, so that 1045 * the TD queueing code can ring the doorbell again. We also need to ring the 1046 * endpoint doorbell to restart the ring, but only if there aren't more 1047 * cancellations pending. 1048 */ 1049 static void handle_set_deq_completion(struct xhci_hcd *xhci, 1050 struct xhci_event_cmd *event, 1051 union xhci_trb *trb) 1052 { 1053 unsigned int slot_id; 1054 unsigned int ep_index; 1055 unsigned int stream_id; 1056 struct xhci_ring *ep_ring; 1057 struct xhci_virt_device *dev; 1058 struct xhci_ep_ctx *ep_ctx; 1059 struct xhci_slot_ctx *slot_ctx; 1060 1061 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1062 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1063 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1064 dev = xhci->devs[slot_id]; 1065 1066 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1067 if (!ep_ring) { 1068 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1069 "freed stream ID %u\n", 1070 stream_id); 1071 /* XXX: Harmless??? */ 1072 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1073 return; 1074 } 1075 1076 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1077 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1078 1079 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 1080 unsigned int ep_state; 1081 unsigned int slot_state; 1082 1083 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 1084 case COMP_TRB_ERR: 1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1086 "of stream ID configuration\n"); 1087 break; 1088 case COMP_CTX_STATE: 1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1090 "to incorrect slot or ep state.\n"); 1091 ep_state = le32_to_cpu(ep_ctx->ep_info); 1092 ep_state &= EP_STATE_MASK; 1093 slot_state = le32_to_cpu(slot_ctx->dev_state); 1094 slot_state = GET_SLOT_STATE(slot_state); 1095 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 1096 slot_state, ep_state); 1097 break; 1098 case COMP_EBADSLT: 1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1100 "slot %u was not enabled.\n", slot_id); 1101 break; 1102 default: 1103 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1104 "completion code of %u.\n", 1105 GET_COMP_CODE(le32_to_cpu(event->status))); 1106 break; 1107 } 1108 /* OK what do we do now? The endpoint state is hosed, and we 1109 * should never get to this point if the synchronization between 1110 * queueing, and endpoint state are correct. This might happen 1111 * if the device gets disconnected after we've finished 1112 * cancelling URBs, which might not be an error... 1113 */ 1114 } else { 1115 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 1116 le64_to_cpu(ep_ctx->deq)); 1117 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1118 dev->eps[ep_index].queued_deq_ptr) == 1119 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1120 /* Update the ring's dequeue segment and dequeue pointer 1121 * to reflect the new position. 1122 */ 1123 update_ring_for_set_deq_completion(xhci, dev, 1124 ep_ring, ep_index); 1125 } else { 1126 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1127 "Ptr command & xHCI internal state.\n"); 1128 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1129 dev->eps[ep_index].queued_deq_seg, 1130 dev->eps[ep_index].queued_deq_ptr); 1131 } 1132 } 1133 1134 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1135 dev->eps[ep_index].queued_deq_seg = NULL; 1136 dev->eps[ep_index].queued_deq_ptr = NULL; 1137 /* Restart any rings with pending URBs */ 1138 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1139 } 1140 1141 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1142 struct xhci_event_cmd *event, 1143 union xhci_trb *trb) 1144 { 1145 int slot_id; 1146 unsigned int ep_index; 1147 1148 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1149 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1150 /* This command will only fail if the endpoint wasn't halted, 1151 * but we don't care. 1152 */ 1153 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1154 GET_COMP_CODE(le32_to_cpu(event->status))); 1155 1156 /* HW with the reset endpoint quirk needs to have a configure endpoint 1157 * command complete before the endpoint can be used. Queue that here 1158 * because the HW can't handle two commands being queued in a row. 1159 */ 1160 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1161 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1162 xhci_queue_configure_endpoint(xhci, 1163 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1164 false); 1165 xhci_ring_cmd_db(xhci); 1166 } else { 1167 /* Clear our internal halted state and restart the ring(s) */ 1168 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1169 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1170 } 1171 } 1172 1173 /* Complete the command and detele it from the devcie's command queue. 1174 */ 1175 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1176 struct xhci_command *command, u32 status) 1177 { 1178 command->status = status; 1179 list_del(&command->cmd_list); 1180 if (command->completion) 1181 complete(command->completion); 1182 else 1183 xhci_free_command(xhci, command); 1184 } 1185 1186 1187 /* Check to see if a command in the device's command queue matches this one. 1188 * Signal the completion or free the command, and return 1. Return 0 if the 1189 * completed command isn't at the head of the command list. 1190 */ 1191 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1192 struct xhci_virt_device *virt_dev, 1193 struct xhci_event_cmd *event) 1194 { 1195 struct xhci_command *command; 1196 1197 if (list_empty(&virt_dev->cmd_list)) 1198 return 0; 1199 1200 command = list_entry(virt_dev->cmd_list.next, 1201 struct xhci_command, cmd_list); 1202 if (xhci->cmd_ring->dequeue != command->command_trb) 1203 return 0; 1204 1205 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1206 GET_COMP_CODE(le32_to_cpu(event->status))); 1207 return 1; 1208 } 1209 1210 /* 1211 * Finding the command trb need to be cancelled and modifying it to 1212 * NO OP command. And if the command is in device's command wait 1213 * list, finishing and freeing it. 1214 * 1215 * If we can't find the command trb, we think it had already been 1216 * executed. 1217 */ 1218 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1219 { 1220 struct xhci_segment *cur_seg; 1221 union xhci_trb *cmd_trb; 1222 u32 cycle_state; 1223 1224 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1225 return; 1226 1227 /* find the current segment of command ring */ 1228 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1229 xhci->cmd_ring->dequeue, &cycle_state); 1230 1231 if (!cur_seg) { 1232 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1233 xhci->cmd_ring->dequeue, 1234 (unsigned long long) 1235 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1236 xhci->cmd_ring->dequeue)); 1237 xhci_debug_ring(xhci, xhci->cmd_ring); 1238 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1239 return; 1240 } 1241 1242 /* find the command trb matched by cd from command ring */ 1243 for (cmd_trb = xhci->cmd_ring->dequeue; 1244 cmd_trb != xhci->cmd_ring->enqueue; 1245 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1246 /* If the trb is link trb, continue */ 1247 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1248 continue; 1249 1250 if (cur_cd->cmd_trb == cmd_trb) { 1251 1252 /* If the command in device's command list, we should 1253 * finish it and free the command structure. 1254 */ 1255 if (cur_cd->command) 1256 xhci_complete_cmd_in_cmd_wait_list(xhci, 1257 cur_cd->command, COMP_CMD_STOP); 1258 1259 /* get cycle state from the origin command trb */ 1260 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1261 & TRB_CYCLE; 1262 1263 /* modify the command trb to NO OP command */ 1264 cmd_trb->generic.field[0] = 0; 1265 cmd_trb->generic.field[1] = 0; 1266 cmd_trb->generic.field[2] = 0; 1267 cmd_trb->generic.field[3] = cpu_to_le32( 1268 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1269 break; 1270 } 1271 } 1272 } 1273 1274 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1275 { 1276 struct xhci_cd *cur_cd, *next_cd; 1277 1278 if (list_empty(&xhci->cancel_cmd_list)) 1279 return; 1280 1281 list_for_each_entry_safe(cur_cd, next_cd, 1282 &xhci->cancel_cmd_list, cancel_cmd_list) { 1283 xhci_cmd_to_noop(xhci, cur_cd); 1284 list_del(&cur_cd->cancel_cmd_list); 1285 kfree(cur_cd); 1286 } 1287 } 1288 1289 /* 1290 * traversing the cancel_cmd_list. If the command descriptor according 1291 * to cmd_trb is found, the function free it and return 1, otherwise 1292 * return 0. 1293 */ 1294 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1295 union xhci_trb *cmd_trb) 1296 { 1297 struct xhci_cd *cur_cd, *next_cd; 1298 1299 if (list_empty(&xhci->cancel_cmd_list)) 1300 return 0; 1301 1302 list_for_each_entry_safe(cur_cd, next_cd, 1303 &xhci->cancel_cmd_list, cancel_cmd_list) { 1304 if (cur_cd->cmd_trb == cmd_trb) { 1305 if (cur_cd->command) 1306 xhci_complete_cmd_in_cmd_wait_list(xhci, 1307 cur_cd->command, COMP_CMD_STOP); 1308 list_del(&cur_cd->cancel_cmd_list); 1309 kfree(cur_cd); 1310 return 1; 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 /* 1318 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1319 * trb pointed by the command ring dequeue pointer is the trb we want to 1320 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1321 * traverse the cancel_cmd_list to trun the all of the commands according 1322 * to command descriptor to NO-OP trb. 1323 */ 1324 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1325 int cmd_trb_comp_code) 1326 { 1327 int cur_trb_is_good = 0; 1328 1329 /* Searching the cmd trb pointed by the command ring dequeue 1330 * pointer in command descriptor list. If it is found, free it. 1331 */ 1332 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1333 xhci->cmd_ring->dequeue); 1334 1335 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1336 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1337 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1338 /* traversing the cancel_cmd_list and canceling 1339 * the command according to command descriptor 1340 */ 1341 xhci_cancel_cmd_in_cd_list(xhci); 1342 1343 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1344 /* 1345 * ring command ring doorbell again to restart the 1346 * command ring 1347 */ 1348 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1349 xhci_ring_cmd_db(xhci); 1350 } 1351 return cur_trb_is_good; 1352 } 1353 1354 static void handle_cmd_completion(struct xhci_hcd *xhci, 1355 struct xhci_event_cmd *event) 1356 { 1357 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1358 u64 cmd_dma; 1359 dma_addr_t cmd_dequeue_dma; 1360 struct xhci_input_control_ctx *ctrl_ctx; 1361 struct xhci_virt_device *virt_dev; 1362 unsigned int ep_index; 1363 struct xhci_ring *ep_ring; 1364 unsigned int ep_state; 1365 1366 cmd_dma = le64_to_cpu(event->cmd_trb); 1367 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1368 xhci->cmd_ring->dequeue); 1369 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1370 if (cmd_dequeue_dma == 0) { 1371 xhci->error_bitmask |= 1 << 4; 1372 return; 1373 } 1374 /* Does the DMA address match our internal dequeue pointer address? */ 1375 if (cmd_dma != (u64) cmd_dequeue_dma) { 1376 xhci->error_bitmask |= 1 << 5; 1377 return; 1378 } 1379 1380 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) || 1381 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) { 1382 /* If the return value is 0, we think the trb pointed by 1383 * command ring dequeue pointer is a good trb. The good 1384 * trb means we don't want to cancel the trb, but it have 1385 * been stopped by host. So we should handle it normally. 1386 * Otherwise, driver should invoke inc_deq() and return. 1387 */ 1388 if (handle_stopped_cmd_ring(xhci, 1389 GET_COMP_CODE(le32_to_cpu(event->status)))) { 1390 inc_deq(xhci, xhci->cmd_ring); 1391 return; 1392 } 1393 } 1394 1395 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1396 & TRB_TYPE_BITMASK) { 1397 case TRB_TYPE(TRB_ENABLE_SLOT): 1398 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1399 xhci->slot_id = slot_id; 1400 else 1401 xhci->slot_id = 0; 1402 complete(&xhci->addr_dev); 1403 break; 1404 case TRB_TYPE(TRB_DISABLE_SLOT): 1405 if (xhci->devs[slot_id]) { 1406 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1407 /* Delete default control endpoint resources */ 1408 xhci_free_device_endpoint_resources(xhci, 1409 xhci->devs[slot_id], true); 1410 xhci_free_virt_device(xhci, slot_id); 1411 } 1412 break; 1413 case TRB_TYPE(TRB_CONFIG_EP): 1414 virt_dev = xhci->devs[slot_id]; 1415 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1416 break; 1417 /* 1418 * Configure endpoint commands can come from the USB core 1419 * configuration or alt setting changes, or because the HW 1420 * needed an extra configure endpoint command after a reset 1421 * endpoint command or streams were being configured. 1422 * If the command was for a halted endpoint, the xHCI driver 1423 * is not waiting on the configure endpoint command. 1424 */ 1425 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1426 virt_dev->in_ctx); 1427 if (!ctrl_ctx) { 1428 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1429 break; 1430 } 1431 /* Input ctx add_flags are the endpoint index plus one */ 1432 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1433 /* A usb_set_interface() call directly after clearing a halted 1434 * condition may race on this quirky hardware. Not worth 1435 * worrying about, since this is prototype hardware. Not sure 1436 * if this will work for streams, but streams support was 1437 * untested on this prototype. 1438 */ 1439 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1440 ep_index != (unsigned int) -1 && 1441 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1442 le32_to_cpu(ctrl_ctx->drop_flags)) { 1443 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1444 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1445 if (!(ep_state & EP_HALTED)) 1446 goto bandwidth_change; 1447 xhci_dbg(xhci, "Completed config ep cmd - " 1448 "last ep index = %d, state = %d\n", 1449 ep_index, ep_state); 1450 /* Clear internal halted state and restart ring(s) */ 1451 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1452 ~EP_HALTED; 1453 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1454 break; 1455 } 1456 bandwidth_change: 1457 xhci_dbg(xhci, "Completed config ep cmd\n"); 1458 xhci->devs[slot_id]->cmd_status = 1459 GET_COMP_CODE(le32_to_cpu(event->status)); 1460 complete(&xhci->devs[slot_id]->cmd_completion); 1461 break; 1462 case TRB_TYPE(TRB_EVAL_CONTEXT): 1463 virt_dev = xhci->devs[slot_id]; 1464 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1465 break; 1466 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1467 complete(&xhci->devs[slot_id]->cmd_completion); 1468 break; 1469 case TRB_TYPE(TRB_ADDR_DEV): 1470 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1471 complete(&xhci->addr_dev); 1472 break; 1473 case TRB_TYPE(TRB_STOP_RING): 1474 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1475 break; 1476 case TRB_TYPE(TRB_SET_DEQ): 1477 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1478 break; 1479 case TRB_TYPE(TRB_CMD_NOOP): 1480 break; 1481 case TRB_TYPE(TRB_RESET_EP): 1482 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1483 break; 1484 case TRB_TYPE(TRB_RESET_DEV): 1485 xhci_dbg(xhci, "Completed reset device command.\n"); 1486 slot_id = TRB_TO_SLOT_ID( 1487 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1488 virt_dev = xhci->devs[slot_id]; 1489 if (virt_dev) 1490 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1491 else 1492 xhci_warn(xhci, "Reset device command completion " 1493 "for disabled slot %u\n", slot_id); 1494 break; 1495 case TRB_TYPE(TRB_NEC_GET_FW): 1496 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1497 xhci->error_bitmask |= 1 << 6; 1498 break; 1499 } 1500 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1501 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1502 NEC_FW_MINOR(le32_to_cpu(event->status))); 1503 break; 1504 default: 1505 /* Skip over unknown commands on the event ring */ 1506 xhci->error_bitmask |= 1 << 6; 1507 break; 1508 } 1509 inc_deq(xhci, xhci->cmd_ring); 1510 } 1511 1512 static void handle_vendor_event(struct xhci_hcd *xhci, 1513 union xhci_trb *event) 1514 { 1515 u32 trb_type; 1516 1517 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1518 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1519 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1520 handle_cmd_completion(xhci, &event->event_cmd); 1521 } 1522 1523 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1524 * port registers -- USB 3.0 and USB 2.0). 1525 * 1526 * Returns a zero-based port number, which is suitable for indexing into each of 1527 * the split roothubs' port arrays and bus state arrays. 1528 * Add one to it in order to call xhci_find_slot_id_by_port. 1529 */ 1530 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1531 struct xhci_hcd *xhci, u32 port_id) 1532 { 1533 unsigned int i; 1534 unsigned int num_similar_speed_ports = 0; 1535 1536 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1537 * and usb2_ports are 0-based indexes. Count the number of similar 1538 * speed ports, up to 1 port before this port. 1539 */ 1540 for (i = 0; i < (port_id - 1); i++) { 1541 u8 port_speed = xhci->port_array[i]; 1542 1543 /* 1544 * Skip ports that don't have known speeds, or have duplicate 1545 * Extended Capabilities port speed entries. 1546 */ 1547 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1548 continue; 1549 1550 /* 1551 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1552 * 1.1 ports are under the USB 2.0 hub. If the port speed 1553 * matches the device speed, it's a similar speed port. 1554 */ 1555 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1556 num_similar_speed_ports++; 1557 } 1558 return num_similar_speed_ports; 1559 } 1560 1561 static void handle_device_notification(struct xhci_hcd *xhci, 1562 union xhci_trb *event) 1563 { 1564 u32 slot_id; 1565 struct usb_device *udev; 1566 1567 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1568 if (!xhci->devs[slot_id]) { 1569 xhci_warn(xhci, "Device Notification event for " 1570 "unused slot %u\n", slot_id); 1571 return; 1572 } 1573 1574 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1575 slot_id); 1576 udev = xhci->devs[slot_id]->udev; 1577 if (udev && udev->parent) 1578 usb_wakeup_notification(udev->parent, udev->portnum); 1579 } 1580 1581 static void handle_port_status(struct xhci_hcd *xhci, 1582 union xhci_trb *event) 1583 { 1584 struct usb_hcd *hcd; 1585 u32 port_id; 1586 u32 temp, temp1; 1587 int max_ports; 1588 int slot_id; 1589 unsigned int faked_port_index; 1590 u8 major_revision; 1591 struct xhci_bus_state *bus_state; 1592 __le32 __iomem **port_array; 1593 bool bogus_port_status = false; 1594 1595 /* Port status change events always have a successful completion code */ 1596 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1597 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1598 xhci->error_bitmask |= 1 << 8; 1599 } 1600 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1601 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1602 1603 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1604 if ((port_id <= 0) || (port_id > max_ports)) { 1605 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1606 inc_deq(xhci, xhci->event_ring); 1607 return; 1608 } 1609 1610 /* Figure out which usb_hcd this port is attached to: 1611 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1612 */ 1613 major_revision = xhci->port_array[port_id - 1]; 1614 1615 /* Find the right roothub. */ 1616 hcd = xhci_to_hcd(xhci); 1617 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1618 hcd = xhci->shared_hcd; 1619 1620 if (major_revision == 0) { 1621 xhci_warn(xhci, "Event for port %u not in " 1622 "Extended Capabilities, ignoring.\n", 1623 port_id); 1624 bogus_port_status = true; 1625 goto cleanup; 1626 } 1627 if (major_revision == DUPLICATE_ENTRY) { 1628 xhci_warn(xhci, "Event for port %u duplicated in" 1629 "Extended Capabilities, ignoring.\n", 1630 port_id); 1631 bogus_port_status = true; 1632 goto cleanup; 1633 } 1634 1635 /* 1636 * Hardware port IDs reported by a Port Status Change Event include USB 1637 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1638 * resume event, but we first need to translate the hardware port ID 1639 * into the index into the ports on the correct split roothub, and the 1640 * correct bus_state structure. 1641 */ 1642 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1643 if (hcd->speed == HCD_USB3) 1644 port_array = xhci->usb3_ports; 1645 else 1646 port_array = xhci->usb2_ports; 1647 /* Find the faked port hub number */ 1648 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1649 port_id); 1650 1651 temp = xhci_readl(xhci, port_array[faked_port_index]); 1652 if (hcd->state == HC_STATE_SUSPENDED) { 1653 xhci_dbg(xhci, "resume root hub\n"); 1654 usb_hcd_resume_root_hub(hcd); 1655 } 1656 1657 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1658 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1659 1660 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1661 if (!(temp1 & CMD_RUN)) { 1662 xhci_warn(xhci, "xHC is not running.\n"); 1663 goto cleanup; 1664 } 1665 1666 if (DEV_SUPERSPEED(temp)) { 1667 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1668 /* Set a flag to say the port signaled remote wakeup, 1669 * so we can tell the difference between the end of 1670 * device and host initiated resume. 1671 */ 1672 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1673 xhci_test_and_clear_bit(xhci, port_array, 1674 faked_port_index, PORT_PLC); 1675 xhci_set_link_state(xhci, port_array, faked_port_index, 1676 XDEV_U0); 1677 /* Need to wait until the next link state change 1678 * indicates the device is actually in U0. 1679 */ 1680 bogus_port_status = true; 1681 goto cleanup; 1682 } else { 1683 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1684 bus_state->resume_done[faked_port_index] = jiffies + 1685 msecs_to_jiffies(20); 1686 set_bit(faked_port_index, &bus_state->resuming_ports); 1687 mod_timer(&hcd->rh_timer, 1688 bus_state->resume_done[faked_port_index]); 1689 /* Do the rest in GetPortStatus */ 1690 } 1691 } 1692 1693 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1694 DEV_SUPERSPEED(temp)) { 1695 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1696 /* We've just brought the device into U0 through either the 1697 * Resume state after a device remote wakeup, or through the 1698 * U3Exit state after a host-initiated resume. If it's a device 1699 * initiated remote wake, don't pass up the link state change, 1700 * so the roothub behavior is consistent with external 1701 * USB 3.0 hub behavior. 1702 */ 1703 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1704 faked_port_index + 1); 1705 if (slot_id && xhci->devs[slot_id]) 1706 xhci_ring_device(xhci, slot_id); 1707 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1708 bus_state->port_remote_wakeup &= 1709 ~(1 << faked_port_index); 1710 xhci_test_and_clear_bit(xhci, port_array, 1711 faked_port_index, PORT_PLC); 1712 usb_wakeup_notification(hcd->self.root_hub, 1713 faked_port_index + 1); 1714 bogus_port_status = true; 1715 goto cleanup; 1716 } 1717 } 1718 1719 if (hcd->speed != HCD_USB3) 1720 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1721 PORT_PLC); 1722 1723 cleanup: 1724 /* Update event ring dequeue pointer before dropping the lock */ 1725 inc_deq(xhci, xhci->event_ring); 1726 1727 /* Don't make the USB core poll the roothub if we got a bad port status 1728 * change event. Besides, at that point we can't tell which roothub 1729 * (USB 2.0 or USB 3.0) to kick. 1730 */ 1731 if (bogus_port_status) 1732 return; 1733 1734 /* 1735 * xHCI port-status-change events occur when the "or" of all the 1736 * status-change bits in the portsc register changes from 0 to 1. 1737 * New status changes won't cause an event if any other change 1738 * bits are still set. When an event occurs, switch over to 1739 * polling to avoid losing status changes. 1740 */ 1741 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1742 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1743 spin_unlock(&xhci->lock); 1744 /* Pass this up to the core */ 1745 usb_hcd_poll_rh_status(hcd); 1746 spin_lock(&xhci->lock); 1747 } 1748 1749 /* 1750 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1751 * at end_trb, which may be in another segment. If the suspect DMA address is a 1752 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1753 * returns 0. 1754 */ 1755 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1756 union xhci_trb *start_trb, 1757 union xhci_trb *end_trb, 1758 dma_addr_t suspect_dma) 1759 { 1760 dma_addr_t start_dma; 1761 dma_addr_t end_seg_dma; 1762 dma_addr_t end_trb_dma; 1763 struct xhci_segment *cur_seg; 1764 1765 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1766 cur_seg = start_seg; 1767 1768 do { 1769 if (start_dma == 0) 1770 return NULL; 1771 /* We may get an event for a Link TRB in the middle of a TD */ 1772 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1773 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1774 /* If the end TRB isn't in this segment, this is set to 0 */ 1775 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1776 1777 if (end_trb_dma > 0) { 1778 /* The end TRB is in this segment, so suspect should be here */ 1779 if (start_dma <= end_trb_dma) { 1780 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1781 return cur_seg; 1782 } else { 1783 /* Case for one segment with 1784 * a TD wrapped around to the top 1785 */ 1786 if ((suspect_dma >= start_dma && 1787 suspect_dma <= end_seg_dma) || 1788 (suspect_dma >= cur_seg->dma && 1789 suspect_dma <= end_trb_dma)) 1790 return cur_seg; 1791 } 1792 return NULL; 1793 } else { 1794 /* Might still be somewhere in this segment */ 1795 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1796 return cur_seg; 1797 } 1798 cur_seg = cur_seg->next; 1799 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1800 } while (cur_seg != start_seg); 1801 1802 return NULL; 1803 } 1804 1805 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1806 unsigned int slot_id, unsigned int ep_index, 1807 unsigned int stream_id, 1808 struct xhci_td *td, union xhci_trb *event_trb) 1809 { 1810 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1811 ep->ep_state |= EP_HALTED; 1812 ep->stopped_td = td; 1813 ep->stopped_trb = event_trb; 1814 ep->stopped_stream = stream_id; 1815 1816 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1817 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1818 1819 ep->stopped_td = NULL; 1820 ep->stopped_trb = NULL; 1821 ep->stopped_stream = 0; 1822 1823 xhci_ring_cmd_db(xhci); 1824 } 1825 1826 /* Check if an error has halted the endpoint ring. The class driver will 1827 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1828 * However, a babble and other errors also halt the endpoint ring, and the class 1829 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1830 * Ring Dequeue Pointer command manually. 1831 */ 1832 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1833 struct xhci_ep_ctx *ep_ctx, 1834 unsigned int trb_comp_code) 1835 { 1836 /* TRB completion codes that may require a manual halt cleanup */ 1837 if (trb_comp_code == COMP_TX_ERR || 1838 trb_comp_code == COMP_BABBLE || 1839 trb_comp_code == COMP_SPLIT_ERR) 1840 /* The 0.96 spec says a babbling control endpoint 1841 * is not halted. The 0.96 spec says it is. Some HW 1842 * claims to be 0.95 compliant, but it halts the control 1843 * endpoint anyway. Check if a babble halted the 1844 * endpoint. 1845 */ 1846 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1847 cpu_to_le32(EP_STATE_HALTED)) 1848 return 1; 1849 1850 return 0; 1851 } 1852 1853 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1854 { 1855 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1856 /* Vendor defined "informational" completion code, 1857 * treat as not-an-error. 1858 */ 1859 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1860 trb_comp_code); 1861 xhci_dbg(xhci, "Treating code as success.\n"); 1862 return 1; 1863 } 1864 return 0; 1865 } 1866 1867 /* 1868 * Finish the td processing, remove the td from td list; 1869 * Return 1 if the urb can be given back. 1870 */ 1871 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1872 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1873 struct xhci_virt_ep *ep, int *status, bool skip) 1874 { 1875 struct xhci_virt_device *xdev; 1876 struct xhci_ring *ep_ring; 1877 unsigned int slot_id; 1878 int ep_index; 1879 struct urb *urb = NULL; 1880 struct xhci_ep_ctx *ep_ctx; 1881 int ret = 0; 1882 struct urb_priv *urb_priv; 1883 u32 trb_comp_code; 1884 1885 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1886 xdev = xhci->devs[slot_id]; 1887 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1888 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1889 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1890 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1891 1892 if (skip) 1893 goto td_cleanup; 1894 1895 if (trb_comp_code == COMP_STOP_INVAL || 1896 trb_comp_code == COMP_STOP) { 1897 /* The Endpoint Stop Command completion will take care of any 1898 * stopped TDs. A stopped TD may be restarted, so don't update 1899 * the ring dequeue pointer or take this TD off any lists yet. 1900 */ 1901 ep->stopped_td = td; 1902 ep->stopped_trb = event_trb; 1903 return 0; 1904 } else { 1905 if (trb_comp_code == COMP_STALL) { 1906 /* The transfer is completed from the driver's 1907 * perspective, but we need to issue a set dequeue 1908 * command for this stalled endpoint to move the dequeue 1909 * pointer past the TD. We can't do that here because 1910 * the halt condition must be cleared first. Let the 1911 * USB class driver clear the stall later. 1912 */ 1913 ep->stopped_td = td; 1914 ep->stopped_trb = event_trb; 1915 ep->stopped_stream = ep_ring->stream_id; 1916 } else if (xhci_requires_manual_halt_cleanup(xhci, 1917 ep_ctx, trb_comp_code)) { 1918 /* Other types of errors halt the endpoint, but the 1919 * class driver doesn't call usb_reset_endpoint() unless 1920 * the error is -EPIPE. Clear the halted status in the 1921 * xHCI hardware manually. 1922 */ 1923 xhci_cleanup_halted_endpoint(xhci, 1924 slot_id, ep_index, ep_ring->stream_id, 1925 td, event_trb); 1926 } else { 1927 /* Update ring dequeue pointer */ 1928 while (ep_ring->dequeue != td->last_trb) 1929 inc_deq(xhci, ep_ring); 1930 inc_deq(xhci, ep_ring); 1931 } 1932 1933 td_cleanup: 1934 /* Clean up the endpoint's TD list */ 1935 urb = td->urb; 1936 urb_priv = urb->hcpriv; 1937 1938 /* Do one last check of the actual transfer length. 1939 * If the host controller said we transferred more data than 1940 * the buffer length, urb->actual_length will be a very big 1941 * number (since it's unsigned). Play it safe and say we didn't 1942 * transfer anything. 1943 */ 1944 if (urb->actual_length > urb->transfer_buffer_length) { 1945 xhci_warn(xhci, "URB transfer length is wrong, " 1946 "xHC issue? req. len = %u, " 1947 "act. len = %u\n", 1948 urb->transfer_buffer_length, 1949 urb->actual_length); 1950 urb->actual_length = 0; 1951 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1952 *status = -EREMOTEIO; 1953 else 1954 *status = 0; 1955 } 1956 list_del_init(&td->td_list); 1957 /* Was this TD slated to be cancelled but completed anyway? */ 1958 if (!list_empty(&td->cancelled_td_list)) 1959 list_del_init(&td->cancelled_td_list); 1960 1961 urb_priv->td_cnt++; 1962 /* Giveback the urb when all the tds are completed */ 1963 if (urb_priv->td_cnt == urb_priv->length) { 1964 ret = 1; 1965 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1966 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1967 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1968 == 0) { 1969 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1970 usb_amd_quirk_pll_enable(); 1971 } 1972 } 1973 } 1974 } 1975 1976 return ret; 1977 } 1978 1979 /* 1980 * Process control tds, update urb status and actual_length. 1981 */ 1982 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1983 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1984 struct xhci_virt_ep *ep, int *status) 1985 { 1986 struct xhci_virt_device *xdev; 1987 struct xhci_ring *ep_ring; 1988 unsigned int slot_id; 1989 int ep_index; 1990 struct xhci_ep_ctx *ep_ctx; 1991 u32 trb_comp_code; 1992 1993 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1994 xdev = xhci->devs[slot_id]; 1995 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1996 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1997 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1998 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1999 2000 switch (trb_comp_code) { 2001 case COMP_SUCCESS: 2002 if (event_trb == ep_ring->dequeue) { 2003 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2004 "without IOC set??\n"); 2005 *status = -ESHUTDOWN; 2006 } else if (event_trb != td->last_trb) { 2007 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2008 "without IOC set??\n"); 2009 *status = -ESHUTDOWN; 2010 } else { 2011 *status = 0; 2012 } 2013 break; 2014 case COMP_SHORT_TX: 2015 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2016 *status = -EREMOTEIO; 2017 else 2018 *status = 0; 2019 break; 2020 case COMP_STOP_INVAL: 2021 case COMP_STOP: 2022 return finish_td(xhci, td, event_trb, event, ep, status, false); 2023 default: 2024 if (!xhci_requires_manual_halt_cleanup(xhci, 2025 ep_ctx, trb_comp_code)) 2026 break; 2027 xhci_dbg(xhci, "TRB error code %u, " 2028 "halted endpoint index = %u\n", 2029 trb_comp_code, ep_index); 2030 /* else fall through */ 2031 case COMP_STALL: 2032 /* Did we transfer part of the data (middle) phase? */ 2033 if (event_trb != ep_ring->dequeue && 2034 event_trb != td->last_trb) 2035 td->urb->actual_length = 2036 td->urb->transfer_buffer_length - 2037 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2038 else 2039 td->urb->actual_length = 0; 2040 2041 xhci_cleanup_halted_endpoint(xhci, 2042 slot_id, ep_index, 0, td, event_trb); 2043 return finish_td(xhci, td, event_trb, event, ep, status, true); 2044 } 2045 /* 2046 * Did we transfer any data, despite the errors that might have 2047 * happened? I.e. did we get past the setup stage? 2048 */ 2049 if (event_trb != ep_ring->dequeue) { 2050 /* The event was for the status stage */ 2051 if (event_trb == td->last_trb) { 2052 if (td->urb->actual_length != 0) { 2053 /* Don't overwrite a previously set error code 2054 */ 2055 if ((*status == -EINPROGRESS || *status == 0) && 2056 (td->urb->transfer_flags 2057 & URB_SHORT_NOT_OK)) 2058 /* Did we already see a short data 2059 * stage? */ 2060 *status = -EREMOTEIO; 2061 } else { 2062 td->urb->actual_length = 2063 td->urb->transfer_buffer_length; 2064 } 2065 } else { 2066 /* Maybe the event was for the data stage? */ 2067 td->urb->actual_length = 2068 td->urb->transfer_buffer_length - 2069 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2070 xhci_dbg(xhci, "Waiting for status " 2071 "stage event\n"); 2072 return 0; 2073 } 2074 } 2075 2076 return finish_td(xhci, td, event_trb, event, ep, status, false); 2077 } 2078 2079 /* 2080 * Process isochronous tds, update urb packet status and actual_length. 2081 */ 2082 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2083 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2084 struct xhci_virt_ep *ep, int *status) 2085 { 2086 struct xhci_ring *ep_ring; 2087 struct urb_priv *urb_priv; 2088 int idx; 2089 int len = 0; 2090 union xhci_trb *cur_trb; 2091 struct xhci_segment *cur_seg; 2092 struct usb_iso_packet_descriptor *frame; 2093 u32 trb_comp_code; 2094 bool skip_td = false; 2095 2096 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2097 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2098 urb_priv = td->urb->hcpriv; 2099 idx = urb_priv->td_cnt; 2100 frame = &td->urb->iso_frame_desc[idx]; 2101 2102 /* handle completion code */ 2103 switch (trb_comp_code) { 2104 case COMP_SUCCESS: 2105 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2106 frame->status = 0; 2107 break; 2108 } 2109 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2110 trb_comp_code = COMP_SHORT_TX; 2111 case COMP_SHORT_TX: 2112 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2113 -EREMOTEIO : 0; 2114 break; 2115 case COMP_BW_OVER: 2116 frame->status = -ECOMM; 2117 skip_td = true; 2118 break; 2119 case COMP_BUFF_OVER: 2120 case COMP_BABBLE: 2121 frame->status = -EOVERFLOW; 2122 skip_td = true; 2123 break; 2124 case COMP_DEV_ERR: 2125 case COMP_STALL: 2126 case COMP_TX_ERR: 2127 frame->status = -EPROTO; 2128 skip_td = true; 2129 break; 2130 case COMP_STOP: 2131 case COMP_STOP_INVAL: 2132 break; 2133 default: 2134 frame->status = -1; 2135 break; 2136 } 2137 2138 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2139 frame->actual_length = frame->length; 2140 td->urb->actual_length += frame->length; 2141 } else { 2142 for (cur_trb = ep_ring->dequeue, 2143 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2144 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2145 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2146 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2147 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2148 } 2149 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2150 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2151 2152 if (trb_comp_code != COMP_STOP_INVAL) { 2153 frame->actual_length = len; 2154 td->urb->actual_length += len; 2155 } 2156 } 2157 2158 return finish_td(xhci, td, event_trb, event, ep, status, false); 2159 } 2160 2161 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2162 struct xhci_transfer_event *event, 2163 struct xhci_virt_ep *ep, int *status) 2164 { 2165 struct xhci_ring *ep_ring; 2166 struct urb_priv *urb_priv; 2167 struct usb_iso_packet_descriptor *frame; 2168 int idx; 2169 2170 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2171 urb_priv = td->urb->hcpriv; 2172 idx = urb_priv->td_cnt; 2173 frame = &td->urb->iso_frame_desc[idx]; 2174 2175 /* The transfer is partly done. */ 2176 frame->status = -EXDEV; 2177 2178 /* calc actual length */ 2179 frame->actual_length = 0; 2180 2181 /* Update ring dequeue pointer */ 2182 while (ep_ring->dequeue != td->last_trb) 2183 inc_deq(xhci, ep_ring); 2184 inc_deq(xhci, ep_ring); 2185 2186 return finish_td(xhci, td, NULL, event, ep, status, true); 2187 } 2188 2189 /* 2190 * Process bulk and interrupt tds, update urb status and actual_length. 2191 */ 2192 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2193 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2194 struct xhci_virt_ep *ep, int *status) 2195 { 2196 struct xhci_ring *ep_ring; 2197 union xhci_trb *cur_trb; 2198 struct xhci_segment *cur_seg; 2199 u32 trb_comp_code; 2200 2201 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2202 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2203 2204 switch (trb_comp_code) { 2205 case COMP_SUCCESS: 2206 /* Double check that the HW transferred everything. */ 2207 if (event_trb != td->last_trb || 2208 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2209 xhci_warn(xhci, "WARN Successful completion " 2210 "on short TX\n"); 2211 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2212 *status = -EREMOTEIO; 2213 else 2214 *status = 0; 2215 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2216 trb_comp_code = COMP_SHORT_TX; 2217 } else { 2218 *status = 0; 2219 } 2220 break; 2221 case COMP_SHORT_TX: 2222 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2223 *status = -EREMOTEIO; 2224 else 2225 *status = 0; 2226 break; 2227 default: 2228 /* Others already handled above */ 2229 break; 2230 } 2231 if (trb_comp_code == COMP_SHORT_TX) 2232 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2233 "%d bytes untransferred\n", 2234 td->urb->ep->desc.bEndpointAddress, 2235 td->urb->transfer_buffer_length, 2236 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2237 /* Fast path - was this the last TRB in the TD for this URB? */ 2238 if (event_trb == td->last_trb) { 2239 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2240 td->urb->actual_length = 2241 td->urb->transfer_buffer_length - 2242 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2243 if (td->urb->transfer_buffer_length < 2244 td->urb->actual_length) { 2245 xhci_warn(xhci, "HC gave bad length " 2246 "of %d bytes left\n", 2247 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2248 td->urb->actual_length = 0; 2249 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2250 *status = -EREMOTEIO; 2251 else 2252 *status = 0; 2253 } 2254 /* Don't overwrite a previously set error code */ 2255 if (*status == -EINPROGRESS) { 2256 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2257 *status = -EREMOTEIO; 2258 else 2259 *status = 0; 2260 } 2261 } else { 2262 td->urb->actual_length = 2263 td->urb->transfer_buffer_length; 2264 /* Ignore a short packet completion if the 2265 * untransferred length was zero. 2266 */ 2267 if (*status == -EREMOTEIO) 2268 *status = 0; 2269 } 2270 } else { 2271 /* Slow path - walk the list, starting from the dequeue 2272 * pointer, to get the actual length transferred. 2273 */ 2274 td->urb->actual_length = 0; 2275 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2276 cur_trb != event_trb; 2277 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2278 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2279 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2280 td->urb->actual_length += 2281 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2282 } 2283 /* If the ring didn't stop on a Link or No-op TRB, add 2284 * in the actual bytes transferred from the Normal TRB 2285 */ 2286 if (trb_comp_code != COMP_STOP_INVAL) 2287 td->urb->actual_length += 2288 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2289 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2290 } 2291 2292 return finish_td(xhci, td, event_trb, event, ep, status, false); 2293 } 2294 2295 /* 2296 * If this function returns an error condition, it means it got a Transfer 2297 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2298 * At this point, the host controller is probably hosed and should be reset. 2299 */ 2300 static int handle_tx_event(struct xhci_hcd *xhci, 2301 struct xhci_transfer_event *event) 2302 __releases(&xhci->lock) 2303 __acquires(&xhci->lock) 2304 { 2305 struct xhci_virt_device *xdev; 2306 struct xhci_virt_ep *ep; 2307 struct xhci_ring *ep_ring; 2308 unsigned int slot_id; 2309 int ep_index; 2310 struct xhci_td *td = NULL; 2311 dma_addr_t event_dma; 2312 struct xhci_segment *event_seg; 2313 union xhci_trb *event_trb; 2314 struct urb *urb = NULL; 2315 int status = -EINPROGRESS; 2316 struct urb_priv *urb_priv; 2317 struct xhci_ep_ctx *ep_ctx; 2318 struct list_head *tmp; 2319 u32 trb_comp_code; 2320 int ret = 0; 2321 int td_num = 0; 2322 2323 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2324 xdev = xhci->devs[slot_id]; 2325 if (!xdev) { 2326 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2327 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2328 (unsigned long long) xhci_trb_virt_to_dma( 2329 xhci->event_ring->deq_seg, 2330 xhci->event_ring->dequeue), 2331 lower_32_bits(le64_to_cpu(event->buffer)), 2332 upper_32_bits(le64_to_cpu(event->buffer)), 2333 le32_to_cpu(event->transfer_len), 2334 le32_to_cpu(event->flags)); 2335 xhci_dbg(xhci, "Event ring:\n"); 2336 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2337 return -ENODEV; 2338 } 2339 2340 /* Endpoint ID is 1 based, our index is zero based */ 2341 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2342 ep = &xdev->eps[ep_index]; 2343 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2344 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2345 if (!ep_ring || 2346 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2347 EP_STATE_DISABLED) { 2348 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2349 "or incorrect stream ring\n"); 2350 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2351 (unsigned long long) xhci_trb_virt_to_dma( 2352 xhci->event_ring->deq_seg, 2353 xhci->event_ring->dequeue), 2354 lower_32_bits(le64_to_cpu(event->buffer)), 2355 upper_32_bits(le64_to_cpu(event->buffer)), 2356 le32_to_cpu(event->transfer_len), 2357 le32_to_cpu(event->flags)); 2358 xhci_dbg(xhci, "Event ring:\n"); 2359 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2360 return -ENODEV; 2361 } 2362 2363 /* Count current td numbers if ep->skip is set */ 2364 if (ep->skip) { 2365 list_for_each(tmp, &ep_ring->td_list) 2366 td_num++; 2367 } 2368 2369 event_dma = le64_to_cpu(event->buffer); 2370 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2371 /* Look for common error cases */ 2372 switch (trb_comp_code) { 2373 /* Skip codes that require special handling depending on 2374 * transfer type 2375 */ 2376 case COMP_SUCCESS: 2377 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2378 break; 2379 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2380 trb_comp_code = COMP_SHORT_TX; 2381 else 2382 xhci_warn_ratelimited(xhci, 2383 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2384 case COMP_SHORT_TX: 2385 break; 2386 case COMP_STOP: 2387 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2388 break; 2389 case COMP_STOP_INVAL: 2390 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2391 break; 2392 case COMP_STALL: 2393 xhci_dbg(xhci, "Stalled endpoint\n"); 2394 ep->ep_state |= EP_HALTED; 2395 status = -EPIPE; 2396 break; 2397 case COMP_TRB_ERR: 2398 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2399 status = -EILSEQ; 2400 break; 2401 case COMP_SPLIT_ERR: 2402 case COMP_TX_ERR: 2403 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2404 status = -EPROTO; 2405 break; 2406 case COMP_BABBLE: 2407 xhci_dbg(xhci, "Babble error on endpoint\n"); 2408 status = -EOVERFLOW; 2409 break; 2410 case COMP_DB_ERR: 2411 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2412 status = -ENOSR; 2413 break; 2414 case COMP_BW_OVER: 2415 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2416 break; 2417 case COMP_BUFF_OVER: 2418 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2419 break; 2420 case COMP_UNDERRUN: 2421 /* 2422 * When the Isoch ring is empty, the xHC will generate 2423 * a Ring Overrun Event for IN Isoch endpoint or Ring 2424 * Underrun Event for OUT Isoch endpoint. 2425 */ 2426 xhci_dbg(xhci, "underrun event on endpoint\n"); 2427 if (!list_empty(&ep_ring->td_list)) 2428 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2429 "still with TDs queued?\n", 2430 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2431 ep_index); 2432 goto cleanup; 2433 case COMP_OVERRUN: 2434 xhci_dbg(xhci, "overrun event on endpoint\n"); 2435 if (!list_empty(&ep_ring->td_list)) 2436 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2437 "still with TDs queued?\n", 2438 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2439 ep_index); 2440 goto cleanup; 2441 case COMP_DEV_ERR: 2442 xhci_warn(xhci, "WARN: detect an incompatible device"); 2443 status = -EPROTO; 2444 break; 2445 case COMP_MISSED_INT: 2446 /* 2447 * When encounter missed service error, one or more isoc tds 2448 * may be missed by xHC. 2449 * Set skip flag of the ep_ring; Complete the missed tds as 2450 * short transfer when process the ep_ring next time. 2451 */ 2452 ep->skip = true; 2453 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2454 goto cleanup; 2455 default: 2456 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2457 status = 0; 2458 break; 2459 } 2460 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2461 "busted\n"); 2462 goto cleanup; 2463 } 2464 2465 do { 2466 /* This TRB should be in the TD at the head of this ring's 2467 * TD list. 2468 */ 2469 if (list_empty(&ep_ring->td_list)) { 2470 /* 2471 * A stopped endpoint may generate an extra completion 2472 * event if the device was suspended. Don't print 2473 * warnings. 2474 */ 2475 if (!(trb_comp_code == COMP_STOP || 2476 trb_comp_code == COMP_STOP_INVAL)) { 2477 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2478 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2479 ep_index); 2480 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2481 (le32_to_cpu(event->flags) & 2482 TRB_TYPE_BITMASK)>>10); 2483 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2484 } 2485 if (ep->skip) { 2486 ep->skip = false; 2487 xhci_dbg(xhci, "td_list is empty while skip " 2488 "flag set. Clear skip flag.\n"); 2489 } 2490 ret = 0; 2491 goto cleanup; 2492 } 2493 2494 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2495 if (ep->skip && td_num == 0) { 2496 ep->skip = false; 2497 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2498 "Clear skip flag.\n"); 2499 ret = 0; 2500 goto cleanup; 2501 } 2502 2503 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2504 if (ep->skip) 2505 td_num--; 2506 2507 /* Is this a TRB in the currently executing TD? */ 2508 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2509 td->last_trb, event_dma); 2510 2511 /* 2512 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2513 * is not in the current TD pointed by ep_ring->dequeue because 2514 * that the hardware dequeue pointer still at the previous TRB 2515 * of the current TD. The previous TRB maybe a Link TD or the 2516 * last TRB of the previous TD. The command completion handle 2517 * will take care the rest. 2518 */ 2519 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2520 ret = 0; 2521 goto cleanup; 2522 } 2523 2524 if (!event_seg) { 2525 if (!ep->skip || 2526 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2527 /* Some host controllers give a spurious 2528 * successful event after a short transfer. 2529 * Ignore it. 2530 */ 2531 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2532 ep_ring->last_td_was_short) { 2533 ep_ring->last_td_was_short = false; 2534 ret = 0; 2535 goto cleanup; 2536 } 2537 /* HC is busted, give up! */ 2538 xhci_err(xhci, 2539 "ERROR Transfer event TRB DMA ptr not " 2540 "part of current TD\n"); 2541 return -ESHUTDOWN; 2542 } 2543 2544 ret = skip_isoc_td(xhci, td, event, ep, &status); 2545 goto cleanup; 2546 } 2547 if (trb_comp_code == COMP_SHORT_TX) 2548 ep_ring->last_td_was_short = true; 2549 else 2550 ep_ring->last_td_was_short = false; 2551 2552 if (ep->skip) { 2553 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2554 ep->skip = false; 2555 } 2556 2557 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2558 sizeof(*event_trb)]; 2559 /* 2560 * No-op TRB should not trigger interrupts. 2561 * If event_trb is a no-op TRB, it means the 2562 * corresponding TD has been cancelled. Just ignore 2563 * the TD. 2564 */ 2565 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2566 xhci_dbg(xhci, 2567 "event_trb is a no-op TRB. Skip it\n"); 2568 goto cleanup; 2569 } 2570 2571 /* Now update the urb's actual_length and give back to 2572 * the core 2573 */ 2574 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2575 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2576 &status); 2577 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2578 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2579 &status); 2580 else 2581 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2582 ep, &status); 2583 2584 cleanup: 2585 /* 2586 * Do not update event ring dequeue pointer if ep->skip is set. 2587 * Will roll back to continue process missed tds. 2588 */ 2589 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2590 inc_deq(xhci, xhci->event_ring); 2591 } 2592 2593 if (ret) { 2594 urb = td->urb; 2595 urb_priv = urb->hcpriv; 2596 /* Leave the TD around for the reset endpoint function 2597 * to use(but only if it's not a control endpoint, 2598 * since we already queued the Set TR dequeue pointer 2599 * command for stalled control endpoints). 2600 */ 2601 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2602 (trb_comp_code != COMP_STALL && 2603 trb_comp_code != COMP_BABBLE)) 2604 xhci_urb_free_priv(xhci, urb_priv); 2605 else 2606 kfree(urb_priv); 2607 2608 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2609 if ((urb->actual_length != urb->transfer_buffer_length && 2610 (urb->transfer_flags & 2611 URB_SHORT_NOT_OK)) || 2612 (status != 0 && 2613 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2614 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2615 "expected = %d, status = %d\n", 2616 urb, urb->actual_length, 2617 urb->transfer_buffer_length, 2618 status); 2619 spin_unlock(&xhci->lock); 2620 /* EHCI, UHCI, and OHCI always unconditionally set the 2621 * urb->status of an isochronous endpoint to 0. 2622 */ 2623 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2624 status = 0; 2625 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2626 spin_lock(&xhci->lock); 2627 } 2628 2629 /* 2630 * If ep->skip is set, it means there are missed tds on the 2631 * endpoint ring need to take care of. 2632 * Process them as short transfer until reach the td pointed by 2633 * the event. 2634 */ 2635 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2636 2637 return 0; 2638 } 2639 2640 /* 2641 * This function handles all OS-owned events on the event ring. It may drop 2642 * xhci->lock between event processing (e.g. to pass up port status changes). 2643 * Returns >0 for "possibly more events to process" (caller should call again), 2644 * otherwise 0 if done. In future, <0 returns should indicate error code. 2645 */ 2646 static int xhci_handle_event(struct xhci_hcd *xhci) 2647 { 2648 union xhci_trb *event; 2649 int update_ptrs = 1; 2650 int ret; 2651 2652 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2653 xhci->error_bitmask |= 1 << 1; 2654 return 0; 2655 } 2656 2657 event = xhci->event_ring->dequeue; 2658 /* Does the HC or OS own the TRB? */ 2659 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2660 xhci->event_ring->cycle_state) { 2661 xhci->error_bitmask |= 1 << 2; 2662 return 0; 2663 } 2664 2665 /* 2666 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2667 * speculative reads of the event's flags/data below. 2668 */ 2669 rmb(); 2670 /* FIXME: Handle more event types. */ 2671 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2672 case TRB_TYPE(TRB_COMPLETION): 2673 handle_cmd_completion(xhci, &event->event_cmd); 2674 break; 2675 case TRB_TYPE(TRB_PORT_STATUS): 2676 handle_port_status(xhci, event); 2677 update_ptrs = 0; 2678 break; 2679 case TRB_TYPE(TRB_TRANSFER): 2680 ret = handle_tx_event(xhci, &event->trans_event); 2681 if (ret < 0) 2682 xhci->error_bitmask |= 1 << 9; 2683 else 2684 update_ptrs = 0; 2685 break; 2686 case TRB_TYPE(TRB_DEV_NOTE): 2687 handle_device_notification(xhci, event); 2688 break; 2689 default: 2690 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2691 TRB_TYPE(48)) 2692 handle_vendor_event(xhci, event); 2693 else 2694 xhci->error_bitmask |= 1 << 3; 2695 } 2696 /* Any of the above functions may drop and re-acquire the lock, so check 2697 * to make sure a watchdog timer didn't mark the host as non-responsive. 2698 */ 2699 if (xhci->xhc_state & XHCI_STATE_DYING) { 2700 xhci_dbg(xhci, "xHCI host dying, returning from " 2701 "event handler.\n"); 2702 return 0; 2703 } 2704 2705 if (update_ptrs) 2706 /* Update SW event ring dequeue pointer */ 2707 inc_deq(xhci, xhci->event_ring); 2708 2709 /* Are there more items on the event ring? Caller will call us again to 2710 * check. 2711 */ 2712 return 1; 2713 } 2714 2715 /* 2716 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2717 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2718 * indicators of an event TRB error, but we check the status *first* to be safe. 2719 */ 2720 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2721 { 2722 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2723 u32 status; 2724 u64 temp_64; 2725 union xhci_trb *event_ring_deq; 2726 dma_addr_t deq; 2727 2728 spin_lock(&xhci->lock); 2729 /* Check if the xHC generated the interrupt, or the irq is shared */ 2730 status = xhci_readl(xhci, &xhci->op_regs->status); 2731 if (status == 0xffffffff) 2732 goto hw_died; 2733 2734 if (!(status & STS_EINT)) { 2735 spin_unlock(&xhci->lock); 2736 return IRQ_NONE; 2737 } 2738 if (status & STS_FATAL) { 2739 xhci_warn(xhci, "WARNING: Host System Error\n"); 2740 xhci_halt(xhci); 2741 hw_died: 2742 spin_unlock(&xhci->lock); 2743 return -ESHUTDOWN; 2744 } 2745 2746 /* 2747 * Clear the op reg interrupt status first, 2748 * so we can receive interrupts from other MSI-X interrupters. 2749 * Write 1 to clear the interrupt status. 2750 */ 2751 status |= STS_EINT; 2752 xhci_writel(xhci, status, &xhci->op_regs->status); 2753 /* FIXME when MSI-X is supported and there are multiple vectors */ 2754 /* Clear the MSI-X event interrupt status */ 2755 2756 if (hcd->irq) { 2757 u32 irq_pending; 2758 /* Acknowledge the PCI interrupt */ 2759 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2760 irq_pending |= IMAN_IP; 2761 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2762 } 2763 2764 if (xhci->xhc_state & XHCI_STATE_DYING) { 2765 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2766 "Shouldn't IRQs be disabled?\n"); 2767 /* Clear the event handler busy flag (RW1C); 2768 * the event ring should be empty. 2769 */ 2770 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2771 xhci_write_64(xhci, temp_64 | ERST_EHB, 2772 &xhci->ir_set->erst_dequeue); 2773 spin_unlock(&xhci->lock); 2774 2775 return IRQ_HANDLED; 2776 } 2777 2778 event_ring_deq = xhci->event_ring->dequeue; 2779 /* FIXME this should be a delayed service routine 2780 * that clears the EHB. 2781 */ 2782 while (xhci_handle_event(xhci) > 0) {} 2783 2784 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2785 /* If necessary, update the HW's version of the event ring deq ptr. */ 2786 if (event_ring_deq != xhci->event_ring->dequeue) { 2787 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2788 xhci->event_ring->dequeue); 2789 if (deq == 0) 2790 xhci_warn(xhci, "WARN something wrong with SW event " 2791 "ring dequeue ptr.\n"); 2792 /* Update HC event ring dequeue pointer */ 2793 temp_64 &= ERST_PTR_MASK; 2794 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2795 } 2796 2797 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2798 temp_64 |= ERST_EHB; 2799 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2800 2801 spin_unlock(&xhci->lock); 2802 2803 return IRQ_HANDLED; 2804 } 2805 2806 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2807 { 2808 return xhci_irq(hcd); 2809 } 2810 2811 /**** Endpoint Ring Operations ****/ 2812 2813 /* 2814 * Generic function for queueing a TRB on a ring. 2815 * The caller must have checked to make sure there's room on the ring. 2816 * 2817 * @more_trbs_coming: Will you enqueue more TRBs before calling 2818 * prepare_transfer()? 2819 */ 2820 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2821 bool more_trbs_coming, 2822 u32 field1, u32 field2, u32 field3, u32 field4) 2823 { 2824 struct xhci_generic_trb *trb; 2825 2826 trb = &ring->enqueue->generic; 2827 trb->field[0] = cpu_to_le32(field1); 2828 trb->field[1] = cpu_to_le32(field2); 2829 trb->field[2] = cpu_to_le32(field3); 2830 trb->field[3] = cpu_to_le32(field4); 2831 inc_enq(xhci, ring, more_trbs_coming); 2832 } 2833 2834 /* 2835 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2836 * FIXME allocate segments if the ring is full. 2837 */ 2838 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2839 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2840 { 2841 unsigned int num_trbs_needed; 2842 2843 /* Make sure the endpoint has been added to xHC schedule */ 2844 switch (ep_state) { 2845 case EP_STATE_DISABLED: 2846 /* 2847 * USB core changed config/interfaces without notifying us, 2848 * or hardware is reporting the wrong state. 2849 */ 2850 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2851 return -ENOENT; 2852 case EP_STATE_ERROR: 2853 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2854 /* FIXME event handling code for error needs to clear it */ 2855 /* XXX not sure if this should be -ENOENT or not */ 2856 return -EINVAL; 2857 case EP_STATE_HALTED: 2858 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2859 case EP_STATE_STOPPED: 2860 case EP_STATE_RUNNING: 2861 break; 2862 default: 2863 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2864 /* 2865 * FIXME issue Configure Endpoint command to try to get the HC 2866 * back into a known state. 2867 */ 2868 return -EINVAL; 2869 } 2870 2871 while (1) { 2872 if (room_on_ring(xhci, ep_ring, num_trbs)) 2873 break; 2874 2875 if (ep_ring == xhci->cmd_ring) { 2876 xhci_err(xhci, "Do not support expand command ring\n"); 2877 return -ENOMEM; 2878 } 2879 2880 xhci_dbg(xhci, "ERROR no room on ep ring, " 2881 "try ring expansion\n"); 2882 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2883 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2884 mem_flags)) { 2885 xhci_err(xhci, "Ring expansion failed\n"); 2886 return -ENOMEM; 2887 } 2888 } 2889 2890 if (enqueue_is_link_trb(ep_ring)) { 2891 struct xhci_ring *ring = ep_ring; 2892 union xhci_trb *next; 2893 2894 next = ring->enqueue; 2895 2896 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2897 /* If we're not dealing with 0.95 hardware or isoc rings 2898 * on AMD 0.96 host, clear the chain bit. 2899 */ 2900 if (!xhci_link_trb_quirk(xhci) && 2901 !(ring->type == TYPE_ISOC && 2902 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2903 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2904 else 2905 next->link.control |= cpu_to_le32(TRB_CHAIN); 2906 2907 wmb(); 2908 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2909 2910 /* Toggle the cycle bit after the last ring segment. */ 2911 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2912 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2913 } 2914 ring->enq_seg = ring->enq_seg->next; 2915 ring->enqueue = ring->enq_seg->trbs; 2916 next = ring->enqueue; 2917 } 2918 } 2919 2920 return 0; 2921 } 2922 2923 static int prepare_transfer(struct xhci_hcd *xhci, 2924 struct xhci_virt_device *xdev, 2925 unsigned int ep_index, 2926 unsigned int stream_id, 2927 unsigned int num_trbs, 2928 struct urb *urb, 2929 unsigned int td_index, 2930 gfp_t mem_flags) 2931 { 2932 int ret; 2933 struct urb_priv *urb_priv; 2934 struct xhci_td *td; 2935 struct xhci_ring *ep_ring; 2936 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2937 2938 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2939 if (!ep_ring) { 2940 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2941 stream_id); 2942 return -EINVAL; 2943 } 2944 2945 ret = prepare_ring(xhci, ep_ring, 2946 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2947 num_trbs, mem_flags); 2948 if (ret) 2949 return ret; 2950 2951 urb_priv = urb->hcpriv; 2952 td = urb_priv->td[td_index]; 2953 2954 INIT_LIST_HEAD(&td->td_list); 2955 INIT_LIST_HEAD(&td->cancelled_td_list); 2956 2957 if (td_index == 0) { 2958 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2959 if (unlikely(ret)) 2960 return ret; 2961 } 2962 2963 td->urb = urb; 2964 /* Add this TD to the tail of the endpoint ring's TD list */ 2965 list_add_tail(&td->td_list, &ep_ring->td_list); 2966 td->start_seg = ep_ring->enq_seg; 2967 td->first_trb = ep_ring->enqueue; 2968 2969 urb_priv->td[td_index] = td; 2970 2971 return 0; 2972 } 2973 2974 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2975 { 2976 int num_sgs, num_trbs, running_total, temp, i; 2977 struct scatterlist *sg; 2978 2979 sg = NULL; 2980 num_sgs = urb->num_mapped_sgs; 2981 temp = urb->transfer_buffer_length; 2982 2983 num_trbs = 0; 2984 for_each_sg(urb->sg, sg, num_sgs, i) { 2985 unsigned int len = sg_dma_len(sg); 2986 2987 /* Scatter gather list entries may cross 64KB boundaries */ 2988 running_total = TRB_MAX_BUFF_SIZE - 2989 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2990 running_total &= TRB_MAX_BUFF_SIZE - 1; 2991 if (running_total != 0) 2992 num_trbs++; 2993 2994 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2995 while (running_total < sg_dma_len(sg) && running_total < temp) { 2996 num_trbs++; 2997 running_total += TRB_MAX_BUFF_SIZE; 2998 } 2999 len = min_t(int, len, temp); 3000 temp -= len; 3001 if (temp == 0) 3002 break; 3003 } 3004 return num_trbs; 3005 } 3006 3007 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3008 { 3009 if (num_trbs != 0) 3010 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3011 "TRBs, %d left\n", __func__, 3012 urb->ep->desc.bEndpointAddress, num_trbs); 3013 if (running_total != urb->transfer_buffer_length) 3014 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3015 "queued %#x (%d), asked for %#x (%d)\n", 3016 __func__, 3017 urb->ep->desc.bEndpointAddress, 3018 running_total, running_total, 3019 urb->transfer_buffer_length, 3020 urb->transfer_buffer_length); 3021 } 3022 3023 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3024 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3025 struct xhci_generic_trb *start_trb) 3026 { 3027 /* 3028 * Pass all the TRBs to the hardware at once and make sure this write 3029 * isn't reordered. 3030 */ 3031 wmb(); 3032 if (start_cycle) 3033 start_trb->field[3] |= cpu_to_le32(start_cycle); 3034 else 3035 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3036 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3037 } 3038 3039 /* 3040 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3041 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3042 * (comprised of sg list entries) can take several service intervals to 3043 * transmit. 3044 */ 3045 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3046 struct urb *urb, int slot_id, unsigned int ep_index) 3047 { 3048 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3049 xhci->devs[slot_id]->out_ctx, ep_index); 3050 int xhci_interval; 3051 int ep_interval; 3052 3053 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3054 ep_interval = urb->interval; 3055 /* Convert to microframes */ 3056 if (urb->dev->speed == USB_SPEED_LOW || 3057 urb->dev->speed == USB_SPEED_FULL) 3058 ep_interval *= 8; 3059 /* FIXME change this to a warning and a suggestion to use the new API 3060 * to set the polling interval (once the API is added). 3061 */ 3062 if (xhci_interval != ep_interval) { 3063 if (printk_ratelimit()) 3064 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3065 " (%d microframe%s) than xHCI " 3066 "(%d microframe%s)\n", 3067 ep_interval, 3068 ep_interval == 1 ? "" : "s", 3069 xhci_interval, 3070 xhci_interval == 1 ? "" : "s"); 3071 urb->interval = xhci_interval; 3072 /* Convert back to frames for LS/FS devices */ 3073 if (urb->dev->speed == USB_SPEED_LOW || 3074 urb->dev->speed == USB_SPEED_FULL) 3075 urb->interval /= 8; 3076 } 3077 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3078 } 3079 3080 /* 3081 * The TD size is the number of bytes remaining in the TD (including this TRB), 3082 * right shifted by 10. 3083 * It must fit in bits 21:17, so it can't be bigger than 31. 3084 */ 3085 static u32 xhci_td_remainder(unsigned int remainder) 3086 { 3087 u32 max = (1 << (21 - 17 + 1)) - 1; 3088 3089 if ((remainder >> 10) >= max) 3090 return max << 17; 3091 else 3092 return (remainder >> 10) << 17; 3093 } 3094 3095 /* 3096 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3097 * packets remaining in the TD (*not* including this TRB). 3098 * 3099 * Total TD packet count = total_packet_count = 3100 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3101 * 3102 * Packets transferred up to and including this TRB = packets_transferred = 3103 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3104 * 3105 * TD size = total_packet_count - packets_transferred 3106 * 3107 * It must fit in bits 21:17, so it can't be bigger than 31. 3108 * The last TRB in a TD must have the TD size set to zero. 3109 */ 3110 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3111 unsigned int total_packet_count, struct urb *urb, 3112 unsigned int num_trbs_left) 3113 { 3114 int packets_transferred; 3115 3116 /* One TRB with a zero-length data packet. */ 3117 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3118 return 0; 3119 3120 /* All the TRB queueing functions don't count the current TRB in 3121 * running_total. 3122 */ 3123 packets_transferred = (running_total + trb_buff_len) / 3124 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3125 3126 if ((total_packet_count - packets_transferred) > 31) 3127 return 31 << 17; 3128 return (total_packet_count - packets_transferred) << 17; 3129 } 3130 3131 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3132 struct urb *urb, int slot_id, unsigned int ep_index) 3133 { 3134 struct xhci_ring *ep_ring; 3135 unsigned int num_trbs; 3136 struct urb_priv *urb_priv; 3137 struct xhci_td *td; 3138 struct scatterlist *sg; 3139 int num_sgs; 3140 int trb_buff_len, this_sg_len, running_total; 3141 unsigned int total_packet_count; 3142 bool first_trb; 3143 u64 addr; 3144 bool more_trbs_coming; 3145 3146 struct xhci_generic_trb *start_trb; 3147 int start_cycle; 3148 3149 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3150 if (!ep_ring) 3151 return -EINVAL; 3152 3153 num_trbs = count_sg_trbs_needed(xhci, urb); 3154 num_sgs = urb->num_mapped_sgs; 3155 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3156 usb_endpoint_maxp(&urb->ep->desc)); 3157 3158 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3159 ep_index, urb->stream_id, 3160 num_trbs, urb, 0, mem_flags); 3161 if (trb_buff_len < 0) 3162 return trb_buff_len; 3163 3164 urb_priv = urb->hcpriv; 3165 td = urb_priv->td[0]; 3166 3167 /* 3168 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3169 * until we've finished creating all the other TRBs. The ring's cycle 3170 * state may change as we enqueue the other TRBs, so save it too. 3171 */ 3172 start_trb = &ep_ring->enqueue->generic; 3173 start_cycle = ep_ring->cycle_state; 3174 3175 running_total = 0; 3176 /* 3177 * How much data is in the first TRB? 3178 * 3179 * There are three forces at work for TRB buffer pointers and lengths: 3180 * 1. We don't want to walk off the end of this sg-list entry buffer. 3181 * 2. The transfer length that the driver requested may be smaller than 3182 * the amount of memory allocated for this scatter-gather list. 3183 * 3. TRBs buffers can't cross 64KB boundaries. 3184 */ 3185 sg = urb->sg; 3186 addr = (u64) sg_dma_address(sg); 3187 this_sg_len = sg_dma_len(sg); 3188 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3189 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3190 if (trb_buff_len > urb->transfer_buffer_length) 3191 trb_buff_len = urb->transfer_buffer_length; 3192 3193 first_trb = true; 3194 /* Queue the first TRB, even if it's zero-length */ 3195 do { 3196 u32 field = 0; 3197 u32 length_field = 0; 3198 u32 remainder = 0; 3199 3200 /* Don't change the cycle bit of the first TRB until later */ 3201 if (first_trb) { 3202 first_trb = false; 3203 if (start_cycle == 0) 3204 field |= 0x1; 3205 } else 3206 field |= ep_ring->cycle_state; 3207 3208 /* Chain all the TRBs together; clear the chain bit in the last 3209 * TRB to indicate it's the last TRB in the chain. 3210 */ 3211 if (num_trbs > 1) { 3212 field |= TRB_CHAIN; 3213 } else { 3214 /* FIXME - add check for ZERO_PACKET flag before this */ 3215 td->last_trb = ep_ring->enqueue; 3216 field |= TRB_IOC; 3217 } 3218 3219 /* Only set interrupt on short packet for IN endpoints */ 3220 if (usb_urb_dir_in(urb)) 3221 field |= TRB_ISP; 3222 3223 if (TRB_MAX_BUFF_SIZE - 3224 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3225 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3226 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3227 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3228 (unsigned int) addr + trb_buff_len); 3229 } 3230 3231 /* Set the TRB length, TD size, and interrupter fields. */ 3232 if (xhci->hci_version < 0x100) { 3233 remainder = xhci_td_remainder( 3234 urb->transfer_buffer_length - 3235 running_total); 3236 } else { 3237 remainder = xhci_v1_0_td_remainder(running_total, 3238 trb_buff_len, total_packet_count, urb, 3239 num_trbs - 1); 3240 } 3241 length_field = TRB_LEN(trb_buff_len) | 3242 remainder | 3243 TRB_INTR_TARGET(0); 3244 3245 if (num_trbs > 1) 3246 more_trbs_coming = true; 3247 else 3248 more_trbs_coming = false; 3249 queue_trb(xhci, ep_ring, more_trbs_coming, 3250 lower_32_bits(addr), 3251 upper_32_bits(addr), 3252 length_field, 3253 field | TRB_TYPE(TRB_NORMAL)); 3254 --num_trbs; 3255 running_total += trb_buff_len; 3256 3257 /* Calculate length for next transfer -- 3258 * Are we done queueing all the TRBs for this sg entry? 3259 */ 3260 this_sg_len -= trb_buff_len; 3261 if (this_sg_len == 0) { 3262 --num_sgs; 3263 if (num_sgs == 0) 3264 break; 3265 sg = sg_next(sg); 3266 addr = (u64) sg_dma_address(sg); 3267 this_sg_len = sg_dma_len(sg); 3268 } else { 3269 addr += trb_buff_len; 3270 } 3271 3272 trb_buff_len = TRB_MAX_BUFF_SIZE - 3273 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3274 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3275 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3276 trb_buff_len = 3277 urb->transfer_buffer_length - running_total; 3278 } while (running_total < urb->transfer_buffer_length); 3279 3280 check_trb_math(urb, num_trbs, running_total); 3281 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3282 start_cycle, start_trb); 3283 return 0; 3284 } 3285 3286 /* This is very similar to what ehci-q.c qtd_fill() does */ 3287 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3288 struct urb *urb, int slot_id, unsigned int ep_index) 3289 { 3290 struct xhci_ring *ep_ring; 3291 struct urb_priv *urb_priv; 3292 struct xhci_td *td; 3293 int num_trbs; 3294 struct xhci_generic_trb *start_trb; 3295 bool first_trb; 3296 bool more_trbs_coming; 3297 int start_cycle; 3298 u32 field, length_field; 3299 3300 int running_total, trb_buff_len, ret; 3301 unsigned int total_packet_count; 3302 u64 addr; 3303 3304 if (urb->num_sgs) 3305 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3306 3307 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3308 if (!ep_ring) 3309 return -EINVAL; 3310 3311 num_trbs = 0; 3312 /* How much data is (potentially) left before the 64KB boundary? */ 3313 running_total = TRB_MAX_BUFF_SIZE - 3314 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3315 running_total &= TRB_MAX_BUFF_SIZE - 1; 3316 3317 /* If there's some data on this 64KB chunk, or we have to send a 3318 * zero-length transfer, we need at least one TRB 3319 */ 3320 if (running_total != 0 || urb->transfer_buffer_length == 0) 3321 num_trbs++; 3322 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3323 while (running_total < urb->transfer_buffer_length) { 3324 num_trbs++; 3325 running_total += TRB_MAX_BUFF_SIZE; 3326 } 3327 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3328 3329 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3330 ep_index, urb->stream_id, 3331 num_trbs, urb, 0, mem_flags); 3332 if (ret < 0) 3333 return ret; 3334 3335 urb_priv = urb->hcpriv; 3336 td = urb_priv->td[0]; 3337 3338 /* 3339 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3340 * until we've finished creating all the other TRBs. The ring's cycle 3341 * state may change as we enqueue the other TRBs, so save it too. 3342 */ 3343 start_trb = &ep_ring->enqueue->generic; 3344 start_cycle = ep_ring->cycle_state; 3345 3346 running_total = 0; 3347 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3348 usb_endpoint_maxp(&urb->ep->desc)); 3349 /* How much data is in the first TRB? */ 3350 addr = (u64) urb->transfer_dma; 3351 trb_buff_len = TRB_MAX_BUFF_SIZE - 3352 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3353 if (trb_buff_len > urb->transfer_buffer_length) 3354 trb_buff_len = urb->transfer_buffer_length; 3355 3356 first_trb = true; 3357 3358 /* Queue the first TRB, even if it's zero-length */ 3359 do { 3360 u32 remainder = 0; 3361 field = 0; 3362 3363 /* Don't change the cycle bit of the first TRB until later */ 3364 if (first_trb) { 3365 first_trb = false; 3366 if (start_cycle == 0) 3367 field |= 0x1; 3368 } else 3369 field |= ep_ring->cycle_state; 3370 3371 /* Chain all the TRBs together; clear the chain bit in the last 3372 * TRB to indicate it's the last TRB in the chain. 3373 */ 3374 if (num_trbs > 1) { 3375 field |= TRB_CHAIN; 3376 } else { 3377 /* FIXME - add check for ZERO_PACKET flag before this */ 3378 td->last_trb = ep_ring->enqueue; 3379 field |= TRB_IOC; 3380 } 3381 3382 /* Only set interrupt on short packet for IN endpoints */ 3383 if (usb_urb_dir_in(urb)) 3384 field |= TRB_ISP; 3385 3386 /* Set the TRB length, TD size, and interrupter fields. */ 3387 if (xhci->hci_version < 0x100) { 3388 remainder = xhci_td_remainder( 3389 urb->transfer_buffer_length - 3390 running_total); 3391 } else { 3392 remainder = xhci_v1_0_td_remainder(running_total, 3393 trb_buff_len, total_packet_count, urb, 3394 num_trbs - 1); 3395 } 3396 length_field = TRB_LEN(trb_buff_len) | 3397 remainder | 3398 TRB_INTR_TARGET(0); 3399 3400 if (num_trbs > 1) 3401 more_trbs_coming = true; 3402 else 3403 more_trbs_coming = false; 3404 queue_trb(xhci, ep_ring, more_trbs_coming, 3405 lower_32_bits(addr), 3406 upper_32_bits(addr), 3407 length_field, 3408 field | TRB_TYPE(TRB_NORMAL)); 3409 --num_trbs; 3410 running_total += trb_buff_len; 3411 3412 /* Calculate length for next transfer */ 3413 addr += trb_buff_len; 3414 trb_buff_len = urb->transfer_buffer_length - running_total; 3415 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3416 trb_buff_len = TRB_MAX_BUFF_SIZE; 3417 } while (running_total < urb->transfer_buffer_length); 3418 3419 check_trb_math(urb, num_trbs, running_total); 3420 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3421 start_cycle, start_trb); 3422 return 0; 3423 } 3424 3425 /* Caller must have locked xhci->lock */ 3426 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3427 struct urb *urb, int slot_id, unsigned int ep_index) 3428 { 3429 struct xhci_ring *ep_ring; 3430 int num_trbs; 3431 int ret; 3432 struct usb_ctrlrequest *setup; 3433 struct xhci_generic_trb *start_trb; 3434 int start_cycle; 3435 u32 field, length_field; 3436 struct urb_priv *urb_priv; 3437 struct xhci_td *td; 3438 3439 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3440 if (!ep_ring) 3441 return -EINVAL; 3442 3443 /* 3444 * Need to copy setup packet into setup TRB, so we can't use the setup 3445 * DMA address. 3446 */ 3447 if (!urb->setup_packet) 3448 return -EINVAL; 3449 3450 /* 1 TRB for setup, 1 for status */ 3451 num_trbs = 2; 3452 /* 3453 * Don't need to check if we need additional event data and normal TRBs, 3454 * since data in control transfers will never get bigger than 16MB 3455 * XXX: can we get a buffer that crosses 64KB boundaries? 3456 */ 3457 if (urb->transfer_buffer_length > 0) 3458 num_trbs++; 3459 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3460 ep_index, urb->stream_id, 3461 num_trbs, urb, 0, mem_flags); 3462 if (ret < 0) 3463 return ret; 3464 3465 urb_priv = urb->hcpriv; 3466 td = urb_priv->td[0]; 3467 3468 /* 3469 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3470 * until we've finished creating all the other TRBs. The ring's cycle 3471 * state may change as we enqueue the other TRBs, so save it too. 3472 */ 3473 start_trb = &ep_ring->enqueue->generic; 3474 start_cycle = ep_ring->cycle_state; 3475 3476 /* Queue setup TRB - see section 6.4.1.2.1 */ 3477 /* FIXME better way to translate setup_packet into two u32 fields? */ 3478 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3479 field = 0; 3480 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3481 if (start_cycle == 0) 3482 field |= 0x1; 3483 3484 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3485 if (xhci->hci_version == 0x100) { 3486 if (urb->transfer_buffer_length > 0) { 3487 if (setup->bRequestType & USB_DIR_IN) 3488 field |= TRB_TX_TYPE(TRB_DATA_IN); 3489 else 3490 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3491 } 3492 } 3493 3494 queue_trb(xhci, ep_ring, true, 3495 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3496 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3497 TRB_LEN(8) | TRB_INTR_TARGET(0), 3498 /* Immediate data in pointer */ 3499 field); 3500 3501 /* If there's data, queue data TRBs */ 3502 /* Only set interrupt on short packet for IN endpoints */ 3503 if (usb_urb_dir_in(urb)) 3504 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3505 else 3506 field = TRB_TYPE(TRB_DATA); 3507 3508 length_field = TRB_LEN(urb->transfer_buffer_length) | 3509 xhci_td_remainder(urb->transfer_buffer_length) | 3510 TRB_INTR_TARGET(0); 3511 if (urb->transfer_buffer_length > 0) { 3512 if (setup->bRequestType & USB_DIR_IN) 3513 field |= TRB_DIR_IN; 3514 queue_trb(xhci, ep_ring, true, 3515 lower_32_bits(urb->transfer_dma), 3516 upper_32_bits(urb->transfer_dma), 3517 length_field, 3518 field | ep_ring->cycle_state); 3519 } 3520 3521 /* Save the DMA address of the last TRB in the TD */ 3522 td->last_trb = ep_ring->enqueue; 3523 3524 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3525 /* If the device sent data, the status stage is an OUT transfer */ 3526 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3527 field = 0; 3528 else 3529 field = TRB_DIR_IN; 3530 queue_trb(xhci, ep_ring, false, 3531 0, 3532 0, 3533 TRB_INTR_TARGET(0), 3534 /* Event on completion */ 3535 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3536 3537 giveback_first_trb(xhci, slot_id, ep_index, 0, 3538 start_cycle, start_trb); 3539 return 0; 3540 } 3541 3542 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3543 struct urb *urb, int i) 3544 { 3545 int num_trbs = 0; 3546 u64 addr, td_len; 3547 3548 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3549 td_len = urb->iso_frame_desc[i].length; 3550 3551 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3552 TRB_MAX_BUFF_SIZE); 3553 if (num_trbs == 0) 3554 num_trbs++; 3555 3556 return num_trbs; 3557 } 3558 3559 /* 3560 * The transfer burst count field of the isochronous TRB defines the number of 3561 * bursts that are required to move all packets in this TD. Only SuperSpeed 3562 * devices can burst up to bMaxBurst number of packets per service interval. 3563 * This field is zero based, meaning a value of zero in the field means one 3564 * burst. Basically, for everything but SuperSpeed devices, this field will be 3565 * zero. Only xHCI 1.0 host controllers support this field. 3566 */ 3567 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3568 struct usb_device *udev, 3569 struct urb *urb, unsigned int total_packet_count) 3570 { 3571 unsigned int max_burst; 3572 3573 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3574 return 0; 3575 3576 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3577 return roundup(total_packet_count, max_burst + 1) - 1; 3578 } 3579 3580 /* 3581 * Returns the number of packets in the last "burst" of packets. This field is 3582 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3583 * the last burst packet count is equal to the total number of packets in the 3584 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3585 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3586 * contain 1 to (bMaxBurst + 1) packets. 3587 */ 3588 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3589 struct usb_device *udev, 3590 struct urb *urb, unsigned int total_packet_count) 3591 { 3592 unsigned int max_burst; 3593 unsigned int residue; 3594 3595 if (xhci->hci_version < 0x100) 3596 return 0; 3597 3598 switch (udev->speed) { 3599 case USB_SPEED_SUPER: 3600 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3601 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3602 residue = total_packet_count % (max_burst + 1); 3603 /* If residue is zero, the last burst contains (max_burst + 1) 3604 * number of packets, but the TLBPC field is zero-based. 3605 */ 3606 if (residue == 0) 3607 return max_burst; 3608 return residue - 1; 3609 default: 3610 if (total_packet_count == 0) 3611 return 0; 3612 return total_packet_count - 1; 3613 } 3614 } 3615 3616 /* This is for isoc transfer */ 3617 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3618 struct urb *urb, int slot_id, unsigned int ep_index) 3619 { 3620 struct xhci_ring *ep_ring; 3621 struct urb_priv *urb_priv; 3622 struct xhci_td *td; 3623 int num_tds, trbs_per_td; 3624 struct xhci_generic_trb *start_trb; 3625 bool first_trb; 3626 int start_cycle; 3627 u32 field, length_field; 3628 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3629 u64 start_addr, addr; 3630 int i, j; 3631 bool more_trbs_coming; 3632 3633 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3634 3635 num_tds = urb->number_of_packets; 3636 if (num_tds < 1) { 3637 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3638 return -EINVAL; 3639 } 3640 3641 start_addr = (u64) urb->transfer_dma; 3642 start_trb = &ep_ring->enqueue->generic; 3643 start_cycle = ep_ring->cycle_state; 3644 3645 urb_priv = urb->hcpriv; 3646 /* Queue the first TRB, even if it's zero-length */ 3647 for (i = 0; i < num_tds; i++) { 3648 unsigned int total_packet_count; 3649 unsigned int burst_count; 3650 unsigned int residue; 3651 3652 first_trb = true; 3653 running_total = 0; 3654 addr = start_addr + urb->iso_frame_desc[i].offset; 3655 td_len = urb->iso_frame_desc[i].length; 3656 td_remain_len = td_len; 3657 total_packet_count = DIV_ROUND_UP(td_len, 3658 GET_MAX_PACKET( 3659 usb_endpoint_maxp(&urb->ep->desc))); 3660 /* A zero-length transfer still involves at least one packet. */ 3661 if (total_packet_count == 0) 3662 total_packet_count++; 3663 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3664 total_packet_count); 3665 residue = xhci_get_last_burst_packet_count(xhci, 3666 urb->dev, urb, total_packet_count); 3667 3668 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3669 3670 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3671 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3672 if (ret < 0) { 3673 if (i == 0) 3674 return ret; 3675 goto cleanup; 3676 } 3677 3678 td = urb_priv->td[i]; 3679 for (j = 0; j < trbs_per_td; j++) { 3680 u32 remainder = 0; 3681 field = 0; 3682 3683 if (first_trb) { 3684 field = TRB_TBC(burst_count) | 3685 TRB_TLBPC(residue); 3686 /* Queue the isoc TRB */ 3687 field |= TRB_TYPE(TRB_ISOC); 3688 /* Assume URB_ISO_ASAP is set */ 3689 field |= TRB_SIA; 3690 if (i == 0) { 3691 if (start_cycle == 0) 3692 field |= 0x1; 3693 } else 3694 field |= ep_ring->cycle_state; 3695 first_trb = false; 3696 } else { 3697 /* Queue other normal TRBs */ 3698 field |= TRB_TYPE(TRB_NORMAL); 3699 field |= ep_ring->cycle_state; 3700 } 3701 3702 /* Only set interrupt on short packet for IN EPs */ 3703 if (usb_urb_dir_in(urb)) 3704 field |= TRB_ISP; 3705 3706 /* Chain all the TRBs together; clear the chain bit in 3707 * the last TRB to indicate it's the last TRB in the 3708 * chain. 3709 */ 3710 if (j < trbs_per_td - 1) { 3711 field |= TRB_CHAIN; 3712 more_trbs_coming = true; 3713 } else { 3714 td->last_trb = ep_ring->enqueue; 3715 field |= TRB_IOC; 3716 if (xhci->hci_version == 0x100 && 3717 !(xhci->quirks & 3718 XHCI_AVOID_BEI)) { 3719 /* Set BEI bit except for the last td */ 3720 if (i < num_tds - 1) 3721 field |= TRB_BEI; 3722 } 3723 more_trbs_coming = false; 3724 } 3725 3726 /* Calculate TRB length */ 3727 trb_buff_len = TRB_MAX_BUFF_SIZE - 3728 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3729 if (trb_buff_len > td_remain_len) 3730 trb_buff_len = td_remain_len; 3731 3732 /* Set the TRB length, TD size, & interrupter fields. */ 3733 if (xhci->hci_version < 0x100) { 3734 remainder = xhci_td_remainder( 3735 td_len - running_total); 3736 } else { 3737 remainder = xhci_v1_0_td_remainder( 3738 running_total, trb_buff_len, 3739 total_packet_count, urb, 3740 (trbs_per_td - j - 1)); 3741 } 3742 length_field = TRB_LEN(trb_buff_len) | 3743 remainder | 3744 TRB_INTR_TARGET(0); 3745 3746 queue_trb(xhci, ep_ring, more_trbs_coming, 3747 lower_32_bits(addr), 3748 upper_32_bits(addr), 3749 length_field, 3750 field); 3751 running_total += trb_buff_len; 3752 3753 addr += trb_buff_len; 3754 td_remain_len -= trb_buff_len; 3755 } 3756 3757 /* Check TD length */ 3758 if (running_total != td_len) { 3759 xhci_err(xhci, "ISOC TD length unmatch\n"); 3760 ret = -EINVAL; 3761 goto cleanup; 3762 } 3763 } 3764 3765 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3766 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3767 usb_amd_quirk_pll_disable(); 3768 } 3769 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3770 3771 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3772 start_cycle, start_trb); 3773 return 0; 3774 cleanup: 3775 /* Clean up a partially enqueued isoc transfer. */ 3776 3777 for (i--; i >= 0; i--) 3778 list_del_init(&urb_priv->td[i]->td_list); 3779 3780 /* Use the first TD as a temporary variable to turn the TDs we've queued 3781 * into No-ops with a software-owned cycle bit. That way the hardware 3782 * won't accidentally start executing bogus TDs when we partially 3783 * overwrite them. td->first_trb and td->start_seg are already set. 3784 */ 3785 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3786 /* Every TRB except the first & last will have its cycle bit flipped. */ 3787 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3788 3789 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3790 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3791 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3792 ep_ring->cycle_state = start_cycle; 3793 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3794 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3795 return ret; 3796 } 3797 3798 /* 3799 * Check transfer ring to guarantee there is enough room for the urb. 3800 * Update ISO URB start_frame and interval. 3801 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3802 * update the urb->start_frame by now. 3803 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3804 */ 3805 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3806 struct urb *urb, int slot_id, unsigned int ep_index) 3807 { 3808 struct xhci_virt_device *xdev; 3809 struct xhci_ring *ep_ring; 3810 struct xhci_ep_ctx *ep_ctx; 3811 int start_frame; 3812 int xhci_interval; 3813 int ep_interval; 3814 int num_tds, num_trbs, i; 3815 int ret; 3816 3817 xdev = xhci->devs[slot_id]; 3818 ep_ring = xdev->eps[ep_index].ring; 3819 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3820 3821 num_trbs = 0; 3822 num_tds = urb->number_of_packets; 3823 for (i = 0; i < num_tds; i++) 3824 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3825 3826 /* Check the ring to guarantee there is enough room for the whole urb. 3827 * Do not insert any td of the urb to the ring if the check failed. 3828 */ 3829 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3830 num_trbs, mem_flags); 3831 if (ret) 3832 return ret; 3833 3834 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3835 start_frame &= 0x3fff; 3836 3837 urb->start_frame = start_frame; 3838 if (urb->dev->speed == USB_SPEED_LOW || 3839 urb->dev->speed == USB_SPEED_FULL) 3840 urb->start_frame >>= 3; 3841 3842 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3843 ep_interval = urb->interval; 3844 /* Convert to microframes */ 3845 if (urb->dev->speed == USB_SPEED_LOW || 3846 urb->dev->speed == USB_SPEED_FULL) 3847 ep_interval *= 8; 3848 /* FIXME change this to a warning and a suggestion to use the new API 3849 * to set the polling interval (once the API is added). 3850 */ 3851 if (xhci_interval != ep_interval) { 3852 if (printk_ratelimit()) 3853 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3854 " (%d microframe%s) than xHCI " 3855 "(%d microframe%s)\n", 3856 ep_interval, 3857 ep_interval == 1 ? "" : "s", 3858 xhci_interval, 3859 xhci_interval == 1 ? "" : "s"); 3860 urb->interval = xhci_interval; 3861 /* Convert back to frames for LS/FS devices */ 3862 if (urb->dev->speed == USB_SPEED_LOW || 3863 urb->dev->speed == USB_SPEED_FULL) 3864 urb->interval /= 8; 3865 } 3866 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3867 3868 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3869 } 3870 3871 /**** Command Ring Operations ****/ 3872 3873 /* Generic function for queueing a command TRB on the command ring. 3874 * Check to make sure there's room on the command ring for one command TRB. 3875 * Also check that there's room reserved for commands that must not fail. 3876 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3877 * then only check for the number of reserved spots. 3878 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3879 * because the command event handler may want to resubmit a failed command. 3880 */ 3881 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3882 u32 field3, u32 field4, bool command_must_succeed) 3883 { 3884 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3885 int ret; 3886 3887 if (!command_must_succeed) 3888 reserved_trbs++; 3889 3890 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3891 reserved_trbs, GFP_ATOMIC); 3892 if (ret < 0) { 3893 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3894 if (command_must_succeed) 3895 xhci_err(xhci, "ERR: Reserved TRB counting for " 3896 "unfailable commands failed.\n"); 3897 return ret; 3898 } 3899 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3900 field4 | xhci->cmd_ring->cycle_state); 3901 return 0; 3902 } 3903 3904 /* Queue a slot enable or disable request on the command ring */ 3905 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3906 { 3907 return queue_command(xhci, 0, 0, 0, 3908 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3909 } 3910 3911 /* Queue an address device command TRB */ 3912 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3913 u32 slot_id) 3914 { 3915 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3916 upper_32_bits(in_ctx_ptr), 0, 3917 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3918 false); 3919 } 3920 3921 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3922 u32 field1, u32 field2, u32 field3, u32 field4) 3923 { 3924 return queue_command(xhci, field1, field2, field3, field4, false); 3925 } 3926 3927 /* Queue a reset device command TRB */ 3928 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3929 { 3930 return queue_command(xhci, 0, 0, 0, 3931 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3932 false); 3933 } 3934 3935 /* Queue a configure endpoint command TRB */ 3936 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3937 u32 slot_id, bool command_must_succeed) 3938 { 3939 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3940 upper_32_bits(in_ctx_ptr), 0, 3941 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3942 command_must_succeed); 3943 } 3944 3945 /* Queue an evaluate context command TRB */ 3946 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3947 u32 slot_id, bool command_must_succeed) 3948 { 3949 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3950 upper_32_bits(in_ctx_ptr), 0, 3951 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3952 command_must_succeed); 3953 } 3954 3955 /* 3956 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3957 * activity on an endpoint that is about to be suspended. 3958 */ 3959 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3960 unsigned int ep_index, int suspend) 3961 { 3962 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3963 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3964 u32 type = TRB_TYPE(TRB_STOP_RING); 3965 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3966 3967 return queue_command(xhci, 0, 0, 0, 3968 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3969 } 3970 3971 /* Set Transfer Ring Dequeue Pointer command. 3972 * This should not be used for endpoints that have streams enabled. 3973 */ 3974 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3975 unsigned int ep_index, unsigned int stream_id, 3976 struct xhci_segment *deq_seg, 3977 union xhci_trb *deq_ptr, u32 cycle_state) 3978 { 3979 dma_addr_t addr; 3980 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3981 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3982 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3983 u32 type = TRB_TYPE(TRB_SET_DEQ); 3984 struct xhci_virt_ep *ep; 3985 3986 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3987 if (addr == 0) { 3988 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3989 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3990 deq_seg, deq_ptr); 3991 return 0; 3992 } 3993 ep = &xhci->devs[slot_id]->eps[ep_index]; 3994 if ((ep->ep_state & SET_DEQ_PENDING)) { 3995 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3996 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3997 return 0; 3998 } 3999 ep->queued_deq_seg = deq_seg; 4000 ep->queued_deq_ptr = deq_ptr; 4001 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 4002 upper_32_bits(addr), trb_stream_id, 4003 trb_slot_id | trb_ep_index | type, false); 4004 } 4005 4006 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4007 unsigned int ep_index) 4008 { 4009 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4010 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4011 u32 type = TRB_TYPE(TRB_RESET_EP); 4012 4013 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4014 false); 4015 } 4016