1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 #include "xhci-mtk.h" 72 73 /* 74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 75 * address of the TRB. 76 */ 77 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 78 union xhci_trb *trb) 79 { 80 unsigned long segment_offset; 81 82 if (!seg || !trb || trb < seg->trbs) 83 return 0; 84 /* offset in TRBs */ 85 segment_offset = trb - seg->trbs; 86 if (segment_offset >= TRBS_PER_SEGMENT) 87 return 0; 88 return seg->dma + (segment_offset * sizeof(*trb)); 89 } 90 91 /* Does this link TRB point to the first segment in a ring, 92 * or was the previous TRB the last TRB on the last segment in the ERST? 93 */ 94 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 95 struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 if (ring == xhci->event_ring) 98 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 99 (seg->next == xhci->event_ring->first_seg); 100 else 101 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 102 } 103 104 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 105 * segment? I.e. would the updated event TRB pointer step off the end of the 106 * event seg? 107 */ 108 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 109 struct xhci_segment *seg, union xhci_trb *trb) 110 { 111 if (ring == xhci->event_ring) 112 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 113 else 114 return TRB_TYPE_LINK_LE32(trb->link.control); 115 } 116 117 static int enqueue_is_link_trb(struct xhci_ring *ring) 118 { 119 struct xhci_link_trb *link = &ring->enqueue->link; 120 return TRB_TYPE_LINK_LE32(link->control); 121 } 122 123 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 124 * TRB is in a new segment. This does not skip over link TRBs, and it does not 125 * effect the ring dequeue or enqueue pointers. 126 */ 127 static void next_trb(struct xhci_hcd *xhci, 128 struct xhci_ring *ring, 129 struct xhci_segment **seg, 130 union xhci_trb **trb) 131 { 132 if (last_trb(xhci, ring, *seg, *trb)) { 133 *seg = (*seg)->next; 134 *trb = ((*seg)->trbs); 135 } else { 136 (*trb)++; 137 } 138 } 139 140 /* 141 * See Cycle bit rules. SW is the consumer for the event ring only. 142 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 143 */ 144 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 145 { 146 ring->deq_updates++; 147 148 /* 149 * If this is not event ring, and the dequeue pointer 150 * is not on a link TRB, there is one more usable TRB 151 */ 152 if (ring->type != TYPE_EVENT && 153 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 154 ring->num_trbs_free++; 155 156 do { 157 /* 158 * Update the dequeue pointer further if that was a link TRB or 159 * we're at the end of an event ring segment (which doesn't have 160 * link TRBS) 161 */ 162 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 163 if (ring->type == TYPE_EVENT && 164 last_trb_on_last_seg(xhci, ring, 165 ring->deq_seg, ring->dequeue)) { 166 ring->cycle_state ^= 1; 167 } 168 ring->deq_seg = ring->deq_seg->next; 169 ring->dequeue = ring->deq_seg->trbs; 170 } else { 171 ring->dequeue++; 172 } 173 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 174 } 175 176 /* 177 * See Cycle bit rules. SW is the consumer for the event ring only. 178 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 179 * 180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 181 * chain bit is set), then set the chain bit in all the following link TRBs. 182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 183 * have their chain bit cleared (so that each Link TRB is a separate TD). 184 * 185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 186 * set, but other sections talk about dealing with the chain bit set. This was 187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 188 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 189 * 190 * @more_trbs_coming: Will you enqueue more TRBs before calling 191 * prepare_transfer()? 192 */ 193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 194 bool more_trbs_coming) 195 { 196 u32 chain; 197 union xhci_trb *next; 198 199 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 200 /* If this is not event ring, there is one less usable TRB */ 201 if (ring->type != TYPE_EVENT && 202 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 203 ring->num_trbs_free--; 204 next = ++(ring->enqueue); 205 206 ring->enq_updates++; 207 /* Update the dequeue pointer further if that was a link TRB or we're at 208 * the end of an event ring segment (which doesn't have link TRBS) 209 */ 210 while (last_trb(xhci, ring, ring->enq_seg, next)) { 211 if (ring->type != TYPE_EVENT) { 212 /* 213 * If the caller doesn't plan on enqueueing more 214 * TDs before ringing the doorbell, then we 215 * don't want to give the link TRB to the 216 * hardware just yet. We'll give the link TRB 217 * back in prepare_ring() just before we enqueue 218 * the TD at the top of the ring. 219 */ 220 if (!chain && !more_trbs_coming) 221 break; 222 223 /* If we're not dealing with 0.95 hardware or 224 * isoc rings on AMD 0.96 host, 225 * carry over the chain bit of the previous TRB 226 * (which may mean the chain bit is cleared). 227 */ 228 if (!(ring->type == TYPE_ISOC && 229 (xhci->quirks & XHCI_AMD_0x96_HOST)) 230 && !xhci_link_trb_quirk(xhci)) { 231 next->link.control &= 232 cpu_to_le32(~TRB_CHAIN); 233 next->link.control |= 234 cpu_to_le32(chain); 235 } 236 /* Give this link TRB to the hardware */ 237 wmb(); 238 next->link.control ^= cpu_to_le32(TRB_CYCLE); 239 240 /* Toggle the cycle bit after the last ring segment. */ 241 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 242 ring->cycle_state ^= 1; 243 } 244 } 245 ring->enq_seg = ring->enq_seg->next; 246 ring->enqueue = ring->enq_seg->trbs; 247 next = ring->enqueue; 248 } 249 } 250 251 /* 252 * Check to see if there's room to enqueue num_trbs on the ring and make sure 253 * enqueue pointer will not advance into dequeue segment. See rules above. 254 */ 255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 256 unsigned int num_trbs) 257 { 258 int num_trbs_in_deq_seg; 259 260 if (ring->num_trbs_free < num_trbs) 261 return 0; 262 263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 266 return 0; 267 } 268 269 return 1; 270 } 271 272 /* Ring the host controller doorbell after placing a command on the ring */ 273 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 274 { 275 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 276 return; 277 278 xhci_dbg(xhci, "// Ding dong!\n"); 279 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 280 /* Flush PCI posted writes */ 281 readl(&xhci->dba->doorbell[0]); 282 } 283 284 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 285 { 286 u64 temp_64; 287 int ret; 288 289 xhci_dbg(xhci, "Abort command ring\n"); 290 291 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 292 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 293 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 294 &xhci->op_regs->cmd_ring); 295 296 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 297 * time the completion od all xHCI commands, including 298 * the Command Abort operation. If software doesn't see 299 * CRR negated in a timely manner (e.g. longer than 5 300 * seconds), then it should assume that the there are 301 * larger problems with the xHC and assert HCRST. 302 */ 303 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 304 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 305 if (ret < 0) { 306 /* we are about to kill xhci, give it one more chance */ 307 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 308 &xhci->op_regs->cmd_ring); 309 udelay(1000); 310 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 311 CMD_RING_RUNNING, 0, 3 * 1000 * 1000); 312 if (ret == 0) 313 return 0; 314 315 xhci_err(xhci, "Stopped the command ring failed, " 316 "maybe the host is dead\n"); 317 xhci->xhc_state |= XHCI_STATE_DYING; 318 xhci_quiesce(xhci); 319 xhci_halt(xhci); 320 return -ESHUTDOWN; 321 } 322 323 return 0; 324 } 325 326 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 327 unsigned int slot_id, 328 unsigned int ep_index, 329 unsigned int stream_id) 330 { 331 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 332 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 333 unsigned int ep_state = ep->ep_state; 334 335 /* Don't ring the doorbell for this endpoint if there are pending 336 * cancellations because we don't want to interrupt processing. 337 * We don't want to restart any stream rings if there's a set dequeue 338 * pointer command pending because the device can choose to start any 339 * stream once the endpoint is on the HW schedule. 340 */ 341 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 342 (ep_state & EP_HALTED)) 343 return; 344 writel(DB_VALUE(ep_index, stream_id), db_addr); 345 /* The CPU has better things to do at this point than wait for a 346 * write-posting flush. It'll get there soon enough. 347 */ 348 } 349 350 /* Ring the doorbell for any rings with pending URBs */ 351 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 352 unsigned int slot_id, 353 unsigned int ep_index) 354 { 355 unsigned int stream_id; 356 struct xhci_virt_ep *ep; 357 358 ep = &xhci->devs[slot_id]->eps[ep_index]; 359 360 /* A ring has pending URBs if its TD list is not empty */ 361 if (!(ep->ep_state & EP_HAS_STREAMS)) { 362 if (ep->ring && !(list_empty(&ep->ring->td_list))) 363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 364 return; 365 } 366 367 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 368 stream_id++) { 369 struct xhci_stream_info *stream_info = ep->stream_info; 370 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 371 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 372 stream_id); 373 } 374 } 375 376 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 377 unsigned int slot_id, unsigned int ep_index, 378 unsigned int stream_id) 379 { 380 struct xhci_virt_ep *ep; 381 382 ep = &xhci->devs[slot_id]->eps[ep_index]; 383 /* Common case: no streams */ 384 if (!(ep->ep_state & EP_HAS_STREAMS)) 385 return ep->ring; 386 387 if (stream_id == 0) { 388 xhci_warn(xhci, 389 "WARN: Slot ID %u, ep index %u has streams, " 390 "but URB has no stream ID.\n", 391 slot_id, ep_index); 392 return NULL; 393 } 394 395 if (stream_id < ep->stream_info->num_streams) 396 return ep->stream_info->stream_rings[stream_id]; 397 398 xhci_warn(xhci, 399 "WARN: Slot ID %u, ep index %u has " 400 "stream IDs 1 to %u allocated, " 401 "but stream ID %u is requested.\n", 402 slot_id, ep_index, 403 ep->stream_info->num_streams - 1, 404 stream_id); 405 return NULL; 406 } 407 408 /* Get the right ring for the given URB. 409 * If the endpoint supports streams, boundary check the URB's stream ID. 410 * If the endpoint doesn't support streams, return the singular endpoint ring. 411 */ 412 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 413 struct urb *urb) 414 { 415 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 416 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 417 } 418 419 /* 420 * Move the xHC's endpoint ring dequeue pointer past cur_td. 421 * Record the new state of the xHC's endpoint ring dequeue segment, 422 * dequeue pointer, and new consumer cycle state in state. 423 * Update our internal representation of the ring's dequeue pointer. 424 * 425 * We do this in three jumps: 426 * - First we update our new ring state to be the same as when the xHC stopped. 427 * - Then we traverse the ring to find the segment that contains 428 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 429 * any link TRBs with the toggle cycle bit set. 430 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 431 * if we've moved it past a link TRB with the toggle cycle bit set. 432 * 433 * Some of the uses of xhci_generic_trb are grotty, but if they're done 434 * with correct __le32 accesses they should work fine. Only users of this are 435 * in here. 436 */ 437 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 438 unsigned int slot_id, unsigned int ep_index, 439 unsigned int stream_id, struct xhci_td *cur_td, 440 struct xhci_dequeue_state *state) 441 { 442 struct xhci_virt_device *dev = xhci->devs[slot_id]; 443 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 444 struct xhci_ring *ep_ring; 445 struct xhci_segment *new_seg; 446 union xhci_trb *new_deq; 447 dma_addr_t addr; 448 u64 hw_dequeue; 449 bool cycle_found = false; 450 bool td_last_trb_found = false; 451 452 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 453 ep_index, stream_id); 454 if (!ep_ring) { 455 xhci_warn(xhci, "WARN can't find new dequeue state " 456 "for invalid stream ID %u.\n", 457 stream_id); 458 return; 459 } 460 461 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 462 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 463 "Finding endpoint context"); 464 /* 4.6.9 the css flag is written to the stream context for streams */ 465 if (ep->ep_state & EP_HAS_STREAMS) { 466 struct xhci_stream_ctx *ctx = 467 &ep->stream_info->stream_ctx_array[stream_id]; 468 hw_dequeue = le64_to_cpu(ctx->stream_ring); 469 } else { 470 struct xhci_ep_ctx *ep_ctx 471 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 472 hw_dequeue = le64_to_cpu(ep_ctx->deq); 473 } 474 475 new_seg = ep_ring->deq_seg; 476 new_deq = ep_ring->dequeue; 477 state->new_cycle_state = hw_dequeue & 0x1; 478 479 /* 480 * We want to find the pointer, segment and cycle state of the new trb 481 * (the one after current TD's last_trb). We know the cycle state at 482 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 483 * found. 484 */ 485 do { 486 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 487 == (dma_addr_t)(hw_dequeue & ~0xf)) { 488 cycle_found = true; 489 if (td_last_trb_found) 490 break; 491 } 492 if (new_deq == cur_td->last_trb) 493 td_last_trb_found = true; 494 495 if (cycle_found && 496 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 497 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 498 state->new_cycle_state ^= 0x1; 499 500 next_trb(xhci, ep_ring, &new_seg, &new_deq); 501 502 /* Search wrapped around, bail out */ 503 if (new_deq == ep->ring->dequeue) { 504 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 505 state->new_deq_seg = NULL; 506 state->new_deq_ptr = NULL; 507 return; 508 } 509 510 } while (!cycle_found || !td_last_trb_found); 511 512 state->new_deq_seg = new_seg; 513 state->new_deq_ptr = new_deq; 514 515 /* Don't update the ring cycle state for the producer (us). */ 516 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 517 "Cycle state = 0x%x", state->new_cycle_state); 518 519 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 520 "New dequeue segment = %p (virtual)", 521 state->new_deq_seg); 522 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 523 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 524 "New dequeue pointer = 0x%llx (DMA)", 525 (unsigned long long) addr); 526 } 527 528 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 529 * (The last TRB actually points to the ring enqueue pointer, which is not part 530 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 531 */ 532 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 533 struct xhci_td *cur_td, bool flip_cycle) 534 { 535 struct xhci_segment *cur_seg; 536 union xhci_trb *cur_trb; 537 538 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 539 true; 540 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 541 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 542 /* Unchain any chained Link TRBs, but 543 * leave the pointers intact. 544 */ 545 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 546 /* Flip the cycle bit (link TRBs can't be the first 547 * or last TRB). 548 */ 549 if (flip_cycle) 550 cur_trb->generic.field[3] ^= 551 cpu_to_le32(TRB_CYCLE); 552 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 553 "Cancel (unchain) link TRB"); 554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 555 "Address = %p (0x%llx dma); " 556 "in seg %p (0x%llx dma)", 557 cur_trb, 558 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 559 cur_seg, 560 (unsigned long long)cur_seg->dma); 561 } else { 562 cur_trb->generic.field[0] = 0; 563 cur_trb->generic.field[1] = 0; 564 cur_trb->generic.field[2] = 0; 565 /* Preserve only the cycle bit of this TRB */ 566 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 567 /* Flip the cycle bit except on the first or last TRB */ 568 if (flip_cycle && cur_trb != cur_td->first_trb && 569 cur_trb != cur_td->last_trb) 570 cur_trb->generic.field[3] ^= 571 cpu_to_le32(TRB_CYCLE); 572 cur_trb->generic.field[3] |= cpu_to_le32( 573 TRB_TYPE(TRB_TR_NOOP)); 574 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 575 "TRB to noop at offset 0x%llx", 576 (unsigned long long) 577 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 578 } 579 if (cur_trb == cur_td->last_trb) 580 break; 581 } 582 } 583 584 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 585 struct xhci_virt_ep *ep) 586 { 587 ep->ep_state &= ~EP_HALT_PENDING; 588 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 589 * timer is running on another CPU, we don't decrement stop_cmds_pending 590 * (since we didn't successfully stop the watchdog timer). 591 */ 592 if (del_timer(&ep->stop_cmd_timer)) 593 ep->stop_cmds_pending--; 594 } 595 596 /* Must be called with xhci->lock held in interrupt context */ 597 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 598 struct xhci_td *cur_td, int status) 599 { 600 struct usb_hcd *hcd; 601 struct urb *urb; 602 struct urb_priv *urb_priv; 603 604 urb = cur_td->urb; 605 urb_priv = urb->hcpriv; 606 urb_priv->td_cnt++; 607 hcd = bus_to_hcd(urb->dev->bus); 608 609 /* Only giveback urb when this is the last td in urb */ 610 if (urb_priv->td_cnt == urb_priv->length) { 611 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 612 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 613 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 614 if (xhci->quirks & XHCI_AMD_PLL_FIX) 615 usb_amd_quirk_pll_enable(); 616 } 617 } 618 usb_hcd_unlink_urb_from_ep(hcd, urb); 619 620 spin_unlock(&xhci->lock); 621 usb_hcd_giveback_urb(hcd, urb, status); 622 xhci_urb_free_priv(urb_priv); 623 spin_lock(&xhci->lock); 624 } 625 } 626 627 /* 628 * When we get a command completion for a Stop Endpoint Command, we need to 629 * unlink any cancelled TDs from the ring. There are two ways to do that: 630 * 631 * 1. If the HW was in the middle of processing the TD that needs to be 632 * cancelled, then we must move the ring's dequeue pointer past the last TRB 633 * in the TD with a Set Dequeue Pointer Command. 634 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 635 * bit cleared) so that the HW will skip over them. 636 */ 637 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 638 union xhci_trb *trb, struct xhci_event_cmd *event) 639 { 640 unsigned int ep_index; 641 struct xhci_ring *ep_ring; 642 struct xhci_virt_ep *ep; 643 struct list_head *entry; 644 struct xhci_td *cur_td = NULL; 645 struct xhci_td *last_unlinked_td; 646 647 struct xhci_dequeue_state deq_state; 648 649 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 650 if (!xhci->devs[slot_id]) 651 xhci_warn(xhci, "Stop endpoint command " 652 "completion for disabled slot %u\n", 653 slot_id); 654 return; 655 } 656 657 memset(&deq_state, 0, sizeof(deq_state)); 658 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 659 ep = &xhci->devs[slot_id]->eps[ep_index]; 660 661 if (list_empty(&ep->cancelled_td_list)) { 662 xhci_stop_watchdog_timer_in_irq(xhci, ep); 663 ep->stopped_td = NULL; 664 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 665 return; 666 } 667 668 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 669 * We have the xHCI lock, so nothing can modify this list until we drop 670 * it. We're also in the event handler, so we can't get re-interrupted 671 * if another Stop Endpoint command completes 672 */ 673 list_for_each(entry, &ep->cancelled_td_list) { 674 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 676 "Removing canceled TD starting at 0x%llx (dma).", 677 (unsigned long long)xhci_trb_virt_to_dma( 678 cur_td->start_seg, cur_td->first_trb)); 679 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 680 if (!ep_ring) { 681 /* This shouldn't happen unless a driver is mucking 682 * with the stream ID after submission. This will 683 * leave the TD on the hardware ring, and the hardware 684 * will try to execute it, and may access a buffer 685 * that has already been freed. In the best case, the 686 * hardware will execute it, and the event handler will 687 * ignore the completion event for that TD, since it was 688 * removed from the td_list for that endpoint. In 689 * short, don't muck with the stream ID after 690 * submission. 691 */ 692 xhci_warn(xhci, "WARN Cancelled URB %p " 693 "has invalid stream ID %u.\n", 694 cur_td->urb, 695 cur_td->urb->stream_id); 696 goto remove_finished_td; 697 } 698 /* 699 * If we stopped on the TD we need to cancel, then we have to 700 * move the xHC endpoint ring dequeue pointer past this TD. 701 */ 702 if (cur_td == ep->stopped_td) 703 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 704 cur_td->urb->stream_id, 705 cur_td, &deq_state); 706 else 707 td_to_noop(xhci, ep_ring, cur_td, false); 708 remove_finished_td: 709 /* 710 * The event handler won't see a completion for this TD anymore, 711 * so remove it from the endpoint ring's TD list. Keep it in 712 * the cancelled TD list for URB completion later. 713 */ 714 list_del_init(&cur_td->td_list); 715 } 716 last_unlinked_td = cur_td; 717 xhci_stop_watchdog_timer_in_irq(xhci, ep); 718 719 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 720 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 721 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 722 ep->stopped_td->urb->stream_id, &deq_state); 723 xhci_ring_cmd_db(xhci); 724 } else { 725 /* Otherwise ring the doorbell(s) to restart queued transfers */ 726 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 727 } 728 729 ep->stopped_td = NULL; 730 731 /* 732 * Drop the lock and complete the URBs in the cancelled TD list. 733 * New TDs to be cancelled might be added to the end of the list before 734 * we can complete all the URBs for the TDs we already unlinked. 735 * So stop when we've completed the URB for the last TD we unlinked. 736 */ 737 do { 738 cur_td = list_entry(ep->cancelled_td_list.next, 739 struct xhci_td, cancelled_td_list); 740 list_del_init(&cur_td->cancelled_td_list); 741 742 /* Clean up the cancelled URB */ 743 /* Doesn't matter what we pass for status, since the core will 744 * just overwrite it (because the URB has been unlinked). 745 */ 746 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 747 748 /* Stop processing the cancelled list if the watchdog timer is 749 * running. 750 */ 751 if (xhci->xhc_state & XHCI_STATE_DYING) 752 return; 753 } while (cur_td != last_unlinked_td); 754 755 /* Return to the event handler with xhci->lock re-acquired */ 756 } 757 758 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 759 { 760 struct xhci_td *cur_td; 761 762 while (!list_empty(&ring->td_list)) { 763 cur_td = list_first_entry(&ring->td_list, 764 struct xhci_td, td_list); 765 list_del_init(&cur_td->td_list); 766 if (!list_empty(&cur_td->cancelled_td_list)) 767 list_del_init(&cur_td->cancelled_td_list); 768 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 769 } 770 } 771 772 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 773 int slot_id, int ep_index) 774 { 775 struct xhci_td *cur_td; 776 struct xhci_virt_ep *ep; 777 struct xhci_ring *ring; 778 779 ep = &xhci->devs[slot_id]->eps[ep_index]; 780 if ((ep->ep_state & EP_HAS_STREAMS) || 781 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 782 int stream_id; 783 784 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 785 stream_id++) { 786 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 787 "Killing URBs for slot ID %u, ep index %u, stream %u", 788 slot_id, ep_index, stream_id + 1); 789 xhci_kill_ring_urbs(xhci, 790 ep->stream_info->stream_rings[stream_id]); 791 } 792 } else { 793 ring = ep->ring; 794 if (!ring) 795 return; 796 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 797 "Killing URBs for slot ID %u, ep index %u", 798 slot_id, ep_index); 799 xhci_kill_ring_urbs(xhci, ring); 800 } 801 while (!list_empty(&ep->cancelled_td_list)) { 802 cur_td = list_first_entry(&ep->cancelled_td_list, 803 struct xhci_td, cancelled_td_list); 804 list_del_init(&cur_td->cancelled_td_list); 805 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 806 } 807 } 808 809 /* Watchdog timer function for when a stop endpoint command fails to complete. 810 * In this case, we assume the host controller is broken or dying or dead. The 811 * host may still be completing some other events, so we have to be careful to 812 * let the event ring handler and the URB dequeueing/enqueueing functions know 813 * through xhci->state. 814 * 815 * The timer may also fire if the host takes a very long time to respond to the 816 * command, and the stop endpoint command completion handler cannot delete the 817 * timer before the timer function is called. Another endpoint cancellation may 818 * sneak in before the timer function can grab the lock, and that may queue 819 * another stop endpoint command and add the timer back. So we cannot use a 820 * simple flag to say whether there is a pending stop endpoint command for a 821 * particular endpoint. 822 * 823 * Instead we use a combination of that flag and a counter for the number of 824 * pending stop endpoint commands. If the timer is the tail end of the last 825 * stop endpoint command, and the endpoint's command is still pending, we assume 826 * the host is dying. 827 */ 828 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 829 { 830 struct xhci_hcd *xhci; 831 struct xhci_virt_ep *ep; 832 int ret, i, j; 833 unsigned long flags; 834 835 ep = (struct xhci_virt_ep *) arg; 836 xhci = ep->xhci; 837 838 spin_lock_irqsave(&xhci->lock, flags); 839 840 ep->stop_cmds_pending--; 841 if (xhci->xhc_state & XHCI_STATE_DYING) { 842 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 843 "Stop EP timer ran, but another timer marked " 844 "xHCI as DYING, exiting."); 845 spin_unlock_irqrestore(&xhci->lock, flags); 846 return; 847 } 848 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 849 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 850 "Stop EP timer ran, but no command pending, " 851 "exiting."); 852 spin_unlock_irqrestore(&xhci->lock, flags); 853 return; 854 } 855 856 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 857 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 858 /* Oops, HC is dead or dying or at least not responding to the stop 859 * endpoint command. 860 */ 861 xhci->xhc_state |= XHCI_STATE_DYING; 862 /* Disable interrupts from the host controller and start halting it */ 863 xhci_quiesce(xhci); 864 spin_unlock_irqrestore(&xhci->lock, flags); 865 866 ret = xhci_halt(xhci); 867 868 spin_lock_irqsave(&xhci->lock, flags); 869 if (ret < 0) { 870 /* This is bad; the host is not responding to commands and it's 871 * not allowing itself to be halted. At least interrupts are 872 * disabled. If we call usb_hc_died(), it will attempt to 873 * disconnect all device drivers under this host. Those 874 * disconnect() methods will wait for all URBs to be unlinked, 875 * so we must complete them. 876 */ 877 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 878 xhci_warn(xhci, "Completing active URBs anyway.\n"); 879 /* We could turn all TDs on the rings to no-ops. This won't 880 * help if the host has cached part of the ring, and is slow if 881 * we want to preserve the cycle bit. Skip it and hope the host 882 * doesn't touch the memory. 883 */ 884 } 885 for (i = 0; i < MAX_HC_SLOTS; i++) { 886 if (!xhci->devs[i]) 887 continue; 888 for (j = 0; j < 31; j++) 889 xhci_kill_endpoint_urbs(xhci, i, j); 890 } 891 spin_unlock_irqrestore(&xhci->lock, flags); 892 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 893 "Calling usb_hc_died()"); 894 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 895 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 896 "xHCI host controller is dead."); 897 } 898 899 900 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 901 struct xhci_virt_device *dev, 902 struct xhci_ring *ep_ring, 903 unsigned int ep_index) 904 { 905 union xhci_trb *dequeue_temp; 906 int num_trbs_free_temp; 907 bool revert = false; 908 909 num_trbs_free_temp = ep_ring->num_trbs_free; 910 dequeue_temp = ep_ring->dequeue; 911 912 /* If we get two back-to-back stalls, and the first stalled transfer 913 * ends just before a link TRB, the dequeue pointer will be left on 914 * the link TRB by the code in the while loop. So we have to update 915 * the dequeue pointer one segment further, or we'll jump off 916 * the segment into la-la-land. 917 */ 918 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 919 ep_ring->deq_seg = ep_ring->deq_seg->next; 920 ep_ring->dequeue = ep_ring->deq_seg->trbs; 921 } 922 923 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 924 /* We have more usable TRBs */ 925 ep_ring->num_trbs_free++; 926 ep_ring->dequeue++; 927 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 928 ep_ring->dequeue)) { 929 if (ep_ring->dequeue == 930 dev->eps[ep_index].queued_deq_ptr) 931 break; 932 ep_ring->deq_seg = ep_ring->deq_seg->next; 933 ep_ring->dequeue = ep_ring->deq_seg->trbs; 934 } 935 if (ep_ring->dequeue == dequeue_temp) { 936 revert = true; 937 break; 938 } 939 } 940 941 if (revert) { 942 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 943 ep_ring->num_trbs_free = num_trbs_free_temp; 944 } 945 } 946 947 /* 948 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 949 * we need to clear the set deq pending flag in the endpoint ring state, so that 950 * the TD queueing code can ring the doorbell again. We also need to ring the 951 * endpoint doorbell to restart the ring, but only if there aren't more 952 * cancellations pending. 953 */ 954 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 955 union xhci_trb *trb, u32 cmd_comp_code) 956 { 957 unsigned int ep_index; 958 unsigned int stream_id; 959 struct xhci_ring *ep_ring; 960 struct xhci_virt_device *dev; 961 struct xhci_virt_ep *ep; 962 struct xhci_ep_ctx *ep_ctx; 963 struct xhci_slot_ctx *slot_ctx; 964 965 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 966 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 967 dev = xhci->devs[slot_id]; 968 ep = &dev->eps[ep_index]; 969 970 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 971 if (!ep_ring) { 972 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 973 stream_id); 974 /* XXX: Harmless??? */ 975 goto cleanup; 976 } 977 978 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 979 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 980 981 if (cmd_comp_code != COMP_SUCCESS) { 982 unsigned int ep_state; 983 unsigned int slot_state; 984 985 switch (cmd_comp_code) { 986 case COMP_TRB_ERR: 987 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 988 break; 989 case COMP_CTX_STATE: 990 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 991 ep_state = le32_to_cpu(ep_ctx->ep_info); 992 ep_state &= EP_STATE_MASK; 993 slot_state = le32_to_cpu(slot_ctx->dev_state); 994 slot_state = GET_SLOT_STATE(slot_state); 995 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 996 "Slot state = %u, EP state = %u", 997 slot_state, ep_state); 998 break; 999 case COMP_EBADSLT: 1000 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1001 slot_id); 1002 break; 1003 default: 1004 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1005 cmd_comp_code); 1006 break; 1007 } 1008 /* OK what do we do now? The endpoint state is hosed, and we 1009 * should never get to this point if the synchronization between 1010 * queueing, and endpoint state are correct. This might happen 1011 * if the device gets disconnected after we've finished 1012 * cancelling URBs, which might not be an error... 1013 */ 1014 } else { 1015 u64 deq; 1016 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1017 if (ep->ep_state & EP_HAS_STREAMS) { 1018 struct xhci_stream_ctx *ctx = 1019 &ep->stream_info->stream_ctx_array[stream_id]; 1020 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1021 } else { 1022 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1023 } 1024 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1025 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1026 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1027 ep->queued_deq_ptr) == deq) { 1028 /* Update the ring's dequeue segment and dequeue pointer 1029 * to reflect the new position. 1030 */ 1031 update_ring_for_set_deq_completion(xhci, dev, 1032 ep_ring, ep_index); 1033 } else { 1034 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1035 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1036 ep->queued_deq_seg, ep->queued_deq_ptr); 1037 } 1038 } 1039 1040 cleanup: 1041 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1042 dev->eps[ep_index].queued_deq_seg = NULL; 1043 dev->eps[ep_index].queued_deq_ptr = NULL; 1044 /* Restart any rings with pending URBs */ 1045 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1046 } 1047 1048 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1049 union xhci_trb *trb, u32 cmd_comp_code) 1050 { 1051 unsigned int ep_index; 1052 1053 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1054 /* This command will only fail if the endpoint wasn't halted, 1055 * but we don't care. 1056 */ 1057 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1058 "Ignoring reset ep completion code of %u", cmd_comp_code); 1059 1060 /* HW with the reset endpoint quirk needs to have a configure endpoint 1061 * command complete before the endpoint can be used. Queue that here 1062 * because the HW can't handle two commands being queued in a row. 1063 */ 1064 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1065 struct xhci_command *command; 1066 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1067 if (!command) { 1068 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1069 return; 1070 } 1071 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1072 "Queueing configure endpoint command"); 1073 xhci_queue_configure_endpoint(xhci, command, 1074 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1075 false); 1076 xhci_ring_cmd_db(xhci); 1077 } else { 1078 /* Clear our internal halted state */ 1079 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1080 } 1081 } 1082 1083 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1084 u32 cmd_comp_code) 1085 { 1086 if (cmd_comp_code == COMP_SUCCESS) 1087 xhci->slot_id = slot_id; 1088 else 1089 xhci->slot_id = 0; 1090 } 1091 1092 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1093 { 1094 struct xhci_virt_device *virt_dev; 1095 1096 virt_dev = xhci->devs[slot_id]; 1097 if (!virt_dev) 1098 return; 1099 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1100 /* Delete default control endpoint resources */ 1101 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1102 xhci_free_virt_device(xhci, slot_id); 1103 } 1104 1105 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1106 struct xhci_event_cmd *event, u32 cmd_comp_code) 1107 { 1108 struct xhci_virt_device *virt_dev; 1109 struct xhci_input_control_ctx *ctrl_ctx; 1110 unsigned int ep_index; 1111 unsigned int ep_state; 1112 u32 add_flags, drop_flags; 1113 1114 /* 1115 * Configure endpoint commands can come from the USB core 1116 * configuration or alt setting changes, or because the HW 1117 * needed an extra configure endpoint command after a reset 1118 * endpoint command or streams were being configured. 1119 * If the command was for a halted endpoint, the xHCI driver 1120 * is not waiting on the configure endpoint command. 1121 */ 1122 virt_dev = xhci->devs[slot_id]; 1123 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1124 if (!ctrl_ctx) { 1125 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1126 return; 1127 } 1128 1129 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1130 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1131 /* Input ctx add_flags are the endpoint index plus one */ 1132 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1133 1134 /* A usb_set_interface() call directly after clearing a halted 1135 * condition may race on this quirky hardware. Not worth 1136 * worrying about, since this is prototype hardware. Not sure 1137 * if this will work for streams, but streams support was 1138 * untested on this prototype. 1139 */ 1140 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1141 ep_index != (unsigned int) -1 && 1142 add_flags - SLOT_FLAG == drop_flags) { 1143 ep_state = virt_dev->eps[ep_index].ep_state; 1144 if (!(ep_state & EP_HALTED)) 1145 return; 1146 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1147 "Completed config ep cmd - " 1148 "last ep index = %d, state = %d", 1149 ep_index, ep_state); 1150 /* Clear internal halted state and restart ring(s) */ 1151 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1152 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1153 return; 1154 } 1155 return; 1156 } 1157 1158 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1159 struct xhci_event_cmd *event) 1160 { 1161 xhci_dbg(xhci, "Completed reset device command.\n"); 1162 if (!xhci->devs[slot_id]) 1163 xhci_warn(xhci, "Reset device command completion " 1164 "for disabled slot %u\n", slot_id); 1165 } 1166 1167 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1168 struct xhci_event_cmd *event) 1169 { 1170 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1171 xhci->error_bitmask |= 1 << 6; 1172 return; 1173 } 1174 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1175 "NEC firmware version %2x.%02x", 1176 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1177 NEC_FW_MINOR(le32_to_cpu(event->status))); 1178 } 1179 1180 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1181 { 1182 list_del(&cmd->cmd_list); 1183 1184 if (cmd->completion) { 1185 cmd->status = status; 1186 complete(cmd->completion); 1187 } else { 1188 kfree(cmd); 1189 } 1190 } 1191 1192 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1193 { 1194 struct xhci_command *cur_cmd, *tmp_cmd; 1195 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1196 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1197 } 1198 1199 /* 1200 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1201 * If there are other commands waiting then restart the ring and kick the timer. 1202 * This must be called with command ring stopped and xhci->lock held. 1203 */ 1204 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1205 struct xhci_command *cur_cmd) 1206 { 1207 struct xhci_command *i_cmd, *tmp_cmd; 1208 u32 cycle_state; 1209 1210 /* Turn all aborted commands in list to no-ops, then restart */ 1211 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1212 cmd_list) { 1213 1214 if (i_cmd->status != COMP_CMD_ABORT) 1215 continue; 1216 1217 i_cmd->status = COMP_CMD_STOP; 1218 1219 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1220 i_cmd->command_trb); 1221 /* get cycle state from the original cmd trb */ 1222 cycle_state = le32_to_cpu( 1223 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1224 /* modify the command trb to no-op command */ 1225 i_cmd->command_trb->generic.field[0] = 0; 1226 i_cmd->command_trb->generic.field[1] = 0; 1227 i_cmd->command_trb->generic.field[2] = 0; 1228 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1229 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1230 1231 /* 1232 * caller waiting for completion is called when command 1233 * completion event is received for these no-op commands 1234 */ 1235 } 1236 1237 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1238 1239 /* ring command ring doorbell to restart the command ring */ 1240 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1241 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1242 xhci->current_cmd = cur_cmd; 1243 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1244 xhci_ring_cmd_db(xhci); 1245 } 1246 return; 1247 } 1248 1249 1250 void xhci_handle_command_timeout(unsigned long data) 1251 { 1252 struct xhci_hcd *xhci; 1253 int ret; 1254 unsigned long flags; 1255 u64 hw_ring_state; 1256 struct xhci_command *cur_cmd = NULL; 1257 xhci = (struct xhci_hcd *) data; 1258 1259 /* mark this command to be cancelled */ 1260 spin_lock_irqsave(&xhci->lock, flags); 1261 if (xhci->current_cmd) { 1262 cur_cmd = xhci->current_cmd; 1263 cur_cmd->status = COMP_CMD_ABORT; 1264 } 1265 1266 1267 /* Make sure command ring is running before aborting it */ 1268 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1269 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1270 (hw_ring_state & CMD_RING_RUNNING)) { 1271 1272 spin_unlock_irqrestore(&xhci->lock, flags); 1273 xhci_dbg(xhci, "Command timeout\n"); 1274 ret = xhci_abort_cmd_ring(xhci); 1275 if (unlikely(ret == -ESHUTDOWN)) { 1276 xhci_err(xhci, "Abort command ring failed\n"); 1277 xhci_cleanup_command_queue(xhci); 1278 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1279 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1280 } 1281 return; 1282 } 1283 /* command timeout on stopped ring, ring can't be aborted */ 1284 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1285 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1286 spin_unlock_irqrestore(&xhci->lock, flags); 1287 return; 1288 } 1289 1290 static void handle_cmd_completion(struct xhci_hcd *xhci, 1291 struct xhci_event_cmd *event) 1292 { 1293 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1294 u64 cmd_dma; 1295 dma_addr_t cmd_dequeue_dma; 1296 u32 cmd_comp_code; 1297 union xhci_trb *cmd_trb; 1298 struct xhci_command *cmd; 1299 u32 cmd_type; 1300 1301 cmd_dma = le64_to_cpu(event->cmd_trb); 1302 cmd_trb = xhci->cmd_ring->dequeue; 1303 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1304 cmd_trb); 1305 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1306 if (cmd_dequeue_dma == 0) { 1307 xhci->error_bitmask |= 1 << 4; 1308 return; 1309 } 1310 /* Does the DMA address match our internal dequeue pointer address? */ 1311 if (cmd_dma != (u64) cmd_dequeue_dma) { 1312 xhci->error_bitmask |= 1 << 5; 1313 return; 1314 } 1315 1316 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1317 1318 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1319 xhci_err(xhci, 1320 "Command completion event does not match command\n"); 1321 return; 1322 } 1323 1324 del_timer(&xhci->cmd_timer); 1325 1326 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1327 1328 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1329 1330 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1331 if (cmd_comp_code == COMP_CMD_STOP) { 1332 xhci_handle_stopped_cmd_ring(xhci, cmd); 1333 return; 1334 } 1335 /* 1336 * Host aborted the command ring, check if the current command was 1337 * supposed to be aborted, otherwise continue normally. 1338 * The command ring is stopped now, but the xHC will issue a Command 1339 * Ring Stopped event which will cause us to restart it. 1340 */ 1341 if (cmd_comp_code == COMP_CMD_ABORT) { 1342 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1343 if (cmd->status == COMP_CMD_ABORT) 1344 goto event_handled; 1345 } 1346 1347 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1348 switch (cmd_type) { 1349 case TRB_ENABLE_SLOT: 1350 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1351 break; 1352 case TRB_DISABLE_SLOT: 1353 xhci_handle_cmd_disable_slot(xhci, slot_id); 1354 break; 1355 case TRB_CONFIG_EP: 1356 if (!cmd->completion) 1357 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1358 cmd_comp_code); 1359 break; 1360 case TRB_EVAL_CONTEXT: 1361 break; 1362 case TRB_ADDR_DEV: 1363 break; 1364 case TRB_STOP_RING: 1365 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1366 le32_to_cpu(cmd_trb->generic.field[3]))); 1367 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1368 break; 1369 case TRB_SET_DEQ: 1370 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1371 le32_to_cpu(cmd_trb->generic.field[3]))); 1372 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1373 break; 1374 case TRB_CMD_NOOP: 1375 /* Is this an aborted command turned to NO-OP? */ 1376 if (cmd->status == COMP_CMD_STOP) 1377 cmd_comp_code = COMP_CMD_STOP; 1378 break; 1379 case TRB_RESET_EP: 1380 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1381 le32_to_cpu(cmd_trb->generic.field[3]))); 1382 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1383 break; 1384 case TRB_RESET_DEV: 1385 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1386 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1387 */ 1388 slot_id = TRB_TO_SLOT_ID( 1389 le32_to_cpu(cmd_trb->generic.field[3])); 1390 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1391 break; 1392 case TRB_NEC_GET_FW: 1393 xhci_handle_cmd_nec_get_fw(xhci, event); 1394 break; 1395 default: 1396 /* Skip over unknown commands on the event ring */ 1397 xhci->error_bitmask |= 1 << 6; 1398 break; 1399 } 1400 1401 /* restart timer if this wasn't the last command */ 1402 if (cmd->cmd_list.next != &xhci->cmd_list) { 1403 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1404 struct xhci_command, cmd_list); 1405 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1406 } 1407 1408 event_handled: 1409 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1410 1411 inc_deq(xhci, xhci->cmd_ring); 1412 } 1413 1414 static void handle_vendor_event(struct xhci_hcd *xhci, 1415 union xhci_trb *event) 1416 { 1417 u32 trb_type; 1418 1419 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1420 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1421 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1422 handle_cmd_completion(xhci, &event->event_cmd); 1423 } 1424 1425 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1426 * port registers -- USB 3.0 and USB 2.0). 1427 * 1428 * Returns a zero-based port number, which is suitable for indexing into each of 1429 * the split roothubs' port arrays and bus state arrays. 1430 * Add one to it in order to call xhci_find_slot_id_by_port. 1431 */ 1432 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1433 struct xhci_hcd *xhci, u32 port_id) 1434 { 1435 unsigned int i; 1436 unsigned int num_similar_speed_ports = 0; 1437 1438 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1439 * and usb2_ports are 0-based indexes. Count the number of similar 1440 * speed ports, up to 1 port before this port. 1441 */ 1442 for (i = 0; i < (port_id - 1); i++) { 1443 u8 port_speed = xhci->port_array[i]; 1444 1445 /* 1446 * Skip ports that don't have known speeds, or have duplicate 1447 * Extended Capabilities port speed entries. 1448 */ 1449 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1450 continue; 1451 1452 /* 1453 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1454 * 1.1 ports are under the USB 2.0 hub. If the port speed 1455 * matches the device speed, it's a similar speed port. 1456 */ 1457 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1458 num_similar_speed_ports++; 1459 } 1460 return num_similar_speed_ports; 1461 } 1462 1463 static void handle_device_notification(struct xhci_hcd *xhci, 1464 union xhci_trb *event) 1465 { 1466 u32 slot_id; 1467 struct usb_device *udev; 1468 1469 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1470 if (!xhci->devs[slot_id]) { 1471 xhci_warn(xhci, "Device Notification event for " 1472 "unused slot %u\n", slot_id); 1473 return; 1474 } 1475 1476 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1477 slot_id); 1478 udev = xhci->devs[slot_id]->udev; 1479 if (udev && udev->parent) 1480 usb_wakeup_notification(udev->parent, udev->portnum); 1481 } 1482 1483 static void handle_port_status(struct xhci_hcd *xhci, 1484 union xhci_trb *event) 1485 { 1486 struct usb_hcd *hcd; 1487 u32 port_id; 1488 u32 temp, temp1; 1489 int max_ports; 1490 int slot_id; 1491 unsigned int faked_port_index; 1492 u8 major_revision; 1493 struct xhci_bus_state *bus_state; 1494 __le32 __iomem **port_array; 1495 bool bogus_port_status = false; 1496 1497 /* Port status change events always have a successful completion code */ 1498 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1499 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1500 xhci->error_bitmask |= 1 << 8; 1501 } 1502 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1503 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1504 1505 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1506 if ((port_id <= 0) || (port_id > max_ports)) { 1507 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1508 inc_deq(xhci, xhci->event_ring); 1509 return; 1510 } 1511 1512 /* Figure out which usb_hcd this port is attached to: 1513 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1514 */ 1515 major_revision = xhci->port_array[port_id - 1]; 1516 1517 /* Find the right roothub. */ 1518 hcd = xhci_to_hcd(xhci); 1519 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1520 hcd = xhci->shared_hcd; 1521 1522 if (major_revision == 0) { 1523 xhci_warn(xhci, "Event for port %u not in " 1524 "Extended Capabilities, ignoring.\n", 1525 port_id); 1526 bogus_port_status = true; 1527 goto cleanup; 1528 } 1529 if (major_revision == DUPLICATE_ENTRY) { 1530 xhci_warn(xhci, "Event for port %u duplicated in" 1531 "Extended Capabilities, ignoring.\n", 1532 port_id); 1533 bogus_port_status = true; 1534 goto cleanup; 1535 } 1536 1537 /* 1538 * Hardware port IDs reported by a Port Status Change Event include USB 1539 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1540 * resume event, but we first need to translate the hardware port ID 1541 * into the index into the ports on the correct split roothub, and the 1542 * correct bus_state structure. 1543 */ 1544 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1545 if (hcd->speed >= HCD_USB3) 1546 port_array = xhci->usb3_ports; 1547 else 1548 port_array = xhci->usb2_ports; 1549 /* Find the faked port hub number */ 1550 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1551 port_id); 1552 1553 temp = readl(port_array[faked_port_index]); 1554 if (hcd->state == HC_STATE_SUSPENDED) { 1555 xhci_dbg(xhci, "resume root hub\n"); 1556 usb_hcd_resume_root_hub(hcd); 1557 } 1558 1559 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1560 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1561 1562 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1563 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1564 1565 temp1 = readl(&xhci->op_regs->command); 1566 if (!(temp1 & CMD_RUN)) { 1567 xhci_warn(xhci, "xHC is not running.\n"); 1568 goto cleanup; 1569 } 1570 1571 if (DEV_SUPERSPEED_ANY(temp)) { 1572 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1573 /* Set a flag to say the port signaled remote wakeup, 1574 * so we can tell the difference between the end of 1575 * device and host initiated resume. 1576 */ 1577 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1578 xhci_test_and_clear_bit(xhci, port_array, 1579 faked_port_index, PORT_PLC); 1580 xhci_set_link_state(xhci, port_array, faked_port_index, 1581 XDEV_U0); 1582 /* Need to wait until the next link state change 1583 * indicates the device is actually in U0. 1584 */ 1585 bogus_port_status = true; 1586 goto cleanup; 1587 } else if (!test_bit(faked_port_index, 1588 &bus_state->resuming_ports)) { 1589 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1590 bus_state->resume_done[faked_port_index] = jiffies + 1591 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1592 set_bit(faked_port_index, &bus_state->resuming_ports); 1593 mod_timer(&hcd->rh_timer, 1594 bus_state->resume_done[faked_port_index]); 1595 /* Do the rest in GetPortStatus */ 1596 } 1597 } 1598 1599 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1600 DEV_SUPERSPEED_ANY(temp)) { 1601 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1602 /* We've just brought the device into U0 through either the 1603 * Resume state after a device remote wakeup, or through the 1604 * U3Exit state after a host-initiated resume. If it's a device 1605 * initiated remote wake, don't pass up the link state change, 1606 * so the roothub behavior is consistent with external 1607 * USB 3.0 hub behavior. 1608 */ 1609 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1610 faked_port_index + 1); 1611 if (slot_id && xhci->devs[slot_id]) 1612 xhci_ring_device(xhci, slot_id); 1613 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1614 bus_state->port_remote_wakeup &= 1615 ~(1 << faked_port_index); 1616 xhci_test_and_clear_bit(xhci, port_array, 1617 faked_port_index, PORT_PLC); 1618 usb_wakeup_notification(hcd->self.root_hub, 1619 faked_port_index + 1); 1620 bogus_port_status = true; 1621 goto cleanup; 1622 } 1623 } 1624 1625 /* 1626 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1627 * RExit to a disconnect state). If so, let the the driver know it's 1628 * out of the RExit state. 1629 */ 1630 if (!DEV_SUPERSPEED_ANY(temp) && 1631 test_and_clear_bit(faked_port_index, 1632 &bus_state->rexit_ports)) { 1633 complete(&bus_state->rexit_done[faked_port_index]); 1634 bogus_port_status = true; 1635 goto cleanup; 1636 } 1637 1638 if (hcd->speed < HCD_USB3) 1639 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1640 PORT_PLC); 1641 1642 cleanup: 1643 /* Update event ring dequeue pointer before dropping the lock */ 1644 inc_deq(xhci, xhci->event_ring); 1645 1646 /* Don't make the USB core poll the roothub if we got a bad port status 1647 * change event. Besides, at that point we can't tell which roothub 1648 * (USB 2.0 or USB 3.0) to kick. 1649 */ 1650 if (bogus_port_status) 1651 return; 1652 1653 /* 1654 * xHCI port-status-change events occur when the "or" of all the 1655 * status-change bits in the portsc register changes from 0 to 1. 1656 * New status changes won't cause an event if any other change 1657 * bits are still set. When an event occurs, switch over to 1658 * polling to avoid losing status changes. 1659 */ 1660 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1661 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1662 spin_unlock(&xhci->lock); 1663 /* Pass this up to the core */ 1664 usb_hcd_poll_rh_status(hcd); 1665 spin_lock(&xhci->lock); 1666 } 1667 1668 /* 1669 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1670 * at end_trb, which may be in another segment. If the suspect DMA address is a 1671 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1672 * returns 0. 1673 */ 1674 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1675 struct xhci_segment *start_seg, 1676 union xhci_trb *start_trb, 1677 union xhci_trb *end_trb, 1678 dma_addr_t suspect_dma, 1679 bool debug) 1680 { 1681 dma_addr_t start_dma; 1682 dma_addr_t end_seg_dma; 1683 dma_addr_t end_trb_dma; 1684 struct xhci_segment *cur_seg; 1685 1686 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1687 cur_seg = start_seg; 1688 1689 do { 1690 if (start_dma == 0) 1691 return NULL; 1692 /* We may get an event for a Link TRB in the middle of a TD */ 1693 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1694 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1695 /* If the end TRB isn't in this segment, this is set to 0 */ 1696 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1697 1698 if (debug) 1699 xhci_warn(xhci, 1700 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1701 (unsigned long long)suspect_dma, 1702 (unsigned long long)start_dma, 1703 (unsigned long long)end_trb_dma, 1704 (unsigned long long)cur_seg->dma, 1705 (unsigned long long)end_seg_dma); 1706 1707 if (end_trb_dma > 0) { 1708 /* The end TRB is in this segment, so suspect should be here */ 1709 if (start_dma <= end_trb_dma) { 1710 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1711 return cur_seg; 1712 } else { 1713 /* Case for one segment with 1714 * a TD wrapped around to the top 1715 */ 1716 if ((suspect_dma >= start_dma && 1717 suspect_dma <= end_seg_dma) || 1718 (suspect_dma >= cur_seg->dma && 1719 suspect_dma <= end_trb_dma)) 1720 return cur_seg; 1721 } 1722 return NULL; 1723 } else { 1724 /* Might still be somewhere in this segment */ 1725 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1726 return cur_seg; 1727 } 1728 cur_seg = cur_seg->next; 1729 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1730 } while (cur_seg != start_seg); 1731 1732 return NULL; 1733 } 1734 1735 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1736 unsigned int slot_id, unsigned int ep_index, 1737 unsigned int stream_id, 1738 struct xhci_td *td, union xhci_trb *event_trb) 1739 { 1740 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1741 struct xhci_command *command; 1742 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1743 if (!command) 1744 return; 1745 1746 ep->ep_state |= EP_HALTED; 1747 ep->stopped_stream = stream_id; 1748 1749 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1750 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1751 1752 ep->stopped_stream = 0; 1753 1754 xhci_ring_cmd_db(xhci); 1755 } 1756 1757 /* Check if an error has halted the endpoint ring. The class driver will 1758 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1759 * However, a babble and other errors also halt the endpoint ring, and the class 1760 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1761 * Ring Dequeue Pointer command manually. 1762 */ 1763 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1764 struct xhci_ep_ctx *ep_ctx, 1765 unsigned int trb_comp_code) 1766 { 1767 /* TRB completion codes that may require a manual halt cleanup */ 1768 if (trb_comp_code == COMP_TX_ERR || 1769 trb_comp_code == COMP_BABBLE || 1770 trb_comp_code == COMP_SPLIT_ERR) 1771 /* The 0.96 spec says a babbling control endpoint 1772 * is not halted. The 0.96 spec says it is. Some HW 1773 * claims to be 0.95 compliant, but it halts the control 1774 * endpoint anyway. Check if a babble halted the 1775 * endpoint. 1776 */ 1777 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1778 cpu_to_le32(EP_STATE_HALTED)) 1779 return 1; 1780 1781 return 0; 1782 } 1783 1784 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1785 { 1786 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1787 /* Vendor defined "informational" completion code, 1788 * treat as not-an-error. 1789 */ 1790 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1791 trb_comp_code); 1792 xhci_dbg(xhci, "Treating code as success.\n"); 1793 return 1; 1794 } 1795 return 0; 1796 } 1797 1798 /* 1799 * Finish the td processing, remove the td from td list; 1800 * Return 1 if the urb can be given back. 1801 */ 1802 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1803 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1804 struct xhci_virt_ep *ep, int *status, bool skip) 1805 { 1806 struct xhci_virt_device *xdev; 1807 struct xhci_ring *ep_ring; 1808 unsigned int slot_id; 1809 int ep_index; 1810 struct urb *urb = NULL; 1811 struct xhci_ep_ctx *ep_ctx; 1812 int ret = 0; 1813 struct urb_priv *urb_priv; 1814 u32 trb_comp_code; 1815 1816 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1817 xdev = xhci->devs[slot_id]; 1818 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1819 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1820 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1821 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1822 1823 if (skip) 1824 goto td_cleanup; 1825 1826 if (trb_comp_code == COMP_STOP_INVAL || 1827 trb_comp_code == COMP_STOP || 1828 trb_comp_code == COMP_STOP_SHORT) { 1829 /* The Endpoint Stop Command completion will take care of any 1830 * stopped TDs. A stopped TD may be restarted, so don't update 1831 * the ring dequeue pointer or take this TD off any lists yet. 1832 */ 1833 ep->stopped_td = td; 1834 return 0; 1835 } 1836 if (trb_comp_code == COMP_STALL || 1837 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1838 trb_comp_code)) { 1839 /* Issue a reset endpoint command to clear the host side 1840 * halt, followed by a set dequeue command to move the 1841 * dequeue pointer past the TD. 1842 * The class driver clears the device side halt later. 1843 */ 1844 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1845 ep_ring->stream_id, td, event_trb); 1846 } else { 1847 /* Update ring dequeue pointer */ 1848 while (ep_ring->dequeue != td->last_trb) 1849 inc_deq(xhci, ep_ring); 1850 inc_deq(xhci, ep_ring); 1851 } 1852 1853 td_cleanup: 1854 /* Clean up the endpoint's TD list */ 1855 urb = td->urb; 1856 urb_priv = urb->hcpriv; 1857 1858 /* Do one last check of the actual transfer length. 1859 * If the host controller said we transferred more data than the buffer 1860 * length, urb->actual_length will be a very big number (since it's 1861 * unsigned). Play it safe and say we didn't transfer anything. 1862 */ 1863 if (urb->actual_length > urb->transfer_buffer_length) { 1864 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1865 urb->transfer_buffer_length, 1866 urb->actual_length); 1867 urb->actual_length = 0; 1868 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1869 *status = -EREMOTEIO; 1870 else 1871 *status = 0; 1872 } 1873 list_del_init(&td->td_list); 1874 /* Was this TD slated to be cancelled but completed anyway? */ 1875 if (!list_empty(&td->cancelled_td_list)) 1876 list_del_init(&td->cancelled_td_list); 1877 1878 urb_priv->td_cnt++; 1879 /* Giveback the urb when all the tds are completed */ 1880 if (urb_priv->td_cnt == urb_priv->length) { 1881 ret = 1; 1882 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1883 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1884 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1885 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1886 usb_amd_quirk_pll_enable(); 1887 } 1888 } 1889 } 1890 1891 return ret; 1892 } 1893 1894 /* 1895 * Process control tds, update urb status and actual_length. 1896 */ 1897 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1898 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1899 struct xhci_virt_ep *ep, int *status) 1900 { 1901 struct xhci_virt_device *xdev; 1902 struct xhci_ring *ep_ring; 1903 unsigned int slot_id; 1904 int ep_index; 1905 struct xhci_ep_ctx *ep_ctx; 1906 u32 trb_comp_code; 1907 1908 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1909 xdev = xhci->devs[slot_id]; 1910 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1911 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1912 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1913 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1914 1915 switch (trb_comp_code) { 1916 case COMP_SUCCESS: 1917 if (event_trb == ep_ring->dequeue) { 1918 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1919 "without IOC set??\n"); 1920 *status = -ESHUTDOWN; 1921 } else if (event_trb != td->last_trb) { 1922 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1923 "without IOC set??\n"); 1924 *status = -ESHUTDOWN; 1925 } else { 1926 *status = 0; 1927 } 1928 break; 1929 case COMP_SHORT_TX: 1930 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1931 *status = -EREMOTEIO; 1932 else 1933 *status = 0; 1934 break; 1935 case COMP_STOP_SHORT: 1936 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb) 1937 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1938 else 1939 td->urb->actual_length = 1940 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1941 1942 return finish_td(xhci, td, event_trb, event, ep, status, false); 1943 case COMP_STOP: 1944 /* Did we stop at data stage? */ 1945 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) 1946 td->urb->actual_length = 1947 td->urb->transfer_buffer_length - 1948 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1949 /* fall through */ 1950 case COMP_STOP_INVAL: 1951 return finish_td(xhci, td, event_trb, event, ep, status, false); 1952 default: 1953 if (!xhci_requires_manual_halt_cleanup(xhci, 1954 ep_ctx, trb_comp_code)) 1955 break; 1956 xhci_dbg(xhci, "TRB error code %u, " 1957 "halted endpoint index = %u\n", 1958 trb_comp_code, ep_index); 1959 /* else fall through */ 1960 case COMP_STALL: 1961 /* Did we transfer part of the data (middle) phase? */ 1962 if (event_trb != ep_ring->dequeue && 1963 event_trb != td->last_trb) 1964 td->urb->actual_length = 1965 td->urb->transfer_buffer_length - 1966 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1967 else if (!td->urb_length_set) 1968 td->urb->actual_length = 0; 1969 1970 return finish_td(xhci, td, event_trb, event, ep, status, false); 1971 } 1972 /* 1973 * Did we transfer any data, despite the errors that might have 1974 * happened? I.e. did we get past the setup stage? 1975 */ 1976 if (event_trb != ep_ring->dequeue) { 1977 /* The event was for the status stage */ 1978 if (event_trb == td->last_trb) { 1979 if (td->urb_length_set) { 1980 /* Don't overwrite a previously set error code 1981 */ 1982 if ((*status == -EINPROGRESS || *status == 0) && 1983 (td->urb->transfer_flags 1984 & URB_SHORT_NOT_OK)) 1985 /* Did we already see a short data 1986 * stage? */ 1987 *status = -EREMOTEIO; 1988 } else { 1989 td->urb->actual_length = 1990 td->urb->transfer_buffer_length; 1991 } 1992 } else { 1993 /* 1994 * Maybe the event was for the data stage? If so, update 1995 * already the actual_length of the URB and flag it as 1996 * set, so that it is not overwritten in the event for 1997 * the last TRB. 1998 */ 1999 td->urb_length_set = true; 2000 td->urb->actual_length = 2001 td->urb->transfer_buffer_length - 2002 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2003 xhci_dbg(xhci, "Waiting for status " 2004 "stage event\n"); 2005 return 0; 2006 } 2007 } 2008 2009 return finish_td(xhci, td, event_trb, event, ep, status, false); 2010 } 2011 2012 /* 2013 * Process isochronous tds, update urb packet status and actual_length. 2014 */ 2015 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2016 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2017 struct xhci_virt_ep *ep, int *status) 2018 { 2019 struct xhci_ring *ep_ring; 2020 struct urb_priv *urb_priv; 2021 int idx; 2022 int len = 0; 2023 union xhci_trb *cur_trb; 2024 struct xhci_segment *cur_seg; 2025 struct usb_iso_packet_descriptor *frame; 2026 u32 trb_comp_code; 2027 bool skip_td = false; 2028 2029 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2030 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2031 urb_priv = td->urb->hcpriv; 2032 idx = urb_priv->td_cnt; 2033 frame = &td->urb->iso_frame_desc[idx]; 2034 2035 /* handle completion code */ 2036 switch (trb_comp_code) { 2037 case COMP_SUCCESS: 2038 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2039 frame->status = 0; 2040 break; 2041 } 2042 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2043 trb_comp_code = COMP_SHORT_TX; 2044 /* fallthrough */ 2045 case COMP_STOP_SHORT: 2046 case COMP_SHORT_TX: 2047 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2048 -EREMOTEIO : 0; 2049 break; 2050 case COMP_BW_OVER: 2051 frame->status = -ECOMM; 2052 skip_td = true; 2053 break; 2054 case COMP_BUFF_OVER: 2055 case COMP_BABBLE: 2056 frame->status = -EOVERFLOW; 2057 skip_td = true; 2058 break; 2059 case COMP_DEV_ERR: 2060 case COMP_STALL: 2061 frame->status = -EPROTO; 2062 skip_td = true; 2063 break; 2064 case COMP_TX_ERR: 2065 frame->status = -EPROTO; 2066 if (event_trb != td->last_trb) 2067 return 0; 2068 skip_td = true; 2069 break; 2070 case COMP_STOP: 2071 case COMP_STOP_INVAL: 2072 break; 2073 default: 2074 frame->status = -1; 2075 break; 2076 } 2077 2078 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2079 frame->actual_length = frame->length; 2080 td->urb->actual_length += frame->length; 2081 } else if (trb_comp_code == COMP_STOP_SHORT) { 2082 frame->actual_length = 2083 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2084 td->urb->actual_length += frame->actual_length; 2085 } else { 2086 for (cur_trb = ep_ring->dequeue, 2087 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2088 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2089 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2090 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2091 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2092 } 2093 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2094 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2095 2096 if (trb_comp_code != COMP_STOP_INVAL) { 2097 frame->actual_length = len; 2098 td->urb->actual_length += len; 2099 } 2100 } 2101 2102 return finish_td(xhci, td, event_trb, event, ep, status, false); 2103 } 2104 2105 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2106 struct xhci_transfer_event *event, 2107 struct xhci_virt_ep *ep, int *status) 2108 { 2109 struct xhci_ring *ep_ring; 2110 struct urb_priv *urb_priv; 2111 struct usb_iso_packet_descriptor *frame; 2112 int idx; 2113 2114 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2115 urb_priv = td->urb->hcpriv; 2116 idx = urb_priv->td_cnt; 2117 frame = &td->urb->iso_frame_desc[idx]; 2118 2119 /* The transfer is partly done. */ 2120 frame->status = -EXDEV; 2121 2122 /* calc actual length */ 2123 frame->actual_length = 0; 2124 2125 /* Update ring dequeue pointer */ 2126 while (ep_ring->dequeue != td->last_trb) 2127 inc_deq(xhci, ep_ring); 2128 inc_deq(xhci, ep_ring); 2129 2130 return finish_td(xhci, td, NULL, event, ep, status, true); 2131 } 2132 2133 /* 2134 * Process bulk and interrupt tds, update urb status and actual_length. 2135 */ 2136 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2137 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2138 struct xhci_virt_ep *ep, int *status) 2139 { 2140 struct xhci_ring *ep_ring; 2141 union xhci_trb *cur_trb; 2142 struct xhci_segment *cur_seg; 2143 u32 trb_comp_code; 2144 2145 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2146 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2147 2148 switch (trb_comp_code) { 2149 case COMP_SUCCESS: 2150 /* Double check that the HW transferred everything. */ 2151 if (event_trb != td->last_trb || 2152 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2153 xhci_warn(xhci, "WARN Successful completion " 2154 "on short TX\n"); 2155 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2156 *status = -EREMOTEIO; 2157 else 2158 *status = 0; 2159 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2160 trb_comp_code = COMP_SHORT_TX; 2161 } else { 2162 *status = 0; 2163 } 2164 break; 2165 case COMP_STOP_SHORT: 2166 case COMP_SHORT_TX: 2167 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2168 *status = -EREMOTEIO; 2169 else 2170 *status = 0; 2171 break; 2172 default: 2173 /* Others already handled above */ 2174 break; 2175 } 2176 if (trb_comp_code == COMP_SHORT_TX) 2177 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2178 "%d bytes untransferred\n", 2179 td->urb->ep->desc.bEndpointAddress, 2180 td->urb->transfer_buffer_length, 2181 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2182 /* Stopped - short packet completion */ 2183 if (trb_comp_code == COMP_STOP_SHORT) { 2184 td->urb->actual_length = 2185 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2186 2187 if (td->urb->transfer_buffer_length < 2188 td->urb->actual_length) { 2189 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n", 2190 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2191 td->urb->actual_length = 0; 2192 /* status will be set by usb core for canceled urbs */ 2193 } 2194 /* Fast path - was this the last TRB in the TD for this URB? */ 2195 } else if (event_trb == td->last_trb) { 2196 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2197 td->urb->actual_length = 2198 td->urb->transfer_buffer_length - 2199 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2200 if (td->urb->transfer_buffer_length < 2201 td->urb->actual_length) { 2202 xhci_warn(xhci, "HC gave bad length " 2203 "of %d bytes left\n", 2204 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2205 td->urb->actual_length = 0; 2206 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2207 *status = -EREMOTEIO; 2208 else 2209 *status = 0; 2210 } 2211 /* Don't overwrite a previously set error code */ 2212 if (*status == -EINPROGRESS) { 2213 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2214 *status = -EREMOTEIO; 2215 else 2216 *status = 0; 2217 } 2218 } else { 2219 td->urb->actual_length = 2220 td->urb->transfer_buffer_length; 2221 /* Ignore a short packet completion if the 2222 * untransferred length was zero. 2223 */ 2224 if (*status == -EREMOTEIO) 2225 *status = 0; 2226 } 2227 } else { 2228 /* Slow path - walk the list, starting from the dequeue 2229 * pointer, to get the actual length transferred. 2230 */ 2231 td->urb->actual_length = 0; 2232 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2233 cur_trb != event_trb; 2234 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2235 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2236 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2237 td->urb->actual_length += 2238 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2239 } 2240 /* If the ring didn't stop on a Link or No-op TRB, add 2241 * in the actual bytes transferred from the Normal TRB 2242 */ 2243 if (trb_comp_code != COMP_STOP_INVAL) 2244 td->urb->actual_length += 2245 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2246 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2247 } 2248 2249 return finish_td(xhci, td, event_trb, event, ep, status, false); 2250 } 2251 2252 /* 2253 * If this function returns an error condition, it means it got a Transfer 2254 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2255 * At this point, the host controller is probably hosed and should be reset. 2256 */ 2257 static int handle_tx_event(struct xhci_hcd *xhci, 2258 struct xhci_transfer_event *event) 2259 __releases(&xhci->lock) 2260 __acquires(&xhci->lock) 2261 { 2262 struct xhci_virt_device *xdev; 2263 struct xhci_virt_ep *ep; 2264 struct xhci_ring *ep_ring; 2265 unsigned int slot_id; 2266 int ep_index; 2267 struct xhci_td *td = NULL; 2268 dma_addr_t event_dma; 2269 struct xhci_segment *event_seg; 2270 union xhci_trb *event_trb; 2271 struct urb *urb = NULL; 2272 int status = -EINPROGRESS; 2273 struct urb_priv *urb_priv; 2274 struct xhci_ep_ctx *ep_ctx; 2275 struct list_head *tmp; 2276 u32 trb_comp_code; 2277 int ret = 0; 2278 int td_num = 0; 2279 bool handling_skipped_tds = false; 2280 2281 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2282 xdev = xhci->devs[slot_id]; 2283 if (!xdev) { 2284 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2285 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2286 (unsigned long long) xhci_trb_virt_to_dma( 2287 xhci->event_ring->deq_seg, 2288 xhci->event_ring->dequeue), 2289 lower_32_bits(le64_to_cpu(event->buffer)), 2290 upper_32_bits(le64_to_cpu(event->buffer)), 2291 le32_to_cpu(event->transfer_len), 2292 le32_to_cpu(event->flags)); 2293 xhci_dbg(xhci, "Event ring:\n"); 2294 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2295 return -ENODEV; 2296 } 2297 2298 /* Endpoint ID is 1 based, our index is zero based */ 2299 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2300 ep = &xdev->eps[ep_index]; 2301 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2302 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2303 if (!ep_ring || 2304 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2305 EP_STATE_DISABLED) { 2306 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2307 "or incorrect stream ring\n"); 2308 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2309 (unsigned long long) xhci_trb_virt_to_dma( 2310 xhci->event_ring->deq_seg, 2311 xhci->event_ring->dequeue), 2312 lower_32_bits(le64_to_cpu(event->buffer)), 2313 upper_32_bits(le64_to_cpu(event->buffer)), 2314 le32_to_cpu(event->transfer_len), 2315 le32_to_cpu(event->flags)); 2316 xhci_dbg(xhci, "Event ring:\n"); 2317 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2318 return -ENODEV; 2319 } 2320 2321 /* Count current td numbers if ep->skip is set */ 2322 if (ep->skip) { 2323 list_for_each(tmp, &ep_ring->td_list) 2324 td_num++; 2325 } 2326 2327 event_dma = le64_to_cpu(event->buffer); 2328 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2329 /* Look for common error cases */ 2330 switch (trb_comp_code) { 2331 /* Skip codes that require special handling depending on 2332 * transfer type 2333 */ 2334 case COMP_SUCCESS: 2335 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2336 break; 2337 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2338 trb_comp_code = COMP_SHORT_TX; 2339 else 2340 xhci_warn_ratelimited(xhci, 2341 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2342 case COMP_SHORT_TX: 2343 break; 2344 case COMP_STOP: 2345 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2346 break; 2347 case COMP_STOP_INVAL: 2348 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2349 break; 2350 case COMP_STOP_SHORT: 2351 xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); 2352 break; 2353 case COMP_STALL: 2354 xhci_dbg(xhci, "Stalled endpoint\n"); 2355 ep->ep_state |= EP_HALTED; 2356 status = -EPIPE; 2357 break; 2358 case COMP_TRB_ERR: 2359 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2360 status = -EILSEQ; 2361 break; 2362 case COMP_SPLIT_ERR: 2363 case COMP_TX_ERR: 2364 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2365 status = -EPROTO; 2366 break; 2367 case COMP_BABBLE: 2368 xhci_dbg(xhci, "Babble error on endpoint\n"); 2369 status = -EOVERFLOW; 2370 break; 2371 case COMP_DB_ERR: 2372 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2373 status = -ENOSR; 2374 break; 2375 case COMP_BW_OVER: 2376 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2377 break; 2378 case COMP_BUFF_OVER: 2379 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2380 break; 2381 case COMP_UNDERRUN: 2382 /* 2383 * When the Isoch ring is empty, the xHC will generate 2384 * a Ring Overrun Event for IN Isoch endpoint or Ring 2385 * Underrun Event for OUT Isoch endpoint. 2386 */ 2387 xhci_dbg(xhci, "underrun event on endpoint\n"); 2388 if (!list_empty(&ep_ring->td_list)) 2389 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2390 "still with TDs queued?\n", 2391 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2392 ep_index); 2393 goto cleanup; 2394 case COMP_OVERRUN: 2395 xhci_dbg(xhci, "overrun event on endpoint\n"); 2396 if (!list_empty(&ep_ring->td_list)) 2397 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2398 "still with TDs queued?\n", 2399 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2400 ep_index); 2401 goto cleanup; 2402 case COMP_DEV_ERR: 2403 xhci_warn(xhci, "WARN: detect an incompatible device"); 2404 status = -EPROTO; 2405 break; 2406 case COMP_MISSED_INT: 2407 /* 2408 * When encounter missed service error, one or more isoc tds 2409 * may be missed by xHC. 2410 * Set skip flag of the ep_ring; Complete the missed tds as 2411 * short transfer when process the ep_ring next time. 2412 */ 2413 ep->skip = true; 2414 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2415 goto cleanup; 2416 case COMP_PING_ERR: 2417 ep->skip = true; 2418 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n"); 2419 goto cleanup; 2420 default: 2421 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2422 status = 0; 2423 break; 2424 } 2425 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2426 trb_comp_code); 2427 goto cleanup; 2428 } 2429 2430 do { 2431 /* This TRB should be in the TD at the head of this ring's 2432 * TD list. 2433 */ 2434 if (list_empty(&ep_ring->td_list)) { 2435 /* 2436 * A stopped endpoint may generate an extra completion 2437 * event if the device was suspended. Don't print 2438 * warnings. 2439 */ 2440 if (!(trb_comp_code == COMP_STOP || 2441 trb_comp_code == COMP_STOP_INVAL)) { 2442 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2443 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2444 ep_index); 2445 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2446 (le32_to_cpu(event->flags) & 2447 TRB_TYPE_BITMASK)>>10); 2448 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2449 } 2450 if (ep->skip) { 2451 ep->skip = false; 2452 xhci_dbg(xhci, "td_list is empty while skip " 2453 "flag set. Clear skip flag.\n"); 2454 } 2455 ret = 0; 2456 goto cleanup; 2457 } 2458 2459 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2460 if (ep->skip && td_num == 0) { 2461 ep->skip = false; 2462 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2463 "Clear skip flag.\n"); 2464 ret = 0; 2465 goto cleanup; 2466 } 2467 2468 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2469 if (ep->skip) 2470 td_num--; 2471 2472 /* Is this a TRB in the currently executing TD? */ 2473 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2474 td->last_trb, event_dma, false); 2475 2476 /* 2477 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2478 * is not in the current TD pointed by ep_ring->dequeue because 2479 * that the hardware dequeue pointer still at the previous TRB 2480 * of the current TD. The previous TRB maybe a Link TD or the 2481 * last TRB of the previous TD. The command completion handle 2482 * will take care the rest. 2483 */ 2484 if (!event_seg && (trb_comp_code == COMP_STOP || 2485 trb_comp_code == COMP_STOP_INVAL)) { 2486 ret = 0; 2487 goto cleanup; 2488 } 2489 2490 if (!event_seg) { 2491 if (!ep->skip || 2492 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2493 /* Some host controllers give a spurious 2494 * successful event after a short transfer. 2495 * Ignore it. 2496 */ 2497 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2498 ep_ring->last_td_was_short) { 2499 ep_ring->last_td_was_short = false; 2500 ret = 0; 2501 goto cleanup; 2502 } 2503 /* HC is busted, give up! */ 2504 xhci_err(xhci, 2505 "ERROR Transfer event TRB DMA ptr not " 2506 "part of current TD ep_index %d " 2507 "comp_code %u\n", ep_index, 2508 trb_comp_code); 2509 trb_in_td(xhci, ep_ring->deq_seg, 2510 ep_ring->dequeue, td->last_trb, 2511 event_dma, true); 2512 return -ESHUTDOWN; 2513 } 2514 2515 ret = skip_isoc_td(xhci, td, event, ep, &status); 2516 goto cleanup; 2517 } 2518 if (trb_comp_code == COMP_SHORT_TX) 2519 ep_ring->last_td_was_short = true; 2520 else 2521 ep_ring->last_td_was_short = false; 2522 2523 if (ep->skip) { 2524 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2525 ep->skip = false; 2526 } 2527 2528 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2529 sizeof(*event_trb)]; 2530 /* 2531 * No-op TRB should not trigger interrupts. 2532 * If event_trb is a no-op TRB, it means the 2533 * corresponding TD has been cancelled. Just ignore 2534 * the TD. 2535 */ 2536 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2537 xhci_dbg(xhci, 2538 "event_trb is a no-op TRB. Skip it\n"); 2539 goto cleanup; 2540 } 2541 2542 /* Now update the urb's actual_length and give back to 2543 * the core 2544 */ 2545 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2546 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2547 &status); 2548 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2549 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2550 &status); 2551 else 2552 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2553 ep, &status); 2554 2555 cleanup: 2556 2557 2558 handling_skipped_tds = ep->skip && 2559 trb_comp_code != COMP_MISSED_INT && 2560 trb_comp_code != COMP_PING_ERR; 2561 2562 /* 2563 * Do not update event ring dequeue pointer if we're in a loop 2564 * processing missed tds. 2565 */ 2566 if (!handling_skipped_tds) 2567 inc_deq(xhci, xhci->event_ring); 2568 2569 if (ret) { 2570 urb = td->urb; 2571 urb_priv = urb->hcpriv; 2572 2573 xhci_urb_free_priv(urb_priv); 2574 2575 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2576 if ((urb->actual_length != urb->transfer_buffer_length && 2577 (urb->transfer_flags & 2578 URB_SHORT_NOT_OK)) || 2579 (status != 0 && 2580 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2581 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2582 "expected = %d, status = %d\n", 2583 urb, urb->actual_length, 2584 urb->transfer_buffer_length, 2585 status); 2586 spin_unlock(&xhci->lock); 2587 /* EHCI, UHCI, and OHCI always unconditionally set the 2588 * urb->status of an isochronous endpoint to 0. 2589 */ 2590 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2591 status = 0; 2592 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2593 spin_lock(&xhci->lock); 2594 } 2595 2596 /* 2597 * If ep->skip is set, it means there are missed tds on the 2598 * endpoint ring need to take care of. 2599 * Process them as short transfer until reach the td pointed by 2600 * the event. 2601 */ 2602 } while (handling_skipped_tds); 2603 2604 return 0; 2605 } 2606 2607 /* 2608 * This function handles all OS-owned events on the event ring. It may drop 2609 * xhci->lock between event processing (e.g. to pass up port status changes). 2610 * Returns >0 for "possibly more events to process" (caller should call again), 2611 * otherwise 0 if done. In future, <0 returns should indicate error code. 2612 */ 2613 static int xhci_handle_event(struct xhci_hcd *xhci) 2614 { 2615 union xhci_trb *event; 2616 int update_ptrs = 1; 2617 int ret; 2618 2619 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2620 xhci->error_bitmask |= 1 << 1; 2621 return 0; 2622 } 2623 2624 event = xhci->event_ring->dequeue; 2625 /* Does the HC or OS own the TRB? */ 2626 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2627 xhci->event_ring->cycle_state) { 2628 xhci->error_bitmask |= 1 << 2; 2629 return 0; 2630 } 2631 2632 /* 2633 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2634 * speculative reads of the event's flags/data below. 2635 */ 2636 rmb(); 2637 /* FIXME: Handle more event types. */ 2638 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2639 case TRB_TYPE(TRB_COMPLETION): 2640 handle_cmd_completion(xhci, &event->event_cmd); 2641 break; 2642 case TRB_TYPE(TRB_PORT_STATUS): 2643 handle_port_status(xhci, event); 2644 update_ptrs = 0; 2645 break; 2646 case TRB_TYPE(TRB_TRANSFER): 2647 ret = handle_tx_event(xhci, &event->trans_event); 2648 if (ret < 0) 2649 xhci->error_bitmask |= 1 << 9; 2650 else 2651 update_ptrs = 0; 2652 break; 2653 case TRB_TYPE(TRB_DEV_NOTE): 2654 handle_device_notification(xhci, event); 2655 break; 2656 default: 2657 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2658 TRB_TYPE(48)) 2659 handle_vendor_event(xhci, event); 2660 else 2661 xhci->error_bitmask |= 1 << 3; 2662 } 2663 /* Any of the above functions may drop and re-acquire the lock, so check 2664 * to make sure a watchdog timer didn't mark the host as non-responsive. 2665 */ 2666 if (xhci->xhc_state & XHCI_STATE_DYING) { 2667 xhci_dbg(xhci, "xHCI host dying, returning from " 2668 "event handler.\n"); 2669 return 0; 2670 } 2671 2672 if (update_ptrs) 2673 /* Update SW event ring dequeue pointer */ 2674 inc_deq(xhci, xhci->event_ring); 2675 2676 /* Are there more items on the event ring? Caller will call us again to 2677 * check. 2678 */ 2679 return 1; 2680 } 2681 2682 /* 2683 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2684 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2685 * indicators of an event TRB error, but we check the status *first* to be safe. 2686 */ 2687 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2688 { 2689 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2690 u32 status; 2691 u64 temp_64; 2692 union xhci_trb *event_ring_deq; 2693 dma_addr_t deq; 2694 2695 spin_lock(&xhci->lock); 2696 /* Check if the xHC generated the interrupt, or the irq is shared */ 2697 status = readl(&xhci->op_regs->status); 2698 if (status == 0xffffffff) 2699 goto hw_died; 2700 2701 if (!(status & STS_EINT)) { 2702 spin_unlock(&xhci->lock); 2703 return IRQ_NONE; 2704 } 2705 if (status & STS_FATAL) { 2706 xhci_warn(xhci, "WARNING: Host System Error\n"); 2707 xhci_halt(xhci); 2708 hw_died: 2709 spin_unlock(&xhci->lock); 2710 return IRQ_HANDLED; 2711 } 2712 2713 /* 2714 * Clear the op reg interrupt status first, 2715 * so we can receive interrupts from other MSI-X interrupters. 2716 * Write 1 to clear the interrupt status. 2717 */ 2718 status |= STS_EINT; 2719 writel(status, &xhci->op_regs->status); 2720 /* FIXME when MSI-X is supported and there are multiple vectors */ 2721 /* Clear the MSI-X event interrupt status */ 2722 2723 if (hcd->irq) { 2724 u32 irq_pending; 2725 /* Acknowledge the PCI interrupt */ 2726 irq_pending = readl(&xhci->ir_set->irq_pending); 2727 irq_pending |= IMAN_IP; 2728 writel(irq_pending, &xhci->ir_set->irq_pending); 2729 } 2730 2731 if (xhci->xhc_state & XHCI_STATE_DYING) { 2732 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2733 "Shouldn't IRQs be disabled?\n"); 2734 /* Clear the event handler busy flag (RW1C); 2735 * the event ring should be empty. 2736 */ 2737 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2738 xhci_write_64(xhci, temp_64 | ERST_EHB, 2739 &xhci->ir_set->erst_dequeue); 2740 spin_unlock(&xhci->lock); 2741 2742 return IRQ_HANDLED; 2743 } 2744 2745 event_ring_deq = xhci->event_ring->dequeue; 2746 /* FIXME this should be a delayed service routine 2747 * that clears the EHB. 2748 */ 2749 while (xhci_handle_event(xhci) > 0) {} 2750 2751 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2752 /* If necessary, update the HW's version of the event ring deq ptr. */ 2753 if (event_ring_deq != xhci->event_ring->dequeue) { 2754 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2755 xhci->event_ring->dequeue); 2756 if (deq == 0) 2757 xhci_warn(xhci, "WARN something wrong with SW event " 2758 "ring dequeue ptr.\n"); 2759 /* Update HC event ring dequeue pointer */ 2760 temp_64 &= ERST_PTR_MASK; 2761 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2762 } 2763 2764 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2765 temp_64 |= ERST_EHB; 2766 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2767 2768 spin_unlock(&xhci->lock); 2769 2770 return IRQ_HANDLED; 2771 } 2772 2773 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2774 { 2775 return xhci_irq(hcd); 2776 } 2777 2778 /**** Endpoint Ring Operations ****/ 2779 2780 /* 2781 * Generic function for queueing a TRB on a ring. 2782 * The caller must have checked to make sure there's room on the ring. 2783 * 2784 * @more_trbs_coming: Will you enqueue more TRBs before calling 2785 * prepare_transfer()? 2786 */ 2787 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2788 bool more_trbs_coming, 2789 u32 field1, u32 field2, u32 field3, u32 field4) 2790 { 2791 struct xhci_generic_trb *trb; 2792 2793 trb = &ring->enqueue->generic; 2794 trb->field[0] = cpu_to_le32(field1); 2795 trb->field[1] = cpu_to_le32(field2); 2796 trb->field[2] = cpu_to_le32(field3); 2797 trb->field[3] = cpu_to_le32(field4); 2798 inc_enq(xhci, ring, more_trbs_coming); 2799 } 2800 2801 /* 2802 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2803 * FIXME allocate segments if the ring is full. 2804 */ 2805 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2806 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2807 { 2808 unsigned int num_trbs_needed; 2809 2810 /* Make sure the endpoint has been added to xHC schedule */ 2811 switch (ep_state) { 2812 case EP_STATE_DISABLED: 2813 /* 2814 * USB core changed config/interfaces without notifying us, 2815 * or hardware is reporting the wrong state. 2816 */ 2817 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2818 return -ENOENT; 2819 case EP_STATE_ERROR: 2820 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2821 /* FIXME event handling code for error needs to clear it */ 2822 /* XXX not sure if this should be -ENOENT or not */ 2823 return -EINVAL; 2824 case EP_STATE_HALTED: 2825 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2826 case EP_STATE_STOPPED: 2827 case EP_STATE_RUNNING: 2828 break; 2829 default: 2830 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2831 /* 2832 * FIXME issue Configure Endpoint command to try to get the HC 2833 * back into a known state. 2834 */ 2835 return -EINVAL; 2836 } 2837 2838 while (1) { 2839 if (room_on_ring(xhci, ep_ring, num_trbs)) 2840 break; 2841 2842 if (ep_ring == xhci->cmd_ring) { 2843 xhci_err(xhci, "Do not support expand command ring\n"); 2844 return -ENOMEM; 2845 } 2846 2847 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2848 "ERROR no room on ep ring, try ring expansion"); 2849 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2850 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2851 mem_flags)) { 2852 xhci_err(xhci, "Ring expansion failed\n"); 2853 return -ENOMEM; 2854 } 2855 } 2856 2857 if (enqueue_is_link_trb(ep_ring)) { 2858 struct xhci_ring *ring = ep_ring; 2859 union xhci_trb *next; 2860 2861 next = ring->enqueue; 2862 2863 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2864 /* If we're not dealing with 0.95 hardware or isoc rings 2865 * on AMD 0.96 host, clear the chain bit. 2866 */ 2867 if (!xhci_link_trb_quirk(xhci) && 2868 !(ring->type == TYPE_ISOC && 2869 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2870 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2871 else 2872 next->link.control |= cpu_to_le32(TRB_CHAIN); 2873 2874 wmb(); 2875 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2876 2877 /* Toggle the cycle bit after the last ring segment. */ 2878 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2879 ring->cycle_state ^= 1; 2880 } 2881 ring->enq_seg = ring->enq_seg->next; 2882 ring->enqueue = ring->enq_seg->trbs; 2883 next = ring->enqueue; 2884 } 2885 } 2886 2887 return 0; 2888 } 2889 2890 static int prepare_transfer(struct xhci_hcd *xhci, 2891 struct xhci_virt_device *xdev, 2892 unsigned int ep_index, 2893 unsigned int stream_id, 2894 unsigned int num_trbs, 2895 struct urb *urb, 2896 unsigned int td_index, 2897 gfp_t mem_flags) 2898 { 2899 int ret; 2900 struct urb_priv *urb_priv; 2901 struct xhci_td *td; 2902 struct xhci_ring *ep_ring; 2903 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2904 2905 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2906 if (!ep_ring) { 2907 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2908 stream_id); 2909 return -EINVAL; 2910 } 2911 2912 ret = prepare_ring(xhci, ep_ring, 2913 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2914 num_trbs, mem_flags); 2915 if (ret) 2916 return ret; 2917 2918 urb_priv = urb->hcpriv; 2919 td = urb_priv->td[td_index]; 2920 2921 INIT_LIST_HEAD(&td->td_list); 2922 INIT_LIST_HEAD(&td->cancelled_td_list); 2923 2924 if (td_index == 0) { 2925 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2926 if (unlikely(ret)) 2927 return ret; 2928 } 2929 2930 td->urb = urb; 2931 /* Add this TD to the tail of the endpoint ring's TD list */ 2932 list_add_tail(&td->td_list, &ep_ring->td_list); 2933 td->start_seg = ep_ring->enq_seg; 2934 td->first_trb = ep_ring->enqueue; 2935 2936 urb_priv->td[td_index] = td; 2937 2938 return 0; 2939 } 2940 2941 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2942 { 2943 int num_sgs, num_trbs, running_total, temp, i; 2944 struct scatterlist *sg; 2945 2946 sg = NULL; 2947 num_sgs = urb->num_mapped_sgs; 2948 temp = urb->transfer_buffer_length; 2949 2950 num_trbs = 0; 2951 for_each_sg(urb->sg, sg, num_sgs, i) { 2952 unsigned int len = sg_dma_len(sg); 2953 2954 /* Scatter gather list entries may cross 64KB boundaries */ 2955 running_total = TRB_MAX_BUFF_SIZE - 2956 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2957 running_total &= TRB_MAX_BUFF_SIZE - 1; 2958 if (running_total != 0) 2959 num_trbs++; 2960 2961 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2962 while (running_total < sg_dma_len(sg) && running_total < temp) { 2963 num_trbs++; 2964 running_total += TRB_MAX_BUFF_SIZE; 2965 } 2966 len = min_t(int, len, temp); 2967 temp -= len; 2968 if (temp == 0) 2969 break; 2970 } 2971 return num_trbs; 2972 } 2973 2974 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2975 { 2976 if (num_trbs != 0) 2977 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2978 "TRBs, %d left\n", __func__, 2979 urb->ep->desc.bEndpointAddress, num_trbs); 2980 if (running_total != urb->transfer_buffer_length) 2981 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2982 "queued %#x (%d), asked for %#x (%d)\n", 2983 __func__, 2984 urb->ep->desc.bEndpointAddress, 2985 running_total, running_total, 2986 urb->transfer_buffer_length, 2987 urb->transfer_buffer_length); 2988 } 2989 2990 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2991 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2992 struct xhci_generic_trb *start_trb) 2993 { 2994 /* 2995 * Pass all the TRBs to the hardware at once and make sure this write 2996 * isn't reordered. 2997 */ 2998 wmb(); 2999 if (start_cycle) 3000 start_trb->field[3] |= cpu_to_le32(start_cycle); 3001 else 3002 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3003 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3004 } 3005 3006 /* 3007 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3008 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3009 * (comprised of sg list entries) can take several service intervals to 3010 * transmit. 3011 */ 3012 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3013 struct urb *urb, int slot_id, unsigned int ep_index) 3014 { 3015 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3016 xhci->devs[slot_id]->out_ctx, ep_index); 3017 int xhci_interval; 3018 int ep_interval; 3019 3020 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3021 ep_interval = urb->interval; 3022 /* Convert to microframes */ 3023 if (urb->dev->speed == USB_SPEED_LOW || 3024 urb->dev->speed == USB_SPEED_FULL) 3025 ep_interval *= 8; 3026 /* FIXME change this to a warning and a suggestion to use the new API 3027 * to set the polling interval (once the API is added). 3028 */ 3029 if (xhci_interval != ep_interval) { 3030 dev_dbg_ratelimited(&urb->dev->dev, 3031 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3032 ep_interval, ep_interval == 1 ? "" : "s", 3033 xhci_interval, xhci_interval == 1 ? "" : "s"); 3034 urb->interval = xhci_interval; 3035 /* Convert back to frames for LS/FS devices */ 3036 if (urb->dev->speed == USB_SPEED_LOW || 3037 urb->dev->speed == USB_SPEED_FULL) 3038 urb->interval /= 8; 3039 } 3040 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3041 } 3042 3043 /* 3044 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3045 * packets remaining in the TD (*not* including this TRB). 3046 * 3047 * Total TD packet count = total_packet_count = 3048 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3049 * 3050 * Packets transferred up to and including this TRB = packets_transferred = 3051 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3052 * 3053 * TD size = total_packet_count - packets_transferred 3054 * 3055 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3056 * including this TRB, right shifted by 10 3057 * 3058 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3059 * This is taken care of in the TRB_TD_SIZE() macro 3060 * 3061 * The last TRB in a TD must have the TD size set to zero. 3062 */ 3063 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3064 int trb_buff_len, unsigned int td_total_len, 3065 struct urb *urb, unsigned int num_trbs_left) 3066 { 3067 u32 maxp, total_packet_count; 3068 3069 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3070 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3071 return ((td_total_len - transferred) >> 10); 3072 3073 /* One TRB with a zero-length data packet. */ 3074 if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) || 3075 trb_buff_len == td_total_len) 3076 return 0; 3077 3078 /* for MTK xHCI, TD size doesn't include this TRB */ 3079 if (xhci->quirks & XHCI_MTK_HOST) 3080 trb_buff_len = 0; 3081 3082 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3083 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3084 3085 /* Queueing functions don't count the current TRB into transferred */ 3086 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3087 } 3088 3089 3090 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3091 struct urb *urb, int slot_id, unsigned int ep_index) 3092 { 3093 struct xhci_ring *ep_ring; 3094 unsigned int num_trbs; 3095 struct urb_priv *urb_priv; 3096 struct xhci_td *td; 3097 struct scatterlist *sg; 3098 int num_sgs; 3099 int trb_buff_len, this_sg_len, running_total, ret; 3100 unsigned int total_packet_count; 3101 bool zero_length_needed; 3102 bool first_trb; 3103 int last_trb_num; 3104 u64 addr; 3105 bool more_trbs_coming; 3106 3107 struct xhci_generic_trb *start_trb; 3108 int start_cycle; 3109 3110 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3111 if (!ep_ring) 3112 return -EINVAL; 3113 3114 num_trbs = count_sg_trbs_needed(xhci, urb); 3115 num_sgs = urb->num_mapped_sgs; 3116 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3117 usb_endpoint_maxp(&urb->ep->desc)); 3118 3119 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3120 ep_index, urb->stream_id, 3121 num_trbs, urb, 0, mem_flags); 3122 if (ret < 0) 3123 return ret; 3124 3125 urb_priv = urb->hcpriv; 3126 3127 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3128 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && 3129 urb_priv->length == 2; 3130 if (zero_length_needed) { 3131 num_trbs++; 3132 xhci_dbg(xhci, "Creating zero length td.\n"); 3133 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3134 ep_index, urb->stream_id, 3135 1, urb, 1, mem_flags); 3136 if (ret < 0) 3137 return ret; 3138 } 3139 3140 td = urb_priv->td[0]; 3141 3142 /* 3143 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3144 * until we've finished creating all the other TRBs. The ring's cycle 3145 * state may change as we enqueue the other TRBs, so save it too. 3146 */ 3147 start_trb = &ep_ring->enqueue->generic; 3148 start_cycle = ep_ring->cycle_state; 3149 3150 running_total = 0; 3151 /* 3152 * How much data is in the first TRB? 3153 * 3154 * There are three forces at work for TRB buffer pointers and lengths: 3155 * 1. We don't want to walk off the end of this sg-list entry buffer. 3156 * 2. The transfer length that the driver requested may be smaller than 3157 * the amount of memory allocated for this scatter-gather list. 3158 * 3. TRBs buffers can't cross 64KB boundaries. 3159 */ 3160 sg = urb->sg; 3161 addr = (u64) sg_dma_address(sg); 3162 this_sg_len = sg_dma_len(sg); 3163 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3164 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3165 if (trb_buff_len > urb->transfer_buffer_length) 3166 trb_buff_len = urb->transfer_buffer_length; 3167 3168 first_trb = true; 3169 last_trb_num = zero_length_needed ? 2 : 1; 3170 /* Queue the first TRB, even if it's zero-length */ 3171 do { 3172 u32 field = 0; 3173 u32 length_field = 0; 3174 u32 remainder = 0; 3175 3176 /* Don't change the cycle bit of the first TRB until later */ 3177 if (first_trb) { 3178 first_trb = false; 3179 if (start_cycle == 0) 3180 field |= 0x1; 3181 } else 3182 field |= ep_ring->cycle_state; 3183 3184 /* Chain all the TRBs together; clear the chain bit in the last 3185 * TRB to indicate it's the last TRB in the chain. 3186 */ 3187 if (num_trbs > last_trb_num) { 3188 field |= TRB_CHAIN; 3189 } else if (num_trbs == last_trb_num) { 3190 td->last_trb = ep_ring->enqueue; 3191 field |= TRB_IOC; 3192 } else if (zero_length_needed && num_trbs == 1) { 3193 trb_buff_len = 0; 3194 urb_priv->td[1]->last_trb = ep_ring->enqueue; 3195 field |= TRB_IOC; 3196 } 3197 3198 /* Only set interrupt on short packet for IN endpoints */ 3199 if (usb_urb_dir_in(urb)) 3200 field |= TRB_ISP; 3201 3202 if (TRB_MAX_BUFF_SIZE - 3203 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3204 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3205 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3206 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3207 (unsigned int) addr + trb_buff_len); 3208 } 3209 3210 /* Set the TRB length, TD size, and interrupter fields. */ 3211 remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, 3212 urb->transfer_buffer_length, 3213 urb, num_trbs - 1); 3214 3215 length_field = TRB_LEN(trb_buff_len) | 3216 TRB_TD_SIZE(remainder) | 3217 TRB_INTR_TARGET(0); 3218 3219 if (num_trbs > 1) 3220 more_trbs_coming = true; 3221 else 3222 more_trbs_coming = false; 3223 queue_trb(xhci, ep_ring, more_trbs_coming, 3224 lower_32_bits(addr), 3225 upper_32_bits(addr), 3226 length_field, 3227 field | TRB_TYPE(TRB_NORMAL)); 3228 --num_trbs; 3229 running_total += trb_buff_len; 3230 3231 /* Calculate length for next transfer -- 3232 * Are we done queueing all the TRBs for this sg entry? 3233 */ 3234 this_sg_len -= trb_buff_len; 3235 if (this_sg_len == 0) { 3236 --num_sgs; 3237 if (num_sgs == 0) 3238 break; 3239 sg = sg_next(sg); 3240 addr = (u64) sg_dma_address(sg); 3241 this_sg_len = sg_dma_len(sg); 3242 } else { 3243 addr += trb_buff_len; 3244 } 3245 3246 trb_buff_len = TRB_MAX_BUFF_SIZE - 3247 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3248 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3249 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3250 trb_buff_len = 3251 urb->transfer_buffer_length - running_total; 3252 } while (num_trbs > 0); 3253 3254 check_trb_math(urb, num_trbs, running_total); 3255 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3256 start_cycle, start_trb); 3257 return 0; 3258 } 3259 3260 /* This is very similar to what ehci-q.c qtd_fill() does */ 3261 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3262 struct urb *urb, int slot_id, unsigned int ep_index) 3263 { 3264 struct xhci_ring *ep_ring; 3265 struct urb_priv *urb_priv; 3266 struct xhci_td *td; 3267 int num_trbs; 3268 struct xhci_generic_trb *start_trb; 3269 bool first_trb; 3270 int last_trb_num; 3271 bool more_trbs_coming; 3272 bool zero_length_needed; 3273 int start_cycle; 3274 u32 field, length_field; 3275 3276 int running_total, trb_buff_len, ret; 3277 unsigned int total_packet_count; 3278 u64 addr; 3279 3280 if (urb->num_sgs) 3281 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3282 3283 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3284 if (!ep_ring) 3285 return -EINVAL; 3286 3287 num_trbs = 0; 3288 /* How much data is (potentially) left before the 64KB boundary? */ 3289 running_total = TRB_MAX_BUFF_SIZE - 3290 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3291 running_total &= TRB_MAX_BUFF_SIZE - 1; 3292 3293 /* If there's some data on this 64KB chunk, or we have to send a 3294 * zero-length transfer, we need at least one TRB 3295 */ 3296 if (running_total != 0 || urb->transfer_buffer_length == 0) 3297 num_trbs++; 3298 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3299 while (running_total < urb->transfer_buffer_length) { 3300 num_trbs++; 3301 running_total += TRB_MAX_BUFF_SIZE; 3302 } 3303 3304 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3305 ep_index, urb->stream_id, 3306 num_trbs, urb, 0, mem_flags); 3307 if (ret < 0) 3308 return ret; 3309 3310 urb_priv = urb->hcpriv; 3311 3312 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3313 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && 3314 urb_priv->length == 2; 3315 if (zero_length_needed) { 3316 num_trbs++; 3317 xhci_dbg(xhci, "Creating zero length td.\n"); 3318 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3319 ep_index, urb->stream_id, 3320 1, urb, 1, mem_flags); 3321 if (ret < 0) 3322 return ret; 3323 } 3324 3325 td = urb_priv->td[0]; 3326 3327 /* 3328 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3329 * until we've finished creating all the other TRBs. The ring's cycle 3330 * state may change as we enqueue the other TRBs, so save it too. 3331 */ 3332 start_trb = &ep_ring->enqueue->generic; 3333 start_cycle = ep_ring->cycle_state; 3334 3335 running_total = 0; 3336 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3337 usb_endpoint_maxp(&urb->ep->desc)); 3338 /* How much data is in the first TRB? */ 3339 addr = (u64) urb->transfer_dma; 3340 trb_buff_len = TRB_MAX_BUFF_SIZE - 3341 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3342 if (trb_buff_len > urb->transfer_buffer_length) 3343 trb_buff_len = urb->transfer_buffer_length; 3344 3345 first_trb = true; 3346 last_trb_num = zero_length_needed ? 2 : 1; 3347 /* Queue the first TRB, even if it's zero-length */ 3348 do { 3349 u32 remainder = 0; 3350 field = 0; 3351 3352 /* Don't change the cycle bit of the first TRB until later */ 3353 if (first_trb) { 3354 first_trb = false; 3355 if (start_cycle == 0) 3356 field |= 0x1; 3357 } else 3358 field |= ep_ring->cycle_state; 3359 3360 /* Chain all the TRBs together; clear the chain bit in the last 3361 * TRB to indicate it's the last TRB in the chain. 3362 */ 3363 if (num_trbs > last_trb_num) { 3364 field |= TRB_CHAIN; 3365 } else if (num_trbs == last_trb_num) { 3366 td->last_trb = ep_ring->enqueue; 3367 field |= TRB_IOC; 3368 } else if (zero_length_needed && num_trbs == 1) { 3369 trb_buff_len = 0; 3370 urb_priv->td[1]->last_trb = ep_ring->enqueue; 3371 field |= TRB_IOC; 3372 } 3373 3374 /* Only set interrupt on short packet for IN endpoints */ 3375 if (usb_urb_dir_in(urb)) 3376 field |= TRB_ISP; 3377 3378 /* Set the TRB length, TD size, and interrupter fields. */ 3379 remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, 3380 urb->transfer_buffer_length, 3381 urb, num_trbs - 1); 3382 3383 length_field = TRB_LEN(trb_buff_len) | 3384 TRB_TD_SIZE(remainder) | 3385 TRB_INTR_TARGET(0); 3386 3387 if (num_trbs > 1) 3388 more_trbs_coming = true; 3389 else 3390 more_trbs_coming = false; 3391 queue_trb(xhci, ep_ring, more_trbs_coming, 3392 lower_32_bits(addr), 3393 upper_32_bits(addr), 3394 length_field, 3395 field | TRB_TYPE(TRB_NORMAL)); 3396 --num_trbs; 3397 running_total += trb_buff_len; 3398 3399 /* Calculate length for next transfer */ 3400 addr += trb_buff_len; 3401 trb_buff_len = urb->transfer_buffer_length - running_total; 3402 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3403 trb_buff_len = TRB_MAX_BUFF_SIZE; 3404 } while (num_trbs > 0); 3405 3406 check_trb_math(urb, num_trbs, running_total); 3407 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3408 start_cycle, start_trb); 3409 return 0; 3410 } 3411 3412 /* Caller must have locked xhci->lock */ 3413 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3414 struct urb *urb, int slot_id, unsigned int ep_index) 3415 { 3416 struct xhci_ring *ep_ring; 3417 int num_trbs; 3418 int ret; 3419 struct usb_ctrlrequest *setup; 3420 struct xhci_generic_trb *start_trb; 3421 int start_cycle; 3422 u32 field, length_field, remainder; 3423 struct urb_priv *urb_priv; 3424 struct xhci_td *td; 3425 3426 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3427 if (!ep_ring) 3428 return -EINVAL; 3429 3430 /* 3431 * Need to copy setup packet into setup TRB, so we can't use the setup 3432 * DMA address. 3433 */ 3434 if (!urb->setup_packet) 3435 return -EINVAL; 3436 3437 /* 1 TRB for setup, 1 for status */ 3438 num_trbs = 2; 3439 /* 3440 * Don't need to check if we need additional event data and normal TRBs, 3441 * since data in control transfers will never get bigger than 16MB 3442 * XXX: can we get a buffer that crosses 64KB boundaries? 3443 */ 3444 if (urb->transfer_buffer_length > 0) 3445 num_trbs++; 3446 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3447 ep_index, urb->stream_id, 3448 num_trbs, urb, 0, mem_flags); 3449 if (ret < 0) 3450 return ret; 3451 3452 urb_priv = urb->hcpriv; 3453 td = urb_priv->td[0]; 3454 3455 /* 3456 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3457 * until we've finished creating all the other TRBs. The ring's cycle 3458 * state may change as we enqueue the other TRBs, so save it too. 3459 */ 3460 start_trb = &ep_ring->enqueue->generic; 3461 start_cycle = ep_ring->cycle_state; 3462 3463 /* Queue setup TRB - see section 6.4.1.2.1 */ 3464 /* FIXME better way to translate setup_packet into two u32 fields? */ 3465 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3466 field = 0; 3467 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3468 if (start_cycle == 0) 3469 field |= 0x1; 3470 3471 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3472 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3473 if (urb->transfer_buffer_length > 0) { 3474 if (setup->bRequestType & USB_DIR_IN) 3475 field |= TRB_TX_TYPE(TRB_DATA_IN); 3476 else 3477 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3478 } 3479 } 3480 3481 queue_trb(xhci, ep_ring, true, 3482 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3483 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3484 TRB_LEN(8) | TRB_INTR_TARGET(0), 3485 /* Immediate data in pointer */ 3486 field); 3487 3488 /* If there's data, queue data TRBs */ 3489 /* Only set interrupt on short packet for IN endpoints */ 3490 if (usb_urb_dir_in(urb)) 3491 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3492 else 3493 field = TRB_TYPE(TRB_DATA); 3494 3495 remainder = xhci_td_remainder(xhci, 0, 3496 urb->transfer_buffer_length, 3497 urb->transfer_buffer_length, 3498 urb, 1); 3499 3500 length_field = TRB_LEN(urb->transfer_buffer_length) | 3501 TRB_TD_SIZE(remainder) | 3502 TRB_INTR_TARGET(0); 3503 3504 if (urb->transfer_buffer_length > 0) { 3505 if (setup->bRequestType & USB_DIR_IN) 3506 field |= TRB_DIR_IN; 3507 queue_trb(xhci, ep_ring, true, 3508 lower_32_bits(urb->transfer_dma), 3509 upper_32_bits(urb->transfer_dma), 3510 length_field, 3511 field | ep_ring->cycle_state); 3512 } 3513 3514 /* Save the DMA address of the last TRB in the TD */ 3515 td->last_trb = ep_ring->enqueue; 3516 3517 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3518 /* If the device sent data, the status stage is an OUT transfer */ 3519 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3520 field = 0; 3521 else 3522 field = TRB_DIR_IN; 3523 queue_trb(xhci, ep_ring, false, 3524 0, 3525 0, 3526 TRB_INTR_TARGET(0), 3527 /* Event on completion */ 3528 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3529 3530 giveback_first_trb(xhci, slot_id, ep_index, 0, 3531 start_cycle, start_trb); 3532 return 0; 3533 } 3534 3535 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3536 struct urb *urb, int i) 3537 { 3538 int num_trbs = 0; 3539 u64 addr, td_len; 3540 3541 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3542 td_len = urb->iso_frame_desc[i].length; 3543 3544 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3545 TRB_MAX_BUFF_SIZE); 3546 if (num_trbs == 0) 3547 num_trbs++; 3548 3549 return num_trbs; 3550 } 3551 3552 /* 3553 * The transfer burst count field of the isochronous TRB defines the number of 3554 * bursts that are required to move all packets in this TD. Only SuperSpeed 3555 * devices can burst up to bMaxBurst number of packets per service interval. 3556 * This field is zero based, meaning a value of zero in the field means one 3557 * burst. Basically, for everything but SuperSpeed devices, this field will be 3558 * zero. Only xHCI 1.0 host controllers support this field. 3559 */ 3560 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3561 struct usb_device *udev, 3562 struct urb *urb, unsigned int total_packet_count) 3563 { 3564 unsigned int max_burst; 3565 3566 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3567 return 0; 3568 3569 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3570 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3571 } 3572 3573 /* 3574 * Returns the number of packets in the last "burst" of packets. This field is 3575 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3576 * the last burst packet count is equal to the total number of packets in the 3577 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3578 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3579 * contain 1 to (bMaxBurst + 1) packets. 3580 */ 3581 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3582 struct usb_device *udev, 3583 struct urb *urb, unsigned int total_packet_count) 3584 { 3585 unsigned int max_burst; 3586 unsigned int residue; 3587 3588 if (xhci->hci_version < 0x100) 3589 return 0; 3590 3591 switch (udev->speed) { 3592 case USB_SPEED_SUPER: 3593 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3594 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3595 residue = total_packet_count % (max_burst + 1); 3596 /* If residue is zero, the last burst contains (max_burst + 1) 3597 * number of packets, but the TLBPC field is zero-based. 3598 */ 3599 if (residue == 0) 3600 return max_burst; 3601 return residue - 1; 3602 default: 3603 if (total_packet_count == 0) 3604 return 0; 3605 return total_packet_count - 1; 3606 } 3607 } 3608 3609 /* 3610 * Calculates Frame ID field of the isochronous TRB identifies the 3611 * target frame that the Interval associated with this Isochronous 3612 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3613 * 3614 * Returns actual frame id on success, negative value on error. 3615 */ 3616 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3617 struct urb *urb, int index) 3618 { 3619 int start_frame, ist, ret = 0; 3620 int start_frame_id, end_frame_id, current_frame_id; 3621 3622 if (urb->dev->speed == USB_SPEED_LOW || 3623 urb->dev->speed == USB_SPEED_FULL) 3624 start_frame = urb->start_frame + index * urb->interval; 3625 else 3626 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3627 3628 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3629 * 3630 * If bit [3] of IST is cleared to '0', software can add a TRB no 3631 * later than IST[2:0] Microframes before that TRB is scheduled to 3632 * be executed. 3633 * If bit [3] of IST is set to '1', software can add a TRB no later 3634 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3635 */ 3636 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3637 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3638 ist <<= 3; 3639 3640 /* Software shall not schedule an Isoch TD with a Frame ID value that 3641 * is less than the Start Frame ID or greater than the End Frame ID, 3642 * where: 3643 * 3644 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3645 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3646 * 3647 * Both the End Frame ID and Start Frame ID values are calculated 3648 * in microframes. When software determines the valid Frame ID value; 3649 * The End Frame ID value should be rounded down to the nearest Frame 3650 * boundary, and the Start Frame ID value should be rounded up to the 3651 * nearest Frame boundary. 3652 */ 3653 current_frame_id = readl(&xhci->run_regs->microframe_index); 3654 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3655 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3656 3657 start_frame &= 0x7ff; 3658 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3659 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3660 3661 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3662 __func__, index, readl(&xhci->run_regs->microframe_index), 3663 start_frame_id, end_frame_id, start_frame); 3664 3665 if (start_frame_id < end_frame_id) { 3666 if (start_frame > end_frame_id || 3667 start_frame < start_frame_id) 3668 ret = -EINVAL; 3669 } else if (start_frame_id > end_frame_id) { 3670 if ((start_frame > end_frame_id && 3671 start_frame < start_frame_id)) 3672 ret = -EINVAL; 3673 } else { 3674 ret = -EINVAL; 3675 } 3676 3677 if (index == 0) { 3678 if (ret == -EINVAL || start_frame == start_frame_id) { 3679 start_frame = start_frame_id + 1; 3680 if (urb->dev->speed == USB_SPEED_LOW || 3681 urb->dev->speed == USB_SPEED_FULL) 3682 urb->start_frame = start_frame; 3683 else 3684 urb->start_frame = start_frame << 3; 3685 ret = 0; 3686 } 3687 } 3688 3689 if (ret) { 3690 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3691 start_frame, current_frame_id, index, 3692 start_frame_id, end_frame_id); 3693 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3694 return ret; 3695 } 3696 3697 return start_frame; 3698 } 3699 3700 /* This is for isoc transfer */ 3701 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3702 struct urb *urb, int slot_id, unsigned int ep_index) 3703 { 3704 struct xhci_ring *ep_ring; 3705 struct urb_priv *urb_priv; 3706 struct xhci_td *td; 3707 int num_tds, trbs_per_td; 3708 struct xhci_generic_trb *start_trb; 3709 bool first_trb; 3710 int start_cycle; 3711 u32 field, length_field; 3712 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3713 u64 start_addr, addr; 3714 int i, j; 3715 bool more_trbs_coming; 3716 struct xhci_virt_ep *xep; 3717 3718 xep = &xhci->devs[slot_id]->eps[ep_index]; 3719 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3720 3721 num_tds = urb->number_of_packets; 3722 if (num_tds < 1) { 3723 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3724 return -EINVAL; 3725 } 3726 3727 start_addr = (u64) urb->transfer_dma; 3728 start_trb = &ep_ring->enqueue->generic; 3729 start_cycle = ep_ring->cycle_state; 3730 3731 urb_priv = urb->hcpriv; 3732 /* Queue the first TRB, even if it's zero-length */ 3733 for (i = 0; i < num_tds; i++) { 3734 unsigned int total_packet_count; 3735 unsigned int burst_count; 3736 unsigned int residue; 3737 3738 first_trb = true; 3739 running_total = 0; 3740 addr = start_addr + urb->iso_frame_desc[i].offset; 3741 td_len = urb->iso_frame_desc[i].length; 3742 td_remain_len = td_len; 3743 total_packet_count = DIV_ROUND_UP(td_len, 3744 GET_MAX_PACKET( 3745 usb_endpoint_maxp(&urb->ep->desc))); 3746 /* A zero-length transfer still involves at least one packet. */ 3747 if (total_packet_count == 0) 3748 total_packet_count++; 3749 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3750 total_packet_count); 3751 residue = xhci_get_last_burst_packet_count(xhci, 3752 urb->dev, urb, total_packet_count); 3753 3754 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3755 3756 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3757 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3758 if (ret < 0) { 3759 if (i == 0) 3760 return ret; 3761 goto cleanup; 3762 } 3763 3764 td = urb_priv->td[i]; 3765 for (j = 0; j < trbs_per_td; j++) { 3766 int frame_id = 0; 3767 u32 remainder = 0; 3768 field = 0; 3769 3770 if (first_trb) { 3771 field = TRB_TBC(burst_count) | 3772 TRB_TLBPC(residue); 3773 /* Queue the isoc TRB */ 3774 field |= TRB_TYPE(TRB_ISOC); 3775 3776 /* Calculate Frame ID and SIA fields */ 3777 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3778 HCC_CFC(xhci->hcc_params)) { 3779 frame_id = xhci_get_isoc_frame_id(xhci, 3780 urb, 3781 i); 3782 if (frame_id >= 0) 3783 field |= TRB_FRAME_ID(frame_id); 3784 else 3785 field |= TRB_SIA; 3786 } else 3787 field |= TRB_SIA; 3788 3789 if (i == 0) { 3790 if (start_cycle == 0) 3791 field |= 0x1; 3792 } else 3793 field |= ep_ring->cycle_state; 3794 first_trb = false; 3795 } else { 3796 /* Queue other normal TRBs */ 3797 field |= TRB_TYPE(TRB_NORMAL); 3798 field |= ep_ring->cycle_state; 3799 } 3800 3801 /* Only set interrupt on short packet for IN EPs */ 3802 if (usb_urb_dir_in(urb)) 3803 field |= TRB_ISP; 3804 3805 /* Chain all the TRBs together; clear the chain bit in 3806 * the last TRB to indicate it's the last TRB in the 3807 * chain. 3808 */ 3809 if (j < trbs_per_td - 1) { 3810 field |= TRB_CHAIN; 3811 more_trbs_coming = true; 3812 } else { 3813 td->last_trb = ep_ring->enqueue; 3814 field |= TRB_IOC; 3815 if (xhci->hci_version == 0x100 && 3816 !(xhci->quirks & 3817 XHCI_AVOID_BEI)) { 3818 /* Set BEI bit except for the last td */ 3819 if (i < num_tds - 1) 3820 field |= TRB_BEI; 3821 } 3822 more_trbs_coming = false; 3823 } 3824 3825 /* Calculate TRB length */ 3826 trb_buff_len = TRB_MAX_BUFF_SIZE - 3827 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3828 if (trb_buff_len > td_remain_len) 3829 trb_buff_len = td_remain_len; 3830 3831 /* Set the TRB length, TD size, & interrupter fields. */ 3832 remainder = xhci_td_remainder(xhci, running_total, 3833 trb_buff_len, td_len, 3834 urb, trbs_per_td - j - 1); 3835 3836 length_field = TRB_LEN(trb_buff_len) | 3837 TRB_TD_SIZE(remainder) | 3838 TRB_INTR_TARGET(0); 3839 3840 queue_trb(xhci, ep_ring, more_trbs_coming, 3841 lower_32_bits(addr), 3842 upper_32_bits(addr), 3843 length_field, 3844 field); 3845 running_total += trb_buff_len; 3846 3847 addr += trb_buff_len; 3848 td_remain_len -= trb_buff_len; 3849 } 3850 3851 /* Check TD length */ 3852 if (running_total != td_len) { 3853 xhci_err(xhci, "ISOC TD length unmatch\n"); 3854 ret = -EINVAL; 3855 goto cleanup; 3856 } 3857 } 3858 3859 /* store the next frame id */ 3860 if (HCC_CFC(xhci->hcc_params)) 3861 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3862 3863 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3864 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3865 usb_amd_quirk_pll_disable(); 3866 } 3867 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3868 3869 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3870 start_cycle, start_trb); 3871 return 0; 3872 cleanup: 3873 /* Clean up a partially enqueued isoc transfer. */ 3874 3875 for (i--; i >= 0; i--) 3876 list_del_init(&urb_priv->td[i]->td_list); 3877 3878 /* Use the first TD as a temporary variable to turn the TDs we've queued 3879 * into No-ops with a software-owned cycle bit. That way the hardware 3880 * won't accidentally start executing bogus TDs when we partially 3881 * overwrite them. td->first_trb and td->start_seg are already set. 3882 */ 3883 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3884 /* Every TRB except the first & last will have its cycle bit flipped. */ 3885 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3886 3887 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3888 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3889 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3890 ep_ring->cycle_state = start_cycle; 3891 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3892 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3893 return ret; 3894 } 3895 3896 /* 3897 * Check transfer ring to guarantee there is enough room for the urb. 3898 * Update ISO URB start_frame and interval. 3899 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3900 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3901 * Contiguous Frame ID is not supported by HC. 3902 */ 3903 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3904 struct urb *urb, int slot_id, unsigned int ep_index) 3905 { 3906 struct xhci_virt_device *xdev; 3907 struct xhci_ring *ep_ring; 3908 struct xhci_ep_ctx *ep_ctx; 3909 int start_frame; 3910 int xhci_interval; 3911 int ep_interval; 3912 int num_tds, num_trbs, i; 3913 int ret; 3914 struct xhci_virt_ep *xep; 3915 int ist; 3916 3917 xdev = xhci->devs[slot_id]; 3918 xep = &xhci->devs[slot_id]->eps[ep_index]; 3919 ep_ring = xdev->eps[ep_index].ring; 3920 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3921 3922 num_trbs = 0; 3923 num_tds = urb->number_of_packets; 3924 for (i = 0; i < num_tds; i++) 3925 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3926 3927 /* Check the ring to guarantee there is enough room for the whole urb. 3928 * Do not insert any td of the urb to the ring if the check failed. 3929 */ 3930 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3931 num_trbs, mem_flags); 3932 if (ret) 3933 return ret; 3934 3935 /* 3936 * Check interval value. This should be done before we start to 3937 * calculate the start frame value. 3938 */ 3939 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3940 ep_interval = urb->interval; 3941 /* Convert to microframes */ 3942 if (urb->dev->speed == USB_SPEED_LOW || 3943 urb->dev->speed == USB_SPEED_FULL) 3944 ep_interval *= 8; 3945 /* FIXME change this to a warning and a suggestion to use the new API 3946 * to set the polling interval (once the API is added). 3947 */ 3948 if (xhci_interval != ep_interval) { 3949 dev_dbg_ratelimited(&urb->dev->dev, 3950 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3951 ep_interval, ep_interval == 1 ? "" : "s", 3952 xhci_interval, xhci_interval == 1 ? "" : "s"); 3953 urb->interval = xhci_interval; 3954 /* Convert back to frames for LS/FS devices */ 3955 if (urb->dev->speed == USB_SPEED_LOW || 3956 urb->dev->speed == USB_SPEED_FULL) 3957 urb->interval /= 8; 3958 } 3959 3960 /* Calculate the start frame and put it in urb->start_frame. */ 3961 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3962 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 3963 EP_STATE_RUNNING) { 3964 urb->start_frame = xep->next_frame_id; 3965 goto skip_start_over; 3966 } 3967 } 3968 3969 start_frame = readl(&xhci->run_regs->microframe_index); 3970 start_frame &= 0x3fff; 3971 /* 3972 * Round up to the next frame and consider the time before trb really 3973 * gets scheduled by hardare. 3974 */ 3975 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3976 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3977 ist <<= 3; 3978 start_frame += ist + XHCI_CFC_DELAY; 3979 start_frame = roundup(start_frame, 8); 3980 3981 /* 3982 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3983 * is greate than 8 microframes. 3984 */ 3985 if (urb->dev->speed == USB_SPEED_LOW || 3986 urb->dev->speed == USB_SPEED_FULL) { 3987 start_frame = roundup(start_frame, urb->interval << 3); 3988 urb->start_frame = start_frame >> 3; 3989 } else { 3990 start_frame = roundup(start_frame, urb->interval); 3991 urb->start_frame = start_frame; 3992 } 3993 3994 skip_start_over: 3995 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3996 3997 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3998 } 3999 4000 /**** Command Ring Operations ****/ 4001 4002 /* Generic function for queueing a command TRB on the command ring. 4003 * Check to make sure there's room on the command ring for one command TRB. 4004 * Also check that there's room reserved for commands that must not fail. 4005 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4006 * then only check for the number of reserved spots. 4007 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4008 * because the command event handler may want to resubmit a failed command. 4009 */ 4010 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4011 u32 field1, u32 field2, 4012 u32 field3, u32 field4, bool command_must_succeed) 4013 { 4014 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4015 int ret; 4016 4017 if (xhci->xhc_state) { 4018 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4019 return -ESHUTDOWN; 4020 } 4021 4022 if (!command_must_succeed) 4023 reserved_trbs++; 4024 4025 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4026 reserved_trbs, GFP_ATOMIC); 4027 if (ret < 0) { 4028 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4029 if (command_must_succeed) 4030 xhci_err(xhci, "ERR: Reserved TRB counting for " 4031 "unfailable commands failed.\n"); 4032 return ret; 4033 } 4034 4035 cmd->command_trb = xhci->cmd_ring->enqueue; 4036 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4037 4038 /* if there are no other commands queued we start the timeout timer */ 4039 if (xhci->cmd_list.next == &cmd->cmd_list && 4040 !timer_pending(&xhci->cmd_timer)) { 4041 xhci->current_cmd = cmd; 4042 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 4043 } 4044 4045 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4046 field4 | xhci->cmd_ring->cycle_state); 4047 return 0; 4048 } 4049 4050 /* Queue a slot enable or disable request on the command ring */ 4051 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4052 u32 trb_type, u32 slot_id) 4053 { 4054 return queue_command(xhci, cmd, 0, 0, 0, 4055 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4056 } 4057 4058 /* Queue an address device command TRB */ 4059 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4060 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4061 { 4062 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4063 upper_32_bits(in_ctx_ptr), 0, 4064 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4065 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4066 } 4067 4068 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4069 u32 field1, u32 field2, u32 field3, u32 field4) 4070 { 4071 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4072 } 4073 4074 /* Queue a reset device command TRB */ 4075 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4076 u32 slot_id) 4077 { 4078 return queue_command(xhci, cmd, 0, 0, 0, 4079 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4080 false); 4081 } 4082 4083 /* Queue a configure endpoint command TRB */ 4084 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4085 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4086 u32 slot_id, bool command_must_succeed) 4087 { 4088 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4089 upper_32_bits(in_ctx_ptr), 0, 4090 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4091 command_must_succeed); 4092 } 4093 4094 /* Queue an evaluate context command TRB */ 4095 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4096 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4097 { 4098 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4099 upper_32_bits(in_ctx_ptr), 0, 4100 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4101 command_must_succeed); 4102 } 4103 4104 /* 4105 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4106 * activity on an endpoint that is about to be suspended. 4107 */ 4108 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4109 int slot_id, unsigned int ep_index, int suspend) 4110 { 4111 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4112 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4113 u32 type = TRB_TYPE(TRB_STOP_RING); 4114 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4115 4116 return queue_command(xhci, cmd, 0, 0, 0, 4117 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4118 } 4119 4120 /* Set Transfer Ring Dequeue Pointer command */ 4121 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4122 unsigned int slot_id, unsigned int ep_index, 4123 unsigned int stream_id, 4124 struct xhci_dequeue_state *deq_state) 4125 { 4126 dma_addr_t addr; 4127 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4128 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4129 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4130 u32 trb_sct = 0; 4131 u32 type = TRB_TYPE(TRB_SET_DEQ); 4132 struct xhci_virt_ep *ep; 4133 struct xhci_command *cmd; 4134 int ret; 4135 4136 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4137 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4138 deq_state->new_deq_seg, 4139 (unsigned long long)deq_state->new_deq_seg->dma, 4140 deq_state->new_deq_ptr, 4141 (unsigned long long)xhci_trb_virt_to_dma( 4142 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4143 deq_state->new_cycle_state); 4144 4145 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4146 deq_state->new_deq_ptr); 4147 if (addr == 0) { 4148 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4149 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4150 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4151 return; 4152 } 4153 ep = &xhci->devs[slot_id]->eps[ep_index]; 4154 if ((ep->ep_state & SET_DEQ_PENDING)) { 4155 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4156 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4157 return; 4158 } 4159 4160 /* This function gets called from contexts where it cannot sleep */ 4161 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4162 if (!cmd) { 4163 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 4164 return; 4165 } 4166 4167 ep->queued_deq_seg = deq_state->new_deq_seg; 4168 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4169 if (stream_id) 4170 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4171 ret = queue_command(xhci, cmd, 4172 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4173 upper_32_bits(addr), trb_stream_id, 4174 trb_slot_id | trb_ep_index | type, false); 4175 if (ret < 0) { 4176 xhci_free_command(xhci, cmd); 4177 return; 4178 } 4179 4180 /* Stop the TD queueing code from ringing the doorbell until 4181 * this command completes. The HC won't set the dequeue pointer 4182 * if the ring is running, and ringing the doorbell starts the 4183 * ring running. 4184 */ 4185 ep->ep_state |= SET_DEQ_PENDING; 4186 } 4187 4188 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4189 int slot_id, unsigned int ep_index) 4190 { 4191 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4192 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4193 u32 type = TRB_TYPE(TRB_RESET_EP); 4194 4195 return queue_command(xhci, cmd, 0, 0, 0, 4196 trb_slot_id | trb_ep_index | type, false); 4197 } 4198