1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 } else { 180 ring->dequeue++; 181 ring->num_trbs_free++; 182 } 183 } 184 185 while (trb_is_link(ring->dequeue)) { 186 ring->deq_seg = ring->deq_seg->next; 187 ring->dequeue = ring->deq_seg->trbs; 188 189 if (link_trb_count++ > ring->num_segs) { 190 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 191 break; 192 } 193 } 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * 203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 204 * chain bit is set), then set the chain bit in all the following link TRBs. 205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 206 * have their chain bit cleared (so that each Link TRB is a separate TD). 207 * 208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 209 * set, but other sections talk about dealing with the chain bit set. This was 210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 211 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 212 * 213 * @more_trbs_coming: Will you enqueue more TRBs before calling 214 * prepare_transfer()? 215 */ 216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 217 bool more_trbs_coming) 218 { 219 u32 chain; 220 union xhci_trb *next; 221 unsigned int link_trb_count = 0; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 228 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 229 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 230 return; 231 } 232 233 next = ++(ring->enqueue); 234 235 /* Update the dequeue pointer further if that was a link TRB */ 236 while (trb_is_link(next)) { 237 238 /* 239 * If the caller doesn't plan on enqueueing more TDs before 240 * ringing the doorbell, then we don't want to give the link TRB 241 * to the hardware just yet. We'll give the link TRB back in 242 * prepare_ring() just before we enqueue the TD at the top of 243 * the ring. 244 */ 245 if (!chain && !more_trbs_coming) 246 break; 247 248 /* If we're not dealing with 0.95 hardware or isoc rings on 249 * AMD 0.96 host, carry over the chain bit of the previous TRB 250 * (which may mean the chain bit is cleared). 251 */ 252 if (!(ring->type == TYPE_ISOC && 253 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 254 !xhci_link_trb_quirk(xhci)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 if (link_trb_count++ > ring->num_segs) { 271 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 272 break; 273 } 274 } 275 276 trace_xhci_inc_enq(ring); 277 } 278 279 /* 280 * Check to see if there's room to enqueue num_trbs on the ring and make sure 281 * enqueue pointer will not advance into dequeue segment. See rules above. 282 */ 283 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 284 unsigned int num_trbs) 285 { 286 int num_trbs_in_deq_seg; 287 288 if (ring->num_trbs_free < num_trbs) 289 return 0; 290 291 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 292 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 293 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 294 return 0; 295 } 296 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 304 return; 305 306 xhci_dbg(xhci, "// Ding dong!\n"); 307 308 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 309 310 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 311 /* Flush PCI posted writes */ 312 readl(&xhci->dba->doorbell[0]); 313 } 314 315 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 316 { 317 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 318 } 319 320 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 321 { 322 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 323 cmd_list); 324 } 325 326 /* 327 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 328 * If there are other commands waiting then restart the ring and kick the timer. 329 * This must be called with command ring stopped and xhci->lock held. 330 */ 331 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 332 struct xhci_command *cur_cmd) 333 { 334 struct xhci_command *i_cmd; 335 336 /* Turn all aborted commands in list to no-ops, then restart */ 337 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 338 339 if (i_cmd->status != COMP_COMMAND_ABORTED) 340 continue; 341 342 i_cmd->status = COMP_COMMAND_RING_STOPPED; 343 344 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 345 i_cmd->command_trb); 346 347 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 348 349 /* 350 * caller waiting for completion is called when command 351 * completion event is received for these no-op commands 352 */ 353 } 354 355 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 356 357 /* ring command ring doorbell to restart the command ring */ 358 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 359 !(xhci->xhc_state & XHCI_STATE_DYING)) { 360 xhci->current_cmd = cur_cmd; 361 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 362 xhci_ring_cmd_db(xhci); 363 } 364 } 365 366 /* Must be called with xhci->lock held, releases and aquires lock back */ 367 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 368 { 369 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 370 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 371 u64 crcr; 372 int ret; 373 374 xhci_dbg(xhci, "Abort command ring\n"); 375 376 reinit_completion(&xhci->cmd_ring_stop_completion); 377 378 /* 379 * The control bits like command stop, abort are located in lower 380 * dword of the command ring control register. 381 * Some controllers require all 64 bits to be written to abort the ring. 382 * Make sure the upper dword is valid, pointing to the next command, 383 * avoiding corrupting the command ring pointer in case the command ring 384 * is stopped by the time the upper dword is written. 385 */ 386 next_trb(xhci, NULL, &new_seg, &new_deq); 387 if (trb_is_link(new_deq)) 388 next_trb(xhci, NULL, &new_seg, &new_deq); 389 390 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 391 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 392 393 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 394 * completion of the Command Abort operation. If CRR is not negated in 5 395 * seconds then driver handles it as if host died (-ENODEV). 396 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 397 * and try to recover a -ETIMEDOUT with a host controller reset. 398 */ 399 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 400 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 401 if (ret < 0) { 402 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 403 xhci_halt(xhci); 404 xhci_hc_died(xhci); 405 return ret; 406 } 407 /* 408 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 409 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 410 * but the completion event in never sent. Wait 2 secs (arbitrary 411 * number) to handle those cases after negation of CMD_RING_RUNNING. 412 */ 413 spin_unlock_irqrestore(&xhci->lock, flags); 414 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 415 msecs_to_jiffies(2000)); 416 spin_lock_irqsave(&xhci->lock, flags); 417 if (!ret) { 418 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 419 xhci_cleanup_command_queue(xhci); 420 } else { 421 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 422 } 423 return 0; 424 } 425 426 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index, 429 unsigned int stream_id) 430 { 431 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 432 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 433 unsigned int ep_state = ep->ep_state; 434 435 /* Don't ring the doorbell for this endpoint if there are pending 436 * cancellations because we don't want to interrupt processing. 437 * We don't want to restart any stream rings if there's a set dequeue 438 * pointer command pending because the device can choose to start any 439 * stream once the endpoint is on the HW schedule. 440 */ 441 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 442 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 443 return; 444 445 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 446 447 writel(DB_VALUE(ep_index, stream_id), db_addr); 448 /* flush the write */ 449 readl(db_addr); 450 } 451 452 /* Ring the doorbell for any rings with pending URBs */ 453 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 454 unsigned int slot_id, 455 unsigned int ep_index) 456 { 457 unsigned int stream_id; 458 struct xhci_virt_ep *ep; 459 460 ep = &xhci->devs[slot_id]->eps[ep_index]; 461 462 /* A ring has pending URBs if its TD list is not empty */ 463 if (!(ep->ep_state & EP_HAS_STREAMS)) { 464 if (ep->ring && !(list_empty(&ep->ring->td_list))) 465 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 466 return; 467 } 468 469 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 470 stream_id++) { 471 struct xhci_stream_info *stream_info = ep->stream_info; 472 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 473 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 474 stream_id); 475 } 476 } 477 478 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 479 unsigned int slot_id, 480 unsigned int ep_index) 481 { 482 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 483 } 484 485 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 486 unsigned int slot_id, 487 unsigned int ep_index) 488 { 489 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 490 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 491 return NULL; 492 } 493 if (ep_index >= EP_CTX_PER_DEV) { 494 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 495 return NULL; 496 } 497 if (!xhci->devs[slot_id]) { 498 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 499 return NULL; 500 } 501 502 return &xhci->devs[slot_id]->eps[ep_index]; 503 } 504 505 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 506 struct xhci_virt_ep *ep, 507 unsigned int stream_id) 508 { 509 /* common case, no streams */ 510 if (!(ep->ep_state & EP_HAS_STREAMS)) 511 return ep->ring; 512 513 if (!ep->stream_info) 514 return NULL; 515 516 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 517 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 518 stream_id, ep->vdev->slot_id, ep->ep_index); 519 return NULL; 520 } 521 522 return ep->stream_info->stream_rings[stream_id]; 523 } 524 525 /* Get the right ring for the given slot_id, ep_index and stream_id. 526 * If the endpoint supports streams, boundary check the URB's stream ID. 527 * If the endpoint doesn't support streams, return the singular endpoint ring. 528 */ 529 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 530 unsigned int slot_id, unsigned int ep_index, 531 unsigned int stream_id) 532 { 533 struct xhci_virt_ep *ep; 534 535 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 536 if (!ep) 537 return NULL; 538 539 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 540 } 541 542 543 /* 544 * Get the hw dequeue pointer xHC stopped on, either directly from the 545 * endpoint context, or if streams are in use from the stream context. 546 * The returned hw_dequeue contains the lowest four bits with cycle state 547 * and possbile stream context type. 548 */ 549 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 550 unsigned int ep_index, unsigned int stream_id) 551 { 552 struct xhci_ep_ctx *ep_ctx; 553 struct xhci_stream_ctx *st_ctx; 554 struct xhci_virt_ep *ep; 555 556 ep = &vdev->eps[ep_index]; 557 558 if (ep->ep_state & EP_HAS_STREAMS) { 559 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 560 return le64_to_cpu(st_ctx->stream_ring); 561 } 562 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 563 return le64_to_cpu(ep_ctx->deq); 564 } 565 566 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 567 unsigned int slot_id, unsigned int ep_index, 568 unsigned int stream_id, struct xhci_td *td) 569 { 570 struct xhci_virt_device *dev = xhci->devs[slot_id]; 571 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 572 struct xhci_ring *ep_ring; 573 struct xhci_command *cmd; 574 struct xhci_segment *new_seg; 575 struct xhci_segment *halted_seg = NULL; 576 union xhci_trb *new_deq; 577 int new_cycle; 578 union xhci_trb *halted_trb; 579 int index = 0; 580 dma_addr_t addr; 581 u64 hw_dequeue; 582 bool cycle_found = false; 583 bool td_last_trb_found = false; 584 u32 trb_sct = 0; 585 int ret; 586 587 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 588 ep_index, stream_id); 589 if (!ep_ring) { 590 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 591 stream_id); 592 return -ENODEV; 593 } 594 /* 595 * A cancelled TD can complete with a stall if HW cached the trb. 596 * In this case driver can't find td, but if the ring is empty we 597 * can move the dequeue pointer to the current enqueue position. 598 * We shouldn't hit this anymore as cached cancelled TRBs are given back 599 * after clearing the cache, but be on the safe side and keep it anyway 600 */ 601 if (!td) { 602 if (list_empty(&ep_ring->td_list)) { 603 new_seg = ep_ring->enq_seg; 604 new_deq = ep_ring->enqueue; 605 new_cycle = ep_ring->cycle_state; 606 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 607 goto deq_found; 608 } else { 609 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 610 return -EINVAL; 611 } 612 } 613 614 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 615 new_seg = ep_ring->deq_seg; 616 new_deq = ep_ring->dequeue; 617 618 /* 619 * Quirk: xHC write-back of the DCS field in the hardware dequeue 620 * pointer is wrong - use the cycle state of the TRB pointed to by 621 * the dequeue pointer. 622 */ 623 if (xhci->quirks & XHCI_EP_CTX_BROKEN_DCS && 624 !(ep->ep_state & EP_HAS_STREAMS)) 625 halted_seg = trb_in_td(xhci, td->start_seg, 626 td->first_trb, td->last_trb, 627 hw_dequeue & ~0xf, false); 628 if (halted_seg) { 629 index = ((dma_addr_t)(hw_dequeue & ~0xf) - halted_seg->dma) / 630 sizeof(*halted_trb); 631 halted_trb = &halted_seg->trbs[index]; 632 new_cycle = halted_trb->generic.field[3] & 0x1; 633 xhci_dbg(xhci, "Endpoint DCS = %d TRB index = %d cycle = %d\n", 634 (u8)(hw_dequeue & 0x1), index, new_cycle); 635 } else { 636 new_cycle = hw_dequeue & 0x1; 637 } 638 639 /* 640 * We want to find the pointer, segment and cycle state of the new trb 641 * (the one after current TD's last_trb). We know the cycle state at 642 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 643 * found. 644 */ 645 do { 646 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 647 == (dma_addr_t)(hw_dequeue & ~0xf)) { 648 cycle_found = true; 649 if (td_last_trb_found) 650 break; 651 } 652 if (new_deq == td->last_trb) 653 td_last_trb_found = true; 654 655 if (cycle_found && trb_is_link(new_deq) && 656 link_trb_toggles_cycle(new_deq)) 657 new_cycle ^= 0x1; 658 659 next_trb(xhci, ep_ring, &new_seg, &new_deq); 660 661 /* Search wrapped around, bail out */ 662 if (new_deq == ep->ring->dequeue) { 663 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 664 return -EINVAL; 665 } 666 667 } while (!cycle_found || !td_last_trb_found); 668 669 deq_found: 670 671 /* Don't update the ring cycle state for the producer (us). */ 672 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 673 if (addr == 0) { 674 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 675 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 676 return -EINVAL; 677 } 678 679 if ((ep->ep_state & SET_DEQ_PENDING)) { 680 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 681 &addr); 682 return -EBUSY; 683 } 684 685 /* This function gets called from contexts where it cannot sleep */ 686 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 687 if (!cmd) { 688 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 689 return -ENOMEM; 690 } 691 692 if (stream_id) 693 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 694 ret = queue_command(xhci, cmd, 695 lower_32_bits(addr) | trb_sct | new_cycle, 696 upper_32_bits(addr), 697 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 698 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 699 if (ret < 0) { 700 xhci_free_command(xhci, cmd); 701 return ret; 702 } 703 ep->queued_deq_seg = new_seg; 704 ep->queued_deq_ptr = new_deq; 705 706 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 707 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 708 709 /* Stop the TD queueing code from ringing the doorbell until 710 * this command completes. The HC won't set the dequeue pointer 711 * if the ring is running, and ringing the doorbell starts the 712 * ring running. 713 */ 714 ep->ep_state |= SET_DEQ_PENDING; 715 xhci_ring_cmd_db(xhci); 716 return 0; 717 } 718 719 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 720 * (The last TRB actually points to the ring enqueue pointer, which is not part 721 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 722 */ 723 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 724 struct xhci_td *td, bool flip_cycle) 725 { 726 struct xhci_segment *seg = td->start_seg; 727 union xhci_trb *trb = td->first_trb; 728 729 while (1) { 730 trb_to_noop(trb, TRB_TR_NOOP); 731 732 /* flip cycle if asked to */ 733 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 734 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 735 736 if (trb == td->last_trb) 737 break; 738 739 next_trb(xhci, ep_ring, &seg, &trb); 740 } 741 } 742 743 /* 744 * Must be called with xhci->lock held in interrupt context, 745 * releases and re-acquires xhci->lock 746 */ 747 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 748 struct xhci_td *cur_td, int status) 749 { 750 struct urb *urb = cur_td->urb; 751 struct urb_priv *urb_priv = urb->hcpriv; 752 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 753 754 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 755 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 756 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 757 if (xhci->quirks & XHCI_AMD_PLL_FIX) 758 usb_amd_quirk_pll_enable(); 759 } 760 } 761 xhci_urb_free_priv(urb_priv); 762 usb_hcd_unlink_urb_from_ep(hcd, urb); 763 trace_xhci_urb_giveback(urb); 764 usb_hcd_giveback_urb(hcd, urb, status); 765 } 766 767 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 768 struct xhci_ring *ring, struct xhci_td *td) 769 { 770 struct device *dev = xhci_to_hcd(xhci)->self.controller; 771 struct xhci_segment *seg = td->bounce_seg; 772 struct urb *urb = td->urb; 773 size_t len; 774 775 if (!ring || !seg || !urb) 776 return; 777 778 if (usb_urb_dir_out(urb)) { 779 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 780 DMA_TO_DEVICE); 781 return; 782 } 783 784 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 785 DMA_FROM_DEVICE); 786 /* for in tranfers we need to copy the data from bounce to sg */ 787 if (urb->num_sgs) { 788 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 789 seg->bounce_len, seg->bounce_offs); 790 if (len != seg->bounce_len) 791 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 792 len, seg->bounce_len); 793 } else { 794 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 795 seg->bounce_len); 796 } 797 seg->bounce_len = 0; 798 seg->bounce_offs = 0; 799 } 800 801 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 802 struct xhci_ring *ep_ring, int status) 803 { 804 struct urb *urb = NULL; 805 806 /* Clean up the endpoint's TD list */ 807 urb = td->urb; 808 809 /* if a bounce buffer was used to align this td then unmap it */ 810 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 811 812 /* Do one last check of the actual transfer length. 813 * If the host controller said we transferred more data than the buffer 814 * length, urb->actual_length will be a very big number (since it's 815 * unsigned). Play it safe and say we didn't transfer anything. 816 */ 817 if (urb->actual_length > urb->transfer_buffer_length) { 818 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 819 urb->transfer_buffer_length, urb->actual_length); 820 urb->actual_length = 0; 821 status = 0; 822 } 823 /* TD might be removed from td_list if we are giving back a cancelled URB */ 824 if (!list_empty(&td->td_list)) 825 list_del_init(&td->td_list); 826 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 827 if (!list_empty(&td->cancelled_td_list)) 828 list_del_init(&td->cancelled_td_list); 829 830 inc_td_cnt(urb); 831 /* Giveback the urb when all the tds are completed */ 832 if (last_td_in_urb(td)) { 833 if ((urb->actual_length != urb->transfer_buffer_length && 834 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 835 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 836 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 837 urb, urb->actual_length, 838 urb->transfer_buffer_length, status); 839 840 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 841 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 842 status = 0; 843 xhci_giveback_urb_in_irq(xhci, td, status); 844 } 845 846 return 0; 847 } 848 849 850 /* Complete the cancelled URBs we unlinked from td_list. */ 851 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 852 { 853 struct xhci_ring *ring; 854 struct xhci_td *td, *tmp_td; 855 856 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 857 cancelled_td_list) { 858 859 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 860 861 if (td->cancel_status == TD_CLEARED) { 862 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 863 __func__, td->urb); 864 xhci_td_cleanup(ep->xhci, td, ring, td->status); 865 } else { 866 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 867 __func__, td->urb, td->cancel_status); 868 } 869 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 870 return; 871 } 872 } 873 874 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 875 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 876 { 877 struct xhci_command *command; 878 int ret = 0; 879 880 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 881 if (!command) { 882 ret = -ENOMEM; 883 goto done; 884 } 885 886 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 887 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 888 ep_index, slot_id); 889 890 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 891 done: 892 if (ret) 893 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 894 slot_id, ep_index, ret); 895 return ret; 896 } 897 898 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 899 struct xhci_virt_ep *ep, unsigned int stream_id, 900 struct xhci_td *td, 901 enum xhci_ep_reset_type reset_type) 902 { 903 unsigned int slot_id = ep->vdev->slot_id; 904 int err; 905 906 /* 907 * Avoid resetting endpoint if link is inactive. Can cause host hang. 908 * Device will be reset soon to recover the link so don't do anything 909 */ 910 if (ep->vdev->flags & VDEV_PORT_ERROR) 911 return -ENODEV; 912 913 /* add td to cancelled list and let reset ep handler take care of it */ 914 if (reset_type == EP_HARD_RESET) { 915 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 916 if (td && list_empty(&td->cancelled_td_list)) { 917 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 918 td->cancel_status = TD_HALTED; 919 } 920 } 921 922 if (ep->ep_state & EP_HALTED) { 923 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 924 ep->ep_index); 925 return 0; 926 } 927 928 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 929 if (err) 930 return err; 931 932 ep->ep_state |= EP_HALTED; 933 934 xhci_ring_cmd_db(xhci); 935 936 return 0; 937 } 938 939 /* 940 * Fix up the ep ring first, so HW stops executing cancelled TDs. 941 * We have the xHCI lock, so nothing can modify this list until we drop it. 942 * We're also in the event handler, so we can't get re-interrupted if another 943 * Stop Endpoint command completes. 944 * 945 * only call this when ring is not in a running state 946 */ 947 948 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 949 { 950 struct xhci_hcd *xhci; 951 struct xhci_td *td = NULL; 952 struct xhci_td *tmp_td = NULL; 953 struct xhci_td *cached_td = NULL; 954 struct xhci_ring *ring; 955 u64 hw_deq; 956 unsigned int slot_id = ep->vdev->slot_id; 957 int err; 958 959 xhci = ep->xhci; 960 961 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 962 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 963 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 964 (unsigned long long)xhci_trb_virt_to_dma( 965 td->start_seg, td->first_trb), 966 td->urb->stream_id, td->urb); 967 list_del_init(&td->td_list); 968 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 969 if (!ring) { 970 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 971 td->urb, td->urb->stream_id); 972 continue; 973 } 974 /* 975 * If a ring stopped on the TD we need to cancel then we have to 976 * move the xHC endpoint ring dequeue pointer past this TD. 977 * Rings halted due to STALL may show hw_deq is past the stalled 978 * TD, but still require a set TR Deq command to flush xHC cache. 979 */ 980 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 981 td->urb->stream_id); 982 hw_deq &= ~0xf; 983 984 if (td->cancel_status == TD_HALTED || 985 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 986 switch (td->cancel_status) { 987 case TD_CLEARED: /* TD is already no-op */ 988 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 989 break; 990 case TD_DIRTY: /* TD is cached, clear it */ 991 case TD_HALTED: 992 td->cancel_status = TD_CLEARING_CACHE; 993 if (cached_td) 994 /* FIXME stream case, several stopped rings */ 995 xhci_dbg(xhci, 996 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 997 td->urb->stream_id, td->urb, 998 cached_td->urb->stream_id, cached_td->urb); 999 cached_td = td; 1000 break; 1001 } 1002 } else { 1003 td_to_noop(xhci, ring, td, false); 1004 td->cancel_status = TD_CLEARED; 1005 } 1006 } 1007 1008 /* If there's no need to move the dequeue pointer then we're done */ 1009 if (!cached_td) 1010 return 0; 1011 1012 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1013 cached_td->urb->stream_id, 1014 cached_td); 1015 if (err) { 1016 /* Failed to move past cached td, just set cached TDs to no-op */ 1017 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1018 if (td->cancel_status != TD_CLEARING_CACHE) 1019 continue; 1020 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1021 td->urb); 1022 td_to_noop(xhci, ring, td, false); 1023 td->cancel_status = TD_CLEARED; 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 /* 1030 * Returns the TD the endpoint ring halted on. 1031 * Only call for non-running rings without streams. 1032 */ 1033 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1034 { 1035 struct xhci_td *td; 1036 u64 hw_deq; 1037 1038 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1039 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1040 hw_deq &= ~0xf; 1041 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1042 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1043 td->last_trb, hw_deq, false)) 1044 return td; 1045 } 1046 return NULL; 1047 } 1048 1049 /* 1050 * When we get a command completion for a Stop Endpoint Command, we need to 1051 * unlink any cancelled TDs from the ring. There are two ways to do that: 1052 * 1053 * 1. If the HW was in the middle of processing the TD that needs to be 1054 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1055 * in the TD with a Set Dequeue Pointer Command. 1056 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1057 * bit cleared) so that the HW will skip over them. 1058 */ 1059 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1060 union xhci_trb *trb, u32 comp_code) 1061 { 1062 unsigned int ep_index; 1063 struct xhci_virt_ep *ep; 1064 struct xhci_ep_ctx *ep_ctx; 1065 struct xhci_td *td = NULL; 1066 enum xhci_ep_reset_type reset_type; 1067 struct xhci_command *command; 1068 int err; 1069 1070 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1071 if (!xhci->devs[slot_id]) 1072 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1073 slot_id); 1074 return; 1075 } 1076 1077 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1078 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1079 if (!ep) 1080 return; 1081 1082 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1083 1084 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1085 1086 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1087 /* 1088 * If stop endpoint command raced with a halting endpoint we need to 1089 * reset the host side endpoint first. 1090 * If the TD we halted on isn't cancelled the TD should be given back 1091 * with a proper error code, and the ring dequeue moved past the TD. 1092 * If streams case we can't find hw_deq, or the TD we halted on so do a 1093 * soft reset. 1094 * 1095 * Proper error code is unknown here, it would be -EPIPE if device side 1096 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1097 * We use -EPROTO, if device is stalled it should return a stall error on 1098 * next transfer, which then will return -EPIPE, and device side stall is 1099 * noted and cleared by class driver. 1100 */ 1101 switch (GET_EP_CTX_STATE(ep_ctx)) { 1102 case EP_STATE_HALTED: 1103 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1104 if (ep->ep_state & EP_HAS_STREAMS) { 1105 reset_type = EP_SOFT_RESET; 1106 } else { 1107 reset_type = EP_HARD_RESET; 1108 td = find_halted_td(ep); 1109 if (td) 1110 td->status = -EPROTO; 1111 } 1112 /* reset ep, reset handler cleans up cancelled tds */ 1113 err = xhci_handle_halted_endpoint(xhci, ep, 0, td, 1114 reset_type); 1115 if (err) 1116 break; 1117 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1118 return; 1119 case EP_STATE_RUNNING: 1120 /* Race, HW handled stop ep cmd before ep was running */ 1121 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1122 1123 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1124 if (!command) { 1125 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1126 return; 1127 } 1128 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1129 xhci_ring_cmd_db(xhci); 1130 1131 return; 1132 default: 1133 break; 1134 } 1135 } 1136 1137 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1138 xhci_invalidate_cancelled_tds(ep); 1139 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1140 1141 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1142 xhci_giveback_invalidated_tds(ep); 1143 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1144 } 1145 1146 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1147 { 1148 struct xhci_td *cur_td; 1149 struct xhci_td *tmp; 1150 1151 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1152 list_del_init(&cur_td->td_list); 1153 1154 if (!list_empty(&cur_td->cancelled_td_list)) 1155 list_del_init(&cur_td->cancelled_td_list); 1156 1157 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1158 1159 inc_td_cnt(cur_td->urb); 1160 if (last_td_in_urb(cur_td)) 1161 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1162 } 1163 } 1164 1165 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1166 int slot_id, int ep_index) 1167 { 1168 struct xhci_td *cur_td; 1169 struct xhci_td *tmp; 1170 struct xhci_virt_ep *ep; 1171 struct xhci_ring *ring; 1172 1173 ep = &xhci->devs[slot_id]->eps[ep_index]; 1174 if ((ep->ep_state & EP_HAS_STREAMS) || 1175 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1176 int stream_id; 1177 1178 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1179 stream_id++) { 1180 ring = ep->stream_info->stream_rings[stream_id]; 1181 if (!ring) 1182 continue; 1183 1184 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1185 "Killing URBs for slot ID %u, ep index %u, stream %u", 1186 slot_id, ep_index, stream_id); 1187 xhci_kill_ring_urbs(xhci, ring); 1188 } 1189 } else { 1190 ring = ep->ring; 1191 if (!ring) 1192 return; 1193 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1194 "Killing URBs for slot ID %u, ep index %u", 1195 slot_id, ep_index); 1196 xhci_kill_ring_urbs(xhci, ring); 1197 } 1198 1199 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1200 cancelled_td_list) { 1201 list_del_init(&cur_td->cancelled_td_list); 1202 inc_td_cnt(cur_td->urb); 1203 1204 if (last_td_in_urb(cur_td)) 1205 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1206 } 1207 } 1208 1209 /* 1210 * host controller died, register read returns 0xffffffff 1211 * Complete pending commands, mark them ABORTED. 1212 * URBs need to be given back as usb core might be waiting with device locks 1213 * held for the URBs to finish during device disconnect, blocking host remove. 1214 * 1215 * Call with xhci->lock held. 1216 * lock is relased and re-acquired while giving back urb. 1217 */ 1218 void xhci_hc_died(struct xhci_hcd *xhci) 1219 { 1220 int i, j; 1221 1222 if (xhci->xhc_state & XHCI_STATE_DYING) 1223 return; 1224 1225 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1226 xhci->xhc_state |= XHCI_STATE_DYING; 1227 1228 xhci_cleanup_command_queue(xhci); 1229 1230 /* return any pending urbs, remove may be waiting for them */ 1231 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1232 if (!xhci->devs[i]) 1233 continue; 1234 for (j = 0; j < 31; j++) 1235 xhci_kill_endpoint_urbs(xhci, i, j); 1236 } 1237 1238 /* inform usb core hc died if PCI remove isn't already handling it */ 1239 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1240 usb_hc_died(xhci_to_hcd(xhci)); 1241 } 1242 1243 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1244 struct xhci_virt_device *dev, 1245 struct xhci_ring *ep_ring, 1246 unsigned int ep_index) 1247 { 1248 union xhci_trb *dequeue_temp; 1249 int num_trbs_free_temp; 1250 bool revert = false; 1251 1252 num_trbs_free_temp = ep_ring->num_trbs_free; 1253 dequeue_temp = ep_ring->dequeue; 1254 1255 /* If we get two back-to-back stalls, and the first stalled transfer 1256 * ends just before a link TRB, the dequeue pointer will be left on 1257 * the link TRB by the code in the while loop. So we have to update 1258 * the dequeue pointer one segment further, or we'll jump off 1259 * the segment into la-la-land. 1260 */ 1261 if (trb_is_link(ep_ring->dequeue)) { 1262 ep_ring->deq_seg = ep_ring->deq_seg->next; 1263 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1264 } 1265 1266 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1267 /* We have more usable TRBs */ 1268 ep_ring->num_trbs_free++; 1269 ep_ring->dequeue++; 1270 if (trb_is_link(ep_ring->dequeue)) { 1271 if (ep_ring->dequeue == 1272 dev->eps[ep_index].queued_deq_ptr) 1273 break; 1274 ep_ring->deq_seg = ep_ring->deq_seg->next; 1275 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1276 } 1277 if (ep_ring->dequeue == dequeue_temp) { 1278 revert = true; 1279 break; 1280 } 1281 } 1282 1283 if (revert) { 1284 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1285 ep_ring->num_trbs_free = num_trbs_free_temp; 1286 } 1287 } 1288 1289 /* 1290 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1291 * we need to clear the set deq pending flag in the endpoint ring state, so that 1292 * the TD queueing code can ring the doorbell again. We also need to ring the 1293 * endpoint doorbell to restart the ring, but only if there aren't more 1294 * cancellations pending. 1295 */ 1296 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1297 union xhci_trb *trb, u32 cmd_comp_code) 1298 { 1299 unsigned int ep_index; 1300 unsigned int stream_id; 1301 struct xhci_ring *ep_ring; 1302 struct xhci_virt_ep *ep; 1303 struct xhci_ep_ctx *ep_ctx; 1304 struct xhci_slot_ctx *slot_ctx; 1305 struct xhci_td *td, *tmp_td; 1306 1307 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1308 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1309 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1310 if (!ep) 1311 return; 1312 1313 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1314 if (!ep_ring) { 1315 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1316 stream_id); 1317 /* XXX: Harmless??? */ 1318 goto cleanup; 1319 } 1320 1321 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1322 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1323 trace_xhci_handle_cmd_set_deq(slot_ctx); 1324 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1325 1326 if (cmd_comp_code != COMP_SUCCESS) { 1327 unsigned int ep_state; 1328 unsigned int slot_state; 1329 1330 switch (cmd_comp_code) { 1331 case COMP_TRB_ERROR: 1332 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1333 break; 1334 case COMP_CONTEXT_STATE_ERROR: 1335 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1336 ep_state = GET_EP_CTX_STATE(ep_ctx); 1337 slot_state = le32_to_cpu(slot_ctx->dev_state); 1338 slot_state = GET_SLOT_STATE(slot_state); 1339 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1340 "Slot state = %u, EP state = %u", 1341 slot_state, ep_state); 1342 break; 1343 case COMP_SLOT_NOT_ENABLED_ERROR: 1344 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1345 slot_id); 1346 break; 1347 default: 1348 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1349 cmd_comp_code); 1350 break; 1351 } 1352 /* OK what do we do now? The endpoint state is hosed, and we 1353 * should never get to this point if the synchronization between 1354 * queueing, and endpoint state are correct. This might happen 1355 * if the device gets disconnected after we've finished 1356 * cancelling URBs, which might not be an error... 1357 */ 1358 } else { 1359 u64 deq; 1360 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1361 if (ep->ep_state & EP_HAS_STREAMS) { 1362 struct xhci_stream_ctx *ctx = 1363 &ep->stream_info->stream_ctx_array[stream_id]; 1364 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1365 } else { 1366 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1367 } 1368 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1369 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1370 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1371 ep->queued_deq_ptr) == deq) { 1372 /* Update the ring's dequeue segment and dequeue pointer 1373 * to reflect the new position. 1374 */ 1375 update_ring_for_set_deq_completion(xhci, ep->vdev, 1376 ep_ring, ep_index); 1377 } else { 1378 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1379 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1380 ep->queued_deq_seg, ep->queued_deq_ptr); 1381 } 1382 } 1383 /* HW cached TDs cleared from cache, give them back */ 1384 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1385 cancelled_td_list) { 1386 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1387 if (td->cancel_status == TD_CLEARING_CACHE) { 1388 td->cancel_status = TD_CLEARED; 1389 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1390 __func__, td->urb); 1391 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1392 } else { 1393 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1394 __func__, td->urb, td->cancel_status); 1395 } 1396 } 1397 cleanup: 1398 ep->ep_state &= ~SET_DEQ_PENDING; 1399 ep->queued_deq_seg = NULL; 1400 ep->queued_deq_ptr = NULL; 1401 /* Restart any rings with pending URBs */ 1402 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1403 } 1404 1405 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1406 union xhci_trb *trb, u32 cmd_comp_code) 1407 { 1408 struct xhci_virt_ep *ep; 1409 struct xhci_ep_ctx *ep_ctx; 1410 unsigned int ep_index; 1411 1412 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1413 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1414 if (!ep) 1415 return; 1416 1417 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1418 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1419 1420 /* This command will only fail if the endpoint wasn't halted, 1421 * but we don't care. 1422 */ 1423 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1424 "Ignoring reset ep completion code of %u", cmd_comp_code); 1425 1426 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1427 xhci_invalidate_cancelled_tds(ep); 1428 1429 /* Clear our internal halted state */ 1430 ep->ep_state &= ~EP_HALTED; 1431 1432 xhci_giveback_invalidated_tds(ep); 1433 1434 /* if this was a soft reset, then restart */ 1435 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1436 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1437 } 1438 1439 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1440 struct xhci_command *command, u32 cmd_comp_code) 1441 { 1442 if (cmd_comp_code == COMP_SUCCESS) 1443 command->slot_id = slot_id; 1444 else 1445 command->slot_id = 0; 1446 } 1447 1448 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1449 { 1450 struct xhci_virt_device *virt_dev; 1451 struct xhci_slot_ctx *slot_ctx; 1452 1453 virt_dev = xhci->devs[slot_id]; 1454 if (!virt_dev) 1455 return; 1456 1457 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1458 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1459 1460 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1461 /* Delete default control endpoint resources */ 1462 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1463 } 1464 1465 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1466 u32 cmd_comp_code) 1467 { 1468 struct xhci_virt_device *virt_dev; 1469 struct xhci_input_control_ctx *ctrl_ctx; 1470 struct xhci_ep_ctx *ep_ctx; 1471 unsigned int ep_index; 1472 u32 add_flags; 1473 1474 /* 1475 * Configure endpoint commands can come from the USB core configuration 1476 * or alt setting changes, or when streams were being configured. 1477 */ 1478 1479 virt_dev = xhci->devs[slot_id]; 1480 if (!virt_dev) 1481 return; 1482 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1483 if (!ctrl_ctx) { 1484 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1485 return; 1486 } 1487 1488 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1489 1490 /* Input ctx add_flags are the endpoint index plus one */ 1491 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1492 1493 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1494 trace_xhci_handle_cmd_config_ep(ep_ctx); 1495 1496 return; 1497 } 1498 1499 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1500 { 1501 struct xhci_virt_device *vdev; 1502 struct xhci_slot_ctx *slot_ctx; 1503 1504 vdev = xhci->devs[slot_id]; 1505 if (!vdev) 1506 return; 1507 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1508 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1509 } 1510 1511 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1512 { 1513 struct xhci_virt_device *vdev; 1514 struct xhci_slot_ctx *slot_ctx; 1515 1516 vdev = xhci->devs[slot_id]; 1517 if (!vdev) { 1518 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1519 slot_id); 1520 return; 1521 } 1522 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1523 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1524 1525 xhci_dbg(xhci, "Completed reset device command.\n"); 1526 } 1527 1528 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1529 struct xhci_event_cmd *event) 1530 { 1531 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1532 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1533 return; 1534 } 1535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1536 "NEC firmware version %2x.%02x", 1537 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1538 NEC_FW_MINOR(le32_to_cpu(event->status))); 1539 } 1540 1541 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1542 { 1543 list_del(&cmd->cmd_list); 1544 1545 if (cmd->completion) { 1546 cmd->status = status; 1547 complete(cmd->completion); 1548 } else { 1549 kfree(cmd); 1550 } 1551 } 1552 1553 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1554 { 1555 struct xhci_command *cur_cmd, *tmp_cmd; 1556 xhci->current_cmd = NULL; 1557 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1558 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1559 } 1560 1561 void xhci_handle_command_timeout(struct work_struct *work) 1562 { 1563 struct xhci_hcd *xhci; 1564 unsigned long flags; 1565 char str[XHCI_MSG_MAX]; 1566 u64 hw_ring_state; 1567 u32 cmd_field3; 1568 u32 usbsts; 1569 1570 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1571 1572 spin_lock_irqsave(&xhci->lock, flags); 1573 1574 /* 1575 * If timeout work is pending, or current_cmd is NULL, it means we 1576 * raced with command completion. Command is handled so just return. 1577 */ 1578 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1579 spin_unlock_irqrestore(&xhci->lock, flags); 1580 return; 1581 } 1582 1583 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1584 usbsts = readl(&xhci->op_regs->status); 1585 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1586 1587 /* Bail out and tear down xhci if a stop endpoint command failed */ 1588 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1589 struct xhci_virt_ep *ep; 1590 1591 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1592 1593 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1594 TRB_TO_EP_INDEX(cmd_field3)); 1595 if (ep) 1596 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1597 1598 xhci_halt(xhci); 1599 xhci_hc_died(xhci); 1600 goto time_out_completed; 1601 } 1602 1603 /* mark this command to be cancelled */ 1604 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1605 1606 /* Make sure command ring is running before aborting it */ 1607 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1608 if (hw_ring_state == ~(u64)0) { 1609 xhci_hc_died(xhci); 1610 goto time_out_completed; 1611 } 1612 1613 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1614 (hw_ring_state & CMD_RING_RUNNING)) { 1615 /* Prevent new doorbell, and start command abort */ 1616 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1617 xhci_dbg(xhci, "Command timeout\n"); 1618 xhci_abort_cmd_ring(xhci, flags); 1619 goto time_out_completed; 1620 } 1621 1622 /* host removed. Bail out */ 1623 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1624 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1625 xhci_cleanup_command_queue(xhci); 1626 1627 goto time_out_completed; 1628 } 1629 1630 /* command timeout on stopped ring, ring can't be aborted */ 1631 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1632 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1633 1634 time_out_completed: 1635 spin_unlock_irqrestore(&xhci->lock, flags); 1636 return; 1637 } 1638 1639 static void handle_cmd_completion(struct xhci_hcd *xhci, 1640 struct xhci_event_cmd *event) 1641 { 1642 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1643 u64 cmd_dma; 1644 dma_addr_t cmd_dequeue_dma; 1645 u32 cmd_comp_code; 1646 union xhci_trb *cmd_trb; 1647 struct xhci_command *cmd; 1648 u32 cmd_type; 1649 1650 if (slot_id >= MAX_HC_SLOTS) { 1651 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1652 return; 1653 } 1654 1655 cmd_dma = le64_to_cpu(event->cmd_trb); 1656 cmd_trb = xhci->cmd_ring->dequeue; 1657 1658 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1659 1660 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1661 cmd_trb); 1662 /* 1663 * Check whether the completion event is for our internal kept 1664 * command. 1665 */ 1666 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1667 xhci_warn(xhci, 1668 "ERROR mismatched command completion event\n"); 1669 return; 1670 } 1671 1672 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1673 1674 cancel_delayed_work(&xhci->cmd_timer); 1675 1676 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1677 1678 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1679 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1680 complete_all(&xhci->cmd_ring_stop_completion); 1681 return; 1682 } 1683 1684 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1685 xhci_err(xhci, 1686 "Command completion event does not match command\n"); 1687 return; 1688 } 1689 1690 /* 1691 * Host aborted the command ring, check if the current command was 1692 * supposed to be aborted, otherwise continue normally. 1693 * The command ring is stopped now, but the xHC will issue a Command 1694 * Ring Stopped event which will cause us to restart it. 1695 */ 1696 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1697 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1698 if (cmd->status == COMP_COMMAND_ABORTED) { 1699 if (xhci->current_cmd == cmd) 1700 xhci->current_cmd = NULL; 1701 goto event_handled; 1702 } 1703 } 1704 1705 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1706 switch (cmd_type) { 1707 case TRB_ENABLE_SLOT: 1708 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1709 break; 1710 case TRB_DISABLE_SLOT: 1711 xhci_handle_cmd_disable_slot(xhci, slot_id); 1712 break; 1713 case TRB_CONFIG_EP: 1714 if (!cmd->completion) 1715 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1716 break; 1717 case TRB_EVAL_CONTEXT: 1718 break; 1719 case TRB_ADDR_DEV: 1720 xhci_handle_cmd_addr_dev(xhci, slot_id); 1721 break; 1722 case TRB_STOP_RING: 1723 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1724 le32_to_cpu(cmd_trb->generic.field[3]))); 1725 if (!cmd->completion) 1726 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1727 cmd_comp_code); 1728 break; 1729 case TRB_SET_DEQ: 1730 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1731 le32_to_cpu(cmd_trb->generic.field[3]))); 1732 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1733 break; 1734 case TRB_CMD_NOOP: 1735 /* Is this an aborted command turned to NO-OP? */ 1736 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1737 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1738 break; 1739 case TRB_RESET_EP: 1740 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1741 le32_to_cpu(cmd_trb->generic.field[3]))); 1742 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1743 break; 1744 case TRB_RESET_DEV: 1745 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1746 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1747 */ 1748 slot_id = TRB_TO_SLOT_ID( 1749 le32_to_cpu(cmd_trb->generic.field[3])); 1750 xhci_handle_cmd_reset_dev(xhci, slot_id); 1751 break; 1752 case TRB_NEC_GET_FW: 1753 xhci_handle_cmd_nec_get_fw(xhci, event); 1754 break; 1755 default: 1756 /* Skip over unknown commands on the event ring */ 1757 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1758 break; 1759 } 1760 1761 /* restart timer if this wasn't the last command */ 1762 if (!list_is_singular(&xhci->cmd_list)) { 1763 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1764 struct xhci_command, cmd_list); 1765 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1766 } else if (xhci->current_cmd == cmd) { 1767 xhci->current_cmd = NULL; 1768 } 1769 1770 event_handled: 1771 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1772 1773 inc_deq(xhci, xhci->cmd_ring); 1774 } 1775 1776 static void handle_vendor_event(struct xhci_hcd *xhci, 1777 union xhci_trb *event, u32 trb_type) 1778 { 1779 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1780 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1781 handle_cmd_completion(xhci, &event->event_cmd); 1782 } 1783 1784 static void handle_device_notification(struct xhci_hcd *xhci, 1785 union xhci_trb *event) 1786 { 1787 u32 slot_id; 1788 struct usb_device *udev; 1789 1790 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1791 if (!xhci->devs[slot_id]) { 1792 xhci_warn(xhci, "Device Notification event for " 1793 "unused slot %u\n", slot_id); 1794 return; 1795 } 1796 1797 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1798 slot_id); 1799 udev = xhci->devs[slot_id]->udev; 1800 if (udev && udev->parent) 1801 usb_wakeup_notification(udev->parent, udev->portnum); 1802 } 1803 1804 /* 1805 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1806 * Controller. 1807 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1808 * If a connection to a USB 1 device is followed by another connection 1809 * to a USB 2 device. 1810 * 1811 * Reset the PHY after the USB device is disconnected if device speed 1812 * is less than HCD_USB3. 1813 * Retry the reset sequence max of 4 times checking the PLL lock status. 1814 * 1815 */ 1816 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1817 { 1818 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1819 u32 pll_lock_check; 1820 u32 retry_count = 4; 1821 1822 do { 1823 /* Assert PHY reset */ 1824 writel(0x6F, hcd->regs + 0x1048); 1825 udelay(10); 1826 /* De-assert the PHY reset */ 1827 writel(0x7F, hcd->regs + 0x1048); 1828 udelay(200); 1829 pll_lock_check = readl(hcd->regs + 0x1070); 1830 } while (!(pll_lock_check & 0x1) && --retry_count); 1831 } 1832 1833 static void handle_port_status(struct xhci_hcd *xhci, 1834 union xhci_trb *event) 1835 { 1836 struct usb_hcd *hcd; 1837 u32 port_id; 1838 u32 portsc, cmd_reg; 1839 int max_ports; 1840 int slot_id; 1841 unsigned int hcd_portnum; 1842 struct xhci_bus_state *bus_state; 1843 bool bogus_port_status = false; 1844 struct xhci_port *port; 1845 1846 /* Port status change events always have a successful completion code */ 1847 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1848 xhci_warn(xhci, 1849 "WARN: xHC returned failed port status event\n"); 1850 1851 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1852 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1853 1854 if ((port_id <= 0) || (port_id > max_ports)) { 1855 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1856 port_id); 1857 inc_deq(xhci, xhci->event_ring); 1858 return; 1859 } 1860 1861 port = &xhci->hw_ports[port_id - 1]; 1862 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1863 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1864 port_id); 1865 bogus_port_status = true; 1866 goto cleanup; 1867 } 1868 1869 /* We might get interrupts after shared_hcd is removed */ 1870 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1871 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1872 bogus_port_status = true; 1873 goto cleanup; 1874 } 1875 1876 hcd = port->rhub->hcd; 1877 bus_state = &port->rhub->bus_state; 1878 hcd_portnum = port->hcd_portnum; 1879 portsc = readl(port->addr); 1880 1881 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1882 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1883 1884 trace_xhci_handle_port_status(hcd_portnum, portsc); 1885 1886 if (hcd->state == HC_STATE_SUSPENDED) { 1887 xhci_dbg(xhci, "resume root hub\n"); 1888 usb_hcd_resume_root_hub(hcd); 1889 } 1890 1891 if (hcd->speed >= HCD_USB3 && 1892 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1893 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1894 if (slot_id && xhci->devs[slot_id]) 1895 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1896 } 1897 1898 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1899 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1900 1901 cmd_reg = readl(&xhci->op_regs->command); 1902 if (!(cmd_reg & CMD_RUN)) { 1903 xhci_warn(xhci, "xHC is not running.\n"); 1904 goto cleanup; 1905 } 1906 1907 if (DEV_SUPERSPEED_ANY(portsc)) { 1908 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1909 /* Set a flag to say the port signaled remote wakeup, 1910 * so we can tell the difference between the end of 1911 * device and host initiated resume. 1912 */ 1913 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1914 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1915 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1916 xhci_set_link_state(xhci, port, XDEV_U0); 1917 /* Need to wait until the next link state change 1918 * indicates the device is actually in U0. 1919 */ 1920 bogus_port_status = true; 1921 goto cleanup; 1922 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1923 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1924 bus_state->resume_done[hcd_portnum] = jiffies + 1925 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1926 set_bit(hcd_portnum, &bus_state->resuming_ports); 1927 /* Do the rest in GetPortStatus after resume time delay. 1928 * Avoid polling roothub status before that so that a 1929 * usb device auto-resume latency around ~40ms. 1930 */ 1931 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1932 mod_timer(&hcd->rh_timer, 1933 bus_state->resume_done[hcd_portnum]); 1934 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1935 bogus_port_status = true; 1936 } 1937 } 1938 1939 if ((portsc & PORT_PLC) && 1940 DEV_SUPERSPEED_ANY(portsc) && 1941 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1942 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1943 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1944 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1945 complete(&bus_state->u3exit_done[hcd_portnum]); 1946 /* We've just brought the device into U0/1/2 through either the 1947 * Resume state after a device remote wakeup, or through the 1948 * U3Exit state after a host-initiated resume. If it's a device 1949 * initiated remote wake, don't pass up the link state change, 1950 * so the roothub behavior is consistent with external 1951 * USB 3.0 hub behavior. 1952 */ 1953 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1954 if (slot_id && xhci->devs[slot_id]) 1955 xhci_ring_device(xhci, slot_id); 1956 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1957 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1958 usb_wakeup_notification(hcd->self.root_hub, 1959 hcd_portnum + 1); 1960 bogus_port_status = true; 1961 goto cleanup; 1962 } 1963 } 1964 1965 /* 1966 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1967 * RExit to a disconnect state). If so, let the driver know it's 1968 * out of the RExit state. 1969 */ 1970 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1971 test_and_clear_bit(hcd_portnum, 1972 &bus_state->rexit_ports)) { 1973 complete(&bus_state->rexit_done[hcd_portnum]); 1974 bogus_port_status = true; 1975 goto cleanup; 1976 } 1977 1978 if (hcd->speed < HCD_USB3) { 1979 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1980 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1981 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1982 xhci_cavium_reset_phy_quirk(xhci); 1983 } 1984 1985 cleanup: 1986 /* Update event ring dequeue pointer before dropping the lock */ 1987 inc_deq(xhci, xhci->event_ring); 1988 1989 /* Don't make the USB core poll the roothub if we got a bad port status 1990 * change event. Besides, at that point we can't tell which roothub 1991 * (USB 2.0 or USB 3.0) to kick. 1992 */ 1993 if (bogus_port_status) 1994 return; 1995 1996 /* 1997 * xHCI port-status-change events occur when the "or" of all the 1998 * status-change bits in the portsc register changes from 0 to 1. 1999 * New status changes won't cause an event if any other change 2000 * bits are still set. When an event occurs, switch over to 2001 * polling to avoid losing status changes. 2002 */ 2003 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2004 __func__, hcd->self.busnum); 2005 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2006 spin_unlock(&xhci->lock); 2007 /* Pass this up to the core */ 2008 usb_hcd_poll_rh_status(hcd); 2009 spin_lock(&xhci->lock); 2010 } 2011 2012 /* 2013 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2014 * at end_trb, which may be in another segment. If the suspect DMA address is a 2015 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2016 * returns 0. 2017 */ 2018 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2019 struct xhci_segment *start_seg, 2020 union xhci_trb *start_trb, 2021 union xhci_trb *end_trb, 2022 dma_addr_t suspect_dma, 2023 bool debug) 2024 { 2025 dma_addr_t start_dma; 2026 dma_addr_t end_seg_dma; 2027 dma_addr_t end_trb_dma; 2028 struct xhci_segment *cur_seg; 2029 2030 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2031 cur_seg = start_seg; 2032 2033 do { 2034 if (start_dma == 0) 2035 return NULL; 2036 /* We may get an event for a Link TRB in the middle of a TD */ 2037 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2038 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2039 /* If the end TRB isn't in this segment, this is set to 0 */ 2040 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2041 2042 if (debug) 2043 xhci_warn(xhci, 2044 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2045 (unsigned long long)suspect_dma, 2046 (unsigned long long)start_dma, 2047 (unsigned long long)end_trb_dma, 2048 (unsigned long long)cur_seg->dma, 2049 (unsigned long long)end_seg_dma); 2050 2051 if (end_trb_dma > 0) { 2052 /* The end TRB is in this segment, so suspect should be here */ 2053 if (start_dma <= end_trb_dma) { 2054 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2055 return cur_seg; 2056 } else { 2057 /* Case for one segment with 2058 * a TD wrapped around to the top 2059 */ 2060 if ((suspect_dma >= start_dma && 2061 suspect_dma <= end_seg_dma) || 2062 (suspect_dma >= cur_seg->dma && 2063 suspect_dma <= end_trb_dma)) 2064 return cur_seg; 2065 } 2066 return NULL; 2067 } else { 2068 /* Might still be somewhere in this segment */ 2069 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2070 return cur_seg; 2071 } 2072 cur_seg = cur_seg->next; 2073 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2074 } while (cur_seg != start_seg); 2075 2076 return NULL; 2077 } 2078 2079 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2080 struct xhci_virt_ep *ep) 2081 { 2082 /* 2083 * As part of low/full-speed endpoint-halt processing 2084 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2085 */ 2086 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2087 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2088 !(ep->ep_state & EP_CLEARING_TT)) { 2089 ep->ep_state |= EP_CLEARING_TT; 2090 td->urb->ep->hcpriv = td->urb->dev; 2091 if (usb_hub_clear_tt_buffer(td->urb)) 2092 ep->ep_state &= ~EP_CLEARING_TT; 2093 } 2094 } 2095 2096 /* Check if an error has halted the endpoint ring. The class driver will 2097 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2098 * However, a babble and other errors also halt the endpoint ring, and the class 2099 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2100 * Ring Dequeue Pointer command manually. 2101 */ 2102 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2103 struct xhci_ep_ctx *ep_ctx, 2104 unsigned int trb_comp_code) 2105 { 2106 /* TRB completion codes that may require a manual halt cleanup */ 2107 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2108 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2109 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2110 /* The 0.95 spec says a babbling control endpoint 2111 * is not halted. The 0.96 spec says it is. Some HW 2112 * claims to be 0.95 compliant, but it halts the control 2113 * endpoint anyway. Check if a babble halted the 2114 * endpoint. 2115 */ 2116 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2117 return 1; 2118 2119 return 0; 2120 } 2121 2122 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2123 { 2124 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2125 /* Vendor defined "informational" completion code, 2126 * treat as not-an-error. 2127 */ 2128 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2129 trb_comp_code); 2130 xhci_dbg(xhci, "Treating code as success.\n"); 2131 return 1; 2132 } 2133 return 0; 2134 } 2135 2136 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2137 struct xhci_ring *ep_ring, struct xhci_td *td, 2138 u32 trb_comp_code) 2139 { 2140 struct xhci_ep_ctx *ep_ctx; 2141 2142 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2143 2144 switch (trb_comp_code) { 2145 case COMP_STOPPED_LENGTH_INVALID: 2146 case COMP_STOPPED_SHORT_PACKET: 2147 case COMP_STOPPED: 2148 /* 2149 * The "Stop Endpoint" completion will take care of any 2150 * stopped TDs. A stopped TD may be restarted, so don't update 2151 * the ring dequeue pointer or take this TD off any lists yet. 2152 */ 2153 return 0; 2154 case COMP_USB_TRANSACTION_ERROR: 2155 case COMP_BABBLE_DETECTED_ERROR: 2156 case COMP_SPLIT_TRANSACTION_ERROR: 2157 /* 2158 * If endpoint context state is not halted we might be 2159 * racing with a reset endpoint command issued by a unsuccessful 2160 * stop endpoint completion (context error). In that case the 2161 * td should be on the cancelled list, and EP_HALTED flag set. 2162 * 2163 * Or then it's not halted due to the 0.95 spec stating that a 2164 * babbling control endpoint should not halt. The 0.96 spec 2165 * again says it should. Some HW claims to be 0.95 compliant, 2166 * but it halts the control endpoint anyway. 2167 */ 2168 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2169 /* 2170 * If EP_HALTED is set and TD is on the cancelled list 2171 * the TD and dequeue pointer will be handled by reset 2172 * ep command completion 2173 */ 2174 if ((ep->ep_state & EP_HALTED) && 2175 !list_empty(&td->cancelled_td_list)) { 2176 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2177 (unsigned long long)xhci_trb_virt_to_dma( 2178 td->start_seg, td->first_trb)); 2179 return 0; 2180 } 2181 /* endpoint not halted, don't reset it */ 2182 break; 2183 } 2184 /* Almost same procedure as for STALL_ERROR below */ 2185 xhci_clear_hub_tt_buffer(xhci, td, ep); 2186 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2187 EP_HARD_RESET); 2188 return 0; 2189 case COMP_STALL_ERROR: 2190 /* 2191 * xhci internal endpoint state will go to a "halt" state for 2192 * any stall, including default control pipe protocol stall. 2193 * To clear the host side halt we need to issue a reset endpoint 2194 * command, followed by a set dequeue command to move past the 2195 * TD. 2196 * Class drivers clear the device side halt from a functional 2197 * stall later. Hub TT buffer should only be cleared for FS/LS 2198 * devices behind HS hubs for functional stalls. 2199 */ 2200 if (ep->ep_index != 0) 2201 xhci_clear_hub_tt_buffer(xhci, td, ep); 2202 2203 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2204 EP_HARD_RESET); 2205 2206 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2207 default: 2208 break; 2209 } 2210 2211 /* Update ring dequeue pointer */ 2212 ep_ring->dequeue = td->last_trb; 2213 ep_ring->deq_seg = td->last_trb_seg; 2214 ep_ring->num_trbs_free += td->num_trbs - 1; 2215 inc_deq(xhci, ep_ring); 2216 2217 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2218 } 2219 2220 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2221 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2222 union xhci_trb *stop_trb) 2223 { 2224 u32 sum; 2225 union xhci_trb *trb = ring->dequeue; 2226 struct xhci_segment *seg = ring->deq_seg; 2227 2228 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2229 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2230 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2231 } 2232 return sum; 2233 } 2234 2235 /* 2236 * Process control tds, update urb status and actual_length. 2237 */ 2238 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2239 struct xhci_ring *ep_ring, struct xhci_td *td, 2240 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2241 { 2242 struct xhci_ep_ctx *ep_ctx; 2243 u32 trb_comp_code; 2244 u32 remaining, requested; 2245 u32 trb_type; 2246 2247 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2248 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2249 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2250 requested = td->urb->transfer_buffer_length; 2251 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2252 2253 switch (trb_comp_code) { 2254 case COMP_SUCCESS: 2255 if (trb_type != TRB_STATUS) { 2256 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2257 (trb_type == TRB_DATA) ? "data" : "setup"); 2258 td->status = -ESHUTDOWN; 2259 break; 2260 } 2261 td->status = 0; 2262 break; 2263 case COMP_SHORT_PACKET: 2264 td->status = 0; 2265 break; 2266 case COMP_STOPPED_SHORT_PACKET: 2267 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2268 td->urb->actual_length = remaining; 2269 else 2270 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2271 goto finish_td; 2272 case COMP_STOPPED: 2273 switch (trb_type) { 2274 case TRB_SETUP: 2275 td->urb->actual_length = 0; 2276 goto finish_td; 2277 case TRB_DATA: 2278 case TRB_NORMAL: 2279 td->urb->actual_length = requested - remaining; 2280 goto finish_td; 2281 case TRB_STATUS: 2282 td->urb->actual_length = requested; 2283 goto finish_td; 2284 default: 2285 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2286 trb_type); 2287 goto finish_td; 2288 } 2289 case COMP_STOPPED_LENGTH_INVALID: 2290 goto finish_td; 2291 default: 2292 if (!xhci_requires_manual_halt_cleanup(xhci, 2293 ep_ctx, trb_comp_code)) 2294 break; 2295 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2296 trb_comp_code, ep->ep_index); 2297 fallthrough; 2298 case COMP_STALL_ERROR: 2299 /* Did we transfer part of the data (middle) phase? */ 2300 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2301 td->urb->actual_length = requested - remaining; 2302 else if (!td->urb_length_set) 2303 td->urb->actual_length = 0; 2304 goto finish_td; 2305 } 2306 2307 /* stopped at setup stage, no data transferred */ 2308 if (trb_type == TRB_SETUP) 2309 goto finish_td; 2310 2311 /* 2312 * if on data stage then update the actual_length of the URB and flag it 2313 * as set, so it won't be overwritten in the event for the last TRB. 2314 */ 2315 if (trb_type == TRB_DATA || 2316 trb_type == TRB_NORMAL) { 2317 td->urb_length_set = true; 2318 td->urb->actual_length = requested - remaining; 2319 xhci_dbg(xhci, "Waiting for status stage event\n"); 2320 return 0; 2321 } 2322 2323 /* at status stage */ 2324 if (!td->urb_length_set) 2325 td->urb->actual_length = requested; 2326 2327 finish_td: 2328 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2329 } 2330 2331 /* 2332 * Process isochronous tds, update urb packet status and actual_length. 2333 */ 2334 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2335 struct xhci_ring *ep_ring, struct xhci_td *td, 2336 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2337 { 2338 struct urb_priv *urb_priv; 2339 int idx; 2340 struct usb_iso_packet_descriptor *frame; 2341 u32 trb_comp_code; 2342 bool sum_trbs_for_length = false; 2343 u32 remaining, requested, ep_trb_len; 2344 int short_framestatus; 2345 2346 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2347 urb_priv = td->urb->hcpriv; 2348 idx = urb_priv->num_tds_done; 2349 frame = &td->urb->iso_frame_desc[idx]; 2350 requested = frame->length; 2351 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2352 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2353 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2354 -EREMOTEIO : 0; 2355 2356 /* handle completion code */ 2357 switch (trb_comp_code) { 2358 case COMP_SUCCESS: 2359 if (remaining) { 2360 frame->status = short_framestatus; 2361 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2362 sum_trbs_for_length = true; 2363 break; 2364 } 2365 frame->status = 0; 2366 break; 2367 case COMP_SHORT_PACKET: 2368 frame->status = short_framestatus; 2369 sum_trbs_for_length = true; 2370 break; 2371 case COMP_BANDWIDTH_OVERRUN_ERROR: 2372 frame->status = -ECOMM; 2373 break; 2374 case COMP_ISOCH_BUFFER_OVERRUN: 2375 case COMP_BABBLE_DETECTED_ERROR: 2376 frame->status = -EOVERFLOW; 2377 break; 2378 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2379 case COMP_STALL_ERROR: 2380 frame->status = -EPROTO; 2381 break; 2382 case COMP_USB_TRANSACTION_ERROR: 2383 frame->status = -EPROTO; 2384 if (ep_trb != td->last_trb) 2385 return 0; 2386 break; 2387 case COMP_STOPPED: 2388 sum_trbs_for_length = true; 2389 break; 2390 case COMP_STOPPED_SHORT_PACKET: 2391 /* field normally containing residue now contains tranferred */ 2392 frame->status = short_framestatus; 2393 requested = remaining; 2394 break; 2395 case COMP_STOPPED_LENGTH_INVALID: 2396 requested = 0; 2397 remaining = 0; 2398 break; 2399 default: 2400 sum_trbs_for_length = true; 2401 frame->status = -1; 2402 break; 2403 } 2404 2405 if (sum_trbs_for_length) 2406 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2407 ep_trb_len - remaining; 2408 else 2409 frame->actual_length = requested; 2410 2411 td->urb->actual_length += frame->actual_length; 2412 2413 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2414 } 2415 2416 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2417 struct xhci_virt_ep *ep, int status) 2418 { 2419 struct urb_priv *urb_priv; 2420 struct usb_iso_packet_descriptor *frame; 2421 int idx; 2422 2423 urb_priv = td->urb->hcpriv; 2424 idx = urb_priv->num_tds_done; 2425 frame = &td->urb->iso_frame_desc[idx]; 2426 2427 /* The transfer is partly done. */ 2428 frame->status = -EXDEV; 2429 2430 /* calc actual length */ 2431 frame->actual_length = 0; 2432 2433 /* Update ring dequeue pointer */ 2434 ep->ring->dequeue = td->last_trb; 2435 ep->ring->deq_seg = td->last_trb_seg; 2436 ep->ring->num_trbs_free += td->num_trbs - 1; 2437 inc_deq(xhci, ep->ring); 2438 2439 return xhci_td_cleanup(xhci, td, ep->ring, status); 2440 } 2441 2442 /* 2443 * Process bulk and interrupt tds, update urb status and actual_length. 2444 */ 2445 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2446 struct xhci_ring *ep_ring, struct xhci_td *td, 2447 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2448 { 2449 struct xhci_slot_ctx *slot_ctx; 2450 u32 trb_comp_code; 2451 u32 remaining, requested, ep_trb_len; 2452 2453 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2454 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2455 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2456 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2457 requested = td->urb->transfer_buffer_length; 2458 2459 switch (trb_comp_code) { 2460 case COMP_SUCCESS: 2461 ep_ring->err_count = 0; 2462 /* handle success with untransferred data as short packet */ 2463 if (ep_trb != td->last_trb || remaining) { 2464 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2465 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2466 td->urb->ep->desc.bEndpointAddress, 2467 requested, remaining); 2468 } 2469 td->status = 0; 2470 break; 2471 case COMP_SHORT_PACKET: 2472 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2473 td->urb->ep->desc.bEndpointAddress, 2474 requested, remaining); 2475 td->status = 0; 2476 break; 2477 case COMP_STOPPED_SHORT_PACKET: 2478 td->urb->actual_length = remaining; 2479 goto finish_td; 2480 case COMP_STOPPED_LENGTH_INVALID: 2481 /* stopped on ep trb with invalid length, exclude it */ 2482 ep_trb_len = 0; 2483 remaining = 0; 2484 break; 2485 case COMP_USB_TRANSACTION_ERROR: 2486 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2487 (ep_ring->err_count++ > MAX_SOFT_RETRY) || 2488 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2489 break; 2490 2491 td->status = 0; 2492 2493 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2494 EP_SOFT_RESET); 2495 return 0; 2496 default: 2497 /* do nothing */ 2498 break; 2499 } 2500 2501 if (ep_trb == td->last_trb) 2502 td->urb->actual_length = requested - remaining; 2503 else 2504 td->urb->actual_length = 2505 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2506 ep_trb_len - remaining; 2507 finish_td: 2508 if (remaining > requested) { 2509 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2510 remaining); 2511 td->urb->actual_length = 0; 2512 } 2513 2514 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2515 } 2516 2517 /* 2518 * If this function returns an error condition, it means it got a Transfer 2519 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2520 * At this point, the host controller is probably hosed and should be reset. 2521 */ 2522 static int handle_tx_event(struct xhci_hcd *xhci, 2523 struct xhci_transfer_event *event) 2524 { 2525 struct xhci_virt_ep *ep; 2526 struct xhci_ring *ep_ring; 2527 unsigned int slot_id; 2528 int ep_index; 2529 struct xhci_td *td = NULL; 2530 dma_addr_t ep_trb_dma; 2531 struct xhci_segment *ep_seg; 2532 union xhci_trb *ep_trb; 2533 int status = -EINPROGRESS; 2534 struct xhci_ep_ctx *ep_ctx; 2535 struct list_head *tmp; 2536 u32 trb_comp_code; 2537 int td_num = 0; 2538 bool handling_skipped_tds = false; 2539 2540 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2541 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2542 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2543 ep_trb_dma = le64_to_cpu(event->buffer); 2544 2545 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2546 if (!ep) { 2547 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2548 goto err_out; 2549 } 2550 2551 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2552 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2553 2554 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2555 xhci_err(xhci, 2556 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2557 slot_id, ep_index); 2558 goto err_out; 2559 } 2560 2561 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2562 if (!ep_ring) { 2563 switch (trb_comp_code) { 2564 case COMP_STALL_ERROR: 2565 case COMP_USB_TRANSACTION_ERROR: 2566 case COMP_INVALID_STREAM_TYPE_ERROR: 2567 case COMP_INVALID_STREAM_ID_ERROR: 2568 xhci_handle_halted_endpoint(xhci, ep, 0, NULL, 2569 EP_SOFT_RESET); 2570 goto cleanup; 2571 case COMP_RING_UNDERRUN: 2572 case COMP_RING_OVERRUN: 2573 case COMP_STOPPED_LENGTH_INVALID: 2574 goto cleanup; 2575 default: 2576 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2577 slot_id, ep_index); 2578 goto err_out; 2579 } 2580 } 2581 2582 /* Count current td numbers if ep->skip is set */ 2583 if (ep->skip) { 2584 list_for_each(tmp, &ep_ring->td_list) 2585 td_num++; 2586 } 2587 2588 /* Look for common error cases */ 2589 switch (trb_comp_code) { 2590 /* Skip codes that require special handling depending on 2591 * transfer type 2592 */ 2593 case COMP_SUCCESS: 2594 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2595 break; 2596 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2597 ep_ring->last_td_was_short) 2598 trb_comp_code = COMP_SHORT_PACKET; 2599 else 2600 xhci_warn_ratelimited(xhci, 2601 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2602 slot_id, ep_index); 2603 break; 2604 case COMP_SHORT_PACKET: 2605 break; 2606 /* Completion codes for endpoint stopped state */ 2607 case COMP_STOPPED: 2608 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2609 slot_id, ep_index); 2610 break; 2611 case COMP_STOPPED_LENGTH_INVALID: 2612 xhci_dbg(xhci, 2613 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2614 slot_id, ep_index); 2615 break; 2616 case COMP_STOPPED_SHORT_PACKET: 2617 xhci_dbg(xhci, 2618 "Stopped with short packet transfer detected for slot %u ep %u\n", 2619 slot_id, ep_index); 2620 break; 2621 /* Completion codes for endpoint halted state */ 2622 case COMP_STALL_ERROR: 2623 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2624 ep_index); 2625 status = -EPIPE; 2626 break; 2627 case COMP_SPLIT_TRANSACTION_ERROR: 2628 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2629 slot_id, ep_index); 2630 status = -EPROTO; 2631 break; 2632 case COMP_USB_TRANSACTION_ERROR: 2633 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2634 slot_id, ep_index); 2635 status = -EPROTO; 2636 break; 2637 case COMP_BABBLE_DETECTED_ERROR: 2638 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2639 slot_id, ep_index); 2640 status = -EOVERFLOW; 2641 break; 2642 /* Completion codes for endpoint error state */ 2643 case COMP_TRB_ERROR: 2644 xhci_warn(xhci, 2645 "WARN: TRB error for slot %u ep %u on endpoint\n", 2646 slot_id, ep_index); 2647 status = -EILSEQ; 2648 break; 2649 /* completion codes not indicating endpoint state change */ 2650 case COMP_DATA_BUFFER_ERROR: 2651 xhci_warn(xhci, 2652 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2653 slot_id, ep_index); 2654 status = -ENOSR; 2655 break; 2656 case COMP_BANDWIDTH_OVERRUN_ERROR: 2657 xhci_warn(xhci, 2658 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2659 slot_id, ep_index); 2660 break; 2661 case COMP_ISOCH_BUFFER_OVERRUN: 2662 xhci_warn(xhci, 2663 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2664 slot_id, ep_index); 2665 break; 2666 case COMP_RING_UNDERRUN: 2667 /* 2668 * When the Isoch ring is empty, the xHC will generate 2669 * a Ring Overrun Event for IN Isoch endpoint or Ring 2670 * Underrun Event for OUT Isoch endpoint. 2671 */ 2672 xhci_dbg(xhci, "underrun event on endpoint\n"); 2673 if (!list_empty(&ep_ring->td_list)) 2674 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2675 "still with TDs queued?\n", 2676 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2677 ep_index); 2678 goto cleanup; 2679 case COMP_RING_OVERRUN: 2680 xhci_dbg(xhci, "overrun event on endpoint\n"); 2681 if (!list_empty(&ep_ring->td_list)) 2682 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2683 "still with TDs queued?\n", 2684 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2685 ep_index); 2686 goto cleanup; 2687 case COMP_MISSED_SERVICE_ERROR: 2688 /* 2689 * When encounter missed service error, one or more isoc tds 2690 * may be missed by xHC. 2691 * Set skip flag of the ep_ring; Complete the missed tds as 2692 * short transfer when process the ep_ring next time. 2693 */ 2694 ep->skip = true; 2695 xhci_dbg(xhci, 2696 "Miss service interval error for slot %u ep %u, set skip flag\n", 2697 slot_id, ep_index); 2698 goto cleanup; 2699 case COMP_NO_PING_RESPONSE_ERROR: 2700 ep->skip = true; 2701 xhci_dbg(xhci, 2702 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2703 slot_id, ep_index); 2704 goto cleanup; 2705 2706 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2707 /* needs disable slot command to recover */ 2708 xhci_warn(xhci, 2709 "WARN: detect an incompatible device for slot %u ep %u", 2710 slot_id, ep_index); 2711 status = -EPROTO; 2712 break; 2713 default: 2714 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2715 status = 0; 2716 break; 2717 } 2718 xhci_warn(xhci, 2719 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2720 trb_comp_code, slot_id, ep_index); 2721 goto cleanup; 2722 } 2723 2724 do { 2725 /* This TRB should be in the TD at the head of this ring's 2726 * TD list. 2727 */ 2728 if (list_empty(&ep_ring->td_list)) { 2729 /* 2730 * Don't print wanings if it's due to a stopped endpoint 2731 * generating an extra completion event if the device 2732 * was suspended. Or, a event for the last TRB of a 2733 * short TD we already got a short event for. 2734 * The short TD is already removed from the TD list. 2735 */ 2736 2737 if (!(trb_comp_code == COMP_STOPPED || 2738 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2739 ep_ring->last_td_was_short)) { 2740 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2741 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2742 ep_index); 2743 } 2744 if (ep->skip) { 2745 ep->skip = false; 2746 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2747 slot_id, ep_index); 2748 } 2749 if (trb_comp_code == COMP_STALL_ERROR || 2750 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2751 trb_comp_code)) { 2752 xhci_handle_halted_endpoint(xhci, ep, 2753 ep_ring->stream_id, 2754 NULL, 2755 EP_HARD_RESET); 2756 } 2757 goto cleanup; 2758 } 2759 2760 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2761 if (ep->skip && td_num == 0) { 2762 ep->skip = false; 2763 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2764 slot_id, ep_index); 2765 goto cleanup; 2766 } 2767 2768 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2769 td_list); 2770 if (ep->skip) 2771 td_num--; 2772 2773 /* Is this a TRB in the currently executing TD? */ 2774 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2775 td->last_trb, ep_trb_dma, false); 2776 2777 /* 2778 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2779 * is not in the current TD pointed by ep_ring->dequeue because 2780 * that the hardware dequeue pointer still at the previous TRB 2781 * of the current TD. The previous TRB maybe a Link TD or the 2782 * last TRB of the previous TD. The command completion handle 2783 * will take care the rest. 2784 */ 2785 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2786 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2787 goto cleanup; 2788 } 2789 2790 if (!ep_seg) { 2791 if (!ep->skip || 2792 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2793 /* Some host controllers give a spurious 2794 * successful event after a short transfer. 2795 * Ignore it. 2796 */ 2797 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2798 ep_ring->last_td_was_short) { 2799 ep_ring->last_td_was_short = false; 2800 goto cleanup; 2801 } 2802 /* HC is busted, give up! */ 2803 xhci_err(xhci, 2804 "ERROR Transfer event TRB DMA ptr not " 2805 "part of current TD ep_index %d " 2806 "comp_code %u\n", ep_index, 2807 trb_comp_code); 2808 trb_in_td(xhci, ep_ring->deq_seg, 2809 ep_ring->dequeue, td->last_trb, 2810 ep_trb_dma, true); 2811 return -ESHUTDOWN; 2812 } 2813 2814 skip_isoc_td(xhci, td, ep, status); 2815 goto cleanup; 2816 } 2817 if (trb_comp_code == COMP_SHORT_PACKET) 2818 ep_ring->last_td_was_short = true; 2819 else 2820 ep_ring->last_td_was_short = false; 2821 2822 if (ep->skip) { 2823 xhci_dbg(xhci, 2824 "Found td. Clear skip flag for slot %u ep %u.\n", 2825 slot_id, ep_index); 2826 ep->skip = false; 2827 } 2828 2829 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2830 sizeof(*ep_trb)]; 2831 2832 trace_xhci_handle_transfer(ep_ring, 2833 (struct xhci_generic_trb *) ep_trb); 2834 2835 /* 2836 * No-op TRB could trigger interrupts in a case where 2837 * a URB was killed and a STALL_ERROR happens right 2838 * after the endpoint ring stopped. Reset the halted 2839 * endpoint. Otherwise, the endpoint remains stalled 2840 * indefinitely. 2841 */ 2842 2843 if (trb_is_noop(ep_trb)) { 2844 if (trb_comp_code == COMP_STALL_ERROR || 2845 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2846 trb_comp_code)) 2847 xhci_handle_halted_endpoint(xhci, ep, 2848 ep_ring->stream_id, 2849 td, EP_HARD_RESET); 2850 goto cleanup; 2851 } 2852 2853 td->status = status; 2854 2855 /* update the urb's actual_length and give back to the core */ 2856 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2857 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2858 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2859 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2860 else 2861 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2862 cleanup: 2863 handling_skipped_tds = ep->skip && 2864 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2865 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2866 2867 /* 2868 * Do not update event ring dequeue pointer if we're in a loop 2869 * processing missed tds. 2870 */ 2871 if (!handling_skipped_tds) 2872 inc_deq(xhci, xhci->event_ring); 2873 2874 /* 2875 * If ep->skip is set, it means there are missed tds on the 2876 * endpoint ring need to take care of. 2877 * Process them as short transfer until reach the td pointed by 2878 * the event. 2879 */ 2880 } while (handling_skipped_tds); 2881 2882 return 0; 2883 2884 err_out: 2885 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2886 (unsigned long long) xhci_trb_virt_to_dma( 2887 xhci->event_ring->deq_seg, 2888 xhci->event_ring->dequeue), 2889 lower_32_bits(le64_to_cpu(event->buffer)), 2890 upper_32_bits(le64_to_cpu(event->buffer)), 2891 le32_to_cpu(event->transfer_len), 2892 le32_to_cpu(event->flags)); 2893 return -ENODEV; 2894 } 2895 2896 /* 2897 * This function handles all OS-owned events on the event ring. It may drop 2898 * xhci->lock between event processing (e.g. to pass up port status changes). 2899 * Returns >0 for "possibly more events to process" (caller should call again), 2900 * otherwise 0 if done. In future, <0 returns should indicate error code. 2901 */ 2902 static int xhci_handle_event(struct xhci_hcd *xhci) 2903 { 2904 union xhci_trb *event; 2905 int update_ptrs = 1; 2906 u32 trb_type; 2907 int ret; 2908 2909 /* Event ring hasn't been allocated yet. */ 2910 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2911 xhci_err(xhci, "ERROR event ring not ready\n"); 2912 return -ENOMEM; 2913 } 2914 2915 event = xhci->event_ring->dequeue; 2916 /* Does the HC or OS own the TRB? */ 2917 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2918 xhci->event_ring->cycle_state) 2919 return 0; 2920 2921 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2922 2923 /* 2924 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2925 * speculative reads of the event's flags/data below. 2926 */ 2927 rmb(); 2928 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2929 /* FIXME: Handle more event types. */ 2930 2931 switch (trb_type) { 2932 case TRB_COMPLETION: 2933 handle_cmd_completion(xhci, &event->event_cmd); 2934 break; 2935 case TRB_PORT_STATUS: 2936 handle_port_status(xhci, event); 2937 update_ptrs = 0; 2938 break; 2939 case TRB_TRANSFER: 2940 ret = handle_tx_event(xhci, &event->trans_event); 2941 if (ret >= 0) 2942 update_ptrs = 0; 2943 break; 2944 case TRB_DEV_NOTE: 2945 handle_device_notification(xhci, event); 2946 break; 2947 default: 2948 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2949 handle_vendor_event(xhci, event, trb_type); 2950 else 2951 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2952 } 2953 /* Any of the above functions may drop and re-acquire the lock, so check 2954 * to make sure a watchdog timer didn't mark the host as non-responsive. 2955 */ 2956 if (xhci->xhc_state & XHCI_STATE_DYING) { 2957 xhci_dbg(xhci, "xHCI host dying, returning from " 2958 "event handler.\n"); 2959 return 0; 2960 } 2961 2962 if (update_ptrs) 2963 /* Update SW event ring dequeue pointer */ 2964 inc_deq(xhci, xhci->event_ring); 2965 2966 /* Are there more items on the event ring? Caller will call us again to 2967 * check. 2968 */ 2969 return 1; 2970 } 2971 2972 /* 2973 * Update Event Ring Dequeue Pointer: 2974 * - When all events have finished 2975 * - To avoid "Event Ring Full Error" condition 2976 */ 2977 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2978 union xhci_trb *event_ring_deq) 2979 { 2980 u64 temp_64; 2981 dma_addr_t deq; 2982 2983 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2984 /* If necessary, update the HW's version of the event ring deq ptr. */ 2985 if (event_ring_deq != xhci->event_ring->dequeue) { 2986 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2987 xhci->event_ring->dequeue); 2988 if (deq == 0) 2989 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2990 /* 2991 * Per 4.9.4, Software writes to the ERDP register shall 2992 * always advance the Event Ring Dequeue Pointer value. 2993 */ 2994 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2995 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2996 return; 2997 2998 /* Update HC event ring dequeue pointer */ 2999 temp_64 &= ERST_PTR_MASK; 3000 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3001 } 3002 3003 /* Clear the event handler busy flag (RW1C) */ 3004 temp_64 |= ERST_EHB; 3005 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 3006 } 3007 3008 /* 3009 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3010 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3011 * indicators of an event TRB error, but we check the status *first* to be safe. 3012 */ 3013 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3014 { 3015 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3016 union xhci_trb *event_ring_deq; 3017 irqreturn_t ret = IRQ_NONE; 3018 u64 temp_64; 3019 u32 status; 3020 int event_loop = 0; 3021 3022 spin_lock(&xhci->lock); 3023 /* Check if the xHC generated the interrupt, or the irq is shared */ 3024 status = readl(&xhci->op_regs->status); 3025 if (status == ~(u32)0) { 3026 xhci_hc_died(xhci); 3027 ret = IRQ_HANDLED; 3028 goto out; 3029 } 3030 3031 if (!(status & STS_EINT)) 3032 goto out; 3033 3034 if (status & STS_FATAL) { 3035 xhci_warn(xhci, "WARNING: Host System Error\n"); 3036 xhci_halt(xhci); 3037 ret = IRQ_HANDLED; 3038 goto out; 3039 } 3040 3041 /* 3042 * Clear the op reg interrupt status first, 3043 * so we can receive interrupts from other MSI-X interrupters. 3044 * Write 1 to clear the interrupt status. 3045 */ 3046 status |= STS_EINT; 3047 writel(status, &xhci->op_regs->status); 3048 3049 if (!hcd->msi_enabled) { 3050 u32 irq_pending; 3051 irq_pending = readl(&xhci->ir_set->irq_pending); 3052 irq_pending |= IMAN_IP; 3053 writel(irq_pending, &xhci->ir_set->irq_pending); 3054 } 3055 3056 if (xhci->xhc_state & XHCI_STATE_DYING || 3057 xhci->xhc_state & XHCI_STATE_HALTED) { 3058 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3059 "Shouldn't IRQs be disabled?\n"); 3060 /* Clear the event handler busy flag (RW1C); 3061 * the event ring should be empty. 3062 */ 3063 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3064 xhci_write_64(xhci, temp_64 | ERST_EHB, 3065 &xhci->ir_set->erst_dequeue); 3066 ret = IRQ_HANDLED; 3067 goto out; 3068 } 3069 3070 event_ring_deq = xhci->event_ring->dequeue; 3071 /* FIXME this should be a delayed service routine 3072 * that clears the EHB. 3073 */ 3074 while (xhci_handle_event(xhci) > 0) { 3075 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3076 continue; 3077 xhci_update_erst_dequeue(xhci, event_ring_deq); 3078 event_ring_deq = xhci->event_ring->dequeue; 3079 3080 /* ring is half-full, force isoc trbs to interrupt more often */ 3081 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3082 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3083 3084 event_loop = 0; 3085 } 3086 3087 xhci_update_erst_dequeue(xhci, event_ring_deq); 3088 ret = IRQ_HANDLED; 3089 3090 out: 3091 spin_unlock(&xhci->lock); 3092 3093 return ret; 3094 } 3095 3096 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3097 { 3098 return xhci_irq(hcd); 3099 } 3100 3101 /**** Endpoint Ring Operations ****/ 3102 3103 /* 3104 * Generic function for queueing a TRB on a ring. 3105 * The caller must have checked to make sure there's room on the ring. 3106 * 3107 * @more_trbs_coming: Will you enqueue more TRBs before calling 3108 * prepare_transfer()? 3109 */ 3110 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3111 bool more_trbs_coming, 3112 u32 field1, u32 field2, u32 field3, u32 field4) 3113 { 3114 struct xhci_generic_trb *trb; 3115 3116 trb = &ring->enqueue->generic; 3117 trb->field[0] = cpu_to_le32(field1); 3118 trb->field[1] = cpu_to_le32(field2); 3119 trb->field[2] = cpu_to_le32(field3); 3120 /* make sure TRB is fully written before giving it to the controller */ 3121 wmb(); 3122 trb->field[3] = cpu_to_le32(field4); 3123 3124 trace_xhci_queue_trb(ring, trb); 3125 3126 inc_enq(xhci, ring, more_trbs_coming); 3127 } 3128 3129 /* 3130 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3131 * FIXME allocate segments if the ring is full. 3132 */ 3133 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3134 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3135 { 3136 unsigned int num_trbs_needed; 3137 unsigned int link_trb_count = 0; 3138 3139 /* Make sure the endpoint has been added to xHC schedule */ 3140 switch (ep_state) { 3141 case EP_STATE_DISABLED: 3142 /* 3143 * USB core changed config/interfaces without notifying us, 3144 * or hardware is reporting the wrong state. 3145 */ 3146 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3147 return -ENOENT; 3148 case EP_STATE_ERROR: 3149 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3150 /* FIXME event handling code for error needs to clear it */ 3151 /* XXX not sure if this should be -ENOENT or not */ 3152 return -EINVAL; 3153 case EP_STATE_HALTED: 3154 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3155 break; 3156 case EP_STATE_STOPPED: 3157 case EP_STATE_RUNNING: 3158 break; 3159 default: 3160 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3161 /* 3162 * FIXME issue Configure Endpoint command to try to get the HC 3163 * back into a known state. 3164 */ 3165 return -EINVAL; 3166 } 3167 3168 while (1) { 3169 if (room_on_ring(xhci, ep_ring, num_trbs)) 3170 break; 3171 3172 if (ep_ring == xhci->cmd_ring) { 3173 xhci_err(xhci, "Do not support expand command ring\n"); 3174 return -ENOMEM; 3175 } 3176 3177 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3178 "ERROR no room on ep ring, try ring expansion"); 3179 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3180 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3181 mem_flags)) { 3182 xhci_err(xhci, "Ring expansion failed\n"); 3183 return -ENOMEM; 3184 } 3185 } 3186 3187 while (trb_is_link(ep_ring->enqueue)) { 3188 /* If we're not dealing with 0.95 hardware or isoc rings 3189 * on AMD 0.96 host, clear the chain bit. 3190 */ 3191 if (!xhci_link_trb_quirk(xhci) && 3192 !(ep_ring->type == TYPE_ISOC && 3193 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3194 ep_ring->enqueue->link.control &= 3195 cpu_to_le32(~TRB_CHAIN); 3196 else 3197 ep_ring->enqueue->link.control |= 3198 cpu_to_le32(TRB_CHAIN); 3199 3200 wmb(); 3201 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3202 3203 /* Toggle the cycle bit after the last ring segment. */ 3204 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3205 ep_ring->cycle_state ^= 1; 3206 3207 ep_ring->enq_seg = ep_ring->enq_seg->next; 3208 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3209 3210 /* prevent infinite loop if all first trbs are link trbs */ 3211 if (link_trb_count++ > ep_ring->num_segs) { 3212 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3213 return -EINVAL; 3214 } 3215 } 3216 3217 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3218 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3219 return -EINVAL; 3220 } 3221 3222 return 0; 3223 } 3224 3225 static int prepare_transfer(struct xhci_hcd *xhci, 3226 struct xhci_virt_device *xdev, 3227 unsigned int ep_index, 3228 unsigned int stream_id, 3229 unsigned int num_trbs, 3230 struct urb *urb, 3231 unsigned int td_index, 3232 gfp_t mem_flags) 3233 { 3234 int ret; 3235 struct urb_priv *urb_priv; 3236 struct xhci_td *td; 3237 struct xhci_ring *ep_ring; 3238 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3239 3240 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3241 stream_id); 3242 if (!ep_ring) { 3243 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3244 stream_id); 3245 return -EINVAL; 3246 } 3247 3248 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3249 num_trbs, mem_flags); 3250 if (ret) 3251 return ret; 3252 3253 urb_priv = urb->hcpriv; 3254 td = &urb_priv->td[td_index]; 3255 3256 INIT_LIST_HEAD(&td->td_list); 3257 INIT_LIST_HEAD(&td->cancelled_td_list); 3258 3259 if (td_index == 0) { 3260 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3261 if (unlikely(ret)) 3262 return ret; 3263 } 3264 3265 td->urb = urb; 3266 /* Add this TD to the tail of the endpoint ring's TD list */ 3267 list_add_tail(&td->td_list, &ep_ring->td_list); 3268 td->start_seg = ep_ring->enq_seg; 3269 td->first_trb = ep_ring->enqueue; 3270 3271 return 0; 3272 } 3273 3274 unsigned int count_trbs(u64 addr, u64 len) 3275 { 3276 unsigned int num_trbs; 3277 3278 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3279 TRB_MAX_BUFF_SIZE); 3280 if (num_trbs == 0) 3281 num_trbs++; 3282 3283 return num_trbs; 3284 } 3285 3286 static inline unsigned int count_trbs_needed(struct urb *urb) 3287 { 3288 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3289 } 3290 3291 static unsigned int count_sg_trbs_needed(struct urb *urb) 3292 { 3293 struct scatterlist *sg; 3294 unsigned int i, len, full_len, num_trbs = 0; 3295 3296 full_len = urb->transfer_buffer_length; 3297 3298 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3299 len = sg_dma_len(sg); 3300 num_trbs += count_trbs(sg_dma_address(sg), len); 3301 len = min_t(unsigned int, len, full_len); 3302 full_len -= len; 3303 if (full_len == 0) 3304 break; 3305 } 3306 3307 return num_trbs; 3308 } 3309 3310 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3311 { 3312 u64 addr, len; 3313 3314 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3315 len = urb->iso_frame_desc[i].length; 3316 3317 return count_trbs(addr, len); 3318 } 3319 3320 static void check_trb_math(struct urb *urb, int running_total) 3321 { 3322 if (unlikely(running_total != urb->transfer_buffer_length)) 3323 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3324 "queued %#x (%d), asked for %#x (%d)\n", 3325 __func__, 3326 urb->ep->desc.bEndpointAddress, 3327 running_total, running_total, 3328 urb->transfer_buffer_length, 3329 urb->transfer_buffer_length); 3330 } 3331 3332 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3333 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3334 struct xhci_generic_trb *start_trb) 3335 { 3336 /* 3337 * Pass all the TRBs to the hardware at once and make sure this write 3338 * isn't reordered. 3339 */ 3340 wmb(); 3341 if (start_cycle) 3342 start_trb->field[3] |= cpu_to_le32(start_cycle); 3343 else 3344 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3346 } 3347 3348 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3349 struct xhci_ep_ctx *ep_ctx) 3350 { 3351 int xhci_interval; 3352 int ep_interval; 3353 3354 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3355 ep_interval = urb->interval; 3356 3357 /* Convert to microframes */ 3358 if (urb->dev->speed == USB_SPEED_LOW || 3359 urb->dev->speed == USB_SPEED_FULL) 3360 ep_interval *= 8; 3361 3362 /* FIXME change this to a warning and a suggestion to use the new API 3363 * to set the polling interval (once the API is added). 3364 */ 3365 if (xhci_interval != ep_interval) { 3366 dev_dbg_ratelimited(&urb->dev->dev, 3367 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3368 ep_interval, ep_interval == 1 ? "" : "s", 3369 xhci_interval, xhci_interval == 1 ? "" : "s"); 3370 urb->interval = xhci_interval; 3371 /* Convert back to frames for LS/FS devices */ 3372 if (urb->dev->speed == USB_SPEED_LOW || 3373 urb->dev->speed == USB_SPEED_FULL) 3374 urb->interval /= 8; 3375 } 3376 } 3377 3378 /* 3379 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3380 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3381 * (comprised of sg list entries) can take several service intervals to 3382 * transmit. 3383 */ 3384 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3385 struct urb *urb, int slot_id, unsigned int ep_index) 3386 { 3387 struct xhci_ep_ctx *ep_ctx; 3388 3389 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3390 check_interval(xhci, urb, ep_ctx); 3391 3392 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3393 } 3394 3395 /* 3396 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3397 * packets remaining in the TD (*not* including this TRB). 3398 * 3399 * Total TD packet count = total_packet_count = 3400 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3401 * 3402 * Packets transferred up to and including this TRB = packets_transferred = 3403 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3404 * 3405 * TD size = total_packet_count - packets_transferred 3406 * 3407 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3408 * including this TRB, right shifted by 10 3409 * 3410 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3411 * This is taken care of in the TRB_TD_SIZE() macro 3412 * 3413 * The last TRB in a TD must have the TD size set to zero. 3414 */ 3415 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3416 int trb_buff_len, unsigned int td_total_len, 3417 struct urb *urb, bool more_trbs_coming) 3418 { 3419 u32 maxp, total_packet_count; 3420 3421 /* MTK xHCI 0.96 contains some features from 1.0 */ 3422 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3423 return ((td_total_len - transferred) >> 10); 3424 3425 /* One TRB with a zero-length data packet. */ 3426 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3427 trb_buff_len == td_total_len) 3428 return 0; 3429 3430 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3431 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3432 trb_buff_len = 0; 3433 3434 maxp = usb_endpoint_maxp(&urb->ep->desc); 3435 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3436 3437 /* Queueing functions don't count the current TRB into transferred */ 3438 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3439 } 3440 3441 3442 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3443 u32 *trb_buff_len, struct xhci_segment *seg) 3444 { 3445 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3446 unsigned int unalign; 3447 unsigned int max_pkt; 3448 u32 new_buff_len; 3449 size_t len; 3450 3451 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3452 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3453 3454 /* we got lucky, last normal TRB data on segment is packet aligned */ 3455 if (unalign == 0) 3456 return 0; 3457 3458 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3459 unalign, *trb_buff_len); 3460 3461 /* is the last nornal TRB alignable by splitting it */ 3462 if (*trb_buff_len > unalign) { 3463 *trb_buff_len -= unalign; 3464 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3465 return 0; 3466 } 3467 3468 /* 3469 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3470 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3471 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3472 */ 3473 new_buff_len = max_pkt - (enqd_len % max_pkt); 3474 3475 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3476 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3477 3478 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3479 if (usb_urb_dir_out(urb)) { 3480 if (urb->num_sgs) { 3481 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3482 seg->bounce_buf, new_buff_len, enqd_len); 3483 if (len != new_buff_len) 3484 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3485 len, new_buff_len); 3486 } else { 3487 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3488 } 3489 3490 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3491 max_pkt, DMA_TO_DEVICE); 3492 } else { 3493 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3494 max_pkt, DMA_FROM_DEVICE); 3495 } 3496 3497 if (dma_mapping_error(dev, seg->bounce_dma)) { 3498 /* try without aligning. Some host controllers survive */ 3499 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3500 return 0; 3501 } 3502 *trb_buff_len = new_buff_len; 3503 seg->bounce_len = new_buff_len; 3504 seg->bounce_offs = enqd_len; 3505 3506 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3507 3508 return 1; 3509 } 3510 3511 /* This is very similar to what ehci-q.c qtd_fill() does */ 3512 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3513 struct urb *urb, int slot_id, unsigned int ep_index) 3514 { 3515 struct xhci_ring *ring; 3516 struct urb_priv *urb_priv; 3517 struct xhci_td *td; 3518 struct xhci_generic_trb *start_trb; 3519 struct scatterlist *sg = NULL; 3520 bool more_trbs_coming = true; 3521 bool need_zero_pkt = false; 3522 bool first_trb = true; 3523 unsigned int num_trbs; 3524 unsigned int start_cycle, num_sgs = 0; 3525 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3526 int sent_len, ret; 3527 u32 field, length_field, remainder; 3528 u64 addr, send_addr; 3529 3530 ring = xhci_urb_to_transfer_ring(xhci, urb); 3531 if (!ring) 3532 return -EINVAL; 3533 3534 full_len = urb->transfer_buffer_length; 3535 /* If we have scatter/gather list, we use it. */ 3536 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3537 num_sgs = urb->num_mapped_sgs; 3538 sg = urb->sg; 3539 addr = (u64) sg_dma_address(sg); 3540 block_len = sg_dma_len(sg); 3541 num_trbs = count_sg_trbs_needed(urb); 3542 } else { 3543 num_trbs = count_trbs_needed(urb); 3544 addr = (u64) urb->transfer_dma; 3545 block_len = full_len; 3546 } 3547 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3548 ep_index, urb->stream_id, 3549 num_trbs, urb, 0, mem_flags); 3550 if (unlikely(ret < 0)) 3551 return ret; 3552 3553 urb_priv = urb->hcpriv; 3554 3555 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3556 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3557 need_zero_pkt = true; 3558 3559 td = &urb_priv->td[0]; 3560 3561 /* 3562 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3563 * until we've finished creating all the other TRBs. The ring's cycle 3564 * state may change as we enqueue the other TRBs, so save it too. 3565 */ 3566 start_trb = &ring->enqueue->generic; 3567 start_cycle = ring->cycle_state; 3568 send_addr = addr; 3569 3570 /* Queue the TRBs, even if they are zero-length */ 3571 for (enqd_len = 0; first_trb || enqd_len < full_len; 3572 enqd_len += trb_buff_len) { 3573 field = TRB_TYPE(TRB_NORMAL); 3574 3575 /* TRB buffer should not cross 64KB boundaries */ 3576 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3577 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3578 3579 if (enqd_len + trb_buff_len > full_len) 3580 trb_buff_len = full_len - enqd_len; 3581 3582 /* Don't change the cycle bit of the first TRB until later */ 3583 if (first_trb) { 3584 first_trb = false; 3585 if (start_cycle == 0) 3586 field |= TRB_CYCLE; 3587 } else 3588 field |= ring->cycle_state; 3589 3590 /* Chain all the TRBs together; clear the chain bit in the last 3591 * TRB to indicate it's the last TRB in the chain. 3592 */ 3593 if (enqd_len + trb_buff_len < full_len) { 3594 field |= TRB_CHAIN; 3595 if (trb_is_link(ring->enqueue + 1)) { 3596 if (xhci_align_td(xhci, urb, enqd_len, 3597 &trb_buff_len, 3598 ring->enq_seg)) { 3599 send_addr = ring->enq_seg->bounce_dma; 3600 /* assuming TD won't span 2 segs */ 3601 td->bounce_seg = ring->enq_seg; 3602 } 3603 } 3604 } 3605 if (enqd_len + trb_buff_len >= full_len) { 3606 field &= ~TRB_CHAIN; 3607 field |= TRB_IOC; 3608 more_trbs_coming = false; 3609 td->last_trb = ring->enqueue; 3610 td->last_trb_seg = ring->enq_seg; 3611 if (xhci_urb_suitable_for_idt(urb)) { 3612 memcpy(&send_addr, urb->transfer_buffer, 3613 trb_buff_len); 3614 le64_to_cpus(&send_addr); 3615 field |= TRB_IDT; 3616 } 3617 } 3618 3619 /* Only set interrupt on short packet for IN endpoints */ 3620 if (usb_urb_dir_in(urb)) 3621 field |= TRB_ISP; 3622 3623 /* Set the TRB length, TD size, and interrupter fields. */ 3624 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3625 full_len, urb, more_trbs_coming); 3626 3627 length_field = TRB_LEN(trb_buff_len) | 3628 TRB_TD_SIZE(remainder) | 3629 TRB_INTR_TARGET(0); 3630 3631 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3632 lower_32_bits(send_addr), 3633 upper_32_bits(send_addr), 3634 length_field, 3635 field); 3636 td->num_trbs++; 3637 addr += trb_buff_len; 3638 sent_len = trb_buff_len; 3639 3640 while (sg && sent_len >= block_len) { 3641 /* New sg entry */ 3642 --num_sgs; 3643 sent_len -= block_len; 3644 sg = sg_next(sg); 3645 if (num_sgs != 0 && sg) { 3646 block_len = sg_dma_len(sg); 3647 addr = (u64) sg_dma_address(sg); 3648 addr += sent_len; 3649 } 3650 } 3651 block_len -= sent_len; 3652 send_addr = addr; 3653 } 3654 3655 if (need_zero_pkt) { 3656 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3657 ep_index, urb->stream_id, 3658 1, urb, 1, mem_flags); 3659 urb_priv->td[1].last_trb = ring->enqueue; 3660 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3661 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3662 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3663 urb_priv->td[1].num_trbs++; 3664 } 3665 3666 check_trb_math(urb, enqd_len); 3667 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3668 start_cycle, start_trb); 3669 return 0; 3670 } 3671 3672 /* Caller must have locked xhci->lock */ 3673 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3674 struct urb *urb, int slot_id, unsigned int ep_index) 3675 { 3676 struct xhci_ring *ep_ring; 3677 int num_trbs; 3678 int ret; 3679 struct usb_ctrlrequest *setup; 3680 struct xhci_generic_trb *start_trb; 3681 int start_cycle; 3682 u32 field; 3683 struct urb_priv *urb_priv; 3684 struct xhci_td *td; 3685 3686 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3687 if (!ep_ring) 3688 return -EINVAL; 3689 3690 /* 3691 * Need to copy setup packet into setup TRB, so we can't use the setup 3692 * DMA address. 3693 */ 3694 if (!urb->setup_packet) 3695 return -EINVAL; 3696 3697 /* 1 TRB for setup, 1 for status */ 3698 num_trbs = 2; 3699 /* 3700 * Don't need to check if we need additional event data and normal TRBs, 3701 * since data in control transfers will never get bigger than 16MB 3702 * XXX: can we get a buffer that crosses 64KB boundaries? 3703 */ 3704 if (urb->transfer_buffer_length > 0) 3705 num_trbs++; 3706 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3707 ep_index, urb->stream_id, 3708 num_trbs, urb, 0, mem_flags); 3709 if (ret < 0) 3710 return ret; 3711 3712 urb_priv = urb->hcpriv; 3713 td = &urb_priv->td[0]; 3714 td->num_trbs = num_trbs; 3715 3716 /* 3717 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3718 * until we've finished creating all the other TRBs. The ring's cycle 3719 * state may change as we enqueue the other TRBs, so save it too. 3720 */ 3721 start_trb = &ep_ring->enqueue->generic; 3722 start_cycle = ep_ring->cycle_state; 3723 3724 /* Queue setup TRB - see section 6.4.1.2.1 */ 3725 /* FIXME better way to translate setup_packet into two u32 fields? */ 3726 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3727 field = 0; 3728 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3729 if (start_cycle == 0) 3730 field |= 0x1; 3731 3732 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3733 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3734 if (urb->transfer_buffer_length > 0) { 3735 if (setup->bRequestType & USB_DIR_IN) 3736 field |= TRB_TX_TYPE(TRB_DATA_IN); 3737 else 3738 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3739 } 3740 } 3741 3742 queue_trb(xhci, ep_ring, true, 3743 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3744 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3745 TRB_LEN(8) | TRB_INTR_TARGET(0), 3746 /* Immediate data in pointer */ 3747 field); 3748 3749 /* If there's data, queue data TRBs */ 3750 /* Only set interrupt on short packet for IN endpoints */ 3751 if (usb_urb_dir_in(urb)) 3752 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3753 else 3754 field = TRB_TYPE(TRB_DATA); 3755 3756 if (urb->transfer_buffer_length > 0) { 3757 u32 length_field, remainder; 3758 u64 addr; 3759 3760 if (xhci_urb_suitable_for_idt(urb)) { 3761 memcpy(&addr, urb->transfer_buffer, 3762 urb->transfer_buffer_length); 3763 le64_to_cpus(&addr); 3764 field |= TRB_IDT; 3765 } else { 3766 addr = (u64) urb->transfer_dma; 3767 } 3768 3769 remainder = xhci_td_remainder(xhci, 0, 3770 urb->transfer_buffer_length, 3771 urb->transfer_buffer_length, 3772 urb, 1); 3773 length_field = TRB_LEN(urb->transfer_buffer_length) | 3774 TRB_TD_SIZE(remainder) | 3775 TRB_INTR_TARGET(0); 3776 if (setup->bRequestType & USB_DIR_IN) 3777 field |= TRB_DIR_IN; 3778 queue_trb(xhci, ep_ring, true, 3779 lower_32_bits(addr), 3780 upper_32_bits(addr), 3781 length_field, 3782 field | ep_ring->cycle_state); 3783 } 3784 3785 /* Save the DMA address of the last TRB in the TD */ 3786 td->last_trb = ep_ring->enqueue; 3787 td->last_trb_seg = ep_ring->enq_seg; 3788 3789 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3790 /* If the device sent data, the status stage is an OUT transfer */ 3791 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3792 field = 0; 3793 else 3794 field = TRB_DIR_IN; 3795 queue_trb(xhci, ep_ring, false, 3796 0, 3797 0, 3798 TRB_INTR_TARGET(0), 3799 /* Event on completion */ 3800 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3801 3802 giveback_first_trb(xhci, slot_id, ep_index, 0, 3803 start_cycle, start_trb); 3804 return 0; 3805 } 3806 3807 /* 3808 * The transfer burst count field of the isochronous TRB defines the number of 3809 * bursts that are required to move all packets in this TD. Only SuperSpeed 3810 * devices can burst up to bMaxBurst number of packets per service interval. 3811 * This field is zero based, meaning a value of zero in the field means one 3812 * burst. Basically, for everything but SuperSpeed devices, this field will be 3813 * zero. Only xHCI 1.0 host controllers support this field. 3814 */ 3815 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3816 struct urb *urb, unsigned int total_packet_count) 3817 { 3818 unsigned int max_burst; 3819 3820 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3821 return 0; 3822 3823 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3824 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3825 } 3826 3827 /* 3828 * Returns the number of packets in the last "burst" of packets. This field is 3829 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3830 * the last burst packet count is equal to the total number of packets in the 3831 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3832 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3833 * contain 1 to (bMaxBurst + 1) packets. 3834 */ 3835 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3836 struct urb *urb, unsigned int total_packet_count) 3837 { 3838 unsigned int max_burst; 3839 unsigned int residue; 3840 3841 if (xhci->hci_version < 0x100) 3842 return 0; 3843 3844 if (urb->dev->speed >= USB_SPEED_SUPER) { 3845 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3846 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3847 residue = total_packet_count % (max_burst + 1); 3848 /* If residue is zero, the last burst contains (max_burst + 1) 3849 * number of packets, but the TLBPC field is zero-based. 3850 */ 3851 if (residue == 0) 3852 return max_burst; 3853 return residue - 1; 3854 } 3855 if (total_packet_count == 0) 3856 return 0; 3857 return total_packet_count - 1; 3858 } 3859 3860 /* 3861 * Calculates Frame ID field of the isochronous TRB identifies the 3862 * target frame that the Interval associated with this Isochronous 3863 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3864 * 3865 * Returns actual frame id on success, negative value on error. 3866 */ 3867 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3868 struct urb *urb, int index) 3869 { 3870 int start_frame, ist, ret = 0; 3871 int start_frame_id, end_frame_id, current_frame_id; 3872 3873 if (urb->dev->speed == USB_SPEED_LOW || 3874 urb->dev->speed == USB_SPEED_FULL) 3875 start_frame = urb->start_frame + index * urb->interval; 3876 else 3877 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3878 3879 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3880 * 3881 * If bit [3] of IST is cleared to '0', software can add a TRB no 3882 * later than IST[2:0] Microframes before that TRB is scheduled to 3883 * be executed. 3884 * If bit [3] of IST is set to '1', software can add a TRB no later 3885 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3886 */ 3887 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3888 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3889 ist <<= 3; 3890 3891 /* Software shall not schedule an Isoch TD with a Frame ID value that 3892 * is less than the Start Frame ID or greater than the End Frame ID, 3893 * where: 3894 * 3895 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3896 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3897 * 3898 * Both the End Frame ID and Start Frame ID values are calculated 3899 * in microframes. When software determines the valid Frame ID value; 3900 * The End Frame ID value should be rounded down to the nearest Frame 3901 * boundary, and the Start Frame ID value should be rounded up to the 3902 * nearest Frame boundary. 3903 */ 3904 current_frame_id = readl(&xhci->run_regs->microframe_index); 3905 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3906 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3907 3908 start_frame &= 0x7ff; 3909 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3910 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3911 3912 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3913 __func__, index, readl(&xhci->run_regs->microframe_index), 3914 start_frame_id, end_frame_id, start_frame); 3915 3916 if (start_frame_id < end_frame_id) { 3917 if (start_frame > end_frame_id || 3918 start_frame < start_frame_id) 3919 ret = -EINVAL; 3920 } else if (start_frame_id > end_frame_id) { 3921 if ((start_frame > end_frame_id && 3922 start_frame < start_frame_id)) 3923 ret = -EINVAL; 3924 } else { 3925 ret = -EINVAL; 3926 } 3927 3928 if (index == 0) { 3929 if (ret == -EINVAL || start_frame == start_frame_id) { 3930 start_frame = start_frame_id + 1; 3931 if (urb->dev->speed == USB_SPEED_LOW || 3932 urb->dev->speed == USB_SPEED_FULL) 3933 urb->start_frame = start_frame; 3934 else 3935 urb->start_frame = start_frame << 3; 3936 ret = 0; 3937 } 3938 } 3939 3940 if (ret) { 3941 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3942 start_frame, current_frame_id, index, 3943 start_frame_id, end_frame_id); 3944 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3945 return ret; 3946 } 3947 3948 return start_frame; 3949 } 3950 3951 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3952 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3953 { 3954 if (xhci->hci_version < 0x100) 3955 return false; 3956 /* always generate an event interrupt for the last TD */ 3957 if (i == num_tds - 1) 3958 return false; 3959 /* 3960 * If AVOID_BEI is set the host handles full event rings poorly, 3961 * generate an event at least every 8th TD to clear the event ring 3962 */ 3963 if (i && xhci->quirks & XHCI_AVOID_BEI) 3964 return !!(i % xhci->isoc_bei_interval); 3965 3966 return true; 3967 } 3968 3969 /* This is for isoc transfer */ 3970 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3971 struct urb *urb, int slot_id, unsigned int ep_index) 3972 { 3973 struct xhci_ring *ep_ring; 3974 struct urb_priv *urb_priv; 3975 struct xhci_td *td; 3976 int num_tds, trbs_per_td; 3977 struct xhci_generic_trb *start_trb; 3978 bool first_trb; 3979 int start_cycle; 3980 u32 field, length_field; 3981 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3982 u64 start_addr, addr; 3983 int i, j; 3984 bool more_trbs_coming; 3985 struct xhci_virt_ep *xep; 3986 int frame_id; 3987 3988 xep = &xhci->devs[slot_id]->eps[ep_index]; 3989 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3990 3991 num_tds = urb->number_of_packets; 3992 if (num_tds < 1) { 3993 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3994 return -EINVAL; 3995 } 3996 start_addr = (u64) urb->transfer_dma; 3997 start_trb = &ep_ring->enqueue->generic; 3998 start_cycle = ep_ring->cycle_state; 3999 4000 urb_priv = urb->hcpriv; 4001 /* Queue the TRBs for each TD, even if they are zero-length */ 4002 for (i = 0; i < num_tds; i++) { 4003 unsigned int total_pkt_count, max_pkt; 4004 unsigned int burst_count, last_burst_pkt_count; 4005 u32 sia_frame_id; 4006 4007 first_trb = true; 4008 running_total = 0; 4009 addr = start_addr + urb->iso_frame_desc[i].offset; 4010 td_len = urb->iso_frame_desc[i].length; 4011 td_remain_len = td_len; 4012 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4013 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4014 4015 /* A zero-length transfer still involves at least one packet. */ 4016 if (total_pkt_count == 0) 4017 total_pkt_count++; 4018 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4019 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4020 urb, total_pkt_count); 4021 4022 trbs_per_td = count_isoc_trbs_needed(urb, i); 4023 4024 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4025 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4026 if (ret < 0) { 4027 if (i == 0) 4028 return ret; 4029 goto cleanup; 4030 } 4031 td = &urb_priv->td[i]; 4032 td->num_trbs = trbs_per_td; 4033 /* use SIA as default, if frame id is used overwrite it */ 4034 sia_frame_id = TRB_SIA; 4035 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4036 HCC_CFC(xhci->hcc_params)) { 4037 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4038 if (frame_id >= 0) 4039 sia_frame_id = TRB_FRAME_ID(frame_id); 4040 } 4041 /* 4042 * Set isoc specific data for the first TRB in a TD. 4043 * Prevent HW from getting the TRBs by keeping the cycle state 4044 * inverted in the first TDs isoc TRB. 4045 */ 4046 field = TRB_TYPE(TRB_ISOC) | 4047 TRB_TLBPC(last_burst_pkt_count) | 4048 sia_frame_id | 4049 (i ? ep_ring->cycle_state : !start_cycle); 4050 4051 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4052 if (!xep->use_extended_tbc) 4053 field |= TRB_TBC(burst_count); 4054 4055 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4056 for (j = 0; j < trbs_per_td; j++) { 4057 u32 remainder = 0; 4058 4059 /* only first TRB is isoc, overwrite otherwise */ 4060 if (!first_trb) 4061 field = TRB_TYPE(TRB_NORMAL) | 4062 ep_ring->cycle_state; 4063 4064 /* Only set interrupt on short packet for IN EPs */ 4065 if (usb_urb_dir_in(urb)) 4066 field |= TRB_ISP; 4067 4068 /* Set the chain bit for all except the last TRB */ 4069 if (j < trbs_per_td - 1) { 4070 more_trbs_coming = true; 4071 field |= TRB_CHAIN; 4072 } else { 4073 more_trbs_coming = false; 4074 td->last_trb = ep_ring->enqueue; 4075 td->last_trb_seg = ep_ring->enq_seg; 4076 field |= TRB_IOC; 4077 if (trb_block_event_intr(xhci, num_tds, i)) 4078 field |= TRB_BEI; 4079 } 4080 /* Calculate TRB length */ 4081 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4082 if (trb_buff_len > td_remain_len) 4083 trb_buff_len = td_remain_len; 4084 4085 /* Set the TRB length, TD size, & interrupter fields. */ 4086 remainder = xhci_td_remainder(xhci, running_total, 4087 trb_buff_len, td_len, 4088 urb, more_trbs_coming); 4089 4090 length_field = TRB_LEN(trb_buff_len) | 4091 TRB_INTR_TARGET(0); 4092 4093 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4094 if (first_trb && xep->use_extended_tbc) 4095 length_field |= TRB_TD_SIZE_TBC(burst_count); 4096 else 4097 length_field |= TRB_TD_SIZE(remainder); 4098 first_trb = false; 4099 4100 queue_trb(xhci, ep_ring, more_trbs_coming, 4101 lower_32_bits(addr), 4102 upper_32_bits(addr), 4103 length_field, 4104 field); 4105 running_total += trb_buff_len; 4106 4107 addr += trb_buff_len; 4108 td_remain_len -= trb_buff_len; 4109 } 4110 4111 /* Check TD length */ 4112 if (running_total != td_len) { 4113 xhci_err(xhci, "ISOC TD length unmatch\n"); 4114 ret = -EINVAL; 4115 goto cleanup; 4116 } 4117 } 4118 4119 /* store the next frame id */ 4120 if (HCC_CFC(xhci->hcc_params)) 4121 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4122 4123 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4124 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4125 usb_amd_quirk_pll_disable(); 4126 } 4127 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4128 4129 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4130 start_cycle, start_trb); 4131 return 0; 4132 cleanup: 4133 /* Clean up a partially enqueued isoc transfer. */ 4134 4135 for (i--; i >= 0; i--) 4136 list_del_init(&urb_priv->td[i].td_list); 4137 4138 /* Use the first TD as a temporary variable to turn the TDs we've queued 4139 * into No-ops with a software-owned cycle bit. That way the hardware 4140 * won't accidentally start executing bogus TDs when we partially 4141 * overwrite them. td->first_trb and td->start_seg are already set. 4142 */ 4143 urb_priv->td[0].last_trb = ep_ring->enqueue; 4144 /* Every TRB except the first & last will have its cycle bit flipped. */ 4145 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4146 4147 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4148 ep_ring->enqueue = urb_priv->td[0].first_trb; 4149 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4150 ep_ring->cycle_state = start_cycle; 4151 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4152 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4153 return ret; 4154 } 4155 4156 /* 4157 * Check transfer ring to guarantee there is enough room for the urb. 4158 * Update ISO URB start_frame and interval. 4159 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4160 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4161 * Contiguous Frame ID is not supported by HC. 4162 */ 4163 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4164 struct urb *urb, int slot_id, unsigned int ep_index) 4165 { 4166 struct xhci_virt_device *xdev; 4167 struct xhci_ring *ep_ring; 4168 struct xhci_ep_ctx *ep_ctx; 4169 int start_frame; 4170 int num_tds, num_trbs, i; 4171 int ret; 4172 struct xhci_virt_ep *xep; 4173 int ist; 4174 4175 xdev = xhci->devs[slot_id]; 4176 xep = &xhci->devs[slot_id]->eps[ep_index]; 4177 ep_ring = xdev->eps[ep_index].ring; 4178 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4179 4180 num_trbs = 0; 4181 num_tds = urb->number_of_packets; 4182 for (i = 0; i < num_tds; i++) 4183 num_trbs += count_isoc_trbs_needed(urb, i); 4184 4185 /* Check the ring to guarantee there is enough room for the whole urb. 4186 * Do not insert any td of the urb to the ring if the check failed. 4187 */ 4188 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4189 num_trbs, mem_flags); 4190 if (ret) 4191 return ret; 4192 4193 /* 4194 * Check interval value. This should be done before we start to 4195 * calculate the start frame value. 4196 */ 4197 check_interval(xhci, urb, ep_ctx); 4198 4199 /* Calculate the start frame and put it in urb->start_frame. */ 4200 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4201 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4202 urb->start_frame = xep->next_frame_id; 4203 goto skip_start_over; 4204 } 4205 } 4206 4207 start_frame = readl(&xhci->run_regs->microframe_index); 4208 start_frame &= 0x3fff; 4209 /* 4210 * Round up to the next frame and consider the time before trb really 4211 * gets scheduled by hardare. 4212 */ 4213 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4214 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4215 ist <<= 3; 4216 start_frame += ist + XHCI_CFC_DELAY; 4217 start_frame = roundup(start_frame, 8); 4218 4219 /* 4220 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4221 * is greate than 8 microframes. 4222 */ 4223 if (urb->dev->speed == USB_SPEED_LOW || 4224 urb->dev->speed == USB_SPEED_FULL) { 4225 start_frame = roundup(start_frame, urb->interval << 3); 4226 urb->start_frame = start_frame >> 3; 4227 } else { 4228 start_frame = roundup(start_frame, urb->interval); 4229 urb->start_frame = start_frame; 4230 } 4231 4232 skip_start_over: 4233 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4234 4235 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4236 } 4237 4238 /**** Command Ring Operations ****/ 4239 4240 /* Generic function for queueing a command TRB on the command ring. 4241 * Check to make sure there's room on the command ring for one command TRB. 4242 * Also check that there's room reserved for commands that must not fail. 4243 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4244 * then only check for the number of reserved spots. 4245 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4246 * because the command event handler may want to resubmit a failed command. 4247 */ 4248 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4249 u32 field1, u32 field2, 4250 u32 field3, u32 field4, bool command_must_succeed) 4251 { 4252 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4253 int ret; 4254 4255 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4256 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4257 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4258 return -ESHUTDOWN; 4259 } 4260 4261 if (!command_must_succeed) 4262 reserved_trbs++; 4263 4264 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4265 reserved_trbs, GFP_ATOMIC); 4266 if (ret < 0) { 4267 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4268 if (command_must_succeed) 4269 xhci_err(xhci, "ERR: Reserved TRB counting for " 4270 "unfailable commands failed.\n"); 4271 return ret; 4272 } 4273 4274 cmd->command_trb = xhci->cmd_ring->enqueue; 4275 4276 /* if there are no other commands queued we start the timeout timer */ 4277 if (list_empty(&xhci->cmd_list)) { 4278 xhci->current_cmd = cmd; 4279 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4280 } 4281 4282 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4283 4284 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4285 field4 | xhci->cmd_ring->cycle_state); 4286 return 0; 4287 } 4288 4289 /* Queue a slot enable or disable request on the command ring */ 4290 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4291 u32 trb_type, u32 slot_id) 4292 { 4293 return queue_command(xhci, cmd, 0, 0, 0, 4294 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4295 } 4296 4297 /* Queue an address device command TRB */ 4298 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4299 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4300 { 4301 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4302 upper_32_bits(in_ctx_ptr), 0, 4303 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4304 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4305 } 4306 4307 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4308 u32 field1, u32 field2, u32 field3, u32 field4) 4309 { 4310 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4311 } 4312 4313 /* Queue a reset device command TRB */ 4314 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4315 u32 slot_id) 4316 { 4317 return queue_command(xhci, cmd, 0, 0, 0, 4318 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4319 false); 4320 } 4321 4322 /* Queue a configure endpoint command TRB */ 4323 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4324 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4325 u32 slot_id, bool command_must_succeed) 4326 { 4327 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4328 upper_32_bits(in_ctx_ptr), 0, 4329 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4330 command_must_succeed); 4331 } 4332 4333 /* Queue an evaluate context command TRB */ 4334 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4335 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4336 { 4337 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4338 upper_32_bits(in_ctx_ptr), 0, 4339 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4340 command_must_succeed); 4341 } 4342 4343 /* 4344 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4345 * activity on an endpoint that is about to be suspended. 4346 */ 4347 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4348 int slot_id, unsigned int ep_index, int suspend) 4349 { 4350 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4351 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4352 u32 type = TRB_TYPE(TRB_STOP_RING); 4353 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4354 4355 return queue_command(xhci, cmd, 0, 0, 0, 4356 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4357 } 4358 4359 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4360 int slot_id, unsigned int ep_index, 4361 enum xhci_ep_reset_type reset_type) 4362 { 4363 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4364 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4365 u32 type = TRB_TYPE(TRB_RESET_EP); 4366 4367 if (reset_type == EP_SOFT_RESET) 4368 type |= TRB_TSP; 4369 4370 return queue_command(xhci, cmd, 0, 0, 0, 4371 trb_slot_id | trb_ep_index | type, false); 4372 } 4373