1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include <linux/dma-mapping.h> 70 #include "xhci.h" 71 #include "xhci-trace.h" 72 #include "xhci-mtk.h" 73 74 /* 75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 76 * address of the TRB. 77 */ 78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 79 union xhci_trb *trb) 80 { 81 unsigned long segment_offset; 82 83 if (!seg || !trb || trb < seg->trbs) 84 return 0; 85 /* offset in TRBs */ 86 segment_offset = trb - seg->trbs; 87 if (segment_offset >= TRBS_PER_SEGMENT) 88 return 0; 89 return seg->dma + (segment_offset * sizeof(*trb)); 90 } 91 92 static bool trb_is_noop(union xhci_trb *trb) 93 { 94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 95 } 96 97 static bool trb_is_link(union xhci_trb *trb) 98 { 99 return TRB_TYPE_LINK_LE32(trb->link.control); 100 } 101 102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 103 { 104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 105 } 106 107 static bool last_trb_on_ring(struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 111 } 112 113 static bool link_trb_toggles_cycle(union xhci_trb *trb) 114 { 115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 116 } 117 118 static bool last_td_in_urb(struct xhci_td *td) 119 { 120 struct urb_priv *urb_priv = td->urb->hcpriv; 121 122 return urb_priv->num_tds_done == urb_priv->num_tds; 123 } 124 125 static void inc_td_cnt(struct urb *urb) 126 { 127 struct urb_priv *urb_priv = urb->hcpriv; 128 129 urb_priv->num_tds_done++; 130 } 131 132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 133 { 134 if (trb_is_link(trb)) { 135 /* unchain chained link TRBs */ 136 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 137 } else { 138 trb->generic.field[0] = 0; 139 trb->generic.field[1] = 0; 140 trb->generic.field[2] = 0; 141 /* Preserve only the cycle bit of this TRB */ 142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 144 } 145 } 146 147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 148 * TRB is in a new segment. This does not skip over link TRBs, and it does not 149 * effect the ring dequeue or enqueue pointers. 150 */ 151 static void next_trb(struct xhci_hcd *xhci, 152 struct xhci_ring *ring, 153 struct xhci_segment **seg, 154 union xhci_trb **trb) 155 { 156 if (trb_is_link(*trb)) { 157 *seg = (*seg)->next; 158 *trb = ((*seg)->trbs); 159 } else { 160 (*trb)++; 161 } 162 } 163 164 /* 165 * See Cycle bit rules. SW is the consumer for the event ring only. 166 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 167 */ 168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 169 { 170 /* event ring doesn't have link trbs, check for last trb */ 171 if (ring->type == TYPE_EVENT) { 172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 173 ring->dequeue++; 174 return; 175 } 176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 177 ring->cycle_state ^= 1; 178 ring->deq_seg = ring->deq_seg->next; 179 ring->dequeue = ring->deq_seg->trbs; 180 return; 181 } 182 183 /* All other rings have link trbs */ 184 if (!trb_is_link(ring->dequeue)) { 185 ring->dequeue++; 186 ring->num_trbs_free++; 187 } 188 while (trb_is_link(ring->dequeue)) { 189 ring->deq_seg = ring->deq_seg->next; 190 ring->dequeue = ring->deq_seg->trbs; 191 } 192 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 201 * 202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 203 * chain bit is set), then set the chain bit in all the following link TRBs. 204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 205 * have their chain bit cleared (so that each Link TRB is a separate TD). 206 * 207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 208 * set, but other sections talk about dealing with the chain bit set. This was 209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 210 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 211 * 212 * @more_trbs_coming: Will you enqueue more TRBs before calling 213 * prepare_transfer()? 214 */ 215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 216 bool more_trbs_coming) 217 { 218 u32 chain; 219 union xhci_trb *next; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 /* If this is not event ring, there is one less usable TRB */ 223 if (!trb_is_link(ring->enqueue)) 224 ring->num_trbs_free--; 225 next = ++(ring->enqueue); 226 227 /* Update the dequeue pointer further if that was a link TRB */ 228 while (trb_is_link(next)) { 229 230 /* 231 * If the caller doesn't plan on enqueueing more TDs before 232 * ringing the doorbell, then we don't want to give the link TRB 233 * to the hardware just yet. We'll give the link TRB back in 234 * prepare_ring() just before we enqueue the TD at the top of 235 * the ring. 236 */ 237 if (!chain && !more_trbs_coming) 238 break; 239 240 /* If we're not dealing with 0.95 hardware or isoc rings on 241 * AMD 0.96 host, carry over the chain bit of the previous TRB 242 * (which may mean the chain bit is cleared). 243 */ 244 if (!(ring->type == TYPE_ISOC && 245 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 246 !xhci_link_trb_quirk(xhci)) { 247 next->link.control &= cpu_to_le32(~TRB_CHAIN); 248 next->link.control |= cpu_to_le32(chain); 249 } 250 /* Give this link TRB to the hardware */ 251 wmb(); 252 next->link.control ^= cpu_to_le32(TRB_CYCLE); 253 254 /* Toggle the cycle bit after the last ring segment. */ 255 if (link_trb_toggles_cycle(next)) 256 ring->cycle_state ^= 1; 257 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 263 trace_xhci_inc_enq(ring); 264 } 265 266 /* 267 * Check to see if there's room to enqueue num_trbs on the ring and make sure 268 * enqueue pointer will not advance into dequeue segment. See rules above. 269 */ 270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 271 unsigned int num_trbs) 272 { 273 int num_trbs_in_deq_seg; 274 275 if (ring->num_trbs_free < num_trbs) 276 return 0; 277 278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 281 return 0; 282 } 283 284 return 1; 285 } 286 287 /* Ring the host controller doorbell after placing a command on the ring */ 288 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 289 { 290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 291 return; 292 293 xhci_dbg(xhci, "// Ding dong!\n"); 294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 295 /* Flush PCI posted writes */ 296 readl(&xhci->dba->doorbell[0]); 297 } 298 299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 300 { 301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 302 } 303 304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 305 { 306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 307 cmd_list); 308 } 309 310 /* 311 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 312 * If there are other commands waiting then restart the ring and kick the timer. 313 * This must be called with command ring stopped and xhci->lock held. 314 */ 315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 316 struct xhci_command *cur_cmd) 317 { 318 struct xhci_command *i_cmd; 319 320 /* Turn all aborted commands in list to no-ops, then restart */ 321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 322 323 if (i_cmd->status != COMP_COMMAND_ABORTED) 324 continue; 325 326 i_cmd->status = COMP_COMMAND_RING_STOPPED; 327 328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 329 i_cmd->command_trb); 330 331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 332 333 /* 334 * caller waiting for completion is called when command 335 * completion event is received for these no-op commands 336 */ 337 } 338 339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 340 341 /* ring command ring doorbell to restart the command ring */ 342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 343 !(xhci->xhc_state & XHCI_STATE_DYING)) { 344 xhci->current_cmd = cur_cmd; 345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 346 xhci_ring_cmd_db(xhci); 347 } 348 } 349 350 /* Must be called with xhci->lock held, releases and aquires lock back */ 351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 352 { 353 u64 temp_64; 354 int ret; 355 356 xhci_dbg(xhci, "Abort command ring\n"); 357 358 reinit_completion(&xhci->cmd_ring_stop_completion); 359 360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 362 &xhci->op_regs->cmd_ring); 363 364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 365 * completion of the Command Abort operation. If CRR is not negated in 5 366 * seconds then driver handles it as if host died (-ENODEV). 367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 368 * and try to recover a -ETIMEDOUT with a host controller reset. 369 */ 370 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 372 if (ret < 0) { 373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 374 xhci_halt(xhci); 375 xhci_hc_died(xhci); 376 return ret; 377 } 378 /* 379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 381 * but the completion event in never sent. Wait 2 secs (arbitrary 382 * number) to handle those cases after negation of CMD_RING_RUNNING. 383 */ 384 spin_unlock_irqrestore(&xhci->lock, flags); 385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 386 msecs_to_jiffies(2000)); 387 spin_lock_irqsave(&xhci->lock, flags); 388 if (!ret) { 389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 390 xhci_cleanup_command_queue(xhci); 391 } else { 392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 393 } 394 return 0; 395 } 396 397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 398 unsigned int slot_id, 399 unsigned int ep_index, 400 unsigned int stream_id) 401 { 402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 404 unsigned int ep_state = ep->ep_state; 405 406 /* Don't ring the doorbell for this endpoint if there are pending 407 * cancellations because we don't want to interrupt processing. 408 * We don't want to restart any stream rings if there's a set dequeue 409 * pointer command pending because the device can choose to start any 410 * stream once the endpoint is on the HW schedule. 411 */ 412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 413 (ep_state & EP_HALTED)) 414 return; 415 writel(DB_VALUE(ep_index, stream_id), db_addr); 416 /* The CPU has better things to do at this point than wait for a 417 * write-posting flush. It'll get there soon enough. 418 */ 419 } 420 421 /* Ring the doorbell for any rings with pending URBs */ 422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 423 unsigned int slot_id, 424 unsigned int ep_index) 425 { 426 unsigned int stream_id; 427 struct xhci_virt_ep *ep; 428 429 ep = &xhci->devs[slot_id]->eps[ep_index]; 430 431 /* A ring has pending URBs if its TD list is not empty */ 432 if (!(ep->ep_state & EP_HAS_STREAMS)) { 433 if (ep->ring && !(list_empty(&ep->ring->td_list))) 434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 435 return; 436 } 437 438 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 439 stream_id++) { 440 struct xhci_stream_info *stream_info = ep->stream_info; 441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 443 stream_id); 444 } 445 } 446 447 /* Get the right ring for the given slot_id, ep_index and stream_id. 448 * If the endpoint supports streams, boundary check the URB's stream ID. 449 * If the endpoint doesn't support streams, return the singular endpoint ring. 450 */ 451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 452 unsigned int slot_id, unsigned int ep_index, 453 unsigned int stream_id) 454 { 455 struct xhci_virt_ep *ep; 456 457 ep = &xhci->devs[slot_id]->eps[ep_index]; 458 /* Common case: no streams */ 459 if (!(ep->ep_state & EP_HAS_STREAMS)) 460 return ep->ring; 461 462 if (stream_id == 0) { 463 xhci_warn(xhci, 464 "WARN: Slot ID %u, ep index %u has streams, " 465 "but URB has no stream ID.\n", 466 slot_id, ep_index); 467 return NULL; 468 } 469 470 if (stream_id < ep->stream_info->num_streams) 471 return ep->stream_info->stream_rings[stream_id]; 472 473 xhci_warn(xhci, 474 "WARN: Slot ID %u, ep index %u has " 475 "stream IDs 1 to %u allocated, " 476 "but stream ID %u is requested.\n", 477 slot_id, ep_index, 478 ep->stream_info->num_streams - 1, 479 stream_id); 480 return NULL; 481 } 482 483 /* 484 * Move the xHC's endpoint ring dequeue pointer past cur_td. 485 * Record the new state of the xHC's endpoint ring dequeue segment, 486 * dequeue pointer, and new consumer cycle state in state. 487 * Update our internal representation of the ring's dequeue pointer. 488 * 489 * We do this in three jumps: 490 * - First we update our new ring state to be the same as when the xHC stopped. 491 * - Then we traverse the ring to find the segment that contains 492 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 493 * any link TRBs with the toggle cycle bit set. 494 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 495 * if we've moved it past a link TRB with the toggle cycle bit set. 496 * 497 * Some of the uses of xhci_generic_trb are grotty, but if they're done 498 * with correct __le32 accesses they should work fine. Only users of this are 499 * in here. 500 */ 501 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 502 unsigned int slot_id, unsigned int ep_index, 503 unsigned int stream_id, struct xhci_td *cur_td, 504 struct xhci_dequeue_state *state) 505 { 506 struct xhci_virt_device *dev = xhci->devs[slot_id]; 507 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 508 struct xhci_ring *ep_ring; 509 struct xhci_segment *new_seg; 510 union xhci_trb *new_deq; 511 dma_addr_t addr; 512 u64 hw_dequeue; 513 bool cycle_found = false; 514 bool td_last_trb_found = false; 515 516 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 517 ep_index, stream_id); 518 if (!ep_ring) { 519 xhci_warn(xhci, "WARN can't find new dequeue state " 520 "for invalid stream ID %u.\n", 521 stream_id); 522 return; 523 } 524 525 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 526 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 527 "Finding endpoint context"); 528 /* 4.6.9 the css flag is written to the stream context for streams */ 529 if (ep->ep_state & EP_HAS_STREAMS) { 530 struct xhci_stream_ctx *ctx = 531 &ep->stream_info->stream_ctx_array[stream_id]; 532 hw_dequeue = le64_to_cpu(ctx->stream_ring); 533 } else { 534 struct xhci_ep_ctx *ep_ctx 535 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 536 hw_dequeue = le64_to_cpu(ep_ctx->deq); 537 } 538 539 new_seg = ep_ring->deq_seg; 540 new_deq = ep_ring->dequeue; 541 state->new_cycle_state = hw_dequeue & 0x1; 542 543 /* 544 * We want to find the pointer, segment and cycle state of the new trb 545 * (the one after current TD's last_trb). We know the cycle state at 546 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 547 * found. 548 */ 549 do { 550 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 551 == (dma_addr_t)(hw_dequeue & ~0xf)) { 552 cycle_found = true; 553 if (td_last_trb_found) 554 break; 555 } 556 if (new_deq == cur_td->last_trb) 557 td_last_trb_found = true; 558 559 if (cycle_found && trb_is_link(new_deq) && 560 link_trb_toggles_cycle(new_deq)) 561 state->new_cycle_state ^= 0x1; 562 563 next_trb(xhci, ep_ring, &new_seg, &new_deq); 564 565 /* Search wrapped around, bail out */ 566 if (new_deq == ep->ring->dequeue) { 567 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 568 state->new_deq_seg = NULL; 569 state->new_deq_ptr = NULL; 570 return; 571 } 572 573 } while (!cycle_found || !td_last_trb_found); 574 575 state->new_deq_seg = new_seg; 576 state->new_deq_ptr = new_deq; 577 578 /* Don't update the ring cycle state for the producer (us). */ 579 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 580 "Cycle state = 0x%x", state->new_cycle_state); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 583 "New dequeue segment = %p (virtual)", 584 state->new_deq_seg); 585 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue pointer = 0x%llx (DMA)", 588 (unsigned long long) addr); 589 } 590 591 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 592 * (The last TRB actually points to the ring enqueue pointer, which is not part 593 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 594 */ 595 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 596 struct xhci_td *td, bool flip_cycle) 597 { 598 struct xhci_segment *seg = td->start_seg; 599 union xhci_trb *trb = td->first_trb; 600 601 while (1) { 602 trb_to_noop(trb, TRB_TR_NOOP); 603 604 /* flip cycle if asked to */ 605 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 606 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 607 608 if (trb == td->last_trb) 609 break; 610 611 next_trb(xhci, ep_ring, &seg, &trb); 612 } 613 } 614 615 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 616 struct xhci_virt_ep *ep) 617 { 618 ep->ep_state &= ~EP_STOP_CMD_PENDING; 619 /* Can't del_timer_sync in interrupt */ 620 del_timer(&ep->stop_cmd_timer); 621 } 622 623 /* 624 * Must be called with xhci->lock held in interrupt context, 625 * releases and re-acquires xhci->lock 626 */ 627 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 628 struct xhci_td *cur_td, int status) 629 { 630 struct urb *urb = cur_td->urb; 631 struct urb_priv *urb_priv = urb->hcpriv; 632 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 633 634 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 635 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 636 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 637 if (xhci->quirks & XHCI_AMD_PLL_FIX) 638 usb_amd_quirk_pll_enable(); 639 } 640 } 641 xhci_urb_free_priv(urb_priv); 642 usb_hcd_unlink_urb_from_ep(hcd, urb); 643 spin_unlock(&xhci->lock); 644 trace_xhci_urb_giveback(urb); 645 usb_hcd_giveback_urb(hcd, urb, status); 646 spin_lock(&xhci->lock); 647 } 648 649 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 650 struct xhci_ring *ring, struct xhci_td *td) 651 { 652 struct device *dev = xhci_to_hcd(xhci)->self.controller; 653 struct xhci_segment *seg = td->bounce_seg; 654 struct urb *urb = td->urb; 655 656 if (!ring || !seg || !urb) 657 return; 658 659 if (usb_urb_dir_out(urb)) { 660 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 661 DMA_TO_DEVICE); 662 return; 663 } 664 665 /* for in tranfers we need to copy the data from bounce to sg */ 666 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 667 seg->bounce_len, seg->bounce_offs); 668 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 669 DMA_FROM_DEVICE); 670 seg->bounce_len = 0; 671 seg->bounce_offs = 0; 672 } 673 674 /* 675 * When we get a command completion for a Stop Endpoint Command, we need to 676 * unlink any cancelled TDs from the ring. There are two ways to do that: 677 * 678 * 1. If the HW was in the middle of processing the TD that needs to be 679 * cancelled, then we must move the ring's dequeue pointer past the last TRB 680 * in the TD with a Set Dequeue Pointer Command. 681 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 682 * bit cleared) so that the HW will skip over them. 683 */ 684 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 685 union xhci_trb *trb, struct xhci_event_cmd *event) 686 { 687 unsigned int ep_index; 688 struct xhci_ring *ep_ring; 689 struct xhci_virt_ep *ep; 690 struct xhci_td *cur_td = NULL; 691 struct xhci_td *last_unlinked_td; 692 struct xhci_ep_ctx *ep_ctx; 693 struct xhci_virt_device *vdev; 694 695 struct xhci_dequeue_state deq_state; 696 697 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 698 if (!xhci->devs[slot_id]) 699 xhci_warn(xhci, "Stop endpoint command " 700 "completion for disabled slot %u\n", 701 slot_id); 702 return; 703 } 704 705 memset(&deq_state, 0, sizeof(deq_state)); 706 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 707 708 vdev = xhci->devs[slot_id]; 709 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 710 trace_xhci_handle_cmd_stop_ep(ep_ctx); 711 712 ep = &xhci->devs[slot_id]->eps[ep_index]; 713 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 714 struct xhci_td, cancelled_td_list); 715 716 if (list_empty(&ep->cancelled_td_list)) { 717 xhci_stop_watchdog_timer_in_irq(xhci, ep); 718 ep->stopped_td = NULL; 719 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 720 return; 721 } 722 723 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 724 * We have the xHCI lock, so nothing can modify this list until we drop 725 * it. We're also in the event handler, so we can't get re-interrupted 726 * if another Stop Endpoint command completes 727 */ 728 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 729 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 730 "Removing canceled TD starting at 0x%llx (dma).", 731 (unsigned long long)xhci_trb_virt_to_dma( 732 cur_td->start_seg, cur_td->first_trb)); 733 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 734 if (!ep_ring) { 735 /* This shouldn't happen unless a driver is mucking 736 * with the stream ID after submission. This will 737 * leave the TD on the hardware ring, and the hardware 738 * will try to execute it, and may access a buffer 739 * that has already been freed. In the best case, the 740 * hardware will execute it, and the event handler will 741 * ignore the completion event for that TD, since it was 742 * removed from the td_list for that endpoint. In 743 * short, don't muck with the stream ID after 744 * submission. 745 */ 746 xhci_warn(xhci, "WARN Cancelled URB %p " 747 "has invalid stream ID %u.\n", 748 cur_td->urb, 749 cur_td->urb->stream_id); 750 goto remove_finished_td; 751 } 752 /* 753 * If we stopped on the TD we need to cancel, then we have to 754 * move the xHC endpoint ring dequeue pointer past this TD. 755 */ 756 if (cur_td == ep->stopped_td) 757 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 758 cur_td->urb->stream_id, 759 cur_td, &deq_state); 760 else 761 td_to_noop(xhci, ep_ring, cur_td, false); 762 remove_finished_td: 763 /* 764 * The event handler won't see a completion for this TD anymore, 765 * so remove it from the endpoint ring's TD list. Keep it in 766 * the cancelled TD list for URB completion later. 767 */ 768 list_del_init(&cur_td->td_list); 769 } 770 771 xhci_stop_watchdog_timer_in_irq(xhci, ep); 772 773 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 774 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 775 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 776 ep->stopped_td->urb->stream_id, &deq_state); 777 xhci_ring_cmd_db(xhci); 778 } else { 779 /* Otherwise ring the doorbell(s) to restart queued transfers */ 780 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 781 } 782 783 ep->stopped_td = NULL; 784 785 /* 786 * Drop the lock and complete the URBs in the cancelled TD list. 787 * New TDs to be cancelled might be added to the end of the list before 788 * we can complete all the URBs for the TDs we already unlinked. 789 * So stop when we've completed the URB for the last TD we unlinked. 790 */ 791 do { 792 cur_td = list_first_entry(&ep->cancelled_td_list, 793 struct xhci_td, cancelled_td_list); 794 list_del_init(&cur_td->cancelled_td_list); 795 796 /* Clean up the cancelled URB */ 797 /* Doesn't matter what we pass for status, since the core will 798 * just overwrite it (because the URB has been unlinked). 799 */ 800 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 801 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 802 inc_td_cnt(cur_td->urb); 803 if (last_td_in_urb(cur_td)) 804 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 805 806 /* Stop processing the cancelled list if the watchdog timer is 807 * running. 808 */ 809 if (xhci->xhc_state & XHCI_STATE_DYING) 810 return; 811 } while (cur_td != last_unlinked_td); 812 813 /* Return to the event handler with xhci->lock re-acquired */ 814 } 815 816 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 817 { 818 struct xhci_td *cur_td; 819 struct xhci_td *tmp; 820 821 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 822 list_del_init(&cur_td->td_list); 823 824 if (!list_empty(&cur_td->cancelled_td_list)) 825 list_del_init(&cur_td->cancelled_td_list); 826 827 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 828 829 inc_td_cnt(cur_td->urb); 830 if (last_td_in_urb(cur_td)) 831 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 832 } 833 } 834 835 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 836 int slot_id, int ep_index) 837 { 838 struct xhci_td *cur_td; 839 struct xhci_td *tmp; 840 struct xhci_virt_ep *ep; 841 struct xhci_ring *ring; 842 843 ep = &xhci->devs[slot_id]->eps[ep_index]; 844 if ((ep->ep_state & EP_HAS_STREAMS) || 845 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 846 int stream_id; 847 848 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 849 stream_id++) { 850 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 851 "Killing URBs for slot ID %u, ep index %u, stream %u", 852 slot_id, ep_index, stream_id + 1); 853 xhci_kill_ring_urbs(xhci, 854 ep->stream_info->stream_rings[stream_id]); 855 } 856 } else { 857 ring = ep->ring; 858 if (!ring) 859 return; 860 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 861 "Killing URBs for slot ID %u, ep index %u", 862 slot_id, ep_index); 863 xhci_kill_ring_urbs(xhci, ring); 864 } 865 866 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 867 cancelled_td_list) { 868 list_del_init(&cur_td->cancelled_td_list); 869 inc_td_cnt(cur_td->urb); 870 871 if (last_td_in_urb(cur_td)) 872 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 873 } 874 } 875 876 /* 877 * host controller died, register read returns 0xffffffff 878 * Complete pending commands, mark them ABORTED. 879 * URBs need to be given back as usb core might be waiting with device locks 880 * held for the URBs to finish during device disconnect, blocking host remove. 881 * 882 * Call with xhci->lock held. 883 * lock is relased and re-acquired while giving back urb. 884 */ 885 void xhci_hc_died(struct xhci_hcd *xhci) 886 { 887 int i, j; 888 889 if (xhci->xhc_state & XHCI_STATE_DYING) 890 return; 891 892 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 893 xhci->xhc_state |= XHCI_STATE_DYING; 894 895 xhci_cleanup_command_queue(xhci); 896 897 /* return any pending urbs, remove may be waiting for them */ 898 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 899 if (!xhci->devs[i]) 900 continue; 901 for (j = 0; j < 31; j++) 902 xhci_kill_endpoint_urbs(xhci, i, j); 903 } 904 905 /* inform usb core hc died if PCI remove isn't already handling it */ 906 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 907 usb_hc_died(xhci_to_hcd(xhci)); 908 } 909 910 /* Watchdog timer function for when a stop endpoint command fails to complete. 911 * In this case, we assume the host controller is broken or dying or dead. The 912 * host may still be completing some other events, so we have to be careful to 913 * let the event ring handler and the URB dequeueing/enqueueing functions know 914 * through xhci->state. 915 * 916 * The timer may also fire if the host takes a very long time to respond to the 917 * command, and the stop endpoint command completion handler cannot delete the 918 * timer before the timer function is called. Another endpoint cancellation may 919 * sneak in before the timer function can grab the lock, and that may queue 920 * another stop endpoint command and add the timer back. So we cannot use a 921 * simple flag to say whether there is a pending stop endpoint command for a 922 * particular endpoint. 923 * 924 * Instead we use a combination of that flag and checking if a new timer is 925 * pending. 926 */ 927 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 928 { 929 struct xhci_hcd *xhci; 930 struct xhci_virt_ep *ep; 931 unsigned long flags; 932 933 ep = (struct xhci_virt_ep *) arg; 934 xhci = ep->xhci; 935 936 spin_lock_irqsave(&xhci->lock, flags); 937 938 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 939 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 940 timer_pending(&ep->stop_cmd_timer)) { 941 spin_unlock_irqrestore(&xhci->lock, flags); 942 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 943 return; 944 } 945 946 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 947 ep->ep_state &= ~EP_STOP_CMD_PENDING; 948 949 xhci_halt(xhci); 950 951 /* 952 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 953 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 954 * and try to recover a -ETIMEDOUT with a host controller reset 955 */ 956 xhci_hc_died(xhci); 957 958 spin_unlock_irqrestore(&xhci->lock, flags); 959 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 960 "xHCI host controller is dead."); 961 } 962 963 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 964 struct xhci_virt_device *dev, 965 struct xhci_ring *ep_ring, 966 unsigned int ep_index) 967 { 968 union xhci_trb *dequeue_temp; 969 int num_trbs_free_temp; 970 bool revert = false; 971 972 num_trbs_free_temp = ep_ring->num_trbs_free; 973 dequeue_temp = ep_ring->dequeue; 974 975 /* If we get two back-to-back stalls, and the first stalled transfer 976 * ends just before a link TRB, the dequeue pointer will be left on 977 * the link TRB by the code in the while loop. So we have to update 978 * the dequeue pointer one segment further, or we'll jump off 979 * the segment into la-la-land. 980 */ 981 if (trb_is_link(ep_ring->dequeue)) { 982 ep_ring->deq_seg = ep_ring->deq_seg->next; 983 ep_ring->dequeue = ep_ring->deq_seg->trbs; 984 } 985 986 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 987 /* We have more usable TRBs */ 988 ep_ring->num_trbs_free++; 989 ep_ring->dequeue++; 990 if (trb_is_link(ep_ring->dequeue)) { 991 if (ep_ring->dequeue == 992 dev->eps[ep_index].queued_deq_ptr) 993 break; 994 ep_ring->deq_seg = ep_ring->deq_seg->next; 995 ep_ring->dequeue = ep_ring->deq_seg->trbs; 996 } 997 if (ep_ring->dequeue == dequeue_temp) { 998 revert = true; 999 break; 1000 } 1001 } 1002 1003 if (revert) { 1004 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1005 ep_ring->num_trbs_free = num_trbs_free_temp; 1006 } 1007 } 1008 1009 /* 1010 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1011 * we need to clear the set deq pending flag in the endpoint ring state, so that 1012 * the TD queueing code can ring the doorbell again. We also need to ring the 1013 * endpoint doorbell to restart the ring, but only if there aren't more 1014 * cancellations pending. 1015 */ 1016 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1017 union xhci_trb *trb, u32 cmd_comp_code) 1018 { 1019 unsigned int ep_index; 1020 unsigned int stream_id; 1021 struct xhci_ring *ep_ring; 1022 struct xhci_virt_device *dev; 1023 struct xhci_virt_ep *ep; 1024 struct xhci_ep_ctx *ep_ctx; 1025 struct xhci_slot_ctx *slot_ctx; 1026 1027 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1028 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1029 dev = xhci->devs[slot_id]; 1030 ep = &dev->eps[ep_index]; 1031 1032 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1033 if (!ep_ring) { 1034 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1035 stream_id); 1036 /* XXX: Harmless??? */ 1037 goto cleanup; 1038 } 1039 1040 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1041 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1042 trace_xhci_handle_cmd_set_deq(slot_ctx); 1043 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1044 1045 if (cmd_comp_code != COMP_SUCCESS) { 1046 unsigned int ep_state; 1047 unsigned int slot_state; 1048 1049 switch (cmd_comp_code) { 1050 case COMP_TRB_ERROR: 1051 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1052 break; 1053 case COMP_CONTEXT_STATE_ERROR: 1054 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1055 ep_state = GET_EP_CTX_STATE(ep_ctx); 1056 slot_state = le32_to_cpu(slot_ctx->dev_state); 1057 slot_state = GET_SLOT_STATE(slot_state); 1058 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1059 "Slot state = %u, EP state = %u", 1060 slot_state, ep_state); 1061 break; 1062 case COMP_SLOT_NOT_ENABLED_ERROR: 1063 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1064 slot_id); 1065 break; 1066 default: 1067 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1068 cmd_comp_code); 1069 break; 1070 } 1071 /* OK what do we do now? The endpoint state is hosed, and we 1072 * should never get to this point if the synchronization between 1073 * queueing, and endpoint state are correct. This might happen 1074 * if the device gets disconnected after we've finished 1075 * cancelling URBs, which might not be an error... 1076 */ 1077 } else { 1078 u64 deq; 1079 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1080 if (ep->ep_state & EP_HAS_STREAMS) { 1081 struct xhci_stream_ctx *ctx = 1082 &ep->stream_info->stream_ctx_array[stream_id]; 1083 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1084 } else { 1085 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1086 } 1087 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1088 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1089 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1090 ep->queued_deq_ptr) == deq) { 1091 /* Update the ring's dequeue segment and dequeue pointer 1092 * to reflect the new position. 1093 */ 1094 update_ring_for_set_deq_completion(xhci, dev, 1095 ep_ring, ep_index); 1096 } else { 1097 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1098 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1099 ep->queued_deq_seg, ep->queued_deq_ptr); 1100 } 1101 } 1102 1103 cleanup: 1104 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1105 dev->eps[ep_index].queued_deq_seg = NULL; 1106 dev->eps[ep_index].queued_deq_ptr = NULL; 1107 /* Restart any rings with pending URBs */ 1108 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1109 } 1110 1111 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1112 union xhci_trb *trb, u32 cmd_comp_code) 1113 { 1114 struct xhci_virt_device *vdev; 1115 struct xhci_ep_ctx *ep_ctx; 1116 unsigned int ep_index; 1117 1118 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1119 vdev = xhci->devs[slot_id]; 1120 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1121 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1122 1123 /* This command will only fail if the endpoint wasn't halted, 1124 * but we don't care. 1125 */ 1126 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1127 "Ignoring reset ep completion code of %u", cmd_comp_code); 1128 1129 /* HW with the reset endpoint quirk needs to have a configure endpoint 1130 * command complete before the endpoint can be used. Queue that here 1131 * because the HW can't handle two commands being queued in a row. 1132 */ 1133 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1134 struct xhci_command *command; 1135 1136 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1137 if (!command) 1138 return; 1139 1140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1141 "Queueing configure endpoint command"); 1142 xhci_queue_configure_endpoint(xhci, command, 1143 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1144 false); 1145 xhci_ring_cmd_db(xhci); 1146 } else { 1147 /* Clear our internal halted state */ 1148 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1149 } 1150 } 1151 1152 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1153 struct xhci_command *command, u32 cmd_comp_code) 1154 { 1155 if (cmd_comp_code == COMP_SUCCESS) 1156 command->slot_id = slot_id; 1157 else 1158 command->slot_id = 0; 1159 } 1160 1161 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1162 { 1163 struct xhci_virt_device *virt_dev; 1164 struct xhci_slot_ctx *slot_ctx; 1165 1166 virt_dev = xhci->devs[slot_id]; 1167 if (!virt_dev) 1168 return; 1169 1170 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1171 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1172 1173 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1174 /* Delete default control endpoint resources */ 1175 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1176 xhci_free_virt_device(xhci, slot_id); 1177 } 1178 1179 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1180 struct xhci_event_cmd *event, u32 cmd_comp_code) 1181 { 1182 struct xhci_virt_device *virt_dev; 1183 struct xhci_input_control_ctx *ctrl_ctx; 1184 struct xhci_ep_ctx *ep_ctx; 1185 unsigned int ep_index; 1186 unsigned int ep_state; 1187 u32 add_flags, drop_flags; 1188 1189 /* 1190 * Configure endpoint commands can come from the USB core 1191 * configuration or alt setting changes, or because the HW 1192 * needed an extra configure endpoint command after a reset 1193 * endpoint command or streams were being configured. 1194 * If the command was for a halted endpoint, the xHCI driver 1195 * is not waiting on the configure endpoint command. 1196 */ 1197 virt_dev = xhci->devs[slot_id]; 1198 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1199 if (!ctrl_ctx) { 1200 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1201 return; 1202 } 1203 1204 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1205 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1206 /* Input ctx add_flags are the endpoint index plus one */ 1207 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1208 1209 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1210 trace_xhci_handle_cmd_config_ep(ep_ctx); 1211 1212 /* A usb_set_interface() call directly after clearing a halted 1213 * condition may race on this quirky hardware. Not worth 1214 * worrying about, since this is prototype hardware. Not sure 1215 * if this will work for streams, but streams support was 1216 * untested on this prototype. 1217 */ 1218 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1219 ep_index != (unsigned int) -1 && 1220 add_flags - SLOT_FLAG == drop_flags) { 1221 ep_state = virt_dev->eps[ep_index].ep_state; 1222 if (!(ep_state & EP_HALTED)) 1223 return; 1224 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1225 "Completed config ep cmd - " 1226 "last ep index = %d, state = %d", 1227 ep_index, ep_state); 1228 /* Clear internal halted state and restart ring(s) */ 1229 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1230 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1231 return; 1232 } 1233 return; 1234 } 1235 1236 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1237 { 1238 struct xhci_virt_device *vdev; 1239 struct xhci_slot_ctx *slot_ctx; 1240 1241 vdev = xhci->devs[slot_id]; 1242 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1243 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1244 } 1245 1246 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1247 struct xhci_event_cmd *event) 1248 { 1249 struct xhci_virt_device *vdev; 1250 struct xhci_slot_ctx *slot_ctx; 1251 1252 vdev = xhci->devs[slot_id]; 1253 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1254 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1255 1256 xhci_dbg(xhci, "Completed reset device command.\n"); 1257 if (!xhci->devs[slot_id]) 1258 xhci_warn(xhci, "Reset device command completion " 1259 "for disabled slot %u\n", slot_id); 1260 } 1261 1262 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1263 struct xhci_event_cmd *event) 1264 { 1265 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1266 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1267 return; 1268 } 1269 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1270 "NEC firmware version %2x.%02x", 1271 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1272 NEC_FW_MINOR(le32_to_cpu(event->status))); 1273 } 1274 1275 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1276 { 1277 list_del(&cmd->cmd_list); 1278 1279 if (cmd->completion) { 1280 cmd->status = status; 1281 complete(cmd->completion); 1282 } else { 1283 kfree(cmd); 1284 } 1285 } 1286 1287 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1288 { 1289 struct xhci_command *cur_cmd, *tmp_cmd; 1290 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1291 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1292 } 1293 1294 void xhci_handle_command_timeout(struct work_struct *work) 1295 { 1296 struct xhci_hcd *xhci; 1297 unsigned long flags; 1298 u64 hw_ring_state; 1299 1300 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1301 1302 spin_lock_irqsave(&xhci->lock, flags); 1303 1304 /* 1305 * If timeout work is pending, or current_cmd is NULL, it means we 1306 * raced with command completion. Command is handled so just return. 1307 */ 1308 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1309 spin_unlock_irqrestore(&xhci->lock, flags); 1310 return; 1311 } 1312 /* mark this command to be cancelled */ 1313 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1314 1315 /* Make sure command ring is running before aborting it */ 1316 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1317 if (hw_ring_state == ~(u64)0) { 1318 xhci_hc_died(xhci); 1319 goto time_out_completed; 1320 } 1321 1322 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1323 (hw_ring_state & CMD_RING_RUNNING)) { 1324 /* Prevent new doorbell, and start command abort */ 1325 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1326 xhci_dbg(xhci, "Command timeout\n"); 1327 xhci_abort_cmd_ring(xhci, flags); 1328 goto time_out_completed; 1329 } 1330 1331 /* host removed. Bail out */ 1332 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1333 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1334 xhci_cleanup_command_queue(xhci); 1335 1336 goto time_out_completed; 1337 } 1338 1339 /* command timeout on stopped ring, ring can't be aborted */ 1340 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1341 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1342 1343 time_out_completed: 1344 spin_unlock_irqrestore(&xhci->lock, flags); 1345 return; 1346 } 1347 1348 static void handle_cmd_completion(struct xhci_hcd *xhci, 1349 struct xhci_event_cmd *event) 1350 { 1351 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1352 u64 cmd_dma; 1353 dma_addr_t cmd_dequeue_dma; 1354 u32 cmd_comp_code; 1355 union xhci_trb *cmd_trb; 1356 struct xhci_command *cmd; 1357 u32 cmd_type; 1358 1359 cmd_dma = le64_to_cpu(event->cmd_trb); 1360 cmd_trb = xhci->cmd_ring->dequeue; 1361 1362 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1363 1364 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1365 cmd_trb); 1366 /* 1367 * Check whether the completion event is for our internal kept 1368 * command. 1369 */ 1370 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1371 xhci_warn(xhci, 1372 "ERROR mismatched command completion event\n"); 1373 return; 1374 } 1375 1376 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1377 1378 cancel_delayed_work(&xhci->cmd_timer); 1379 1380 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1381 1382 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1383 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1384 complete_all(&xhci->cmd_ring_stop_completion); 1385 return; 1386 } 1387 1388 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1389 xhci_err(xhci, 1390 "Command completion event does not match command\n"); 1391 return; 1392 } 1393 1394 /* 1395 * Host aborted the command ring, check if the current command was 1396 * supposed to be aborted, otherwise continue normally. 1397 * The command ring is stopped now, but the xHC will issue a Command 1398 * Ring Stopped event which will cause us to restart it. 1399 */ 1400 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1401 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1402 if (cmd->status == COMP_COMMAND_ABORTED) { 1403 if (xhci->current_cmd == cmd) 1404 xhci->current_cmd = NULL; 1405 goto event_handled; 1406 } 1407 } 1408 1409 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1410 switch (cmd_type) { 1411 case TRB_ENABLE_SLOT: 1412 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1413 break; 1414 case TRB_DISABLE_SLOT: 1415 xhci_handle_cmd_disable_slot(xhci, slot_id); 1416 break; 1417 case TRB_CONFIG_EP: 1418 if (!cmd->completion) 1419 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1420 cmd_comp_code); 1421 break; 1422 case TRB_EVAL_CONTEXT: 1423 break; 1424 case TRB_ADDR_DEV: 1425 xhci_handle_cmd_addr_dev(xhci, slot_id); 1426 break; 1427 case TRB_STOP_RING: 1428 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1429 le32_to_cpu(cmd_trb->generic.field[3]))); 1430 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1431 break; 1432 case TRB_SET_DEQ: 1433 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1434 le32_to_cpu(cmd_trb->generic.field[3]))); 1435 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1436 break; 1437 case TRB_CMD_NOOP: 1438 /* Is this an aborted command turned to NO-OP? */ 1439 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1440 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1441 break; 1442 case TRB_RESET_EP: 1443 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1444 le32_to_cpu(cmd_trb->generic.field[3]))); 1445 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1446 break; 1447 case TRB_RESET_DEV: 1448 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1449 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1450 */ 1451 slot_id = TRB_TO_SLOT_ID( 1452 le32_to_cpu(cmd_trb->generic.field[3])); 1453 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1454 break; 1455 case TRB_NEC_GET_FW: 1456 xhci_handle_cmd_nec_get_fw(xhci, event); 1457 break; 1458 default: 1459 /* Skip over unknown commands on the event ring */ 1460 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1461 break; 1462 } 1463 1464 /* restart timer if this wasn't the last command */ 1465 if (!list_is_singular(&xhci->cmd_list)) { 1466 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1467 struct xhci_command, cmd_list); 1468 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1469 } else if (xhci->current_cmd == cmd) { 1470 xhci->current_cmd = NULL; 1471 } 1472 1473 event_handled: 1474 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1475 1476 inc_deq(xhci, xhci->cmd_ring); 1477 } 1478 1479 static void handle_vendor_event(struct xhci_hcd *xhci, 1480 union xhci_trb *event) 1481 { 1482 u32 trb_type; 1483 1484 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1485 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1486 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1487 handle_cmd_completion(xhci, &event->event_cmd); 1488 } 1489 1490 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1491 * port registers -- USB 3.0 and USB 2.0). 1492 * 1493 * Returns a zero-based port number, which is suitable for indexing into each of 1494 * the split roothubs' port arrays and bus state arrays. 1495 * Add one to it in order to call xhci_find_slot_id_by_port. 1496 */ 1497 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1498 struct xhci_hcd *xhci, u32 port_id) 1499 { 1500 unsigned int i; 1501 unsigned int num_similar_speed_ports = 0; 1502 1503 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1504 * and usb2_ports are 0-based indexes. Count the number of similar 1505 * speed ports, up to 1 port before this port. 1506 */ 1507 for (i = 0; i < (port_id - 1); i++) { 1508 u8 port_speed = xhci->port_array[i]; 1509 1510 /* 1511 * Skip ports that don't have known speeds, or have duplicate 1512 * Extended Capabilities port speed entries. 1513 */ 1514 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1515 continue; 1516 1517 /* 1518 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1519 * 1.1 ports are under the USB 2.0 hub. If the port speed 1520 * matches the device speed, it's a similar speed port. 1521 */ 1522 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1523 num_similar_speed_ports++; 1524 } 1525 return num_similar_speed_ports; 1526 } 1527 1528 static void handle_device_notification(struct xhci_hcd *xhci, 1529 union xhci_trb *event) 1530 { 1531 u32 slot_id; 1532 struct usb_device *udev; 1533 1534 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1535 if (!xhci->devs[slot_id]) { 1536 xhci_warn(xhci, "Device Notification event for " 1537 "unused slot %u\n", slot_id); 1538 return; 1539 } 1540 1541 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1542 slot_id); 1543 udev = xhci->devs[slot_id]->udev; 1544 if (udev && udev->parent) 1545 usb_wakeup_notification(udev->parent, udev->portnum); 1546 } 1547 1548 static void handle_port_status(struct xhci_hcd *xhci, 1549 union xhci_trb *event) 1550 { 1551 struct usb_hcd *hcd; 1552 u32 port_id; 1553 u32 temp, temp1; 1554 int max_ports; 1555 int slot_id; 1556 unsigned int faked_port_index; 1557 u8 major_revision; 1558 struct xhci_bus_state *bus_state; 1559 __le32 __iomem **port_array; 1560 bool bogus_port_status = false; 1561 1562 /* Port status change events always have a successful completion code */ 1563 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1564 xhci_warn(xhci, 1565 "WARN: xHC returned failed port status event\n"); 1566 1567 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1568 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1569 1570 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1571 if ((port_id <= 0) || (port_id > max_ports)) { 1572 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1573 inc_deq(xhci, xhci->event_ring); 1574 return; 1575 } 1576 1577 /* Figure out which usb_hcd this port is attached to: 1578 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1579 */ 1580 major_revision = xhci->port_array[port_id - 1]; 1581 1582 /* Find the right roothub. */ 1583 hcd = xhci_to_hcd(xhci); 1584 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1585 hcd = xhci->shared_hcd; 1586 1587 if (major_revision == 0) { 1588 xhci_warn(xhci, "Event for port %u not in " 1589 "Extended Capabilities, ignoring.\n", 1590 port_id); 1591 bogus_port_status = true; 1592 goto cleanup; 1593 } 1594 if (major_revision == DUPLICATE_ENTRY) { 1595 xhci_warn(xhci, "Event for port %u duplicated in" 1596 "Extended Capabilities, ignoring.\n", 1597 port_id); 1598 bogus_port_status = true; 1599 goto cleanup; 1600 } 1601 1602 /* 1603 * Hardware port IDs reported by a Port Status Change Event include USB 1604 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1605 * resume event, but we first need to translate the hardware port ID 1606 * into the index into the ports on the correct split roothub, and the 1607 * correct bus_state structure. 1608 */ 1609 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1610 if (hcd->speed >= HCD_USB3) 1611 port_array = xhci->usb3_ports; 1612 else 1613 port_array = xhci->usb2_ports; 1614 /* Find the faked port hub number */ 1615 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1616 port_id); 1617 1618 temp = readl(port_array[faked_port_index]); 1619 if (hcd->state == HC_STATE_SUSPENDED) { 1620 xhci_dbg(xhci, "resume root hub\n"); 1621 usb_hcd_resume_root_hub(hcd); 1622 } 1623 1624 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1625 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1626 1627 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1628 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1629 1630 temp1 = readl(&xhci->op_regs->command); 1631 if (!(temp1 & CMD_RUN)) { 1632 xhci_warn(xhci, "xHC is not running.\n"); 1633 goto cleanup; 1634 } 1635 1636 if (DEV_SUPERSPEED_ANY(temp)) { 1637 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1638 /* Set a flag to say the port signaled remote wakeup, 1639 * so we can tell the difference between the end of 1640 * device and host initiated resume. 1641 */ 1642 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1643 xhci_test_and_clear_bit(xhci, port_array, 1644 faked_port_index, PORT_PLC); 1645 xhci_set_link_state(xhci, port_array, faked_port_index, 1646 XDEV_U0); 1647 /* Need to wait until the next link state change 1648 * indicates the device is actually in U0. 1649 */ 1650 bogus_port_status = true; 1651 goto cleanup; 1652 } else if (!test_bit(faked_port_index, 1653 &bus_state->resuming_ports)) { 1654 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1655 bus_state->resume_done[faked_port_index] = jiffies + 1656 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1657 set_bit(faked_port_index, &bus_state->resuming_ports); 1658 mod_timer(&hcd->rh_timer, 1659 bus_state->resume_done[faked_port_index]); 1660 /* Do the rest in GetPortStatus */ 1661 } 1662 } 1663 1664 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1665 DEV_SUPERSPEED_ANY(temp)) { 1666 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1667 /* We've just brought the device into U0 through either the 1668 * Resume state after a device remote wakeup, or through the 1669 * U3Exit state after a host-initiated resume. If it's a device 1670 * initiated remote wake, don't pass up the link state change, 1671 * so the roothub behavior is consistent with external 1672 * USB 3.0 hub behavior. 1673 */ 1674 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1675 faked_port_index + 1); 1676 if (slot_id && xhci->devs[slot_id]) 1677 xhci_ring_device(xhci, slot_id); 1678 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1679 bus_state->port_remote_wakeup &= 1680 ~(1 << faked_port_index); 1681 xhci_test_and_clear_bit(xhci, port_array, 1682 faked_port_index, PORT_PLC); 1683 usb_wakeup_notification(hcd->self.root_hub, 1684 faked_port_index + 1); 1685 bogus_port_status = true; 1686 goto cleanup; 1687 } 1688 } 1689 1690 /* 1691 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1692 * RExit to a disconnect state). If so, let the the driver know it's 1693 * out of the RExit state. 1694 */ 1695 if (!DEV_SUPERSPEED_ANY(temp) && 1696 test_and_clear_bit(faked_port_index, 1697 &bus_state->rexit_ports)) { 1698 complete(&bus_state->rexit_done[faked_port_index]); 1699 bogus_port_status = true; 1700 goto cleanup; 1701 } 1702 1703 if (hcd->speed < HCD_USB3) 1704 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1705 PORT_PLC); 1706 1707 cleanup: 1708 /* Update event ring dequeue pointer before dropping the lock */ 1709 inc_deq(xhci, xhci->event_ring); 1710 1711 /* Don't make the USB core poll the roothub if we got a bad port status 1712 * change event. Besides, at that point we can't tell which roothub 1713 * (USB 2.0 or USB 3.0) to kick. 1714 */ 1715 if (bogus_port_status) 1716 return; 1717 1718 /* 1719 * xHCI port-status-change events occur when the "or" of all the 1720 * status-change bits in the portsc register changes from 0 to 1. 1721 * New status changes won't cause an event if any other change 1722 * bits are still set. When an event occurs, switch over to 1723 * polling to avoid losing status changes. 1724 */ 1725 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1726 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1727 spin_unlock(&xhci->lock); 1728 /* Pass this up to the core */ 1729 usb_hcd_poll_rh_status(hcd); 1730 spin_lock(&xhci->lock); 1731 } 1732 1733 /* 1734 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1735 * at end_trb, which may be in another segment. If the suspect DMA address is a 1736 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1737 * returns 0. 1738 */ 1739 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1740 struct xhci_segment *start_seg, 1741 union xhci_trb *start_trb, 1742 union xhci_trb *end_trb, 1743 dma_addr_t suspect_dma, 1744 bool debug) 1745 { 1746 dma_addr_t start_dma; 1747 dma_addr_t end_seg_dma; 1748 dma_addr_t end_trb_dma; 1749 struct xhci_segment *cur_seg; 1750 1751 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1752 cur_seg = start_seg; 1753 1754 do { 1755 if (start_dma == 0) 1756 return NULL; 1757 /* We may get an event for a Link TRB in the middle of a TD */ 1758 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1759 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1760 /* If the end TRB isn't in this segment, this is set to 0 */ 1761 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1762 1763 if (debug) 1764 xhci_warn(xhci, 1765 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1766 (unsigned long long)suspect_dma, 1767 (unsigned long long)start_dma, 1768 (unsigned long long)end_trb_dma, 1769 (unsigned long long)cur_seg->dma, 1770 (unsigned long long)end_seg_dma); 1771 1772 if (end_trb_dma > 0) { 1773 /* The end TRB is in this segment, so suspect should be here */ 1774 if (start_dma <= end_trb_dma) { 1775 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1776 return cur_seg; 1777 } else { 1778 /* Case for one segment with 1779 * a TD wrapped around to the top 1780 */ 1781 if ((suspect_dma >= start_dma && 1782 suspect_dma <= end_seg_dma) || 1783 (suspect_dma >= cur_seg->dma && 1784 suspect_dma <= end_trb_dma)) 1785 return cur_seg; 1786 } 1787 return NULL; 1788 } else { 1789 /* Might still be somewhere in this segment */ 1790 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1791 return cur_seg; 1792 } 1793 cur_seg = cur_seg->next; 1794 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1795 } while (cur_seg != start_seg); 1796 1797 return NULL; 1798 } 1799 1800 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1801 unsigned int slot_id, unsigned int ep_index, 1802 unsigned int stream_id, 1803 struct xhci_td *td, union xhci_trb *ep_trb) 1804 { 1805 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1806 struct xhci_command *command; 1807 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1808 if (!command) 1809 return; 1810 1811 ep->ep_state |= EP_HALTED; 1812 ep->stopped_stream = stream_id; 1813 1814 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1815 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1816 1817 ep->stopped_stream = 0; 1818 1819 xhci_ring_cmd_db(xhci); 1820 } 1821 1822 /* Check if an error has halted the endpoint ring. The class driver will 1823 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1824 * However, a babble and other errors also halt the endpoint ring, and the class 1825 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1826 * Ring Dequeue Pointer command manually. 1827 */ 1828 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1829 struct xhci_ep_ctx *ep_ctx, 1830 unsigned int trb_comp_code) 1831 { 1832 /* TRB completion codes that may require a manual halt cleanup */ 1833 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1834 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1835 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1836 /* The 0.95 spec says a babbling control endpoint 1837 * is not halted. The 0.96 spec says it is. Some HW 1838 * claims to be 0.95 compliant, but it halts the control 1839 * endpoint anyway. Check if a babble halted the 1840 * endpoint. 1841 */ 1842 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1843 return 1; 1844 1845 return 0; 1846 } 1847 1848 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1849 { 1850 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1851 /* Vendor defined "informational" completion code, 1852 * treat as not-an-error. 1853 */ 1854 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1855 trb_comp_code); 1856 xhci_dbg(xhci, "Treating code as success.\n"); 1857 return 1; 1858 } 1859 return 0; 1860 } 1861 1862 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1863 struct xhci_ring *ep_ring, int *status) 1864 { 1865 struct urb_priv *urb_priv; 1866 struct urb *urb = NULL; 1867 1868 /* Clean up the endpoint's TD list */ 1869 urb = td->urb; 1870 urb_priv = urb->hcpriv; 1871 1872 /* if a bounce buffer was used to align this td then unmap it */ 1873 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1874 1875 /* Do one last check of the actual transfer length. 1876 * If the host controller said we transferred more data than the buffer 1877 * length, urb->actual_length will be a very big number (since it's 1878 * unsigned). Play it safe and say we didn't transfer anything. 1879 */ 1880 if (urb->actual_length > urb->transfer_buffer_length) { 1881 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1882 urb->transfer_buffer_length, urb->actual_length); 1883 urb->actual_length = 0; 1884 *status = 0; 1885 } 1886 list_del_init(&td->td_list); 1887 /* Was this TD slated to be cancelled but completed anyway? */ 1888 if (!list_empty(&td->cancelled_td_list)) 1889 list_del_init(&td->cancelled_td_list); 1890 1891 inc_td_cnt(urb); 1892 /* Giveback the urb when all the tds are completed */ 1893 if (last_td_in_urb(td)) { 1894 if ((urb->actual_length != urb->transfer_buffer_length && 1895 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1896 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1897 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1898 urb, urb->actual_length, 1899 urb->transfer_buffer_length, *status); 1900 1901 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1902 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1903 *status = 0; 1904 xhci_giveback_urb_in_irq(xhci, td, *status); 1905 } 1906 1907 return 0; 1908 } 1909 1910 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1911 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1912 struct xhci_virt_ep *ep, int *status, bool skip) 1913 { 1914 struct xhci_virt_device *xdev; 1915 struct xhci_ep_ctx *ep_ctx; 1916 struct xhci_ring *ep_ring; 1917 unsigned int slot_id; 1918 u32 trb_comp_code; 1919 int ep_index; 1920 1921 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1922 xdev = xhci->devs[slot_id]; 1923 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1924 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1925 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1926 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1927 1928 if (skip) 1929 goto td_cleanup; 1930 1931 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1932 trb_comp_code == COMP_STOPPED || 1933 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1934 /* The Endpoint Stop Command completion will take care of any 1935 * stopped TDs. A stopped TD may be restarted, so don't update 1936 * the ring dequeue pointer or take this TD off any lists yet. 1937 */ 1938 ep->stopped_td = td; 1939 return 0; 1940 } 1941 if (trb_comp_code == COMP_STALL_ERROR || 1942 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1943 trb_comp_code)) { 1944 /* Issue a reset endpoint command to clear the host side 1945 * halt, followed by a set dequeue command to move the 1946 * dequeue pointer past the TD. 1947 * The class driver clears the device side halt later. 1948 */ 1949 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1950 ep_ring->stream_id, td, ep_trb); 1951 } else { 1952 /* Update ring dequeue pointer */ 1953 while (ep_ring->dequeue != td->last_trb) 1954 inc_deq(xhci, ep_ring); 1955 inc_deq(xhci, ep_ring); 1956 } 1957 1958 td_cleanup: 1959 return xhci_td_cleanup(xhci, td, ep_ring, status); 1960 } 1961 1962 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1963 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1964 union xhci_trb *stop_trb) 1965 { 1966 u32 sum; 1967 union xhci_trb *trb = ring->dequeue; 1968 struct xhci_segment *seg = ring->deq_seg; 1969 1970 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1971 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1972 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1973 } 1974 return sum; 1975 } 1976 1977 /* 1978 * Process control tds, update urb status and actual_length. 1979 */ 1980 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1981 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1982 struct xhci_virt_ep *ep, int *status) 1983 { 1984 struct xhci_virt_device *xdev; 1985 struct xhci_ring *ep_ring; 1986 unsigned int slot_id; 1987 int ep_index; 1988 struct xhci_ep_ctx *ep_ctx; 1989 u32 trb_comp_code; 1990 u32 remaining, requested; 1991 u32 trb_type; 1992 1993 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1994 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1995 xdev = xhci->devs[slot_id]; 1996 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1997 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1998 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1999 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2000 requested = td->urb->transfer_buffer_length; 2001 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2002 2003 switch (trb_comp_code) { 2004 case COMP_SUCCESS: 2005 if (trb_type != TRB_STATUS) { 2006 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2007 (trb_type == TRB_DATA) ? "data" : "setup"); 2008 *status = -ESHUTDOWN; 2009 break; 2010 } 2011 *status = 0; 2012 break; 2013 case COMP_SHORT_PACKET: 2014 *status = 0; 2015 break; 2016 case COMP_STOPPED_SHORT_PACKET: 2017 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2018 td->urb->actual_length = remaining; 2019 else 2020 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2021 goto finish_td; 2022 case COMP_STOPPED: 2023 switch (trb_type) { 2024 case TRB_SETUP: 2025 td->urb->actual_length = 0; 2026 goto finish_td; 2027 case TRB_DATA: 2028 case TRB_NORMAL: 2029 td->urb->actual_length = requested - remaining; 2030 goto finish_td; 2031 case TRB_STATUS: 2032 td->urb->actual_length = requested; 2033 goto finish_td; 2034 default: 2035 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2036 trb_type); 2037 goto finish_td; 2038 } 2039 case COMP_STOPPED_LENGTH_INVALID: 2040 goto finish_td; 2041 default: 2042 if (!xhci_requires_manual_halt_cleanup(xhci, 2043 ep_ctx, trb_comp_code)) 2044 break; 2045 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2046 trb_comp_code, ep_index); 2047 /* else fall through */ 2048 case COMP_STALL_ERROR: 2049 /* Did we transfer part of the data (middle) phase? */ 2050 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2051 td->urb->actual_length = requested - remaining; 2052 else if (!td->urb_length_set) 2053 td->urb->actual_length = 0; 2054 goto finish_td; 2055 } 2056 2057 /* stopped at setup stage, no data transferred */ 2058 if (trb_type == TRB_SETUP) 2059 goto finish_td; 2060 2061 /* 2062 * if on data stage then update the actual_length of the URB and flag it 2063 * as set, so it won't be overwritten in the event for the last TRB. 2064 */ 2065 if (trb_type == TRB_DATA || 2066 trb_type == TRB_NORMAL) { 2067 td->urb_length_set = true; 2068 td->urb->actual_length = requested - remaining; 2069 xhci_dbg(xhci, "Waiting for status stage event\n"); 2070 return 0; 2071 } 2072 2073 /* at status stage */ 2074 if (!td->urb_length_set) 2075 td->urb->actual_length = requested; 2076 2077 finish_td: 2078 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2079 } 2080 2081 /* 2082 * Process isochronous tds, update urb packet status and actual_length. 2083 */ 2084 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2085 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2086 struct xhci_virt_ep *ep, int *status) 2087 { 2088 struct xhci_ring *ep_ring; 2089 struct urb_priv *urb_priv; 2090 int idx; 2091 struct usb_iso_packet_descriptor *frame; 2092 u32 trb_comp_code; 2093 bool sum_trbs_for_length = false; 2094 u32 remaining, requested, ep_trb_len; 2095 int short_framestatus; 2096 2097 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2098 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2099 urb_priv = td->urb->hcpriv; 2100 idx = urb_priv->num_tds_done; 2101 frame = &td->urb->iso_frame_desc[idx]; 2102 requested = frame->length; 2103 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2104 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2105 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2106 -EREMOTEIO : 0; 2107 2108 /* handle completion code */ 2109 switch (trb_comp_code) { 2110 case COMP_SUCCESS: 2111 if (remaining) { 2112 frame->status = short_framestatus; 2113 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2114 sum_trbs_for_length = true; 2115 break; 2116 } 2117 frame->status = 0; 2118 break; 2119 case COMP_SHORT_PACKET: 2120 frame->status = short_framestatus; 2121 sum_trbs_for_length = true; 2122 break; 2123 case COMP_BANDWIDTH_OVERRUN_ERROR: 2124 frame->status = -ECOMM; 2125 break; 2126 case COMP_ISOCH_BUFFER_OVERRUN: 2127 case COMP_BABBLE_DETECTED_ERROR: 2128 frame->status = -EOVERFLOW; 2129 break; 2130 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2131 case COMP_STALL_ERROR: 2132 frame->status = -EPROTO; 2133 break; 2134 case COMP_USB_TRANSACTION_ERROR: 2135 frame->status = -EPROTO; 2136 if (ep_trb != td->last_trb) 2137 return 0; 2138 break; 2139 case COMP_STOPPED: 2140 sum_trbs_for_length = true; 2141 break; 2142 case COMP_STOPPED_SHORT_PACKET: 2143 /* field normally containing residue now contains tranferred */ 2144 frame->status = short_framestatus; 2145 requested = remaining; 2146 break; 2147 case COMP_STOPPED_LENGTH_INVALID: 2148 requested = 0; 2149 remaining = 0; 2150 break; 2151 default: 2152 sum_trbs_for_length = true; 2153 frame->status = -1; 2154 break; 2155 } 2156 2157 if (sum_trbs_for_length) 2158 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2159 ep_trb_len - remaining; 2160 else 2161 frame->actual_length = requested; 2162 2163 td->urb->actual_length += frame->actual_length; 2164 2165 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2166 } 2167 2168 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2169 struct xhci_transfer_event *event, 2170 struct xhci_virt_ep *ep, int *status) 2171 { 2172 struct xhci_ring *ep_ring; 2173 struct urb_priv *urb_priv; 2174 struct usb_iso_packet_descriptor *frame; 2175 int idx; 2176 2177 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2178 urb_priv = td->urb->hcpriv; 2179 idx = urb_priv->num_tds_done; 2180 frame = &td->urb->iso_frame_desc[idx]; 2181 2182 /* The transfer is partly done. */ 2183 frame->status = -EXDEV; 2184 2185 /* calc actual length */ 2186 frame->actual_length = 0; 2187 2188 /* Update ring dequeue pointer */ 2189 while (ep_ring->dequeue != td->last_trb) 2190 inc_deq(xhci, ep_ring); 2191 inc_deq(xhci, ep_ring); 2192 2193 return finish_td(xhci, td, NULL, event, ep, status, true); 2194 } 2195 2196 /* 2197 * Process bulk and interrupt tds, update urb status and actual_length. 2198 */ 2199 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2200 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2201 struct xhci_virt_ep *ep, int *status) 2202 { 2203 struct xhci_ring *ep_ring; 2204 u32 trb_comp_code; 2205 u32 remaining, requested, ep_trb_len; 2206 2207 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2208 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2209 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2210 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2211 requested = td->urb->transfer_buffer_length; 2212 2213 switch (trb_comp_code) { 2214 case COMP_SUCCESS: 2215 /* handle success with untransferred data as short packet */ 2216 if (ep_trb != td->last_trb || remaining) { 2217 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2218 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2219 td->urb->ep->desc.bEndpointAddress, 2220 requested, remaining); 2221 } 2222 *status = 0; 2223 break; 2224 case COMP_SHORT_PACKET: 2225 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2226 td->urb->ep->desc.bEndpointAddress, 2227 requested, remaining); 2228 *status = 0; 2229 break; 2230 case COMP_STOPPED_SHORT_PACKET: 2231 td->urb->actual_length = remaining; 2232 goto finish_td; 2233 case COMP_STOPPED_LENGTH_INVALID: 2234 /* stopped on ep trb with invalid length, exclude it */ 2235 ep_trb_len = 0; 2236 remaining = 0; 2237 break; 2238 default: 2239 /* do nothing */ 2240 break; 2241 } 2242 2243 if (ep_trb == td->last_trb) 2244 td->urb->actual_length = requested - remaining; 2245 else 2246 td->urb->actual_length = 2247 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2248 ep_trb_len - remaining; 2249 finish_td: 2250 if (remaining > requested) { 2251 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2252 remaining); 2253 td->urb->actual_length = 0; 2254 } 2255 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2256 } 2257 2258 /* 2259 * If this function returns an error condition, it means it got a Transfer 2260 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2261 * At this point, the host controller is probably hosed and should be reset. 2262 */ 2263 static int handle_tx_event(struct xhci_hcd *xhci, 2264 struct xhci_transfer_event *event) 2265 { 2266 struct xhci_virt_device *xdev; 2267 struct xhci_virt_ep *ep; 2268 struct xhci_ring *ep_ring; 2269 unsigned int slot_id; 2270 int ep_index; 2271 struct xhci_td *td = NULL; 2272 dma_addr_t ep_trb_dma; 2273 struct xhci_segment *ep_seg; 2274 union xhci_trb *ep_trb; 2275 int status = -EINPROGRESS; 2276 struct xhci_ep_ctx *ep_ctx; 2277 struct list_head *tmp; 2278 u32 trb_comp_code; 2279 int td_num = 0; 2280 bool handling_skipped_tds = false; 2281 2282 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2283 xdev = xhci->devs[slot_id]; 2284 if (!xdev) { 2285 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2286 slot_id); 2287 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2288 (unsigned long long) xhci_trb_virt_to_dma( 2289 xhci->event_ring->deq_seg, 2290 xhci->event_ring->dequeue), 2291 lower_32_bits(le64_to_cpu(event->buffer)), 2292 upper_32_bits(le64_to_cpu(event->buffer)), 2293 le32_to_cpu(event->transfer_len), 2294 le32_to_cpu(event->flags)); 2295 return -ENODEV; 2296 } 2297 2298 /* Endpoint ID is 1 based, our index is zero based */ 2299 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2300 ep = &xdev->eps[ep_index]; 2301 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2302 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2303 if (!ep_ring || GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2304 xhci_err(xhci, 2305 "ERROR Transfer event for disabled endpoint slot %u ep %u or incorrect stream ring\n", 2306 slot_id, ep_index); 2307 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2308 (unsigned long long) xhci_trb_virt_to_dma( 2309 xhci->event_ring->deq_seg, 2310 xhci->event_ring->dequeue), 2311 lower_32_bits(le64_to_cpu(event->buffer)), 2312 upper_32_bits(le64_to_cpu(event->buffer)), 2313 le32_to_cpu(event->transfer_len), 2314 le32_to_cpu(event->flags)); 2315 return -ENODEV; 2316 } 2317 2318 /* Count current td numbers if ep->skip is set */ 2319 if (ep->skip) { 2320 list_for_each(tmp, &ep_ring->td_list) 2321 td_num++; 2322 } 2323 2324 ep_trb_dma = le64_to_cpu(event->buffer); 2325 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2326 /* Look for common error cases */ 2327 switch (trb_comp_code) { 2328 /* Skip codes that require special handling depending on 2329 * transfer type 2330 */ 2331 case COMP_SUCCESS: 2332 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2333 break; 2334 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2335 trb_comp_code = COMP_SHORT_PACKET; 2336 else 2337 xhci_warn_ratelimited(xhci, 2338 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2339 slot_id, ep_index); 2340 case COMP_SHORT_PACKET: 2341 break; 2342 case COMP_STOPPED: 2343 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2344 slot_id, ep_index); 2345 break; 2346 case COMP_STOPPED_LENGTH_INVALID: 2347 xhci_dbg(xhci, 2348 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2349 slot_id, ep_index); 2350 break; 2351 case COMP_STOPPED_SHORT_PACKET: 2352 xhci_dbg(xhci, 2353 "Stopped with short packet transfer detected for slot %u ep %u\n", 2354 slot_id, ep_index); 2355 break; 2356 case COMP_STALL_ERROR: 2357 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2358 ep_index); 2359 ep->ep_state |= EP_HALTED; 2360 status = -EPIPE; 2361 break; 2362 case COMP_TRB_ERROR: 2363 xhci_warn(xhci, 2364 "WARN: TRB error for slot %u ep %u on endpoint\n", 2365 slot_id, ep_index); 2366 status = -EILSEQ; 2367 break; 2368 case COMP_SPLIT_TRANSACTION_ERROR: 2369 case COMP_USB_TRANSACTION_ERROR: 2370 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2371 slot_id, ep_index); 2372 status = -EPROTO; 2373 break; 2374 case COMP_BABBLE_DETECTED_ERROR: 2375 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2376 slot_id, ep_index); 2377 status = -EOVERFLOW; 2378 break; 2379 case COMP_DATA_BUFFER_ERROR: 2380 xhci_warn(xhci, 2381 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2382 slot_id, ep_index); 2383 status = -ENOSR; 2384 break; 2385 case COMP_BANDWIDTH_OVERRUN_ERROR: 2386 xhci_warn(xhci, 2387 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2388 slot_id, ep_index); 2389 break; 2390 case COMP_ISOCH_BUFFER_OVERRUN: 2391 xhci_warn(xhci, 2392 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2393 slot_id, ep_index); 2394 break; 2395 case COMP_RING_UNDERRUN: 2396 /* 2397 * When the Isoch ring is empty, the xHC will generate 2398 * a Ring Overrun Event for IN Isoch endpoint or Ring 2399 * Underrun Event for OUT Isoch endpoint. 2400 */ 2401 xhci_dbg(xhci, "underrun event on endpoint\n"); 2402 if (!list_empty(&ep_ring->td_list)) 2403 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2404 "still with TDs queued?\n", 2405 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2406 ep_index); 2407 goto cleanup; 2408 case COMP_RING_OVERRUN: 2409 xhci_dbg(xhci, "overrun event on endpoint\n"); 2410 if (!list_empty(&ep_ring->td_list)) 2411 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2412 "still with TDs queued?\n", 2413 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2414 ep_index); 2415 goto cleanup; 2416 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2417 xhci_warn(xhci, 2418 "WARN: detect an incompatible device for slot %u ep %u", 2419 slot_id, ep_index); 2420 status = -EPROTO; 2421 break; 2422 case COMP_MISSED_SERVICE_ERROR: 2423 /* 2424 * When encounter missed service error, one or more isoc tds 2425 * may be missed by xHC. 2426 * Set skip flag of the ep_ring; Complete the missed tds as 2427 * short transfer when process the ep_ring next time. 2428 */ 2429 ep->skip = true; 2430 xhci_dbg(xhci, 2431 "Miss service interval error for slot %u ep %u, set skip flag\n", 2432 slot_id, ep_index); 2433 goto cleanup; 2434 case COMP_NO_PING_RESPONSE_ERROR: 2435 ep->skip = true; 2436 xhci_dbg(xhci, 2437 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2438 slot_id, ep_index); 2439 goto cleanup; 2440 default: 2441 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2442 status = 0; 2443 break; 2444 } 2445 xhci_warn(xhci, 2446 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2447 trb_comp_code, slot_id, ep_index); 2448 goto cleanup; 2449 } 2450 2451 do { 2452 /* This TRB should be in the TD at the head of this ring's 2453 * TD list. 2454 */ 2455 if (list_empty(&ep_ring->td_list)) { 2456 /* 2457 * A stopped endpoint may generate an extra completion 2458 * event if the device was suspended. Don't print 2459 * warnings. 2460 */ 2461 if (!(trb_comp_code == COMP_STOPPED || 2462 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2463 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2464 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2465 ep_index); 2466 } 2467 if (ep->skip) { 2468 ep->skip = false; 2469 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2470 slot_id, ep_index); 2471 } 2472 goto cleanup; 2473 } 2474 2475 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2476 if (ep->skip && td_num == 0) { 2477 ep->skip = false; 2478 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2479 slot_id, ep_index); 2480 goto cleanup; 2481 } 2482 2483 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2484 td_list); 2485 if (ep->skip) 2486 td_num--; 2487 2488 /* Is this a TRB in the currently executing TD? */ 2489 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2490 td->last_trb, ep_trb_dma, false); 2491 2492 /* 2493 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2494 * is not in the current TD pointed by ep_ring->dequeue because 2495 * that the hardware dequeue pointer still at the previous TRB 2496 * of the current TD. The previous TRB maybe a Link TD or the 2497 * last TRB of the previous TD. The command completion handle 2498 * will take care the rest. 2499 */ 2500 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2501 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2502 goto cleanup; 2503 } 2504 2505 if (!ep_seg) { 2506 if (!ep->skip || 2507 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2508 /* Some host controllers give a spurious 2509 * successful event after a short transfer. 2510 * Ignore it. 2511 */ 2512 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2513 ep_ring->last_td_was_short) { 2514 ep_ring->last_td_was_short = false; 2515 goto cleanup; 2516 } 2517 /* HC is busted, give up! */ 2518 xhci_err(xhci, 2519 "ERROR Transfer event TRB DMA ptr not " 2520 "part of current TD ep_index %d " 2521 "comp_code %u\n", ep_index, 2522 trb_comp_code); 2523 trb_in_td(xhci, ep_ring->deq_seg, 2524 ep_ring->dequeue, td->last_trb, 2525 ep_trb_dma, true); 2526 return -ESHUTDOWN; 2527 } 2528 2529 skip_isoc_td(xhci, td, event, ep, &status); 2530 goto cleanup; 2531 } 2532 if (trb_comp_code == COMP_SHORT_PACKET) 2533 ep_ring->last_td_was_short = true; 2534 else 2535 ep_ring->last_td_was_short = false; 2536 2537 if (ep->skip) { 2538 xhci_dbg(xhci, 2539 "Found td. Clear skip flag for slot %u ep %u.\n", 2540 slot_id, ep_index); 2541 ep->skip = false; 2542 } 2543 2544 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2545 sizeof(*ep_trb)]; 2546 2547 trace_xhci_handle_transfer(ep_ring, 2548 (struct xhci_generic_trb *) ep_trb); 2549 2550 /* 2551 * No-op TRB should not trigger interrupts. 2552 * If ep_trb is a no-op TRB, it means the 2553 * corresponding TD has been cancelled. Just ignore 2554 * the TD. 2555 */ 2556 if (trb_is_noop(ep_trb)) { 2557 xhci_dbg(xhci, 2558 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n", 2559 slot_id, ep_index); 2560 goto cleanup; 2561 } 2562 2563 /* update the urb's actual_length and give back to the core */ 2564 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2565 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2566 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2567 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2568 else 2569 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2570 &status); 2571 cleanup: 2572 handling_skipped_tds = ep->skip && 2573 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2574 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2575 2576 /* 2577 * Do not update event ring dequeue pointer if we're in a loop 2578 * processing missed tds. 2579 */ 2580 if (!handling_skipped_tds) 2581 inc_deq(xhci, xhci->event_ring); 2582 2583 /* 2584 * If ep->skip is set, it means there are missed tds on the 2585 * endpoint ring need to take care of. 2586 * Process them as short transfer until reach the td pointed by 2587 * the event. 2588 */ 2589 } while (handling_skipped_tds); 2590 2591 return 0; 2592 } 2593 2594 /* 2595 * This function handles all OS-owned events on the event ring. It may drop 2596 * xhci->lock between event processing (e.g. to pass up port status changes). 2597 * Returns >0 for "possibly more events to process" (caller should call again), 2598 * otherwise 0 if done. In future, <0 returns should indicate error code. 2599 */ 2600 static int xhci_handle_event(struct xhci_hcd *xhci) 2601 { 2602 union xhci_trb *event; 2603 int update_ptrs = 1; 2604 int ret; 2605 2606 /* Event ring hasn't been allocated yet. */ 2607 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2608 xhci_err(xhci, "ERROR event ring not ready\n"); 2609 return -ENOMEM; 2610 } 2611 2612 event = xhci->event_ring->dequeue; 2613 /* Does the HC or OS own the TRB? */ 2614 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2615 xhci->event_ring->cycle_state) 2616 return 0; 2617 2618 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2619 2620 /* 2621 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2622 * speculative reads of the event's flags/data below. 2623 */ 2624 rmb(); 2625 /* FIXME: Handle more event types. */ 2626 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2627 case TRB_TYPE(TRB_COMPLETION): 2628 handle_cmd_completion(xhci, &event->event_cmd); 2629 break; 2630 case TRB_TYPE(TRB_PORT_STATUS): 2631 handle_port_status(xhci, event); 2632 update_ptrs = 0; 2633 break; 2634 case TRB_TYPE(TRB_TRANSFER): 2635 ret = handle_tx_event(xhci, &event->trans_event); 2636 if (ret >= 0) 2637 update_ptrs = 0; 2638 break; 2639 case TRB_TYPE(TRB_DEV_NOTE): 2640 handle_device_notification(xhci, event); 2641 break; 2642 default: 2643 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2644 TRB_TYPE(48)) 2645 handle_vendor_event(xhci, event); 2646 else 2647 xhci_warn(xhci, "ERROR unknown event type %d\n", 2648 TRB_FIELD_TO_TYPE( 2649 le32_to_cpu(event->event_cmd.flags))); 2650 } 2651 /* Any of the above functions may drop and re-acquire the lock, so check 2652 * to make sure a watchdog timer didn't mark the host as non-responsive. 2653 */ 2654 if (xhci->xhc_state & XHCI_STATE_DYING) { 2655 xhci_dbg(xhci, "xHCI host dying, returning from " 2656 "event handler.\n"); 2657 return 0; 2658 } 2659 2660 if (update_ptrs) 2661 /* Update SW event ring dequeue pointer */ 2662 inc_deq(xhci, xhci->event_ring); 2663 2664 /* Are there more items on the event ring? Caller will call us again to 2665 * check. 2666 */ 2667 return 1; 2668 } 2669 2670 /* 2671 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2672 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2673 * indicators of an event TRB error, but we check the status *first* to be safe. 2674 */ 2675 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2676 { 2677 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2678 union xhci_trb *event_ring_deq; 2679 irqreturn_t ret = IRQ_NONE; 2680 unsigned long flags; 2681 dma_addr_t deq; 2682 u64 temp_64; 2683 u32 status; 2684 2685 spin_lock_irqsave(&xhci->lock, flags); 2686 /* Check if the xHC generated the interrupt, or the irq is shared */ 2687 status = readl(&xhci->op_regs->status); 2688 if (status == ~(u32)0) { 2689 xhci_hc_died(xhci); 2690 ret = IRQ_HANDLED; 2691 goto out; 2692 } 2693 2694 if (!(status & STS_EINT)) 2695 goto out; 2696 2697 if (status & STS_FATAL) { 2698 xhci_warn(xhci, "WARNING: Host System Error\n"); 2699 xhci_halt(xhci); 2700 ret = IRQ_HANDLED; 2701 goto out; 2702 } 2703 2704 /* 2705 * Clear the op reg interrupt status first, 2706 * so we can receive interrupts from other MSI-X interrupters. 2707 * Write 1 to clear the interrupt status. 2708 */ 2709 status |= STS_EINT; 2710 writel(status, &xhci->op_regs->status); 2711 2712 if (!hcd->msi_enabled) { 2713 u32 irq_pending; 2714 irq_pending = readl(&xhci->ir_set->irq_pending); 2715 irq_pending |= IMAN_IP; 2716 writel(irq_pending, &xhci->ir_set->irq_pending); 2717 } 2718 2719 if (xhci->xhc_state & XHCI_STATE_DYING || 2720 xhci->xhc_state & XHCI_STATE_HALTED) { 2721 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2722 "Shouldn't IRQs be disabled?\n"); 2723 /* Clear the event handler busy flag (RW1C); 2724 * the event ring should be empty. 2725 */ 2726 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2727 xhci_write_64(xhci, temp_64 | ERST_EHB, 2728 &xhci->ir_set->erst_dequeue); 2729 ret = IRQ_HANDLED; 2730 goto out; 2731 } 2732 2733 event_ring_deq = xhci->event_ring->dequeue; 2734 /* FIXME this should be a delayed service routine 2735 * that clears the EHB. 2736 */ 2737 while (xhci_handle_event(xhci) > 0) {} 2738 2739 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2740 /* If necessary, update the HW's version of the event ring deq ptr. */ 2741 if (event_ring_deq != xhci->event_ring->dequeue) { 2742 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2743 xhci->event_ring->dequeue); 2744 if (deq == 0) 2745 xhci_warn(xhci, "WARN something wrong with SW event " 2746 "ring dequeue ptr.\n"); 2747 /* Update HC event ring dequeue pointer */ 2748 temp_64 &= ERST_PTR_MASK; 2749 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2750 } 2751 2752 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2753 temp_64 |= ERST_EHB; 2754 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2755 ret = IRQ_HANDLED; 2756 2757 out: 2758 spin_unlock_irqrestore(&xhci->lock, flags); 2759 2760 return ret; 2761 } 2762 2763 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2764 { 2765 return xhci_irq(hcd); 2766 } 2767 2768 /**** Endpoint Ring Operations ****/ 2769 2770 /* 2771 * Generic function for queueing a TRB on a ring. 2772 * The caller must have checked to make sure there's room on the ring. 2773 * 2774 * @more_trbs_coming: Will you enqueue more TRBs before calling 2775 * prepare_transfer()? 2776 */ 2777 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2778 bool more_trbs_coming, 2779 u32 field1, u32 field2, u32 field3, u32 field4) 2780 { 2781 struct xhci_generic_trb *trb; 2782 2783 trb = &ring->enqueue->generic; 2784 trb->field[0] = cpu_to_le32(field1); 2785 trb->field[1] = cpu_to_le32(field2); 2786 trb->field[2] = cpu_to_le32(field3); 2787 trb->field[3] = cpu_to_le32(field4); 2788 2789 trace_xhci_queue_trb(ring, trb); 2790 2791 inc_enq(xhci, ring, more_trbs_coming); 2792 } 2793 2794 /* 2795 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2796 * FIXME allocate segments if the ring is full. 2797 */ 2798 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2799 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2800 { 2801 unsigned int num_trbs_needed; 2802 2803 /* Make sure the endpoint has been added to xHC schedule */ 2804 switch (ep_state) { 2805 case EP_STATE_DISABLED: 2806 /* 2807 * USB core changed config/interfaces without notifying us, 2808 * or hardware is reporting the wrong state. 2809 */ 2810 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2811 return -ENOENT; 2812 case EP_STATE_ERROR: 2813 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2814 /* FIXME event handling code for error needs to clear it */ 2815 /* XXX not sure if this should be -ENOENT or not */ 2816 return -EINVAL; 2817 case EP_STATE_HALTED: 2818 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2819 case EP_STATE_STOPPED: 2820 case EP_STATE_RUNNING: 2821 break; 2822 default: 2823 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2824 /* 2825 * FIXME issue Configure Endpoint command to try to get the HC 2826 * back into a known state. 2827 */ 2828 return -EINVAL; 2829 } 2830 2831 while (1) { 2832 if (room_on_ring(xhci, ep_ring, num_trbs)) 2833 break; 2834 2835 if (ep_ring == xhci->cmd_ring) { 2836 xhci_err(xhci, "Do not support expand command ring\n"); 2837 return -ENOMEM; 2838 } 2839 2840 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2841 "ERROR no room on ep ring, try ring expansion"); 2842 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2843 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2844 mem_flags)) { 2845 xhci_err(xhci, "Ring expansion failed\n"); 2846 return -ENOMEM; 2847 } 2848 } 2849 2850 while (trb_is_link(ep_ring->enqueue)) { 2851 /* If we're not dealing with 0.95 hardware or isoc rings 2852 * on AMD 0.96 host, clear the chain bit. 2853 */ 2854 if (!xhci_link_trb_quirk(xhci) && 2855 !(ep_ring->type == TYPE_ISOC && 2856 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2857 ep_ring->enqueue->link.control &= 2858 cpu_to_le32(~TRB_CHAIN); 2859 else 2860 ep_ring->enqueue->link.control |= 2861 cpu_to_le32(TRB_CHAIN); 2862 2863 wmb(); 2864 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2865 2866 /* Toggle the cycle bit after the last ring segment. */ 2867 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2868 ep_ring->cycle_state ^= 1; 2869 2870 ep_ring->enq_seg = ep_ring->enq_seg->next; 2871 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2872 } 2873 return 0; 2874 } 2875 2876 static int prepare_transfer(struct xhci_hcd *xhci, 2877 struct xhci_virt_device *xdev, 2878 unsigned int ep_index, 2879 unsigned int stream_id, 2880 unsigned int num_trbs, 2881 struct urb *urb, 2882 unsigned int td_index, 2883 gfp_t mem_flags) 2884 { 2885 int ret; 2886 struct urb_priv *urb_priv; 2887 struct xhci_td *td; 2888 struct xhci_ring *ep_ring; 2889 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2890 2891 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2892 if (!ep_ring) { 2893 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2894 stream_id); 2895 return -EINVAL; 2896 } 2897 2898 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2899 num_trbs, mem_flags); 2900 if (ret) 2901 return ret; 2902 2903 urb_priv = urb->hcpriv; 2904 td = &urb_priv->td[td_index]; 2905 2906 INIT_LIST_HEAD(&td->td_list); 2907 INIT_LIST_HEAD(&td->cancelled_td_list); 2908 2909 if (td_index == 0) { 2910 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2911 if (unlikely(ret)) 2912 return ret; 2913 } 2914 2915 td->urb = urb; 2916 /* Add this TD to the tail of the endpoint ring's TD list */ 2917 list_add_tail(&td->td_list, &ep_ring->td_list); 2918 td->start_seg = ep_ring->enq_seg; 2919 td->first_trb = ep_ring->enqueue; 2920 2921 return 0; 2922 } 2923 2924 static unsigned int count_trbs(u64 addr, u64 len) 2925 { 2926 unsigned int num_trbs; 2927 2928 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2929 TRB_MAX_BUFF_SIZE); 2930 if (num_trbs == 0) 2931 num_trbs++; 2932 2933 return num_trbs; 2934 } 2935 2936 static inline unsigned int count_trbs_needed(struct urb *urb) 2937 { 2938 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2939 } 2940 2941 static unsigned int count_sg_trbs_needed(struct urb *urb) 2942 { 2943 struct scatterlist *sg; 2944 unsigned int i, len, full_len, num_trbs = 0; 2945 2946 full_len = urb->transfer_buffer_length; 2947 2948 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2949 len = sg_dma_len(sg); 2950 num_trbs += count_trbs(sg_dma_address(sg), len); 2951 len = min_t(unsigned int, len, full_len); 2952 full_len -= len; 2953 if (full_len == 0) 2954 break; 2955 } 2956 2957 return num_trbs; 2958 } 2959 2960 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2961 { 2962 u64 addr, len; 2963 2964 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2965 len = urb->iso_frame_desc[i].length; 2966 2967 return count_trbs(addr, len); 2968 } 2969 2970 static void check_trb_math(struct urb *urb, int running_total) 2971 { 2972 if (unlikely(running_total != urb->transfer_buffer_length)) 2973 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2974 "queued %#x (%d), asked for %#x (%d)\n", 2975 __func__, 2976 urb->ep->desc.bEndpointAddress, 2977 running_total, running_total, 2978 urb->transfer_buffer_length, 2979 urb->transfer_buffer_length); 2980 } 2981 2982 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2983 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2984 struct xhci_generic_trb *start_trb) 2985 { 2986 /* 2987 * Pass all the TRBs to the hardware at once and make sure this write 2988 * isn't reordered. 2989 */ 2990 wmb(); 2991 if (start_cycle) 2992 start_trb->field[3] |= cpu_to_le32(start_cycle); 2993 else 2994 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2995 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2996 } 2997 2998 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 2999 struct xhci_ep_ctx *ep_ctx) 3000 { 3001 int xhci_interval; 3002 int ep_interval; 3003 3004 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3005 ep_interval = urb->interval; 3006 3007 /* Convert to microframes */ 3008 if (urb->dev->speed == USB_SPEED_LOW || 3009 urb->dev->speed == USB_SPEED_FULL) 3010 ep_interval *= 8; 3011 3012 /* FIXME change this to a warning and a suggestion to use the new API 3013 * to set the polling interval (once the API is added). 3014 */ 3015 if (xhci_interval != ep_interval) { 3016 dev_dbg_ratelimited(&urb->dev->dev, 3017 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3018 ep_interval, ep_interval == 1 ? "" : "s", 3019 xhci_interval, xhci_interval == 1 ? "" : "s"); 3020 urb->interval = xhci_interval; 3021 /* Convert back to frames for LS/FS devices */ 3022 if (urb->dev->speed == USB_SPEED_LOW || 3023 urb->dev->speed == USB_SPEED_FULL) 3024 urb->interval /= 8; 3025 } 3026 } 3027 3028 /* 3029 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3030 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3031 * (comprised of sg list entries) can take several service intervals to 3032 * transmit. 3033 */ 3034 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3035 struct urb *urb, int slot_id, unsigned int ep_index) 3036 { 3037 struct xhci_ep_ctx *ep_ctx; 3038 3039 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3040 check_interval(xhci, urb, ep_ctx); 3041 3042 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3043 } 3044 3045 /* 3046 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3047 * packets remaining in the TD (*not* including this TRB). 3048 * 3049 * Total TD packet count = total_packet_count = 3050 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3051 * 3052 * Packets transferred up to and including this TRB = packets_transferred = 3053 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3054 * 3055 * TD size = total_packet_count - packets_transferred 3056 * 3057 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3058 * including this TRB, right shifted by 10 3059 * 3060 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3061 * This is taken care of in the TRB_TD_SIZE() macro 3062 * 3063 * The last TRB in a TD must have the TD size set to zero. 3064 */ 3065 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3066 int trb_buff_len, unsigned int td_total_len, 3067 struct urb *urb, bool more_trbs_coming) 3068 { 3069 u32 maxp, total_packet_count; 3070 3071 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3072 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3073 return ((td_total_len - transferred) >> 10); 3074 3075 /* One TRB with a zero-length data packet. */ 3076 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3077 trb_buff_len == td_total_len) 3078 return 0; 3079 3080 /* for MTK xHCI, TD size doesn't include this TRB */ 3081 if (xhci->quirks & XHCI_MTK_HOST) 3082 trb_buff_len = 0; 3083 3084 maxp = usb_endpoint_maxp(&urb->ep->desc); 3085 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3086 3087 /* Queueing functions don't count the current TRB into transferred */ 3088 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3089 } 3090 3091 3092 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3093 u32 *trb_buff_len, struct xhci_segment *seg) 3094 { 3095 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3096 unsigned int unalign; 3097 unsigned int max_pkt; 3098 u32 new_buff_len; 3099 3100 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3101 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3102 3103 /* we got lucky, last normal TRB data on segment is packet aligned */ 3104 if (unalign == 0) 3105 return 0; 3106 3107 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3108 unalign, *trb_buff_len); 3109 3110 /* is the last nornal TRB alignable by splitting it */ 3111 if (*trb_buff_len > unalign) { 3112 *trb_buff_len -= unalign; 3113 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3114 return 0; 3115 } 3116 3117 /* 3118 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3119 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3120 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3121 */ 3122 new_buff_len = max_pkt - (enqd_len % max_pkt); 3123 3124 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3125 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3126 3127 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3128 if (usb_urb_dir_out(urb)) { 3129 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3130 seg->bounce_buf, new_buff_len, enqd_len); 3131 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3132 max_pkt, DMA_TO_DEVICE); 3133 } else { 3134 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3135 max_pkt, DMA_FROM_DEVICE); 3136 } 3137 3138 if (dma_mapping_error(dev, seg->bounce_dma)) { 3139 /* try without aligning. Some host controllers survive */ 3140 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3141 return 0; 3142 } 3143 *trb_buff_len = new_buff_len; 3144 seg->bounce_len = new_buff_len; 3145 seg->bounce_offs = enqd_len; 3146 3147 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3148 3149 return 1; 3150 } 3151 3152 /* This is very similar to what ehci-q.c qtd_fill() does */ 3153 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3154 struct urb *urb, int slot_id, unsigned int ep_index) 3155 { 3156 struct xhci_ring *ring; 3157 struct urb_priv *urb_priv; 3158 struct xhci_td *td; 3159 struct xhci_generic_trb *start_trb; 3160 struct scatterlist *sg = NULL; 3161 bool more_trbs_coming = true; 3162 bool need_zero_pkt = false; 3163 bool first_trb = true; 3164 unsigned int num_trbs; 3165 unsigned int start_cycle, num_sgs = 0; 3166 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3167 int sent_len, ret; 3168 u32 field, length_field, remainder; 3169 u64 addr, send_addr; 3170 3171 ring = xhci_urb_to_transfer_ring(xhci, urb); 3172 if (!ring) 3173 return -EINVAL; 3174 3175 full_len = urb->transfer_buffer_length; 3176 /* If we have scatter/gather list, we use it. */ 3177 if (urb->num_sgs) { 3178 num_sgs = urb->num_mapped_sgs; 3179 sg = urb->sg; 3180 addr = (u64) sg_dma_address(sg); 3181 block_len = sg_dma_len(sg); 3182 num_trbs = count_sg_trbs_needed(urb); 3183 } else { 3184 num_trbs = count_trbs_needed(urb); 3185 addr = (u64) urb->transfer_dma; 3186 block_len = full_len; 3187 } 3188 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3189 ep_index, urb->stream_id, 3190 num_trbs, urb, 0, mem_flags); 3191 if (unlikely(ret < 0)) 3192 return ret; 3193 3194 urb_priv = urb->hcpriv; 3195 3196 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3197 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3198 need_zero_pkt = true; 3199 3200 td = &urb_priv->td[0]; 3201 3202 /* 3203 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3204 * until we've finished creating all the other TRBs. The ring's cycle 3205 * state may change as we enqueue the other TRBs, so save it too. 3206 */ 3207 start_trb = &ring->enqueue->generic; 3208 start_cycle = ring->cycle_state; 3209 send_addr = addr; 3210 3211 /* Queue the TRBs, even if they are zero-length */ 3212 for (enqd_len = 0; first_trb || enqd_len < full_len; 3213 enqd_len += trb_buff_len) { 3214 field = TRB_TYPE(TRB_NORMAL); 3215 3216 /* TRB buffer should not cross 64KB boundaries */ 3217 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3218 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3219 3220 if (enqd_len + trb_buff_len > full_len) 3221 trb_buff_len = full_len - enqd_len; 3222 3223 /* Don't change the cycle bit of the first TRB until later */ 3224 if (first_trb) { 3225 first_trb = false; 3226 if (start_cycle == 0) 3227 field |= TRB_CYCLE; 3228 } else 3229 field |= ring->cycle_state; 3230 3231 /* Chain all the TRBs together; clear the chain bit in the last 3232 * TRB to indicate it's the last TRB in the chain. 3233 */ 3234 if (enqd_len + trb_buff_len < full_len) { 3235 field |= TRB_CHAIN; 3236 if (trb_is_link(ring->enqueue + 1)) { 3237 if (xhci_align_td(xhci, urb, enqd_len, 3238 &trb_buff_len, 3239 ring->enq_seg)) { 3240 send_addr = ring->enq_seg->bounce_dma; 3241 /* assuming TD won't span 2 segs */ 3242 td->bounce_seg = ring->enq_seg; 3243 } 3244 } 3245 } 3246 if (enqd_len + trb_buff_len >= full_len) { 3247 field &= ~TRB_CHAIN; 3248 field |= TRB_IOC; 3249 more_trbs_coming = false; 3250 td->last_trb = ring->enqueue; 3251 } 3252 3253 /* Only set interrupt on short packet for IN endpoints */ 3254 if (usb_urb_dir_in(urb)) 3255 field |= TRB_ISP; 3256 3257 /* Set the TRB length, TD size, and interrupter fields. */ 3258 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3259 full_len, urb, more_trbs_coming); 3260 3261 length_field = TRB_LEN(trb_buff_len) | 3262 TRB_TD_SIZE(remainder) | 3263 TRB_INTR_TARGET(0); 3264 3265 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3266 lower_32_bits(send_addr), 3267 upper_32_bits(send_addr), 3268 length_field, 3269 field); 3270 3271 addr += trb_buff_len; 3272 sent_len = trb_buff_len; 3273 3274 while (sg && sent_len >= block_len) { 3275 /* New sg entry */ 3276 --num_sgs; 3277 sent_len -= block_len; 3278 if (num_sgs != 0) { 3279 sg = sg_next(sg); 3280 block_len = sg_dma_len(sg); 3281 addr = (u64) sg_dma_address(sg); 3282 addr += sent_len; 3283 } 3284 } 3285 block_len -= sent_len; 3286 send_addr = addr; 3287 } 3288 3289 if (need_zero_pkt) { 3290 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3291 ep_index, urb->stream_id, 3292 1, urb, 1, mem_flags); 3293 urb_priv->td[1].last_trb = ring->enqueue; 3294 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3295 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3296 } 3297 3298 check_trb_math(urb, enqd_len); 3299 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3300 start_cycle, start_trb); 3301 return 0; 3302 } 3303 3304 /* Caller must have locked xhci->lock */ 3305 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3306 struct urb *urb, int slot_id, unsigned int ep_index) 3307 { 3308 struct xhci_ring *ep_ring; 3309 int num_trbs; 3310 int ret; 3311 struct usb_ctrlrequest *setup; 3312 struct xhci_generic_trb *start_trb; 3313 int start_cycle; 3314 u32 field; 3315 struct urb_priv *urb_priv; 3316 struct xhci_td *td; 3317 3318 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3319 if (!ep_ring) 3320 return -EINVAL; 3321 3322 /* 3323 * Need to copy setup packet into setup TRB, so we can't use the setup 3324 * DMA address. 3325 */ 3326 if (!urb->setup_packet) 3327 return -EINVAL; 3328 3329 /* 1 TRB for setup, 1 for status */ 3330 num_trbs = 2; 3331 /* 3332 * Don't need to check if we need additional event data and normal TRBs, 3333 * since data in control transfers will never get bigger than 16MB 3334 * XXX: can we get a buffer that crosses 64KB boundaries? 3335 */ 3336 if (urb->transfer_buffer_length > 0) 3337 num_trbs++; 3338 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3339 ep_index, urb->stream_id, 3340 num_trbs, urb, 0, mem_flags); 3341 if (ret < 0) 3342 return ret; 3343 3344 urb_priv = urb->hcpriv; 3345 td = &urb_priv->td[0]; 3346 3347 /* 3348 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3349 * until we've finished creating all the other TRBs. The ring's cycle 3350 * state may change as we enqueue the other TRBs, so save it too. 3351 */ 3352 start_trb = &ep_ring->enqueue->generic; 3353 start_cycle = ep_ring->cycle_state; 3354 3355 /* Queue setup TRB - see section 6.4.1.2.1 */ 3356 /* FIXME better way to translate setup_packet into two u32 fields? */ 3357 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3358 field = 0; 3359 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3360 if (start_cycle == 0) 3361 field |= 0x1; 3362 3363 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3364 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3365 if (urb->transfer_buffer_length > 0) { 3366 if (setup->bRequestType & USB_DIR_IN) 3367 field |= TRB_TX_TYPE(TRB_DATA_IN); 3368 else 3369 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3370 } 3371 } 3372 3373 queue_trb(xhci, ep_ring, true, 3374 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3375 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3376 TRB_LEN(8) | TRB_INTR_TARGET(0), 3377 /* Immediate data in pointer */ 3378 field); 3379 3380 /* If there's data, queue data TRBs */ 3381 /* Only set interrupt on short packet for IN endpoints */ 3382 if (usb_urb_dir_in(urb)) 3383 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3384 else 3385 field = TRB_TYPE(TRB_DATA); 3386 3387 if (urb->transfer_buffer_length > 0) { 3388 u32 length_field, remainder; 3389 3390 remainder = xhci_td_remainder(xhci, 0, 3391 urb->transfer_buffer_length, 3392 urb->transfer_buffer_length, 3393 urb, 1); 3394 length_field = TRB_LEN(urb->transfer_buffer_length) | 3395 TRB_TD_SIZE(remainder) | 3396 TRB_INTR_TARGET(0); 3397 if (setup->bRequestType & USB_DIR_IN) 3398 field |= TRB_DIR_IN; 3399 queue_trb(xhci, ep_ring, true, 3400 lower_32_bits(urb->transfer_dma), 3401 upper_32_bits(urb->transfer_dma), 3402 length_field, 3403 field | ep_ring->cycle_state); 3404 } 3405 3406 /* Save the DMA address of the last TRB in the TD */ 3407 td->last_trb = ep_ring->enqueue; 3408 3409 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3410 /* If the device sent data, the status stage is an OUT transfer */ 3411 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3412 field = 0; 3413 else 3414 field = TRB_DIR_IN; 3415 queue_trb(xhci, ep_ring, false, 3416 0, 3417 0, 3418 TRB_INTR_TARGET(0), 3419 /* Event on completion */ 3420 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3421 3422 giveback_first_trb(xhci, slot_id, ep_index, 0, 3423 start_cycle, start_trb); 3424 return 0; 3425 } 3426 3427 /* 3428 * The transfer burst count field of the isochronous TRB defines the number of 3429 * bursts that are required to move all packets in this TD. Only SuperSpeed 3430 * devices can burst up to bMaxBurst number of packets per service interval. 3431 * This field is zero based, meaning a value of zero in the field means one 3432 * burst. Basically, for everything but SuperSpeed devices, this field will be 3433 * zero. Only xHCI 1.0 host controllers support this field. 3434 */ 3435 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3436 struct urb *urb, unsigned int total_packet_count) 3437 { 3438 unsigned int max_burst; 3439 3440 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3441 return 0; 3442 3443 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3444 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3445 } 3446 3447 /* 3448 * Returns the number of packets in the last "burst" of packets. This field is 3449 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3450 * the last burst packet count is equal to the total number of packets in the 3451 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3452 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3453 * contain 1 to (bMaxBurst + 1) packets. 3454 */ 3455 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3456 struct urb *urb, unsigned int total_packet_count) 3457 { 3458 unsigned int max_burst; 3459 unsigned int residue; 3460 3461 if (xhci->hci_version < 0x100) 3462 return 0; 3463 3464 if (urb->dev->speed >= USB_SPEED_SUPER) { 3465 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3466 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3467 residue = total_packet_count % (max_burst + 1); 3468 /* If residue is zero, the last burst contains (max_burst + 1) 3469 * number of packets, but the TLBPC field is zero-based. 3470 */ 3471 if (residue == 0) 3472 return max_burst; 3473 return residue - 1; 3474 } 3475 if (total_packet_count == 0) 3476 return 0; 3477 return total_packet_count - 1; 3478 } 3479 3480 /* 3481 * Calculates Frame ID field of the isochronous TRB identifies the 3482 * target frame that the Interval associated with this Isochronous 3483 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3484 * 3485 * Returns actual frame id on success, negative value on error. 3486 */ 3487 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3488 struct urb *urb, int index) 3489 { 3490 int start_frame, ist, ret = 0; 3491 int start_frame_id, end_frame_id, current_frame_id; 3492 3493 if (urb->dev->speed == USB_SPEED_LOW || 3494 urb->dev->speed == USB_SPEED_FULL) 3495 start_frame = urb->start_frame + index * urb->interval; 3496 else 3497 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3498 3499 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3500 * 3501 * If bit [3] of IST is cleared to '0', software can add a TRB no 3502 * later than IST[2:0] Microframes before that TRB is scheduled to 3503 * be executed. 3504 * If bit [3] of IST is set to '1', software can add a TRB no later 3505 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3506 */ 3507 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3508 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3509 ist <<= 3; 3510 3511 /* Software shall not schedule an Isoch TD with a Frame ID value that 3512 * is less than the Start Frame ID or greater than the End Frame ID, 3513 * where: 3514 * 3515 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3516 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3517 * 3518 * Both the End Frame ID and Start Frame ID values are calculated 3519 * in microframes. When software determines the valid Frame ID value; 3520 * The End Frame ID value should be rounded down to the nearest Frame 3521 * boundary, and the Start Frame ID value should be rounded up to the 3522 * nearest Frame boundary. 3523 */ 3524 current_frame_id = readl(&xhci->run_regs->microframe_index); 3525 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3526 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3527 3528 start_frame &= 0x7ff; 3529 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3530 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3531 3532 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3533 __func__, index, readl(&xhci->run_regs->microframe_index), 3534 start_frame_id, end_frame_id, start_frame); 3535 3536 if (start_frame_id < end_frame_id) { 3537 if (start_frame > end_frame_id || 3538 start_frame < start_frame_id) 3539 ret = -EINVAL; 3540 } else if (start_frame_id > end_frame_id) { 3541 if ((start_frame > end_frame_id && 3542 start_frame < start_frame_id)) 3543 ret = -EINVAL; 3544 } else { 3545 ret = -EINVAL; 3546 } 3547 3548 if (index == 0) { 3549 if (ret == -EINVAL || start_frame == start_frame_id) { 3550 start_frame = start_frame_id + 1; 3551 if (urb->dev->speed == USB_SPEED_LOW || 3552 urb->dev->speed == USB_SPEED_FULL) 3553 urb->start_frame = start_frame; 3554 else 3555 urb->start_frame = start_frame << 3; 3556 ret = 0; 3557 } 3558 } 3559 3560 if (ret) { 3561 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3562 start_frame, current_frame_id, index, 3563 start_frame_id, end_frame_id); 3564 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3565 return ret; 3566 } 3567 3568 return start_frame; 3569 } 3570 3571 /* This is for isoc transfer */ 3572 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3573 struct urb *urb, int slot_id, unsigned int ep_index) 3574 { 3575 struct xhci_ring *ep_ring; 3576 struct urb_priv *urb_priv; 3577 struct xhci_td *td; 3578 int num_tds, trbs_per_td; 3579 struct xhci_generic_trb *start_trb; 3580 bool first_trb; 3581 int start_cycle; 3582 u32 field, length_field; 3583 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3584 u64 start_addr, addr; 3585 int i, j; 3586 bool more_trbs_coming; 3587 struct xhci_virt_ep *xep; 3588 int frame_id; 3589 3590 xep = &xhci->devs[slot_id]->eps[ep_index]; 3591 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3592 3593 num_tds = urb->number_of_packets; 3594 if (num_tds < 1) { 3595 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3596 return -EINVAL; 3597 } 3598 start_addr = (u64) urb->transfer_dma; 3599 start_trb = &ep_ring->enqueue->generic; 3600 start_cycle = ep_ring->cycle_state; 3601 3602 urb_priv = urb->hcpriv; 3603 /* Queue the TRBs for each TD, even if they are zero-length */ 3604 for (i = 0; i < num_tds; i++) { 3605 unsigned int total_pkt_count, max_pkt; 3606 unsigned int burst_count, last_burst_pkt_count; 3607 u32 sia_frame_id; 3608 3609 first_trb = true; 3610 running_total = 0; 3611 addr = start_addr + urb->iso_frame_desc[i].offset; 3612 td_len = urb->iso_frame_desc[i].length; 3613 td_remain_len = td_len; 3614 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3615 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3616 3617 /* A zero-length transfer still involves at least one packet. */ 3618 if (total_pkt_count == 0) 3619 total_pkt_count++; 3620 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3621 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3622 urb, total_pkt_count); 3623 3624 trbs_per_td = count_isoc_trbs_needed(urb, i); 3625 3626 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3627 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3628 if (ret < 0) { 3629 if (i == 0) 3630 return ret; 3631 goto cleanup; 3632 } 3633 td = &urb_priv->td[i]; 3634 3635 /* use SIA as default, if frame id is used overwrite it */ 3636 sia_frame_id = TRB_SIA; 3637 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3638 HCC_CFC(xhci->hcc_params)) { 3639 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3640 if (frame_id >= 0) 3641 sia_frame_id = TRB_FRAME_ID(frame_id); 3642 } 3643 /* 3644 * Set isoc specific data for the first TRB in a TD. 3645 * Prevent HW from getting the TRBs by keeping the cycle state 3646 * inverted in the first TDs isoc TRB. 3647 */ 3648 field = TRB_TYPE(TRB_ISOC) | 3649 TRB_TLBPC(last_burst_pkt_count) | 3650 sia_frame_id | 3651 (i ? ep_ring->cycle_state : !start_cycle); 3652 3653 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3654 if (!xep->use_extended_tbc) 3655 field |= TRB_TBC(burst_count); 3656 3657 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3658 for (j = 0; j < trbs_per_td; j++) { 3659 u32 remainder = 0; 3660 3661 /* only first TRB is isoc, overwrite otherwise */ 3662 if (!first_trb) 3663 field = TRB_TYPE(TRB_NORMAL) | 3664 ep_ring->cycle_state; 3665 3666 /* Only set interrupt on short packet for IN EPs */ 3667 if (usb_urb_dir_in(urb)) 3668 field |= TRB_ISP; 3669 3670 /* Set the chain bit for all except the last TRB */ 3671 if (j < trbs_per_td - 1) { 3672 more_trbs_coming = true; 3673 field |= TRB_CHAIN; 3674 } else { 3675 more_trbs_coming = false; 3676 td->last_trb = ep_ring->enqueue; 3677 field |= TRB_IOC; 3678 /* set BEI, except for the last TD */ 3679 if (xhci->hci_version >= 0x100 && 3680 !(xhci->quirks & XHCI_AVOID_BEI) && 3681 i < num_tds - 1) 3682 field |= TRB_BEI; 3683 } 3684 /* Calculate TRB length */ 3685 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3686 if (trb_buff_len > td_remain_len) 3687 trb_buff_len = td_remain_len; 3688 3689 /* Set the TRB length, TD size, & interrupter fields. */ 3690 remainder = xhci_td_remainder(xhci, running_total, 3691 trb_buff_len, td_len, 3692 urb, more_trbs_coming); 3693 3694 length_field = TRB_LEN(trb_buff_len) | 3695 TRB_INTR_TARGET(0); 3696 3697 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3698 if (first_trb && xep->use_extended_tbc) 3699 length_field |= TRB_TD_SIZE_TBC(burst_count); 3700 else 3701 length_field |= TRB_TD_SIZE(remainder); 3702 first_trb = false; 3703 3704 queue_trb(xhci, ep_ring, more_trbs_coming, 3705 lower_32_bits(addr), 3706 upper_32_bits(addr), 3707 length_field, 3708 field); 3709 running_total += trb_buff_len; 3710 3711 addr += trb_buff_len; 3712 td_remain_len -= trb_buff_len; 3713 } 3714 3715 /* Check TD length */ 3716 if (running_total != td_len) { 3717 xhci_err(xhci, "ISOC TD length unmatch\n"); 3718 ret = -EINVAL; 3719 goto cleanup; 3720 } 3721 } 3722 3723 /* store the next frame id */ 3724 if (HCC_CFC(xhci->hcc_params)) 3725 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3726 3727 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3728 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3729 usb_amd_quirk_pll_disable(); 3730 } 3731 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3732 3733 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3734 start_cycle, start_trb); 3735 return 0; 3736 cleanup: 3737 /* Clean up a partially enqueued isoc transfer. */ 3738 3739 for (i--; i >= 0; i--) 3740 list_del_init(&urb_priv->td[i].td_list); 3741 3742 /* Use the first TD as a temporary variable to turn the TDs we've queued 3743 * into No-ops with a software-owned cycle bit. That way the hardware 3744 * won't accidentally start executing bogus TDs when we partially 3745 * overwrite them. td->first_trb and td->start_seg are already set. 3746 */ 3747 urb_priv->td[0].last_trb = ep_ring->enqueue; 3748 /* Every TRB except the first & last will have its cycle bit flipped. */ 3749 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3750 3751 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3752 ep_ring->enqueue = urb_priv->td[0].first_trb; 3753 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3754 ep_ring->cycle_state = start_cycle; 3755 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3756 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3757 return ret; 3758 } 3759 3760 /* 3761 * Check transfer ring to guarantee there is enough room for the urb. 3762 * Update ISO URB start_frame and interval. 3763 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3764 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3765 * Contiguous Frame ID is not supported by HC. 3766 */ 3767 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3768 struct urb *urb, int slot_id, unsigned int ep_index) 3769 { 3770 struct xhci_virt_device *xdev; 3771 struct xhci_ring *ep_ring; 3772 struct xhci_ep_ctx *ep_ctx; 3773 int start_frame; 3774 int num_tds, num_trbs, i; 3775 int ret; 3776 struct xhci_virt_ep *xep; 3777 int ist; 3778 3779 xdev = xhci->devs[slot_id]; 3780 xep = &xhci->devs[slot_id]->eps[ep_index]; 3781 ep_ring = xdev->eps[ep_index].ring; 3782 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3783 3784 num_trbs = 0; 3785 num_tds = urb->number_of_packets; 3786 for (i = 0; i < num_tds; i++) 3787 num_trbs += count_isoc_trbs_needed(urb, i); 3788 3789 /* Check the ring to guarantee there is enough room for the whole urb. 3790 * Do not insert any td of the urb to the ring if the check failed. 3791 */ 3792 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3793 num_trbs, mem_flags); 3794 if (ret) 3795 return ret; 3796 3797 /* 3798 * Check interval value. This should be done before we start to 3799 * calculate the start frame value. 3800 */ 3801 check_interval(xhci, urb, ep_ctx); 3802 3803 /* Calculate the start frame and put it in urb->start_frame. */ 3804 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3805 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3806 urb->start_frame = xep->next_frame_id; 3807 goto skip_start_over; 3808 } 3809 } 3810 3811 start_frame = readl(&xhci->run_regs->microframe_index); 3812 start_frame &= 0x3fff; 3813 /* 3814 * Round up to the next frame and consider the time before trb really 3815 * gets scheduled by hardare. 3816 */ 3817 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3818 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3819 ist <<= 3; 3820 start_frame += ist + XHCI_CFC_DELAY; 3821 start_frame = roundup(start_frame, 8); 3822 3823 /* 3824 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3825 * is greate than 8 microframes. 3826 */ 3827 if (urb->dev->speed == USB_SPEED_LOW || 3828 urb->dev->speed == USB_SPEED_FULL) { 3829 start_frame = roundup(start_frame, urb->interval << 3); 3830 urb->start_frame = start_frame >> 3; 3831 } else { 3832 start_frame = roundup(start_frame, urb->interval); 3833 urb->start_frame = start_frame; 3834 } 3835 3836 skip_start_over: 3837 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3838 3839 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3840 } 3841 3842 /**** Command Ring Operations ****/ 3843 3844 /* Generic function for queueing a command TRB on the command ring. 3845 * Check to make sure there's room on the command ring for one command TRB. 3846 * Also check that there's room reserved for commands that must not fail. 3847 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3848 * then only check for the number of reserved spots. 3849 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3850 * because the command event handler may want to resubmit a failed command. 3851 */ 3852 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3853 u32 field1, u32 field2, 3854 u32 field3, u32 field4, bool command_must_succeed) 3855 { 3856 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3857 int ret; 3858 3859 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3860 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3861 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3862 return -ESHUTDOWN; 3863 } 3864 3865 if (!command_must_succeed) 3866 reserved_trbs++; 3867 3868 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3869 reserved_trbs, GFP_ATOMIC); 3870 if (ret < 0) { 3871 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3872 if (command_must_succeed) 3873 xhci_err(xhci, "ERR: Reserved TRB counting for " 3874 "unfailable commands failed.\n"); 3875 return ret; 3876 } 3877 3878 cmd->command_trb = xhci->cmd_ring->enqueue; 3879 3880 /* if there are no other commands queued we start the timeout timer */ 3881 if (list_empty(&xhci->cmd_list)) { 3882 xhci->current_cmd = cmd; 3883 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3884 } 3885 3886 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3887 3888 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3889 field4 | xhci->cmd_ring->cycle_state); 3890 return 0; 3891 } 3892 3893 /* Queue a slot enable or disable request on the command ring */ 3894 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3895 u32 trb_type, u32 slot_id) 3896 { 3897 return queue_command(xhci, cmd, 0, 0, 0, 3898 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3899 } 3900 3901 /* Queue an address device command TRB */ 3902 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3903 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3904 { 3905 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3906 upper_32_bits(in_ctx_ptr), 0, 3907 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3908 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3909 } 3910 3911 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3912 u32 field1, u32 field2, u32 field3, u32 field4) 3913 { 3914 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3915 } 3916 3917 /* Queue a reset device command TRB */ 3918 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3919 u32 slot_id) 3920 { 3921 return queue_command(xhci, cmd, 0, 0, 0, 3922 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3923 false); 3924 } 3925 3926 /* Queue a configure endpoint command TRB */ 3927 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3928 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3929 u32 slot_id, bool command_must_succeed) 3930 { 3931 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3932 upper_32_bits(in_ctx_ptr), 0, 3933 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3934 command_must_succeed); 3935 } 3936 3937 /* Queue an evaluate context command TRB */ 3938 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3939 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3940 { 3941 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3942 upper_32_bits(in_ctx_ptr), 0, 3943 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3944 command_must_succeed); 3945 } 3946 3947 /* 3948 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3949 * activity on an endpoint that is about to be suspended. 3950 */ 3951 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3952 int slot_id, unsigned int ep_index, int suspend) 3953 { 3954 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3955 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3956 u32 type = TRB_TYPE(TRB_STOP_RING); 3957 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3958 3959 return queue_command(xhci, cmd, 0, 0, 0, 3960 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3961 } 3962 3963 /* Set Transfer Ring Dequeue Pointer command */ 3964 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3965 unsigned int slot_id, unsigned int ep_index, 3966 unsigned int stream_id, 3967 struct xhci_dequeue_state *deq_state) 3968 { 3969 dma_addr_t addr; 3970 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3971 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3972 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3973 u32 trb_sct = 0; 3974 u32 type = TRB_TYPE(TRB_SET_DEQ); 3975 struct xhci_virt_ep *ep; 3976 struct xhci_command *cmd; 3977 int ret; 3978 3979 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3980 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3981 deq_state->new_deq_seg, 3982 (unsigned long long)deq_state->new_deq_seg->dma, 3983 deq_state->new_deq_ptr, 3984 (unsigned long long)xhci_trb_virt_to_dma( 3985 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3986 deq_state->new_cycle_state); 3987 3988 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3989 deq_state->new_deq_ptr); 3990 if (addr == 0) { 3991 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3992 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3993 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3994 return; 3995 } 3996 ep = &xhci->devs[slot_id]->eps[ep_index]; 3997 if ((ep->ep_state & SET_DEQ_PENDING)) { 3998 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3999 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4000 return; 4001 } 4002 4003 /* This function gets called from contexts where it cannot sleep */ 4004 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4005 if (!cmd) 4006 return; 4007 4008 ep->queued_deq_seg = deq_state->new_deq_seg; 4009 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4010 if (stream_id) 4011 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4012 ret = queue_command(xhci, cmd, 4013 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4014 upper_32_bits(addr), trb_stream_id, 4015 trb_slot_id | trb_ep_index | type, false); 4016 if (ret < 0) { 4017 xhci_free_command(xhci, cmd); 4018 return; 4019 } 4020 4021 /* Stop the TD queueing code from ringing the doorbell until 4022 * this command completes. The HC won't set the dequeue pointer 4023 * if the ring is running, and ringing the doorbell starts the 4024 * ring running. 4025 */ 4026 ep->ep_state |= SET_DEQ_PENDING; 4027 } 4028 4029 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4030 int slot_id, unsigned int ep_index) 4031 { 4032 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4033 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4034 u32 type = TRB_TYPE(TRB_RESET_EP); 4035 4036 return queue_command(xhci, cmd, 0, 0, 0, 4037 trb_slot_id | trb_ep_index | type, false); 4038 } 4039