1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset > TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 xhci_err(xhci, "Stopped the command ring failed, " 306 "maybe the host is dead\n"); 307 xhci->xhc_state |= XHCI_STATE_DYING; 308 xhci_quiesce(xhci); 309 xhci_halt(xhci); 310 return -ESHUTDOWN; 311 } 312 313 return 0; 314 } 315 316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 317 unsigned int slot_id, 318 unsigned int ep_index, 319 unsigned int stream_id) 320 { 321 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 322 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 323 unsigned int ep_state = ep->ep_state; 324 325 /* Don't ring the doorbell for this endpoint if there are pending 326 * cancellations because we don't want to interrupt processing. 327 * We don't want to restart any stream rings if there's a set dequeue 328 * pointer command pending because the device can choose to start any 329 * stream once the endpoint is on the HW schedule. 330 */ 331 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 332 (ep_state & EP_HALTED)) 333 return; 334 writel(DB_VALUE(ep_index, stream_id), db_addr); 335 /* The CPU has better things to do at this point than wait for a 336 * write-posting flush. It'll get there soon enough. 337 */ 338 } 339 340 /* Ring the doorbell for any rings with pending URBs */ 341 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 342 unsigned int slot_id, 343 unsigned int ep_index) 344 { 345 unsigned int stream_id; 346 struct xhci_virt_ep *ep; 347 348 ep = &xhci->devs[slot_id]->eps[ep_index]; 349 350 /* A ring has pending URBs if its TD list is not empty */ 351 if (!(ep->ep_state & EP_HAS_STREAMS)) { 352 if (ep->ring && !(list_empty(&ep->ring->td_list))) 353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 354 return; 355 } 356 357 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 358 stream_id++) { 359 struct xhci_stream_info *stream_info = ep->stream_info; 360 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 361 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 362 stream_id); 363 } 364 } 365 366 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 367 unsigned int slot_id, unsigned int ep_index, 368 unsigned int stream_id) 369 { 370 struct xhci_virt_ep *ep; 371 372 ep = &xhci->devs[slot_id]->eps[ep_index]; 373 /* Common case: no streams */ 374 if (!(ep->ep_state & EP_HAS_STREAMS)) 375 return ep->ring; 376 377 if (stream_id == 0) { 378 xhci_warn(xhci, 379 "WARN: Slot ID %u, ep index %u has streams, " 380 "but URB has no stream ID.\n", 381 slot_id, ep_index); 382 return NULL; 383 } 384 385 if (stream_id < ep->stream_info->num_streams) 386 return ep->stream_info->stream_rings[stream_id]; 387 388 xhci_warn(xhci, 389 "WARN: Slot ID %u, ep index %u has " 390 "stream IDs 1 to %u allocated, " 391 "but stream ID %u is requested.\n", 392 slot_id, ep_index, 393 ep->stream_info->num_streams - 1, 394 stream_id); 395 return NULL; 396 } 397 398 /* Get the right ring for the given URB. 399 * If the endpoint supports streams, boundary check the URB's stream ID. 400 * If the endpoint doesn't support streams, return the singular endpoint ring. 401 */ 402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 403 struct urb *urb) 404 { 405 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 406 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 407 } 408 409 /* 410 * Move the xHC's endpoint ring dequeue pointer past cur_td. 411 * Record the new state of the xHC's endpoint ring dequeue segment, 412 * dequeue pointer, and new consumer cycle state in state. 413 * Update our internal representation of the ring's dequeue pointer. 414 * 415 * We do this in three jumps: 416 * - First we update our new ring state to be the same as when the xHC stopped. 417 * - Then we traverse the ring to find the segment that contains 418 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 419 * any link TRBs with the toggle cycle bit set. 420 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 421 * if we've moved it past a link TRB with the toggle cycle bit set. 422 * 423 * Some of the uses of xhci_generic_trb are grotty, but if they're done 424 * with correct __le32 accesses they should work fine. Only users of this are 425 * in here. 426 */ 427 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 428 unsigned int slot_id, unsigned int ep_index, 429 unsigned int stream_id, struct xhci_td *cur_td, 430 struct xhci_dequeue_state *state) 431 { 432 struct xhci_virt_device *dev = xhci->devs[slot_id]; 433 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 434 struct xhci_ring *ep_ring; 435 struct xhci_segment *new_seg; 436 union xhci_trb *new_deq; 437 dma_addr_t addr; 438 u64 hw_dequeue; 439 bool cycle_found = false; 440 bool td_last_trb_found = false; 441 442 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 443 ep_index, stream_id); 444 if (!ep_ring) { 445 xhci_warn(xhci, "WARN can't find new dequeue state " 446 "for invalid stream ID %u.\n", 447 stream_id); 448 return; 449 } 450 451 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 452 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 453 "Finding endpoint context"); 454 /* 4.6.9 the css flag is written to the stream context for streams */ 455 if (ep->ep_state & EP_HAS_STREAMS) { 456 struct xhci_stream_ctx *ctx = 457 &ep->stream_info->stream_ctx_array[stream_id]; 458 hw_dequeue = le64_to_cpu(ctx->stream_ring); 459 } else { 460 struct xhci_ep_ctx *ep_ctx 461 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 462 hw_dequeue = le64_to_cpu(ep_ctx->deq); 463 } 464 465 new_seg = ep_ring->deq_seg; 466 new_deq = ep_ring->dequeue; 467 state->new_cycle_state = hw_dequeue & 0x1; 468 469 /* 470 * We want to find the pointer, segment and cycle state of the new trb 471 * (the one after current TD's last_trb). We know the cycle state at 472 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 473 * found. 474 */ 475 do { 476 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 477 == (dma_addr_t)(hw_dequeue & ~0xf)) { 478 cycle_found = true; 479 if (td_last_trb_found) 480 break; 481 } 482 if (new_deq == cur_td->last_trb) 483 td_last_trb_found = true; 484 485 if (cycle_found && 486 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 487 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 488 state->new_cycle_state ^= 0x1; 489 490 next_trb(xhci, ep_ring, &new_seg, &new_deq); 491 492 /* Search wrapped around, bail out */ 493 if (new_deq == ep->ring->dequeue) { 494 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 495 state->new_deq_seg = NULL; 496 state->new_deq_ptr = NULL; 497 return; 498 } 499 500 } while (!cycle_found || !td_last_trb_found); 501 502 state->new_deq_seg = new_seg; 503 state->new_deq_ptr = new_deq; 504 505 /* Don't update the ring cycle state for the producer (us). */ 506 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 507 "Cycle state = 0x%x", state->new_cycle_state); 508 509 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 510 "New dequeue segment = %p (virtual)", 511 state->new_deq_seg); 512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 514 "New dequeue pointer = 0x%llx (DMA)", 515 (unsigned long long) addr); 516 } 517 518 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 519 * (The last TRB actually points to the ring enqueue pointer, which is not part 520 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 521 */ 522 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 523 struct xhci_td *cur_td, bool flip_cycle) 524 { 525 struct xhci_segment *cur_seg; 526 union xhci_trb *cur_trb; 527 528 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 529 true; 530 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 531 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 532 /* Unchain any chained Link TRBs, but 533 * leave the pointers intact. 534 */ 535 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 536 /* Flip the cycle bit (link TRBs can't be the first 537 * or last TRB). 538 */ 539 if (flip_cycle) 540 cur_trb->generic.field[3] ^= 541 cpu_to_le32(TRB_CYCLE); 542 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 543 "Cancel (unchain) link TRB"); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 545 "Address = %p (0x%llx dma); " 546 "in seg %p (0x%llx dma)", 547 cur_trb, 548 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 549 cur_seg, 550 (unsigned long long)cur_seg->dma); 551 } else { 552 cur_trb->generic.field[0] = 0; 553 cur_trb->generic.field[1] = 0; 554 cur_trb->generic.field[2] = 0; 555 /* Preserve only the cycle bit of this TRB */ 556 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 557 /* Flip the cycle bit except on the first or last TRB */ 558 if (flip_cycle && cur_trb != cur_td->first_trb && 559 cur_trb != cur_td->last_trb) 560 cur_trb->generic.field[3] ^= 561 cpu_to_le32(TRB_CYCLE); 562 cur_trb->generic.field[3] |= cpu_to_le32( 563 TRB_TYPE(TRB_TR_NOOP)); 564 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 565 "TRB to noop at offset 0x%llx", 566 (unsigned long long) 567 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 568 } 569 if (cur_trb == cur_td->last_trb) 570 break; 571 } 572 } 573 574 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 575 struct xhci_virt_ep *ep) 576 { 577 ep->ep_state &= ~EP_HALT_PENDING; 578 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 579 * timer is running on another CPU, we don't decrement stop_cmds_pending 580 * (since we didn't successfully stop the watchdog timer). 581 */ 582 if (del_timer(&ep->stop_cmd_timer)) 583 ep->stop_cmds_pending--; 584 } 585 586 /* Must be called with xhci->lock held in interrupt context */ 587 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 588 struct xhci_td *cur_td, int status) 589 { 590 struct usb_hcd *hcd; 591 struct urb *urb; 592 struct urb_priv *urb_priv; 593 594 urb = cur_td->urb; 595 urb_priv = urb->hcpriv; 596 urb_priv->td_cnt++; 597 hcd = bus_to_hcd(urb->dev->bus); 598 599 /* Only giveback urb when this is the last td in urb */ 600 if (urb_priv->td_cnt == urb_priv->length) { 601 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 602 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 603 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 604 if (xhci->quirks & XHCI_AMD_PLL_FIX) 605 usb_amd_quirk_pll_enable(); 606 } 607 } 608 usb_hcd_unlink_urb_from_ep(hcd, urb); 609 610 spin_unlock(&xhci->lock); 611 usb_hcd_giveback_urb(hcd, urb, status); 612 xhci_urb_free_priv(xhci, urb_priv); 613 spin_lock(&xhci->lock); 614 } 615 } 616 617 /* 618 * When we get a command completion for a Stop Endpoint Command, we need to 619 * unlink any cancelled TDs from the ring. There are two ways to do that: 620 * 621 * 1. If the HW was in the middle of processing the TD that needs to be 622 * cancelled, then we must move the ring's dequeue pointer past the last TRB 623 * in the TD with a Set Dequeue Pointer Command. 624 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 625 * bit cleared) so that the HW will skip over them. 626 */ 627 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 628 union xhci_trb *trb, struct xhci_event_cmd *event) 629 { 630 unsigned int ep_index; 631 struct xhci_ring *ep_ring; 632 struct xhci_virt_ep *ep; 633 struct list_head *entry; 634 struct xhci_td *cur_td = NULL; 635 struct xhci_td *last_unlinked_td; 636 637 struct xhci_dequeue_state deq_state; 638 639 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 640 if (!xhci->devs[slot_id]) 641 xhci_warn(xhci, "Stop endpoint command " 642 "completion for disabled slot %u\n", 643 slot_id); 644 return; 645 } 646 647 memset(&deq_state, 0, sizeof(deq_state)); 648 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 649 ep = &xhci->devs[slot_id]->eps[ep_index]; 650 651 if (list_empty(&ep->cancelled_td_list)) { 652 xhci_stop_watchdog_timer_in_irq(xhci, ep); 653 ep->stopped_td = NULL; 654 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 655 return; 656 } 657 658 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 659 * We have the xHCI lock, so nothing can modify this list until we drop 660 * it. We're also in the event handler, so we can't get re-interrupted 661 * if another Stop Endpoint command completes 662 */ 663 list_for_each(entry, &ep->cancelled_td_list) { 664 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 665 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 666 "Removing canceled TD starting at 0x%llx (dma).", 667 (unsigned long long)xhci_trb_virt_to_dma( 668 cur_td->start_seg, cur_td->first_trb)); 669 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 670 if (!ep_ring) { 671 /* This shouldn't happen unless a driver is mucking 672 * with the stream ID after submission. This will 673 * leave the TD on the hardware ring, and the hardware 674 * will try to execute it, and may access a buffer 675 * that has already been freed. In the best case, the 676 * hardware will execute it, and the event handler will 677 * ignore the completion event for that TD, since it was 678 * removed from the td_list for that endpoint. In 679 * short, don't muck with the stream ID after 680 * submission. 681 */ 682 xhci_warn(xhci, "WARN Cancelled URB %p " 683 "has invalid stream ID %u.\n", 684 cur_td->urb, 685 cur_td->urb->stream_id); 686 goto remove_finished_td; 687 } 688 /* 689 * If we stopped on the TD we need to cancel, then we have to 690 * move the xHC endpoint ring dequeue pointer past this TD. 691 */ 692 if (cur_td == ep->stopped_td) 693 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 694 cur_td->urb->stream_id, 695 cur_td, &deq_state); 696 else 697 td_to_noop(xhci, ep_ring, cur_td, false); 698 remove_finished_td: 699 /* 700 * The event handler won't see a completion for this TD anymore, 701 * so remove it from the endpoint ring's TD list. Keep it in 702 * the cancelled TD list for URB completion later. 703 */ 704 list_del_init(&cur_td->td_list); 705 } 706 last_unlinked_td = cur_td; 707 xhci_stop_watchdog_timer_in_irq(xhci, ep); 708 709 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 710 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 711 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 712 ep->stopped_td->urb->stream_id, &deq_state); 713 xhci_ring_cmd_db(xhci); 714 } else { 715 /* Otherwise ring the doorbell(s) to restart queued transfers */ 716 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 717 } 718 719 /* Clear stopped_td if endpoint is not halted */ 720 if (!(ep->ep_state & EP_HALTED)) 721 ep->stopped_td = NULL; 722 723 /* 724 * Drop the lock and complete the URBs in the cancelled TD list. 725 * New TDs to be cancelled might be added to the end of the list before 726 * we can complete all the URBs for the TDs we already unlinked. 727 * So stop when we've completed the URB for the last TD we unlinked. 728 */ 729 do { 730 cur_td = list_entry(ep->cancelled_td_list.next, 731 struct xhci_td, cancelled_td_list); 732 list_del_init(&cur_td->cancelled_td_list); 733 734 /* Clean up the cancelled URB */ 735 /* Doesn't matter what we pass for status, since the core will 736 * just overwrite it (because the URB has been unlinked). 737 */ 738 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 739 740 /* Stop processing the cancelled list if the watchdog timer is 741 * running. 742 */ 743 if (xhci->xhc_state & XHCI_STATE_DYING) 744 return; 745 } while (cur_td != last_unlinked_td); 746 747 /* Return to the event handler with xhci->lock re-acquired */ 748 } 749 750 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 751 { 752 struct xhci_td *cur_td; 753 754 while (!list_empty(&ring->td_list)) { 755 cur_td = list_first_entry(&ring->td_list, 756 struct xhci_td, td_list); 757 list_del_init(&cur_td->td_list); 758 if (!list_empty(&cur_td->cancelled_td_list)) 759 list_del_init(&cur_td->cancelled_td_list); 760 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 761 } 762 } 763 764 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 765 int slot_id, int ep_index) 766 { 767 struct xhci_td *cur_td; 768 struct xhci_virt_ep *ep; 769 struct xhci_ring *ring; 770 771 ep = &xhci->devs[slot_id]->eps[ep_index]; 772 if ((ep->ep_state & EP_HAS_STREAMS) || 773 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 774 int stream_id; 775 776 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 777 stream_id++) { 778 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 779 "Killing URBs for slot ID %u, ep index %u, stream %u", 780 slot_id, ep_index, stream_id + 1); 781 xhci_kill_ring_urbs(xhci, 782 ep->stream_info->stream_rings[stream_id]); 783 } 784 } else { 785 ring = ep->ring; 786 if (!ring) 787 return; 788 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 789 "Killing URBs for slot ID %u, ep index %u", 790 slot_id, ep_index); 791 xhci_kill_ring_urbs(xhci, ring); 792 } 793 while (!list_empty(&ep->cancelled_td_list)) { 794 cur_td = list_first_entry(&ep->cancelled_td_list, 795 struct xhci_td, cancelled_td_list); 796 list_del_init(&cur_td->cancelled_td_list); 797 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 798 } 799 } 800 801 /* Watchdog timer function for when a stop endpoint command fails to complete. 802 * In this case, we assume the host controller is broken or dying or dead. The 803 * host may still be completing some other events, so we have to be careful to 804 * let the event ring handler and the URB dequeueing/enqueueing functions know 805 * through xhci->state. 806 * 807 * The timer may also fire if the host takes a very long time to respond to the 808 * command, and the stop endpoint command completion handler cannot delete the 809 * timer before the timer function is called. Another endpoint cancellation may 810 * sneak in before the timer function can grab the lock, and that may queue 811 * another stop endpoint command and add the timer back. So we cannot use a 812 * simple flag to say whether there is a pending stop endpoint command for a 813 * particular endpoint. 814 * 815 * Instead we use a combination of that flag and a counter for the number of 816 * pending stop endpoint commands. If the timer is the tail end of the last 817 * stop endpoint command, and the endpoint's command is still pending, we assume 818 * the host is dying. 819 */ 820 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 821 { 822 struct xhci_hcd *xhci; 823 struct xhci_virt_ep *ep; 824 int ret, i, j; 825 unsigned long flags; 826 827 ep = (struct xhci_virt_ep *) arg; 828 xhci = ep->xhci; 829 830 spin_lock_irqsave(&xhci->lock, flags); 831 832 ep->stop_cmds_pending--; 833 if (xhci->xhc_state & XHCI_STATE_DYING) { 834 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 835 "Stop EP timer ran, but another timer marked " 836 "xHCI as DYING, exiting."); 837 spin_unlock_irqrestore(&xhci->lock, flags); 838 return; 839 } 840 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 841 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 842 "Stop EP timer ran, but no command pending, " 843 "exiting."); 844 spin_unlock_irqrestore(&xhci->lock, flags); 845 return; 846 } 847 848 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 849 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 850 /* Oops, HC is dead or dying or at least not responding to the stop 851 * endpoint command. 852 */ 853 xhci->xhc_state |= XHCI_STATE_DYING; 854 /* Disable interrupts from the host controller and start halting it */ 855 xhci_quiesce(xhci); 856 spin_unlock_irqrestore(&xhci->lock, flags); 857 858 ret = xhci_halt(xhci); 859 860 spin_lock_irqsave(&xhci->lock, flags); 861 if (ret < 0) { 862 /* This is bad; the host is not responding to commands and it's 863 * not allowing itself to be halted. At least interrupts are 864 * disabled. If we call usb_hc_died(), it will attempt to 865 * disconnect all device drivers under this host. Those 866 * disconnect() methods will wait for all URBs to be unlinked, 867 * so we must complete them. 868 */ 869 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 870 xhci_warn(xhci, "Completing active URBs anyway.\n"); 871 /* We could turn all TDs on the rings to no-ops. This won't 872 * help if the host has cached part of the ring, and is slow if 873 * we want to preserve the cycle bit. Skip it and hope the host 874 * doesn't touch the memory. 875 */ 876 } 877 for (i = 0; i < MAX_HC_SLOTS; i++) { 878 if (!xhci->devs[i]) 879 continue; 880 for (j = 0; j < 31; j++) 881 xhci_kill_endpoint_urbs(xhci, i, j); 882 } 883 spin_unlock_irqrestore(&xhci->lock, flags); 884 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 885 "Calling usb_hc_died()"); 886 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 887 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 888 "xHCI host controller is dead."); 889 } 890 891 892 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 893 struct xhci_virt_device *dev, 894 struct xhci_ring *ep_ring, 895 unsigned int ep_index) 896 { 897 union xhci_trb *dequeue_temp; 898 int num_trbs_free_temp; 899 bool revert = false; 900 901 num_trbs_free_temp = ep_ring->num_trbs_free; 902 dequeue_temp = ep_ring->dequeue; 903 904 /* If we get two back-to-back stalls, and the first stalled transfer 905 * ends just before a link TRB, the dequeue pointer will be left on 906 * the link TRB by the code in the while loop. So we have to update 907 * the dequeue pointer one segment further, or we'll jump off 908 * the segment into la-la-land. 909 */ 910 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 911 ep_ring->deq_seg = ep_ring->deq_seg->next; 912 ep_ring->dequeue = ep_ring->deq_seg->trbs; 913 } 914 915 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 916 /* We have more usable TRBs */ 917 ep_ring->num_trbs_free++; 918 ep_ring->dequeue++; 919 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 920 ep_ring->dequeue)) { 921 if (ep_ring->dequeue == 922 dev->eps[ep_index].queued_deq_ptr) 923 break; 924 ep_ring->deq_seg = ep_ring->deq_seg->next; 925 ep_ring->dequeue = ep_ring->deq_seg->trbs; 926 } 927 if (ep_ring->dequeue == dequeue_temp) { 928 revert = true; 929 break; 930 } 931 } 932 933 if (revert) { 934 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 935 ep_ring->num_trbs_free = num_trbs_free_temp; 936 } 937 } 938 939 /* 940 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 941 * we need to clear the set deq pending flag in the endpoint ring state, so that 942 * the TD queueing code can ring the doorbell again. We also need to ring the 943 * endpoint doorbell to restart the ring, but only if there aren't more 944 * cancellations pending. 945 */ 946 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 947 union xhci_trb *trb, u32 cmd_comp_code) 948 { 949 unsigned int ep_index; 950 unsigned int stream_id; 951 struct xhci_ring *ep_ring; 952 struct xhci_virt_device *dev; 953 struct xhci_virt_ep *ep; 954 struct xhci_ep_ctx *ep_ctx; 955 struct xhci_slot_ctx *slot_ctx; 956 957 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 958 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 959 dev = xhci->devs[slot_id]; 960 ep = &dev->eps[ep_index]; 961 962 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 963 if (!ep_ring) { 964 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 965 stream_id); 966 /* XXX: Harmless??? */ 967 goto cleanup; 968 } 969 970 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 971 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 972 973 if (cmd_comp_code != COMP_SUCCESS) { 974 unsigned int ep_state; 975 unsigned int slot_state; 976 977 switch (cmd_comp_code) { 978 case COMP_TRB_ERR: 979 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 980 break; 981 case COMP_CTX_STATE: 982 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 983 ep_state = le32_to_cpu(ep_ctx->ep_info); 984 ep_state &= EP_STATE_MASK; 985 slot_state = le32_to_cpu(slot_ctx->dev_state); 986 slot_state = GET_SLOT_STATE(slot_state); 987 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 988 "Slot state = %u, EP state = %u", 989 slot_state, ep_state); 990 break; 991 case COMP_EBADSLT: 992 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 993 slot_id); 994 break; 995 default: 996 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 997 cmd_comp_code); 998 break; 999 } 1000 /* OK what do we do now? The endpoint state is hosed, and we 1001 * should never get to this point if the synchronization between 1002 * queueing, and endpoint state are correct. This might happen 1003 * if the device gets disconnected after we've finished 1004 * cancelling URBs, which might not be an error... 1005 */ 1006 } else { 1007 u64 deq; 1008 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1009 if (ep->ep_state & EP_HAS_STREAMS) { 1010 struct xhci_stream_ctx *ctx = 1011 &ep->stream_info->stream_ctx_array[stream_id]; 1012 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1013 } else { 1014 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1015 } 1016 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1017 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1018 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1019 ep->queued_deq_ptr) == deq) { 1020 /* Update the ring's dequeue segment and dequeue pointer 1021 * to reflect the new position. 1022 */ 1023 update_ring_for_set_deq_completion(xhci, dev, 1024 ep_ring, ep_index); 1025 } else { 1026 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1027 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1028 ep->queued_deq_seg, ep->queued_deq_ptr); 1029 } 1030 } 1031 1032 cleanup: 1033 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1034 dev->eps[ep_index].queued_deq_seg = NULL; 1035 dev->eps[ep_index].queued_deq_ptr = NULL; 1036 /* Restart any rings with pending URBs */ 1037 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1038 } 1039 1040 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1041 union xhci_trb *trb, u32 cmd_comp_code) 1042 { 1043 unsigned int ep_index; 1044 1045 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1046 /* This command will only fail if the endpoint wasn't halted, 1047 * but we don't care. 1048 */ 1049 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1050 "Ignoring reset ep completion code of %u", cmd_comp_code); 1051 1052 /* HW with the reset endpoint quirk needs to have a configure endpoint 1053 * command complete before the endpoint can be used. Queue that here 1054 * because the HW can't handle two commands being queued in a row. 1055 */ 1056 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1057 struct xhci_command *command; 1058 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1059 if (!command) { 1060 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1061 return; 1062 } 1063 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1064 "Queueing configure endpoint command"); 1065 xhci_queue_configure_endpoint(xhci, command, 1066 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1067 false); 1068 xhci_ring_cmd_db(xhci); 1069 } else { 1070 /* Clear our internal halted state and restart the ring(s) */ 1071 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1072 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1073 } 1074 } 1075 1076 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1077 u32 cmd_comp_code) 1078 { 1079 if (cmd_comp_code == COMP_SUCCESS) 1080 xhci->slot_id = slot_id; 1081 else 1082 xhci->slot_id = 0; 1083 } 1084 1085 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1086 { 1087 struct xhci_virt_device *virt_dev; 1088 1089 virt_dev = xhci->devs[slot_id]; 1090 if (!virt_dev) 1091 return; 1092 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1093 /* Delete default control endpoint resources */ 1094 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1095 xhci_free_virt_device(xhci, slot_id); 1096 } 1097 1098 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1099 struct xhci_event_cmd *event, u32 cmd_comp_code) 1100 { 1101 struct xhci_virt_device *virt_dev; 1102 struct xhci_input_control_ctx *ctrl_ctx; 1103 unsigned int ep_index; 1104 unsigned int ep_state; 1105 u32 add_flags, drop_flags; 1106 1107 /* 1108 * Configure endpoint commands can come from the USB core 1109 * configuration or alt setting changes, or because the HW 1110 * needed an extra configure endpoint command after a reset 1111 * endpoint command or streams were being configured. 1112 * If the command was for a halted endpoint, the xHCI driver 1113 * is not waiting on the configure endpoint command. 1114 */ 1115 virt_dev = xhci->devs[slot_id]; 1116 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1117 if (!ctrl_ctx) { 1118 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1119 return; 1120 } 1121 1122 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1123 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1124 /* Input ctx add_flags are the endpoint index plus one */ 1125 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1126 1127 /* A usb_set_interface() call directly after clearing a halted 1128 * condition may race on this quirky hardware. Not worth 1129 * worrying about, since this is prototype hardware. Not sure 1130 * if this will work for streams, but streams support was 1131 * untested on this prototype. 1132 */ 1133 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1134 ep_index != (unsigned int) -1 && 1135 add_flags - SLOT_FLAG == drop_flags) { 1136 ep_state = virt_dev->eps[ep_index].ep_state; 1137 if (!(ep_state & EP_HALTED)) 1138 return; 1139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1140 "Completed config ep cmd - " 1141 "last ep index = %d, state = %d", 1142 ep_index, ep_state); 1143 /* Clear internal halted state and restart ring(s) */ 1144 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1145 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1146 return; 1147 } 1148 return; 1149 } 1150 1151 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1152 struct xhci_event_cmd *event) 1153 { 1154 xhci_dbg(xhci, "Completed reset device command.\n"); 1155 if (!xhci->devs[slot_id]) 1156 xhci_warn(xhci, "Reset device command completion " 1157 "for disabled slot %u\n", slot_id); 1158 } 1159 1160 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1161 struct xhci_event_cmd *event) 1162 { 1163 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1164 xhci->error_bitmask |= 1 << 6; 1165 return; 1166 } 1167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1168 "NEC firmware version %2x.%02x", 1169 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1170 NEC_FW_MINOR(le32_to_cpu(event->status))); 1171 } 1172 1173 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1174 { 1175 list_del(&cmd->cmd_list); 1176 1177 if (cmd->completion) { 1178 cmd->status = status; 1179 complete(cmd->completion); 1180 } else { 1181 kfree(cmd); 1182 } 1183 } 1184 1185 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1186 { 1187 struct xhci_command *cur_cmd, *tmp_cmd; 1188 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1189 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1190 } 1191 1192 /* 1193 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1194 * If there are other commands waiting then restart the ring and kick the timer. 1195 * This must be called with command ring stopped and xhci->lock held. 1196 */ 1197 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1198 struct xhci_command *cur_cmd) 1199 { 1200 struct xhci_command *i_cmd, *tmp_cmd; 1201 u32 cycle_state; 1202 1203 /* Turn all aborted commands in list to no-ops, then restart */ 1204 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1205 cmd_list) { 1206 1207 if (i_cmd->status != COMP_CMD_ABORT) 1208 continue; 1209 1210 i_cmd->status = COMP_CMD_STOP; 1211 1212 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1213 i_cmd->command_trb); 1214 /* get cycle state from the original cmd trb */ 1215 cycle_state = le32_to_cpu( 1216 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1217 /* modify the command trb to no-op command */ 1218 i_cmd->command_trb->generic.field[0] = 0; 1219 i_cmd->command_trb->generic.field[1] = 0; 1220 i_cmd->command_trb->generic.field[2] = 0; 1221 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1222 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1223 1224 /* 1225 * caller waiting for completion is called when command 1226 * completion event is received for these no-op commands 1227 */ 1228 } 1229 1230 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1231 1232 /* ring command ring doorbell to restart the command ring */ 1233 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1234 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1235 xhci->current_cmd = cur_cmd; 1236 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1237 xhci_ring_cmd_db(xhci); 1238 } 1239 return; 1240 } 1241 1242 1243 void xhci_handle_command_timeout(unsigned long data) 1244 { 1245 struct xhci_hcd *xhci; 1246 int ret; 1247 unsigned long flags; 1248 u64 hw_ring_state; 1249 struct xhci_command *cur_cmd = NULL; 1250 xhci = (struct xhci_hcd *) data; 1251 1252 /* mark this command to be cancelled */ 1253 spin_lock_irqsave(&xhci->lock, flags); 1254 if (xhci->current_cmd) { 1255 cur_cmd = xhci->current_cmd; 1256 cur_cmd->status = COMP_CMD_ABORT; 1257 } 1258 1259 1260 /* Make sure command ring is running before aborting it */ 1261 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1262 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1263 (hw_ring_state & CMD_RING_RUNNING)) { 1264 1265 spin_unlock_irqrestore(&xhci->lock, flags); 1266 xhci_dbg(xhci, "Command timeout\n"); 1267 ret = xhci_abort_cmd_ring(xhci); 1268 if (unlikely(ret == -ESHUTDOWN)) { 1269 xhci_err(xhci, "Abort command ring failed\n"); 1270 xhci_cleanup_command_queue(xhci); 1271 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1272 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1273 } 1274 return; 1275 } 1276 /* command timeout on stopped ring, ring can't be aborted */ 1277 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1278 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1279 spin_unlock_irqrestore(&xhci->lock, flags); 1280 return; 1281 } 1282 1283 static void handle_cmd_completion(struct xhci_hcd *xhci, 1284 struct xhci_event_cmd *event) 1285 { 1286 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1287 u64 cmd_dma; 1288 dma_addr_t cmd_dequeue_dma; 1289 u32 cmd_comp_code; 1290 union xhci_trb *cmd_trb; 1291 struct xhci_command *cmd; 1292 u32 cmd_type; 1293 1294 cmd_dma = le64_to_cpu(event->cmd_trb); 1295 cmd_trb = xhci->cmd_ring->dequeue; 1296 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1297 cmd_trb); 1298 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1299 if (cmd_dequeue_dma == 0) { 1300 xhci->error_bitmask |= 1 << 4; 1301 return; 1302 } 1303 /* Does the DMA address match our internal dequeue pointer address? */ 1304 if (cmd_dma != (u64) cmd_dequeue_dma) { 1305 xhci->error_bitmask |= 1 << 5; 1306 return; 1307 } 1308 1309 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1310 1311 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1312 xhci_err(xhci, 1313 "Command completion event does not match command\n"); 1314 return; 1315 } 1316 1317 del_timer(&xhci->cmd_timer); 1318 1319 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1320 1321 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1322 1323 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1324 if (cmd_comp_code == COMP_CMD_STOP) { 1325 xhci_handle_stopped_cmd_ring(xhci, cmd); 1326 return; 1327 } 1328 /* 1329 * Host aborted the command ring, check if the current command was 1330 * supposed to be aborted, otherwise continue normally. 1331 * The command ring is stopped now, but the xHC will issue a Command 1332 * Ring Stopped event which will cause us to restart it. 1333 */ 1334 if (cmd_comp_code == COMP_CMD_ABORT) { 1335 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1336 if (cmd->status == COMP_CMD_ABORT) 1337 goto event_handled; 1338 } 1339 1340 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1341 switch (cmd_type) { 1342 case TRB_ENABLE_SLOT: 1343 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1344 break; 1345 case TRB_DISABLE_SLOT: 1346 xhci_handle_cmd_disable_slot(xhci, slot_id); 1347 break; 1348 case TRB_CONFIG_EP: 1349 if (!cmd->completion) 1350 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1351 cmd_comp_code); 1352 break; 1353 case TRB_EVAL_CONTEXT: 1354 break; 1355 case TRB_ADDR_DEV: 1356 break; 1357 case TRB_STOP_RING: 1358 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1359 le32_to_cpu(cmd_trb->generic.field[3]))); 1360 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1361 break; 1362 case TRB_SET_DEQ: 1363 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1364 le32_to_cpu(cmd_trb->generic.field[3]))); 1365 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1366 break; 1367 case TRB_CMD_NOOP: 1368 /* Is this an aborted command turned to NO-OP? */ 1369 if (cmd->status == COMP_CMD_STOP) 1370 cmd_comp_code = COMP_CMD_STOP; 1371 break; 1372 case TRB_RESET_EP: 1373 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1374 le32_to_cpu(cmd_trb->generic.field[3]))); 1375 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1376 break; 1377 case TRB_RESET_DEV: 1378 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1379 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1380 */ 1381 slot_id = TRB_TO_SLOT_ID( 1382 le32_to_cpu(cmd_trb->generic.field[3])); 1383 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1384 break; 1385 case TRB_NEC_GET_FW: 1386 xhci_handle_cmd_nec_get_fw(xhci, event); 1387 break; 1388 default: 1389 /* Skip over unknown commands on the event ring */ 1390 xhci->error_bitmask |= 1 << 6; 1391 break; 1392 } 1393 1394 /* restart timer if this wasn't the last command */ 1395 if (cmd->cmd_list.next != &xhci->cmd_list) { 1396 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1397 struct xhci_command, cmd_list); 1398 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1399 } 1400 1401 event_handled: 1402 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1403 1404 inc_deq(xhci, xhci->cmd_ring); 1405 } 1406 1407 static void handle_vendor_event(struct xhci_hcd *xhci, 1408 union xhci_trb *event) 1409 { 1410 u32 trb_type; 1411 1412 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1413 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1414 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1415 handle_cmd_completion(xhci, &event->event_cmd); 1416 } 1417 1418 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1419 * port registers -- USB 3.0 and USB 2.0). 1420 * 1421 * Returns a zero-based port number, which is suitable for indexing into each of 1422 * the split roothubs' port arrays and bus state arrays. 1423 * Add one to it in order to call xhci_find_slot_id_by_port. 1424 */ 1425 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1426 struct xhci_hcd *xhci, u32 port_id) 1427 { 1428 unsigned int i; 1429 unsigned int num_similar_speed_ports = 0; 1430 1431 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1432 * and usb2_ports are 0-based indexes. Count the number of similar 1433 * speed ports, up to 1 port before this port. 1434 */ 1435 for (i = 0; i < (port_id - 1); i++) { 1436 u8 port_speed = xhci->port_array[i]; 1437 1438 /* 1439 * Skip ports that don't have known speeds, or have duplicate 1440 * Extended Capabilities port speed entries. 1441 */ 1442 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1443 continue; 1444 1445 /* 1446 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1447 * 1.1 ports are under the USB 2.0 hub. If the port speed 1448 * matches the device speed, it's a similar speed port. 1449 */ 1450 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1451 num_similar_speed_ports++; 1452 } 1453 return num_similar_speed_ports; 1454 } 1455 1456 static void handle_device_notification(struct xhci_hcd *xhci, 1457 union xhci_trb *event) 1458 { 1459 u32 slot_id; 1460 struct usb_device *udev; 1461 1462 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1463 if (!xhci->devs[slot_id]) { 1464 xhci_warn(xhci, "Device Notification event for " 1465 "unused slot %u\n", slot_id); 1466 return; 1467 } 1468 1469 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1470 slot_id); 1471 udev = xhci->devs[slot_id]->udev; 1472 if (udev && udev->parent) 1473 usb_wakeup_notification(udev->parent, udev->portnum); 1474 } 1475 1476 static void handle_port_status(struct xhci_hcd *xhci, 1477 union xhci_trb *event) 1478 { 1479 struct usb_hcd *hcd; 1480 u32 port_id; 1481 u32 temp, temp1; 1482 int max_ports; 1483 int slot_id; 1484 unsigned int faked_port_index; 1485 u8 major_revision; 1486 struct xhci_bus_state *bus_state; 1487 __le32 __iomem **port_array; 1488 bool bogus_port_status = false; 1489 1490 /* Port status change events always have a successful completion code */ 1491 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1492 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1493 xhci->error_bitmask |= 1 << 8; 1494 } 1495 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1496 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1497 1498 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1499 if ((port_id <= 0) || (port_id > max_ports)) { 1500 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1501 inc_deq(xhci, xhci->event_ring); 1502 return; 1503 } 1504 1505 /* Figure out which usb_hcd this port is attached to: 1506 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1507 */ 1508 major_revision = xhci->port_array[port_id - 1]; 1509 1510 /* Find the right roothub. */ 1511 hcd = xhci_to_hcd(xhci); 1512 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1513 hcd = xhci->shared_hcd; 1514 1515 if (major_revision == 0) { 1516 xhci_warn(xhci, "Event for port %u not in " 1517 "Extended Capabilities, ignoring.\n", 1518 port_id); 1519 bogus_port_status = true; 1520 goto cleanup; 1521 } 1522 if (major_revision == DUPLICATE_ENTRY) { 1523 xhci_warn(xhci, "Event for port %u duplicated in" 1524 "Extended Capabilities, ignoring.\n", 1525 port_id); 1526 bogus_port_status = true; 1527 goto cleanup; 1528 } 1529 1530 /* 1531 * Hardware port IDs reported by a Port Status Change Event include USB 1532 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1533 * resume event, but we first need to translate the hardware port ID 1534 * into the index into the ports on the correct split roothub, and the 1535 * correct bus_state structure. 1536 */ 1537 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1538 if (hcd->speed == HCD_USB3) 1539 port_array = xhci->usb3_ports; 1540 else 1541 port_array = xhci->usb2_ports; 1542 /* Find the faked port hub number */ 1543 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1544 port_id); 1545 1546 temp = readl(port_array[faked_port_index]); 1547 if (hcd->state == HC_STATE_SUSPENDED) { 1548 xhci_dbg(xhci, "resume root hub\n"); 1549 usb_hcd_resume_root_hub(hcd); 1550 } 1551 1552 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1553 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1554 1555 temp1 = readl(&xhci->op_regs->command); 1556 if (!(temp1 & CMD_RUN)) { 1557 xhci_warn(xhci, "xHC is not running.\n"); 1558 goto cleanup; 1559 } 1560 1561 if (DEV_SUPERSPEED(temp)) { 1562 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1563 /* Set a flag to say the port signaled remote wakeup, 1564 * so we can tell the difference between the end of 1565 * device and host initiated resume. 1566 */ 1567 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1568 xhci_test_and_clear_bit(xhci, port_array, 1569 faked_port_index, PORT_PLC); 1570 xhci_set_link_state(xhci, port_array, faked_port_index, 1571 XDEV_U0); 1572 /* Need to wait until the next link state change 1573 * indicates the device is actually in U0. 1574 */ 1575 bogus_port_status = true; 1576 goto cleanup; 1577 } else { 1578 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1579 bus_state->resume_done[faked_port_index] = jiffies + 1580 msecs_to_jiffies(20); 1581 set_bit(faked_port_index, &bus_state->resuming_ports); 1582 mod_timer(&hcd->rh_timer, 1583 bus_state->resume_done[faked_port_index]); 1584 /* Do the rest in GetPortStatus */ 1585 } 1586 } 1587 1588 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1589 DEV_SUPERSPEED(temp)) { 1590 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1591 /* We've just brought the device into U0 through either the 1592 * Resume state after a device remote wakeup, or through the 1593 * U3Exit state after a host-initiated resume. If it's a device 1594 * initiated remote wake, don't pass up the link state change, 1595 * so the roothub behavior is consistent with external 1596 * USB 3.0 hub behavior. 1597 */ 1598 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1599 faked_port_index + 1); 1600 if (slot_id && xhci->devs[slot_id]) 1601 xhci_ring_device(xhci, slot_id); 1602 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1603 bus_state->port_remote_wakeup &= 1604 ~(1 << faked_port_index); 1605 xhci_test_and_clear_bit(xhci, port_array, 1606 faked_port_index, PORT_PLC); 1607 usb_wakeup_notification(hcd->self.root_hub, 1608 faked_port_index + 1); 1609 bogus_port_status = true; 1610 goto cleanup; 1611 } 1612 } 1613 1614 /* 1615 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1616 * RExit to a disconnect state). If so, let the the driver know it's 1617 * out of the RExit state. 1618 */ 1619 if (!DEV_SUPERSPEED(temp) && 1620 test_and_clear_bit(faked_port_index, 1621 &bus_state->rexit_ports)) { 1622 complete(&bus_state->rexit_done[faked_port_index]); 1623 bogus_port_status = true; 1624 goto cleanup; 1625 } 1626 1627 if (hcd->speed != HCD_USB3) 1628 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1629 PORT_PLC); 1630 1631 cleanup: 1632 /* Update event ring dequeue pointer before dropping the lock */ 1633 inc_deq(xhci, xhci->event_ring); 1634 1635 /* Don't make the USB core poll the roothub if we got a bad port status 1636 * change event. Besides, at that point we can't tell which roothub 1637 * (USB 2.0 or USB 3.0) to kick. 1638 */ 1639 if (bogus_port_status) 1640 return; 1641 1642 /* 1643 * xHCI port-status-change events occur when the "or" of all the 1644 * status-change bits in the portsc register changes from 0 to 1. 1645 * New status changes won't cause an event if any other change 1646 * bits are still set. When an event occurs, switch over to 1647 * polling to avoid losing status changes. 1648 */ 1649 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1650 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1651 spin_unlock(&xhci->lock); 1652 /* Pass this up to the core */ 1653 usb_hcd_poll_rh_status(hcd); 1654 spin_lock(&xhci->lock); 1655 } 1656 1657 /* 1658 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1659 * at end_trb, which may be in another segment. If the suspect DMA address is a 1660 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1661 * returns 0. 1662 */ 1663 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1664 struct xhci_segment *start_seg, 1665 union xhci_trb *start_trb, 1666 union xhci_trb *end_trb, 1667 dma_addr_t suspect_dma, 1668 bool debug) 1669 { 1670 dma_addr_t start_dma; 1671 dma_addr_t end_seg_dma; 1672 dma_addr_t end_trb_dma; 1673 struct xhci_segment *cur_seg; 1674 1675 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1676 cur_seg = start_seg; 1677 1678 do { 1679 if (start_dma == 0) 1680 return NULL; 1681 /* We may get an event for a Link TRB in the middle of a TD */ 1682 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1683 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1684 /* If the end TRB isn't in this segment, this is set to 0 */ 1685 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1686 1687 if (debug) 1688 xhci_warn(xhci, 1689 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1690 (unsigned long long)suspect_dma, 1691 (unsigned long long)start_dma, 1692 (unsigned long long)end_trb_dma, 1693 (unsigned long long)cur_seg->dma, 1694 (unsigned long long)end_seg_dma); 1695 1696 if (end_trb_dma > 0) { 1697 /* The end TRB is in this segment, so suspect should be here */ 1698 if (start_dma <= end_trb_dma) { 1699 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1700 return cur_seg; 1701 } else { 1702 /* Case for one segment with 1703 * a TD wrapped around to the top 1704 */ 1705 if ((suspect_dma >= start_dma && 1706 suspect_dma <= end_seg_dma) || 1707 (suspect_dma >= cur_seg->dma && 1708 suspect_dma <= end_trb_dma)) 1709 return cur_seg; 1710 } 1711 return NULL; 1712 } else { 1713 /* Might still be somewhere in this segment */ 1714 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1715 return cur_seg; 1716 } 1717 cur_seg = cur_seg->next; 1718 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1719 } while (cur_seg != start_seg); 1720 1721 return NULL; 1722 } 1723 1724 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1725 unsigned int slot_id, unsigned int ep_index, 1726 unsigned int stream_id, 1727 struct xhci_td *td, union xhci_trb *event_trb) 1728 { 1729 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1730 struct xhci_command *command; 1731 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1732 if (!command) 1733 return; 1734 1735 ep->ep_state |= EP_HALTED; 1736 ep->stopped_td = td; 1737 ep->stopped_stream = stream_id; 1738 1739 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1740 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1741 1742 ep->stopped_td = NULL; 1743 ep->stopped_stream = 0; 1744 1745 xhci_ring_cmd_db(xhci); 1746 } 1747 1748 /* Check if an error has halted the endpoint ring. The class driver will 1749 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1750 * However, a babble and other errors also halt the endpoint ring, and the class 1751 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1752 * Ring Dequeue Pointer command manually. 1753 */ 1754 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1755 struct xhci_ep_ctx *ep_ctx, 1756 unsigned int trb_comp_code) 1757 { 1758 /* TRB completion codes that may require a manual halt cleanup */ 1759 if (trb_comp_code == COMP_TX_ERR || 1760 trb_comp_code == COMP_BABBLE || 1761 trb_comp_code == COMP_SPLIT_ERR) 1762 /* The 0.96 spec says a babbling control endpoint 1763 * is not halted. The 0.96 spec says it is. Some HW 1764 * claims to be 0.95 compliant, but it halts the control 1765 * endpoint anyway. Check if a babble halted the 1766 * endpoint. 1767 */ 1768 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1769 cpu_to_le32(EP_STATE_HALTED)) 1770 return 1; 1771 1772 return 0; 1773 } 1774 1775 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1776 { 1777 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1778 /* Vendor defined "informational" completion code, 1779 * treat as not-an-error. 1780 */ 1781 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1782 trb_comp_code); 1783 xhci_dbg(xhci, "Treating code as success.\n"); 1784 return 1; 1785 } 1786 return 0; 1787 } 1788 1789 /* 1790 * Finish the td processing, remove the td from td list; 1791 * Return 1 if the urb can be given back. 1792 */ 1793 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1794 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1795 struct xhci_virt_ep *ep, int *status, bool skip) 1796 { 1797 struct xhci_virt_device *xdev; 1798 struct xhci_ring *ep_ring; 1799 unsigned int slot_id; 1800 int ep_index; 1801 struct urb *urb = NULL; 1802 struct xhci_ep_ctx *ep_ctx; 1803 int ret = 0; 1804 struct urb_priv *urb_priv; 1805 u32 trb_comp_code; 1806 1807 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1808 xdev = xhci->devs[slot_id]; 1809 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1810 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1811 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1812 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1813 1814 if (skip) 1815 goto td_cleanup; 1816 1817 if (trb_comp_code == COMP_STOP_INVAL || 1818 trb_comp_code == COMP_STOP) { 1819 /* The Endpoint Stop Command completion will take care of any 1820 * stopped TDs. A stopped TD may be restarted, so don't update 1821 * the ring dequeue pointer or take this TD off any lists yet. 1822 */ 1823 ep->stopped_td = td; 1824 return 0; 1825 } else { 1826 if (trb_comp_code == COMP_STALL) { 1827 /* The transfer is completed from the driver's 1828 * perspective, but we need to issue a set dequeue 1829 * command for this stalled endpoint to move the dequeue 1830 * pointer past the TD. We can't do that here because 1831 * the halt condition must be cleared first. Let the 1832 * USB class driver clear the stall later. 1833 */ 1834 ep->stopped_td = td; 1835 ep->stopped_stream = ep_ring->stream_id; 1836 } else if (xhci_requires_manual_halt_cleanup(xhci, 1837 ep_ctx, trb_comp_code)) { 1838 /* Other types of errors halt the endpoint, but the 1839 * class driver doesn't call usb_reset_endpoint() unless 1840 * the error is -EPIPE. Clear the halted status in the 1841 * xHCI hardware manually. 1842 */ 1843 xhci_cleanup_halted_endpoint(xhci, 1844 slot_id, ep_index, ep_ring->stream_id, 1845 td, event_trb); 1846 } else { 1847 /* Update ring dequeue pointer */ 1848 while (ep_ring->dequeue != td->last_trb) 1849 inc_deq(xhci, ep_ring); 1850 inc_deq(xhci, ep_ring); 1851 } 1852 1853 td_cleanup: 1854 /* Clean up the endpoint's TD list */ 1855 urb = td->urb; 1856 urb_priv = urb->hcpriv; 1857 1858 /* Do one last check of the actual transfer length. 1859 * If the host controller said we transferred more data than 1860 * the buffer length, urb->actual_length will be a very big 1861 * number (since it's unsigned). Play it safe and say we didn't 1862 * transfer anything. 1863 */ 1864 if (urb->actual_length > urb->transfer_buffer_length) { 1865 xhci_warn(xhci, "URB transfer length is wrong, " 1866 "xHC issue? req. len = %u, " 1867 "act. len = %u\n", 1868 urb->transfer_buffer_length, 1869 urb->actual_length); 1870 urb->actual_length = 0; 1871 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1872 *status = -EREMOTEIO; 1873 else 1874 *status = 0; 1875 } 1876 list_del_init(&td->td_list); 1877 /* Was this TD slated to be cancelled but completed anyway? */ 1878 if (!list_empty(&td->cancelled_td_list)) 1879 list_del_init(&td->cancelled_td_list); 1880 1881 urb_priv->td_cnt++; 1882 /* Giveback the urb when all the tds are completed */ 1883 if (urb_priv->td_cnt == urb_priv->length) { 1884 ret = 1; 1885 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1886 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1887 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1888 == 0) { 1889 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1890 usb_amd_quirk_pll_enable(); 1891 } 1892 } 1893 } 1894 } 1895 1896 return ret; 1897 } 1898 1899 /* 1900 * Process control tds, update urb status and actual_length. 1901 */ 1902 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1903 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1904 struct xhci_virt_ep *ep, int *status) 1905 { 1906 struct xhci_virt_device *xdev; 1907 struct xhci_ring *ep_ring; 1908 unsigned int slot_id; 1909 int ep_index; 1910 struct xhci_ep_ctx *ep_ctx; 1911 u32 trb_comp_code; 1912 1913 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1914 xdev = xhci->devs[slot_id]; 1915 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1916 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1917 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1918 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1919 1920 switch (trb_comp_code) { 1921 case COMP_SUCCESS: 1922 if (event_trb == ep_ring->dequeue) { 1923 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1924 "without IOC set??\n"); 1925 *status = -ESHUTDOWN; 1926 } else if (event_trb != td->last_trb) { 1927 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1928 "without IOC set??\n"); 1929 *status = -ESHUTDOWN; 1930 } else { 1931 *status = 0; 1932 } 1933 break; 1934 case COMP_SHORT_TX: 1935 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1936 *status = -EREMOTEIO; 1937 else 1938 *status = 0; 1939 break; 1940 case COMP_STOP_INVAL: 1941 case COMP_STOP: 1942 return finish_td(xhci, td, event_trb, event, ep, status, false); 1943 default: 1944 if (!xhci_requires_manual_halt_cleanup(xhci, 1945 ep_ctx, trb_comp_code)) 1946 break; 1947 xhci_dbg(xhci, "TRB error code %u, " 1948 "halted endpoint index = %u\n", 1949 trb_comp_code, ep_index); 1950 /* else fall through */ 1951 case COMP_STALL: 1952 /* Did we transfer part of the data (middle) phase? */ 1953 if (event_trb != ep_ring->dequeue && 1954 event_trb != td->last_trb) 1955 td->urb->actual_length = 1956 td->urb->transfer_buffer_length - 1957 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1958 else 1959 td->urb->actual_length = 0; 1960 1961 xhci_cleanup_halted_endpoint(xhci, 1962 slot_id, ep_index, 0, td, event_trb); 1963 return finish_td(xhci, td, event_trb, event, ep, status, true); 1964 } 1965 /* 1966 * Did we transfer any data, despite the errors that might have 1967 * happened? I.e. did we get past the setup stage? 1968 */ 1969 if (event_trb != ep_ring->dequeue) { 1970 /* The event was for the status stage */ 1971 if (event_trb == td->last_trb) { 1972 if (td->urb->actual_length != 0) { 1973 /* Don't overwrite a previously set error code 1974 */ 1975 if ((*status == -EINPROGRESS || *status == 0) && 1976 (td->urb->transfer_flags 1977 & URB_SHORT_NOT_OK)) 1978 /* Did we already see a short data 1979 * stage? */ 1980 *status = -EREMOTEIO; 1981 } else { 1982 td->urb->actual_length = 1983 td->urb->transfer_buffer_length; 1984 } 1985 } else { 1986 /* Maybe the event was for the data stage? */ 1987 td->urb->actual_length = 1988 td->urb->transfer_buffer_length - 1989 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1990 xhci_dbg(xhci, "Waiting for status " 1991 "stage event\n"); 1992 return 0; 1993 } 1994 } 1995 1996 return finish_td(xhci, td, event_trb, event, ep, status, false); 1997 } 1998 1999 /* 2000 * Process isochronous tds, update urb packet status and actual_length. 2001 */ 2002 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2003 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2004 struct xhci_virt_ep *ep, int *status) 2005 { 2006 struct xhci_ring *ep_ring; 2007 struct urb_priv *urb_priv; 2008 int idx; 2009 int len = 0; 2010 union xhci_trb *cur_trb; 2011 struct xhci_segment *cur_seg; 2012 struct usb_iso_packet_descriptor *frame; 2013 u32 trb_comp_code; 2014 bool skip_td = false; 2015 2016 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2017 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2018 urb_priv = td->urb->hcpriv; 2019 idx = urb_priv->td_cnt; 2020 frame = &td->urb->iso_frame_desc[idx]; 2021 2022 /* handle completion code */ 2023 switch (trb_comp_code) { 2024 case COMP_SUCCESS: 2025 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2026 frame->status = 0; 2027 break; 2028 } 2029 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2030 trb_comp_code = COMP_SHORT_TX; 2031 case COMP_SHORT_TX: 2032 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2033 -EREMOTEIO : 0; 2034 break; 2035 case COMP_BW_OVER: 2036 frame->status = -ECOMM; 2037 skip_td = true; 2038 break; 2039 case COMP_BUFF_OVER: 2040 case COMP_BABBLE: 2041 frame->status = -EOVERFLOW; 2042 skip_td = true; 2043 break; 2044 case COMP_DEV_ERR: 2045 case COMP_STALL: 2046 case COMP_TX_ERR: 2047 frame->status = -EPROTO; 2048 skip_td = true; 2049 break; 2050 case COMP_STOP: 2051 case COMP_STOP_INVAL: 2052 break; 2053 default: 2054 frame->status = -1; 2055 break; 2056 } 2057 2058 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2059 frame->actual_length = frame->length; 2060 td->urb->actual_length += frame->length; 2061 } else { 2062 for (cur_trb = ep_ring->dequeue, 2063 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2064 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2065 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2066 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2067 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2068 } 2069 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2070 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2071 2072 if (trb_comp_code != COMP_STOP_INVAL) { 2073 frame->actual_length = len; 2074 td->urb->actual_length += len; 2075 } 2076 } 2077 2078 return finish_td(xhci, td, event_trb, event, ep, status, false); 2079 } 2080 2081 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2082 struct xhci_transfer_event *event, 2083 struct xhci_virt_ep *ep, int *status) 2084 { 2085 struct xhci_ring *ep_ring; 2086 struct urb_priv *urb_priv; 2087 struct usb_iso_packet_descriptor *frame; 2088 int idx; 2089 2090 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2091 urb_priv = td->urb->hcpriv; 2092 idx = urb_priv->td_cnt; 2093 frame = &td->urb->iso_frame_desc[idx]; 2094 2095 /* The transfer is partly done. */ 2096 frame->status = -EXDEV; 2097 2098 /* calc actual length */ 2099 frame->actual_length = 0; 2100 2101 /* Update ring dequeue pointer */ 2102 while (ep_ring->dequeue != td->last_trb) 2103 inc_deq(xhci, ep_ring); 2104 inc_deq(xhci, ep_ring); 2105 2106 return finish_td(xhci, td, NULL, event, ep, status, true); 2107 } 2108 2109 /* 2110 * Process bulk and interrupt tds, update urb status and actual_length. 2111 */ 2112 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2113 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2114 struct xhci_virt_ep *ep, int *status) 2115 { 2116 struct xhci_ring *ep_ring; 2117 union xhci_trb *cur_trb; 2118 struct xhci_segment *cur_seg; 2119 u32 trb_comp_code; 2120 2121 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2122 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2123 2124 switch (trb_comp_code) { 2125 case COMP_SUCCESS: 2126 /* Double check that the HW transferred everything. */ 2127 if (event_trb != td->last_trb || 2128 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2129 xhci_warn(xhci, "WARN Successful completion " 2130 "on short TX\n"); 2131 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2132 *status = -EREMOTEIO; 2133 else 2134 *status = 0; 2135 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2136 trb_comp_code = COMP_SHORT_TX; 2137 } else { 2138 *status = 0; 2139 } 2140 break; 2141 case COMP_SHORT_TX: 2142 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2143 *status = -EREMOTEIO; 2144 else 2145 *status = 0; 2146 break; 2147 default: 2148 /* Others already handled above */ 2149 break; 2150 } 2151 if (trb_comp_code == COMP_SHORT_TX) 2152 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2153 "%d bytes untransferred\n", 2154 td->urb->ep->desc.bEndpointAddress, 2155 td->urb->transfer_buffer_length, 2156 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2157 /* Fast path - was this the last TRB in the TD for this URB? */ 2158 if (event_trb == td->last_trb) { 2159 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2160 td->urb->actual_length = 2161 td->urb->transfer_buffer_length - 2162 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2163 if (td->urb->transfer_buffer_length < 2164 td->urb->actual_length) { 2165 xhci_warn(xhci, "HC gave bad length " 2166 "of %d bytes left\n", 2167 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2168 td->urb->actual_length = 0; 2169 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2170 *status = -EREMOTEIO; 2171 else 2172 *status = 0; 2173 } 2174 /* Don't overwrite a previously set error code */ 2175 if (*status == -EINPROGRESS) { 2176 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2177 *status = -EREMOTEIO; 2178 else 2179 *status = 0; 2180 } 2181 } else { 2182 td->urb->actual_length = 2183 td->urb->transfer_buffer_length; 2184 /* Ignore a short packet completion if the 2185 * untransferred length was zero. 2186 */ 2187 if (*status == -EREMOTEIO) 2188 *status = 0; 2189 } 2190 } else { 2191 /* Slow path - walk the list, starting from the dequeue 2192 * pointer, to get the actual length transferred. 2193 */ 2194 td->urb->actual_length = 0; 2195 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2196 cur_trb != event_trb; 2197 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2198 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2199 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2200 td->urb->actual_length += 2201 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2202 } 2203 /* If the ring didn't stop on a Link or No-op TRB, add 2204 * in the actual bytes transferred from the Normal TRB 2205 */ 2206 if (trb_comp_code != COMP_STOP_INVAL) 2207 td->urb->actual_length += 2208 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2209 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2210 } 2211 2212 return finish_td(xhci, td, event_trb, event, ep, status, false); 2213 } 2214 2215 /* 2216 * If this function returns an error condition, it means it got a Transfer 2217 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2218 * At this point, the host controller is probably hosed and should be reset. 2219 */ 2220 static int handle_tx_event(struct xhci_hcd *xhci, 2221 struct xhci_transfer_event *event) 2222 __releases(&xhci->lock) 2223 __acquires(&xhci->lock) 2224 { 2225 struct xhci_virt_device *xdev; 2226 struct xhci_virt_ep *ep; 2227 struct xhci_ring *ep_ring; 2228 unsigned int slot_id; 2229 int ep_index; 2230 struct xhci_td *td = NULL; 2231 dma_addr_t event_dma; 2232 struct xhci_segment *event_seg; 2233 union xhci_trb *event_trb; 2234 struct urb *urb = NULL; 2235 int status = -EINPROGRESS; 2236 struct urb_priv *urb_priv; 2237 struct xhci_ep_ctx *ep_ctx; 2238 struct list_head *tmp; 2239 u32 trb_comp_code; 2240 int ret = 0; 2241 int td_num = 0; 2242 2243 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2244 xdev = xhci->devs[slot_id]; 2245 if (!xdev) { 2246 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2247 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2248 (unsigned long long) xhci_trb_virt_to_dma( 2249 xhci->event_ring->deq_seg, 2250 xhci->event_ring->dequeue), 2251 lower_32_bits(le64_to_cpu(event->buffer)), 2252 upper_32_bits(le64_to_cpu(event->buffer)), 2253 le32_to_cpu(event->transfer_len), 2254 le32_to_cpu(event->flags)); 2255 xhci_dbg(xhci, "Event ring:\n"); 2256 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2257 return -ENODEV; 2258 } 2259 2260 /* Endpoint ID is 1 based, our index is zero based */ 2261 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2262 ep = &xdev->eps[ep_index]; 2263 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2264 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2265 if (!ep_ring || 2266 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2267 EP_STATE_DISABLED) { 2268 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2269 "or incorrect stream ring\n"); 2270 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2271 (unsigned long long) xhci_trb_virt_to_dma( 2272 xhci->event_ring->deq_seg, 2273 xhci->event_ring->dequeue), 2274 lower_32_bits(le64_to_cpu(event->buffer)), 2275 upper_32_bits(le64_to_cpu(event->buffer)), 2276 le32_to_cpu(event->transfer_len), 2277 le32_to_cpu(event->flags)); 2278 xhci_dbg(xhci, "Event ring:\n"); 2279 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2280 return -ENODEV; 2281 } 2282 2283 /* Count current td numbers if ep->skip is set */ 2284 if (ep->skip) { 2285 list_for_each(tmp, &ep_ring->td_list) 2286 td_num++; 2287 } 2288 2289 event_dma = le64_to_cpu(event->buffer); 2290 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2291 /* Look for common error cases */ 2292 switch (trb_comp_code) { 2293 /* Skip codes that require special handling depending on 2294 * transfer type 2295 */ 2296 case COMP_SUCCESS: 2297 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2298 break; 2299 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2300 trb_comp_code = COMP_SHORT_TX; 2301 else 2302 xhci_warn_ratelimited(xhci, 2303 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2304 case COMP_SHORT_TX: 2305 break; 2306 case COMP_STOP: 2307 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2308 break; 2309 case COMP_STOP_INVAL: 2310 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2311 break; 2312 case COMP_STALL: 2313 xhci_dbg(xhci, "Stalled endpoint\n"); 2314 ep->ep_state |= EP_HALTED; 2315 status = -EPIPE; 2316 break; 2317 case COMP_TRB_ERR: 2318 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2319 status = -EILSEQ; 2320 break; 2321 case COMP_SPLIT_ERR: 2322 case COMP_TX_ERR: 2323 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2324 status = -EPROTO; 2325 break; 2326 case COMP_BABBLE: 2327 xhci_dbg(xhci, "Babble error on endpoint\n"); 2328 status = -EOVERFLOW; 2329 break; 2330 case COMP_DB_ERR: 2331 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2332 status = -ENOSR; 2333 break; 2334 case COMP_BW_OVER: 2335 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2336 break; 2337 case COMP_BUFF_OVER: 2338 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2339 break; 2340 case COMP_UNDERRUN: 2341 /* 2342 * When the Isoch ring is empty, the xHC will generate 2343 * a Ring Overrun Event for IN Isoch endpoint or Ring 2344 * Underrun Event for OUT Isoch endpoint. 2345 */ 2346 xhci_dbg(xhci, "underrun event on endpoint\n"); 2347 if (!list_empty(&ep_ring->td_list)) 2348 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2349 "still with TDs queued?\n", 2350 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2351 ep_index); 2352 goto cleanup; 2353 case COMP_OVERRUN: 2354 xhci_dbg(xhci, "overrun event on endpoint\n"); 2355 if (!list_empty(&ep_ring->td_list)) 2356 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2357 "still with TDs queued?\n", 2358 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2359 ep_index); 2360 goto cleanup; 2361 case COMP_DEV_ERR: 2362 xhci_warn(xhci, "WARN: detect an incompatible device"); 2363 status = -EPROTO; 2364 break; 2365 case COMP_MISSED_INT: 2366 /* 2367 * When encounter missed service error, one or more isoc tds 2368 * may be missed by xHC. 2369 * Set skip flag of the ep_ring; Complete the missed tds as 2370 * short transfer when process the ep_ring next time. 2371 */ 2372 ep->skip = true; 2373 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2374 goto cleanup; 2375 default: 2376 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2377 status = 0; 2378 break; 2379 } 2380 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2381 "busted\n"); 2382 goto cleanup; 2383 } 2384 2385 do { 2386 /* This TRB should be in the TD at the head of this ring's 2387 * TD list. 2388 */ 2389 if (list_empty(&ep_ring->td_list)) { 2390 /* 2391 * A stopped endpoint may generate an extra completion 2392 * event if the device was suspended. Don't print 2393 * warnings. 2394 */ 2395 if (!(trb_comp_code == COMP_STOP || 2396 trb_comp_code == COMP_STOP_INVAL)) { 2397 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2398 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2399 ep_index); 2400 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2401 (le32_to_cpu(event->flags) & 2402 TRB_TYPE_BITMASK)>>10); 2403 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2404 } 2405 if (ep->skip) { 2406 ep->skip = false; 2407 xhci_dbg(xhci, "td_list is empty while skip " 2408 "flag set. Clear skip flag.\n"); 2409 } 2410 ret = 0; 2411 goto cleanup; 2412 } 2413 2414 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2415 if (ep->skip && td_num == 0) { 2416 ep->skip = false; 2417 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2418 "Clear skip flag.\n"); 2419 ret = 0; 2420 goto cleanup; 2421 } 2422 2423 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2424 if (ep->skip) 2425 td_num--; 2426 2427 /* Is this a TRB in the currently executing TD? */ 2428 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2429 td->last_trb, event_dma, false); 2430 2431 /* 2432 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2433 * is not in the current TD pointed by ep_ring->dequeue because 2434 * that the hardware dequeue pointer still at the previous TRB 2435 * of the current TD. The previous TRB maybe a Link TD or the 2436 * last TRB of the previous TD. The command completion handle 2437 * will take care the rest. 2438 */ 2439 if (!event_seg && (trb_comp_code == COMP_STOP || 2440 trb_comp_code == COMP_STOP_INVAL)) { 2441 ret = 0; 2442 goto cleanup; 2443 } 2444 2445 if (!event_seg) { 2446 if (!ep->skip || 2447 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2448 /* Some host controllers give a spurious 2449 * successful event after a short transfer. 2450 * Ignore it. 2451 */ 2452 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2453 ep_ring->last_td_was_short) { 2454 ep_ring->last_td_was_short = false; 2455 ret = 0; 2456 goto cleanup; 2457 } 2458 /* HC is busted, give up! */ 2459 xhci_err(xhci, 2460 "ERROR Transfer event TRB DMA ptr not " 2461 "part of current TD ep_index %d " 2462 "comp_code %u\n", ep_index, 2463 trb_comp_code); 2464 trb_in_td(xhci, ep_ring->deq_seg, 2465 ep_ring->dequeue, td->last_trb, 2466 event_dma, true); 2467 return -ESHUTDOWN; 2468 } 2469 2470 ret = skip_isoc_td(xhci, td, event, ep, &status); 2471 goto cleanup; 2472 } 2473 if (trb_comp_code == COMP_SHORT_TX) 2474 ep_ring->last_td_was_short = true; 2475 else 2476 ep_ring->last_td_was_short = false; 2477 2478 if (ep->skip) { 2479 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2480 ep->skip = false; 2481 } 2482 2483 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2484 sizeof(*event_trb)]; 2485 /* 2486 * No-op TRB should not trigger interrupts. 2487 * If event_trb is a no-op TRB, it means the 2488 * corresponding TD has been cancelled. Just ignore 2489 * the TD. 2490 */ 2491 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2492 xhci_dbg(xhci, 2493 "event_trb is a no-op TRB. Skip it\n"); 2494 goto cleanup; 2495 } 2496 2497 /* Now update the urb's actual_length and give back to 2498 * the core 2499 */ 2500 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2501 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2502 &status); 2503 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2504 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2505 &status); 2506 else 2507 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2508 ep, &status); 2509 2510 cleanup: 2511 /* 2512 * Do not update event ring dequeue pointer if ep->skip is set. 2513 * Will roll back to continue process missed tds. 2514 */ 2515 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2516 inc_deq(xhci, xhci->event_ring); 2517 } 2518 2519 if (ret) { 2520 urb = td->urb; 2521 urb_priv = urb->hcpriv; 2522 /* Leave the TD around for the reset endpoint function 2523 * to use(but only if it's not a control endpoint, 2524 * since we already queued the Set TR dequeue pointer 2525 * command for stalled control endpoints). 2526 */ 2527 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2528 (trb_comp_code != COMP_STALL && 2529 trb_comp_code != COMP_BABBLE)) 2530 xhci_urb_free_priv(xhci, urb_priv); 2531 else 2532 kfree(urb_priv); 2533 2534 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2535 if ((urb->actual_length != urb->transfer_buffer_length && 2536 (urb->transfer_flags & 2537 URB_SHORT_NOT_OK)) || 2538 (status != 0 && 2539 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2540 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2541 "expected = %d, status = %d\n", 2542 urb, urb->actual_length, 2543 urb->transfer_buffer_length, 2544 status); 2545 spin_unlock(&xhci->lock); 2546 /* EHCI, UHCI, and OHCI always unconditionally set the 2547 * urb->status of an isochronous endpoint to 0. 2548 */ 2549 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2550 status = 0; 2551 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2552 spin_lock(&xhci->lock); 2553 } 2554 2555 /* 2556 * If ep->skip is set, it means there are missed tds on the 2557 * endpoint ring need to take care of. 2558 * Process them as short transfer until reach the td pointed by 2559 * the event. 2560 */ 2561 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2562 2563 return 0; 2564 } 2565 2566 /* 2567 * This function handles all OS-owned events on the event ring. It may drop 2568 * xhci->lock between event processing (e.g. to pass up port status changes). 2569 * Returns >0 for "possibly more events to process" (caller should call again), 2570 * otherwise 0 if done. In future, <0 returns should indicate error code. 2571 */ 2572 static int xhci_handle_event(struct xhci_hcd *xhci) 2573 { 2574 union xhci_trb *event; 2575 int update_ptrs = 1; 2576 int ret; 2577 2578 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2579 xhci->error_bitmask |= 1 << 1; 2580 return 0; 2581 } 2582 2583 event = xhci->event_ring->dequeue; 2584 /* Does the HC or OS own the TRB? */ 2585 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2586 xhci->event_ring->cycle_state) { 2587 xhci->error_bitmask |= 1 << 2; 2588 return 0; 2589 } 2590 2591 /* 2592 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2593 * speculative reads of the event's flags/data below. 2594 */ 2595 rmb(); 2596 /* FIXME: Handle more event types. */ 2597 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2598 case TRB_TYPE(TRB_COMPLETION): 2599 handle_cmd_completion(xhci, &event->event_cmd); 2600 break; 2601 case TRB_TYPE(TRB_PORT_STATUS): 2602 handle_port_status(xhci, event); 2603 update_ptrs = 0; 2604 break; 2605 case TRB_TYPE(TRB_TRANSFER): 2606 ret = handle_tx_event(xhci, &event->trans_event); 2607 if (ret < 0) 2608 xhci->error_bitmask |= 1 << 9; 2609 else 2610 update_ptrs = 0; 2611 break; 2612 case TRB_TYPE(TRB_DEV_NOTE): 2613 handle_device_notification(xhci, event); 2614 break; 2615 default: 2616 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2617 TRB_TYPE(48)) 2618 handle_vendor_event(xhci, event); 2619 else 2620 xhci->error_bitmask |= 1 << 3; 2621 } 2622 /* Any of the above functions may drop and re-acquire the lock, so check 2623 * to make sure a watchdog timer didn't mark the host as non-responsive. 2624 */ 2625 if (xhci->xhc_state & XHCI_STATE_DYING) { 2626 xhci_dbg(xhci, "xHCI host dying, returning from " 2627 "event handler.\n"); 2628 return 0; 2629 } 2630 2631 if (update_ptrs) 2632 /* Update SW event ring dequeue pointer */ 2633 inc_deq(xhci, xhci->event_ring); 2634 2635 /* Are there more items on the event ring? Caller will call us again to 2636 * check. 2637 */ 2638 return 1; 2639 } 2640 2641 /* 2642 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2643 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2644 * indicators of an event TRB error, but we check the status *first* to be safe. 2645 */ 2646 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2647 { 2648 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2649 u32 status; 2650 u64 temp_64; 2651 union xhci_trb *event_ring_deq; 2652 dma_addr_t deq; 2653 2654 spin_lock(&xhci->lock); 2655 /* Check if the xHC generated the interrupt, or the irq is shared */ 2656 status = readl(&xhci->op_regs->status); 2657 if (status == 0xffffffff) 2658 goto hw_died; 2659 2660 if (!(status & STS_EINT)) { 2661 spin_unlock(&xhci->lock); 2662 return IRQ_NONE; 2663 } 2664 if (status & STS_FATAL) { 2665 xhci_warn(xhci, "WARNING: Host System Error\n"); 2666 xhci_halt(xhci); 2667 hw_died: 2668 spin_unlock(&xhci->lock); 2669 return -ESHUTDOWN; 2670 } 2671 2672 /* 2673 * Clear the op reg interrupt status first, 2674 * so we can receive interrupts from other MSI-X interrupters. 2675 * Write 1 to clear the interrupt status. 2676 */ 2677 status |= STS_EINT; 2678 writel(status, &xhci->op_regs->status); 2679 /* FIXME when MSI-X is supported and there are multiple vectors */ 2680 /* Clear the MSI-X event interrupt status */ 2681 2682 if (hcd->irq) { 2683 u32 irq_pending; 2684 /* Acknowledge the PCI interrupt */ 2685 irq_pending = readl(&xhci->ir_set->irq_pending); 2686 irq_pending |= IMAN_IP; 2687 writel(irq_pending, &xhci->ir_set->irq_pending); 2688 } 2689 2690 if (xhci->xhc_state & XHCI_STATE_DYING) { 2691 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2692 "Shouldn't IRQs be disabled?\n"); 2693 /* Clear the event handler busy flag (RW1C); 2694 * the event ring should be empty. 2695 */ 2696 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2697 xhci_write_64(xhci, temp_64 | ERST_EHB, 2698 &xhci->ir_set->erst_dequeue); 2699 spin_unlock(&xhci->lock); 2700 2701 return IRQ_HANDLED; 2702 } 2703 2704 event_ring_deq = xhci->event_ring->dequeue; 2705 /* FIXME this should be a delayed service routine 2706 * that clears the EHB. 2707 */ 2708 while (xhci_handle_event(xhci) > 0) {} 2709 2710 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2711 /* If necessary, update the HW's version of the event ring deq ptr. */ 2712 if (event_ring_deq != xhci->event_ring->dequeue) { 2713 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2714 xhci->event_ring->dequeue); 2715 if (deq == 0) 2716 xhci_warn(xhci, "WARN something wrong with SW event " 2717 "ring dequeue ptr.\n"); 2718 /* Update HC event ring dequeue pointer */ 2719 temp_64 &= ERST_PTR_MASK; 2720 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2721 } 2722 2723 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2724 temp_64 |= ERST_EHB; 2725 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2726 2727 spin_unlock(&xhci->lock); 2728 2729 return IRQ_HANDLED; 2730 } 2731 2732 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2733 { 2734 return xhci_irq(hcd); 2735 } 2736 2737 /**** Endpoint Ring Operations ****/ 2738 2739 /* 2740 * Generic function for queueing a TRB on a ring. 2741 * The caller must have checked to make sure there's room on the ring. 2742 * 2743 * @more_trbs_coming: Will you enqueue more TRBs before calling 2744 * prepare_transfer()? 2745 */ 2746 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2747 bool more_trbs_coming, 2748 u32 field1, u32 field2, u32 field3, u32 field4) 2749 { 2750 struct xhci_generic_trb *trb; 2751 2752 trb = &ring->enqueue->generic; 2753 trb->field[0] = cpu_to_le32(field1); 2754 trb->field[1] = cpu_to_le32(field2); 2755 trb->field[2] = cpu_to_le32(field3); 2756 trb->field[3] = cpu_to_le32(field4); 2757 inc_enq(xhci, ring, more_trbs_coming); 2758 } 2759 2760 /* 2761 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2762 * FIXME allocate segments if the ring is full. 2763 */ 2764 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2765 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2766 { 2767 unsigned int num_trbs_needed; 2768 2769 /* Make sure the endpoint has been added to xHC schedule */ 2770 switch (ep_state) { 2771 case EP_STATE_DISABLED: 2772 /* 2773 * USB core changed config/interfaces without notifying us, 2774 * or hardware is reporting the wrong state. 2775 */ 2776 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2777 return -ENOENT; 2778 case EP_STATE_ERROR: 2779 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2780 /* FIXME event handling code for error needs to clear it */ 2781 /* XXX not sure if this should be -ENOENT or not */ 2782 return -EINVAL; 2783 case EP_STATE_HALTED: 2784 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2785 case EP_STATE_STOPPED: 2786 case EP_STATE_RUNNING: 2787 break; 2788 default: 2789 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2790 /* 2791 * FIXME issue Configure Endpoint command to try to get the HC 2792 * back into a known state. 2793 */ 2794 return -EINVAL; 2795 } 2796 2797 while (1) { 2798 if (room_on_ring(xhci, ep_ring, num_trbs)) 2799 break; 2800 2801 if (ep_ring == xhci->cmd_ring) { 2802 xhci_err(xhci, "Do not support expand command ring\n"); 2803 return -ENOMEM; 2804 } 2805 2806 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2807 "ERROR no room on ep ring, try ring expansion"); 2808 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2809 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2810 mem_flags)) { 2811 xhci_err(xhci, "Ring expansion failed\n"); 2812 return -ENOMEM; 2813 } 2814 } 2815 2816 if (enqueue_is_link_trb(ep_ring)) { 2817 struct xhci_ring *ring = ep_ring; 2818 union xhci_trb *next; 2819 2820 next = ring->enqueue; 2821 2822 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2823 /* If we're not dealing with 0.95 hardware or isoc rings 2824 * on AMD 0.96 host, clear the chain bit. 2825 */ 2826 if (!xhci_link_trb_quirk(xhci) && 2827 !(ring->type == TYPE_ISOC && 2828 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2829 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2830 else 2831 next->link.control |= cpu_to_le32(TRB_CHAIN); 2832 2833 wmb(); 2834 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2835 2836 /* Toggle the cycle bit after the last ring segment. */ 2837 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2838 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2839 } 2840 ring->enq_seg = ring->enq_seg->next; 2841 ring->enqueue = ring->enq_seg->trbs; 2842 next = ring->enqueue; 2843 } 2844 } 2845 2846 return 0; 2847 } 2848 2849 static int prepare_transfer(struct xhci_hcd *xhci, 2850 struct xhci_virt_device *xdev, 2851 unsigned int ep_index, 2852 unsigned int stream_id, 2853 unsigned int num_trbs, 2854 struct urb *urb, 2855 unsigned int td_index, 2856 gfp_t mem_flags) 2857 { 2858 int ret; 2859 struct urb_priv *urb_priv; 2860 struct xhci_td *td; 2861 struct xhci_ring *ep_ring; 2862 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2863 2864 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2865 if (!ep_ring) { 2866 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2867 stream_id); 2868 return -EINVAL; 2869 } 2870 2871 ret = prepare_ring(xhci, ep_ring, 2872 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2873 num_trbs, mem_flags); 2874 if (ret) 2875 return ret; 2876 2877 urb_priv = urb->hcpriv; 2878 td = urb_priv->td[td_index]; 2879 2880 INIT_LIST_HEAD(&td->td_list); 2881 INIT_LIST_HEAD(&td->cancelled_td_list); 2882 2883 if (td_index == 0) { 2884 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2885 if (unlikely(ret)) 2886 return ret; 2887 } 2888 2889 td->urb = urb; 2890 /* Add this TD to the tail of the endpoint ring's TD list */ 2891 list_add_tail(&td->td_list, &ep_ring->td_list); 2892 td->start_seg = ep_ring->enq_seg; 2893 td->first_trb = ep_ring->enqueue; 2894 2895 urb_priv->td[td_index] = td; 2896 2897 return 0; 2898 } 2899 2900 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2901 { 2902 int num_sgs, num_trbs, running_total, temp, i; 2903 struct scatterlist *sg; 2904 2905 sg = NULL; 2906 num_sgs = urb->num_mapped_sgs; 2907 temp = urb->transfer_buffer_length; 2908 2909 num_trbs = 0; 2910 for_each_sg(urb->sg, sg, num_sgs, i) { 2911 unsigned int len = sg_dma_len(sg); 2912 2913 /* Scatter gather list entries may cross 64KB boundaries */ 2914 running_total = TRB_MAX_BUFF_SIZE - 2915 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2916 running_total &= TRB_MAX_BUFF_SIZE - 1; 2917 if (running_total != 0) 2918 num_trbs++; 2919 2920 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2921 while (running_total < sg_dma_len(sg) && running_total < temp) { 2922 num_trbs++; 2923 running_total += TRB_MAX_BUFF_SIZE; 2924 } 2925 len = min_t(int, len, temp); 2926 temp -= len; 2927 if (temp == 0) 2928 break; 2929 } 2930 return num_trbs; 2931 } 2932 2933 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2934 { 2935 if (num_trbs != 0) 2936 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2937 "TRBs, %d left\n", __func__, 2938 urb->ep->desc.bEndpointAddress, num_trbs); 2939 if (running_total != urb->transfer_buffer_length) 2940 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2941 "queued %#x (%d), asked for %#x (%d)\n", 2942 __func__, 2943 urb->ep->desc.bEndpointAddress, 2944 running_total, running_total, 2945 urb->transfer_buffer_length, 2946 urb->transfer_buffer_length); 2947 } 2948 2949 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2950 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2951 struct xhci_generic_trb *start_trb) 2952 { 2953 /* 2954 * Pass all the TRBs to the hardware at once and make sure this write 2955 * isn't reordered. 2956 */ 2957 wmb(); 2958 if (start_cycle) 2959 start_trb->field[3] |= cpu_to_le32(start_cycle); 2960 else 2961 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2962 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2963 } 2964 2965 /* 2966 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2967 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2968 * (comprised of sg list entries) can take several service intervals to 2969 * transmit. 2970 */ 2971 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2972 struct urb *urb, int slot_id, unsigned int ep_index) 2973 { 2974 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2975 xhci->devs[slot_id]->out_ctx, ep_index); 2976 int xhci_interval; 2977 int ep_interval; 2978 2979 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2980 ep_interval = urb->interval; 2981 /* Convert to microframes */ 2982 if (urb->dev->speed == USB_SPEED_LOW || 2983 urb->dev->speed == USB_SPEED_FULL) 2984 ep_interval *= 8; 2985 /* FIXME change this to a warning and a suggestion to use the new API 2986 * to set the polling interval (once the API is added). 2987 */ 2988 if (xhci_interval != ep_interval) { 2989 dev_dbg_ratelimited(&urb->dev->dev, 2990 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 2991 ep_interval, ep_interval == 1 ? "" : "s", 2992 xhci_interval, xhci_interval == 1 ? "" : "s"); 2993 urb->interval = xhci_interval; 2994 /* Convert back to frames for LS/FS devices */ 2995 if (urb->dev->speed == USB_SPEED_LOW || 2996 urb->dev->speed == USB_SPEED_FULL) 2997 urb->interval /= 8; 2998 } 2999 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3000 } 3001 3002 /* 3003 * The TD size is the number of bytes remaining in the TD (including this TRB), 3004 * right shifted by 10. 3005 * It must fit in bits 21:17, so it can't be bigger than 31. 3006 */ 3007 static u32 xhci_td_remainder(unsigned int remainder) 3008 { 3009 u32 max = (1 << (21 - 17 + 1)) - 1; 3010 3011 if ((remainder >> 10) >= max) 3012 return max << 17; 3013 else 3014 return (remainder >> 10) << 17; 3015 } 3016 3017 /* 3018 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3019 * packets remaining in the TD (*not* including this TRB). 3020 * 3021 * Total TD packet count = total_packet_count = 3022 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3023 * 3024 * Packets transferred up to and including this TRB = packets_transferred = 3025 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3026 * 3027 * TD size = total_packet_count - packets_transferred 3028 * 3029 * It must fit in bits 21:17, so it can't be bigger than 31. 3030 * The last TRB in a TD must have the TD size set to zero. 3031 */ 3032 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3033 unsigned int total_packet_count, struct urb *urb, 3034 unsigned int num_trbs_left) 3035 { 3036 int packets_transferred; 3037 3038 /* One TRB with a zero-length data packet. */ 3039 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3040 return 0; 3041 3042 /* All the TRB queueing functions don't count the current TRB in 3043 * running_total. 3044 */ 3045 packets_transferred = (running_total + trb_buff_len) / 3046 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3047 3048 if ((total_packet_count - packets_transferred) > 31) 3049 return 31 << 17; 3050 return (total_packet_count - packets_transferred) << 17; 3051 } 3052 3053 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3054 struct urb *urb, int slot_id, unsigned int ep_index) 3055 { 3056 struct xhci_ring *ep_ring; 3057 unsigned int num_trbs; 3058 struct urb_priv *urb_priv; 3059 struct xhci_td *td; 3060 struct scatterlist *sg; 3061 int num_sgs; 3062 int trb_buff_len, this_sg_len, running_total; 3063 unsigned int total_packet_count; 3064 bool first_trb; 3065 u64 addr; 3066 bool more_trbs_coming; 3067 3068 struct xhci_generic_trb *start_trb; 3069 int start_cycle; 3070 3071 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3072 if (!ep_ring) 3073 return -EINVAL; 3074 3075 num_trbs = count_sg_trbs_needed(xhci, urb); 3076 num_sgs = urb->num_mapped_sgs; 3077 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3078 usb_endpoint_maxp(&urb->ep->desc)); 3079 3080 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3081 ep_index, urb->stream_id, 3082 num_trbs, urb, 0, mem_flags); 3083 if (trb_buff_len < 0) 3084 return trb_buff_len; 3085 3086 urb_priv = urb->hcpriv; 3087 td = urb_priv->td[0]; 3088 3089 /* 3090 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3091 * until we've finished creating all the other TRBs. The ring's cycle 3092 * state may change as we enqueue the other TRBs, so save it too. 3093 */ 3094 start_trb = &ep_ring->enqueue->generic; 3095 start_cycle = ep_ring->cycle_state; 3096 3097 running_total = 0; 3098 /* 3099 * How much data is in the first TRB? 3100 * 3101 * There are three forces at work for TRB buffer pointers and lengths: 3102 * 1. We don't want to walk off the end of this sg-list entry buffer. 3103 * 2. The transfer length that the driver requested may be smaller than 3104 * the amount of memory allocated for this scatter-gather list. 3105 * 3. TRBs buffers can't cross 64KB boundaries. 3106 */ 3107 sg = urb->sg; 3108 addr = (u64) sg_dma_address(sg); 3109 this_sg_len = sg_dma_len(sg); 3110 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3111 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3112 if (trb_buff_len > urb->transfer_buffer_length) 3113 trb_buff_len = urb->transfer_buffer_length; 3114 3115 first_trb = true; 3116 /* Queue the first TRB, even if it's zero-length */ 3117 do { 3118 u32 field = 0; 3119 u32 length_field = 0; 3120 u32 remainder = 0; 3121 3122 /* Don't change the cycle bit of the first TRB until later */ 3123 if (first_trb) { 3124 first_trb = false; 3125 if (start_cycle == 0) 3126 field |= 0x1; 3127 } else 3128 field |= ep_ring->cycle_state; 3129 3130 /* Chain all the TRBs together; clear the chain bit in the last 3131 * TRB to indicate it's the last TRB in the chain. 3132 */ 3133 if (num_trbs > 1) { 3134 field |= TRB_CHAIN; 3135 } else { 3136 /* FIXME - add check for ZERO_PACKET flag before this */ 3137 td->last_trb = ep_ring->enqueue; 3138 field |= TRB_IOC; 3139 } 3140 3141 /* Only set interrupt on short packet for IN endpoints */ 3142 if (usb_urb_dir_in(urb)) 3143 field |= TRB_ISP; 3144 3145 if (TRB_MAX_BUFF_SIZE - 3146 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3147 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3148 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3149 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3150 (unsigned int) addr + trb_buff_len); 3151 } 3152 3153 /* Set the TRB length, TD size, and interrupter fields. */ 3154 if (xhci->hci_version < 0x100) { 3155 remainder = xhci_td_remainder( 3156 urb->transfer_buffer_length - 3157 running_total); 3158 } else { 3159 remainder = xhci_v1_0_td_remainder(running_total, 3160 trb_buff_len, total_packet_count, urb, 3161 num_trbs - 1); 3162 } 3163 length_field = TRB_LEN(trb_buff_len) | 3164 remainder | 3165 TRB_INTR_TARGET(0); 3166 3167 if (num_trbs > 1) 3168 more_trbs_coming = true; 3169 else 3170 more_trbs_coming = false; 3171 queue_trb(xhci, ep_ring, more_trbs_coming, 3172 lower_32_bits(addr), 3173 upper_32_bits(addr), 3174 length_field, 3175 field | TRB_TYPE(TRB_NORMAL)); 3176 --num_trbs; 3177 running_total += trb_buff_len; 3178 3179 /* Calculate length for next transfer -- 3180 * Are we done queueing all the TRBs for this sg entry? 3181 */ 3182 this_sg_len -= trb_buff_len; 3183 if (this_sg_len == 0) { 3184 --num_sgs; 3185 if (num_sgs == 0) 3186 break; 3187 sg = sg_next(sg); 3188 addr = (u64) sg_dma_address(sg); 3189 this_sg_len = sg_dma_len(sg); 3190 } else { 3191 addr += trb_buff_len; 3192 } 3193 3194 trb_buff_len = TRB_MAX_BUFF_SIZE - 3195 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3196 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3197 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3198 trb_buff_len = 3199 urb->transfer_buffer_length - running_total; 3200 } while (running_total < urb->transfer_buffer_length); 3201 3202 check_trb_math(urb, num_trbs, running_total); 3203 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3204 start_cycle, start_trb); 3205 return 0; 3206 } 3207 3208 /* This is very similar to what ehci-q.c qtd_fill() does */ 3209 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3210 struct urb *urb, int slot_id, unsigned int ep_index) 3211 { 3212 struct xhci_ring *ep_ring; 3213 struct urb_priv *urb_priv; 3214 struct xhci_td *td; 3215 int num_trbs; 3216 struct xhci_generic_trb *start_trb; 3217 bool first_trb; 3218 bool more_trbs_coming; 3219 int start_cycle; 3220 u32 field, length_field; 3221 3222 int running_total, trb_buff_len, ret; 3223 unsigned int total_packet_count; 3224 u64 addr; 3225 3226 if (urb->num_sgs) 3227 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3228 3229 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3230 if (!ep_ring) 3231 return -EINVAL; 3232 3233 num_trbs = 0; 3234 /* How much data is (potentially) left before the 64KB boundary? */ 3235 running_total = TRB_MAX_BUFF_SIZE - 3236 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3237 running_total &= TRB_MAX_BUFF_SIZE - 1; 3238 3239 /* If there's some data on this 64KB chunk, or we have to send a 3240 * zero-length transfer, we need at least one TRB 3241 */ 3242 if (running_total != 0 || urb->transfer_buffer_length == 0) 3243 num_trbs++; 3244 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3245 while (running_total < urb->transfer_buffer_length) { 3246 num_trbs++; 3247 running_total += TRB_MAX_BUFF_SIZE; 3248 } 3249 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3250 3251 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3252 ep_index, urb->stream_id, 3253 num_trbs, urb, 0, mem_flags); 3254 if (ret < 0) 3255 return ret; 3256 3257 urb_priv = urb->hcpriv; 3258 td = urb_priv->td[0]; 3259 3260 /* 3261 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3262 * until we've finished creating all the other TRBs. The ring's cycle 3263 * state may change as we enqueue the other TRBs, so save it too. 3264 */ 3265 start_trb = &ep_ring->enqueue->generic; 3266 start_cycle = ep_ring->cycle_state; 3267 3268 running_total = 0; 3269 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3270 usb_endpoint_maxp(&urb->ep->desc)); 3271 /* How much data is in the first TRB? */ 3272 addr = (u64) urb->transfer_dma; 3273 trb_buff_len = TRB_MAX_BUFF_SIZE - 3274 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3275 if (trb_buff_len > urb->transfer_buffer_length) 3276 trb_buff_len = urb->transfer_buffer_length; 3277 3278 first_trb = true; 3279 3280 /* Queue the first TRB, even if it's zero-length */ 3281 do { 3282 u32 remainder = 0; 3283 field = 0; 3284 3285 /* Don't change the cycle bit of the first TRB until later */ 3286 if (first_trb) { 3287 first_trb = false; 3288 if (start_cycle == 0) 3289 field |= 0x1; 3290 } else 3291 field |= ep_ring->cycle_state; 3292 3293 /* Chain all the TRBs together; clear the chain bit in the last 3294 * TRB to indicate it's the last TRB in the chain. 3295 */ 3296 if (num_trbs > 1) { 3297 field |= TRB_CHAIN; 3298 } else { 3299 /* FIXME - add check for ZERO_PACKET flag before this */ 3300 td->last_trb = ep_ring->enqueue; 3301 field |= TRB_IOC; 3302 } 3303 3304 /* Only set interrupt on short packet for IN endpoints */ 3305 if (usb_urb_dir_in(urb)) 3306 field |= TRB_ISP; 3307 3308 /* Set the TRB length, TD size, and interrupter fields. */ 3309 if (xhci->hci_version < 0x100) { 3310 remainder = xhci_td_remainder( 3311 urb->transfer_buffer_length - 3312 running_total); 3313 } else { 3314 remainder = xhci_v1_0_td_remainder(running_total, 3315 trb_buff_len, total_packet_count, urb, 3316 num_trbs - 1); 3317 } 3318 length_field = TRB_LEN(trb_buff_len) | 3319 remainder | 3320 TRB_INTR_TARGET(0); 3321 3322 if (num_trbs > 1) 3323 more_trbs_coming = true; 3324 else 3325 more_trbs_coming = false; 3326 queue_trb(xhci, ep_ring, more_trbs_coming, 3327 lower_32_bits(addr), 3328 upper_32_bits(addr), 3329 length_field, 3330 field | TRB_TYPE(TRB_NORMAL)); 3331 --num_trbs; 3332 running_total += trb_buff_len; 3333 3334 /* Calculate length for next transfer */ 3335 addr += trb_buff_len; 3336 trb_buff_len = urb->transfer_buffer_length - running_total; 3337 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3338 trb_buff_len = TRB_MAX_BUFF_SIZE; 3339 } while (running_total < urb->transfer_buffer_length); 3340 3341 check_trb_math(urb, num_trbs, running_total); 3342 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3343 start_cycle, start_trb); 3344 return 0; 3345 } 3346 3347 /* Caller must have locked xhci->lock */ 3348 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3349 struct urb *urb, int slot_id, unsigned int ep_index) 3350 { 3351 struct xhci_ring *ep_ring; 3352 int num_trbs; 3353 int ret; 3354 struct usb_ctrlrequest *setup; 3355 struct xhci_generic_trb *start_trb; 3356 int start_cycle; 3357 u32 field, length_field; 3358 struct urb_priv *urb_priv; 3359 struct xhci_td *td; 3360 3361 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3362 if (!ep_ring) 3363 return -EINVAL; 3364 3365 /* 3366 * Need to copy setup packet into setup TRB, so we can't use the setup 3367 * DMA address. 3368 */ 3369 if (!urb->setup_packet) 3370 return -EINVAL; 3371 3372 /* 1 TRB for setup, 1 for status */ 3373 num_trbs = 2; 3374 /* 3375 * Don't need to check if we need additional event data and normal TRBs, 3376 * since data in control transfers will never get bigger than 16MB 3377 * XXX: can we get a buffer that crosses 64KB boundaries? 3378 */ 3379 if (urb->transfer_buffer_length > 0) 3380 num_trbs++; 3381 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3382 ep_index, urb->stream_id, 3383 num_trbs, urb, 0, mem_flags); 3384 if (ret < 0) 3385 return ret; 3386 3387 urb_priv = urb->hcpriv; 3388 td = urb_priv->td[0]; 3389 3390 /* 3391 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3392 * until we've finished creating all the other TRBs. The ring's cycle 3393 * state may change as we enqueue the other TRBs, so save it too. 3394 */ 3395 start_trb = &ep_ring->enqueue->generic; 3396 start_cycle = ep_ring->cycle_state; 3397 3398 /* Queue setup TRB - see section 6.4.1.2.1 */ 3399 /* FIXME better way to translate setup_packet into two u32 fields? */ 3400 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3401 field = 0; 3402 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3403 if (start_cycle == 0) 3404 field |= 0x1; 3405 3406 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3407 if (xhci->hci_version == 0x100) { 3408 if (urb->transfer_buffer_length > 0) { 3409 if (setup->bRequestType & USB_DIR_IN) 3410 field |= TRB_TX_TYPE(TRB_DATA_IN); 3411 else 3412 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3413 } 3414 } 3415 3416 queue_trb(xhci, ep_ring, true, 3417 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3418 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3419 TRB_LEN(8) | TRB_INTR_TARGET(0), 3420 /* Immediate data in pointer */ 3421 field); 3422 3423 /* If there's data, queue data TRBs */ 3424 /* Only set interrupt on short packet for IN endpoints */ 3425 if (usb_urb_dir_in(urb)) 3426 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3427 else 3428 field = TRB_TYPE(TRB_DATA); 3429 3430 length_field = TRB_LEN(urb->transfer_buffer_length) | 3431 xhci_td_remainder(urb->transfer_buffer_length) | 3432 TRB_INTR_TARGET(0); 3433 if (urb->transfer_buffer_length > 0) { 3434 if (setup->bRequestType & USB_DIR_IN) 3435 field |= TRB_DIR_IN; 3436 queue_trb(xhci, ep_ring, true, 3437 lower_32_bits(urb->transfer_dma), 3438 upper_32_bits(urb->transfer_dma), 3439 length_field, 3440 field | ep_ring->cycle_state); 3441 } 3442 3443 /* Save the DMA address of the last TRB in the TD */ 3444 td->last_trb = ep_ring->enqueue; 3445 3446 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3447 /* If the device sent data, the status stage is an OUT transfer */ 3448 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3449 field = 0; 3450 else 3451 field = TRB_DIR_IN; 3452 queue_trb(xhci, ep_ring, false, 3453 0, 3454 0, 3455 TRB_INTR_TARGET(0), 3456 /* Event on completion */ 3457 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3458 3459 giveback_first_trb(xhci, slot_id, ep_index, 0, 3460 start_cycle, start_trb); 3461 return 0; 3462 } 3463 3464 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3465 struct urb *urb, int i) 3466 { 3467 int num_trbs = 0; 3468 u64 addr, td_len; 3469 3470 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3471 td_len = urb->iso_frame_desc[i].length; 3472 3473 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3474 TRB_MAX_BUFF_SIZE); 3475 if (num_trbs == 0) 3476 num_trbs++; 3477 3478 return num_trbs; 3479 } 3480 3481 /* 3482 * The transfer burst count field of the isochronous TRB defines the number of 3483 * bursts that are required to move all packets in this TD. Only SuperSpeed 3484 * devices can burst up to bMaxBurst number of packets per service interval. 3485 * This field is zero based, meaning a value of zero in the field means one 3486 * burst. Basically, for everything but SuperSpeed devices, this field will be 3487 * zero. Only xHCI 1.0 host controllers support this field. 3488 */ 3489 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3490 struct usb_device *udev, 3491 struct urb *urb, unsigned int total_packet_count) 3492 { 3493 unsigned int max_burst; 3494 3495 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3496 return 0; 3497 3498 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3499 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3500 } 3501 3502 /* 3503 * Returns the number of packets in the last "burst" of packets. This field is 3504 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3505 * the last burst packet count is equal to the total number of packets in the 3506 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3507 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3508 * contain 1 to (bMaxBurst + 1) packets. 3509 */ 3510 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3511 struct usb_device *udev, 3512 struct urb *urb, unsigned int total_packet_count) 3513 { 3514 unsigned int max_burst; 3515 unsigned int residue; 3516 3517 if (xhci->hci_version < 0x100) 3518 return 0; 3519 3520 switch (udev->speed) { 3521 case USB_SPEED_SUPER: 3522 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3523 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3524 residue = total_packet_count % (max_burst + 1); 3525 /* If residue is zero, the last burst contains (max_burst + 1) 3526 * number of packets, but the TLBPC field is zero-based. 3527 */ 3528 if (residue == 0) 3529 return max_burst; 3530 return residue - 1; 3531 default: 3532 if (total_packet_count == 0) 3533 return 0; 3534 return total_packet_count - 1; 3535 } 3536 } 3537 3538 /* This is for isoc transfer */ 3539 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3540 struct urb *urb, int slot_id, unsigned int ep_index) 3541 { 3542 struct xhci_ring *ep_ring; 3543 struct urb_priv *urb_priv; 3544 struct xhci_td *td; 3545 int num_tds, trbs_per_td; 3546 struct xhci_generic_trb *start_trb; 3547 bool first_trb; 3548 int start_cycle; 3549 u32 field, length_field; 3550 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3551 u64 start_addr, addr; 3552 int i, j; 3553 bool more_trbs_coming; 3554 3555 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3556 3557 num_tds = urb->number_of_packets; 3558 if (num_tds < 1) { 3559 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3560 return -EINVAL; 3561 } 3562 3563 start_addr = (u64) urb->transfer_dma; 3564 start_trb = &ep_ring->enqueue->generic; 3565 start_cycle = ep_ring->cycle_state; 3566 3567 urb_priv = urb->hcpriv; 3568 /* Queue the first TRB, even if it's zero-length */ 3569 for (i = 0; i < num_tds; i++) { 3570 unsigned int total_packet_count; 3571 unsigned int burst_count; 3572 unsigned int residue; 3573 3574 first_trb = true; 3575 running_total = 0; 3576 addr = start_addr + urb->iso_frame_desc[i].offset; 3577 td_len = urb->iso_frame_desc[i].length; 3578 td_remain_len = td_len; 3579 total_packet_count = DIV_ROUND_UP(td_len, 3580 GET_MAX_PACKET( 3581 usb_endpoint_maxp(&urb->ep->desc))); 3582 /* A zero-length transfer still involves at least one packet. */ 3583 if (total_packet_count == 0) 3584 total_packet_count++; 3585 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3586 total_packet_count); 3587 residue = xhci_get_last_burst_packet_count(xhci, 3588 urb->dev, urb, total_packet_count); 3589 3590 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3591 3592 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3593 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3594 if (ret < 0) { 3595 if (i == 0) 3596 return ret; 3597 goto cleanup; 3598 } 3599 3600 td = urb_priv->td[i]; 3601 for (j = 0; j < trbs_per_td; j++) { 3602 u32 remainder = 0; 3603 field = 0; 3604 3605 if (first_trb) { 3606 field = TRB_TBC(burst_count) | 3607 TRB_TLBPC(residue); 3608 /* Queue the isoc TRB */ 3609 field |= TRB_TYPE(TRB_ISOC); 3610 /* Assume URB_ISO_ASAP is set */ 3611 field |= TRB_SIA; 3612 if (i == 0) { 3613 if (start_cycle == 0) 3614 field |= 0x1; 3615 } else 3616 field |= ep_ring->cycle_state; 3617 first_trb = false; 3618 } else { 3619 /* Queue other normal TRBs */ 3620 field |= TRB_TYPE(TRB_NORMAL); 3621 field |= ep_ring->cycle_state; 3622 } 3623 3624 /* Only set interrupt on short packet for IN EPs */ 3625 if (usb_urb_dir_in(urb)) 3626 field |= TRB_ISP; 3627 3628 /* Chain all the TRBs together; clear the chain bit in 3629 * the last TRB to indicate it's the last TRB in the 3630 * chain. 3631 */ 3632 if (j < trbs_per_td - 1) { 3633 field |= TRB_CHAIN; 3634 more_trbs_coming = true; 3635 } else { 3636 td->last_trb = ep_ring->enqueue; 3637 field |= TRB_IOC; 3638 if (xhci->hci_version == 0x100 && 3639 !(xhci->quirks & 3640 XHCI_AVOID_BEI)) { 3641 /* Set BEI bit except for the last td */ 3642 if (i < num_tds - 1) 3643 field |= TRB_BEI; 3644 } 3645 more_trbs_coming = false; 3646 } 3647 3648 /* Calculate TRB length */ 3649 trb_buff_len = TRB_MAX_BUFF_SIZE - 3650 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3651 if (trb_buff_len > td_remain_len) 3652 trb_buff_len = td_remain_len; 3653 3654 /* Set the TRB length, TD size, & interrupter fields. */ 3655 if (xhci->hci_version < 0x100) { 3656 remainder = xhci_td_remainder( 3657 td_len - running_total); 3658 } else { 3659 remainder = xhci_v1_0_td_remainder( 3660 running_total, trb_buff_len, 3661 total_packet_count, urb, 3662 (trbs_per_td - j - 1)); 3663 } 3664 length_field = TRB_LEN(trb_buff_len) | 3665 remainder | 3666 TRB_INTR_TARGET(0); 3667 3668 queue_trb(xhci, ep_ring, more_trbs_coming, 3669 lower_32_bits(addr), 3670 upper_32_bits(addr), 3671 length_field, 3672 field); 3673 running_total += trb_buff_len; 3674 3675 addr += trb_buff_len; 3676 td_remain_len -= trb_buff_len; 3677 } 3678 3679 /* Check TD length */ 3680 if (running_total != td_len) { 3681 xhci_err(xhci, "ISOC TD length unmatch\n"); 3682 ret = -EINVAL; 3683 goto cleanup; 3684 } 3685 } 3686 3687 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3688 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3689 usb_amd_quirk_pll_disable(); 3690 } 3691 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3692 3693 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3694 start_cycle, start_trb); 3695 return 0; 3696 cleanup: 3697 /* Clean up a partially enqueued isoc transfer. */ 3698 3699 for (i--; i >= 0; i--) 3700 list_del_init(&urb_priv->td[i]->td_list); 3701 3702 /* Use the first TD as a temporary variable to turn the TDs we've queued 3703 * into No-ops with a software-owned cycle bit. That way the hardware 3704 * won't accidentally start executing bogus TDs when we partially 3705 * overwrite them. td->first_trb and td->start_seg are already set. 3706 */ 3707 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3708 /* Every TRB except the first & last will have its cycle bit flipped. */ 3709 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3710 3711 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3712 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3713 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3714 ep_ring->cycle_state = start_cycle; 3715 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3716 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3717 return ret; 3718 } 3719 3720 /* 3721 * Check transfer ring to guarantee there is enough room for the urb. 3722 * Update ISO URB start_frame and interval. 3723 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3724 * update the urb->start_frame by now. 3725 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3726 */ 3727 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3728 struct urb *urb, int slot_id, unsigned int ep_index) 3729 { 3730 struct xhci_virt_device *xdev; 3731 struct xhci_ring *ep_ring; 3732 struct xhci_ep_ctx *ep_ctx; 3733 int start_frame; 3734 int xhci_interval; 3735 int ep_interval; 3736 int num_tds, num_trbs, i; 3737 int ret; 3738 3739 xdev = xhci->devs[slot_id]; 3740 ep_ring = xdev->eps[ep_index].ring; 3741 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3742 3743 num_trbs = 0; 3744 num_tds = urb->number_of_packets; 3745 for (i = 0; i < num_tds; i++) 3746 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3747 3748 /* Check the ring to guarantee there is enough room for the whole urb. 3749 * Do not insert any td of the urb to the ring if the check failed. 3750 */ 3751 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3752 num_trbs, mem_flags); 3753 if (ret) 3754 return ret; 3755 3756 start_frame = readl(&xhci->run_regs->microframe_index); 3757 start_frame &= 0x3fff; 3758 3759 urb->start_frame = start_frame; 3760 if (urb->dev->speed == USB_SPEED_LOW || 3761 urb->dev->speed == USB_SPEED_FULL) 3762 urb->start_frame >>= 3; 3763 3764 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3765 ep_interval = urb->interval; 3766 /* Convert to microframes */ 3767 if (urb->dev->speed == USB_SPEED_LOW || 3768 urb->dev->speed == USB_SPEED_FULL) 3769 ep_interval *= 8; 3770 /* FIXME change this to a warning and a suggestion to use the new API 3771 * to set the polling interval (once the API is added). 3772 */ 3773 if (xhci_interval != ep_interval) { 3774 dev_dbg_ratelimited(&urb->dev->dev, 3775 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3776 ep_interval, ep_interval == 1 ? "" : "s", 3777 xhci_interval, xhci_interval == 1 ? "" : "s"); 3778 urb->interval = xhci_interval; 3779 /* Convert back to frames for LS/FS devices */ 3780 if (urb->dev->speed == USB_SPEED_LOW || 3781 urb->dev->speed == USB_SPEED_FULL) 3782 urb->interval /= 8; 3783 } 3784 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3785 3786 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3787 } 3788 3789 /**** Command Ring Operations ****/ 3790 3791 /* Generic function for queueing a command TRB on the command ring. 3792 * Check to make sure there's room on the command ring for one command TRB. 3793 * Also check that there's room reserved for commands that must not fail. 3794 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3795 * then only check for the number of reserved spots. 3796 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3797 * because the command event handler may want to resubmit a failed command. 3798 */ 3799 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3800 u32 field1, u32 field2, 3801 u32 field3, u32 field4, bool command_must_succeed) 3802 { 3803 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3804 int ret; 3805 if (xhci->xhc_state & XHCI_STATE_DYING) 3806 return -ESHUTDOWN; 3807 3808 if (!command_must_succeed) 3809 reserved_trbs++; 3810 3811 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3812 reserved_trbs, GFP_ATOMIC); 3813 if (ret < 0) { 3814 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3815 if (command_must_succeed) 3816 xhci_err(xhci, "ERR: Reserved TRB counting for " 3817 "unfailable commands failed.\n"); 3818 return ret; 3819 } 3820 3821 cmd->command_trb = xhci->cmd_ring->enqueue; 3822 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3823 3824 /* if there are no other commands queued we start the timeout timer */ 3825 if (xhci->cmd_list.next == &cmd->cmd_list && 3826 !timer_pending(&xhci->cmd_timer)) { 3827 xhci->current_cmd = cmd; 3828 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3829 } 3830 3831 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3832 field4 | xhci->cmd_ring->cycle_state); 3833 return 0; 3834 } 3835 3836 /* Queue a slot enable or disable request on the command ring */ 3837 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3838 u32 trb_type, u32 slot_id) 3839 { 3840 return queue_command(xhci, cmd, 0, 0, 0, 3841 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3842 } 3843 3844 /* Queue an address device command TRB */ 3845 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3846 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3847 { 3848 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3849 upper_32_bits(in_ctx_ptr), 0, 3850 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3851 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3852 } 3853 3854 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3855 u32 field1, u32 field2, u32 field3, u32 field4) 3856 { 3857 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3858 } 3859 3860 /* Queue a reset device command TRB */ 3861 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3862 u32 slot_id) 3863 { 3864 return queue_command(xhci, cmd, 0, 0, 0, 3865 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3866 false); 3867 } 3868 3869 /* Queue a configure endpoint command TRB */ 3870 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3871 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3872 u32 slot_id, bool command_must_succeed) 3873 { 3874 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3875 upper_32_bits(in_ctx_ptr), 0, 3876 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3877 command_must_succeed); 3878 } 3879 3880 /* Queue an evaluate context command TRB */ 3881 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3882 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3883 { 3884 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3885 upper_32_bits(in_ctx_ptr), 0, 3886 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3887 command_must_succeed); 3888 } 3889 3890 /* 3891 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3892 * activity on an endpoint that is about to be suspended. 3893 */ 3894 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3895 int slot_id, unsigned int ep_index, int suspend) 3896 { 3897 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3898 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3899 u32 type = TRB_TYPE(TRB_STOP_RING); 3900 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3901 3902 return queue_command(xhci, cmd, 0, 0, 0, 3903 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3904 } 3905 3906 /* Set Transfer Ring Dequeue Pointer command */ 3907 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3908 unsigned int slot_id, unsigned int ep_index, 3909 unsigned int stream_id, 3910 struct xhci_dequeue_state *deq_state) 3911 { 3912 dma_addr_t addr; 3913 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3914 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3915 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3916 u32 trb_sct = 0; 3917 u32 type = TRB_TYPE(TRB_SET_DEQ); 3918 struct xhci_virt_ep *ep; 3919 struct xhci_command *cmd; 3920 int ret; 3921 3922 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3923 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3924 deq_state->new_deq_seg, 3925 (unsigned long long)deq_state->new_deq_seg->dma, 3926 deq_state->new_deq_ptr, 3927 (unsigned long long)xhci_trb_virt_to_dma( 3928 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3929 deq_state->new_cycle_state); 3930 3931 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3932 deq_state->new_deq_ptr); 3933 if (addr == 0) { 3934 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3935 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3936 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3937 return; 3938 } 3939 ep = &xhci->devs[slot_id]->eps[ep_index]; 3940 if ((ep->ep_state & SET_DEQ_PENDING)) { 3941 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3942 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3943 return; 3944 } 3945 3946 /* This function gets called from contexts where it cannot sleep */ 3947 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 3948 if (!cmd) { 3949 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 3950 return; 3951 } 3952 3953 ep->queued_deq_seg = deq_state->new_deq_seg; 3954 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3955 if (stream_id) 3956 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3957 ret = queue_command(xhci, cmd, 3958 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3959 upper_32_bits(addr), trb_stream_id, 3960 trb_slot_id | trb_ep_index | type, false); 3961 if (ret < 0) { 3962 xhci_free_command(xhci, cmd); 3963 return; 3964 } 3965 3966 /* Stop the TD queueing code from ringing the doorbell until 3967 * this command completes. The HC won't set the dequeue pointer 3968 * if the ring is running, and ringing the doorbell starts the 3969 * ring running. 3970 */ 3971 ep->ep_state |= SET_DEQ_PENDING; 3972 } 3973 3974 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3975 int slot_id, unsigned int ep_index) 3976 { 3977 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3978 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3979 u32 type = TRB_TYPE(TRB_RESET_EP); 3980 3981 return queue_command(xhci, cmd, 0, 0, 0, 3982 trb_slot_id | trb_ep_index | type, false); 3983 } 3984