1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 } else { 180 ring->dequeue++; 181 ring->num_trbs_free++; 182 } 183 } 184 185 while (trb_is_link(ring->dequeue)) { 186 ring->deq_seg = ring->deq_seg->next; 187 ring->dequeue = ring->deq_seg->trbs; 188 189 if (link_trb_count++ > ring->num_segs) { 190 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 191 break; 192 } 193 } 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * 203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 204 * chain bit is set), then set the chain bit in all the following link TRBs. 205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 206 * have their chain bit cleared (so that each Link TRB is a separate TD). 207 * 208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 209 * set, but other sections talk about dealing with the chain bit set. This was 210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 211 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 212 * 213 * @more_trbs_coming: Will you enqueue more TRBs before calling 214 * prepare_transfer()? 215 */ 216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 217 bool more_trbs_coming) 218 { 219 u32 chain; 220 union xhci_trb *next; 221 unsigned int link_trb_count = 0; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 228 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 229 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 230 return; 231 } 232 233 next = ++(ring->enqueue); 234 235 /* Update the dequeue pointer further if that was a link TRB */ 236 while (trb_is_link(next)) { 237 238 /* 239 * If the caller doesn't plan on enqueueing more TDs before 240 * ringing the doorbell, then we don't want to give the link TRB 241 * to the hardware just yet. We'll give the link TRB back in 242 * prepare_ring() just before we enqueue the TD at the top of 243 * the ring. 244 */ 245 if (!chain && !more_trbs_coming) 246 break; 247 248 /* If we're not dealing with 0.95 hardware or isoc rings on 249 * AMD 0.96 host, carry over the chain bit of the previous TRB 250 * (which may mean the chain bit is cleared). 251 */ 252 if (!(ring->type == TYPE_ISOC && 253 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 254 !xhci_link_trb_quirk(xhci)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 if (link_trb_count++ > ring->num_segs) { 271 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 272 break; 273 } 274 } 275 276 trace_xhci_inc_enq(ring); 277 } 278 279 /* 280 * Check to see if there's room to enqueue num_trbs on the ring and make sure 281 * enqueue pointer will not advance into dequeue segment. See rules above. 282 */ 283 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 284 unsigned int num_trbs) 285 { 286 int num_trbs_in_deq_seg; 287 288 if (ring->num_trbs_free < num_trbs) 289 return 0; 290 291 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 292 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 293 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 294 return 0; 295 } 296 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 304 return; 305 306 xhci_dbg(xhci, "// Ding dong!\n"); 307 308 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 309 310 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 311 /* Flush PCI posted writes */ 312 readl(&xhci->dba->doorbell[0]); 313 } 314 315 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 316 { 317 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 318 } 319 320 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 321 { 322 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 323 cmd_list); 324 } 325 326 /* 327 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 328 * If there are other commands waiting then restart the ring and kick the timer. 329 * This must be called with command ring stopped and xhci->lock held. 330 */ 331 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 332 struct xhci_command *cur_cmd) 333 { 334 struct xhci_command *i_cmd; 335 336 /* Turn all aborted commands in list to no-ops, then restart */ 337 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 338 339 if (i_cmd->status != COMP_COMMAND_ABORTED) 340 continue; 341 342 i_cmd->status = COMP_COMMAND_RING_STOPPED; 343 344 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 345 i_cmd->command_trb); 346 347 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 348 349 /* 350 * caller waiting for completion is called when command 351 * completion event is received for these no-op commands 352 */ 353 } 354 355 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 356 357 /* ring command ring doorbell to restart the command ring */ 358 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 359 !(xhci->xhc_state & XHCI_STATE_DYING)) { 360 xhci->current_cmd = cur_cmd; 361 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 362 xhci_ring_cmd_db(xhci); 363 } 364 } 365 366 /* Must be called with xhci->lock held, releases and aquires lock back */ 367 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 368 { 369 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 370 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 371 u64 crcr; 372 int ret; 373 374 xhci_dbg(xhci, "Abort command ring\n"); 375 376 reinit_completion(&xhci->cmd_ring_stop_completion); 377 378 /* 379 * The control bits like command stop, abort are located in lower 380 * dword of the command ring control register. 381 * Some controllers require all 64 bits to be written to abort the ring. 382 * Make sure the upper dword is valid, pointing to the next command, 383 * avoiding corrupting the command ring pointer in case the command ring 384 * is stopped by the time the upper dword is written. 385 */ 386 next_trb(xhci, NULL, &new_seg, &new_deq); 387 if (trb_is_link(new_deq)) 388 next_trb(xhci, NULL, &new_seg, &new_deq); 389 390 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 391 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 392 393 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 394 * completion of the Command Abort operation. If CRR is not negated in 5 395 * seconds then driver handles it as if host died (-ENODEV). 396 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 397 * and try to recover a -ETIMEDOUT with a host controller reset. 398 */ 399 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 400 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 401 if (ret < 0) { 402 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 403 xhci_halt(xhci); 404 xhci_hc_died(xhci); 405 return ret; 406 } 407 /* 408 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 409 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 410 * but the completion event in never sent. Wait 2 secs (arbitrary 411 * number) to handle those cases after negation of CMD_RING_RUNNING. 412 */ 413 spin_unlock_irqrestore(&xhci->lock, flags); 414 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 415 msecs_to_jiffies(2000)); 416 spin_lock_irqsave(&xhci->lock, flags); 417 if (!ret) { 418 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 419 xhci_cleanup_command_queue(xhci); 420 } else { 421 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 422 } 423 return 0; 424 } 425 426 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index, 429 unsigned int stream_id) 430 { 431 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 432 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 433 unsigned int ep_state = ep->ep_state; 434 435 /* Don't ring the doorbell for this endpoint if there are pending 436 * cancellations because we don't want to interrupt processing. 437 * We don't want to restart any stream rings if there's a set dequeue 438 * pointer command pending because the device can choose to start any 439 * stream once the endpoint is on the HW schedule. 440 */ 441 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 442 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 443 return; 444 445 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 446 447 writel(DB_VALUE(ep_index, stream_id), db_addr); 448 /* flush the write */ 449 readl(db_addr); 450 } 451 452 /* Ring the doorbell for any rings with pending URBs */ 453 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 454 unsigned int slot_id, 455 unsigned int ep_index) 456 { 457 unsigned int stream_id; 458 struct xhci_virt_ep *ep; 459 460 ep = &xhci->devs[slot_id]->eps[ep_index]; 461 462 /* A ring has pending URBs if its TD list is not empty */ 463 if (!(ep->ep_state & EP_HAS_STREAMS)) { 464 if (ep->ring && !(list_empty(&ep->ring->td_list))) 465 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 466 return; 467 } 468 469 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 470 stream_id++) { 471 struct xhci_stream_info *stream_info = ep->stream_info; 472 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 473 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 474 stream_id); 475 } 476 } 477 478 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 479 unsigned int slot_id, 480 unsigned int ep_index) 481 { 482 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 483 } 484 485 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 486 unsigned int slot_id, 487 unsigned int ep_index) 488 { 489 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 490 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 491 return NULL; 492 } 493 if (ep_index >= EP_CTX_PER_DEV) { 494 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 495 return NULL; 496 } 497 if (!xhci->devs[slot_id]) { 498 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 499 return NULL; 500 } 501 502 return &xhci->devs[slot_id]->eps[ep_index]; 503 } 504 505 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 506 struct xhci_virt_ep *ep, 507 unsigned int stream_id) 508 { 509 /* common case, no streams */ 510 if (!(ep->ep_state & EP_HAS_STREAMS)) 511 return ep->ring; 512 513 if (!ep->stream_info) 514 return NULL; 515 516 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 517 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 518 stream_id, ep->vdev->slot_id, ep->ep_index); 519 return NULL; 520 } 521 522 return ep->stream_info->stream_rings[stream_id]; 523 } 524 525 /* Get the right ring for the given slot_id, ep_index and stream_id. 526 * If the endpoint supports streams, boundary check the URB's stream ID. 527 * If the endpoint doesn't support streams, return the singular endpoint ring. 528 */ 529 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 530 unsigned int slot_id, unsigned int ep_index, 531 unsigned int stream_id) 532 { 533 struct xhci_virt_ep *ep; 534 535 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 536 if (!ep) 537 return NULL; 538 539 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 540 } 541 542 543 /* 544 * Get the hw dequeue pointer xHC stopped on, either directly from the 545 * endpoint context, or if streams are in use from the stream context. 546 * The returned hw_dequeue contains the lowest four bits with cycle state 547 * and possbile stream context type. 548 */ 549 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 550 unsigned int ep_index, unsigned int stream_id) 551 { 552 struct xhci_ep_ctx *ep_ctx; 553 struct xhci_stream_ctx *st_ctx; 554 struct xhci_virt_ep *ep; 555 556 ep = &vdev->eps[ep_index]; 557 558 if (ep->ep_state & EP_HAS_STREAMS) { 559 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 560 return le64_to_cpu(st_ctx->stream_ring); 561 } 562 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 563 return le64_to_cpu(ep_ctx->deq); 564 } 565 566 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 567 unsigned int slot_id, unsigned int ep_index, 568 unsigned int stream_id, struct xhci_td *td) 569 { 570 struct xhci_virt_device *dev = xhci->devs[slot_id]; 571 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 572 struct xhci_ring *ep_ring; 573 struct xhci_command *cmd; 574 struct xhci_segment *new_seg; 575 struct xhci_segment *halted_seg = NULL; 576 union xhci_trb *new_deq; 577 int new_cycle; 578 union xhci_trb *halted_trb; 579 int index = 0; 580 dma_addr_t addr; 581 u64 hw_dequeue; 582 bool cycle_found = false; 583 bool td_last_trb_found = false; 584 u32 trb_sct = 0; 585 int ret; 586 587 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 588 ep_index, stream_id); 589 if (!ep_ring) { 590 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 591 stream_id); 592 return -ENODEV; 593 } 594 /* 595 * A cancelled TD can complete with a stall if HW cached the trb. 596 * In this case driver can't find td, but if the ring is empty we 597 * can move the dequeue pointer to the current enqueue position. 598 * We shouldn't hit this anymore as cached cancelled TRBs are given back 599 * after clearing the cache, but be on the safe side and keep it anyway 600 */ 601 if (!td) { 602 if (list_empty(&ep_ring->td_list)) { 603 new_seg = ep_ring->enq_seg; 604 new_deq = ep_ring->enqueue; 605 new_cycle = ep_ring->cycle_state; 606 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 607 goto deq_found; 608 } else { 609 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 610 return -EINVAL; 611 } 612 } 613 614 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 615 new_seg = ep_ring->deq_seg; 616 new_deq = ep_ring->dequeue; 617 618 /* 619 * Quirk: xHC write-back of the DCS field in the hardware dequeue 620 * pointer is wrong - use the cycle state of the TRB pointed to by 621 * the dequeue pointer. 622 */ 623 if (xhci->quirks & XHCI_EP_CTX_BROKEN_DCS && 624 !(ep->ep_state & EP_HAS_STREAMS)) 625 halted_seg = trb_in_td(xhci, td->start_seg, 626 td->first_trb, td->last_trb, 627 hw_dequeue & ~0xf, false); 628 if (halted_seg) { 629 index = ((dma_addr_t)(hw_dequeue & ~0xf) - halted_seg->dma) / 630 sizeof(*halted_trb); 631 halted_trb = &halted_seg->trbs[index]; 632 new_cycle = halted_trb->generic.field[3] & 0x1; 633 xhci_dbg(xhci, "Endpoint DCS = %d TRB index = %d cycle = %d\n", 634 (u8)(hw_dequeue & 0x1), index, new_cycle); 635 } else { 636 new_cycle = hw_dequeue & 0x1; 637 } 638 639 /* 640 * We want to find the pointer, segment and cycle state of the new trb 641 * (the one after current TD's last_trb). We know the cycle state at 642 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 643 * found. 644 */ 645 do { 646 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 647 == (dma_addr_t)(hw_dequeue & ~0xf)) { 648 cycle_found = true; 649 if (td_last_trb_found) 650 break; 651 } 652 if (new_deq == td->last_trb) 653 td_last_trb_found = true; 654 655 if (cycle_found && trb_is_link(new_deq) && 656 link_trb_toggles_cycle(new_deq)) 657 new_cycle ^= 0x1; 658 659 next_trb(xhci, ep_ring, &new_seg, &new_deq); 660 661 /* Search wrapped around, bail out */ 662 if (new_deq == ep->ring->dequeue) { 663 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 664 return -EINVAL; 665 } 666 667 } while (!cycle_found || !td_last_trb_found); 668 669 deq_found: 670 671 /* Don't update the ring cycle state for the producer (us). */ 672 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 673 if (addr == 0) { 674 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 675 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 676 return -EINVAL; 677 } 678 679 if ((ep->ep_state & SET_DEQ_PENDING)) { 680 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 681 &addr); 682 return -EBUSY; 683 } 684 685 /* This function gets called from contexts where it cannot sleep */ 686 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 687 if (!cmd) { 688 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 689 return -ENOMEM; 690 } 691 692 if (stream_id) 693 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 694 ret = queue_command(xhci, cmd, 695 lower_32_bits(addr) | trb_sct | new_cycle, 696 upper_32_bits(addr), 697 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 698 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 699 if (ret < 0) { 700 xhci_free_command(xhci, cmd); 701 return ret; 702 } 703 ep->queued_deq_seg = new_seg; 704 ep->queued_deq_ptr = new_deq; 705 706 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 707 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 708 709 /* Stop the TD queueing code from ringing the doorbell until 710 * this command completes. The HC won't set the dequeue pointer 711 * if the ring is running, and ringing the doorbell starts the 712 * ring running. 713 */ 714 ep->ep_state |= SET_DEQ_PENDING; 715 xhci_ring_cmd_db(xhci); 716 return 0; 717 } 718 719 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 720 * (The last TRB actually points to the ring enqueue pointer, which is not part 721 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 722 */ 723 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 724 struct xhci_td *td, bool flip_cycle) 725 { 726 struct xhci_segment *seg = td->start_seg; 727 union xhci_trb *trb = td->first_trb; 728 729 while (1) { 730 trb_to_noop(trb, TRB_TR_NOOP); 731 732 /* flip cycle if asked to */ 733 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 734 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 735 736 if (trb == td->last_trb) 737 break; 738 739 next_trb(xhci, ep_ring, &seg, &trb); 740 } 741 } 742 743 /* 744 * Must be called with xhci->lock held in interrupt context, 745 * releases and re-acquires xhci->lock 746 */ 747 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 748 struct xhci_td *cur_td, int status) 749 { 750 struct urb *urb = cur_td->urb; 751 struct urb_priv *urb_priv = urb->hcpriv; 752 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 753 754 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 755 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 756 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 757 if (xhci->quirks & XHCI_AMD_PLL_FIX) 758 usb_amd_quirk_pll_enable(); 759 } 760 } 761 xhci_urb_free_priv(urb_priv); 762 usb_hcd_unlink_urb_from_ep(hcd, urb); 763 trace_xhci_urb_giveback(urb); 764 usb_hcd_giveback_urb(hcd, urb, status); 765 } 766 767 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 768 struct xhci_ring *ring, struct xhci_td *td) 769 { 770 struct device *dev = xhci_to_hcd(xhci)->self.controller; 771 struct xhci_segment *seg = td->bounce_seg; 772 struct urb *urb = td->urb; 773 size_t len; 774 775 if (!ring || !seg || !urb) 776 return; 777 778 if (usb_urb_dir_out(urb)) { 779 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 780 DMA_TO_DEVICE); 781 return; 782 } 783 784 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 785 DMA_FROM_DEVICE); 786 /* for in tranfers we need to copy the data from bounce to sg */ 787 if (urb->num_sgs) { 788 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 789 seg->bounce_len, seg->bounce_offs); 790 if (len != seg->bounce_len) 791 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 792 len, seg->bounce_len); 793 } else { 794 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 795 seg->bounce_len); 796 } 797 seg->bounce_len = 0; 798 seg->bounce_offs = 0; 799 } 800 801 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 802 struct xhci_ring *ep_ring, int status) 803 { 804 struct urb *urb = NULL; 805 806 /* Clean up the endpoint's TD list */ 807 urb = td->urb; 808 809 /* if a bounce buffer was used to align this td then unmap it */ 810 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 811 812 /* Do one last check of the actual transfer length. 813 * If the host controller said we transferred more data than the buffer 814 * length, urb->actual_length will be a very big number (since it's 815 * unsigned). Play it safe and say we didn't transfer anything. 816 */ 817 if (urb->actual_length > urb->transfer_buffer_length) { 818 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 819 urb->transfer_buffer_length, urb->actual_length); 820 urb->actual_length = 0; 821 status = 0; 822 } 823 /* TD might be removed from td_list if we are giving back a cancelled URB */ 824 if (!list_empty(&td->td_list)) 825 list_del_init(&td->td_list); 826 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 827 if (!list_empty(&td->cancelled_td_list)) 828 list_del_init(&td->cancelled_td_list); 829 830 inc_td_cnt(urb); 831 /* Giveback the urb when all the tds are completed */ 832 if (last_td_in_urb(td)) { 833 if ((urb->actual_length != urb->transfer_buffer_length && 834 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 835 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 836 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 837 urb, urb->actual_length, 838 urb->transfer_buffer_length, status); 839 840 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 841 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 842 status = 0; 843 xhci_giveback_urb_in_irq(xhci, td, status); 844 } 845 846 return 0; 847 } 848 849 850 /* Complete the cancelled URBs we unlinked from td_list. */ 851 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 852 { 853 struct xhci_ring *ring; 854 struct xhci_td *td, *tmp_td; 855 856 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 857 cancelled_td_list) { 858 859 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 860 861 if (td->cancel_status == TD_CLEARED) { 862 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 863 __func__, td->urb); 864 xhci_td_cleanup(ep->xhci, td, ring, td->status); 865 } else { 866 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 867 __func__, td->urb, td->cancel_status); 868 } 869 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 870 return; 871 } 872 } 873 874 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 875 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 876 { 877 struct xhci_command *command; 878 int ret = 0; 879 880 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 881 if (!command) { 882 ret = -ENOMEM; 883 goto done; 884 } 885 886 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 887 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 888 ep_index, slot_id); 889 890 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 891 done: 892 if (ret) 893 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 894 slot_id, ep_index, ret); 895 return ret; 896 } 897 898 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 899 struct xhci_virt_ep *ep, 900 struct xhci_td *td, 901 enum xhci_ep_reset_type reset_type) 902 { 903 unsigned int slot_id = ep->vdev->slot_id; 904 int err; 905 906 /* 907 * Avoid resetting endpoint if link is inactive. Can cause host hang. 908 * Device will be reset soon to recover the link so don't do anything 909 */ 910 if (ep->vdev->flags & VDEV_PORT_ERROR) 911 return -ENODEV; 912 913 /* add td to cancelled list and let reset ep handler take care of it */ 914 if (reset_type == EP_HARD_RESET) { 915 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 916 if (td && list_empty(&td->cancelled_td_list)) { 917 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 918 td->cancel_status = TD_HALTED; 919 } 920 } 921 922 if (ep->ep_state & EP_HALTED) { 923 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 924 ep->ep_index); 925 return 0; 926 } 927 928 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 929 if (err) 930 return err; 931 932 ep->ep_state |= EP_HALTED; 933 934 xhci_ring_cmd_db(xhci); 935 936 return 0; 937 } 938 939 /* 940 * Fix up the ep ring first, so HW stops executing cancelled TDs. 941 * We have the xHCI lock, so nothing can modify this list until we drop it. 942 * We're also in the event handler, so we can't get re-interrupted if another 943 * Stop Endpoint command completes. 944 * 945 * only call this when ring is not in a running state 946 */ 947 948 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 949 { 950 struct xhci_hcd *xhci; 951 struct xhci_td *td = NULL; 952 struct xhci_td *tmp_td = NULL; 953 struct xhci_td *cached_td = NULL; 954 struct xhci_ring *ring; 955 u64 hw_deq; 956 unsigned int slot_id = ep->vdev->slot_id; 957 int err; 958 959 xhci = ep->xhci; 960 961 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 962 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 963 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 964 (unsigned long long)xhci_trb_virt_to_dma( 965 td->start_seg, td->first_trb), 966 td->urb->stream_id, td->urb); 967 list_del_init(&td->td_list); 968 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 969 if (!ring) { 970 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 971 td->urb, td->urb->stream_id); 972 continue; 973 } 974 /* 975 * If a ring stopped on the TD we need to cancel then we have to 976 * move the xHC endpoint ring dequeue pointer past this TD. 977 * Rings halted due to STALL may show hw_deq is past the stalled 978 * TD, but still require a set TR Deq command to flush xHC cache. 979 */ 980 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 981 td->urb->stream_id); 982 hw_deq &= ~0xf; 983 984 if (td->cancel_status == TD_HALTED || 985 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 986 switch (td->cancel_status) { 987 case TD_CLEARED: /* TD is already no-op */ 988 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 989 break; 990 case TD_DIRTY: /* TD is cached, clear it */ 991 case TD_HALTED: 992 td->cancel_status = TD_CLEARING_CACHE; 993 if (cached_td) 994 /* FIXME stream case, several stopped rings */ 995 xhci_dbg(xhci, 996 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 997 td->urb->stream_id, td->urb, 998 cached_td->urb->stream_id, cached_td->urb); 999 cached_td = td; 1000 break; 1001 } 1002 } else { 1003 td_to_noop(xhci, ring, td, false); 1004 td->cancel_status = TD_CLEARED; 1005 } 1006 } 1007 1008 /* If there's no need to move the dequeue pointer then we're done */ 1009 if (!cached_td) 1010 return 0; 1011 1012 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1013 cached_td->urb->stream_id, 1014 cached_td); 1015 if (err) { 1016 /* Failed to move past cached td, just set cached TDs to no-op */ 1017 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1018 if (td->cancel_status != TD_CLEARING_CACHE) 1019 continue; 1020 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1021 td->urb); 1022 td_to_noop(xhci, ring, td, false); 1023 td->cancel_status = TD_CLEARED; 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 /* 1030 * Returns the TD the endpoint ring halted on. 1031 * Only call for non-running rings without streams. 1032 */ 1033 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1034 { 1035 struct xhci_td *td; 1036 u64 hw_deq; 1037 1038 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1039 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1040 hw_deq &= ~0xf; 1041 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1042 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1043 td->last_trb, hw_deq, false)) 1044 return td; 1045 } 1046 return NULL; 1047 } 1048 1049 /* 1050 * When we get a command completion for a Stop Endpoint Command, we need to 1051 * unlink any cancelled TDs from the ring. There are two ways to do that: 1052 * 1053 * 1. If the HW was in the middle of processing the TD that needs to be 1054 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1055 * in the TD with a Set Dequeue Pointer Command. 1056 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1057 * bit cleared) so that the HW will skip over them. 1058 */ 1059 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1060 union xhci_trb *trb, u32 comp_code) 1061 { 1062 unsigned int ep_index; 1063 struct xhci_virt_ep *ep; 1064 struct xhci_ep_ctx *ep_ctx; 1065 struct xhci_td *td = NULL; 1066 enum xhci_ep_reset_type reset_type; 1067 struct xhci_command *command; 1068 int err; 1069 1070 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1071 if (!xhci->devs[slot_id]) 1072 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1073 slot_id); 1074 return; 1075 } 1076 1077 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1078 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1079 if (!ep) 1080 return; 1081 1082 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1083 1084 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1085 1086 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1087 /* 1088 * If stop endpoint command raced with a halting endpoint we need to 1089 * reset the host side endpoint first. 1090 * If the TD we halted on isn't cancelled the TD should be given back 1091 * with a proper error code, and the ring dequeue moved past the TD. 1092 * If streams case we can't find hw_deq, or the TD we halted on so do a 1093 * soft reset. 1094 * 1095 * Proper error code is unknown here, it would be -EPIPE if device side 1096 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1097 * We use -EPROTO, if device is stalled it should return a stall error on 1098 * next transfer, which then will return -EPIPE, and device side stall is 1099 * noted and cleared by class driver. 1100 */ 1101 switch (GET_EP_CTX_STATE(ep_ctx)) { 1102 case EP_STATE_HALTED: 1103 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1104 if (ep->ep_state & EP_HAS_STREAMS) { 1105 reset_type = EP_SOFT_RESET; 1106 } else { 1107 reset_type = EP_HARD_RESET; 1108 td = find_halted_td(ep); 1109 if (td) 1110 td->status = -EPROTO; 1111 } 1112 /* reset ep, reset handler cleans up cancelled tds */ 1113 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1114 if (err) 1115 break; 1116 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1117 return; 1118 case EP_STATE_RUNNING: 1119 /* Race, HW handled stop ep cmd before ep was running */ 1120 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1121 1122 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1123 if (!command) { 1124 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1125 return; 1126 } 1127 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1128 xhci_ring_cmd_db(xhci); 1129 1130 return; 1131 default: 1132 break; 1133 } 1134 } 1135 1136 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1137 xhci_invalidate_cancelled_tds(ep); 1138 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1139 1140 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1141 xhci_giveback_invalidated_tds(ep); 1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1143 } 1144 1145 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1146 { 1147 struct xhci_td *cur_td; 1148 struct xhci_td *tmp; 1149 1150 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1151 list_del_init(&cur_td->td_list); 1152 1153 if (!list_empty(&cur_td->cancelled_td_list)) 1154 list_del_init(&cur_td->cancelled_td_list); 1155 1156 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1157 1158 inc_td_cnt(cur_td->urb); 1159 if (last_td_in_urb(cur_td)) 1160 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1161 } 1162 } 1163 1164 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1165 int slot_id, int ep_index) 1166 { 1167 struct xhci_td *cur_td; 1168 struct xhci_td *tmp; 1169 struct xhci_virt_ep *ep; 1170 struct xhci_ring *ring; 1171 1172 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1173 if (!ep) 1174 return; 1175 1176 if ((ep->ep_state & EP_HAS_STREAMS) || 1177 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1178 int stream_id; 1179 1180 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1181 stream_id++) { 1182 ring = ep->stream_info->stream_rings[stream_id]; 1183 if (!ring) 1184 continue; 1185 1186 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1187 "Killing URBs for slot ID %u, ep index %u, stream %u", 1188 slot_id, ep_index, stream_id); 1189 xhci_kill_ring_urbs(xhci, ring); 1190 } 1191 } else { 1192 ring = ep->ring; 1193 if (!ring) 1194 return; 1195 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1196 "Killing URBs for slot ID %u, ep index %u", 1197 slot_id, ep_index); 1198 xhci_kill_ring_urbs(xhci, ring); 1199 } 1200 1201 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1202 cancelled_td_list) { 1203 list_del_init(&cur_td->cancelled_td_list); 1204 inc_td_cnt(cur_td->urb); 1205 1206 if (last_td_in_urb(cur_td)) 1207 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1208 } 1209 } 1210 1211 /* 1212 * host controller died, register read returns 0xffffffff 1213 * Complete pending commands, mark them ABORTED. 1214 * URBs need to be given back as usb core might be waiting with device locks 1215 * held for the URBs to finish during device disconnect, blocking host remove. 1216 * 1217 * Call with xhci->lock held. 1218 * lock is relased and re-acquired while giving back urb. 1219 */ 1220 void xhci_hc_died(struct xhci_hcd *xhci) 1221 { 1222 int i, j; 1223 1224 if (xhci->xhc_state & XHCI_STATE_DYING) 1225 return; 1226 1227 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1228 xhci->xhc_state |= XHCI_STATE_DYING; 1229 1230 xhci_cleanup_command_queue(xhci); 1231 1232 /* return any pending urbs, remove may be waiting for them */ 1233 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1234 if (!xhci->devs[i]) 1235 continue; 1236 for (j = 0; j < 31; j++) 1237 xhci_kill_endpoint_urbs(xhci, i, j); 1238 } 1239 1240 /* inform usb core hc died if PCI remove isn't already handling it */ 1241 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1242 usb_hc_died(xhci_to_hcd(xhci)); 1243 } 1244 1245 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1246 struct xhci_virt_device *dev, 1247 struct xhci_ring *ep_ring, 1248 unsigned int ep_index) 1249 { 1250 union xhci_trb *dequeue_temp; 1251 int num_trbs_free_temp; 1252 bool revert = false; 1253 1254 num_trbs_free_temp = ep_ring->num_trbs_free; 1255 dequeue_temp = ep_ring->dequeue; 1256 1257 /* If we get two back-to-back stalls, and the first stalled transfer 1258 * ends just before a link TRB, the dequeue pointer will be left on 1259 * the link TRB by the code in the while loop. So we have to update 1260 * the dequeue pointer one segment further, or we'll jump off 1261 * the segment into la-la-land. 1262 */ 1263 if (trb_is_link(ep_ring->dequeue)) { 1264 ep_ring->deq_seg = ep_ring->deq_seg->next; 1265 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1266 } 1267 1268 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1269 /* We have more usable TRBs */ 1270 ep_ring->num_trbs_free++; 1271 ep_ring->dequeue++; 1272 if (trb_is_link(ep_ring->dequeue)) { 1273 if (ep_ring->dequeue == 1274 dev->eps[ep_index].queued_deq_ptr) 1275 break; 1276 ep_ring->deq_seg = ep_ring->deq_seg->next; 1277 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1278 } 1279 if (ep_ring->dequeue == dequeue_temp) { 1280 revert = true; 1281 break; 1282 } 1283 } 1284 1285 if (revert) { 1286 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1287 ep_ring->num_trbs_free = num_trbs_free_temp; 1288 } 1289 } 1290 1291 /* 1292 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1293 * we need to clear the set deq pending flag in the endpoint ring state, so that 1294 * the TD queueing code can ring the doorbell again. We also need to ring the 1295 * endpoint doorbell to restart the ring, but only if there aren't more 1296 * cancellations pending. 1297 */ 1298 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1299 union xhci_trb *trb, u32 cmd_comp_code) 1300 { 1301 unsigned int ep_index; 1302 unsigned int stream_id; 1303 struct xhci_ring *ep_ring; 1304 struct xhci_virt_ep *ep; 1305 struct xhci_ep_ctx *ep_ctx; 1306 struct xhci_slot_ctx *slot_ctx; 1307 struct xhci_td *td, *tmp_td; 1308 1309 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1310 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1311 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1312 if (!ep) 1313 return; 1314 1315 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1316 if (!ep_ring) { 1317 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1318 stream_id); 1319 /* XXX: Harmless??? */ 1320 goto cleanup; 1321 } 1322 1323 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1324 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1325 trace_xhci_handle_cmd_set_deq(slot_ctx); 1326 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1327 1328 if (cmd_comp_code != COMP_SUCCESS) { 1329 unsigned int ep_state; 1330 unsigned int slot_state; 1331 1332 switch (cmd_comp_code) { 1333 case COMP_TRB_ERROR: 1334 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1335 break; 1336 case COMP_CONTEXT_STATE_ERROR: 1337 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1338 ep_state = GET_EP_CTX_STATE(ep_ctx); 1339 slot_state = le32_to_cpu(slot_ctx->dev_state); 1340 slot_state = GET_SLOT_STATE(slot_state); 1341 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1342 "Slot state = %u, EP state = %u", 1343 slot_state, ep_state); 1344 break; 1345 case COMP_SLOT_NOT_ENABLED_ERROR: 1346 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1347 slot_id); 1348 break; 1349 default: 1350 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1351 cmd_comp_code); 1352 break; 1353 } 1354 /* OK what do we do now? The endpoint state is hosed, and we 1355 * should never get to this point if the synchronization between 1356 * queueing, and endpoint state are correct. This might happen 1357 * if the device gets disconnected after we've finished 1358 * cancelling URBs, which might not be an error... 1359 */ 1360 } else { 1361 u64 deq; 1362 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1363 if (ep->ep_state & EP_HAS_STREAMS) { 1364 struct xhci_stream_ctx *ctx = 1365 &ep->stream_info->stream_ctx_array[stream_id]; 1366 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1367 } else { 1368 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1369 } 1370 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1371 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1372 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1373 ep->queued_deq_ptr) == deq) { 1374 /* Update the ring's dequeue segment and dequeue pointer 1375 * to reflect the new position. 1376 */ 1377 update_ring_for_set_deq_completion(xhci, ep->vdev, 1378 ep_ring, ep_index); 1379 } else { 1380 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1381 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1382 ep->queued_deq_seg, ep->queued_deq_ptr); 1383 } 1384 } 1385 /* HW cached TDs cleared from cache, give them back */ 1386 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1387 cancelled_td_list) { 1388 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1389 if (td->cancel_status == TD_CLEARING_CACHE) { 1390 td->cancel_status = TD_CLEARED; 1391 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1392 __func__, td->urb); 1393 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1394 } else { 1395 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1396 __func__, td->urb, td->cancel_status); 1397 } 1398 } 1399 cleanup: 1400 ep->ep_state &= ~SET_DEQ_PENDING; 1401 ep->queued_deq_seg = NULL; 1402 ep->queued_deq_ptr = NULL; 1403 /* Restart any rings with pending URBs */ 1404 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1405 } 1406 1407 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1408 union xhci_trb *trb, u32 cmd_comp_code) 1409 { 1410 struct xhci_virt_ep *ep; 1411 struct xhci_ep_ctx *ep_ctx; 1412 unsigned int ep_index; 1413 1414 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1415 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1416 if (!ep) 1417 return; 1418 1419 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1420 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1421 1422 /* This command will only fail if the endpoint wasn't halted, 1423 * but we don't care. 1424 */ 1425 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1426 "Ignoring reset ep completion code of %u", cmd_comp_code); 1427 1428 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1429 xhci_invalidate_cancelled_tds(ep); 1430 1431 /* Clear our internal halted state */ 1432 ep->ep_state &= ~EP_HALTED; 1433 1434 xhci_giveback_invalidated_tds(ep); 1435 1436 /* if this was a soft reset, then restart */ 1437 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1438 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1439 } 1440 1441 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1442 struct xhci_command *command, u32 cmd_comp_code) 1443 { 1444 if (cmd_comp_code == COMP_SUCCESS) 1445 command->slot_id = slot_id; 1446 else 1447 command->slot_id = 0; 1448 } 1449 1450 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1451 { 1452 struct xhci_virt_device *virt_dev; 1453 struct xhci_slot_ctx *slot_ctx; 1454 1455 virt_dev = xhci->devs[slot_id]; 1456 if (!virt_dev) 1457 return; 1458 1459 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1460 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1461 1462 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1463 /* Delete default control endpoint resources */ 1464 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1465 } 1466 1467 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1468 u32 cmd_comp_code) 1469 { 1470 struct xhci_virt_device *virt_dev; 1471 struct xhci_input_control_ctx *ctrl_ctx; 1472 struct xhci_ep_ctx *ep_ctx; 1473 unsigned int ep_index; 1474 u32 add_flags; 1475 1476 /* 1477 * Configure endpoint commands can come from the USB core configuration 1478 * or alt setting changes, or when streams were being configured. 1479 */ 1480 1481 virt_dev = xhci->devs[slot_id]; 1482 if (!virt_dev) 1483 return; 1484 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1485 if (!ctrl_ctx) { 1486 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1487 return; 1488 } 1489 1490 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1491 1492 /* Input ctx add_flags are the endpoint index plus one */ 1493 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1494 1495 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1496 trace_xhci_handle_cmd_config_ep(ep_ctx); 1497 1498 return; 1499 } 1500 1501 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1502 { 1503 struct xhci_virt_device *vdev; 1504 struct xhci_slot_ctx *slot_ctx; 1505 1506 vdev = xhci->devs[slot_id]; 1507 if (!vdev) 1508 return; 1509 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1510 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1511 } 1512 1513 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1514 { 1515 struct xhci_virt_device *vdev; 1516 struct xhci_slot_ctx *slot_ctx; 1517 1518 vdev = xhci->devs[slot_id]; 1519 if (!vdev) { 1520 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1521 slot_id); 1522 return; 1523 } 1524 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1525 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1526 1527 xhci_dbg(xhci, "Completed reset device command.\n"); 1528 } 1529 1530 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1531 struct xhci_event_cmd *event) 1532 { 1533 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1534 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1535 return; 1536 } 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1538 "NEC firmware version %2x.%02x", 1539 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1540 NEC_FW_MINOR(le32_to_cpu(event->status))); 1541 } 1542 1543 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1544 { 1545 list_del(&cmd->cmd_list); 1546 1547 if (cmd->completion) { 1548 cmd->status = status; 1549 complete(cmd->completion); 1550 } else { 1551 kfree(cmd); 1552 } 1553 } 1554 1555 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1556 { 1557 struct xhci_command *cur_cmd, *tmp_cmd; 1558 xhci->current_cmd = NULL; 1559 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1560 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1561 } 1562 1563 void xhci_handle_command_timeout(struct work_struct *work) 1564 { 1565 struct xhci_hcd *xhci; 1566 unsigned long flags; 1567 char str[XHCI_MSG_MAX]; 1568 u64 hw_ring_state; 1569 u32 cmd_field3; 1570 u32 usbsts; 1571 1572 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1573 1574 spin_lock_irqsave(&xhci->lock, flags); 1575 1576 /* 1577 * If timeout work is pending, or current_cmd is NULL, it means we 1578 * raced with command completion. Command is handled so just return. 1579 */ 1580 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1581 spin_unlock_irqrestore(&xhci->lock, flags); 1582 return; 1583 } 1584 1585 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1586 usbsts = readl(&xhci->op_regs->status); 1587 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1588 1589 /* Bail out and tear down xhci if a stop endpoint command failed */ 1590 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1591 struct xhci_virt_ep *ep; 1592 1593 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1594 1595 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1596 TRB_TO_EP_INDEX(cmd_field3)); 1597 if (ep) 1598 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1599 1600 xhci_halt(xhci); 1601 xhci_hc_died(xhci); 1602 goto time_out_completed; 1603 } 1604 1605 /* mark this command to be cancelled */ 1606 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1607 1608 /* Make sure command ring is running before aborting it */ 1609 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1610 if (hw_ring_state == ~(u64)0) { 1611 xhci_hc_died(xhci); 1612 goto time_out_completed; 1613 } 1614 1615 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1616 (hw_ring_state & CMD_RING_RUNNING)) { 1617 /* Prevent new doorbell, and start command abort */ 1618 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1619 xhci_dbg(xhci, "Command timeout\n"); 1620 xhci_abort_cmd_ring(xhci, flags); 1621 goto time_out_completed; 1622 } 1623 1624 /* host removed. Bail out */ 1625 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1626 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1627 xhci_cleanup_command_queue(xhci); 1628 1629 goto time_out_completed; 1630 } 1631 1632 /* command timeout on stopped ring, ring can't be aborted */ 1633 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1634 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1635 1636 time_out_completed: 1637 spin_unlock_irqrestore(&xhci->lock, flags); 1638 return; 1639 } 1640 1641 static void handle_cmd_completion(struct xhci_hcd *xhci, 1642 struct xhci_event_cmd *event) 1643 { 1644 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1645 u64 cmd_dma; 1646 dma_addr_t cmd_dequeue_dma; 1647 u32 cmd_comp_code; 1648 union xhci_trb *cmd_trb; 1649 struct xhci_command *cmd; 1650 u32 cmd_type; 1651 1652 if (slot_id >= MAX_HC_SLOTS) { 1653 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1654 return; 1655 } 1656 1657 cmd_dma = le64_to_cpu(event->cmd_trb); 1658 cmd_trb = xhci->cmd_ring->dequeue; 1659 1660 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1661 1662 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1663 cmd_trb); 1664 /* 1665 * Check whether the completion event is for our internal kept 1666 * command. 1667 */ 1668 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1669 xhci_warn(xhci, 1670 "ERROR mismatched command completion event\n"); 1671 return; 1672 } 1673 1674 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1675 1676 cancel_delayed_work(&xhci->cmd_timer); 1677 1678 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1679 1680 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1681 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1682 complete_all(&xhci->cmd_ring_stop_completion); 1683 return; 1684 } 1685 1686 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1687 xhci_err(xhci, 1688 "Command completion event does not match command\n"); 1689 return; 1690 } 1691 1692 /* 1693 * Host aborted the command ring, check if the current command was 1694 * supposed to be aborted, otherwise continue normally. 1695 * The command ring is stopped now, but the xHC will issue a Command 1696 * Ring Stopped event which will cause us to restart it. 1697 */ 1698 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1699 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1700 if (cmd->status == COMP_COMMAND_ABORTED) { 1701 if (xhci->current_cmd == cmd) 1702 xhci->current_cmd = NULL; 1703 goto event_handled; 1704 } 1705 } 1706 1707 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1708 switch (cmd_type) { 1709 case TRB_ENABLE_SLOT: 1710 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1711 break; 1712 case TRB_DISABLE_SLOT: 1713 xhci_handle_cmd_disable_slot(xhci, slot_id); 1714 break; 1715 case TRB_CONFIG_EP: 1716 if (!cmd->completion) 1717 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1718 break; 1719 case TRB_EVAL_CONTEXT: 1720 break; 1721 case TRB_ADDR_DEV: 1722 xhci_handle_cmd_addr_dev(xhci, slot_id); 1723 break; 1724 case TRB_STOP_RING: 1725 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1726 le32_to_cpu(cmd_trb->generic.field[3]))); 1727 if (!cmd->completion) 1728 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1729 cmd_comp_code); 1730 break; 1731 case TRB_SET_DEQ: 1732 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1733 le32_to_cpu(cmd_trb->generic.field[3]))); 1734 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1735 break; 1736 case TRB_CMD_NOOP: 1737 /* Is this an aborted command turned to NO-OP? */ 1738 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1739 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1740 break; 1741 case TRB_RESET_EP: 1742 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1743 le32_to_cpu(cmd_trb->generic.field[3]))); 1744 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1745 break; 1746 case TRB_RESET_DEV: 1747 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1748 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1749 */ 1750 slot_id = TRB_TO_SLOT_ID( 1751 le32_to_cpu(cmd_trb->generic.field[3])); 1752 xhci_handle_cmd_reset_dev(xhci, slot_id); 1753 break; 1754 case TRB_NEC_GET_FW: 1755 xhci_handle_cmd_nec_get_fw(xhci, event); 1756 break; 1757 default: 1758 /* Skip over unknown commands on the event ring */ 1759 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1760 break; 1761 } 1762 1763 /* restart timer if this wasn't the last command */ 1764 if (!list_is_singular(&xhci->cmd_list)) { 1765 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1766 struct xhci_command, cmd_list); 1767 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1768 } else if (xhci->current_cmd == cmd) { 1769 xhci->current_cmd = NULL; 1770 } 1771 1772 event_handled: 1773 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1774 1775 inc_deq(xhci, xhci->cmd_ring); 1776 } 1777 1778 static void handle_vendor_event(struct xhci_hcd *xhci, 1779 union xhci_trb *event, u32 trb_type) 1780 { 1781 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1782 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1783 handle_cmd_completion(xhci, &event->event_cmd); 1784 } 1785 1786 static void handle_device_notification(struct xhci_hcd *xhci, 1787 union xhci_trb *event) 1788 { 1789 u32 slot_id; 1790 struct usb_device *udev; 1791 1792 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1793 if (!xhci->devs[slot_id]) { 1794 xhci_warn(xhci, "Device Notification event for " 1795 "unused slot %u\n", slot_id); 1796 return; 1797 } 1798 1799 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1800 slot_id); 1801 udev = xhci->devs[slot_id]->udev; 1802 if (udev && udev->parent) 1803 usb_wakeup_notification(udev->parent, udev->portnum); 1804 } 1805 1806 /* 1807 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1808 * Controller. 1809 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1810 * If a connection to a USB 1 device is followed by another connection 1811 * to a USB 2 device. 1812 * 1813 * Reset the PHY after the USB device is disconnected if device speed 1814 * is less than HCD_USB3. 1815 * Retry the reset sequence max of 4 times checking the PLL lock status. 1816 * 1817 */ 1818 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1819 { 1820 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1821 u32 pll_lock_check; 1822 u32 retry_count = 4; 1823 1824 do { 1825 /* Assert PHY reset */ 1826 writel(0x6F, hcd->regs + 0x1048); 1827 udelay(10); 1828 /* De-assert the PHY reset */ 1829 writel(0x7F, hcd->regs + 0x1048); 1830 udelay(200); 1831 pll_lock_check = readl(hcd->regs + 0x1070); 1832 } while (!(pll_lock_check & 0x1) && --retry_count); 1833 } 1834 1835 static void handle_port_status(struct xhci_hcd *xhci, 1836 struct xhci_interrupter *ir, 1837 union xhci_trb *event) 1838 { 1839 struct usb_hcd *hcd; 1840 u32 port_id; 1841 u32 portsc, cmd_reg; 1842 int max_ports; 1843 int slot_id; 1844 unsigned int hcd_portnum; 1845 struct xhci_bus_state *bus_state; 1846 bool bogus_port_status = false; 1847 struct xhci_port *port; 1848 1849 /* Port status change events always have a successful completion code */ 1850 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1851 xhci_warn(xhci, 1852 "WARN: xHC returned failed port status event\n"); 1853 1854 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1855 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1856 1857 if ((port_id <= 0) || (port_id > max_ports)) { 1858 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1859 port_id); 1860 inc_deq(xhci, ir->event_ring); 1861 return; 1862 } 1863 1864 port = &xhci->hw_ports[port_id - 1]; 1865 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1866 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1867 port_id); 1868 bogus_port_status = true; 1869 goto cleanup; 1870 } 1871 1872 /* We might get interrupts after shared_hcd is removed */ 1873 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1874 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1875 bogus_port_status = true; 1876 goto cleanup; 1877 } 1878 1879 hcd = port->rhub->hcd; 1880 bus_state = &port->rhub->bus_state; 1881 hcd_portnum = port->hcd_portnum; 1882 portsc = readl(port->addr); 1883 1884 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1885 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1886 1887 trace_xhci_handle_port_status(hcd_portnum, portsc); 1888 1889 if (hcd->state == HC_STATE_SUSPENDED) { 1890 xhci_dbg(xhci, "resume root hub\n"); 1891 usb_hcd_resume_root_hub(hcd); 1892 } 1893 1894 if (hcd->speed >= HCD_USB3 && 1895 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1896 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1897 if (slot_id && xhci->devs[slot_id]) 1898 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1899 } 1900 1901 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1902 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1903 1904 cmd_reg = readl(&xhci->op_regs->command); 1905 if (!(cmd_reg & CMD_RUN)) { 1906 xhci_warn(xhci, "xHC is not running.\n"); 1907 goto cleanup; 1908 } 1909 1910 if (DEV_SUPERSPEED_ANY(portsc)) { 1911 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1912 /* Set a flag to say the port signaled remote wakeup, 1913 * so we can tell the difference between the end of 1914 * device and host initiated resume. 1915 */ 1916 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1917 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1918 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1919 xhci_set_link_state(xhci, port, XDEV_U0); 1920 /* Need to wait until the next link state change 1921 * indicates the device is actually in U0. 1922 */ 1923 bogus_port_status = true; 1924 goto cleanup; 1925 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1926 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1927 port->resume_timestamp = jiffies + 1928 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1929 set_bit(hcd_portnum, &bus_state->resuming_ports); 1930 /* Do the rest in GetPortStatus after resume time delay. 1931 * Avoid polling roothub status before that so that a 1932 * usb device auto-resume latency around ~40ms. 1933 */ 1934 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1935 mod_timer(&hcd->rh_timer, 1936 port->resume_timestamp); 1937 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1938 bogus_port_status = true; 1939 } 1940 } 1941 1942 if ((portsc & PORT_PLC) && 1943 DEV_SUPERSPEED_ANY(portsc) && 1944 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1945 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1946 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1947 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1948 complete(&port->u3exit_done); 1949 /* We've just brought the device into U0/1/2 through either the 1950 * Resume state after a device remote wakeup, or through the 1951 * U3Exit state after a host-initiated resume. If it's a device 1952 * initiated remote wake, don't pass up the link state change, 1953 * so the roothub behavior is consistent with external 1954 * USB 3.0 hub behavior. 1955 */ 1956 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1957 if (slot_id && xhci->devs[slot_id]) 1958 xhci_ring_device(xhci, slot_id); 1959 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1960 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1961 usb_wakeup_notification(hcd->self.root_hub, 1962 hcd_portnum + 1); 1963 bogus_port_status = true; 1964 goto cleanup; 1965 } 1966 } 1967 1968 /* 1969 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1970 * RExit to a disconnect state). If so, let the driver know it's 1971 * out of the RExit state. 1972 */ 1973 if (hcd->speed < HCD_USB3 && port->rexit_active) { 1974 complete(&port->rexit_done); 1975 port->rexit_active = false; 1976 bogus_port_status = true; 1977 goto cleanup; 1978 } 1979 1980 if (hcd->speed < HCD_USB3) { 1981 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1982 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1983 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1984 xhci_cavium_reset_phy_quirk(xhci); 1985 } 1986 1987 cleanup: 1988 /* Update event ring dequeue pointer before dropping the lock */ 1989 inc_deq(xhci, ir->event_ring); 1990 1991 /* Don't make the USB core poll the roothub if we got a bad port status 1992 * change event. Besides, at that point we can't tell which roothub 1993 * (USB 2.0 or USB 3.0) to kick. 1994 */ 1995 if (bogus_port_status) 1996 return; 1997 1998 /* 1999 * xHCI port-status-change events occur when the "or" of all the 2000 * status-change bits in the portsc register changes from 0 to 1. 2001 * New status changes won't cause an event if any other change 2002 * bits are still set. When an event occurs, switch over to 2003 * polling to avoid losing status changes. 2004 */ 2005 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2006 __func__, hcd->self.busnum); 2007 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2008 spin_unlock(&xhci->lock); 2009 /* Pass this up to the core */ 2010 usb_hcd_poll_rh_status(hcd); 2011 spin_lock(&xhci->lock); 2012 } 2013 2014 /* 2015 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2016 * at end_trb, which may be in another segment. If the suspect DMA address is a 2017 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2018 * returns 0. 2019 */ 2020 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2021 struct xhci_segment *start_seg, 2022 union xhci_trb *start_trb, 2023 union xhci_trb *end_trb, 2024 dma_addr_t suspect_dma, 2025 bool debug) 2026 { 2027 dma_addr_t start_dma; 2028 dma_addr_t end_seg_dma; 2029 dma_addr_t end_trb_dma; 2030 struct xhci_segment *cur_seg; 2031 2032 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2033 cur_seg = start_seg; 2034 2035 do { 2036 if (start_dma == 0) 2037 return NULL; 2038 /* We may get an event for a Link TRB in the middle of a TD */ 2039 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2040 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2041 /* If the end TRB isn't in this segment, this is set to 0 */ 2042 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2043 2044 if (debug) 2045 xhci_warn(xhci, 2046 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2047 (unsigned long long)suspect_dma, 2048 (unsigned long long)start_dma, 2049 (unsigned long long)end_trb_dma, 2050 (unsigned long long)cur_seg->dma, 2051 (unsigned long long)end_seg_dma); 2052 2053 if (end_trb_dma > 0) { 2054 /* The end TRB is in this segment, so suspect should be here */ 2055 if (start_dma <= end_trb_dma) { 2056 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2057 return cur_seg; 2058 } else { 2059 /* Case for one segment with 2060 * a TD wrapped around to the top 2061 */ 2062 if ((suspect_dma >= start_dma && 2063 suspect_dma <= end_seg_dma) || 2064 (suspect_dma >= cur_seg->dma && 2065 suspect_dma <= end_trb_dma)) 2066 return cur_seg; 2067 } 2068 return NULL; 2069 } else { 2070 /* Might still be somewhere in this segment */ 2071 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2072 return cur_seg; 2073 } 2074 cur_seg = cur_seg->next; 2075 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2076 } while (cur_seg != start_seg); 2077 2078 return NULL; 2079 } 2080 2081 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2082 struct xhci_virt_ep *ep) 2083 { 2084 /* 2085 * As part of low/full-speed endpoint-halt processing 2086 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2087 */ 2088 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2089 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2090 !(ep->ep_state & EP_CLEARING_TT)) { 2091 ep->ep_state |= EP_CLEARING_TT; 2092 td->urb->ep->hcpriv = td->urb->dev; 2093 if (usb_hub_clear_tt_buffer(td->urb)) 2094 ep->ep_state &= ~EP_CLEARING_TT; 2095 } 2096 } 2097 2098 /* Check if an error has halted the endpoint ring. The class driver will 2099 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2100 * However, a babble and other errors also halt the endpoint ring, and the class 2101 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2102 * Ring Dequeue Pointer command manually. 2103 */ 2104 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2105 struct xhci_ep_ctx *ep_ctx, 2106 unsigned int trb_comp_code) 2107 { 2108 /* TRB completion codes that may require a manual halt cleanup */ 2109 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2110 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2111 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2112 /* The 0.95 spec says a babbling control endpoint 2113 * is not halted. The 0.96 spec says it is. Some HW 2114 * claims to be 0.95 compliant, but it halts the control 2115 * endpoint anyway. Check if a babble halted the 2116 * endpoint. 2117 */ 2118 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2119 return 1; 2120 2121 return 0; 2122 } 2123 2124 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2125 { 2126 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2127 /* Vendor defined "informational" completion code, 2128 * treat as not-an-error. 2129 */ 2130 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2131 trb_comp_code); 2132 xhci_dbg(xhci, "Treating code as success.\n"); 2133 return 1; 2134 } 2135 return 0; 2136 } 2137 2138 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2139 struct xhci_ring *ep_ring, struct xhci_td *td, 2140 u32 trb_comp_code) 2141 { 2142 struct xhci_ep_ctx *ep_ctx; 2143 2144 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2145 2146 switch (trb_comp_code) { 2147 case COMP_STOPPED_LENGTH_INVALID: 2148 case COMP_STOPPED_SHORT_PACKET: 2149 case COMP_STOPPED: 2150 /* 2151 * The "Stop Endpoint" completion will take care of any 2152 * stopped TDs. A stopped TD may be restarted, so don't update 2153 * the ring dequeue pointer or take this TD off any lists yet. 2154 */ 2155 return 0; 2156 case COMP_USB_TRANSACTION_ERROR: 2157 case COMP_BABBLE_DETECTED_ERROR: 2158 case COMP_SPLIT_TRANSACTION_ERROR: 2159 /* 2160 * If endpoint context state is not halted we might be 2161 * racing with a reset endpoint command issued by a unsuccessful 2162 * stop endpoint completion (context error). In that case the 2163 * td should be on the cancelled list, and EP_HALTED flag set. 2164 * 2165 * Or then it's not halted due to the 0.95 spec stating that a 2166 * babbling control endpoint should not halt. The 0.96 spec 2167 * again says it should. Some HW claims to be 0.95 compliant, 2168 * but it halts the control endpoint anyway. 2169 */ 2170 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2171 /* 2172 * If EP_HALTED is set and TD is on the cancelled list 2173 * the TD and dequeue pointer will be handled by reset 2174 * ep command completion 2175 */ 2176 if ((ep->ep_state & EP_HALTED) && 2177 !list_empty(&td->cancelled_td_list)) { 2178 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2179 (unsigned long long)xhci_trb_virt_to_dma( 2180 td->start_seg, td->first_trb)); 2181 return 0; 2182 } 2183 /* endpoint not halted, don't reset it */ 2184 break; 2185 } 2186 /* Almost same procedure as for STALL_ERROR below */ 2187 xhci_clear_hub_tt_buffer(xhci, td, ep); 2188 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2189 return 0; 2190 case COMP_STALL_ERROR: 2191 /* 2192 * xhci internal endpoint state will go to a "halt" state for 2193 * any stall, including default control pipe protocol stall. 2194 * To clear the host side halt we need to issue a reset endpoint 2195 * command, followed by a set dequeue command to move past the 2196 * TD. 2197 * Class drivers clear the device side halt from a functional 2198 * stall later. Hub TT buffer should only be cleared for FS/LS 2199 * devices behind HS hubs for functional stalls. 2200 */ 2201 if (ep->ep_index != 0) 2202 xhci_clear_hub_tt_buffer(xhci, td, ep); 2203 2204 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2205 2206 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2207 default: 2208 break; 2209 } 2210 2211 /* Update ring dequeue pointer */ 2212 ep_ring->dequeue = td->last_trb; 2213 ep_ring->deq_seg = td->last_trb_seg; 2214 ep_ring->num_trbs_free += td->num_trbs - 1; 2215 inc_deq(xhci, ep_ring); 2216 2217 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2218 } 2219 2220 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2221 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2222 union xhci_trb *stop_trb) 2223 { 2224 u32 sum; 2225 union xhci_trb *trb = ring->dequeue; 2226 struct xhci_segment *seg = ring->deq_seg; 2227 2228 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2229 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2230 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2231 } 2232 return sum; 2233 } 2234 2235 /* 2236 * Process control tds, update urb status and actual_length. 2237 */ 2238 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2239 struct xhci_ring *ep_ring, struct xhci_td *td, 2240 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2241 { 2242 struct xhci_ep_ctx *ep_ctx; 2243 u32 trb_comp_code; 2244 u32 remaining, requested; 2245 u32 trb_type; 2246 2247 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2248 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2249 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2250 requested = td->urb->transfer_buffer_length; 2251 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2252 2253 switch (trb_comp_code) { 2254 case COMP_SUCCESS: 2255 if (trb_type != TRB_STATUS) { 2256 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2257 (trb_type == TRB_DATA) ? "data" : "setup"); 2258 td->status = -ESHUTDOWN; 2259 break; 2260 } 2261 td->status = 0; 2262 break; 2263 case COMP_SHORT_PACKET: 2264 td->status = 0; 2265 break; 2266 case COMP_STOPPED_SHORT_PACKET: 2267 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2268 td->urb->actual_length = remaining; 2269 else 2270 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2271 goto finish_td; 2272 case COMP_STOPPED: 2273 switch (trb_type) { 2274 case TRB_SETUP: 2275 td->urb->actual_length = 0; 2276 goto finish_td; 2277 case TRB_DATA: 2278 case TRB_NORMAL: 2279 td->urb->actual_length = requested - remaining; 2280 goto finish_td; 2281 case TRB_STATUS: 2282 td->urb->actual_length = requested; 2283 goto finish_td; 2284 default: 2285 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2286 trb_type); 2287 goto finish_td; 2288 } 2289 case COMP_STOPPED_LENGTH_INVALID: 2290 goto finish_td; 2291 default: 2292 if (!xhci_requires_manual_halt_cleanup(xhci, 2293 ep_ctx, trb_comp_code)) 2294 break; 2295 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2296 trb_comp_code, ep->ep_index); 2297 fallthrough; 2298 case COMP_STALL_ERROR: 2299 /* Did we transfer part of the data (middle) phase? */ 2300 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2301 td->urb->actual_length = requested - remaining; 2302 else if (!td->urb_length_set) 2303 td->urb->actual_length = 0; 2304 goto finish_td; 2305 } 2306 2307 /* stopped at setup stage, no data transferred */ 2308 if (trb_type == TRB_SETUP) 2309 goto finish_td; 2310 2311 /* 2312 * if on data stage then update the actual_length of the URB and flag it 2313 * as set, so it won't be overwritten in the event for the last TRB. 2314 */ 2315 if (trb_type == TRB_DATA || 2316 trb_type == TRB_NORMAL) { 2317 td->urb_length_set = true; 2318 td->urb->actual_length = requested - remaining; 2319 xhci_dbg(xhci, "Waiting for status stage event\n"); 2320 return 0; 2321 } 2322 2323 /* at status stage */ 2324 if (!td->urb_length_set) 2325 td->urb->actual_length = requested; 2326 2327 finish_td: 2328 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2329 } 2330 2331 /* 2332 * Process isochronous tds, update urb packet status and actual_length. 2333 */ 2334 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2335 struct xhci_ring *ep_ring, struct xhci_td *td, 2336 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2337 { 2338 struct urb_priv *urb_priv; 2339 int idx; 2340 struct usb_iso_packet_descriptor *frame; 2341 u32 trb_comp_code; 2342 bool sum_trbs_for_length = false; 2343 u32 remaining, requested, ep_trb_len; 2344 int short_framestatus; 2345 2346 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2347 urb_priv = td->urb->hcpriv; 2348 idx = urb_priv->num_tds_done; 2349 frame = &td->urb->iso_frame_desc[idx]; 2350 requested = frame->length; 2351 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2352 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2353 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2354 -EREMOTEIO : 0; 2355 2356 /* handle completion code */ 2357 switch (trb_comp_code) { 2358 case COMP_SUCCESS: 2359 if (remaining) { 2360 frame->status = short_framestatus; 2361 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2362 sum_trbs_for_length = true; 2363 break; 2364 } 2365 frame->status = 0; 2366 break; 2367 case COMP_SHORT_PACKET: 2368 frame->status = short_framestatus; 2369 sum_trbs_for_length = true; 2370 break; 2371 case COMP_BANDWIDTH_OVERRUN_ERROR: 2372 frame->status = -ECOMM; 2373 break; 2374 case COMP_ISOCH_BUFFER_OVERRUN: 2375 case COMP_BABBLE_DETECTED_ERROR: 2376 frame->status = -EOVERFLOW; 2377 break; 2378 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2379 case COMP_STALL_ERROR: 2380 frame->status = -EPROTO; 2381 break; 2382 case COMP_USB_TRANSACTION_ERROR: 2383 frame->status = -EPROTO; 2384 if (ep_trb != td->last_trb) 2385 return 0; 2386 break; 2387 case COMP_STOPPED: 2388 sum_trbs_for_length = true; 2389 break; 2390 case COMP_STOPPED_SHORT_PACKET: 2391 /* field normally containing residue now contains tranferred */ 2392 frame->status = short_framestatus; 2393 requested = remaining; 2394 break; 2395 case COMP_STOPPED_LENGTH_INVALID: 2396 requested = 0; 2397 remaining = 0; 2398 break; 2399 default: 2400 sum_trbs_for_length = true; 2401 frame->status = -1; 2402 break; 2403 } 2404 2405 if (sum_trbs_for_length) 2406 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2407 ep_trb_len - remaining; 2408 else 2409 frame->actual_length = requested; 2410 2411 td->urb->actual_length += frame->actual_length; 2412 2413 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2414 } 2415 2416 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2417 struct xhci_virt_ep *ep, int status) 2418 { 2419 struct urb_priv *urb_priv; 2420 struct usb_iso_packet_descriptor *frame; 2421 int idx; 2422 2423 urb_priv = td->urb->hcpriv; 2424 idx = urb_priv->num_tds_done; 2425 frame = &td->urb->iso_frame_desc[idx]; 2426 2427 /* The transfer is partly done. */ 2428 frame->status = -EXDEV; 2429 2430 /* calc actual length */ 2431 frame->actual_length = 0; 2432 2433 /* Update ring dequeue pointer */ 2434 ep->ring->dequeue = td->last_trb; 2435 ep->ring->deq_seg = td->last_trb_seg; 2436 ep->ring->num_trbs_free += td->num_trbs - 1; 2437 inc_deq(xhci, ep->ring); 2438 2439 return xhci_td_cleanup(xhci, td, ep->ring, status); 2440 } 2441 2442 /* 2443 * Process bulk and interrupt tds, update urb status and actual_length. 2444 */ 2445 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2446 struct xhci_ring *ep_ring, struct xhci_td *td, 2447 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2448 { 2449 struct xhci_slot_ctx *slot_ctx; 2450 u32 trb_comp_code; 2451 u32 remaining, requested, ep_trb_len; 2452 2453 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2454 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2455 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2456 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2457 requested = td->urb->transfer_buffer_length; 2458 2459 switch (trb_comp_code) { 2460 case COMP_SUCCESS: 2461 ep->err_count = 0; 2462 /* handle success with untransferred data as short packet */ 2463 if (ep_trb != td->last_trb || remaining) { 2464 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2465 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2466 td->urb->ep->desc.bEndpointAddress, 2467 requested, remaining); 2468 } 2469 td->status = 0; 2470 break; 2471 case COMP_SHORT_PACKET: 2472 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2473 td->urb->ep->desc.bEndpointAddress, 2474 requested, remaining); 2475 td->status = 0; 2476 break; 2477 case COMP_STOPPED_SHORT_PACKET: 2478 td->urb->actual_length = remaining; 2479 goto finish_td; 2480 case COMP_STOPPED_LENGTH_INVALID: 2481 /* stopped on ep trb with invalid length, exclude it */ 2482 ep_trb_len = 0; 2483 remaining = 0; 2484 break; 2485 case COMP_USB_TRANSACTION_ERROR: 2486 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2487 (ep->err_count++ > MAX_SOFT_RETRY) || 2488 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2489 break; 2490 2491 td->status = 0; 2492 2493 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2494 return 0; 2495 default: 2496 /* do nothing */ 2497 break; 2498 } 2499 2500 if (ep_trb == td->last_trb) 2501 td->urb->actual_length = requested - remaining; 2502 else 2503 td->urb->actual_length = 2504 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2505 ep_trb_len - remaining; 2506 finish_td: 2507 if (remaining > requested) { 2508 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2509 remaining); 2510 td->urb->actual_length = 0; 2511 } 2512 2513 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2514 } 2515 2516 /* 2517 * If this function returns an error condition, it means it got a Transfer 2518 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2519 * At this point, the host controller is probably hosed and should be reset. 2520 */ 2521 static int handle_tx_event(struct xhci_hcd *xhci, 2522 struct xhci_interrupter *ir, 2523 struct xhci_transfer_event *event) 2524 { 2525 struct xhci_virt_ep *ep; 2526 struct xhci_ring *ep_ring; 2527 unsigned int slot_id; 2528 int ep_index; 2529 struct xhci_td *td = NULL; 2530 dma_addr_t ep_trb_dma; 2531 struct xhci_segment *ep_seg; 2532 union xhci_trb *ep_trb; 2533 int status = -EINPROGRESS; 2534 struct xhci_ep_ctx *ep_ctx; 2535 u32 trb_comp_code; 2536 int td_num = 0; 2537 bool handling_skipped_tds = false; 2538 2539 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2540 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2541 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2542 ep_trb_dma = le64_to_cpu(event->buffer); 2543 2544 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2545 if (!ep) { 2546 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2547 goto err_out; 2548 } 2549 2550 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2551 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2552 2553 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2554 xhci_err(xhci, 2555 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2556 slot_id, ep_index); 2557 goto err_out; 2558 } 2559 2560 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2561 if (!ep_ring) { 2562 switch (trb_comp_code) { 2563 case COMP_STALL_ERROR: 2564 case COMP_USB_TRANSACTION_ERROR: 2565 case COMP_INVALID_STREAM_TYPE_ERROR: 2566 case COMP_INVALID_STREAM_ID_ERROR: 2567 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2568 ep_index); 2569 if (ep->err_count++ > MAX_SOFT_RETRY) 2570 xhci_handle_halted_endpoint(xhci, ep, NULL, 2571 EP_HARD_RESET); 2572 else 2573 xhci_handle_halted_endpoint(xhci, ep, NULL, 2574 EP_SOFT_RESET); 2575 goto cleanup; 2576 case COMP_RING_UNDERRUN: 2577 case COMP_RING_OVERRUN: 2578 case COMP_STOPPED_LENGTH_INVALID: 2579 goto cleanup; 2580 default: 2581 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2582 slot_id, ep_index); 2583 goto err_out; 2584 } 2585 } 2586 2587 /* Count current td numbers if ep->skip is set */ 2588 if (ep->skip) 2589 td_num += list_count_nodes(&ep_ring->td_list); 2590 2591 /* Look for common error cases */ 2592 switch (trb_comp_code) { 2593 /* Skip codes that require special handling depending on 2594 * transfer type 2595 */ 2596 case COMP_SUCCESS: 2597 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2598 break; 2599 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2600 ep_ring->last_td_was_short) 2601 trb_comp_code = COMP_SHORT_PACKET; 2602 else 2603 xhci_warn_ratelimited(xhci, 2604 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2605 slot_id, ep_index); 2606 break; 2607 case COMP_SHORT_PACKET: 2608 break; 2609 /* Completion codes for endpoint stopped state */ 2610 case COMP_STOPPED: 2611 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2612 slot_id, ep_index); 2613 break; 2614 case COMP_STOPPED_LENGTH_INVALID: 2615 xhci_dbg(xhci, 2616 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2617 slot_id, ep_index); 2618 break; 2619 case COMP_STOPPED_SHORT_PACKET: 2620 xhci_dbg(xhci, 2621 "Stopped with short packet transfer detected for slot %u ep %u\n", 2622 slot_id, ep_index); 2623 break; 2624 /* Completion codes for endpoint halted state */ 2625 case COMP_STALL_ERROR: 2626 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2627 ep_index); 2628 status = -EPIPE; 2629 break; 2630 case COMP_SPLIT_TRANSACTION_ERROR: 2631 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2632 slot_id, ep_index); 2633 status = -EPROTO; 2634 break; 2635 case COMP_USB_TRANSACTION_ERROR: 2636 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2637 slot_id, ep_index); 2638 status = -EPROTO; 2639 break; 2640 case COMP_BABBLE_DETECTED_ERROR: 2641 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2642 slot_id, ep_index); 2643 status = -EOVERFLOW; 2644 break; 2645 /* Completion codes for endpoint error state */ 2646 case COMP_TRB_ERROR: 2647 xhci_warn(xhci, 2648 "WARN: TRB error for slot %u ep %u on endpoint\n", 2649 slot_id, ep_index); 2650 status = -EILSEQ; 2651 break; 2652 /* completion codes not indicating endpoint state change */ 2653 case COMP_DATA_BUFFER_ERROR: 2654 xhci_warn(xhci, 2655 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2656 slot_id, ep_index); 2657 status = -ENOSR; 2658 break; 2659 case COMP_BANDWIDTH_OVERRUN_ERROR: 2660 xhci_warn(xhci, 2661 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2662 slot_id, ep_index); 2663 break; 2664 case COMP_ISOCH_BUFFER_OVERRUN: 2665 xhci_warn(xhci, 2666 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2667 slot_id, ep_index); 2668 break; 2669 case COMP_RING_UNDERRUN: 2670 /* 2671 * When the Isoch ring is empty, the xHC will generate 2672 * a Ring Overrun Event for IN Isoch endpoint or Ring 2673 * Underrun Event for OUT Isoch endpoint. 2674 */ 2675 xhci_dbg(xhci, "underrun event on endpoint\n"); 2676 if (!list_empty(&ep_ring->td_list)) 2677 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2678 "still with TDs queued?\n", 2679 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2680 ep_index); 2681 goto cleanup; 2682 case COMP_RING_OVERRUN: 2683 xhci_dbg(xhci, "overrun event on endpoint\n"); 2684 if (!list_empty(&ep_ring->td_list)) 2685 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2686 "still with TDs queued?\n", 2687 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2688 ep_index); 2689 goto cleanup; 2690 case COMP_MISSED_SERVICE_ERROR: 2691 /* 2692 * When encounter missed service error, one or more isoc tds 2693 * may be missed by xHC. 2694 * Set skip flag of the ep_ring; Complete the missed tds as 2695 * short transfer when process the ep_ring next time. 2696 */ 2697 ep->skip = true; 2698 xhci_dbg(xhci, 2699 "Miss service interval error for slot %u ep %u, set skip flag\n", 2700 slot_id, ep_index); 2701 goto cleanup; 2702 case COMP_NO_PING_RESPONSE_ERROR: 2703 ep->skip = true; 2704 xhci_dbg(xhci, 2705 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2706 slot_id, ep_index); 2707 goto cleanup; 2708 2709 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2710 /* needs disable slot command to recover */ 2711 xhci_warn(xhci, 2712 "WARN: detect an incompatible device for slot %u ep %u", 2713 slot_id, ep_index); 2714 status = -EPROTO; 2715 break; 2716 default: 2717 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2718 status = 0; 2719 break; 2720 } 2721 xhci_warn(xhci, 2722 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2723 trb_comp_code, slot_id, ep_index); 2724 goto cleanup; 2725 } 2726 2727 do { 2728 /* This TRB should be in the TD at the head of this ring's 2729 * TD list. 2730 */ 2731 if (list_empty(&ep_ring->td_list)) { 2732 /* 2733 * Don't print wanings if it's due to a stopped endpoint 2734 * generating an extra completion event if the device 2735 * was suspended. Or, a event for the last TRB of a 2736 * short TD we already got a short event for. 2737 * The short TD is already removed from the TD list. 2738 */ 2739 2740 if (!(trb_comp_code == COMP_STOPPED || 2741 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2742 ep_ring->last_td_was_short)) { 2743 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2744 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2745 ep_index); 2746 } 2747 if (ep->skip) { 2748 ep->skip = false; 2749 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2750 slot_id, ep_index); 2751 } 2752 if (trb_comp_code == COMP_STALL_ERROR || 2753 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2754 trb_comp_code)) { 2755 xhci_handle_halted_endpoint(xhci, ep, NULL, 2756 EP_HARD_RESET); 2757 } 2758 goto cleanup; 2759 } 2760 2761 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2762 if (ep->skip && td_num == 0) { 2763 ep->skip = false; 2764 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2765 slot_id, ep_index); 2766 goto cleanup; 2767 } 2768 2769 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2770 td_list); 2771 if (ep->skip) 2772 td_num--; 2773 2774 /* Is this a TRB in the currently executing TD? */ 2775 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2776 td->last_trb, ep_trb_dma, false); 2777 2778 /* 2779 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2780 * is not in the current TD pointed by ep_ring->dequeue because 2781 * that the hardware dequeue pointer still at the previous TRB 2782 * of the current TD. The previous TRB maybe a Link TD or the 2783 * last TRB of the previous TD. The command completion handle 2784 * will take care the rest. 2785 */ 2786 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2787 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2788 goto cleanup; 2789 } 2790 2791 if (!ep_seg) { 2792 if (!ep->skip || 2793 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2794 /* Some host controllers give a spurious 2795 * successful event after a short transfer. 2796 * Ignore it. 2797 */ 2798 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2799 ep_ring->last_td_was_short) { 2800 ep_ring->last_td_was_short = false; 2801 goto cleanup; 2802 } 2803 /* HC is busted, give up! */ 2804 xhci_err(xhci, 2805 "ERROR Transfer event TRB DMA ptr not " 2806 "part of current TD ep_index %d " 2807 "comp_code %u\n", ep_index, 2808 trb_comp_code); 2809 trb_in_td(xhci, ep_ring->deq_seg, 2810 ep_ring->dequeue, td->last_trb, 2811 ep_trb_dma, true); 2812 return -ESHUTDOWN; 2813 } 2814 2815 skip_isoc_td(xhci, td, ep, status); 2816 goto cleanup; 2817 } 2818 if (trb_comp_code == COMP_SHORT_PACKET) 2819 ep_ring->last_td_was_short = true; 2820 else 2821 ep_ring->last_td_was_short = false; 2822 2823 if (ep->skip) { 2824 xhci_dbg(xhci, 2825 "Found td. Clear skip flag for slot %u ep %u.\n", 2826 slot_id, ep_index); 2827 ep->skip = false; 2828 } 2829 2830 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2831 sizeof(*ep_trb)]; 2832 2833 trace_xhci_handle_transfer(ep_ring, 2834 (struct xhci_generic_trb *) ep_trb); 2835 2836 /* 2837 * No-op TRB could trigger interrupts in a case where 2838 * a URB was killed and a STALL_ERROR happens right 2839 * after the endpoint ring stopped. Reset the halted 2840 * endpoint. Otherwise, the endpoint remains stalled 2841 * indefinitely. 2842 */ 2843 2844 if (trb_is_noop(ep_trb)) { 2845 if (trb_comp_code == COMP_STALL_ERROR || 2846 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2847 trb_comp_code)) 2848 xhci_handle_halted_endpoint(xhci, ep, td, 2849 EP_HARD_RESET); 2850 goto cleanup; 2851 } 2852 2853 td->status = status; 2854 2855 /* update the urb's actual_length and give back to the core */ 2856 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2857 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2858 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2859 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2860 else 2861 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2862 cleanup: 2863 handling_skipped_tds = ep->skip && 2864 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2865 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2866 2867 /* 2868 * Do not update event ring dequeue pointer if we're in a loop 2869 * processing missed tds. 2870 */ 2871 if (!handling_skipped_tds) 2872 inc_deq(xhci, ir->event_ring); 2873 2874 /* 2875 * If ep->skip is set, it means there are missed tds on the 2876 * endpoint ring need to take care of. 2877 * Process them as short transfer until reach the td pointed by 2878 * the event. 2879 */ 2880 } while (handling_skipped_tds); 2881 2882 return 0; 2883 2884 err_out: 2885 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2886 (unsigned long long) xhci_trb_virt_to_dma( 2887 ir->event_ring->deq_seg, 2888 ir->event_ring->dequeue), 2889 lower_32_bits(le64_to_cpu(event->buffer)), 2890 upper_32_bits(le64_to_cpu(event->buffer)), 2891 le32_to_cpu(event->transfer_len), 2892 le32_to_cpu(event->flags)); 2893 return -ENODEV; 2894 } 2895 2896 /* 2897 * This function handles all OS-owned events on the event ring. It may drop 2898 * xhci->lock between event processing (e.g. to pass up port status changes). 2899 * Returns >0 for "possibly more events to process" (caller should call again), 2900 * otherwise 0 if done. In future, <0 returns should indicate error code. 2901 */ 2902 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2903 { 2904 union xhci_trb *event; 2905 int update_ptrs = 1; 2906 u32 trb_type; 2907 int ret; 2908 2909 /* Event ring hasn't been allocated yet. */ 2910 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2911 xhci_err(xhci, "ERROR interrupter not ready\n"); 2912 return -ENOMEM; 2913 } 2914 2915 event = ir->event_ring->dequeue; 2916 /* Does the HC or OS own the TRB? */ 2917 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2918 ir->event_ring->cycle_state) 2919 return 0; 2920 2921 trace_xhci_handle_event(ir->event_ring, &event->generic); 2922 2923 /* 2924 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2925 * speculative reads of the event's flags/data below. 2926 */ 2927 rmb(); 2928 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2929 /* FIXME: Handle more event types. */ 2930 2931 switch (trb_type) { 2932 case TRB_COMPLETION: 2933 handle_cmd_completion(xhci, &event->event_cmd); 2934 break; 2935 case TRB_PORT_STATUS: 2936 handle_port_status(xhci, ir, event); 2937 update_ptrs = 0; 2938 break; 2939 case TRB_TRANSFER: 2940 ret = handle_tx_event(xhci, ir, &event->trans_event); 2941 if (ret >= 0) 2942 update_ptrs = 0; 2943 break; 2944 case TRB_DEV_NOTE: 2945 handle_device_notification(xhci, event); 2946 break; 2947 default: 2948 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2949 handle_vendor_event(xhci, event, trb_type); 2950 else 2951 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2952 } 2953 /* Any of the above functions may drop and re-acquire the lock, so check 2954 * to make sure a watchdog timer didn't mark the host as non-responsive. 2955 */ 2956 if (xhci->xhc_state & XHCI_STATE_DYING) { 2957 xhci_dbg(xhci, "xHCI host dying, returning from " 2958 "event handler.\n"); 2959 return 0; 2960 } 2961 2962 if (update_ptrs) 2963 /* Update SW event ring dequeue pointer */ 2964 inc_deq(xhci, ir->event_ring); 2965 2966 /* Are there more items on the event ring? Caller will call us again to 2967 * check. 2968 */ 2969 return 1; 2970 } 2971 2972 /* 2973 * Update Event Ring Dequeue Pointer: 2974 * - When all events have finished 2975 * - To avoid "Event Ring Full Error" condition 2976 */ 2977 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2978 struct xhci_interrupter *ir, 2979 union xhci_trb *event_ring_deq) 2980 { 2981 u64 temp_64; 2982 dma_addr_t deq; 2983 2984 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 2985 /* If necessary, update the HW's version of the event ring deq ptr. */ 2986 if (event_ring_deq != ir->event_ring->dequeue) { 2987 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2988 ir->event_ring->dequeue); 2989 if (deq == 0) 2990 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2991 /* 2992 * Per 4.9.4, Software writes to the ERDP register shall 2993 * always advance the Event Ring Dequeue Pointer value. 2994 */ 2995 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2996 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2997 return; 2998 2999 /* Update HC event ring dequeue pointer */ 3000 temp_64 &= ERST_PTR_MASK; 3001 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3002 } 3003 3004 /* Clear the event handler busy flag (RW1C) */ 3005 temp_64 |= ERST_EHB; 3006 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3007 } 3008 3009 /* 3010 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3011 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3012 * indicators of an event TRB error, but we check the status *first* to be safe. 3013 */ 3014 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3015 { 3016 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3017 union xhci_trb *event_ring_deq; 3018 struct xhci_interrupter *ir; 3019 irqreturn_t ret = IRQ_NONE; 3020 u64 temp_64; 3021 u32 status; 3022 int event_loop = 0; 3023 3024 spin_lock(&xhci->lock); 3025 /* Check if the xHC generated the interrupt, or the irq is shared */ 3026 status = readl(&xhci->op_regs->status); 3027 if (status == ~(u32)0) { 3028 xhci_hc_died(xhci); 3029 ret = IRQ_HANDLED; 3030 goto out; 3031 } 3032 3033 if (!(status & STS_EINT)) 3034 goto out; 3035 3036 if (status & STS_HCE) { 3037 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3038 goto out; 3039 } 3040 3041 if (status & STS_FATAL) { 3042 xhci_warn(xhci, "WARNING: Host System Error\n"); 3043 xhci_halt(xhci); 3044 ret = IRQ_HANDLED; 3045 goto out; 3046 } 3047 3048 /* 3049 * Clear the op reg interrupt status first, 3050 * so we can receive interrupts from other MSI-X interrupters. 3051 * Write 1 to clear the interrupt status. 3052 */ 3053 status |= STS_EINT; 3054 writel(status, &xhci->op_regs->status); 3055 3056 /* This is the handler of the primary interrupter */ 3057 ir = xhci->interrupter; 3058 if (!hcd->msi_enabled) { 3059 u32 irq_pending; 3060 irq_pending = readl(&ir->ir_set->irq_pending); 3061 irq_pending |= IMAN_IP; 3062 writel(irq_pending, &ir->ir_set->irq_pending); 3063 } 3064 3065 if (xhci->xhc_state & XHCI_STATE_DYING || 3066 xhci->xhc_state & XHCI_STATE_HALTED) { 3067 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3068 "Shouldn't IRQs be disabled?\n"); 3069 /* Clear the event handler busy flag (RW1C); 3070 * the event ring should be empty. 3071 */ 3072 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3073 xhci_write_64(xhci, temp_64 | ERST_EHB, 3074 &ir->ir_set->erst_dequeue); 3075 ret = IRQ_HANDLED; 3076 goto out; 3077 } 3078 3079 event_ring_deq = ir->event_ring->dequeue; 3080 /* FIXME this should be a delayed service routine 3081 * that clears the EHB. 3082 */ 3083 while (xhci_handle_event(xhci, ir) > 0) { 3084 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3085 continue; 3086 xhci_update_erst_dequeue(xhci, ir, event_ring_deq); 3087 event_ring_deq = ir->event_ring->dequeue; 3088 3089 /* ring is half-full, force isoc trbs to interrupt more often */ 3090 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3091 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3092 3093 event_loop = 0; 3094 } 3095 3096 xhci_update_erst_dequeue(xhci, ir, event_ring_deq); 3097 ret = IRQ_HANDLED; 3098 3099 out: 3100 spin_unlock(&xhci->lock); 3101 3102 return ret; 3103 } 3104 3105 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3106 { 3107 return xhci_irq(hcd); 3108 } 3109 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3110 3111 /**** Endpoint Ring Operations ****/ 3112 3113 /* 3114 * Generic function for queueing a TRB on a ring. 3115 * The caller must have checked to make sure there's room on the ring. 3116 * 3117 * @more_trbs_coming: Will you enqueue more TRBs before calling 3118 * prepare_transfer()? 3119 */ 3120 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3121 bool more_trbs_coming, 3122 u32 field1, u32 field2, u32 field3, u32 field4) 3123 { 3124 struct xhci_generic_trb *trb; 3125 3126 trb = &ring->enqueue->generic; 3127 trb->field[0] = cpu_to_le32(field1); 3128 trb->field[1] = cpu_to_le32(field2); 3129 trb->field[2] = cpu_to_le32(field3); 3130 /* make sure TRB is fully written before giving it to the controller */ 3131 wmb(); 3132 trb->field[3] = cpu_to_le32(field4); 3133 3134 trace_xhci_queue_trb(ring, trb); 3135 3136 inc_enq(xhci, ring, more_trbs_coming); 3137 } 3138 3139 /* 3140 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3141 * FIXME allocate segments if the ring is full. 3142 */ 3143 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3144 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3145 { 3146 unsigned int num_trbs_needed; 3147 unsigned int link_trb_count = 0; 3148 3149 /* Make sure the endpoint has been added to xHC schedule */ 3150 switch (ep_state) { 3151 case EP_STATE_DISABLED: 3152 /* 3153 * USB core changed config/interfaces without notifying us, 3154 * or hardware is reporting the wrong state. 3155 */ 3156 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3157 return -ENOENT; 3158 case EP_STATE_ERROR: 3159 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3160 /* FIXME event handling code for error needs to clear it */ 3161 /* XXX not sure if this should be -ENOENT or not */ 3162 return -EINVAL; 3163 case EP_STATE_HALTED: 3164 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3165 break; 3166 case EP_STATE_STOPPED: 3167 case EP_STATE_RUNNING: 3168 break; 3169 default: 3170 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3171 /* 3172 * FIXME issue Configure Endpoint command to try to get the HC 3173 * back into a known state. 3174 */ 3175 return -EINVAL; 3176 } 3177 3178 while (1) { 3179 if (room_on_ring(xhci, ep_ring, num_trbs)) 3180 break; 3181 3182 if (ep_ring == xhci->cmd_ring) { 3183 xhci_err(xhci, "Do not support expand command ring\n"); 3184 return -ENOMEM; 3185 } 3186 3187 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3188 "ERROR no room on ep ring, try ring expansion"); 3189 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3190 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3191 mem_flags)) { 3192 xhci_err(xhci, "Ring expansion failed\n"); 3193 return -ENOMEM; 3194 } 3195 } 3196 3197 while (trb_is_link(ep_ring->enqueue)) { 3198 /* If we're not dealing with 0.95 hardware or isoc rings 3199 * on AMD 0.96 host, clear the chain bit. 3200 */ 3201 if (!xhci_link_trb_quirk(xhci) && 3202 !(ep_ring->type == TYPE_ISOC && 3203 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3204 ep_ring->enqueue->link.control &= 3205 cpu_to_le32(~TRB_CHAIN); 3206 else 3207 ep_ring->enqueue->link.control |= 3208 cpu_to_le32(TRB_CHAIN); 3209 3210 wmb(); 3211 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3212 3213 /* Toggle the cycle bit after the last ring segment. */ 3214 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3215 ep_ring->cycle_state ^= 1; 3216 3217 ep_ring->enq_seg = ep_ring->enq_seg->next; 3218 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3219 3220 /* prevent infinite loop if all first trbs are link trbs */ 3221 if (link_trb_count++ > ep_ring->num_segs) { 3222 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3223 return -EINVAL; 3224 } 3225 } 3226 3227 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3228 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3229 return -EINVAL; 3230 } 3231 3232 return 0; 3233 } 3234 3235 static int prepare_transfer(struct xhci_hcd *xhci, 3236 struct xhci_virt_device *xdev, 3237 unsigned int ep_index, 3238 unsigned int stream_id, 3239 unsigned int num_trbs, 3240 struct urb *urb, 3241 unsigned int td_index, 3242 gfp_t mem_flags) 3243 { 3244 int ret; 3245 struct urb_priv *urb_priv; 3246 struct xhci_td *td; 3247 struct xhci_ring *ep_ring; 3248 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3249 3250 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3251 stream_id); 3252 if (!ep_ring) { 3253 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3254 stream_id); 3255 return -EINVAL; 3256 } 3257 3258 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3259 num_trbs, mem_flags); 3260 if (ret) 3261 return ret; 3262 3263 urb_priv = urb->hcpriv; 3264 td = &urb_priv->td[td_index]; 3265 3266 INIT_LIST_HEAD(&td->td_list); 3267 INIT_LIST_HEAD(&td->cancelled_td_list); 3268 3269 if (td_index == 0) { 3270 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3271 if (unlikely(ret)) 3272 return ret; 3273 } 3274 3275 td->urb = urb; 3276 /* Add this TD to the tail of the endpoint ring's TD list */ 3277 list_add_tail(&td->td_list, &ep_ring->td_list); 3278 td->start_seg = ep_ring->enq_seg; 3279 td->first_trb = ep_ring->enqueue; 3280 3281 return 0; 3282 } 3283 3284 unsigned int count_trbs(u64 addr, u64 len) 3285 { 3286 unsigned int num_trbs; 3287 3288 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3289 TRB_MAX_BUFF_SIZE); 3290 if (num_trbs == 0) 3291 num_trbs++; 3292 3293 return num_trbs; 3294 } 3295 3296 static inline unsigned int count_trbs_needed(struct urb *urb) 3297 { 3298 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3299 } 3300 3301 static unsigned int count_sg_trbs_needed(struct urb *urb) 3302 { 3303 struct scatterlist *sg; 3304 unsigned int i, len, full_len, num_trbs = 0; 3305 3306 full_len = urb->transfer_buffer_length; 3307 3308 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3309 len = sg_dma_len(sg); 3310 num_trbs += count_trbs(sg_dma_address(sg), len); 3311 len = min_t(unsigned int, len, full_len); 3312 full_len -= len; 3313 if (full_len == 0) 3314 break; 3315 } 3316 3317 return num_trbs; 3318 } 3319 3320 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3321 { 3322 u64 addr, len; 3323 3324 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3325 len = urb->iso_frame_desc[i].length; 3326 3327 return count_trbs(addr, len); 3328 } 3329 3330 static void check_trb_math(struct urb *urb, int running_total) 3331 { 3332 if (unlikely(running_total != urb->transfer_buffer_length)) 3333 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3334 "queued %#x (%d), asked for %#x (%d)\n", 3335 __func__, 3336 urb->ep->desc.bEndpointAddress, 3337 running_total, running_total, 3338 urb->transfer_buffer_length, 3339 urb->transfer_buffer_length); 3340 } 3341 3342 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3343 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3344 struct xhci_generic_trb *start_trb) 3345 { 3346 /* 3347 * Pass all the TRBs to the hardware at once and make sure this write 3348 * isn't reordered. 3349 */ 3350 wmb(); 3351 if (start_cycle) 3352 start_trb->field[3] |= cpu_to_le32(start_cycle); 3353 else 3354 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3356 } 3357 3358 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3359 struct xhci_ep_ctx *ep_ctx) 3360 { 3361 int xhci_interval; 3362 int ep_interval; 3363 3364 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3365 ep_interval = urb->interval; 3366 3367 /* Convert to microframes */ 3368 if (urb->dev->speed == USB_SPEED_LOW || 3369 urb->dev->speed == USB_SPEED_FULL) 3370 ep_interval *= 8; 3371 3372 /* FIXME change this to a warning and a suggestion to use the new API 3373 * to set the polling interval (once the API is added). 3374 */ 3375 if (xhci_interval != ep_interval) { 3376 dev_dbg_ratelimited(&urb->dev->dev, 3377 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3378 ep_interval, ep_interval == 1 ? "" : "s", 3379 xhci_interval, xhci_interval == 1 ? "" : "s"); 3380 urb->interval = xhci_interval; 3381 /* Convert back to frames for LS/FS devices */ 3382 if (urb->dev->speed == USB_SPEED_LOW || 3383 urb->dev->speed == USB_SPEED_FULL) 3384 urb->interval /= 8; 3385 } 3386 } 3387 3388 /* 3389 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3390 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3391 * (comprised of sg list entries) can take several service intervals to 3392 * transmit. 3393 */ 3394 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3395 struct urb *urb, int slot_id, unsigned int ep_index) 3396 { 3397 struct xhci_ep_ctx *ep_ctx; 3398 3399 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3400 check_interval(xhci, urb, ep_ctx); 3401 3402 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3403 } 3404 3405 /* 3406 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3407 * packets remaining in the TD (*not* including this TRB). 3408 * 3409 * Total TD packet count = total_packet_count = 3410 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3411 * 3412 * Packets transferred up to and including this TRB = packets_transferred = 3413 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3414 * 3415 * TD size = total_packet_count - packets_transferred 3416 * 3417 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3418 * including this TRB, right shifted by 10 3419 * 3420 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3421 * This is taken care of in the TRB_TD_SIZE() macro 3422 * 3423 * The last TRB in a TD must have the TD size set to zero. 3424 */ 3425 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3426 int trb_buff_len, unsigned int td_total_len, 3427 struct urb *urb, bool more_trbs_coming) 3428 { 3429 u32 maxp, total_packet_count; 3430 3431 /* MTK xHCI 0.96 contains some features from 1.0 */ 3432 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3433 return ((td_total_len - transferred) >> 10); 3434 3435 /* One TRB with a zero-length data packet. */ 3436 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3437 trb_buff_len == td_total_len) 3438 return 0; 3439 3440 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3441 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3442 trb_buff_len = 0; 3443 3444 maxp = usb_endpoint_maxp(&urb->ep->desc); 3445 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3446 3447 /* Queueing functions don't count the current TRB into transferred */ 3448 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3449 } 3450 3451 3452 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3453 u32 *trb_buff_len, struct xhci_segment *seg) 3454 { 3455 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3456 unsigned int unalign; 3457 unsigned int max_pkt; 3458 u32 new_buff_len; 3459 size_t len; 3460 3461 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3462 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3463 3464 /* we got lucky, last normal TRB data on segment is packet aligned */ 3465 if (unalign == 0) 3466 return 0; 3467 3468 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3469 unalign, *trb_buff_len); 3470 3471 /* is the last nornal TRB alignable by splitting it */ 3472 if (*trb_buff_len > unalign) { 3473 *trb_buff_len -= unalign; 3474 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3475 return 0; 3476 } 3477 3478 /* 3479 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3480 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3481 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3482 */ 3483 new_buff_len = max_pkt - (enqd_len % max_pkt); 3484 3485 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3486 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3487 3488 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3489 if (usb_urb_dir_out(urb)) { 3490 if (urb->num_sgs) { 3491 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3492 seg->bounce_buf, new_buff_len, enqd_len); 3493 if (len != new_buff_len) 3494 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3495 len, new_buff_len); 3496 } else { 3497 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3498 } 3499 3500 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3501 max_pkt, DMA_TO_DEVICE); 3502 } else { 3503 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3504 max_pkt, DMA_FROM_DEVICE); 3505 } 3506 3507 if (dma_mapping_error(dev, seg->bounce_dma)) { 3508 /* try without aligning. Some host controllers survive */ 3509 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3510 return 0; 3511 } 3512 *trb_buff_len = new_buff_len; 3513 seg->bounce_len = new_buff_len; 3514 seg->bounce_offs = enqd_len; 3515 3516 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3517 3518 return 1; 3519 } 3520 3521 /* This is very similar to what ehci-q.c qtd_fill() does */ 3522 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3523 struct urb *urb, int slot_id, unsigned int ep_index) 3524 { 3525 struct xhci_ring *ring; 3526 struct urb_priv *urb_priv; 3527 struct xhci_td *td; 3528 struct xhci_generic_trb *start_trb; 3529 struct scatterlist *sg = NULL; 3530 bool more_trbs_coming = true; 3531 bool need_zero_pkt = false; 3532 bool first_trb = true; 3533 unsigned int num_trbs; 3534 unsigned int start_cycle, num_sgs = 0; 3535 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3536 int sent_len, ret; 3537 u32 field, length_field, remainder; 3538 u64 addr, send_addr; 3539 3540 ring = xhci_urb_to_transfer_ring(xhci, urb); 3541 if (!ring) 3542 return -EINVAL; 3543 3544 full_len = urb->transfer_buffer_length; 3545 /* If we have scatter/gather list, we use it. */ 3546 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3547 num_sgs = urb->num_mapped_sgs; 3548 sg = urb->sg; 3549 addr = (u64) sg_dma_address(sg); 3550 block_len = sg_dma_len(sg); 3551 num_trbs = count_sg_trbs_needed(urb); 3552 } else { 3553 num_trbs = count_trbs_needed(urb); 3554 addr = (u64) urb->transfer_dma; 3555 block_len = full_len; 3556 } 3557 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3558 ep_index, urb->stream_id, 3559 num_trbs, urb, 0, mem_flags); 3560 if (unlikely(ret < 0)) 3561 return ret; 3562 3563 urb_priv = urb->hcpriv; 3564 3565 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3566 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3567 need_zero_pkt = true; 3568 3569 td = &urb_priv->td[0]; 3570 3571 /* 3572 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3573 * until we've finished creating all the other TRBs. The ring's cycle 3574 * state may change as we enqueue the other TRBs, so save it too. 3575 */ 3576 start_trb = &ring->enqueue->generic; 3577 start_cycle = ring->cycle_state; 3578 send_addr = addr; 3579 3580 /* Queue the TRBs, even if they are zero-length */ 3581 for (enqd_len = 0; first_trb || enqd_len < full_len; 3582 enqd_len += trb_buff_len) { 3583 field = TRB_TYPE(TRB_NORMAL); 3584 3585 /* TRB buffer should not cross 64KB boundaries */ 3586 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3587 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3588 3589 if (enqd_len + trb_buff_len > full_len) 3590 trb_buff_len = full_len - enqd_len; 3591 3592 /* Don't change the cycle bit of the first TRB until later */ 3593 if (first_trb) { 3594 first_trb = false; 3595 if (start_cycle == 0) 3596 field |= TRB_CYCLE; 3597 } else 3598 field |= ring->cycle_state; 3599 3600 /* Chain all the TRBs together; clear the chain bit in the last 3601 * TRB to indicate it's the last TRB in the chain. 3602 */ 3603 if (enqd_len + trb_buff_len < full_len) { 3604 field |= TRB_CHAIN; 3605 if (trb_is_link(ring->enqueue + 1)) { 3606 if (xhci_align_td(xhci, urb, enqd_len, 3607 &trb_buff_len, 3608 ring->enq_seg)) { 3609 send_addr = ring->enq_seg->bounce_dma; 3610 /* assuming TD won't span 2 segs */ 3611 td->bounce_seg = ring->enq_seg; 3612 } 3613 } 3614 } 3615 if (enqd_len + trb_buff_len >= full_len) { 3616 field &= ~TRB_CHAIN; 3617 field |= TRB_IOC; 3618 more_trbs_coming = false; 3619 td->last_trb = ring->enqueue; 3620 td->last_trb_seg = ring->enq_seg; 3621 if (xhci_urb_suitable_for_idt(urb)) { 3622 memcpy(&send_addr, urb->transfer_buffer, 3623 trb_buff_len); 3624 le64_to_cpus(&send_addr); 3625 field |= TRB_IDT; 3626 } 3627 } 3628 3629 /* Only set interrupt on short packet for IN endpoints */ 3630 if (usb_urb_dir_in(urb)) 3631 field |= TRB_ISP; 3632 3633 /* Set the TRB length, TD size, and interrupter fields. */ 3634 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3635 full_len, urb, more_trbs_coming); 3636 3637 length_field = TRB_LEN(trb_buff_len) | 3638 TRB_TD_SIZE(remainder) | 3639 TRB_INTR_TARGET(0); 3640 3641 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3642 lower_32_bits(send_addr), 3643 upper_32_bits(send_addr), 3644 length_field, 3645 field); 3646 td->num_trbs++; 3647 addr += trb_buff_len; 3648 sent_len = trb_buff_len; 3649 3650 while (sg && sent_len >= block_len) { 3651 /* New sg entry */ 3652 --num_sgs; 3653 sent_len -= block_len; 3654 sg = sg_next(sg); 3655 if (num_sgs != 0 && sg) { 3656 block_len = sg_dma_len(sg); 3657 addr = (u64) sg_dma_address(sg); 3658 addr += sent_len; 3659 } 3660 } 3661 block_len -= sent_len; 3662 send_addr = addr; 3663 } 3664 3665 if (need_zero_pkt) { 3666 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3667 ep_index, urb->stream_id, 3668 1, urb, 1, mem_flags); 3669 urb_priv->td[1].last_trb = ring->enqueue; 3670 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3671 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3672 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3673 urb_priv->td[1].num_trbs++; 3674 } 3675 3676 check_trb_math(urb, enqd_len); 3677 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3678 start_cycle, start_trb); 3679 return 0; 3680 } 3681 3682 /* Caller must have locked xhci->lock */ 3683 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3684 struct urb *urb, int slot_id, unsigned int ep_index) 3685 { 3686 struct xhci_ring *ep_ring; 3687 int num_trbs; 3688 int ret; 3689 struct usb_ctrlrequest *setup; 3690 struct xhci_generic_trb *start_trb; 3691 int start_cycle; 3692 u32 field; 3693 struct urb_priv *urb_priv; 3694 struct xhci_td *td; 3695 3696 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3697 if (!ep_ring) 3698 return -EINVAL; 3699 3700 /* 3701 * Need to copy setup packet into setup TRB, so we can't use the setup 3702 * DMA address. 3703 */ 3704 if (!urb->setup_packet) 3705 return -EINVAL; 3706 3707 /* 1 TRB for setup, 1 for status */ 3708 num_trbs = 2; 3709 /* 3710 * Don't need to check if we need additional event data and normal TRBs, 3711 * since data in control transfers will never get bigger than 16MB 3712 * XXX: can we get a buffer that crosses 64KB boundaries? 3713 */ 3714 if (urb->transfer_buffer_length > 0) 3715 num_trbs++; 3716 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3717 ep_index, urb->stream_id, 3718 num_trbs, urb, 0, mem_flags); 3719 if (ret < 0) 3720 return ret; 3721 3722 urb_priv = urb->hcpriv; 3723 td = &urb_priv->td[0]; 3724 td->num_trbs = num_trbs; 3725 3726 /* 3727 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3728 * until we've finished creating all the other TRBs. The ring's cycle 3729 * state may change as we enqueue the other TRBs, so save it too. 3730 */ 3731 start_trb = &ep_ring->enqueue->generic; 3732 start_cycle = ep_ring->cycle_state; 3733 3734 /* Queue setup TRB - see section 6.4.1.2.1 */ 3735 /* FIXME better way to translate setup_packet into two u32 fields? */ 3736 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3737 field = 0; 3738 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3739 if (start_cycle == 0) 3740 field |= 0x1; 3741 3742 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3743 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3744 if (urb->transfer_buffer_length > 0) { 3745 if (setup->bRequestType & USB_DIR_IN) 3746 field |= TRB_TX_TYPE(TRB_DATA_IN); 3747 else 3748 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3749 } 3750 } 3751 3752 queue_trb(xhci, ep_ring, true, 3753 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3754 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3755 TRB_LEN(8) | TRB_INTR_TARGET(0), 3756 /* Immediate data in pointer */ 3757 field); 3758 3759 /* If there's data, queue data TRBs */ 3760 /* Only set interrupt on short packet for IN endpoints */ 3761 if (usb_urb_dir_in(urb)) 3762 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3763 else 3764 field = TRB_TYPE(TRB_DATA); 3765 3766 if (urb->transfer_buffer_length > 0) { 3767 u32 length_field, remainder; 3768 u64 addr; 3769 3770 if (xhci_urb_suitable_for_idt(urb)) { 3771 memcpy(&addr, urb->transfer_buffer, 3772 urb->transfer_buffer_length); 3773 le64_to_cpus(&addr); 3774 field |= TRB_IDT; 3775 } else { 3776 addr = (u64) urb->transfer_dma; 3777 } 3778 3779 remainder = xhci_td_remainder(xhci, 0, 3780 urb->transfer_buffer_length, 3781 urb->transfer_buffer_length, 3782 urb, 1); 3783 length_field = TRB_LEN(urb->transfer_buffer_length) | 3784 TRB_TD_SIZE(remainder) | 3785 TRB_INTR_TARGET(0); 3786 if (setup->bRequestType & USB_DIR_IN) 3787 field |= TRB_DIR_IN; 3788 queue_trb(xhci, ep_ring, true, 3789 lower_32_bits(addr), 3790 upper_32_bits(addr), 3791 length_field, 3792 field | ep_ring->cycle_state); 3793 } 3794 3795 /* Save the DMA address of the last TRB in the TD */ 3796 td->last_trb = ep_ring->enqueue; 3797 td->last_trb_seg = ep_ring->enq_seg; 3798 3799 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3800 /* If the device sent data, the status stage is an OUT transfer */ 3801 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3802 field = 0; 3803 else 3804 field = TRB_DIR_IN; 3805 queue_trb(xhci, ep_ring, false, 3806 0, 3807 0, 3808 TRB_INTR_TARGET(0), 3809 /* Event on completion */ 3810 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3811 3812 giveback_first_trb(xhci, slot_id, ep_index, 0, 3813 start_cycle, start_trb); 3814 return 0; 3815 } 3816 3817 /* 3818 * The transfer burst count field of the isochronous TRB defines the number of 3819 * bursts that are required to move all packets in this TD. Only SuperSpeed 3820 * devices can burst up to bMaxBurst number of packets per service interval. 3821 * This field is zero based, meaning a value of zero in the field means one 3822 * burst. Basically, for everything but SuperSpeed devices, this field will be 3823 * zero. Only xHCI 1.0 host controllers support this field. 3824 */ 3825 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3826 struct urb *urb, unsigned int total_packet_count) 3827 { 3828 unsigned int max_burst; 3829 3830 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3831 return 0; 3832 3833 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3834 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3835 } 3836 3837 /* 3838 * Returns the number of packets in the last "burst" of packets. This field is 3839 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3840 * the last burst packet count is equal to the total number of packets in the 3841 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3842 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3843 * contain 1 to (bMaxBurst + 1) packets. 3844 */ 3845 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3846 struct urb *urb, unsigned int total_packet_count) 3847 { 3848 unsigned int max_burst; 3849 unsigned int residue; 3850 3851 if (xhci->hci_version < 0x100) 3852 return 0; 3853 3854 if (urb->dev->speed >= USB_SPEED_SUPER) { 3855 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3856 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3857 residue = total_packet_count % (max_burst + 1); 3858 /* If residue is zero, the last burst contains (max_burst + 1) 3859 * number of packets, but the TLBPC field is zero-based. 3860 */ 3861 if (residue == 0) 3862 return max_burst; 3863 return residue - 1; 3864 } 3865 if (total_packet_count == 0) 3866 return 0; 3867 return total_packet_count - 1; 3868 } 3869 3870 /* 3871 * Calculates Frame ID field of the isochronous TRB identifies the 3872 * target frame that the Interval associated with this Isochronous 3873 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3874 * 3875 * Returns actual frame id on success, negative value on error. 3876 */ 3877 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3878 struct urb *urb, int index) 3879 { 3880 int start_frame, ist, ret = 0; 3881 int start_frame_id, end_frame_id, current_frame_id; 3882 3883 if (urb->dev->speed == USB_SPEED_LOW || 3884 urb->dev->speed == USB_SPEED_FULL) 3885 start_frame = urb->start_frame + index * urb->interval; 3886 else 3887 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3888 3889 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3890 * 3891 * If bit [3] of IST is cleared to '0', software can add a TRB no 3892 * later than IST[2:0] Microframes before that TRB is scheduled to 3893 * be executed. 3894 * If bit [3] of IST is set to '1', software can add a TRB no later 3895 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3896 */ 3897 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3898 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3899 ist <<= 3; 3900 3901 /* Software shall not schedule an Isoch TD with a Frame ID value that 3902 * is less than the Start Frame ID or greater than the End Frame ID, 3903 * where: 3904 * 3905 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3906 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3907 * 3908 * Both the End Frame ID and Start Frame ID values are calculated 3909 * in microframes. When software determines the valid Frame ID value; 3910 * The End Frame ID value should be rounded down to the nearest Frame 3911 * boundary, and the Start Frame ID value should be rounded up to the 3912 * nearest Frame boundary. 3913 */ 3914 current_frame_id = readl(&xhci->run_regs->microframe_index); 3915 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3916 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3917 3918 start_frame &= 0x7ff; 3919 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3920 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3921 3922 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3923 __func__, index, readl(&xhci->run_regs->microframe_index), 3924 start_frame_id, end_frame_id, start_frame); 3925 3926 if (start_frame_id < end_frame_id) { 3927 if (start_frame > end_frame_id || 3928 start_frame < start_frame_id) 3929 ret = -EINVAL; 3930 } else if (start_frame_id > end_frame_id) { 3931 if ((start_frame > end_frame_id && 3932 start_frame < start_frame_id)) 3933 ret = -EINVAL; 3934 } else { 3935 ret = -EINVAL; 3936 } 3937 3938 if (index == 0) { 3939 if (ret == -EINVAL || start_frame == start_frame_id) { 3940 start_frame = start_frame_id + 1; 3941 if (urb->dev->speed == USB_SPEED_LOW || 3942 urb->dev->speed == USB_SPEED_FULL) 3943 urb->start_frame = start_frame; 3944 else 3945 urb->start_frame = start_frame << 3; 3946 ret = 0; 3947 } 3948 } 3949 3950 if (ret) { 3951 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3952 start_frame, current_frame_id, index, 3953 start_frame_id, end_frame_id); 3954 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3955 return ret; 3956 } 3957 3958 return start_frame; 3959 } 3960 3961 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3962 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3963 { 3964 if (xhci->hci_version < 0x100) 3965 return false; 3966 /* always generate an event interrupt for the last TD */ 3967 if (i == num_tds - 1) 3968 return false; 3969 /* 3970 * If AVOID_BEI is set the host handles full event rings poorly, 3971 * generate an event at least every 8th TD to clear the event ring 3972 */ 3973 if (i && xhci->quirks & XHCI_AVOID_BEI) 3974 return !!(i % xhci->isoc_bei_interval); 3975 3976 return true; 3977 } 3978 3979 /* This is for isoc transfer */ 3980 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3981 struct urb *urb, int slot_id, unsigned int ep_index) 3982 { 3983 struct xhci_ring *ep_ring; 3984 struct urb_priv *urb_priv; 3985 struct xhci_td *td; 3986 int num_tds, trbs_per_td; 3987 struct xhci_generic_trb *start_trb; 3988 bool first_trb; 3989 int start_cycle; 3990 u32 field, length_field; 3991 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3992 u64 start_addr, addr; 3993 int i, j; 3994 bool more_trbs_coming; 3995 struct xhci_virt_ep *xep; 3996 int frame_id; 3997 3998 xep = &xhci->devs[slot_id]->eps[ep_index]; 3999 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4000 4001 num_tds = urb->number_of_packets; 4002 if (num_tds < 1) { 4003 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4004 return -EINVAL; 4005 } 4006 start_addr = (u64) urb->transfer_dma; 4007 start_trb = &ep_ring->enqueue->generic; 4008 start_cycle = ep_ring->cycle_state; 4009 4010 urb_priv = urb->hcpriv; 4011 /* Queue the TRBs for each TD, even if they are zero-length */ 4012 for (i = 0; i < num_tds; i++) { 4013 unsigned int total_pkt_count, max_pkt; 4014 unsigned int burst_count, last_burst_pkt_count; 4015 u32 sia_frame_id; 4016 4017 first_trb = true; 4018 running_total = 0; 4019 addr = start_addr + urb->iso_frame_desc[i].offset; 4020 td_len = urb->iso_frame_desc[i].length; 4021 td_remain_len = td_len; 4022 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4023 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4024 4025 /* A zero-length transfer still involves at least one packet. */ 4026 if (total_pkt_count == 0) 4027 total_pkt_count++; 4028 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4029 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4030 urb, total_pkt_count); 4031 4032 trbs_per_td = count_isoc_trbs_needed(urb, i); 4033 4034 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4035 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4036 if (ret < 0) { 4037 if (i == 0) 4038 return ret; 4039 goto cleanup; 4040 } 4041 td = &urb_priv->td[i]; 4042 td->num_trbs = trbs_per_td; 4043 /* use SIA as default, if frame id is used overwrite it */ 4044 sia_frame_id = TRB_SIA; 4045 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4046 HCC_CFC(xhci->hcc_params)) { 4047 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4048 if (frame_id >= 0) 4049 sia_frame_id = TRB_FRAME_ID(frame_id); 4050 } 4051 /* 4052 * Set isoc specific data for the first TRB in a TD. 4053 * Prevent HW from getting the TRBs by keeping the cycle state 4054 * inverted in the first TDs isoc TRB. 4055 */ 4056 field = TRB_TYPE(TRB_ISOC) | 4057 TRB_TLBPC(last_burst_pkt_count) | 4058 sia_frame_id | 4059 (i ? ep_ring->cycle_state : !start_cycle); 4060 4061 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4062 if (!xep->use_extended_tbc) 4063 field |= TRB_TBC(burst_count); 4064 4065 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4066 for (j = 0; j < trbs_per_td; j++) { 4067 u32 remainder = 0; 4068 4069 /* only first TRB is isoc, overwrite otherwise */ 4070 if (!first_trb) 4071 field = TRB_TYPE(TRB_NORMAL) | 4072 ep_ring->cycle_state; 4073 4074 /* Only set interrupt on short packet for IN EPs */ 4075 if (usb_urb_dir_in(urb)) 4076 field |= TRB_ISP; 4077 4078 /* Set the chain bit for all except the last TRB */ 4079 if (j < trbs_per_td - 1) { 4080 more_trbs_coming = true; 4081 field |= TRB_CHAIN; 4082 } else { 4083 more_trbs_coming = false; 4084 td->last_trb = ep_ring->enqueue; 4085 td->last_trb_seg = ep_ring->enq_seg; 4086 field |= TRB_IOC; 4087 if (trb_block_event_intr(xhci, num_tds, i)) 4088 field |= TRB_BEI; 4089 } 4090 /* Calculate TRB length */ 4091 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4092 if (trb_buff_len > td_remain_len) 4093 trb_buff_len = td_remain_len; 4094 4095 /* Set the TRB length, TD size, & interrupter fields. */ 4096 remainder = xhci_td_remainder(xhci, running_total, 4097 trb_buff_len, td_len, 4098 urb, more_trbs_coming); 4099 4100 length_field = TRB_LEN(trb_buff_len) | 4101 TRB_INTR_TARGET(0); 4102 4103 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4104 if (first_trb && xep->use_extended_tbc) 4105 length_field |= TRB_TD_SIZE_TBC(burst_count); 4106 else 4107 length_field |= TRB_TD_SIZE(remainder); 4108 first_trb = false; 4109 4110 queue_trb(xhci, ep_ring, more_trbs_coming, 4111 lower_32_bits(addr), 4112 upper_32_bits(addr), 4113 length_field, 4114 field); 4115 running_total += trb_buff_len; 4116 4117 addr += trb_buff_len; 4118 td_remain_len -= trb_buff_len; 4119 } 4120 4121 /* Check TD length */ 4122 if (running_total != td_len) { 4123 xhci_err(xhci, "ISOC TD length unmatch\n"); 4124 ret = -EINVAL; 4125 goto cleanup; 4126 } 4127 } 4128 4129 /* store the next frame id */ 4130 if (HCC_CFC(xhci->hcc_params)) 4131 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4132 4133 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4134 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4135 usb_amd_quirk_pll_disable(); 4136 } 4137 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4138 4139 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4140 start_cycle, start_trb); 4141 return 0; 4142 cleanup: 4143 /* Clean up a partially enqueued isoc transfer. */ 4144 4145 for (i--; i >= 0; i--) 4146 list_del_init(&urb_priv->td[i].td_list); 4147 4148 /* Use the first TD as a temporary variable to turn the TDs we've queued 4149 * into No-ops with a software-owned cycle bit. That way the hardware 4150 * won't accidentally start executing bogus TDs when we partially 4151 * overwrite them. td->first_trb and td->start_seg are already set. 4152 */ 4153 urb_priv->td[0].last_trb = ep_ring->enqueue; 4154 /* Every TRB except the first & last will have its cycle bit flipped. */ 4155 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4156 4157 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4158 ep_ring->enqueue = urb_priv->td[0].first_trb; 4159 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4160 ep_ring->cycle_state = start_cycle; 4161 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4162 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4163 return ret; 4164 } 4165 4166 /* 4167 * Check transfer ring to guarantee there is enough room for the urb. 4168 * Update ISO URB start_frame and interval. 4169 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4170 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4171 * Contiguous Frame ID is not supported by HC. 4172 */ 4173 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4174 struct urb *urb, int slot_id, unsigned int ep_index) 4175 { 4176 struct xhci_virt_device *xdev; 4177 struct xhci_ring *ep_ring; 4178 struct xhci_ep_ctx *ep_ctx; 4179 int start_frame; 4180 int num_tds, num_trbs, i; 4181 int ret; 4182 struct xhci_virt_ep *xep; 4183 int ist; 4184 4185 xdev = xhci->devs[slot_id]; 4186 xep = &xhci->devs[slot_id]->eps[ep_index]; 4187 ep_ring = xdev->eps[ep_index].ring; 4188 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4189 4190 num_trbs = 0; 4191 num_tds = urb->number_of_packets; 4192 for (i = 0; i < num_tds; i++) 4193 num_trbs += count_isoc_trbs_needed(urb, i); 4194 4195 /* Check the ring to guarantee there is enough room for the whole urb. 4196 * Do not insert any td of the urb to the ring if the check failed. 4197 */ 4198 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4199 num_trbs, mem_flags); 4200 if (ret) 4201 return ret; 4202 4203 /* 4204 * Check interval value. This should be done before we start to 4205 * calculate the start frame value. 4206 */ 4207 check_interval(xhci, urb, ep_ctx); 4208 4209 /* Calculate the start frame and put it in urb->start_frame. */ 4210 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4211 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4212 urb->start_frame = xep->next_frame_id; 4213 goto skip_start_over; 4214 } 4215 } 4216 4217 start_frame = readl(&xhci->run_regs->microframe_index); 4218 start_frame &= 0x3fff; 4219 /* 4220 * Round up to the next frame and consider the time before trb really 4221 * gets scheduled by hardare. 4222 */ 4223 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4224 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4225 ist <<= 3; 4226 start_frame += ist + XHCI_CFC_DELAY; 4227 start_frame = roundup(start_frame, 8); 4228 4229 /* 4230 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4231 * is greate than 8 microframes. 4232 */ 4233 if (urb->dev->speed == USB_SPEED_LOW || 4234 urb->dev->speed == USB_SPEED_FULL) { 4235 start_frame = roundup(start_frame, urb->interval << 3); 4236 urb->start_frame = start_frame >> 3; 4237 } else { 4238 start_frame = roundup(start_frame, urb->interval); 4239 urb->start_frame = start_frame; 4240 } 4241 4242 skip_start_over: 4243 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4244 4245 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4246 } 4247 4248 /**** Command Ring Operations ****/ 4249 4250 /* Generic function for queueing a command TRB on the command ring. 4251 * Check to make sure there's room on the command ring for one command TRB. 4252 * Also check that there's room reserved for commands that must not fail. 4253 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4254 * then only check for the number of reserved spots. 4255 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4256 * because the command event handler may want to resubmit a failed command. 4257 */ 4258 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4259 u32 field1, u32 field2, 4260 u32 field3, u32 field4, bool command_must_succeed) 4261 { 4262 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4263 int ret; 4264 4265 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4266 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4267 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4268 return -ESHUTDOWN; 4269 } 4270 4271 if (!command_must_succeed) 4272 reserved_trbs++; 4273 4274 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4275 reserved_trbs, GFP_ATOMIC); 4276 if (ret < 0) { 4277 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4278 if (command_must_succeed) 4279 xhci_err(xhci, "ERR: Reserved TRB counting for " 4280 "unfailable commands failed.\n"); 4281 return ret; 4282 } 4283 4284 cmd->command_trb = xhci->cmd_ring->enqueue; 4285 4286 /* if there are no other commands queued we start the timeout timer */ 4287 if (list_empty(&xhci->cmd_list)) { 4288 xhci->current_cmd = cmd; 4289 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4290 } 4291 4292 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4293 4294 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4295 field4 | xhci->cmd_ring->cycle_state); 4296 return 0; 4297 } 4298 4299 /* Queue a slot enable or disable request on the command ring */ 4300 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4301 u32 trb_type, u32 slot_id) 4302 { 4303 return queue_command(xhci, cmd, 0, 0, 0, 4304 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4305 } 4306 4307 /* Queue an address device command TRB */ 4308 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4309 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4310 { 4311 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4312 upper_32_bits(in_ctx_ptr), 0, 4313 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4314 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4315 } 4316 4317 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4318 u32 field1, u32 field2, u32 field3, u32 field4) 4319 { 4320 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4321 } 4322 4323 /* Queue a reset device command TRB */ 4324 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4325 u32 slot_id) 4326 { 4327 return queue_command(xhci, cmd, 0, 0, 0, 4328 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4329 false); 4330 } 4331 4332 /* Queue a configure endpoint command TRB */ 4333 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4334 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4335 u32 slot_id, bool command_must_succeed) 4336 { 4337 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4338 upper_32_bits(in_ctx_ptr), 0, 4339 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4340 command_must_succeed); 4341 } 4342 4343 /* Queue an evaluate context command TRB */ 4344 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4345 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4346 { 4347 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4348 upper_32_bits(in_ctx_ptr), 0, 4349 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4350 command_must_succeed); 4351 } 4352 4353 /* 4354 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4355 * activity on an endpoint that is about to be suspended. 4356 */ 4357 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4358 int slot_id, unsigned int ep_index, int suspend) 4359 { 4360 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4361 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4362 u32 type = TRB_TYPE(TRB_STOP_RING); 4363 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4364 4365 return queue_command(xhci, cmd, 0, 0, 0, 4366 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4367 } 4368 4369 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4370 int slot_id, unsigned int ep_index, 4371 enum xhci_ep_reset_type reset_type) 4372 { 4373 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4374 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4375 u32 type = TRB_TYPE(TRB_RESET_EP); 4376 4377 if (reset_type == EP_SOFT_RESET) 4378 type |= TRB_TSP; 4379 4380 return queue_command(xhci, cmd, 0, 0, 0, 4381 trb_slot_id | trb_ep_index | type, false); 4382 } 4383