1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 } else { 180 ring->dequeue++; 181 ring->num_trbs_free++; 182 } 183 } 184 185 while (trb_is_link(ring->dequeue)) { 186 ring->deq_seg = ring->deq_seg->next; 187 ring->dequeue = ring->deq_seg->trbs; 188 189 if (link_trb_count++ > ring->num_segs) { 190 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 191 break; 192 } 193 } 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * 203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 204 * chain bit is set), then set the chain bit in all the following link TRBs. 205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 206 * have their chain bit cleared (so that each Link TRB is a separate TD). 207 * 208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 209 * set, but other sections talk about dealing with the chain bit set. This was 210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 211 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 212 * 213 * @more_trbs_coming: Will you enqueue more TRBs before calling 214 * prepare_transfer()? 215 */ 216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 217 bool more_trbs_coming) 218 { 219 u32 chain; 220 union xhci_trb *next; 221 unsigned int link_trb_count = 0; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 228 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 229 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 230 return; 231 } 232 233 next = ++(ring->enqueue); 234 235 /* Update the dequeue pointer further if that was a link TRB */ 236 while (trb_is_link(next)) { 237 238 /* 239 * If the caller doesn't plan on enqueueing more TDs before 240 * ringing the doorbell, then we don't want to give the link TRB 241 * to the hardware just yet. We'll give the link TRB back in 242 * prepare_ring() just before we enqueue the TD at the top of 243 * the ring. 244 */ 245 if (!chain && !more_trbs_coming) 246 break; 247 248 /* If we're not dealing with 0.95 hardware or isoc rings on 249 * AMD 0.96 host, carry over the chain bit of the previous TRB 250 * (which may mean the chain bit is cleared). 251 */ 252 if (!(ring->type == TYPE_ISOC && 253 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 254 !xhci_link_trb_quirk(xhci)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 if (link_trb_count++ > ring->num_segs) { 271 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 272 break; 273 } 274 } 275 276 trace_xhci_inc_enq(ring); 277 } 278 279 /* 280 * Check to see if there's room to enqueue num_trbs on the ring and make sure 281 * enqueue pointer will not advance into dequeue segment. See rules above. 282 */ 283 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 284 unsigned int num_trbs) 285 { 286 int num_trbs_in_deq_seg; 287 288 if (ring->num_trbs_free < num_trbs) 289 return 0; 290 291 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 292 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 293 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 294 return 0; 295 } 296 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 304 return; 305 306 xhci_dbg(xhci, "// Ding dong!\n"); 307 308 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 309 310 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 311 /* Flush PCI posted writes */ 312 readl(&xhci->dba->doorbell[0]); 313 } 314 315 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 316 { 317 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 318 } 319 320 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 321 { 322 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 323 cmd_list); 324 } 325 326 /* 327 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 328 * If there are other commands waiting then restart the ring and kick the timer. 329 * This must be called with command ring stopped and xhci->lock held. 330 */ 331 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 332 struct xhci_command *cur_cmd) 333 { 334 struct xhci_command *i_cmd; 335 336 /* Turn all aborted commands in list to no-ops, then restart */ 337 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 338 339 if (i_cmd->status != COMP_COMMAND_ABORTED) 340 continue; 341 342 i_cmd->status = COMP_COMMAND_RING_STOPPED; 343 344 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 345 i_cmd->command_trb); 346 347 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 348 349 /* 350 * caller waiting for completion is called when command 351 * completion event is received for these no-op commands 352 */ 353 } 354 355 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 356 357 /* ring command ring doorbell to restart the command ring */ 358 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 359 !(xhci->xhc_state & XHCI_STATE_DYING)) { 360 xhci->current_cmd = cur_cmd; 361 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 362 xhci_ring_cmd_db(xhci); 363 } 364 } 365 366 /* Must be called with xhci->lock held, releases and aquires lock back */ 367 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 368 { 369 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 370 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 371 u64 crcr; 372 int ret; 373 374 xhci_dbg(xhci, "Abort command ring\n"); 375 376 reinit_completion(&xhci->cmd_ring_stop_completion); 377 378 /* 379 * The control bits like command stop, abort are located in lower 380 * dword of the command ring control register. 381 * Some controllers require all 64 bits to be written to abort the ring. 382 * Make sure the upper dword is valid, pointing to the next command, 383 * avoiding corrupting the command ring pointer in case the command ring 384 * is stopped by the time the upper dword is written. 385 */ 386 next_trb(xhci, NULL, &new_seg, &new_deq); 387 if (trb_is_link(new_deq)) 388 next_trb(xhci, NULL, &new_seg, &new_deq); 389 390 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 391 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 392 393 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 394 * completion of the Command Abort operation. If CRR is not negated in 5 395 * seconds then driver handles it as if host died (-ENODEV). 396 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 397 * and try to recover a -ETIMEDOUT with a host controller reset. 398 */ 399 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 400 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 401 if (ret < 0) { 402 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 403 xhci_halt(xhci); 404 xhci_hc_died(xhci); 405 return ret; 406 } 407 /* 408 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 409 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 410 * but the completion event in never sent. Wait 2 secs (arbitrary 411 * number) to handle those cases after negation of CMD_RING_RUNNING. 412 */ 413 spin_unlock_irqrestore(&xhci->lock, flags); 414 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 415 msecs_to_jiffies(2000)); 416 spin_lock_irqsave(&xhci->lock, flags); 417 if (!ret) { 418 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 419 xhci_cleanup_command_queue(xhci); 420 } else { 421 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 422 } 423 return 0; 424 } 425 426 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index, 429 unsigned int stream_id) 430 { 431 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 432 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 433 unsigned int ep_state = ep->ep_state; 434 435 /* Don't ring the doorbell for this endpoint if there are pending 436 * cancellations because we don't want to interrupt processing. 437 * We don't want to restart any stream rings if there's a set dequeue 438 * pointer command pending because the device can choose to start any 439 * stream once the endpoint is on the HW schedule. 440 */ 441 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 442 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 443 return; 444 445 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 446 447 writel(DB_VALUE(ep_index, stream_id), db_addr); 448 /* flush the write */ 449 readl(db_addr); 450 } 451 452 /* Ring the doorbell for any rings with pending URBs */ 453 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 454 unsigned int slot_id, 455 unsigned int ep_index) 456 { 457 unsigned int stream_id; 458 struct xhci_virt_ep *ep; 459 460 ep = &xhci->devs[slot_id]->eps[ep_index]; 461 462 /* A ring has pending URBs if its TD list is not empty */ 463 if (!(ep->ep_state & EP_HAS_STREAMS)) { 464 if (ep->ring && !(list_empty(&ep->ring->td_list))) 465 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 466 return; 467 } 468 469 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 470 stream_id++) { 471 struct xhci_stream_info *stream_info = ep->stream_info; 472 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 473 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 474 stream_id); 475 } 476 } 477 478 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 479 unsigned int slot_id, 480 unsigned int ep_index) 481 { 482 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 483 } 484 485 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 486 unsigned int slot_id, 487 unsigned int ep_index) 488 { 489 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 490 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 491 return NULL; 492 } 493 if (ep_index >= EP_CTX_PER_DEV) { 494 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 495 return NULL; 496 } 497 if (!xhci->devs[slot_id]) { 498 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 499 return NULL; 500 } 501 502 return &xhci->devs[slot_id]->eps[ep_index]; 503 } 504 505 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 506 struct xhci_virt_ep *ep, 507 unsigned int stream_id) 508 { 509 /* common case, no streams */ 510 if (!(ep->ep_state & EP_HAS_STREAMS)) 511 return ep->ring; 512 513 if (!ep->stream_info) 514 return NULL; 515 516 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 517 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 518 stream_id, ep->vdev->slot_id, ep->ep_index); 519 return NULL; 520 } 521 522 return ep->stream_info->stream_rings[stream_id]; 523 } 524 525 /* Get the right ring for the given slot_id, ep_index and stream_id. 526 * If the endpoint supports streams, boundary check the URB's stream ID. 527 * If the endpoint doesn't support streams, return the singular endpoint ring. 528 */ 529 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 530 unsigned int slot_id, unsigned int ep_index, 531 unsigned int stream_id) 532 { 533 struct xhci_virt_ep *ep; 534 535 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 536 if (!ep) 537 return NULL; 538 539 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 540 } 541 542 543 /* 544 * Get the hw dequeue pointer xHC stopped on, either directly from the 545 * endpoint context, or if streams are in use from the stream context. 546 * The returned hw_dequeue contains the lowest four bits with cycle state 547 * and possbile stream context type. 548 */ 549 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 550 unsigned int ep_index, unsigned int stream_id) 551 { 552 struct xhci_ep_ctx *ep_ctx; 553 struct xhci_stream_ctx *st_ctx; 554 struct xhci_virt_ep *ep; 555 556 ep = &vdev->eps[ep_index]; 557 558 if (ep->ep_state & EP_HAS_STREAMS) { 559 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 560 return le64_to_cpu(st_ctx->stream_ring); 561 } 562 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 563 return le64_to_cpu(ep_ctx->deq); 564 } 565 566 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 567 unsigned int slot_id, unsigned int ep_index, 568 unsigned int stream_id, struct xhci_td *td) 569 { 570 struct xhci_virt_device *dev = xhci->devs[slot_id]; 571 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 572 struct xhci_ring *ep_ring; 573 struct xhci_command *cmd; 574 struct xhci_segment *new_seg; 575 struct xhci_segment *halted_seg = NULL; 576 union xhci_trb *new_deq; 577 int new_cycle; 578 union xhci_trb *halted_trb; 579 int index = 0; 580 dma_addr_t addr; 581 u64 hw_dequeue; 582 bool cycle_found = false; 583 bool td_last_trb_found = false; 584 u32 trb_sct = 0; 585 int ret; 586 587 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 588 ep_index, stream_id); 589 if (!ep_ring) { 590 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 591 stream_id); 592 return -ENODEV; 593 } 594 /* 595 * A cancelled TD can complete with a stall if HW cached the trb. 596 * In this case driver can't find td, but if the ring is empty we 597 * can move the dequeue pointer to the current enqueue position. 598 * We shouldn't hit this anymore as cached cancelled TRBs are given back 599 * after clearing the cache, but be on the safe side and keep it anyway 600 */ 601 if (!td) { 602 if (list_empty(&ep_ring->td_list)) { 603 new_seg = ep_ring->enq_seg; 604 new_deq = ep_ring->enqueue; 605 new_cycle = ep_ring->cycle_state; 606 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 607 goto deq_found; 608 } else { 609 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 610 return -EINVAL; 611 } 612 } 613 614 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 615 new_seg = ep_ring->deq_seg; 616 new_deq = ep_ring->dequeue; 617 618 /* 619 * Quirk: xHC write-back of the DCS field in the hardware dequeue 620 * pointer is wrong - use the cycle state of the TRB pointed to by 621 * the dequeue pointer. 622 */ 623 if (xhci->quirks & XHCI_EP_CTX_BROKEN_DCS && 624 !(ep->ep_state & EP_HAS_STREAMS)) 625 halted_seg = trb_in_td(xhci, td->start_seg, 626 td->first_trb, td->last_trb, 627 hw_dequeue & ~0xf, false); 628 if (halted_seg) { 629 index = ((dma_addr_t)(hw_dequeue & ~0xf) - halted_seg->dma) / 630 sizeof(*halted_trb); 631 halted_trb = &halted_seg->trbs[index]; 632 new_cycle = halted_trb->generic.field[3] & 0x1; 633 xhci_dbg(xhci, "Endpoint DCS = %d TRB index = %d cycle = %d\n", 634 (u8)(hw_dequeue & 0x1), index, new_cycle); 635 } else { 636 new_cycle = hw_dequeue & 0x1; 637 } 638 639 /* 640 * We want to find the pointer, segment and cycle state of the new trb 641 * (the one after current TD's last_trb). We know the cycle state at 642 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 643 * found. 644 */ 645 do { 646 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 647 == (dma_addr_t)(hw_dequeue & ~0xf)) { 648 cycle_found = true; 649 if (td_last_trb_found) 650 break; 651 } 652 if (new_deq == td->last_trb) 653 td_last_trb_found = true; 654 655 if (cycle_found && trb_is_link(new_deq) && 656 link_trb_toggles_cycle(new_deq)) 657 new_cycle ^= 0x1; 658 659 next_trb(xhci, ep_ring, &new_seg, &new_deq); 660 661 /* Search wrapped around, bail out */ 662 if (new_deq == ep->ring->dequeue) { 663 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 664 return -EINVAL; 665 } 666 667 } while (!cycle_found || !td_last_trb_found); 668 669 deq_found: 670 671 /* Don't update the ring cycle state for the producer (us). */ 672 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 673 if (addr == 0) { 674 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 675 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 676 return -EINVAL; 677 } 678 679 if ((ep->ep_state & SET_DEQ_PENDING)) { 680 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 681 &addr); 682 return -EBUSY; 683 } 684 685 /* This function gets called from contexts where it cannot sleep */ 686 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 687 if (!cmd) { 688 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 689 return -ENOMEM; 690 } 691 692 if (stream_id) 693 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 694 ret = queue_command(xhci, cmd, 695 lower_32_bits(addr) | trb_sct | new_cycle, 696 upper_32_bits(addr), 697 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 698 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 699 if (ret < 0) { 700 xhci_free_command(xhci, cmd); 701 return ret; 702 } 703 ep->queued_deq_seg = new_seg; 704 ep->queued_deq_ptr = new_deq; 705 706 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 707 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 708 709 /* Stop the TD queueing code from ringing the doorbell until 710 * this command completes. The HC won't set the dequeue pointer 711 * if the ring is running, and ringing the doorbell starts the 712 * ring running. 713 */ 714 ep->ep_state |= SET_DEQ_PENDING; 715 xhci_ring_cmd_db(xhci); 716 return 0; 717 } 718 719 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 720 * (The last TRB actually points to the ring enqueue pointer, which is not part 721 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 722 */ 723 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 724 struct xhci_td *td, bool flip_cycle) 725 { 726 struct xhci_segment *seg = td->start_seg; 727 union xhci_trb *trb = td->first_trb; 728 729 while (1) { 730 trb_to_noop(trb, TRB_TR_NOOP); 731 732 /* flip cycle if asked to */ 733 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 734 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 735 736 if (trb == td->last_trb) 737 break; 738 739 next_trb(xhci, ep_ring, &seg, &trb); 740 } 741 } 742 743 /* 744 * Must be called with xhci->lock held in interrupt context, 745 * releases and re-acquires xhci->lock 746 */ 747 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 748 struct xhci_td *cur_td, int status) 749 { 750 struct urb *urb = cur_td->urb; 751 struct urb_priv *urb_priv = urb->hcpriv; 752 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 753 754 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 755 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 756 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 757 if (xhci->quirks & XHCI_AMD_PLL_FIX) 758 usb_amd_quirk_pll_enable(); 759 } 760 } 761 xhci_urb_free_priv(urb_priv); 762 usb_hcd_unlink_urb_from_ep(hcd, urb); 763 trace_xhci_urb_giveback(urb); 764 usb_hcd_giveback_urb(hcd, urb, status); 765 } 766 767 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 768 struct xhci_ring *ring, struct xhci_td *td) 769 { 770 struct device *dev = xhci_to_hcd(xhci)->self.controller; 771 struct xhci_segment *seg = td->bounce_seg; 772 struct urb *urb = td->urb; 773 size_t len; 774 775 if (!ring || !seg || !urb) 776 return; 777 778 if (usb_urb_dir_out(urb)) { 779 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 780 DMA_TO_DEVICE); 781 return; 782 } 783 784 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 785 DMA_FROM_DEVICE); 786 /* for in tranfers we need to copy the data from bounce to sg */ 787 if (urb->num_sgs) { 788 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 789 seg->bounce_len, seg->bounce_offs); 790 if (len != seg->bounce_len) 791 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 792 len, seg->bounce_len); 793 } else { 794 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 795 seg->bounce_len); 796 } 797 seg->bounce_len = 0; 798 seg->bounce_offs = 0; 799 } 800 801 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 802 struct xhci_ring *ep_ring, int status) 803 { 804 struct urb *urb = NULL; 805 806 /* Clean up the endpoint's TD list */ 807 urb = td->urb; 808 809 /* if a bounce buffer was used to align this td then unmap it */ 810 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 811 812 /* Do one last check of the actual transfer length. 813 * If the host controller said we transferred more data than the buffer 814 * length, urb->actual_length will be a very big number (since it's 815 * unsigned). Play it safe and say we didn't transfer anything. 816 */ 817 if (urb->actual_length > urb->transfer_buffer_length) { 818 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 819 urb->transfer_buffer_length, urb->actual_length); 820 urb->actual_length = 0; 821 status = 0; 822 } 823 /* TD might be removed from td_list if we are giving back a cancelled URB */ 824 if (!list_empty(&td->td_list)) 825 list_del_init(&td->td_list); 826 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 827 if (!list_empty(&td->cancelled_td_list)) 828 list_del_init(&td->cancelled_td_list); 829 830 inc_td_cnt(urb); 831 /* Giveback the urb when all the tds are completed */ 832 if (last_td_in_urb(td)) { 833 if ((urb->actual_length != urb->transfer_buffer_length && 834 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 835 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 836 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 837 urb, urb->actual_length, 838 urb->transfer_buffer_length, status); 839 840 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 841 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 842 status = 0; 843 xhci_giveback_urb_in_irq(xhci, td, status); 844 } 845 846 return 0; 847 } 848 849 850 /* Complete the cancelled URBs we unlinked from td_list. */ 851 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 852 { 853 struct xhci_ring *ring; 854 struct xhci_td *td, *tmp_td; 855 856 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 857 cancelled_td_list) { 858 859 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 860 861 if (td->cancel_status == TD_CLEARED) { 862 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 863 __func__, td->urb); 864 xhci_td_cleanup(ep->xhci, td, ring, td->status); 865 } else { 866 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 867 __func__, td->urb, td->cancel_status); 868 } 869 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 870 return; 871 } 872 } 873 874 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 875 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 876 { 877 struct xhci_command *command; 878 int ret = 0; 879 880 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 881 if (!command) { 882 ret = -ENOMEM; 883 goto done; 884 } 885 886 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 887 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 888 ep_index, slot_id); 889 890 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 891 done: 892 if (ret) 893 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 894 slot_id, ep_index, ret); 895 return ret; 896 } 897 898 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 899 struct xhci_virt_ep *ep, 900 struct xhci_td *td, 901 enum xhci_ep_reset_type reset_type) 902 { 903 unsigned int slot_id = ep->vdev->slot_id; 904 int err; 905 906 /* 907 * Avoid resetting endpoint if link is inactive. Can cause host hang. 908 * Device will be reset soon to recover the link so don't do anything 909 */ 910 if (ep->vdev->flags & VDEV_PORT_ERROR) 911 return -ENODEV; 912 913 /* add td to cancelled list and let reset ep handler take care of it */ 914 if (reset_type == EP_HARD_RESET) { 915 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 916 if (td && list_empty(&td->cancelled_td_list)) { 917 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 918 td->cancel_status = TD_HALTED; 919 } 920 } 921 922 if (ep->ep_state & EP_HALTED) { 923 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 924 ep->ep_index); 925 return 0; 926 } 927 928 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 929 if (err) 930 return err; 931 932 ep->ep_state |= EP_HALTED; 933 934 xhci_ring_cmd_db(xhci); 935 936 return 0; 937 } 938 939 /* 940 * Fix up the ep ring first, so HW stops executing cancelled TDs. 941 * We have the xHCI lock, so nothing can modify this list until we drop it. 942 * We're also in the event handler, so we can't get re-interrupted if another 943 * Stop Endpoint command completes. 944 * 945 * only call this when ring is not in a running state 946 */ 947 948 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 949 { 950 struct xhci_hcd *xhci; 951 struct xhci_td *td = NULL; 952 struct xhci_td *tmp_td = NULL; 953 struct xhci_td *cached_td = NULL; 954 struct xhci_ring *ring; 955 u64 hw_deq; 956 unsigned int slot_id = ep->vdev->slot_id; 957 int err; 958 959 xhci = ep->xhci; 960 961 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 962 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 963 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 964 (unsigned long long)xhci_trb_virt_to_dma( 965 td->start_seg, td->first_trb), 966 td->urb->stream_id, td->urb); 967 list_del_init(&td->td_list); 968 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 969 if (!ring) { 970 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 971 td->urb, td->urb->stream_id); 972 continue; 973 } 974 /* 975 * If a ring stopped on the TD we need to cancel then we have to 976 * move the xHC endpoint ring dequeue pointer past this TD. 977 * Rings halted due to STALL may show hw_deq is past the stalled 978 * TD, but still require a set TR Deq command to flush xHC cache. 979 */ 980 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 981 td->urb->stream_id); 982 hw_deq &= ~0xf; 983 984 if (td->cancel_status == TD_HALTED || 985 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 986 switch (td->cancel_status) { 987 case TD_CLEARED: /* TD is already no-op */ 988 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 989 break; 990 case TD_DIRTY: /* TD is cached, clear it */ 991 case TD_HALTED: 992 td->cancel_status = TD_CLEARING_CACHE; 993 if (cached_td) 994 /* FIXME stream case, several stopped rings */ 995 xhci_dbg(xhci, 996 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 997 td->urb->stream_id, td->urb, 998 cached_td->urb->stream_id, cached_td->urb); 999 cached_td = td; 1000 break; 1001 } 1002 } else { 1003 td_to_noop(xhci, ring, td, false); 1004 td->cancel_status = TD_CLEARED; 1005 } 1006 } 1007 1008 /* If there's no need to move the dequeue pointer then we're done */ 1009 if (!cached_td) 1010 return 0; 1011 1012 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1013 cached_td->urb->stream_id, 1014 cached_td); 1015 if (err) { 1016 /* Failed to move past cached td, just set cached TDs to no-op */ 1017 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1018 if (td->cancel_status != TD_CLEARING_CACHE) 1019 continue; 1020 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1021 td->urb); 1022 td_to_noop(xhci, ring, td, false); 1023 td->cancel_status = TD_CLEARED; 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 /* 1030 * Returns the TD the endpoint ring halted on. 1031 * Only call for non-running rings without streams. 1032 */ 1033 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1034 { 1035 struct xhci_td *td; 1036 u64 hw_deq; 1037 1038 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1039 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1040 hw_deq &= ~0xf; 1041 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1042 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1043 td->last_trb, hw_deq, false)) 1044 return td; 1045 } 1046 return NULL; 1047 } 1048 1049 /* 1050 * When we get a command completion for a Stop Endpoint Command, we need to 1051 * unlink any cancelled TDs from the ring. There are two ways to do that: 1052 * 1053 * 1. If the HW was in the middle of processing the TD that needs to be 1054 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1055 * in the TD with a Set Dequeue Pointer Command. 1056 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1057 * bit cleared) so that the HW will skip over them. 1058 */ 1059 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1060 union xhci_trb *trb, u32 comp_code) 1061 { 1062 unsigned int ep_index; 1063 struct xhci_virt_ep *ep; 1064 struct xhci_ep_ctx *ep_ctx; 1065 struct xhci_td *td = NULL; 1066 enum xhci_ep_reset_type reset_type; 1067 struct xhci_command *command; 1068 int err; 1069 1070 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1071 if (!xhci->devs[slot_id]) 1072 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1073 slot_id); 1074 return; 1075 } 1076 1077 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1078 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1079 if (!ep) 1080 return; 1081 1082 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1083 1084 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1085 1086 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1087 /* 1088 * If stop endpoint command raced with a halting endpoint we need to 1089 * reset the host side endpoint first. 1090 * If the TD we halted on isn't cancelled the TD should be given back 1091 * with a proper error code, and the ring dequeue moved past the TD. 1092 * If streams case we can't find hw_deq, or the TD we halted on so do a 1093 * soft reset. 1094 * 1095 * Proper error code is unknown here, it would be -EPIPE if device side 1096 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1097 * We use -EPROTO, if device is stalled it should return a stall error on 1098 * next transfer, which then will return -EPIPE, and device side stall is 1099 * noted and cleared by class driver. 1100 */ 1101 switch (GET_EP_CTX_STATE(ep_ctx)) { 1102 case EP_STATE_HALTED: 1103 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1104 if (ep->ep_state & EP_HAS_STREAMS) { 1105 reset_type = EP_SOFT_RESET; 1106 } else { 1107 reset_type = EP_HARD_RESET; 1108 td = find_halted_td(ep); 1109 if (td) 1110 td->status = -EPROTO; 1111 } 1112 /* reset ep, reset handler cleans up cancelled tds */ 1113 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1114 if (err) 1115 break; 1116 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1117 return; 1118 case EP_STATE_RUNNING: 1119 /* Race, HW handled stop ep cmd before ep was running */ 1120 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1121 1122 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1123 if (!command) { 1124 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1125 return; 1126 } 1127 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1128 xhci_ring_cmd_db(xhci); 1129 1130 return; 1131 default: 1132 break; 1133 } 1134 } 1135 1136 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1137 xhci_invalidate_cancelled_tds(ep); 1138 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1139 1140 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1141 xhci_giveback_invalidated_tds(ep); 1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1143 } 1144 1145 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1146 { 1147 struct xhci_td *cur_td; 1148 struct xhci_td *tmp; 1149 1150 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1151 list_del_init(&cur_td->td_list); 1152 1153 if (!list_empty(&cur_td->cancelled_td_list)) 1154 list_del_init(&cur_td->cancelled_td_list); 1155 1156 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1157 1158 inc_td_cnt(cur_td->urb); 1159 if (last_td_in_urb(cur_td)) 1160 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1161 } 1162 } 1163 1164 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1165 int slot_id, int ep_index) 1166 { 1167 struct xhci_td *cur_td; 1168 struct xhci_td *tmp; 1169 struct xhci_virt_ep *ep; 1170 struct xhci_ring *ring; 1171 1172 ep = &xhci->devs[slot_id]->eps[ep_index]; 1173 if ((ep->ep_state & EP_HAS_STREAMS) || 1174 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1175 int stream_id; 1176 1177 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1178 stream_id++) { 1179 ring = ep->stream_info->stream_rings[stream_id]; 1180 if (!ring) 1181 continue; 1182 1183 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1184 "Killing URBs for slot ID %u, ep index %u, stream %u", 1185 slot_id, ep_index, stream_id); 1186 xhci_kill_ring_urbs(xhci, ring); 1187 } 1188 } else { 1189 ring = ep->ring; 1190 if (!ring) 1191 return; 1192 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1193 "Killing URBs for slot ID %u, ep index %u", 1194 slot_id, ep_index); 1195 xhci_kill_ring_urbs(xhci, ring); 1196 } 1197 1198 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1199 cancelled_td_list) { 1200 list_del_init(&cur_td->cancelled_td_list); 1201 inc_td_cnt(cur_td->urb); 1202 1203 if (last_td_in_urb(cur_td)) 1204 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1205 } 1206 } 1207 1208 /* 1209 * host controller died, register read returns 0xffffffff 1210 * Complete pending commands, mark them ABORTED. 1211 * URBs need to be given back as usb core might be waiting with device locks 1212 * held for the URBs to finish during device disconnect, blocking host remove. 1213 * 1214 * Call with xhci->lock held. 1215 * lock is relased and re-acquired while giving back urb. 1216 */ 1217 void xhci_hc_died(struct xhci_hcd *xhci) 1218 { 1219 int i, j; 1220 1221 if (xhci->xhc_state & XHCI_STATE_DYING) 1222 return; 1223 1224 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1225 xhci->xhc_state |= XHCI_STATE_DYING; 1226 1227 xhci_cleanup_command_queue(xhci); 1228 1229 /* return any pending urbs, remove may be waiting for them */ 1230 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1231 if (!xhci->devs[i]) 1232 continue; 1233 for (j = 0; j < 31; j++) 1234 xhci_kill_endpoint_urbs(xhci, i, j); 1235 } 1236 1237 /* inform usb core hc died if PCI remove isn't already handling it */ 1238 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1239 usb_hc_died(xhci_to_hcd(xhci)); 1240 } 1241 1242 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1243 struct xhci_virt_device *dev, 1244 struct xhci_ring *ep_ring, 1245 unsigned int ep_index) 1246 { 1247 union xhci_trb *dequeue_temp; 1248 int num_trbs_free_temp; 1249 bool revert = false; 1250 1251 num_trbs_free_temp = ep_ring->num_trbs_free; 1252 dequeue_temp = ep_ring->dequeue; 1253 1254 /* If we get two back-to-back stalls, and the first stalled transfer 1255 * ends just before a link TRB, the dequeue pointer will be left on 1256 * the link TRB by the code in the while loop. So we have to update 1257 * the dequeue pointer one segment further, or we'll jump off 1258 * the segment into la-la-land. 1259 */ 1260 if (trb_is_link(ep_ring->dequeue)) { 1261 ep_ring->deq_seg = ep_ring->deq_seg->next; 1262 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1263 } 1264 1265 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1266 /* We have more usable TRBs */ 1267 ep_ring->num_trbs_free++; 1268 ep_ring->dequeue++; 1269 if (trb_is_link(ep_ring->dequeue)) { 1270 if (ep_ring->dequeue == 1271 dev->eps[ep_index].queued_deq_ptr) 1272 break; 1273 ep_ring->deq_seg = ep_ring->deq_seg->next; 1274 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1275 } 1276 if (ep_ring->dequeue == dequeue_temp) { 1277 revert = true; 1278 break; 1279 } 1280 } 1281 1282 if (revert) { 1283 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1284 ep_ring->num_trbs_free = num_trbs_free_temp; 1285 } 1286 } 1287 1288 /* 1289 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1290 * we need to clear the set deq pending flag in the endpoint ring state, so that 1291 * the TD queueing code can ring the doorbell again. We also need to ring the 1292 * endpoint doorbell to restart the ring, but only if there aren't more 1293 * cancellations pending. 1294 */ 1295 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1296 union xhci_trb *trb, u32 cmd_comp_code) 1297 { 1298 unsigned int ep_index; 1299 unsigned int stream_id; 1300 struct xhci_ring *ep_ring; 1301 struct xhci_virt_ep *ep; 1302 struct xhci_ep_ctx *ep_ctx; 1303 struct xhci_slot_ctx *slot_ctx; 1304 struct xhci_td *td, *tmp_td; 1305 1306 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1307 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1308 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1309 if (!ep) 1310 return; 1311 1312 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1313 if (!ep_ring) { 1314 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1315 stream_id); 1316 /* XXX: Harmless??? */ 1317 goto cleanup; 1318 } 1319 1320 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1321 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1322 trace_xhci_handle_cmd_set_deq(slot_ctx); 1323 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1324 1325 if (cmd_comp_code != COMP_SUCCESS) { 1326 unsigned int ep_state; 1327 unsigned int slot_state; 1328 1329 switch (cmd_comp_code) { 1330 case COMP_TRB_ERROR: 1331 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1332 break; 1333 case COMP_CONTEXT_STATE_ERROR: 1334 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1335 ep_state = GET_EP_CTX_STATE(ep_ctx); 1336 slot_state = le32_to_cpu(slot_ctx->dev_state); 1337 slot_state = GET_SLOT_STATE(slot_state); 1338 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1339 "Slot state = %u, EP state = %u", 1340 slot_state, ep_state); 1341 break; 1342 case COMP_SLOT_NOT_ENABLED_ERROR: 1343 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1344 slot_id); 1345 break; 1346 default: 1347 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1348 cmd_comp_code); 1349 break; 1350 } 1351 /* OK what do we do now? The endpoint state is hosed, and we 1352 * should never get to this point if the synchronization between 1353 * queueing, and endpoint state are correct. This might happen 1354 * if the device gets disconnected after we've finished 1355 * cancelling URBs, which might not be an error... 1356 */ 1357 } else { 1358 u64 deq; 1359 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1360 if (ep->ep_state & EP_HAS_STREAMS) { 1361 struct xhci_stream_ctx *ctx = 1362 &ep->stream_info->stream_ctx_array[stream_id]; 1363 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1364 } else { 1365 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1366 } 1367 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1368 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1369 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1370 ep->queued_deq_ptr) == deq) { 1371 /* Update the ring's dequeue segment and dequeue pointer 1372 * to reflect the new position. 1373 */ 1374 update_ring_for_set_deq_completion(xhci, ep->vdev, 1375 ep_ring, ep_index); 1376 } else { 1377 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1378 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1379 ep->queued_deq_seg, ep->queued_deq_ptr); 1380 } 1381 } 1382 /* HW cached TDs cleared from cache, give them back */ 1383 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1384 cancelled_td_list) { 1385 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1386 if (td->cancel_status == TD_CLEARING_CACHE) { 1387 td->cancel_status = TD_CLEARED; 1388 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1389 __func__, td->urb); 1390 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1391 } else { 1392 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1393 __func__, td->urb, td->cancel_status); 1394 } 1395 } 1396 cleanup: 1397 ep->ep_state &= ~SET_DEQ_PENDING; 1398 ep->queued_deq_seg = NULL; 1399 ep->queued_deq_ptr = NULL; 1400 /* Restart any rings with pending URBs */ 1401 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1402 } 1403 1404 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1405 union xhci_trb *trb, u32 cmd_comp_code) 1406 { 1407 struct xhci_virt_ep *ep; 1408 struct xhci_ep_ctx *ep_ctx; 1409 unsigned int ep_index; 1410 1411 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1412 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1413 if (!ep) 1414 return; 1415 1416 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1417 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1418 1419 /* This command will only fail if the endpoint wasn't halted, 1420 * but we don't care. 1421 */ 1422 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1423 "Ignoring reset ep completion code of %u", cmd_comp_code); 1424 1425 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1426 xhci_invalidate_cancelled_tds(ep); 1427 1428 /* Clear our internal halted state */ 1429 ep->ep_state &= ~EP_HALTED; 1430 1431 xhci_giveback_invalidated_tds(ep); 1432 1433 /* if this was a soft reset, then restart */ 1434 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1435 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1436 } 1437 1438 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1439 struct xhci_command *command, u32 cmd_comp_code) 1440 { 1441 if (cmd_comp_code == COMP_SUCCESS) 1442 command->slot_id = slot_id; 1443 else 1444 command->slot_id = 0; 1445 } 1446 1447 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1448 { 1449 struct xhci_virt_device *virt_dev; 1450 struct xhci_slot_ctx *slot_ctx; 1451 1452 virt_dev = xhci->devs[slot_id]; 1453 if (!virt_dev) 1454 return; 1455 1456 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1457 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1458 1459 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1460 /* Delete default control endpoint resources */ 1461 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1462 } 1463 1464 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1465 u32 cmd_comp_code) 1466 { 1467 struct xhci_virt_device *virt_dev; 1468 struct xhci_input_control_ctx *ctrl_ctx; 1469 struct xhci_ep_ctx *ep_ctx; 1470 unsigned int ep_index; 1471 u32 add_flags; 1472 1473 /* 1474 * Configure endpoint commands can come from the USB core configuration 1475 * or alt setting changes, or when streams were being configured. 1476 */ 1477 1478 virt_dev = xhci->devs[slot_id]; 1479 if (!virt_dev) 1480 return; 1481 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1482 if (!ctrl_ctx) { 1483 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1484 return; 1485 } 1486 1487 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1488 1489 /* Input ctx add_flags are the endpoint index plus one */ 1490 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1491 1492 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1493 trace_xhci_handle_cmd_config_ep(ep_ctx); 1494 1495 return; 1496 } 1497 1498 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1499 { 1500 struct xhci_virt_device *vdev; 1501 struct xhci_slot_ctx *slot_ctx; 1502 1503 vdev = xhci->devs[slot_id]; 1504 if (!vdev) 1505 return; 1506 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1507 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1508 } 1509 1510 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1511 { 1512 struct xhci_virt_device *vdev; 1513 struct xhci_slot_ctx *slot_ctx; 1514 1515 vdev = xhci->devs[slot_id]; 1516 if (!vdev) { 1517 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1518 slot_id); 1519 return; 1520 } 1521 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1522 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1523 1524 xhci_dbg(xhci, "Completed reset device command.\n"); 1525 } 1526 1527 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1528 struct xhci_event_cmd *event) 1529 { 1530 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1531 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1532 return; 1533 } 1534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1535 "NEC firmware version %2x.%02x", 1536 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1537 NEC_FW_MINOR(le32_to_cpu(event->status))); 1538 } 1539 1540 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1541 { 1542 list_del(&cmd->cmd_list); 1543 1544 if (cmd->completion) { 1545 cmd->status = status; 1546 complete(cmd->completion); 1547 } else { 1548 kfree(cmd); 1549 } 1550 } 1551 1552 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1553 { 1554 struct xhci_command *cur_cmd, *tmp_cmd; 1555 xhci->current_cmd = NULL; 1556 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1557 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1558 } 1559 1560 void xhci_handle_command_timeout(struct work_struct *work) 1561 { 1562 struct xhci_hcd *xhci; 1563 unsigned long flags; 1564 char str[XHCI_MSG_MAX]; 1565 u64 hw_ring_state; 1566 u32 cmd_field3; 1567 u32 usbsts; 1568 1569 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1570 1571 spin_lock_irqsave(&xhci->lock, flags); 1572 1573 /* 1574 * If timeout work is pending, or current_cmd is NULL, it means we 1575 * raced with command completion. Command is handled so just return. 1576 */ 1577 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1578 spin_unlock_irqrestore(&xhci->lock, flags); 1579 return; 1580 } 1581 1582 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1583 usbsts = readl(&xhci->op_regs->status); 1584 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1585 1586 /* Bail out and tear down xhci if a stop endpoint command failed */ 1587 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1588 struct xhci_virt_ep *ep; 1589 1590 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1591 1592 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1593 TRB_TO_EP_INDEX(cmd_field3)); 1594 if (ep) 1595 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1596 1597 xhci_halt(xhci); 1598 xhci_hc_died(xhci); 1599 goto time_out_completed; 1600 } 1601 1602 /* mark this command to be cancelled */ 1603 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1604 1605 /* Make sure command ring is running before aborting it */ 1606 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1607 if (hw_ring_state == ~(u64)0) { 1608 xhci_hc_died(xhci); 1609 goto time_out_completed; 1610 } 1611 1612 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1613 (hw_ring_state & CMD_RING_RUNNING)) { 1614 /* Prevent new doorbell, and start command abort */ 1615 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1616 xhci_dbg(xhci, "Command timeout\n"); 1617 xhci_abort_cmd_ring(xhci, flags); 1618 goto time_out_completed; 1619 } 1620 1621 /* host removed. Bail out */ 1622 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1623 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1624 xhci_cleanup_command_queue(xhci); 1625 1626 goto time_out_completed; 1627 } 1628 1629 /* command timeout on stopped ring, ring can't be aborted */ 1630 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1631 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1632 1633 time_out_completed: 1634 spin_unlock_irqrestore(&xhci->lock, flags); 1635 return; 1636 } 1637 1638 static void handle_cmd_completion(struct xhci_hcd *xhci, 1639 struct xhci_event_cmd *event) 1640 { 1641 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1642 u64 cmd_dma; 1643 dma_addr_t cmd_dequeue_dma; 1644 u32 cmd_comp_code; 1645 union xhci_trb *cmd_trb; 1646 struct xhci_command *cmd; 1647 u32 cmd_type; 1648 1649 if (slot_id >= MAX_HC_SLOTS) { 1650 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1651 return; 1652 } 1653 1654 cmd_dma = le64_to_cpu(event->cmd_trb); 1655 cmd_trb = xhci->cmd_ring->dequeue; 1656 1657 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1658 1659 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1660 cmd_trb); 1661 /* 1662 * Check whether the completion event is for our internal kept 1663 * command. 1664 */ 1665 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1666 xhci_warn(xhci, 1667 "ERROR mismatched command completion event\n"); 1668 return; 1669 } 1670 1671 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1672 1673 cancel_delayed_work(&xhci->cmd_timer); 1674 1675 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1676 1677 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1678 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1679 complete_all(&xhci->cmd_ring_stop_completion); 1680 return; 1681 } 1682 1683 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1684 xhci_err(xhci, 1685 "Command completion event does not match command\n"); 1686 return; 1687 } 1688 1689 /* 1690 * Host aborted the command ring, check if the current command was 1691 * supposed to be aborted, otherwise continue normally. 1692 * The command ring is stopped now, but the xHC will issue a Command 1693 * Ring Stopped event which will cause us to restart it. 1694 */ 1695 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1697 if (cmd->status == COMP_COMMAND_ABORTED) { 1698 if (xhci->current_cmd == cmd) 1699 xhci->current_cmd = NULL; 1700 goto event_handled; 1701 } 1702 } 1703 1704 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1705 switch (cmd_type) { 1706 case TRB_ENABLE_SLOT: 1707 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1708 break; 1709 case TRB_DISABLE_SLOT: 1710 xhci_handle_cmd_disable_slot(xhci, slot_id); 1711 break; 1712 case TRB_CONFIG_EP: 1713 if (!cmd->completion) 1714 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1715 break; 1716 case TRB_EVAL_CONTEXT: 1717 break; 1718 case TRB_ADDR_DEV: 1719 xhci_handle_cmd_addr_dev(xhci, slot_id); 1720 break; 1721 case TRB_STOP_RING: 1722 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1723 le32_to_cpu(cmd_trb->generic.field[3]))); 1724 if (!cmd->completion) 1725 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1726 cmd_comp_code); 1727 break; 1728 case TRB_SET_DEQ: 1729 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1730 le32_to_cpu(cmd_trb->generic.field[3]))); 1731 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1732 break; 1733 case TRB_CMD_NOOP: 1734 /* Is this an aborted command turned to NO-OP? */ 1735 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1736 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1737 break; 1738 case TRB_RESET_EP: 1739 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1740 le32_to_cpu(cmd_trb->generic.field[3]))); 1741 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1742 break; 1743 case TRB_RESET_DEV: 1744 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1745 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1746 */ 1747 slot_id = TRB_TO_SLOT_ID( 1748 le32_to_cpu(cmd_trb->generic.field[3])); 1749 xhci_handle_cmd_reset_dev(xhci, slot_id); 1750 break; 1751 case TRB_NEC_GET_FW: 1752 xhci_handle_cmd_nec_get_fw(xhci, event); 1753 break; 1754 default: 1755 /* Skip over unknown commands on the event ring */ 1756 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1757 break; 1758 } 1759 1760 /* restart timer if this wasn't the last command */ 1761 if (!list_is_singular(&xhci->cmd_list)) { 1762 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1763 struct xhci_command, cmd_list); 1764 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1765 } else if (xhci->current_cmd == cmd) { 1766 xhci->current_cmd = NULL; 1767 } 1768 1769 event_handled: 1770 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1771 1772 inc_deq(xhci, xhci->cmd_ring); 1773 } 1774 1775 static void handle_vendor_event(struct xhci_hcd *xhci, 1776 union xhci_trb *event, u32 trb_type) 1777 { 1778 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1779 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1780 handle_cmd_completion(xhci, &event->event_cmd); 1781 } 1782 1783 static void handle_device_notification(struct xhci_hcd *xhci, 1784 union xhci_trb *event) 1785 { 1786 u32 slot_id; 1787 struct usb_device *udev; 1788 1789 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1790 if (!xhci->devs[slot_id]) { 1791 xhci_warn(xhci, "Device Notification event for " 1792 "unused slot %u\n", slot_id); 1793 return; 1794 } 1795 1796 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1797 slot_id); 1798 udev = xhci->devs[slot_id]->udev; 1799 if (udev && udev->parent) 1800 usb_wakeup_notification(udev->parent, udev->portnum); 1801 } 1802 1803 /* 1804 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1805 * Controller. 1806 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1807 * If a connection to a USB 1 device is followed by another connection 1808 * to a USB 2 device. 1809 * 1810 * Reset the PHY after the USB device is disconnected if device speed 1811 * is less than HCD_USB3. 1812 * Retry the reset sequence max of 4 times checking the PLL lock status. 1813 * 1814 */ 1815 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1816 { 1817 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1818 u32 pll_lock_check; 1819 u32 retry_count = 4; 1820 1821 do { 1822 /* Assert PHY reset */ 1823 writel(0x6F, hcd->regs + 0x1048); 1824 udelay(10); 1825 /* De-assert the PHY reset */ 1826 writel(0x7F, hcd->regs + 0x1048); 1827 udelay(200); 1828 pll_lock_check = readl(hcd->regs + 0x1070); 1829 } while (!(pll_lock_check & 0x1) && --retry_count); 1830 } 1831 1832 static void handle_port_status(struct xhci_hcd *xhci, 1833 union xhci_trb *event) 1834 { 1835 struct usb_hcd *hcd; 1836 u32 port_id; 1837 u32 portsc, cmd_reg; 1838 int max_ports; 1839 int slot_id; 1840 unsigned int hcd_portnum; 1841 struct xhci_bus_state *bus_state; 1842 bool bogus_port_status = false; 1843 struct xhci_port *port; 1844 1845 /* Port status change events always have a successful completion code */ 1846 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1847 xhci_warn(xhci, 1848 "WARN: xHC returned failed port status event\n"); 1849 1850 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1851 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1852 1853 if ((port_id <= 0) || (port_id > max_ports)) { 1854 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1855 port_id); 1856 inc_deq(xhci, xhci->event_ring); 1857 return; 1858 } 1859 1860 port = &xhci->hw_ports[port_id - 1]; 1861 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1862 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1863 port_id); 1864 bogus_port_status = true; 1865 goto cleanup; 1866 } 1867 1868 /* We might get interrupts after shared_hcd is removed */ 1869 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1870 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1871 bogus_port_status = true; 1872 goto cleanup; 1873 } 1874 1875 hcd = port->rhub->hcd; 1876 bus_state = &port->rhub->bus_state; 1877 hcd_portnum = port->hcd_portnum; 1878 portsc = readl(port->addr); 1879 1880 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1881 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1882 1883 trace_xhci_handle_port_status(hcd_portnum, portsc); 1884 1885 if (hcd->state == HC_STATE_SUSPENDED) { 1886 xhci_dbg(xhci, "resume root hub\n"); 1887 usb_hcd_resume_root_hub(hcd); 1888 } 1889 1890 if (hcd->speed >= HCD_USB3 && 1891 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1892 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1893 if (slot_id && xhci->devs[slot_id]) 1894 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1895 } 1896 1897 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1898 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1899 1900 cmd_reg = readl(&xhci->op_regs->command); 1901 if (!(cmd_reg & CMD_RUN)) { 1902 xhci_warn(xhci, "xHC is not running.\n"); 1903 goto cleanup; 1904 } 1905 1906 if (DEV_SUPERSPEED_ANY(portsc)) { 1907 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1908 /* Set a flag to say the port signaled remote wakeup, 1909 * so we can tell the difference between the end of 1910 * device and host initiated resume. 1911 */ 1912 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1913 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1914 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1915 xhci_set_link_state(xhci, port, XDEV_U0); 1916 /* Need to wait until the next link state change 1917 * indicates the device is actually in U0. 1918 */ 1919 bogus_port_status = true; 1920 goto cleanup; 1921 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1922 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1923 bus_state->resume_done[hcd_portnum] = jiffies + 1924 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1925 set_bit(hcd_portnum, &bus_state->resuming_ports); 1926 /* Do the rest in GetPortStatus after resume time delay. 1927 * Avoid polling roothub status before that so that a 1928 * usb device auto-resume latency around ~40ms. 1929 */ 1930 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1931 mod_timer(&hcd->rh_timer, 1932 bus_state->resume_done[hcd_portnum]); 1933 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1934 bogus_port_status = true; 1935 } 1936 } 1937 1938 if ((portsc & PORT_PLC) && 1939 DEV_SUPERSPEED_ANY(portsc) && 1940 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1941 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1942 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1943 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1944 complete(&bus_state->u3exit_done[hcd_portnum]); 1945 /* We've just brought the device into U0/1/2 through either the 1946 * Resume state after a device remote wakeup, or through the 1947 * U3Exit state after a host-initiated resume. If it's a device 1948 * initiated remote wake, don't pass up the link state change, 1949 * so the roothub behavior is consistent with external 1950 * USB 3.0 hub behavior. 1951 */ 1952 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1953 if (slot_id && xhci->devs[slot_id]) 1954 xhci_ring_device(xhci, slot_id); 1955 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1956 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1957 usb_wakeup_notification(hcd->self.root_hub, 1958 hcd_portnum + 1); 1959 bogus_port_status = true; 1960 goto cleanup; 1961 } 1962 } 1963 1964 /* 1965 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1966 * RExit to a disconnect state). If so, let the driver know it's 1967 * out of the RExit state. 1968 */ 1969 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1970 test_and_clear_bit(hcd_portnum, 1971 &bus_state->rexit_ports)) { 1972 complete(&bus_state->rexit_done[hcd_portnum]); 1973 bogus_port_status = true; 1974 goto cleanup; 1975 } 1976 1977 if (hcd->speed < HCD_USB3) { 1978 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1979 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1980 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1981 xhci_cavium_reset_phy_quirk(xhci); 1982 } 1983 1984 cleanup: 1985 /* Update event ring dequeue pointer before dropping the lock */ 1986 inc_deq(xhci, xhci->event_ring); 1987 1988 /* Don't make the USB core poll the roothub if we got a bad port status 1989 * change event. Besides, at that point we can't tell which roothub 1990 * (USB 2.0 or USB 3.0) to kick. 1991 */ 1992 if (bogus_port_status) 1993 return; 1994 1995 /* 1996 * xHCI port-status-change events occur when the "or" of all the 1997 * status-change bits in the portsc register changes from 0 to 1. 1998 * New status changes won't cause an event if any other change 1999 * bits are still set. When an event occurs, switch over to 2000 * polling to avoid losing status changes. 2001 */ 2002 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2003 __func__, hcd->self.busnum); 2004 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2005 spin_unlock(&xhci->lock); 2006 /* Pass this up to the core */ 2007 usb_hcd_poll_rh_status(hcd); 2008 spin_lock(&xhci->lock); 2009 } 2010 2011 /* 2012 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2013 * at end_trb, which may be in another segment. If the suspect DMA address is a 2014 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2015 * returns 0. 2016 */ 2017 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2018 struct xhci_segment *start_seg, 2019 union xhci_trb *start_trb, 2020 union xhci_trb *end_trb, 2021 dma_addr_t suspect_dma, 2022 bool debug) 2023 { 2024 dma_addr_t start_dma; 2025 dma_addr_t end_seg_dma; 2026 dma_addr_t end_trb_dma; 2027 struct xhci_segment *cur_seg; 2028 2029 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2030 cur_seg = start_seg; 2031 2032 do { 2033 if (start_dma == 0) 2034 return NULL; 2035 /* We may get an event for a Link TRB in the middle of a TD */ 2036 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2037 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2038 /* If the end TRB isn't in this segment, this is set to 0 */ 2039 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2040 2041 if (debug) 2042 xhci_warn(xhci, 2043 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2044 (unsigned long long)suspect_dma, 2045 (unsigned long long)start_dma, 2046 (unsigned long long)end_trb_dma, 2047 (unsigned long long)cur_seg->dma, 2048 (unsigned long long)end_seg_dma); 2049 2050 if (end_trb_dma > 0) { 2051 /* The end TRB is in this segment, so suspect should be here */ 2052 if (start_dma <= end_trb_dma) { 2053 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2054 return cur_seg; 2055 } else { 2056 /* Case for one segment with 2057 * a TD wrapped around to the top 2058 */ 2059 if ((suspect_dma >= start_dma && 2060 suspect_dma <= end_seg_dma) || 2061 (suspect_dma >= cur_seg->dma && 2062 suspect_dma <= end_trb_dma)) 2063 return cur_seg; 2064 } 2065 return NULL; 2066 } else { 2067 /* Might still be somewhere in this segment */ 2068 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2069 return cur_seg; 2070 } 2071 cur_seg = cur_seg->next; 2072 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2073 } while (cur_seg != start_seg); 2074 2075 return NULL; 2076 } 2077 2078 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2079 struct xhci_virt_ep *ep) 2080 { 2081 /* 2082 * As part of low/full-speed endpoint-halt processing 2083 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2084 */ 2085 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2086 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2087 !(ep->ep_state & EP_CLEARING_TT)) { 2088 ep->ep_state |= EP_CLEARING_TT; 2089 td->urb->ep->hcpriv = td->urb->dev; 2090 if (usb_hub_clear_tt_buffer(td->urb)) 2091 ep->ep_state &= ~EP_CLEARING_TT; 2092 } 2093 } 2094 2095 /* Check if an error has halted the endpoint ring. The class driver will 2096 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2097 * However, a babble and other errors also halt the endpoint ring, and the class 2098 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2099 * Ring Dequeue Pointer command manually. 2100 */ 2101 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2102 struct xhci_ep_ctx *ep_ctx, 2103 unsigned int trb_comp_code) 2104 { 2105 /* TRB completion codes that may require a manual halt cleanup */ 2106 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2107 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2108 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2109 /* The 0.95 spec says a babbling control endpoint 2110 * is not halted. The 0.96 spec says it is. Some HW 2111 * claims to be 0.95 compliant, but it halts the control 2112 * endpoint anyway. Check if a babble halted the 2113 * endpoint. 2114 */ 2115 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2116 return 1; 2117 2118 return 0; 2119 } 2120 2121 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2122 { 2123 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2124 /* Vendor defined "informational" completion code, 2125 * treat as not-an-error. 2126 */ 2127 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2128 trb_comp_code); 2129 xhci_dbg(xhci, "Treating code as success.\n"); 2130 return 1; 2131 } 2132 return 0; 2133 } 2134 2135 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2136 struct xhci_ring *ep_ring, struct xhci_td *td, 2137 u32 trb_comp_code) 2138 { 2139 struct xhci_ep_ctx *ep_ctx; 2140 2141 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2142 2143 switch (trb_comp_code) { 2144 case COMP_STOPPED_LENGTH_INVALID: 2145 case COMP_STOPPED_SHORT_PACKET: 2146 case COMP_STOPPED: 2147 /* 2148 * The "Stop Endpoint" completion will take care of any 2149 * stopped TDs. A stopped TD may be restarted, so don't update 2150 * the ring dequeue pointer or take this TD off any lists yet. 2151 */ 2152 return 0; 2153 case COMP_USB_TRANSACTION_ERROR: 2154 case COMP_BABBLE_DETECTED_ERROR: 2155 case COMP_SPLIT_TRANSACTION_ERROR: 2156 /* 2157 * If endpoint context state is not halted we might be 2158 * racing with a reset endpoint command issued by a unsuccessful 2159 * stop endpoint completion (context error). In that case the 2160 * td should be on the cancelled list, and EP_HALTED flag set. 2161 * 2162 * Or then it's not halted due to the 0.95 spec stating that a 2163 * babbling control endpoint should not halt. The 0.96 spec 2164 * again says it should. Some HW claims to be 0.95 compliant, 2165 * but it halts the control endpoint anyway. 2166 */ 2167 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2168 /* 2169 * If EP_HALTED is set and TD is on the cancelled list 2170 * the TD and dequeue pointer will be handled by reset 2171 * ep command completion 2172 */ 2173 if ((ep->ep_state & EP_HALTED) && 2174 !list_empty(&td->cancelled_td_list)) { 2175 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2176 (unsigned long long)xhci_trb_virt_to_dma( 2177 td->start_seg, td->first_trb)); 2178 return 0; 2179 } 2180 /* endpoint not halted, don't reset it */ 2181 break; 2182 } 2183 /* Almost same procedure as for STALL_ERROR below */ 2184 xhci_clear_hub_tt_buffer(xhci, td, ep); 2185 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2186 return 0; 2187 case COMP_STALL_ERROR: 2188 /* 2189 * xhci internal endpoint state will go to a "halt" state for 2190 * any stall, including default control pipe protocol stall. 2191 * To clear the host side halt we need to issue a reset endpoint 2192 * command, followed by a set dequeue command to move past the 2193 * TD. 2194 * Class drivers clear the device side halt from a functional 2195 * stall later. Hub TT buffer should only be cleared for FS/LS 2196 * devices behind HS hubs for functional stalls. 2197 */ 2198 if (ep->ep_index != 0) 2199 xhci_clear_hub_tt_buffer(xhci, td, ep); 2200 2201 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2202 2203 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2204 default: 2205 break; 2206 } 2207 2208 /* Update ring dequeue pointer */ 2209 ep_ring->dequeue = td->last_trb; 2210 ep_ring->deq_seg = td->last_trb_seg; 2211 ep_ring->num_trbs_free += td->num_trbs - 1; 2212 inc_deq(xhci, ep_ring); 2213 2214 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2215 } 2216 2217 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2218 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2219 union xhci_trb *stop_trb) 2220 { 2221 u32 sum; 2222 union xhci_trb *trb = ring->dequeue; 2223 struct xhci_segment *seg = ring->deq_seg; 2224 2225 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2226 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2227 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2228 } 2229 return sum; 2230 } 2231 2232 /* 2233 * Process control tds, update urb status and actual_length. 2234 */ 2235 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2236 struct xhci_ring *ep_ring, struct xhci_td *td, 2237 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2238 { 2239 struct xhci_ep_ctx *ep_ctx; 2240 u32 trb_comp_code; 2241 u32 remaining, requested; 2242 u32 trb_type; 2243 2244 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2245 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2246 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2247 requested = td->urb->transfer_buffer_length; 2248 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2249 2250 switch (trb_comp_code) { 2251 case COMP_SUCCESS: 2252 if (trb_type != TRB_STATUS) { 2253 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2254 (trb_type == TRB_DATA) ? "data" : "setup"); 2255 td->status = -ESHUTDOWN; 2256 break; 2257 } 2258 td->status = 0; 2259 break; 2260 case COMP_SHORT_PACKET: 2261 td->status = 0; 2262 break; 2263 case COMP_STOPPED_SHORT_PACKET: 2264 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2265 td->urb->actual_length = remaining; 2266 else 2267 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2268 goto finish_td; 2269 case COMP_STOPPED: 2270 switch (trb_type) { 2271 case TRB_SETUP: 2272 td->urb->actual_length = 0; 2273 goto finish_td; 2274 case TRB_DATA: 2275 case TRB_NORMAL: 2276 td->urb->actual_length = requested - remaining; 2277 goto finish_td; 2278 case TRB_STATUS: 2279 td->urb->actual_length = requested; 2280 goto finish_td; 2281 default: 2282 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2283 trb_type); 2284 goto finish_td; 2285 } 2286 case COMP_STOPPED_LENGTH_INVALID: 2287 goto finish_td; 2288 default: 2289 if (!xhci_requires_manual_halt_cleanup(xhci, 2290 ep_ctx, trb_comp_code)) 2291 break; 2292 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2293 trb_comp_code, ep->ep_index); 2294 fallthrough; 2295 case COMP_STALL_ERROR: 2296 /* Did we transfer part of the data (middle) phase? */ 2297 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2298 td->urb->actual_length = requested - remaining; 2299 else if (!td->urb_length_set) 2300 td->urb->actual_length = 0; 2301 goto finish_td; 2302 } 2303 2304 /* stopped at setup stage, no data transferred */ 2305 if (trb_type == TRB_SETUP) 2306 goto finish_td; 2307 2308 /* 2309 * if on data stage then update the actual_length of the URB and flag it 2310 * as set, so it won't be overwritten in the event for the last TRB. 2311 */ 2312 if (trb_type == TRB_DATA || 2313 trb_type == TRB_NORMAL) { 2314 td->urb_length_set = true; 2315 td->urb->actual_length = requested - remaining; 2316 xhci_dbg(xhci, "Waiting for status stage event\n"); 2317 return 0; 2318 } 2319 2320 /* at status stage */ 2321 if (!td->urb_length_set) 2322 td->urb->actual_length = requested; 2323 2324 finish_td: 2325 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2326 } 2327 2328 /* 2329 * Process isochronous tds, update urb packet status and actual_length. 2330 */ 2331 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2332 struct xhci_ring *ep_ring, struct xhci_td *td, 2333 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2334 { 2335 struct urb_priv *urb_priv; 2336 int idx; 2337 struct usb_iso_packet_descriptor *frame; 2338 u32 trb_comp_code; 2339 bool sum_trbs_for_length = false; 2340 u32 remaining, requested, ep_trb_len; 2341 int short_framestatus; 2342 2343 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2344 urb_priv = td->urb->hcpriv; 2345 idx = urb_priv->num_tds_done; 2346 frame = &td->urb->iso_frame_desc[idx]; 2347 requested = frame->length; 2348 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2349 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2350 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2351 -EREMOTEIO : 0; 2352 2353 /* handle completion code */ 2354 switch (trb_comp_code) { 2355 case COMP_SUCCESS: 2356 if (remaining) { 2357 frame->status = short_framestatus; 2358 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2359 sum_trbs_for_length = true; 2360 break; 2361 } 2362 frame->status = 0; 2363 break; 2364 case COMP_SHORT_PACKET: 2365 frame->status = short_framestatus; 2366 sum_trbs_for_length = true; 2367 break; 2368 case COMP_BANDWIDTH_OVERRUN_ERROR: 2369 frame->status = -ECOMM; 2370 break; 2371 case COMP_ISOCH_BUFFER_OVERRUN: 2372 case COMP_BABBLE_DETECTED_ERROR: 2373 frame->status = -EOVERFLOW; 2374 break; 2375 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2376 case COMP_STALL_ERROR: 2377 frame->status = -EPROTO; 2378 break; 2379 case COMP_USB_TRANSACTION_ERROR: 2380 frame->status = -EPROTO; 2381 if (ep_trb != td->last_trb) 2382 return 0; 2383 break; 2384 case COMP_STOPPED: 2385 sum_trbs_for_length = true; 2386 break; 2387 case COMP_STOPPED_SHORT_PACKET: 2388 /* field normally containing residue now contains tranferred */ 2389 frame->status = short_framestatus; 2390 requested = remaining; 2391 break; 2392 case COMP_STOPPED_LENGTH_INVALID: 2393 requested = 0; 2394 remaining = 0; 2395 break; 2396 default: 2397 sum_trbs_for_length = true; 2398 frame->status = -1; 2399 break; 2400 } 2401 2402 if (sum_trbs_for_length) 2403 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2404 ep_trb_len - remaining; 2405 else 2406 frame->actual_length = requested; 2407 2408 td->urb->actual_length += frame->actual_length; 2409 2410 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2411 } 2412 2413 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2414 struct xhci_virt_ep *ep, int status) 2415 { 2416 struct urb_priv *urb_priv; 2417 struct usb_iso_packet_descriptor *frame; 2418 int idx; 2419 2420 urb_priv = td->urb->hcpriv; 2421 idx = urb_priv->num_tds_done; 2422 frame = &td->urb->iso_frame_desc[idx]; 2423 2424 /* The transfer is partly done. */ 2425 frame->status = -EXDEV; 2426 2427 /* calc actual length */ 2428 frame->actual_length = 0; 2429 2430 /* Update ring dequeue pointer */ 2431 ep->ring->dequeue = td->last_trb; 2432 ep->ring->deq_seg = td->last_trb_seg; 2433 ep->ring->num_trbs_free += td->num_trbs - 1; 2434 inc_deq(xhci, ep->ring); 2435 2436 return xhci_td_cleanup(xhci, td, ep->ring, status); 2437 } 2438 2439 /* 2440 * Process bulk and interrupt tds, update urb status and actual_length. 2441 */ 2442 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2443 struct xhci_ring *ep_ring, struct xhci_td *td, 2444 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2445 { 2446 struct xhci_slot_ctx *slot_ctx; 2447 u32 trb_comp_code; 2448 u32 remaining, requested, ep_trb_len; 2449 2450 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2451 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2452 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2453 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2454 requested = td->urb->transfer_buffer_length; 2455 2456 switch (trb_comp_code) { 2457 case COMP_SUCCESS: 2458 ep->err_count = 0; 2459 /* handle success with untransferred data as short packet */ 2460 if (ep_trb != td->last_trb || remaining) { 2461 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2462 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2463 td->urb->ep->desc.bEndpointAddress, 2464 requested, remaining); 2465 } 2466 td->status = 0; 2467 break; 2468 case COMP_SHORT_PACKET: 2469 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2470 td->urb->ep->desc.bEndpointAddress, 2471 requested, remaining); 2472 td->status = 0; 2473 break; 2474 case COMP_STOPPED_SHORT_PACKET: 2475 td->urb->actual_length = remaining; 2476 goto finish_td; 2477 case COMP_STOPPED_LENGTH_INVALID: 2478 /* stopped on ep trb with invalid length, exclude it */ 2479 ep_trb_len = 0; 2480 remaining = 0; 2481 break; 2482 case COMP_USB_TRANSACTION_ERROR: 2483 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2484 (ep->err_count++ > MAX_SOFT_RETRY) || 2485 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2486 break; 2487 2488 td->status = 0; 2489 2490 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2491 return 0; 2492 default: 2493 /* do nothing */ 2494 break; 2495 } 2496 2497 if (ep_trb == td->last_trb) 2498 td->urb->actual_length = requested - remaining; 2499 else 2500 td->urb->actual_length = 2501 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2502 ep_trb_len - remaining; 2503 finish_td: 2504 if (remaining > requested) { 2505 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2506 remaining); 2507 td->urb->actual_length = 0; 2508 } 2509 2510 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2511 } 2512 2513 /* 2514 * If this function returns an error condition, it means it got a Transfer 2515 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2516 * At this point, the host controller is probably hosed and should be reset. 2517 */ 2518 static int handle_tx_event(struct xhci_hcd *xhci, 2519 struct xhci_transfer_event *event) 2520 { 2521 struct xhci_virt_ep *ep; 2522 struct xhci_ring *ep_ring; 2523 unsigned int slot_id; 2524 int ep_index; 2525 struct xhci_td *td = NULL; 2526 dma_addr_t ep_trb_dma; 2527 struct xhci_segment *ep_seg; 2528 union xhci_trb *ep_trb; 2529 int status = -EINPROGRESS; 2530 struct xhci_ep_ctx *ep_ctx; 2531 struct list_head *tmp; 2532 u32 trb_comp_code; 2533 int td_num = 0; 2534 bool handling_skipped_tds = false; 2535 2536 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2537 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2538 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2539 ep_trb_dma = le64_to_cpu(event->buffer); 2540 2541 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2542 if (!ep) { 2543 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2544 goto err_out; 2545 } 2546 2547 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2548 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2549 2550 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2551 xhci_err(xhci, 2552 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2553 slot_id, ep_index); 2554 goto err_out; 2555 } 2556 2557 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2558 if (!ep_ring) { 2559 switch (trb_comp_code) { 2560 case COMP_STALL_ERROR: 2561 case COMP_USB_TRANSACTION_ERROR: 2562 case COMP_INVALID_STREAM_TYPE_ERROR: 2563 case COMP_INVALID_STREAM_ID_ERROR: 2564 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2565 ep_index); 2566 if (ep->err_count++ > MAX_SOFT_RETRY) 2567 xhci_handle_halted_endpoint(xhci, ep, NULL, 2568 EP_HARD_RESET); 2569 else 2570 xhci_handle_halted_endpoint(xhci, ep, NULL, 2571 EP_SOFT_RESET); 2572 goto cleanup; 2573 case COMP_RING_UNDERRUN: 2574 case COMP_RING_OVERRUN: 2575 case COMP_STOPPED_LENGTH_INVALID: 2576 goto cleanup; 2577 default: 2578 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2579 slot_id, ep_index); 2580 goto err_out; 2581 } 2582 } 2583 2584 /* Count current td numbers if ep->skip is set */ 2585 if (ep->skip) { 2586 list_for_each(tmp, &ep_ring->td_list) 2587 td_num++; 2588 } 2589 2590 /* Look for common error cases */ 2591 switch (trb_comp_code) { 2592 /* Skip codes that require special handling depending on 2593 * transfer type 2594 */ 2595 case COMP_SUCCESS: 2596 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2597 break; 2598 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2599 ep_ring->last_td_was_short) 2600 trb_comp_code = COMP_SHORT_PACKET; 2601 else 2602 xhci_warn_ratelimited(xhci, 2603 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2604 slot_id, ep_index); 2605 break; 2606 case COMP_SHORT_PACKET: 2607 break; 2608 /* Completion codes for endpoint stopped state */ 2609 case COMP_STOPPED: 2610 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2611 slot_id, ep_index); 2612 break; 2613 case COMP_STOPPED_LENGTH_INVALID: 2614 xhci_dbg(xhci, 2615 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2616 slot_id, ep_index); 2617 break; 2618 case COMP_STOPPED_SHORT_PACKET: 2619 xhci_dbg(xhci, 2620 "Stopped with short packet transfer detected for slot %u ep %u\n", 2621 slot_id, ep_index); 2622 break; 2623 /* Completion codes for endpoint halted state */ 2624 case COMP_STALL_ERROR: 2625 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2626 ep_index); 2627 status = -EPIPE; 2628 break; 2629 case COMP_SPLIT_TRANSACTION_ERROR: 2630 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2631 slot_id, ep_index); 2632 status = -EPROTO; 2633 break; 2634 case COMP_USB_TRANSACTION_ERROR: 2635 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2636 slot_id, ep_index); 2637 status = -EPROTO; 2638 break; 2639 case COMP_BABBLE_DETECTED_ERROR: 2640 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2641 slot_id, ep_index); 2642 status = -EOVERFLOW; 2643 break; 2644 /* Completion codes for endpoint error state */ 2645 case COMP_TRB_ERROR: 2646 xhci_warn(xhci, 2647 "WARN: TRB error for slot %u ep %u on endpoint\n", 2648 slot_id, ep_index); 2649 status = -EILSEQ; 2650 break; 2651 /* completion codes not indicating endpoint state change */ 2652 case COMP_DATA_BUFFER_ERROR: 2653 xhci_warn(xhci, 2654 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2655 slot_id, ep_index); 2656 status = -ENOSR; 2657 break; 2658 case COMP_BANDWIDTH_OVERRUN_ERROR: 2659 xhci_warn(xhci, 2660 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2661 slot_id, ep_index); 2662 break; 2663 case COMP_ISOCH_BUFFER_OVERRUN: 2664 xhci_warn(xhci, 2665 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2666 slot_id, ep_index); 2667 break; 2668 case COMP_RING_UNDERRUN: 2669 /* 2670 * When the Isoch ring is empty, the xHC will generate 2671 * a Ring Overrun Event for IN Isoch endpoint or Ring 2672 * Underrun Event for OUT Isoch endpoint. 2673 */ 2674 xhci_dbg(xhci, "underrun event on endpoint\n"); 2675 if (!list_empty(&ep_ring->td_list)) 2676 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2677 "still with TDs queued?\n", 2678 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2679 ep_index); 2680 goto cleanup; 2681 case COMP_RING_OVERRUN: 2682 xhci_dbg(xhci, "overrun event on endpoint\n"); 2683 if (!list_empty(&ep_ring->td_list)) 2684 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2685 "still with TDs queued?\n", 2686 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2687 ep_index); 2688 goto cleanup; 2689 case COMP_MISSED_SERVICE_ERROR: 2690 /* 2691 * When encounter missed service error, one or more isoc tds 2692 * may be missed by xHC. 2693 * Set skip flag of the ep_ring; Complete the missed tds as 2694 * short transfer when process the ep_ring next time. 2695 */ 2696 ep->skip = true; 2697 xhci_dbg(xhci, 2698 "Miss service interval error for slot %u ep %u, set skip flag\n", 2699 slot_id, ep_index); 2700 goto cleanup; 2701 case COMP_NO_PING_RESPONSE_ERROR: 2702 ep->skip = true; 2703 xhci_dbg(xhci, 2704 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2705 slot_id, ep_index); 2706 goto cleanup; 2707 2708 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2709 /* needs disable slot command to recover */ 2710 xhci_warn(xhci, 2711 "WARN: detect an incompatible device for slot %u ep %u", 2712 slot_id, ep_index); 2713 status = -EPROTO; 2714 break; 2715 default: 2716 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2717 status = 0; 2718 break; 2719 } 2720 xhci_warn(xhci, 2721 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2722 trb_comp_code, slot_id, ep_index); 2723 goto cleanup; 2724 } 2725 2726 do { 2727 /* This TRB should be in the TD at the head of this ring's 2728 * TD list. 2729 */ 2730 if (list_empty(&ep_ring->td_list)) { 2731 /* 2732 * Don't print wanings if it's due to a stopped endpoint 2733 * generating an extra completion event if the device 2734 * was suspended. Or, a event for the last TRB of a 2735 * short TD we already got a short event for. 2736 * The short TD is already removed from the TD list. 2737 */ 2738 2739 if (!(trb_comp_code == COMP_STOPPED || 2740 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2741 ep_ring->last_td_was_short)) { 2742 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2743 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2744 ep_index); 2745 } 2746 if (ep->skip) { 2747 ep->skip = false; 2748 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2749 slot_id, ep_index); 2750 } 2751 if (trb_comp_code == COMP_STALL_ERROR || 2752 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2753 trb_comp_code)) { 2754 xhci_handle_halted_endpoint(xhci, ep, NULL, 2755 EP_HARD_RESET); 2756 } 2757 goto cleanup; 2758 } 2759 2760 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2761 if (ep->skip && td_num == 0) { 2762 ep->skip = false; 2763 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2764 slot_id, ep_index); 2765 goto cleanup; 2766 } 2767 2768 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2769 td_list); 2770 if (ep->skip) 2771 td_num--; 2772 2773 /* Is this a TRB in the currently executing TD? */ 2774 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2775 td->last_trb, ep_trb_dma, false); 2776 2777 /* 2778 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2779 * is not in the current TD pointed by ep_ring->dequeue because 2780 * that the hardware dequeue pointer still at the previous TRB 2781 * of the current TD. The previous TRB maybe a Link TD or the 2782 * last TRB of the previous TD. The command completion handle 2783 * will take care the rest. 2784 */ 2785 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2786 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2787 goto cleanup; 2788 } 2789 2790 if (!ep_seg) { 2791 if (!ep->skip || 2792 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2793 /* Some host controllers give a spurious 2794 * successful event after a short transfer. 2795 * Ignore it. 2796 */ 2797 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2798 ep_ring->last_td_was_short) { 2799 ep_ring->last_td_was_short = false; 2800 goto cleanup; 2801 } 2802 /* HC is busted, give up! */ 2803 xhci_err(xhci, 2804 "ERROR Transfer event TRB DMA ptr not " 2805 "part of current TD ep_index %d " 2806 "comp_code %u\n", ep_index, 2807 trb_comp_code); 2808 trb_in_td(xhci, ep_ring->deq_seg, 2809 ep_ring->dequeue, td->last_trb, 2810 ep_trb_dma, true); 2811 return -ESHUTDOWN; 2812 } 2813 2814 skip_isoc_td(xhci, td, ep, status); 2815 goto cleanup; 2816 } 2817 if (trb_comp_code == COMP_SHORT_PACKET) 2818 ep_ring->last_td_was_short = true; 2819 else 2820 ep_ring->last_td_was_short = false; 2821 2822 if (ep->skip) { 2823 xhci_dbg(xhci, 2824 "Found td. Clear skip flag for slot %u ep %u.\n", 2825 slot_id, ep_index); 2826 ep->skip = false; 2827 } 2828 2829 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2830 sizeof(*ep_trb)]; 2831 2832 trace_xhci_handle_transfer(ep_ring, 2833 (struct xhci_generic_trb *) ep_trb); 2834 2835 /* 2836 * No-op TRB could trigger interrupts in a case where 2837 * a URB was killed and a STALL_ERROR happens right 2838 * after the endpoint ring stopped. Reset the halted 2839 * endpoint. Otherwise, the endpoint remains stalled 2840 * indefinitely. 2841 */ 2842 2843 if (trb_is_noop(ep_trb)) { 2844 if (trb_comp_code == COMP_STALL_ERROR || 2845 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2846 trb_comp_code)) 2847 xhci_handle_halted_endpoint(xhci, ep, td, 2848 EP_HARD_RESET); 2849 goto cleanup; 2850 } 2851 2852 td->status = status; 2853 2854 /* update the urb's actual_length and give back to the core */ 2855 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2856 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2857 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2858 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2859 else 2860 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2861 cleanup: 2862 handling_skipped_tds = ep->skip && 2863 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2864 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2865 2866 /* 2867 * Do not update event ring dequeue pointer if we're in a loop 2868 * processing missed tds. 2869 */ 2870 if (!handling_skipped_tds) 2871 inc_deq(xhci, xhci->event_ring); 2872 2873 /* 2874 * If ep->skip is set, it means there are missed tds on the 2875 * endpoint ring need to take care of. 2876 * Process them as short transfer until reach the td pointed by 2877 * the event. 2878 */ 2879 } while (handling_skipped_tds); 2880 2881 return 0; 2882 2883 err_out: 2884 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2885 (unsigned long long) xhci_trb_virt_to_dma( 2886 xhci->event_ring->deq_seg, 2887 xhci->event_ring->dequeue), 2888 lower_32_bits(le64_to_cpu(event->buffer)), 2889 upper_32_bits(le64_to_cpu(event->buffer)), 2890 le32_to_cpu(event->transfer_len), 2891 le32_to_cpu(event->flags)); 2892 return -ENODEV; 2893 } 2894 2895 /* 2896 * This function handles all OS-owned events on the event ring. It may drop 2897 * xhci->lock between event processing (e.g. to pass up port status changes). 2898 * Returns >0 for "possibly more events to process" (caller should call again), 2899 * otherwise 0 if done. In future, <0 returns should indicate error code. 2900 */ 2901 static int xhci_handle_event(struct xhci_hcd *xhci) 2902 { 2903 union xhci_trb *event; 2904 int update_ptrs = 1; 2905 u32 trb_type; 2906 int ret; 2907 2908 /* Event ring hasn't been allocated yet. */ 2909 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2910 xhci_err(xhci, "ERROR event ring not ready\n"); 2911 return -ENOMEM; 2912 } 2913 2914 event = xhci->event_ring->dequeue; 2915 /* Does the HC or OS own the TRB? */ 2916 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2917 xhci->event_ring->cycle_state) 2918 return 0; 2919 2920 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2921 2922 /* 2923 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2924 * speculative reads of the event's flags/data below. 2925 */ 2926 rmb(); 2927 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2928 /* FIXME: Handle more event types. */ 2929 2930 switch (trb_type) { 2931 case TRB_COMPLETION: 2932 handle_cmd_completion(xhci, &event->event_cmd); 2933 break; 2934 case TRB_PORT_STATUS: 2935 handle_port_status(xhci, event); 2936 update_ptrs = 0; 2937 break; 2938 case TRB_TRANSFER: 2939 ret = handle_tx_event(xhci, &event->trans_event); 2940 if (ret >= 0) 2941 update_ptrs = 0; 2942 break; 2943 case TRB_DEV_NOTE: 2944 handle_device_notification(xhci, event); 2945 break; 2946 default: 2947 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2948 handle_vendor_event(xhci, event, trb_type); 2949 else 2950 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2951 } 2952 /* Any of the above functions may drop and re-acquire the lock, so check 2953 * to make sure a watchdog timer didn't mark the host as non-responsive. 2954 */ 2955 if (xhci->xhc_state & XHCI_STATE_DYING) { 2956 xhci_dbg(xhci, "xHCI host dying, returning from " 2957 "event handler.\n"); 2958 return 0; 2959 } 2960 2961 if (update_ptrs) 2962 /* Update SW event ring dequeue pointer */ 2963 inc_deq(xhci, xhci->event_ring); 2964 2965 /* Are there more items on the event ring? Caller will call us again to 2966 * check. 2967 */ 2968 return 1; 2969 } 2970 2971 /* 2972 * Update Event Ring Dequeue Pointer: 2973 * - When all events have finished 2974 * - To avoid "Event Ring Full Error" condition 2975 */ 2976 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2977 union xhci_trb *event_ring_deq) 2978 { 2979 u64 temp_64; 2980 dma_addr_t deq; 2981 2982 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2983 /* If necessary, update the HW's version of the event ring deq ptr. */ 2984 if (event_ring_deq != xhci->event_ring->dequeue) { 2985 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2986 xhci->event_ring->dequeue); 2987 if (deq == 0) 2988 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2989 /* 2990 * Per 4.9.4, Software writes to the ERDP register shall 2991 * always advance the Event Ring Dequeue Pointer value. 2992 */ 2993 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2994 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2995 return; 2996 2997 /* Update HC event ring dequeue pointer */ 2998 temp_64 &= ERST_PTR_MASK; 2999 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3000 } 3001 3002 /* Clear the event handler busy flag (RW1C) */ 3003 temp_64 |= ERST_EHB; 3004 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 3005 } 3006 3007 /* 3008 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3009 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3010 * indicators of an event TRB error, but we check the status *first* to be safe. 3011 */ 3012 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3013 { 3014 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3015 union xhci_trb *event_ring_deq; 3016 irqreturn_t ret = IRQ_NONE; 3017 u64 temp_64; 3018 u32 status; 3019 int event_loop = 0; 3020 3021 spin_lock(&xhci->lock); 3022 /* Check if the xHC generated the interrupt, or the irq is shared */ 3023 status = readl(&xhci->op_regs->status); 3024 if (status == ~(u32)0) { 3025 xhci_hc_died(xhci); 3026 ret = IRQ_HANDLED; 3027 goto out; 3028 } 3029 3030 if (!(status & STS_EINT)) 3031 goto out; 3032 3033 if (status & STS_HCE) { 3034 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3035 goto out; 3036 } 3037 3038 if (status & STS_FATAL) { 3039 xhci_warn(xhci, "WARNING: Host System Error\n"); 3040 xhci_halt(xhci); 3041 ret = IRQ_HANDLED; 3042 goto out; 3043 } 3044 3045 /* 3046 * Clear the op reg interrupt status first, 3047 * so we can receive interrupts from other MSI-X interrupters. 3048 * Write 1 to clear the interrupt status. 3049 */ 3050 status |= STS_EINT; 3051 writel(status, &xhci->op_regs->status); 3052 3053 if (!hcd->msi_enabled) { 3054 u32 irq_pending; 3055 irq_pending = readl(&xhci->ir_set->irq_pending); 3056 irq_pending |= IMAN_IP; 3057 writel(irq_pending, &xhci->ir_set->irq_pending); 3058 } 3059 3060 if (xhci->xhc_state & XHCI_STATE_DYING || 3061 xhci->xhc_state & XHCI_STATE_HALTED) { 3062 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3063 "Shouldn't IRQs be disabled?\n"); 3064 /* Clear the event handler busy flag (RW1C); 3065 * the event ring should be empty. 3066 */ 3067 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3068 xhci_write_64(xhci, temp_64 | ERST_EHB, 3069 &xhci->ir_set->erst_dequeue); 3070 ret = IRQ_HANDLED; 3071 goto out; 3072 } 3073 3074 event_ring_deq = xhci->event_ring->dequeue; 3075 /* FIXME this should be a delayed service routine 3076 * that clears the EHB. 3077 */ 3078 while (xhci_handle_event(xhci) > 0) { 3079 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3080 continue; 3081 xhci_update_erst_dequeue(xhci, event_ring_deq); 3082 event_ring_deq = xhci->event_ring->dequeue; 3083 3084 /* ring is half-full, force isoc trbs to interrupt more often */ 3085 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3086 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3087 3088 event_loop = 0; 3089 } 3090 3091 xhci_update_erst_dequeue(xhci, event_ring_deq); 3092 ret = IRQ_HANDLED; 3093 3094 out: 3095 spin_unlock(&xhci->lock); 3096 3097 return ret; 3098 } 3099 3100 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3101 { 3102 return xhci_irq(hcd); 3103 } 3104 3105 /**** Endpoint Ring Operations ****/ 3106 3107 /* 3108 * Generic function for queueing a TRB on a ring. 3109 * The caller must have checked to make sure there's room on the ring. 3110 * 3111 * @more_trbs_coming: Will you enqueue more TRBs before calling 3112 * prepare_transfer()? 3113 */ 3114 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3115 bool more_trbs_coming, 3116 u32 field1, u32 field2, u32 field3, u32 field4) 3117 { 3118 struct xhci_generic_trb *trb; 3119 3120 trb = &ring->enqueue->generic; 3121 trb->field[0] = cpu_to_le32(field1); 3122 trb->field[1] = cpu_to_le32(field2); 3123 trb->field[2] = cpu_to_le32(field3); 3124 /* make sure TRB is fully written before giving it to the controller */ 3125 wmb(); 3126 trb->field[3] = cpu_to_le32(field4); 3127 3128 trace_xhci_queue_trb(ring, trb); 3129 3130 inc_enq(xhci, ring, more_trbs_coming); 3131 } 3132 3133 /* 3134 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3135 * FIXME allocate segments if the ring is full. 3136 */ 3137 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3138 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3139 { 3140 unsigned int num_trbs_needed; 3141 unsigned int link_trb_count = 0; 3142 3143 /* Make sure the endpoint has been added to xHC schedule */ 3144 switch (ep_state) { 3145 case EP_STATE_DISABLED: 3146 /* 3147 * USB core changed config/interfaces without notifying us, 3148 * or hardware is reporting the wrong state. 3149 */ 3150 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3151 return -ENOENT; 3152 case EP_STATE_ERROR: 3153 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3154 /* FIXME event handling code for error needs to clear it */ 3155 /* XXX not sure if this should be -ENOENT or not */ 3156 return -EINVAL; 3157 case EP_STATE_HALTED: 3158 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3159 break; 3160 case EP_STATE_STOPPED: 3161 case EP_STATE_RUNNING: 3162 break; 3163 default: 3164 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3165 /* 3166 * FIXME issue Configure Endpoint command to try to get the HC 3167 * back into a known state. 3168 */ 3169 return -EINVAL; 3170 } 3171 3172 while (1) { 3173 if (room_on_ring(xhci, ep_ring, num_trbs)) 3174 break; 3175 3176 if (ep_ring == xhci->cmd_ring) { 3177 xhci_err(xhci, "Do not support expand command ring\n"); 3178 return -ENOMEM; 3179 } 3180 3181 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3182 "ERROR no room on ep ring, try ring expansion"); 3183 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3184 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3185 mem_flags)) { 3186 xhci_err(xhci, "Ring expansion failed\n"); 3187 return -ENOMEM; 3188 } 3189 } 3190 3191 while (trb_is_link(ep_ring->enqueue)) { 3192 /* If we're not dealing with 0.95 hardware or isoc rings 3193 * on AMD 0.96 host, clear the chain bit. 3194 */ 3195 if (!xhci_link_trb_quirk(xhci) && 3196 !(ep_ring->type == TYPE_ISOC && 3197 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3198 ep_ring->enqueue->link.control &= 3199 cpu_to_le32(~TRB_CHAIN); 3200 else 3201 ep_ring->enqueue->link.control |= 3202 cpu_to_le32(TRB_CHAIN); 3203 3204 wmb(); 3205 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3206 3207 /* Toggle the cycle bit after the last ring segment. */ 3208 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3209 ep_ring->cycle_state ^= 1; 3210 3211 ep_ring->enq_seg = ep_ring->enq_seg->next; 3212 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3213 3214 /* prevent infinite loop if all first trbs are link trbs */ 3215 if (link_trb_count++ > ep_ring->num_segs) { 3216 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3217 return -EINVAL; 3218 } 3219 } 3220 3221 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3222 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3223 return -EINVAL; 3224 } 3225 3226 return 0; 3227 } 3228 3229 static int prepare_transfer(struct xhci_hcd *xhci, 3230 struct xhci_virt_device *xdev, 3231 unsigned int ep_index, 3232 unsigned int stream_id, 3233 unsigned int num_trbs, 3234 struct urb *urb, 3235 unsigned int td_index, 3236 gfp_t mem_flags) 3237 { 3238 int ret; 3239 struct urb_priv *urb_priv; 3240 struct xhci_td *td; 3241 struct xhci_ring *ep_ring; 3242 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3243 3244 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3245 stream_id); 3246 if (!ep_ring) { 3247 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3248 stream_id); 3249 return -EINVAL; 3250 } 3251 3252 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3253 num_trbs, mem_flags); 3254 if (ret) 3255 return ret; 3256 3257 urb_priv = urb->hcpriv; 3258 td = &urb_priv->td[td_index]; 3259 3260 INIT_LIST_HEAD(&td->td_list); 3261 INIT_LIST_HEAD(&td->cancelled_td_list); 3262 3263 if (td_index == 0) { 3264 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3265 if (unlikely(ret)) 3266 return ret; 3267 } 3268 3269 td->urb = urb; 3270 /* Add this TD to the tail of the endpoint ring's TD list */ 3271 list_add_tail(&td->td_list, &ep_ring->td_list); 3272 td->start_seg = ep_ring->enq_seg; 3273 td->first_trb = ep_ring->enqueue; 3274 3275 return 0; 3276 } 3277 3278 unsigned int count_trbs(u64 addr, u64 len) 3279 { 3280 unsigned int num_trbs; 3281 3282 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3283 TRB_MAX_BUFF_SIZE); 3284 if (num_trbs == 0) 3285 num_trbs++; 3286 3287 return num_trbs; 3288 } 3289 3290 static inline unsigned int count_trbs_needed(struct urb *urb) 3291 { 3292 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3293 } 3294 3295 static unsigned int count_sg_trbs_needed(struct urb *urb) 3296 { 3297 struct scatterlist *sg; 3298 unsigned int i, len, full_len, num_trbs = 0; 3299 3300 full_len = urb->transfer_buffer_length; 3301 3302 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3303 len = sg_dma_len(sg); 3304 num_trbs += count_trbs(sg_dma_address(sg), len); 3305 len = min_t(unsigned int, len, full_len); 3306 full_len -= len; 3307 if (full_len == 0) 3308 break; 3309 } 3310 3311 return num_trbs; 3312 } 3313 3314 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3315 { 3316 u64 addr, len; 3317 3318 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3319 len = urb->iso_frame_desc[i].length; 3320 3321 return count_trbs(addr, len); 3322 } 3323 3324 static void check_trb_math(struct urb *urb, int running_total) 3325 { 3326 if (unlikely(running_total != urb->transfer_buffer_length)) 3327 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3328 "queued %#x (%d), asked for %#x (%d)\n", 3329 __func__, 3330 urb->ep->desc.bEndpointAddress, 3331 running_total, running_total, 3332 urb->transfer_buffer_length, 3333 urb->transfer_buffer_length); 3334 } 3335 3336 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3337 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3338 struct xhci_generic_trb *start_trb) 3339 { 3340 /* 3341 * Pass all the TRBs to the hardware at once and make sure this write 3342 * isn't reordered. 3343 */ 3344 wmb(); 3345 if (start_cycle) 3346 start_trb->field[3] |= cpu_to_le32(start_cycle); 3347 else 3348 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3349 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3350 } 3351 3352 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3353 struct xhci_ep_ctx *ep_ctx) 3354 { 3355 int xhci_interval; 3356 int ep_interval; 3357 3358 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3359 ep_interval = urb->interval; 3360 3361 /* Convert to microframes */ 3362 if (urb->dev->speed == USB_SPEED_LOW || 3363 urb->dev->speed == USB_SPEED_FULL) 3364 ep_interval *= 8; 3365 3366 /* FIXME change this to a warning and a suggestion to use the new API 3367 * to set the polling interval (once the API is added). 3368 */ 3369 if (xhci_interval != ep_interval) { 3370 dev_dbg_ratelimited(&urb->dev->dev, 3371 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3372 ep_interval, ep_interval == 1 ? "" : "s", 3373 xhci_interval, xhci_interval == 1 ? "" : "s"); 3374 urb->interval = xhci_interval; 3375 /* Convert back to frames for LS/FS devices */ 3376 if (urb->dev->speed == USB_SPEED_LOW || 3377 urb->dev->speed == USB_SPEED_FULL) 3378 urb->interval /= 8; 3379 } 3380 } 3381 3382 /* 3383 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3384 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3385 * (comprised of sg list entries) can take several service intervals to 3386 * transmit. 3387 */ 3388 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3389 struct urb *urb, int slot_id, unsigned int ep_index) 3390 { 3391 struct xhci_ep_ctx *ep_ctx; 3392 3393 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3394 check_interval(xhci, urb, ep_ctx); 3395 3396 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3397 } 3398 3399 /* 3400 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3401 * packets remaining in the TD (*not* including this TRB). 3402 * 3403 * Total TD packet count = total_packet_count = 3404 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3405 * 3406 * Packets transferred up to and including this TRB = packets_transferred = 3407 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3408 * 3409 * TD size = total_packet_count - packets_transferred 3410 * 3411 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3412 * including this TRB, right shifted by 10 3413 * 3414 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3415 * This is taken care of in the TRB_TD_SIZE() macro 3416 * 3417 * The last TRB in a TD must have the TD size set to zero. 3418 */ 3419 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3420 int trb_buff_len, unsigned int td_total_len, 3421 struct urb *urb, bool more_trbs_coming) 3422 { 3423 u32 maxp, total_packet_count; 3424 3425 /* MTK xHCI 0.96 contains some features from 1.0 */ 3426 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3427 return ((td_total_len - transferred) >> 10); 3428 3429 /* One TRB with a zero-length data packet. */ 3430 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3431 trb_buff_len == td_total_len) 3432 return 0; 3433 3434 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3435 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3436 trb_buff_len = 0; 3437 3438 maxp = usb_endpoint_maxp(&urb->ep->desc); 3439 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3440 3441 /* Queueing functions don't count the current TRB into transferred */ 3442 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3443 } 3444 3445 3446 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3447 u32 *trb_buff_len, struct xhci_segment *seg) 3448 { 3449 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3450 unsigned int unalign; 3451 unsigned int max_pkt; 3452 u32 new_buff_len; 3453 size_t len; 3454 3455 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3456 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3457 3458 /* we got lucky, last normal TRB data on segment is packet aligned */ 3459 if (unalign == 0) 3460 return 0; 3461 3462 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3463 unalign, *trb_buff_len); 3464 3465 /* is the last nornal TRB alignable by splitting it */ 3466 if (*trb_buff_len > unalign) { 3467 *trb_buff_len -= unalign; 3468 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3469 return 0; 3470 } 3471 3472 /* 3473 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3474 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3475 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3476 */ 3477 new_buff_len = max_pkt - (enqd_len % max_pkt); 3478 3479 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3480 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3481 3482 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3483 if (usb_urb_dir_out(urb)) { 3484 if (urb->num_sgs) { 3485 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3486 seg->bounce_buf, new_buff_len, enqd_len); 3487 if (len != new_buff_len) 3488 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3489 len, new_buff_len); 3490 } else { 3491 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3492 } 3493 3494 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3495 max_pkt, DMA_TO_DEVICE); 3496 } else { 3497 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3498 max_pkt, DMA_FROM_DEVICE); 3499 } 3500 3501 if (dma_mapping_error(dev, seg->bounce_dma)) { 3502 /* try without aligning. Some host controllers survive */ 3503 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3504 return 0; 3505 } 3506 *trb_buff_len = new_buff_len; 3507 seg->bounce_len = new_buff_len; 3508 seg->bounce_offs = enqd_len; 3509 3510 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3511 3512 return 1; 3513 } 3514 3515 /* This is very similar to what ehci-q.c qtd_fill() does */ 3516 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3517 struct urb *urb, int slot_id, unsigned int ep_index) 3518 { 3519 struct xhci_ring *ring; 3520 struct urb_priv *urb_priv; 3521 struct xhci_td *td; 3522 struct xhci_generic_trb *start_trb; 3523 struct scatterlist *sg = NULL; 3524 bool more_trbs_coming = true; 3525 bool need_zero_pkt = false; 3526 bool first_trb = true; 3527 unsigned int num_trbs; 3528 unsigned int start_cycle, num_sgs = 0; 3529 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3530 int sent_len, ret; 3531 u32 field, length_field, remainder; 3532 u64 addr, send_addr; 3533 3534 ring = xhci_urb_to_transfer_ring(xhci, urb); 3535 if (!ring) 3536 return -EINVAL; 3537 3538 full_len = urb->transfer_buffer_length; 3539 /* If we have scatter/gather list, we use it. */ 3540 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3541 num_sgs = urb->num_mapped_sgs; 3542 sg = urb->sg; 3543 addr = (u64) sg_dma_address(sg); 3544 block_len = sg_dma_len(sg); 3545 num_trbs = count_sg_trbs_needed(urb); 3546 } else { 3547 num_trbs = count_trbs_needed(urb); 3548 addr = (u64) urb->transfer_dma; 3549 block_len = full_len; 3550 } 3551 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3552 ep_index, urb->stream_id, 3553 num_trbs, urb, 0, mem_flags); 3554 if (unlikely(ret < 0)) 3555 return ret; 3556 3557 urb_priv = urb->hcpriv; 3558 3559 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3560 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3561 need_zero_pkt = true; 3562 3563 td = &urb_priv->td[0]; 3564 3565 /* 3566 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3567 * until we've finished creating all the other TRBs. The ring's cycle 3568 * state may change as we enqueue the other TRBs, so save it too. 3569 */ 3570 start_trb = &ring->enqueue->generic; 3571 start_cycle = ring->cycle_state; 3572 send_addr = addr; 3573 3574 /* Queue the TRBs, even if they are zero-length */ 3575 for (enqd_len = 0; first_trb || enqd_len < full_len; 3576 enqd_len += trb_buff_len) { 3577 field = TRB_TYPE(TRB_NORMAL); 3578 3579 /* TRB buffer should not cross 64KB boundaries */ 3580 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3581 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3582 3583 if (enqd_len + trb_buff_len > full_len) 3584 trb_buff_len = full_len - enqd_len; 3585 3586 /* Don't change the cycle bit of the first TRB until later */ 3587 if (first_trb) { 3588 first_trb = false; 3589 if (start_cycle == 0) 3590 field |= TRB_CYCLE; 3591 } else 3592 field |= ring->cycle_state; 3593 3594 /* Chain all the TRBs together; clear the chain bit in the last 3595 * TRB to indicate it's the last TRB in the chain. 3596 */ 3597 if (enqd_len + trb_buff_len < full_len) { 3598 field |= TRB_CHAIN; 3599 if (trb_is_link(ring->enqueue + 1)) { 3600 if (xhci_align_td(xhci, urb, enqd_len, 3601 &trb_buff_len, 3602 ring->enq_seg)) { 3603 send_addr = ring->enq_seg->bounce_dma; 3604 /* assuming TD won't span 2 segs */ 3605 td->bounce_seg = ring->enq_seg; 3606 } 3607 } 3608 } 3609 if (enqd_len + trb_buff_len >= full_len) { 3610 field &= ~TRB_CHAIN; 3611 field |= TRB_IOC; 3612 more_trbs_coming = false; 3613 td->last_trb = ring->enqueue; 3614 td->last_trb_seg = ring->enq_seg; 3615 if (xhci_urb_suitable_for_idt(urb)) { 3616 memcpy(&send_addr, urb->transfer_buffer, 3617 trb_buff_len); 3618 le64_to_cpus(&send_addr); 3619 field |= TRB_IDT; 3620 } 3621 } 3622 3623 /* Only set interrupt on short packet for IN endpoints */ 3624 if (usb_urb_dir_in(urb)) 3625 field |= TRB_ISP; 3626 3627 /* Set the TRB length, TD size, and interrupter fields. */ 3628 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3629 full_len, urb, more_trbs_coming); 3630 3631 length_field = TRB_LEN(trb_buff_len) | 3632 TRB_TD_SIZE(remainder) | 3633 TRB_INTR_TARGET(0); 3634 3635 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3636 lower_32_bits(send_addr), 3637 upper_32_bits(send_addr), 3638 length_field, 3639 field); 3640 td->num_trbs++; 3641 addr += trb_buff_len; 3642 sent_len = trb_buff_len; 3643 3644 while (sg && sent_len >= block_len) { 3645 /* New sg entry */ 3646 --num_sgs; 3647 sent_len -= block_len; 3648 sg = sg_next(sg); 3649 if (num_sgs != 0 && sg) { 3650 block_len = sg_dma_len(sg); 3651 addr = (u64) sg_dma_address(sg); 3652 addr += sent_len; 3653 } 3654 } 3655 block_len -= sent_len; 3656 send_addr = addr; 3657 } 3658 3659 if (need_zero_pkt) { 3660 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3661 ep_index, urb->stream_id, 3662 1, urb, 1, mem_flags); 3663 urb_priv->td[1].last_trb = ring->enqueue; 3664 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3665 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3666 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3667 urb_priv->td[1].num_trbs++; 3668 } 3669 3670 check_trb_math(urb, enqd_len); 3671 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3672 start_cycle, start_trb); 3673 return 0; 3674 } 3675 3676 /* Caller must have locked xhci->lock */ 3677 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3678 struct urb *urb, int slot_id, unsigned int ep_index) 3679 { 3680 struct xhci_ring *ep_ring; 3681 int num_trbs; 3682 int ret; 3683 struct usb_ctrlrequest *setup; 3684 struct xhci_generic_trb *start_trb; 3685 int start_cycle; 3686 u32 field; 3687 struct urb_priv *urb_priv; 3688 struct xhci_td *td; 3689 3690 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3691 if (!ep_ring) 3692 return -EINVAL; 3693 3694 /* 3695 * Need to copy setup packet into setup TRB, so we can't use the setup 3696 * DMA address. 3697 */ 3698 if (!urb->setup_packet) 3699 return -EINVAL; 3700 3701 /* 1 TRB for setup, 1 for status */ 3702 num_trbs = 2; 3703 /* 3704 * Don't need to check if we need additional event data and normal TRBs, 3705 * since data in control transfers will never get bigger than 16MB 3706 * XXX: can we get a buffer that crosses 64KB boundaries? 3707 */ 3708 if (urb->transfer_buffer_length > 0) 3709 num_trbs++; 3710 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3711 ep_index, urb->stream_id, 3712 num_trbs, urb, 0, mem_flags); 3713 if (ret < 0) 3714 return ret; 3715 3716 urb_priv = urb->hcpriv; 3717 td = &urb_priv->td[0]; 3718 td->num_trbs = num_trbs; 3719 3720 /* 3721 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3722 * until we've finished creating all the other TRBs. The ring's cycle 3723 * state may change as we enqueue the other TRBs, so save it too. 3724 */ 3725 start_trb = &ep_ring->enqueue->generic; 3726 start_cycle = ep_ring->cycle_state; 3727 3728 /* Queue setup TRB - see section 6.4.1.2.1 */ 3729 /* FIXME better way to translate setup_packet into two u32 fields? */ 3730 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3731 field = 0; 3732 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3733 if (start_cycle == 0) 3734 field |= 0x1; 3735 3736 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3737 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3738 if (urb->transfer_buffer_length > 0) { 3739 if (setup->bRequestType & USB_DIR_IN) 3740 field |= TRB_TX_TYPE(TRB_DATA_IN); 3741 else 3742 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3743 } 3744 } 3745 3746 queue_trb(xhci, ep_ring, true, 3747 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3748 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3749 TRB_LEN(8) | TRB_INTR_TARGET(0), 3750 /* Immediate data in pointer */ 3751 field); 3752 3753 /* If there's data, queue data TRBs */ 3754 /* Only set interrupt on short packet for IN endpoints */ 3755 if (usb_urb_dir_in(urb)) 3756 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3757 else 3758 field = TRB_TYPE(TRB_DATA); 3759 3760 if (urb->transfer_buffer_length > 0) { 3761 u32 length_field, remainder; 3762 u64 addr; 3763 3764 if (xhci_urb_suitable_for_idt(urb)) { 3765 memcpy(&addr, urb->transfer_buffer, 3766 urb->transfer_buffer_length); 3767 le64_to_cpus(&addr); 3768 field |= TRB_IDT; 3769 } else { 3770 addr = (u64) urb->transfer_dma; 3771 } 3772 3773 remainder = xhci_td_remainder(xhci, 0, 3774 urb->transfer_buffer_length, 3775 urb->transfer_buffer_length, 3776 urb, 1); 3777 length_field = TRB_LEN(urb->transfer_buffer_length) | 3778 TRB_TD_SIZE(remainder) | 3779 TRB_INTR_TARGET(0); 3780 if (setup->bRequestType & USB_DIR_IN) 3781 field |= TRB_DIR_IN; 3782 queue_trb(xhci, ep_ring, true, 3783 lower_32_bits(addr), 3784 upper_32_bits(addr), 3785 length_field, 3786 field | ep_ring->cycle_state); 3787 } 3788 3789 /* Save the DMA address of the last TRB in the TD */ 3790 td->last_trb = ep_ring->enqueue; 3791 td->last_trb_seg = ep_ring->enq_seg; 3792 3793 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3794 /* If the device sent data, the status stage is an OUT transfer */ 3795 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3796 field = 0; 3797 else 3798 field = TRB_DIR_IN; 3799 queue_trb(xhci, ep_ring, false, 3800 0, 3801 0, 3802 TRB_INTR_TARGET(0), 3803 /* Event on completion */ 3804 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3805 3806 giveback_first_trb(xhci, slot_id, ep_index, 0, 3807 start_cycle, start_trb); 3808 return 0; 3809 } 3810 3811 /* 3812 * The transfer burst count field of the isochronous TRB defines the number of 3813 * bursts that are required to move all packets in this TD. Only SuperSpeed 3814 * devices can burst up to bMaxBurst number of packets per service interval. 3815 * This field is zero based, meaning a value of zero in the field means one 3816 * burst. Basically, for everything but SuperSpeed devices, this field will be 3817 * zero. Only xHCI 1.0 host controllers support this field. 3818 */ 3819 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3820 struct urb *urb, unsigned int total_packet_count) 3821 { 3822 unsigned int max_burst; 3823 3824 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3825 return 0; 3826 3827 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3828 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3829 } 3830 3831 /* 3832 * Returns the number of packets in the last "burst" of packets. This field is 3833 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3834 * the last burst packet count is equal to the total number of packets in the 3835 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3836 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3837 * contain 1 to (bMaxBurst + 1) packets. 3838 */ 3839 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3840 struct urb *urb, unsigned int total_packet_count) 3841 { 3842 unsigned int max_burst; 3843 unsigned int residue; 3844 3845 if (xhci->hci_version < 0x100) 3846 return 0; 3847 3848 if (urb->dev->speed >= USB_SPEED_SUPER) { 3849 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3850 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3851 residue = total_packet_count % (max_burst + 1); 3852 /* If residue is zero, the last burst contains (max_burst + 1) 3853 * number of packets, but the TLBPC field is zero-based. 3854 */ 3855 if (residue == 0) 3856 return max_burst; 3857 return residue - 1; 3858 } 3859 if (total_packet_count == 0) 3860 return 0; 3861 return total_packet_count - 1; 3862 } 3863 3864 /* 3865 * Calculates Frame ID field of the isochronous TRB identifies the 3866 * target frame that the Interval associated with this Isochronous 3867 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3868 * 3869 * Returns actual frame id on success, negative value on error. 3870 */ 3871 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3872 struct urb *urb, int index) 3873 { 3874 int start_frame, ist, ret = 0; 3875 int start_frame_id, end_frame_id, current_frame_id; 3876 3877 if (urb->dev->speed == USB_SPEED_LOW || 3878 urb->dev->speed == USB_SPEED_FULL) 3879 start_frame = urb->start_frame + index * urb->interval; 3880 else 3881 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3882 3883 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3884 * 3885 * If bit [3] of IST is cleared to '0', software can add a TRB no 3886 * later than IST[2:0] Microframes before that TRB is scheduled to 3887 * be executed. 3888 * If bit [3] of IST is set to '1', software can add a TRB no later 3889 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3890 */ 3891 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3892 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3893 ist <<= 3; 3894 3895 /* Software shall not schedule an Isoch TD with a Frame ID value that 3896 * is less than the Start Frame ID or greater than the End Frame ID, 3897 * where: 3898 * 3899 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3900 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3901 * 3902 * Both the End Frame ID and Start Frame ID values are calculated 3903 * in microframes. When software determines the valid Frame ID value; 3904 * The End Frame ID value should be rounded down to the nearest Frame 3905 * boundary, and the Start Frame ID value should be rounded up to the 3906 * nearest Frame boundary. 3907 */ 3908 current_frame_id = readl(&xhci->run_regs->microframe_index); 3909 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3910 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3911 3912 start_frame &= 0x7ff; 3913 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3914 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3915 3916 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3917 __func__, index, readl(&xhci->run_regs->microframe_index), 3918 start_frame_id, end_frame_id, start_frame); 3919 3920 if (start_frame_id < end_frame_id) { 3921 if (start_frame > end_frame_id || 3922 start_frame < start_frame_id) 3923 ret = -EINVAL; 3924 } else if (start_frame_id > end_frame_id) { 3925 if ((start_frame > end_frame_id && 3926 start_frame < start_frame_id)) 3927 ret = -EINVAL; 3928 } else { 3929 ret = -EINVAL; 3930 } 3931 3932 if (index == 0) { 3933 if (ret == -EINVAL || start_frame == start_frame_id) { 3934 start_frame = start_frame_id + 1; 3935 if (urb->dev->speed == USB_SPEED_LOW || 3936 urb->dev->speed == USB_SPEED_FULL) 3937 urb->start_frame = start_frame; 3938 else 3939 urb->start_frame = start_frame << 3; 3940 ret = 0; 3941 } 3942 } 3943 3944 if (ret) { 3945 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3946 start_frame, current_frame_id, index, 3947 start_frame_id, end_frame_id); 3948 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3949 return ret; 3950 } 3951 3952 return start_frame; 3953 } 3954 3955 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3956 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3957 { 3958 if (xhci->hci_version < 0x100) 3959 return false; 3960 /* always generate an event interrupt for the last TD */ 3961 if (i == num_tds - 1) 3962 return false; 3963 /* 3964 * If AVOID_BEI is set the host handles full event rings poorly, 3965 * generate an event at least every 8th TD to clear the event ring 3966 */ 3967 if (i && xhci->quirks & XHCI_AVOID_BEI) 3968 return !!(i % xhci->isoc_bei_interval); 3969 3970 return true; 3971 } 3972 3973 /* This is for isoc transfer */ 3974 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3975 struct urb *urb, int slot_id, unsigned int ep_index) 3976 { 3977 struct xhci_ring *ep_ring; 3978 struct urb_priv *urb_priv; 3979 struct xhci_td *td; 3980 int num_tds, trbs_per_td; 3981 struct xhci_generic_trb *start_trb; 3982 bool first_trb; 3983 int start_cycle; 3984 u32 field, length_field; 3985 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3986 u64 start_addr, addr; 3987 int i, j; 3988 bool more_trbs_coming; 3989 struct xhci_virt_ep *xep; 3990 int frame_id; 3991 3992 xep = &xhci->devs[slot_id]->eps[ep_index]; 3993 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3994 3995 num_tds = urb->number_of_packets; 3996 if (num_tds < 1) { 3997 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3998 return -EINVAL; 3999 } 4000 start_addr = (u64) urb->transfer_dma; 4001 start_trb = &ep_ring->enqueue->generic; 4002 start_cycle = ep_ring->cycle_state; 4003 4004 urb_priv = urb->hcpriv; 4005 /* Queue the TRBs for each TD, even if they are zero-length */ 4006 for (i = 0; i < num_tds; i++) { 4007 unsigned int total_pkt_count, max_pkt; 4008 unsigned int burst_count, last_burst_pkt_count; 4009 u32 sia_frame_id; 4010 4011 first_trb = true; 4012 running_total = 0; 4013 addr = start_addr + urb->iso_frame_desc[i].offset; 4014 td_len = urb->iso_frame_desc[i].length; 4015 td_remain_len = td_len; 4016 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4017 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4018 4019 /* A zero-length transfer still involves at least one packet. */ 4020 if (total_pkt_count == 0) 4021 total_pkt_count++; 4022 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4023 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4024 urb, total_pkt_count); 4025 4026 trbs_per_td = count_isoc_trbs_needed(urb, i); 4027 4028 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4029 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4030 if (ret < 0) { 4031 if (i == 0) 4032 return ret; 4033 goto cleanup; 4034 } 4035 td = &urb_priv->td[i]; 4036 td->num_trbs = trbs_per_td; 4037 /* use SIA as default, if frame id is used overwrite it */ 4038 sia_frame_id = TRB_SIA; 4039 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4040 HCC_CFC(xhci->hcc_params)) { 4041 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4042 if (frame_id >= 0) 4043 sia_frame_id = TRB_FRAME_ID(frame_id); 4044 } 4045 /* 4046 * Set isoc specific data for the first TRB in a TD. 4047 * Prevent HW from getting the TRBs by keeping the cycle state 4048 * inverted in the first TDs isoc TRB. 4049 */ 4050 field = TRB_TYPE(TRB_ISOC) | 4051 TRB_TLBPC(last_burst_pkt_count) | 4052 sia_frame_id | 4053 (i ? ep_ring->cycle_state : !start_cycle); 4054 4055 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4056 if (!xep->use_extended_tbc) 4057 field |= TRB_TBC(burst_count); 4058 4059 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4060 for (j = 0; j < trbs_per_td; j++) { 4061 u32 remainder = 0; 4062 4063 /* only first TRB is isoc, overwrite otherwise */ 4064 if (!first_trb) 4065 field = TRB_TYPE(TRB_NORMAL) | 4066 ep_ring->cycle_state; 4067 4068 /* Only set interrupt on short packet for IN EPs */ 4069 if (usb_urb_dir_in(urb)) 4070 field |= TRB_ISP; 4071 4072 /* Set the chain bit for all except the last TRB */ 4073 if (j < trbs_per_td - 1) { 4074 more_trbs_coming = true; 4075 field |= TRB_CHAIN; 4076 } else { 4077 more_trbs_coming = false; 4078 td->last_trb = ep_ring->enqueue; 4079 td->last_trb_seg = ep_ring->enq_seg; 4080 field |= TRB_IOC; 4081 if (trb_block_event_intr(xhci, num_tds, i)) 4082 field |= TRB_BEI; 4083 } 4084 /* Calculate TRB length */ 4085 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4086 if (trb_buff_len > td_remain_len) 4087 trb_buff_len = td_remain_len; 4088 4089 /* Set the TRB length, TD size, & interrupter fields. */ 4090 remainder = xhci_td_remainder(xhci, running_total, 4091 trb_buff_len, td_len, 4092 urb, more_trbs_coming); 4093 4094 length_field = TRB_LEN(trb_buff_len) | 4095 TRB_INTR_TARGET(0); 4096 4097 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4098 if (first_trb && xep->use_extended_tbc) 4099 length_field |= TRB_TD_SIZE_TBC(burst_count); 4100 else 4101 length_field |= TRB_TD_SIZE(remainder); 4102 first_trb = false; 4103 4104 queue_trb(xhci, ep_ring, more_trbs_coming, 4105 lower_32_bits(addr), 4106 upper_32_bits(addr), 4107 length_field, 4108 field); 4109 running_total += trb_buff_len; 4110 4111 addr += trb_buff_len; 4112 td_remain_len -= trb_buff_len; 4113 } 4114 4115 /* Check TD length */ 4116 if (running_total != td_len) { 4117 xhci_err(xhci, "ISOC TD length unmatch\n"); 4118 ret = -EINVAL; 4119 goto cleanup; 4120 } 4121 } 4122 4123 /* store the next frame id */ 4124 if (HCC_CFC(xhci->hcc_params)) 4125 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4126 4127 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4128 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4129 usb_amd_quirk_pll_disable(); 4130 } 4131 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4132 4133 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4134 start_cycle, start_trb); 4135 return 0; 4136 cleanup: 4137 /* Clean up a partially enqueued isoc transfer. */ 4138 4139 for (i--; i >= 0; i--) 4140 list_del_init(&urb_priv->td[i].td_list); 4141 4142 /* Use the first TD as a temporary variable to turn the TDs we've queued 4143 * into No-ops with a software-owned cycle bit. That way the hardware 4144 * won't accidentally start executing bogus TDs when we partially 4145 * overwrite them. td->first_trb and td->start_seg are already set. 4146 */ 4147 urb_priv->td[0].last_trb = ep_ring->enqueue; 4148 /* Every TRB except the first & last will have its cycle bit flipped. */ 4149 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4150 4151 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4152 ep_ring->enqueue = urb_priv->td[0].first_trb; 4153 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4154 ep_ring->cycle_state = start_cycle; 4155 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4156 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4157 return ret; 4158 } 4159 4160 /* 4161 * Check transfer ring to guarantee there is enough room for the urb. 4162 * Update ISO URB start_frame and interval. 4163 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4164 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4165 * Contiguous Frame ID is not supported by HC. 4166 */ 4167 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4168 struct urb *urb, int slot_id, unsigned int ep_index) 4169 { 4170 struct xhci_virt_device *xdev; 4171 struct xhci_ring *ep_ring; 4172 struct xhci_ep_ctx *ep_ctx; 4173 int start_frame; 4174 int num_tds, num_trbs, i; 4175 int ret; 4176 struct xhci_virt_ep *xep; 4177 int ist; 4178 4179 xdev = xhci->devs[slot_id]; 4180 xep = &xhci->devs[slot_id]->eps[ep_index]; 4181 ep_ring = xdev->eps[ep_index].ring; 4182 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4183 4184 num_trbs = 0; 4185 num_tds = urb->number_of_packets; 4186 for (i = 0; i < num_tds; i++) 4187 num_trbs += count_isoc_trbs_needed(urb, i); 4188 4189 /* Check the ring to guarantee there is enough room for the whole urb. 4190 * Do not insert any td of the urb to the ring if the check failed. 4191 */ 4192 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4193 num_trbs, mem_flags); 4194 if (ret) 4195 return ret; 4196 4197 /* 4198 * Check interval value. This should be done before we start to 4199 * calculate the start frame value. 4200 */ 4201 check_interval(xhci, urb, ep_ctx); 4202 4203 /* Calculate the start frame and put it in urb->start_frame. */ 4204 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4205 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4206 urb->start_frame = xep->next_frame_id; 4207 goto skip_start_over; 4208 } 4209 } 4210 4211 start_frame = readl(&xhci->run_regs->microframe_index); 4212 start_frame &= 0x3fff; 4213 /* 4214 * Round up to the next frame and consider the time before trb really 4215 * gets scheduled by hardare. 4216 */ 4217 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4218 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4219 ist <<= 3; 4220 start_frame += ist + XHCI_CFC_DELAY; 4221 start_frame = roundup(start_frame, 8); 4222 4223 /* 4224 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4225 * is greate than 8 microframes. 4226 */ 4227 if (urb->dev->speed == USB_SPEED_LOW || 4228 urb->dev->speed == USB_SPEED_FULL) { 4229 start_frame = roundup(start_frame, urb->interval << 3); 4230 urb->start_frame = start_frame >> 3; 4231 } else { 4232 start_frame = roundup(start_frame, urb->interval); 4233 urb->start_frame = start_frame; 4234 } 4235 4236 skip_start_over: 4237 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4238 4239 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4240 } 4241 4242 /**** Command Ring Operations ****/ 4243 4244 /* Generic function for queueing a command TRB on the command ring. 4245 * Check to make sure there's room on the command ring for one command TRB. 4246 * Also check that there's room reserved for commands that must not fail. 4247 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4248 * then only check for the number of reserved spots. 4249 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4250 * because the command event handler may want to resubmit a failed command. 4251 */ 4252 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4253 u32 field1, u32 field2, 4254 u32 field3, u32 field4, bool command_must_succeed) 4255 { 4256 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4257 int ret; 4258 4259 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4260 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4261 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4262 return -ESHUTDOWN; 4263 } 4264 4265 if (!command_must_succeed) 4266 reserved_trbs++; 4267 4268 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4269 reserved_trbs, GFP_ATOMIC); 4270 if (ret < 0) { 4271 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4272 if (command_must_succeed) 4273 xhci_err(xhci, "ERR: Reserved TRB counting for " 4274 "unfailable commands failed.\n"); 4275 return ret; 4276 } 4277 4278 cmd->command_trb = xhci->cmd_ring->enqueue; 4279 4280 /* if there are no other commands queued we start the timeout timer */ 4281 if (list_empty(&xhci->cmd_list)) { 4282 xhci->current_cmd = cmd; 4283 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4284 } 4285 4286 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4287 4288 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4289 field4 | xhci->cmd_ring->cycle_state); 4290 return 0; 4291 } 4292 4293 /* Queue a slot enable or disable request on the command ring */ 4294 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4295 u32 trb_type, u32 slot_id) 4296 { 4297 return queue_command(xhci, cmd, 0, 0, 0, 4298 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4299 } 4300 4301 /* Queue an address device command TRB */ 4302 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4303 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4304 { 4305 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4306 upper_32_bits(in_ctx_ptr), 0, 4307 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4308 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4309 } 4310 4311 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4312 u32 field1, u32 field2, u32 field3, u32 field4) 4313 { 4314 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4315 } 4316 4317 /* Queue a reset device command TRB */ 4318 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4319 u32 slot_id) 4320 { 4321 return queue_command(xhci, cmd, 0, 0, 0, 4322 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4323 false); 4324 } 4325 4326 /* Queue a configure endpoint command TRB */ 4327 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4328 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4329 u32 slot_id, bool command_must_succeed) 4330 { 4331 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4332 upper_32_bits(in_ctx_ptr), 0, 4333 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4334 command_must_succeed); 4335 } 4336 4337 /* Queue an evaluate context command TRB */ 4338 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4339 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4340 { 4341 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4342 upper_32_bits(in_ctx_ptr), 0, 4343 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4344 command_must_succeed); 4345 } 4346 4347 /* 4348 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4349 * activity on an endpoint that is about to be suspended. 4350 */ 4351 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4352 int slot_id, unsigned int ep_index, int suspend) 4353 { 4354 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4355 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4356 u32 type = TRB_TYPE(TRB_STOP_RING); 4357 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4358 4359 return queue_command(xhci, cmd, 0, 0, 0, 4360 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4361 } 4362 4363 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4364 int slot_id, unsigned int ep_index, 4365 enum xhci_ep_reset_type reset_type) 4366 { 4367 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4368 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4369 u32 type = TRB_TYPE(TRB_RESET_EP); 4370 4371 if (reset_type == EP_SOFT_RESET) 4372 type |= TRB_TSP; 4373 4374 return queue_command(xhci, cmd, 0, 0, 0, 4375 trb_slot_id | trb_ep_index | type, false); 4376 } 4377