1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 147 { 148 union xhci_trb *next; 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 153 /* If this is not event ring, there is one more usable TRB */ 154 if (ring->type != TYPE_EVENT && 155 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 156 ring->num_trbs_free++; 157 next = ++(ring->dequeue); 158 159 /* Update the dequeue pointer further if that was a link TRB or we're at 160 * the end of an event ring segment (which doesn't have link TRBS) 161 */ 162 while (last_trb(xhci, ring, ring->deq_seg, next)) { 163 if (ring->type == TYPE_EVENT && last_trb_on_last_seg(xhci, 164 ring, ring->deq_seg, next)) { 165 ring->cycle_state = (ring->cycle_state ? 0 : 1); 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 next = ring->dequeue; 170 } 171 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 172 } 173 174 /* 175 * See Cycle bit rules. SW is the consumer for the event ring only. 176 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 177 * 178 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 179 * chain bit is set), then set the chain bit in all the following link TRBs. 180 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 181 * have their chain bit cleared (so that each Link TRB is a separate TD). 182 * 183 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 184 * set, but other sections talk about dealing with the chain bit set. This was 185 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 186 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 187 * 188 * @more_trbs_coming: Will you enqueue more TRBs before calling 189 * prepare_transfer()? 190 */ 191 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 192 bool more_trbs_coming) 193 { 194 u32 chain; 195 union xhci_trb *next; 196 unsigned long long addr; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 249 } 250 251 /* 252 * Check to see if there's room to enqueue num_trbs on the ring and make sure 253 * enqueue pointer will not advance into dequeue segment. See rules above. 254 */ 255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 256 unsigned int num_trbs) 257 { 258 int num_trbs_in_deq_seg; 259 260 if (ring->num_trbs_free < num_trbs) 261 return 0; 262 263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 266 return 0; 267 } 268 269 return 1; 270 } 271 272 /* Ring the host controller doorbell after placing a command on the ring */ 273 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 274 { 275 xhci_dbg(xhci, "// Ding dong!\n"); 276 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 277 /* Flush PCI posted writes */ 278 xhci_readl(xhci, &xhci->dba->doorbell[0]); 279 } 280 281 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 282 unsigned int slot_id, 283 unsigned int ep_index, 284 unsigned int stream_id) 285 { 286 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 287 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 288 unsigned int ep_state = ep->ep_state; 289 290 /* Don't ring the doorbell for this endpoint if there are pending 291 * cancellations because we don't want to interrupt processing. 292 * We don't want to restart any stream rings if there's a set dequeue 293 * pointer command pending because the device can choose to start any 294 * stream once the endpoint is on the HW schedule. 295 * FIXME - check all the stream rings for pending cancellations. 296 */ 297 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 298 (ep_state & EP_HALTED)) 299 return; 300 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 301 /* The CPU has better things to do at this point than wait for a 302 * write-posting flush. It'll get there soon enough. 303 */ 304 } 305 306 /* Ring the doorbell for any rings with pending URBs */ 307 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 308 unsigned int slot_id, 309 unsigned int ep_index) 310 { 311 unsigned int stream_id; 312 struct xhci_virt_ep *ep; 313 314 ep = &xhci->devs[slot_id]->eps[ep_index]; 315 316 /* A ring has pending URBs if its TD list is not empty */ 317 if (!(ep->ep_state & EP_HAS_STREAMS)) { 318 if (!(list_empty(&ep->ring->td_list))) 319 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 320 return; 321 } 322 323 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 324 stream_id++) { 325 struct xhci_stream_info *stream_info = ep->stream_info; 326 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 327 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 328 stream_id); 329 } 330 } 331 332 /* 333 * Find the segment that trb is in. Start searching in start_seg. 334 * If we must move past a segment that has a link TRB with a toggle cycle state 335 * bit set, then we will toggle the value pointed at by cycle_state. 336 */ 337 static struct xhci_segment *find_trb_seg( 338 struct xhci_segment *start_seg, 339 union xhci_trb *trb, int *cycle_state) 340 { 341 struct xhci_segment *cur_seg = start_seg; 342 struct xhci_generic_trb *generic_trb; 343 344 while (cur_seg->trbs > trb || 345 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 346 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 347 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 348 *cycle_state ^= 0x1; 349 cur_seg = cur_seg->next; 350 if (cur_seg == start_seg) 351 /* Looped over the entire list. Oops! */ 352 return NULL; 353 } 354 return cur_seg; 355 } 356 357 358 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 359 unsigned int slot_id, unsigned int ep_index, 360 unsigned int stream_id) 361 { 362 struct xhci_virt_ep *ep; 363 364 ep = &xhci->devs[slot_id]->eps[ep_index]; 365 /* Common case: no streams */ 366 if (!(ep->ep_state & EP_HAS_STREAMS)) 367 return ep->ring; 368 369 if (stream_id == 0) { 370 xhci_warn(xhci, 371 "WARN: Slot ID %u, ep index %u has streams, " 372 "but URB has no stream ID.\n", 373 slot_id, ep_index); 374 return NULL; 375 } 376 377 if (stream_id < ep->stream_info->num_streams) 378 return ep->stream_info->stream_rings[stream_id]; 379 380 xhci_warn(xhci, 381 "WARN: Slot ID %u, ep index %u has " 382 "stream IDs 1 to %u allocated, " 383 "but stream ID %u is requested.\n", 384 slot_id, ep_index, 385 ep->stream_info->num_streams - 1, 386 stream_id); 387 return NULL; 388 } 389 390 /* Get the right ring for the given URB. 391 * If the endpoint supports streams, boundary check the URB's stream ID. 392 * If the endpoint doesn't support streams, return the singular endpoint ring. 393 */ 394 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 395 struct urb *urb) 396 { 397 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 398 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 399 } 400 401 /* 402 * Move the xHC's endpoint ring dequeue pointer past cur_td. 403 * Record the new state of the xHC's endpoint ring dequeue segment, 404 * dequeue pointer, and new consumer cycle state in state. 405 * Update our internal representation of the ring's dequeue pointer. 406 * 407 * We do this in three jumps: 408 * - First we update our new ring state to be the same as when the xHC stopped. 409 * - Then we traverse the ring to find the segment that contains 410 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 411 * any link TRBs with the toggle cycle bit set. 412 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 413 * if we've moved it past a link TRB with the toggle cycle bit set. 414 * 415 * Some of the uses of xhci_generic_trb are grotty, but if they're done 416 * with correct __le32 accesses they should work fine. Only users of this are 417 * in here. 418 */ 419 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 420 unsigned int slot_id, unsigned int ep_index, 421 unsigned int stream_id, struct xhci_td *cur_td, 422 struct xhci_dequeue_state *state) 423 { 424 struct xhci_virt_device *dev = xhci->devs[slot_id]; 425 struct xhci_ring *ep_ring; 426 struct xhci_generic_trb *trb; 427 struct xhci_ep_ctx *ep_ctx; 428 dma_addr_t addr; 429 430 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 431 ep_index, stream_id); 432 if (!ep_ring) { 433 xhci_warn(xhci, "WARN can't find new dequeue state " 434 "for invalid stream ID %u.\n", 435 stream_id); 436 return; 437 } 438 state->new_cycle_state = 0; 439 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 440 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 441 dev->eps[ep_index].stopped_trb, 442 &state->new_cycle_state); 443 if (!state->new_deq_seg) { 444 WARN_ON(1); 445 return; 446 } 447 448 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 449 xhci_dbg(xhci, "Finding endpoint context\n"); 450 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 451 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 452 453 state->new_deq_ptr = cur_td->last_trb; 454 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 455 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 456 state->new_deq_ptr, 457 &state->new_cycle_state); 458 if (!state->new_deq_seg) { 459 WARN_ON(1); 460 return; 461 } 462 463 trb = &state->new_deq_ptr->generic; 464 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 465 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 466 state->new_cycle_state ^= 0x1; 467 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 468 469 /* 470 * If there is only one segment in a ring, find_trb_seg()'s while loop 471 * will not run, and it will return before it has a chance to see if it 472 * needs to toggle the cycle bit. It can't tell if the stalled transfer 473 * ended just before the link TRB on a one-segment ring, or if the TD 474 * wrapped around the top of the ring, because it doesn't have the TD in 475 * question. Look for the one-segment case where stalled TRB's address 476 * is greater than the new dequeue pointer address. 477 */ 478 if (ep_ring->first_seg == ep_ring->first_seg->next && 479 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 480 state->new_cycle_state ^= 0x1; 481 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 482 483 /* Don't update the ring cycle state for the producer (us). */ 484 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 485 state->new_deq_seg); 486 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 487 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 488 (unsigned long long) addr); 489 } 490 491 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 492 * (The last TRB actually points to the ring enqueue pointer, which is not part 493 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 494 */ 495 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 496 struct xhci_td *cur_td, bool flip_cycle) 497 { 498 struct xhci_segment *cur_seg; 499 union xhci_trb *cur_trb; 500 501 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 502 true; 503 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 504 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 505 /* Unchain any chained Link TRBs, but 506 * leave the pointers intact. 507 */ 508 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 509 /* Flip the cycle bit (link TRBs can't be the first 510 * or last TRB). 511 */ 512 if (flip_cycle) 513 cur_trb->generic.field[3] ^= 514 cpu_to_le32(TRB_CYCLE); 515 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 516 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 517 "in seg %p (0x%llx dma)\n", 518 cur_trb, 519 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 520 cur_seg, 521 (unsigned long long)cur_seg->dma); 522 } else { 523 cur_trb->generic.field[0] = 0; 524 cur_trb->generic.field[1] = 0; 525 cur_trb->generic.field[2] = 0; 526 /* Preserve only the cycle bit of this TRB */ 527 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 528 /* Flip the cycle bit except on the first or last TRB */ 529 if (flip_cycle && cur_trb != cur_td->first_trb && 530 cur_trb != cur_td->last_trb) 531 cur_trb->generic.field[3] ^= 532 cpu_to_le32(TRB_CYCLE); 533 cur_trb->generic.field[3] |= cpu_to_le32( 534 TRB_TYPE(TRB_TR_NOOP)); 535 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 536 (unsigned long long) 537 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 538 } 539 if (cur_trb == cur_td->last_trb) 540 break; 541 } 542 } 543 544 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 545 unsigned int ep_index, unsigned int stream_id, 546 struct xhci_segment *deq_seg, 547 union xhci_trb *deq_ptr, u32 cycle_state); 548 549 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 550 unsigned int slot_id, unsigned int ep_index, 551 unsigned int stream_id, 552 struct xhci_dequeue_state *deq_state) 553 { 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 556 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 557 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 558 deq_state->new_deq_seg, 559 (unsigned long long)deq_state->new_deq_seg->dma, 560 deq_state->new_deq_ptr, 561 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 562 deq_state->new_cycle_state); 563 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 564 deq_state->new_deq_seg, 565 deq_state->new_deq_ptr, 566 (u32) deq_state->new_cycle_state); 567 /* Stop the TD queueing code from ringing the doorbell until 568 * this command completes. The HC won't set the dequeue pointer 569 * if the ring is running, and ringing the doorbell starts the 570 * ring running. 571 */ 572 ep->ep_state |= SET_DEQ_PENDING; 573 } 574 575 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 576 struct xhci_virt_ep *ep) 577 { 578 ep->ep_state &= ~EP_HALT_PENDING; 579 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 580 * timer is running on another CPU, we don't decrement stop_cmds_pending 581 * (since we didn't successfully stop the watchdog timer). 582 */ 583 if (del_timer(&ep->stop_cmd_timer)) 584 ep->stop_cmds_pending--; 585 } 586 587 /* Must be called with xhci->lock held in interrupt context */ 588 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 589 struct xhci_td *cur_td, int status, char *adjective) 590 { 591 struct usb_hcd *hcd; 592 struct urb *urb; 593 struct urb_priv *urb_priv; 594 595 urb = cur_td->urb; 596 urb_priv = urb->hcpriv; 597 urb_priv->td_cnt++; 598 hcd = bus_to_hcd(urb->dev->bus); 599 600 /* Only giveback urb when this is the last td in urb */ 601 if (urb_priv->td_cnt == urb_priv->length) { 602 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 603 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 604 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 605 if (xhci->quirks & XHCI_AMD_PLL_FIX) 606 usb_amd_quirk_pll_enable(); 607 } 608 } 609 usb_hcd_unlink_urb_from_ep(hcd, urb); 610 611 spin_unlock(&xhci->lock); 612 usb_hcd_giveback_urb(hcd, urb, status); 613 xhci_urb_free_priv(xhci, urb_priv); 614 spin_lock(&xhci->lock); 615 } 616 } 617 618 /* 619 * When we get a command completion for a Stop Endpoint Command, we need to 620 * unlink any cancelled TDs from the ring. There are two ways to do that: 621 * 622 * 1. If the HW was in the middle of processing the TD that needs to be 623 * cancelled, then we must move the ring's dequeue pointer past the last TRB 624 * in the TD with a Set Dequeue Pointer Command. 625 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 626 * bit cleared) so that the HW will skip over them. 627 */ 628 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 629 union xhci_trb *trb, struct xhci_event_cmd *event) 630 { 631 unsigned int slot_id; 632 unsigned int ep_index; 633 struct xhci_virt_device *virt_dev; 634 struct xhci_ring *ep_ring; 635 struct xhci_virt_ep *ep; 636 struct list_head *entry; 637 struct xhci_td *cur_td = NULL; 638 struct xhci_td *last_unlinked_td; 639 640 struct xhci_dequeue_state deq_state; 641 642 if (unlikely(TRB_TO_SUSPEND_PORT( 643 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 644 slot_id = TRB_TO_SLOT_ID( 645 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 646 virt_dev = xhci->devs[slot_id]; 647 if (virt_dev) 648 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 649 event); 650 else 651 xhci_warn(xhci, "Stop endpoint command " 652 "completion for disabled slot %u\n", 653 slot_id); 654 return; 655 } 656 657 memset(&deq_state, 0, sizeof(deq_state)); 658 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 659 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 660 ep = &xhci->devs[slot_id]->eps[ep_index]; 661 662 if (list_empty(&ep->cancelled_td_list)) { 663 xhci_stop_watchdog_timer_in_irq(xhci, ep); 664 ep->stopped_td = NULL; 665 ep->stopped_trb = NULL; 666 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 667 return; 668 } 669 670 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 671 * We have the xHCI lock, so nothing can modify this list until we drop 672 * it. We're also in the event handler, so we can't get re-interrupted 673 * if another Stop Endpoint command completes 674 */ 675 list_for_each(entry, &ep->cancelled_td_list) { 676 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 677 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 678 (unsigned long long)xhci_trb_virt_to_dma( 679 cur_td->start_seg, cur_td->first_trb)); 680 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 681 if (!ep_ring) { 682 /* This shouldn't happen unless a driver is mucking 683 * with the stream ID after submission. This will 684 * leave the TD on the hardware ring, and the hardware 685 * will try to execute it, and may access a buffer 686 * that has already been freed. In the best case, the 687 * hardware will execute it, and the event handler will 688 * ignore the completion event for that TD, since it was 689 * removed from the td_list for that endpoint. In 690 * short, don't muck with the stream ID after 691 * submission. 692 */ 693 xhci_warn(xhci, "WARN Cancelled URB %p " 694 "has invalid stream ID %u.\n", 695 cur_td->urb, 696 cur_td->urb->stream_id); 697 goto remove_finished_td; 698 } 699 /* 700 * If we stopped on the TD we need to cancel, then we have to 701 * move the xHC endpoint ring dequeue pointer past this TD. 702 */ 703 if (cur_td == ep->stopped_td) 704 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 705 cur_td->urb->stream_id, 706 cur_td, &deq_state); 707 else 708 td_to_noop(xhci, ep_ring, cur_td, false); 709 remove_finished_td: 710 /* 711 * The event handler won't see a completion for this TD anymore, 712 * so remove it from the endpoint ring's TD list. Keep it in 713 * the cancelled TD list for URB completion later. 714 */ 715 list_del_init(&cur_td->td_list); 716 } 717 last_unlinked_td = cur_td; 718 xhci_stop_watchdog_timer_in_irq(xhci, ep); 719 720 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 721 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 722 xhci_queue_new_dequeue_state(xhci, 723 slot_id, ep_index, 724 ep->stopped_td->urb->stream_id, 725 &deq_state); 726 xhci_ring_cmd_db(xhci); 727 } else { 728 /* Otherwise ring the doorbell(s) to restart queued transfers */ 729 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 730 } 731 ep->stopped_td = NULL; 732 ep->stopped_trb = NULL; 733 734 /* 735 * Drop the lock and complete the URBs in the cancelled TD list. 736 * New TDs to be cancelled might be added to the end of the list before 737 * we can complete all the URBs for the TDs we already unlinked. 738 * So stop when we've completed the URB for the last TD we unlinked. 739 */ 740 do { 741 cur_td = list_entry(ep->cancelled_td_list.next, 742 struct xhci_td, cancelled_td_list); 743 list_del_init(&cur_td->cancelled_td_list); 744 745 /* Clean up the cancelled URB */ 746 /* Doesn't matter what we pass for status, since the core will 747 * just overwrite it (because the URB has been unlinked). 748 */ 749 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 750 751 /* Stop processing the cancelled list if the watchdog timer is 752 * running. 753 */ 754 if (xhci->xhc_state & XHCI_STATE_DYING) 755 return; 756 } while (cur_td != last_unlinked_td); 757 758 /* Return to the event handler with xhci->lock re-acquired */ 759 } 760 761 /* Watchdog timer function for when a stop endpoint command fails to complete. 762 * In this case, we assume the host controller is broken or dying or dead. The 763 * host may still be completing some other events, so we have to be careful to 764 * let the event ring handler and the URB dequeueing/enqueueing functions know 765 * through xhci->state. 766 * 767 * The timer may also fire if the host takes a very long time to respond to the 768 * command, and the stop endpoint command completion handler cannot delete the 769 * timer before the timer function is called. Another endpoint cancellation may 770 * sneak in before the timer function can grab the lock, and that may queue 771 * another stop endpoint command and add the timer back. So we cannot use a 772 * simple flag to say whether there is a pending stop endpoint command for a 773 * particular endpoint. 774 * 775 * Instead we use a combination of that flag and a counter for the number of 776 * pending stop endpoint commands. If the timer is the tail end of the last 777 * stop endpoint command, and the endpoint's command is still pending, we assume 778 * the host is dying. 779 */ 780 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 781 { 782 struct xhci_hcd *xhci; 783 struct xhci_virt_ep *ep; 784 struct xhci_virt_ep *temp_ep; 785 struct xhci_ring *ring; 786 struct xhci_td *cur_td; 787 int ret, i, j; 788 unsigned long flags; 789 790 ep = (struct xhci_virt_ep *) arg; 791 xhci = ep->xhci; 792 793 spin_lock_irqsave(&xhci->lock, flags); 794 795 ep->stop_cmds_pending--; 796 if (xhci->xhc_state & XHCI_STATE_DYING) { 797 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 798 "xHCI as DYING, exiting.\n"); 799 spin_unlock_irqrestore(&xhci->lock, flags); 800 return; 801 } 802 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 803 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 804 "exiting.\n"); 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 return; 807 } 808 809 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 810 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 811 /* Oops, HC is dead or dying or at least not responding to the stop 812 * endpoint command. 813 */ 814 xhci->xhc_state |= XHCI_STATE_DYING; 815 /* Disable interrupts from the host controller and start halting it */ 816 xhci_quiesce(xhci); 817 spin_unlock_irqrestore(&xhci->lock, flags); 818 819 ret = xhci_halt(xhci); 820 821 spin_lock_irqsave(&xhci->lock, flags); 822 if (ret < 0) { 823 /* This is bad; the host is not responding to commands and it's 824 * not allowing itself to be halted. At least interrupts are 825 * disabled. If we call usb_hc_died(), it will attempt to 826 * disconnect all device drivers under this host. Those 827 * disconnect() methods will wait for all URBs to be unlinked, 828 * so we must complete them. 829 */ 830 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 831 xhci_warn(xhci, "Completing active URBs anyway.\n"); 832 /* We could turn all TDs on the rings to no-ops. This won't 833 * help if the host has cached part of the ring, and is slow if 834 * we want to preserve the cycle bit. Skip it and hope the host 835 * doesn't touch the memory. 836 */ 837 } 838 for (i = 0; i < MAX_HC_SLOTS; i++) { 839 if (!xhci->devs[i]) 840 continue; 841 for (j = 0; j < 31; j++) { 842 temp_ep = &xhci->devs[i]->eps[j]; 843 ring = temp_ep->ring; 844 if (!ring) 845 continue; 846 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 847 "ep index %u\n", i, j); 848 while (!list_empty(&ring->td_list)) { 849 cur_td = list_first_entry(&ring->td_list, 850 struct xhci_td, 851 td_list); 852 list_del_init(&cur_td->td_list); 853 if (!list_empty(&cur_td->cancelled_td_list)) 854 list_del_init(&cur_td->cancelled_td_list); 855 xhci_giveback_urb_in_irq(xhci, cur_td, 856 -ESHUTDOWN, "killed"); 857 } 858 while (!list_empty(&temp_ep->cancelled_td_list)) { 859 cur_td = list_first_entry( 860 &temp_ep->cancelled_td_list, 861 struct xhci_td, 862 cancelled_td_list); 863 list_del_init(&cur_td->cancelled_td_list); 864 xhci_giveback_urb_in_irq(xhci, cur_td, 865 -ESHUTDOWN, "killed"); 866 } 867 } 868 } 869 spin_unlock_irqrestore(&xhci->lock, flags); 870 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 871 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 872 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 873 } 874 875 876 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 877 struct xhci_virt_device *dev, 878 struct xhci_ring *ep_ring, 879 unsigned int ep_index) 880 { 881 union xhci_trb *dequeue_temp; 882 int num_trbs_free_temp; 883 bool revert = false; 884 885 num_trbs_free_temp = ep_ring->num_trbs_free; 886 dequeue_temp = ep_ring->dequeue; 887 888 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 889 /* We have more usable TRBs */ 890 ep_ring->num_trbs_free++; 891 ep_ring->dequeue++; 892 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 893 ep_ring->dequeue)) { 894 if (ep_ring->dequeue == 895 dev->eps[ep_index].queued_deq_ptr) 896 break; 897 ep_ring->deq_seg = ep_ring->deq_seg->next; 898 ep_ring->dequeue = ep_ring->deq_seg->trbs; 899 } 900 if (ep_ring->dequeue == dequeue_temp) { 901 revert = true; 902 break; 903 } 904 } 905 906 if (revert) { 907 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 908 ep_ring->num_trbs_free = num_trbs_free_temp; 909 } 910 } 911 912 /* 913 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 914 * we need to clear the set deq pending flag in the endpoint ring state, so that 915 * the TD queueing code can ring the doorbell again. We also need to ring the 916 * endpoint doorbell to restart the ring, but only if there aren't more 917 * cancellations pending. 918 */ 919 static void handle_set_deq_completion(struct xhci_hcd *xhci, 920 struct xhci_event_cmd *event, 921 union xhci_trb *trb) 922 { 923 unsigned int slot_id; 924 unsigned int ep_index; 925 unsigned int stream_id; 926 struct xhci_ring *ep_ring; 927 struct xhci_virt_device *dev; 928 struct xhci_ep_ctx *ep_ctx; 929 struct xhci_slot_ctx *slot_ctx; 930 931 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 932 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 933 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 934 dev = xhci->devs[slot_id]; 935 936 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 937 if (!ep_ring) { 938 xhci_warn(xhci, "WARN Set TR deq ptr command for " 939 "freed stream ID %u\n", 940 stream_id); 941 /* XXX: Harmless??? */ 942 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 943 return; 944 } 945 946 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 947 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 948 949 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 950 unsigned int ep_state; 951 unsigned int slot_state; 952 953 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 954 case COMP_TRB_ERR: 955 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 956 "of stream ID configuration\n"); 957 break; 958 case COMP_CTX_STATE: 959 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 960 "to incorrect slot or ep state.\n"); 961 ep_state = le32_to_cpu(ep_ctx->ep_info); 962 ep_state &= EP_STATE_MASK; 963 slot_state = le32_to_cpu(slot_ctx->dev_state); 964 slot_state = GET_SLOT_STATE(slot_state); 965 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 966 slot_state, ep_state); 967 break; 968 case COMP_EBADSLT: 969 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 970 "slot %u was not enabled.\n", slot_id); 971 break; 972 default: 973 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 974 "completion code of %u.\n", 975 GET_COMP_CODE(le32_to_cpu(event->status))); 976 break; 977 } 978 /* OK what do we do now? The endpoint state is hosed, and we 979 * should never get to this point if the synchronization between 980 * queueing, and endpoint state are correct. This might happen 981 * if the device gets disconnected after we've finished 982 * cancelling URBs, which might not be an error... 983 */ 984 } else { 985 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 986 le64_to_cpu(ep_ctx->deq)); 987 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 988 dev->eps[ep_index].queued_deq_ptr) == 989 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 990 /* Update the ring's dequeue segment and dequeue pointer 991 * to reflect the new position. 992 */ 993 update_ring_for_set_deq_completion(xhci, dev, 994 ep_ring, ep_index); 995 } else { 996 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 997 "Ptr command & xHCI internal state.\n"); 998 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 999 dev->eps[ep_index].queued_deq_seg, 1000 dev->eps[ep_index].queued_deq_ptr); 1001 } 1002 } 1003 1004 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1005 dev->eps[ep_index].queued_deq_seg = NULL; 1006 dev->eps[ep_index].queued_deq_ptr = NULL; 1007 /* Restart any rings with pending URBs */ 1008 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1009 } 1010 1011 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1012 struct xhci_event_cmd *event, 1013 union xhci_trb *trb) 1014 { 1015 int slot_id; 1016 unsigned int ep_index; 1017 1018 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1019 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1020 /* This command will only fail if the endpoint wasn't halted, 1021 * but we don't care. 1022 */ 1023 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1024 GET_COMP_CODE(le32_to_cpu(event->status))); 1025 1026 /* HW with the reset endpoint quirk needs to have a configure endpoint 1027 * command complete before the endpoint can be used. Queue that here 1028 * because the HW can't handle two commands being queued in a row. 1029 */ 1030 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1031 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1032 xhci_queue_configure_endpoint(xhci, 1033 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1034 false); 1035 xhci_ring_cmd_db(xhci); 1036 } else { 1037 /* Clear our internal halted state and restart the ring(s) */ 1038 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1039 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1040 } 1041 } 1042 1043 /* Check to see if a command in the device's command queue matches this one. 1044 * Signal the completion or free the command, and return 1. Return 0 if the 1045 * completed command isn't at the head of the command list. 1046 */ 1047 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1048 struct xhci_virt_device *virt_dev, 1049 struct xhci_event_cmd *event) 1050 { 1051 struct xhci_command *command; 1052 1053 if (list_empty(&virt_dev->cmd_list)) 1054 return 0; 1055 1056 command = list_entry(virt_dev->cmd_list.next, 1057 struct xhci_command, cmd_list); 1058 if (xhci->cmd_ring->dequeue != command->command_trb) 1059 return 0; 1060 1061 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1062 list_del(&command->cmd_list); 1063 if (command->completion) 1064 complete(command->completion); 1065 else 1066 xhci_free_command(xhci, command); 1067 return 1; 1068 } 1069 1070 static void handle_cmd_completion(struct xhci_hcd *xhci, 1071 struct xhci_event_cmd *event) 1072 { 1073 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1074 u64 cmd_dma; 1075 dma_addr_t cmd_dequeue_dma; 1076 struct xhci_input_control_ctx *ctrl_ctx; 1077 struct xhci_virt_device *virt_dev; 1078 unsigned int ep_index; 1079 struct xhci_ring *ep_ring; 1080 unsigned int ep_state; 1081 1082 cmd_dma = le64_to_cpu(event->cmd_trb); 1083 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1084 xhci->cmd_ring->dequeue); 1085 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1086 if (cmd_dequeue_dma == 0) { 1087 xhci->error_bitmask |= 1 << 4; 1088 return; 1089 } 1090 /* Does the DMA address match our internal dequeue pointer address? */ 1091 if (cmd_dma != (u64) cmd_dequeue_dma) { 1092 xhci->error_bitmask |= 1 << 5; 1093 return; 1094 } 1095 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1096 & TRB_TYPE_BITMASK) { 1097 case TRB_TYPE(TRB_ENABLE_SLOT): 1098 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1099 xhci->slot_id = slot_id; 1100 else 1101 xhci->slot_id = 0; 1102 complete(&xhci->addr_dev); 1103 break; 1104 case TRB_TYPE(TRB_DISABLE_SLOT): 1105 if (xhci->devs[slot_id]) { 1106 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1107 /* Delete default control endpoint resources */ 1108 xhci_free_device_endpoint_resources(xhci, 1109 xhci->devs[slot_id], true); 1110 xhci_free_virt_device(xhci, slot_id); 1111 } 1112 break; 1113 case TRB_TYPE(TRB_CONFIG_EP): 1114 virt_dev = xhci->devs[slot_id]; 1115 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1116 break; 1117 /* 1118 * Configure endpoint commands can come from the USB core 1119 * configuration or alt setting changes, or because the HW 1120 * needed an extra configure endpoint command after a reset 1121 * endpoint command or streams were being configured. 1122 * If the command was for a halted endpoint, the xHCI driver 1123 * is not waiting on the configure endpoint command. 1124 */ 1125 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1126 virt_dev->in_ctx); 1127 /* Input ctx add_flags are the endpoint index plus one */ 1128 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1129 /* A usb_set_interface() call directly after clearing a halted 1130 * condition may race on this quirky hardware. Not worth 1131 * worrying about, since this is prototype hardware. Not sure 1132 * if this will work for streams, but streams support was 1133 * untested on this prototype. 1134 */ 1135 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1136 ep_index != (unsigned int) -1 && 1137 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1138 le32_to_cpu(ctrl_ctx->drop_flags)) { 1139 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1140 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1141 if (!(ep_state & EP_HALTED)) 1142 goto bandwidth_change; 1143 xhci_dbg(xhci, "Completed config ep cmd - " 1144 "last ep index = %d, state = %d\n", 1145 ep_index, ep_state); 1146 /* Clear internal halted state and restart ring(s) */ 1147 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1148 ~EP_HALTED; 1149 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1150 break; 1151 } 1152 bandwidth_change: 1153 xhci_dbg(xhci, "Completed config ep cmd\n"); 1154 xhci->devs[slot_id]->cmd_status = 1155 GET_COMP_CODE(le32_to_cpu(event->status)); 1156 complete(&xhci->devs[slot_id]->cmd_completion); 1157 break; 1158 case TRB_TYPE(TRB_EVAL_CONTEXT): 1159 virt_dev = xhci->devs[slot_id]; 1160 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1161 break; 1162 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1163 complete(&xhci->devs[slot_id]->cmd_completion); 1164 break; 1165 case TRB_TYPE(TRB_ADDR_DEV): 1166 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1167 complete(&xhci->addr_dev); 1168 break; 1169 case TRB_TYPE(TRB_STOP_RING): 1170 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1171 break; 1172 case TRB_TYPE(TRB_SET_DEQ): 1173 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1174 break; 1175 case TRB_TYPE(TRB_CMD_NOOP): 1176 break; 1177 case TRB_TYPE(TRB_RESET_EP): 1178 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1179 break; 1180 case TRB_TYPE(TRB_RESET_DEV): 1181 xhci_dbg(xhci, "Completed reset device command.\n"); 1182 slot_id = TRB_TO_SLOT_ID( 1183 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1184 virt_dev = xhci->devs[slot_id]; 1185 if (virt_dev) 1186 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1187 else 1188 xhci_warn(xhci, "Reset device command completion " 1189 "for disabled slot %u\n", slot_id); 1190 break; 1191 case TRB_TYPE(TRB_NEC_GET_FW): 1192 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1193 xhci->error_bitmask |= 1 << 6; 1194 break; 1195 } 1196 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1197 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1198 NEC_FW_MINOR(le32_to_cpu(event->status))); 1199 break; 1200 default: 1201 /* Skip over unknown commands on the event ring */ 1202 xhci->error_bitmask |= 1 << 6; 1203 break; 1204 } 1205 inc_deq(xhci, xhci->cmd_ring); 1206 } 1207 1208 static void handle_vendor_event(struct xhci_hcd *xhci, 1209 union xhci_trb *event) 1210 { 1211 u32 trb_type; 1212 1213 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1214 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1215 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1216 handle_cmd_completion(xhci, &event->event_cmd); 1217 } 1218 1219 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1220 * port registers -- USB 3.0 and USB 2.0). 1221 * 1222 * Returns a zero-based port number, which is suitable for indexing into each of 1223 * the split roothubs' port arrays and bus state arrays. 1224 * Add one to it in order to call xhci_find_slot_id_by_port. 1225 */ 1226 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1227 struct xhci_hcd *xhci, u32 port_id) 1228 { 1229 unsigned int i; 1230 unsigned int num_similar_speed_ports = 0; 1231 1232 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1233 * and usb2_ports are 0-based indexes. Count the number of similar 1234 * speed ports, up to 1 port before this port. 1235 */ 1236 for (i = 0; i < (port_id - 1); i++) { 1237 u8 port_speed = xhci->port_array[i]; 1238 1239 /* 1240 * Skip ports that don't have known speeds, or have duplicate 1241 * Extended Capabilities port speed entries. 1242 */ 1243 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1244 continue; 1245 1246 /* 1247 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1248 * 1.1 ports are under the USB 2.0 hub. If the port speed 1249 * matches the device speed, it's a similar speed port. 1250 */ 1251 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1252 num_similar_speed_ports++; 1253 } 1254 return num_similar_speed_ports; 1255 } 1256 1257 static void handle_device_notification(struct xhci_hcd *xhci, 1258 union xhci_trb *event) 1259 { 1260 u32 slot_id; 1261 struct usb_device *udev; 1262 1263 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1264 if (!xhci->devs[slot_id]) { 1265 xhci_warn(xhci, "Device Notification event for " 1266 "unused slot %u\n", slot_id); 1267 return; 1268 } 1269 1270 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1271 slot_id); 1272 udev = xhci->devs[slot_id]->udev; 1273 if (udev && udev->parent) 1274 usb_wakeup_notification(udev->parent, udev->portnum); 1275 } 1276 1277 static void handle_port_status(struct xhci_hcd *xhci, 1278 union xhci_trb *event) 1279 { 1280 struct usb_hcd *hcd; 1281 u32 port_id; 1282 u32 temp, temp1; 1283 int max_ports; 1284 int slot_id; 1285 unsigned int faked_port_index; 1286 u8 major_revision; 1287 struct xhci_bus_state *bus_state; 1288 __le32 __iomem **port_array; 1289 bool bogus_port_status = false; 1290 1291 /* Port status change events always have a successful completion code */ 1292 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1293 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1294 xhci->error_bitmask |= 1 << 8; 1295 } 1296 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1297 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1298 1299 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1300 if ((port_id <= 0) || (port_id > max_ports)) { 1301 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1302 bogus_port_status = true; 1303 goto cleanup; 1304 } 1305 1306 /* Figure out which usb_hcd this port is attached to: 1307 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1308 */ 1309 major_revision = xhci->port_array[port_id - 1]; 1310 if (major_revision == 0) { 1311 xhci_warn(xhci, "Event for port %u not in " 1312 "Extended Capabilities, ignoring.\n", 1313 port_id); 1314 bogus_port_status = true; 1315 goto cleanup; 1316 } 1317 if (major_revision == DUPLICATE_ENTRY) { 1318 xhci_warn(xhci, "Event for port %u duplicated in" 1319 "Extended Capabilities, ignoring.\n", 1320 port_id); 1321 bogus_port_status = true; 1322 goto cleanup; 1323 } 1324 1325 /* 1326 * Hardware port IDs reported by a Port Status Change Event include USB 1327 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1328 * resume event, but we first need to translate the hardware port ID 1329 * into the index into the ports on the correct split roothub, and the 1330 * correct bus_state structure. 1331 */ 1332 /* Find the right roothub. */ 1333 hcd = xhci_to_hcd(xhci); 1334 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1335 hcd = xhci->shared_hcd; 1336 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1337 if (hcd->speed == HCD_USB3) 1338 port_array = xhci->usb3_ports; 1339 else 1340 port_array = xhci->usb2_ports; 1341 /* Find the faked port hub number */ 1342 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1343 port_id); 1344 1345 temp = xhci_readl(xhci, port_array[faked_port_index]); 1346 if (hcd->state == HC_STATE_SUSPENDED) { 1347 xhci_dbg(xhci, "resume root hub\n"); 1348 usb_hcd_resume_root_hub(hcd); 1349 } 1350 1351 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1352 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1353 1354 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1355 if (!(temp1 & CMD_RUN)) { 1356 xhci_warn(xhci, "xHC is not running.\n"); 1357 goto cleanup; 1358 } 1359 1360 if (DEV_SUPERSPEED(temp)) { 1361 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1362 /* Set a flag to say the port signaled remote wakeup, 1363 * so we can tell the difference between the end of 1364 * device and host initiated resume. 1365 */ 1366 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1367 xhci_test_and_clear_bit(xhci, port_array, 1368 faked_port_index, PORT_PLC); 1369 xhci_set_link_state(xhci, port_array, faked_port_index, 1370 XDEV_U0); 1371 /* Need to wait until the next link state change 1372 * indicates the device is actually in U0. 1373 */ 1374 bogus_port_status = true; 1375 goto cleanup; 1376 } else { 1377 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1378 bus_state->resume_done[faked_port_index] = jiffies + 1379 msecs_to_jiffies(20); 1380 mod_timer(&hcd->rh_timer, 1381 bus_state->resume_done[faked_port_index]); 1382 /* Do the rest in GetPortStatus */ 1383 } 1384 } 1385 1386 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1387 DEV_SUPERSPEED(temp)) { 1388 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1389 /* We've just brought the device into U0 through either the 1390 * Resume state after a device remote wakeup, or through the 1391 * U3Exit state after a host-initiated resume. If it's a device 1392 * initiated remote wake, don't pass up the link state change, 1393 * so the roothub behavior is consistent with external 1394 * USB 3.0 hub behavior. 1395 */ 1396 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1397 faked_port_index + 1); 1398 if (slot_id && xhci->devs[slot_id]) 1399 xhci_ring_device(xhci, slot_id); 1400 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) { 1401 bus_state->port_remote_wakeup &= 1402 ~(1 << faked_port_index); 1403 xhci_test_and_clear_bit(xhci, port_array, 1404 faked_port_index, PORT_PLC); 1405 usb_wakeup_notification(hcd->self.root_hub, 1406 faked_port_index + 1); 1407 bogus_port_status = true; 1408 goto cleanup; 1409 } 1410 } 1411 1412 if (hcd->speed != HCD_USB3) 1413 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1414 PORT_PLC); 1415 1416 cleanup: 1417 /* Update event ring dequeue pointer before dropping the lock */ 1418 inc_deq(xhci, xhci->event_ring); 1419 1420 /* Don't make the USB core poll the roothub if we got a bad port status 1421 * change event. Besides, at that point we can't tell which roothub 1422 * (USB 2.0 or USB 3.0) to kick. 1423 */ 1424 if (bogus_port_status) 1425 return; 1426 1427 spin_unlock(&xhci->lock); 1428 /* Pass this up to the core */ 1429 usb_hcd_poll_rh_status(hcd); 1430 spin_lock(&xhci->lock); 1431 } 1432 1433 /* 1434 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1435 * at end_trb, which may be in another segment. If the suspect DMA address is a 1436 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1437 * returns 0. 1438 */ 1439 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1440 union xhci_trb *start_trb, 1441 union xhci_trb *end_trb, 1442 dma_addr_t suspect_dma) 1443 { 1444 dma_addr_t start_dma; 1445 dma_addr_t end_seg_dma; 1446 dma_addr_t end_trb_dma; 1447 struct xhci_segment *cur_seg; 1448 1449 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1450 cur_seg = start_seg; 1451 1452 do { 1453 if (start_dma == 0) 1454 return NULL; 1455 /* We may get an event for a Link TRB in the middle of a TD */ 1456 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1457 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1458 /* If the end TRB isn't in this segment, this is set to 0 */ 1459 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1460 1461 if (end_trb_dma > 0) { 1462 /* The end TRB is in this segment, so suspect should be here */ 1463 if (start_dma <= end_trb_dma) { 1464 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1465 return cur_seg; 1466 } else { 1467 /* Case for one segment with 1468 * a TD wrapped around to the top 1469 */ 1470 if ((suspect_dma >= start_dma && 1471 suspect_dma <= end_seg_dma) || 1472 (suspect_dma >= cur_seg->dma && 1473 suspect_dma <= end_trb_dma)) 1474 return cur_seg; 1475 } 1476 return NULL; 1477 } else { 1478 /* Might still be somewhere in this segment */ 1479 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1480 return cur_seg; 1481 } 1482 cur_seg = cur_seg->next; 1483 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1484 } while (cur_seg != start_seg); 1485 1486 return NULL; 1487 } 1488 1489 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1490 unsigned int slot_id, unsigned int ep_index, 1491 unsigned int stream_id, 1492 struct xhci_td *td, union xhci_trb *event_trb) 1493 { 1494 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1495 ep->ep_state |= EP_HALTED; 1496 ep->stopped_td = td; 1497 ep->stopped_trb = event_trb; 1498 ep->stopped_stream = stream_id; 1499 1500 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1501 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1502 1503 ep->stopped_td = NULL; 1504 ep->stopped_trb = NULL; 1505 ep->stopped_stream = 0; 1506 1507 xhci_ring_cmd_db(xhci); 1508 } 1509 1510 /* Check if an error has halted the endpoint ring. The class driver will 1511 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1512 * However, a babble and other errors also halt the endpoint ring, and the class 1513 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1514 * Ring Dequeue Pointer command manually. 1515 */ 1516 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1517 struct xhci_ep_ctx *ep_ctx, 1518 unsigned int trb_comp_code) 1519 { 1520 /* TRB completion codes that may require a manual halt cleanup */ 1521 if (trb_comp_code == COMP_TX_ERR || 1522 trb_comp_code == COMP_BABBLE || 1523 trb_comp_code == COMP_SPLIT_ERR) 1524 /* The 0.96 spec says a babbling control endpoint 1525 * is not halted. The 0.96 spec says it is. Some HW 1526 * claims to be 0.95 compliant, but it halts the control 1527 * endpoint anyway. Check if a babble halted the 1528 * endpoint. 1529 */ 1530 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1531 cpu_to_le32(EP_STATE_HALTED)) 1532 return 1; 1533 1534 return 0; 1535 } 1536 1537 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1538 { 1539 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1540 /* Vendor defined "informational" completion code, 1541 * treat as not-an-error. 1542 */ 1543 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1544 trb_comp_code); 1545 xhci_dbg(xhci, "Treating code as success.\n"); 1546 return 1; 1547 } 1548 return 0; 1549 } 1550 1551 /* 1552 * Finish the td processing, remove the td from td list; 1553 * Return 1 if the urb can be given back. 1554 */ 1555 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1556 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1557 struct xhci_virt_ep *ep, int *status, bool skip) 1558 { 1559 struct xhci_virt_device *xdev; 1560 struct xhci_ring *ep_ring; 1561 unsigned int slot_id; 1562 int ep_index; 1563 struct urb *urb = NULL; 1564 struct xhci_ep_ctx *ep_ctx; 1565 int ret = 0; 1566 struct urb_priv *urb_priv; 1567 u32 trb_comp_code; 1568 1569 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1570 xdev = xhci->devs[slot_id]; 1571 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1572 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1573 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1574 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1575 1576 if (skip) 1577 goto td_cleanup; 1578 1579 if (trb_comp_code == COMP_STOP_INVAL || 1580 trb_comp_code == COMP_STOP) { 1581 /* The Endpoint Stop Command completion will take care of any 1582 * stopped TDs. A stopped TD may be restarted, so don't update 1583 * the ring dequeue pointer or take this TD off any lists yet. 1584 */ 1585 ep->stopped_td = td; 1586 ep->stopped_trb = event_trb; 1587 return 0; 1588 } else { 1589 if (trb_comp_code == COMP_STALL) { 1590 /* The transfer is completed from the driver's 1591 * perspective, but we need to issue a set dequeue 1592 * command for this stalled endpoint to move the dequeue 1593 * pointer past the TD. We can't do that here because 1594 * the halt condition must be cleared first. Let the 1595 * USB class driver clear the stall later. 1596 */ 1597 ep->stopped_td = td; 1598 ep->stopped_trb = event_trb; 1599 ep->stopped_stream = ep_ring->stream_id; 1600 } else if (xhci_requires_manual_halt_cleanup(xhci, 1601 ep_ctx, trb_comp_code)) { 1602 /* Other types of errors halt the endpoint, but the 1603 * class driver doesn't call usb_reset_endpoint() unless 1604 * the error is -EPIPE. Clear the halted status in the 1605 * xHCI hardware manually. 1606 */ 1607 xhci_cleanup_halted_endpoint(xhci, 1608 slot_id, ep_index, ep_ring->stream_id, 1609 td, event_trb); 1610 } else { 1611 /* Update ring dequeue pointer */ 1612 while (ep_ring->dequeue != td->last_trb) 1613 inc_deq(xhci, ep_ring); 1614 inc_deq(xhci, ep_ring); 1615 } 1616 1617 td_cleanup: 1618 /* Clean up the endpoint's TD list */ 1619 urb = td->urb; 1620 urb_priv = urb->hcpriv; 1621 1622 /* Do one last check of the actual transfer length. 1623 * If the host controller said we transferred more data than 1624 * the buffer length, urb->actual_length will be a very big 1625 * number (since it's unsigned). Play it safe and say we didn't 1626 * transfer anything. 1627 */ 1628 if (urb->actual_length > urb->transfer_buffer_length) { 1629 xhci_warn(xhci, "URB transfer length is wrong, " 1630 "xHC issue? req. len = %u, " 1631 "act. len = %u\n", 1632 urb->transfer_buffer_length, 1633 urb->actual_length); 1634 urb->actual_length = 0; 1635 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1636 *status = -EREMOTEIO; 1637 else 1638 *status = 0; 1639 } 1640 list_del_init(&td->td_list); 1641 /* Was this TD slated to be cancelled but completed anyway? */ 1642 if (!list_empty(&td->cancelled_td_list)) 1643 list_del_init(&td->cancelled_td_list); 1644 1645 urb_priv->td_cnt++; 1646 /* Giveback the urb when all the tds are completed */ 1647 if (urb_priv->td_cnt == urb_priv->length) { 1648 ret = 1; 1649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1652 == 0) { 1653 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1654 usb_amd_quirk_pll_enable(); 1655 } 1656 } 1657 } 1658 } 1659 1660 return ret; 1661 } 1662 1663 /* 1664 * Process control tds, update urb status and actual_length. 1665 */ 1666 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1667 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1668 struct xhci_virt_ep *ep, int *status) 1669 { 1670 struct xhci_virt_device *xdev; 1671 struct xhci_ring *ep_ring; 1672 unsigned int slot_id; 1673 int ep_index; 1674 struct xhci_ep_ctx *ep_ctx; 1675 u32 trb_comp_code; 1676 1677 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1678 xdev = xhci->devs[slot_id]; 1679 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1680 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1681 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1682 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1683 1684 switch (trb_comp_code) { 1685 case COMP_SUCCESS: 1686 if (event_trb == ep_ring->dequeue) { 1687 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1688 "without IOC set??\n"); 1689 *status = -ESHUTDOWN; 1690 } else if (event_trb != td->last_trb) { 1691 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1692 "without IOC set??\n"); 1693 *status = -ESHUTDOWN; 1694 } else { 1695 *status = 0; 1696 } 1697 break; 1698 case COMP_SHORT_TX: 1699 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1700 *status = -EREMOTEIO; 1701 else 1702 *status = 0; 1703 break; 1704 case COMP_STOP_INVAL: 1705 case COMP_STOP: 1706 return finish_td(xhci, td, event_trb, event, ep, status, false); 1707 default: 1708 if (!xhci_requires_manual_halt_cleanup(xhci, 1709 ep_ctx, trb_comp_code)) 1710 break; 1711 xhci_dbg(xhci, "TRB error code %u, " 1712 "halted endpoint index = %u\n", 1713 trb_comp_code, ep_index); 1714 /* else fall through */ 1715 case COMP_STALL: 1716 /* Did we transfer part of the data (middle) phase? */ 1717 if (event_trb != ep_ring->dequeue && 1718 event_trb != td->last_trb) 1719 td->urb->actual_length = 1720 td->urb->transfer_buffer_length 1721 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1722 else 1723 td->urb->actual_length = 0; 1724 1725 xhci_cleanup_halted_endpoint(xhci, 1726 slot_id, ep_index, 0, td, event_trb); 1727 return finish_td(xhci, td, event_trb, event, ep, status, true); 1728 } 1729 /* 1730 * Did we transfer any data, despite the errors that might have 1731 * happened? I.e. did we get past the setup stage? 1732 */ 1733 if (event_trb != ep_ring->dequeue) { 1734 /* The event was for the status stage */ 1735 if (event_trb == td->last_trb) { 1736 if (td->urb->actual_length != 0) { 1737 /* Don't overwrite a previously set error code 1738 */ 1739 if ((*status == -EINPROGRESS || *status == 0) && 1740 (td->urb->transfer_flags 1741 & URB_SHORT_NOT_OK)) 1742 /* Did we already see a short data 1743 * stage? */ 1744 *status = -EREMOTEIO; 1745 } else { 1746 td->urb->actual_length = 1747 td->urb->transfer_buffer_length; 1748 } 1749 } else { 1750 /* Maybe the event was for the data stage? */ 1751 td->urb->actual_length = 1752 td->urb->transfer_buffer_length - 1753 TRB_LEN(le32_to_cpu(event->transfer_len)); 1754 xhci_dbg(xhci, "Waiting for status " 1755 "stage event\n"); 1756 return 0; 1757 } 1758 } 1759 1760 return finish_td(xhci, td, event_trb, event, ep, status, false); 1761 } 1762 1763 /* 1764 * Process isochronous tds, update urb packet status and actual_length. 1765 */ 1766 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1767 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1768 struct xhci_virt_ep *ep, int *status) 1769 { 1770 struct xhci_ring *ep_ring; 1771 struct urb_priv *urb_priv; 1772 int idx; 1773 int len = 0; 1774 union xhci_trb *cur_trb; 1775 struct xhci_segment *cur_seg; 1776 struct usb_iso_packet_descriptor *frame; 1777 u32 trb_comp_code; 1778 bool skip_td = false; 1779 1780 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1781 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1782 urb_priv = td->urb->hcpriv; 1783 idx = urb_priv->td_cnt; 1784 frame = &td->urb->iso_frame_desc[idx]; 1785 1786 /* handle completion code */ 1787 switch (trb_comp_code) { 1788 case COMP_SUCCESS: 1789 frame->status = 0; 1790 break; 1791 case COMP_SHORT_TX: 1792 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1793 -EREMOTEIO : 0; 1794 break; 1795 case COMP_BW_OVER: 1796 frame->status = -ECOMM; 1797 skip_td = true; 1798 break; 1799 case COMP_BUFF_OVER: 1800 case COMP_BABBLE: 1801 frame->status = -EOVERFLOW; 1802 skip_td = true; 1803 break; 1804 case COMP_DEV_ERR: 1805 case COMP_STALL: 1806 frame->status = -EPROTO; 1807 skip_td = true; 1808 break; 1809 case COMP_STOP: 1810 case COMP_STOP_INVAL: 1811 break; 1812 default: 1813 frame->status = -1; 1814 break; 1815 } 1816 1817 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1818 frame->actual_length = frame->length; 1819 td->urb->actual_length += frame->length; 1820 } else { 1821 for (cur_trb = ep_ring->dequeue, 1822 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1823 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1824 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1825 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1826 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1827 } 1828 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1829 TRB_LEN(le32_to_cpu(event->transfer_len)); 1830 1831 if (trb_comp_code != COMP_STOP_INVAL) { 1832 frame->actual_length = len; 1833 td->urb->actual_length += len; 1834 } 1835 } 1836 1837 return finish_td(xhci, td, event_trb, event, ep, status, false); 1838 } 1839 1840 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1841 struct xhci_transfer_event *event, 1842 struct xhci_virt_ep *ep, int *status) 1843 { 1844 struct xhci_ring *ep_ring; 1845 struct urb_priv *urb_priv; 1846 struct usb_iso_packet_descriptor *frame; 1847 int idx; 1848 1849 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1850 urb_priv = td->urb->hcpriv; 1851 idx = urb_priv->td_cnt; 1852 frame = &td->urb->iso_frame_desc[idx]; 1853 1854 /* The transfer is partly done. */ 1855 frame->status = -EXDEV; 1856 1857 /* calc actual length */ 1858 frame->actual_length = 0; 1859 1860 /* Update ring dequeue pointer */ 1861 while (ep_ring->dequeue != td->last_trb) 1862 inc_deq(xhci, ep_ring); 1863 inc_deq(xhci, ep_ring); 1864 1865 return finish_td(xhci, td, NULL, event, ep, status, true); 1866 } 1867 1868 /* 1869 * Process bulk and interrupt tds, update urb status and actual_length. 1870 */ 1871 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1872 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1873 struct xhci_virt_ep *ep, int *status) 1874 { 1875 struct xhci_ring *ep_ring; 1876 union xhci_trb *cur_trb; 1877 struct xhci_segment *cur_seg; 1878 u32 trb_comp_code; 1879 1880 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1881 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1882 1883 switch (trb_comp_code) { 1884 case COMP_SUCCESS: 1885 /* Double check that the HW transferred everything. */ 1886 if (event_trb != td->last_trb) { 1887 xhci_warn(xhci, "WARN Successful completion " 1888 "on short TX\n"); 1889 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1890 *status = -EREMOTEIO; 1891 else 1892 *status = 0; 1893 } else { 1894 *status = 0; 1895 } 1896 break; 1897 case COMP_SHORT_TX: 1898 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1899 *status = -EREMOTEIO; 1900 else 1901 *status = 0; 1902 break; 1903 default: 1904 /* Others already handled above */ 1905 break; 1906 } 1907 if (trb_comp_code == COMP_SHORT_TX) 1908 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1909 "%d bytes untransferred\n", 1910 td->urb->ep->desc.bEndpointAddress, 1911 td->urb->transfer_buffer_length, 1912 TRB_LEN(le32_to_cpu(event->transfer_len))); 1913 /* Fast path - was this the last TRB in the TD for this URB? */ 1914 if (event_trb == td->last_trb) { 1915 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1916 td->urb->actual_length = 1917 td->urb->transfer_buffer_length - 1918 TRB_LEN(le32_to_cpu(event->transfer_len)); 1919 if (td->urb->transfer_buffer_length < 1920 td->urb->actual_length) { 1921 xhci_warn(xhci, "HC gave bad length " 1922 "of %d bytes left\n", 1923 TRB_LEN(le32_to_cpu(event->transfer_len))); 1924 td->urb->actual_length = 0; 1925 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1926 *status = -EREMOTEIO; 1927 else 1928 *status = 0; 1929 } 1930 /* Don't overwrite a previously set error code */ 1931 if (*status == -EINPROGRESS) { 1932 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1933 *status = -EREMOTEIO; 1934 else 1935 *status = 0; 1936 } 1937 } else { 1938 td->urb->actual_length = 1939 td->urb->transfer_buffer_length; 1940 /* Ignore a short packet completion if the 1941 * untransferred length was zero. 1942 */ 1943 if (*status == -EREMOTEIO) 1944 *status = 0; 1945 } 1946 } else { 1947 /* Slow path - walk the list, starting from the dequeue 1948 * pointer, to get the actual length transferred. 1949 */ 1950 td->urb->actual_length = 0; 1951 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1952 cur_trb != event_trb; 1953 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1954 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1955 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1956 td->urb->actual_length += 1957 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1958 } 1959 /* If the ring didn't stop on a Link or No-op TRB, add 1960 * in the actual bytes transferred from the Normal TRB 1961 */ 1962 if (trb_comp_code != COMP_STOP_INVAL) 1963 td->urb->actual_length += 1964 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1965 TRB_LEN(le32_to_cpu(event->transfer_len)); 1966 } 1967 1968 return finish_td(xhci, td, event_trb, event, ep, status, false); 1969 } 1970 1971 /* 1972 * If this function returns an error condition, it means it got a Transfer 1973 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1974 * At this point, the host controller is probably hosed and should be reset. 1975 */ 1976 static int handle_tx_event(struct xhci_hcd *xhci, 1977 struct xhci_transfer_event *event) 1978 { 1979 struct xhci_virt_device *xdev; 1980 struct xhci_virt_ep *ep; 1981 struct xhci_ring *ep_ring; 1982 unsigned int slot_id; 1983 int ep_index; 1984 struct xhci_td *td = NULL; 1985 dma_addr_t event_dma; 1986 struct xhci_segment *event_seg; 1987 union xhci_trb *event_trb; 1988 struct urb *urb = NULL; 1989 int status = -EINPROGRESS; 1990 struct urb_priv *urb_priv; 1991 struct xhci_ep_ctx *ep_ctx; 1992 struct list_head *tmp; 1993 u32 trb_comp_code; 1994 int ret = 0; 1995 int td_num = 0; 1996 1997 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1998 xdev = xhci->devs[slot_id]; 1999 if (!xdev) { 2000 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2001 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2002 (unsigned long long) xhci_trb_virt_to_dma( 2003 xhci->event_ring->deq_seg, 2004 xhci->event_ring->dequeue), 2005 lower_32_bits(le64_to_cpu(event->buffer)), 2006 upper_32_bits(le64_to_cpu(event->buffer)), 2007 le32_to_cpu(event->transfer_len), 2008 le32_to_cpu(event->flags)); 2009 xhci_dbg(xhci, "Event ring:\n"); 2010 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2011 return -ENODEV; 2012 } 2013 2014 /* Endpoint ID is 1 based, our index is zero based */ 2015 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2016 ep = &xdev->eps[ep_index]; 2017 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2018 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2019 if (!ep_ring || 2020 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2021 EP_STATE_DISABLED) { 2022 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2023 "or incorrect stream ring\n"); 2024 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2025 (unsigned long long) xhci_trb_virt_to_dma( 2026 xhci->event_ring->deq_seg, 2027 xhci->event_ring->dequeue), 2028 lower_32_bits(le64_to_cpu(event->buffer)), 2029 upper_32_bits(le64_to_cpu(event->buffer)), 2030 le32_to_cpu(event->transfer_len), 2031 le32_to_cpu(event->flags)); 2032 xhci_dbg(xhci, "Event ring:\n"); 2033 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2034 return -ENODEV; 2035 } 2036 2037 /* Count current td numbers if ep->skip is set */ 2038 if (ep->skip) { 2039 list_for_each(tmp, &ep_ring->td_list) 2040 td_num++; 2041 } 2042 2043 event_dma = le64_to_cpu(event->buffer); 2044 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2045 /* Look for common error cases */ 2046 switch (trb_comp_code) { 2047 /* Skip codes that require special handling depending on 2048 * transfer type 2049 */ 2050 case COMP_SUCCESS: 2051 case COMP_SHORT_TX: 2052 break; 2053 case COMP_STOP: 2054 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2055 break; 2056 case COMP_STOP_INVAL: 2057 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2058 break; 2059 case COMP_STALL: 2060 xhci_dbg(xhci, "Stalled endpoint\n"); 2061 ep->ep_state |= EP_HALTED; 2062 status = -EPIPE; 2063 break; 2064 case COMP_TRB_ERR: 2065 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2066 status = -EILSEQ; 2067 break; 2068 case COMP_SPLIT_ERR: 2069 case COMP_TX_ERR: 2070 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2071 status = -EPROTO; 2072 break; 2073 case COMP_BABBLE: 2074 xhci_dbg(xhci, "Babble error on endpoint\n"); 2075 status = -EOVERFLOW; 2076 break; 2077 case COMP_DB_ERR: 2078 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2079 status = -ENOSR; 2080 break; 2081 case COMP_BW_OVER: 2082 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2083 break; 2084 case COMP_BUFF_OVER: 2085 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2086 break; 2087 case COMP_UNDERRUN: 2088 /* 2089 * When the Isoch ring is empty, the xHC will generate 2090 * a Ring Overrun Event for IN Isoch endpoint or Ring 2091 * Underrun Event for OUT Isoch endpoint. 2092 */ 2093 xhci_dbg(xhci, "underrun event on endpoint\n"); 2094 if (!list_empty(&ep_ring->td_list)) 2095 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2096 "still with TDs queued?\n", 2097 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2098 ep_index); 2099 goto cleanup; 2100 case COMP_OVERRUN: 2101 xhci_dbg(xhci, "overrun event on endpoint\n"); 2102 if (!list_empty(&ep_ring->td_list)) 2103 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2104 "still with TDs queued?\n", 2105 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2106 ep_index); 2107 goto cleanup; 2108 case COMP_DEV_ERR: 2109 xhci_warn(xhci, "WARN: detect an incompatible device"); 2110 status = -EPROTO; 2111 break; 2112 case COMP_MISSED_INT: 2113 /* 2114 * When encounter missed service error, one or more isoc tds 2115 * may be missed by xHC. 2116 * Set skip flag of the ep_ring; Complete the missed tds as 2117 * short transfer when process the ep_ring next time. 2118 */ 2119 ep->skip = true; 2120 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2121 goto cleanup; 2122 default: 2123 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2124 status = 0; 2125 break; 2126 } 2127 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2128 "busted\n"); 2129 goto cleanup; 2130 } 2131 2132 do { 2133 /* This TRB should be in the TD at the head of this ring's 2134 * TD list. 2135 */ 2136 if (list_empty(&ep_ring->td_list)) { 2137 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2138 "with no TDs queued?\n", 2139 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2140 ep_index); 2141 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2142 (le32_to_cpu(event->flags) & 2143 TRB_TYPE_BITMASK)>>10); 2144 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2145 if (ep->skip) { 2146 ep->skip = false; 2147 xhci_dbg(xhci, "td_list is empty while skip " 2148 "flag set. Clear skip flag.\n"); 2149 } 2150 ret = 0; 2151 goto cleanup; 2152 } 2153 2154 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2155 if (ep->skip && td_num == 0) { 2156 ep->skip = false; 2157 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2158 "Clear skip flag.\n"); 2159 ret = 0; 2160 goto cleanup; 2161 } 2162 2163 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2164 if (ep->skip) 2165 td_num--; 2166 2167 /* Is this a TRB in the currently executing TD? */ 2168 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2169 td->last_trb, event_dma); 2170 2171 /* 2172 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2173 * is not in the current TD pointed by ep_ring->dequeue because 2174 * that the hardware dequeue pointer still at the previous TRB 2175 * of the current TD. The previous TRB maybe a Link TD or the 2176 * last TRB of the previous TD. The command completion handle 2177 * will take care the rest. 2178 */ 2179 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2180 ret = 0; 2181 goto cleanup; 2182 } 2183 2184 if (!event_seg) { 2185 if (!ep->skip || 2186 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2187 /* Some host controllers give a spurious 2188 * successful event after a short transfer. 2189 * Ignore it. 2190 */ 2191 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2192 ep_ring->last_td_was_short) { 2193 ep_ring->last_td_was_short = false; 2194 ret = 0; 2195 goto cleanup; 2196 } 2197 /* HC is busted, give up! */ 2198 xhci_err(xhci, 2199 "ERROR Transfer event TRB DMA ptr not " 2200 "part of current TD\n"); 2201 return -ESHUTDOWN; 2202 } 2203 2204 ret = skip_isoc_td(xhci, td, event, ep, &status); 2205 goto cleanup; 2206 } 2207 if (trb_comp_code == COMP_SHORT_TX) 2208 ep_ring->last_td_was_short = true; 2209 else 2210 ep_ring->last_td_was_short = false; 2211 2212 if (ep->skip) { 2213 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2214 ep->skip = false; 2215 } 2216 2217 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2218 sizeof(*event_trb)]; 2219 /* 2220 * No-op TRB should not trigger interrupts. 2221 * If event_trb is a no-op TRB, it means the 2222 * corresponding TD has been cancelled. Just ignore 2223 * the TD. 2224 */ 2225 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2226 xhci_dbg(xhci, 2227 "event_trb is a no-op TRB. Skip it\n"); 2228 goto cleanup; 2229 } 2230 2231 /* Now update the urb's actual_length and give back to 2232 * the core 2233 */ 2234 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2235 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2236 &status); 2237 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2238 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2239 &status); 2240 else 2241 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2242 ep, &status); 2243 2244 cleanup: 2245 /* 2246 * Do not update event ring dequeue pointer if ep->skip is set. 2247 * Will roll back to continue process missed tds. 2248 */ 2249 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2250 inc_deq(xhci, xhci->event_ring); 2251 } 2252 2253 if (ret) { 2254 urb = td->urb; 2255 urb_priv = urb->hcpriv; 2256 /* Leave the TD around for the reset endpoint function 2257 * to use(but only if it's not a control endpoint, 2258 * since we already queued the Set TR dequeue pointer 2259 * command for stalled control endpoints). 2260 */ 2261 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2262 (trb_comp_code != COMP_STALL && 2263 trb_comp_code != COMP_BABBLE)) 2264 xhci_urb_free_priv(xhci, urb_priv); 2265 2266 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2267 if ((urb->actual_length != urb->transfer_buffer_length && 2268 (urb->transfer_flags & 2269 URB_SHORT_NOT_OK)) || 2270 (status != 0 && 2271 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2272 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2273 "expected = %x, status = %d\n", 2274 urb, urb->actual_length, 2275 urb->transfer_buffer_length, 2276 status); 2277 spin_unlock(&xhci->lock); 2278 /* EHCI, UHCI, and OHCI always unconditionally set the 2279 * urb->status of an isochronous endpoint to 0. 2280 */ 2281 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2282 status = 0; 2283 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2284 spin_lock(&xhci->lock); 2285 } 2286 2287 /* 2288 * If ep->skip is set, it means there are missed tds on the 2289 * endpoint ring need to take care of. 2290 * Process them as short transfer until reach the td pointed by 2291 * the event. 2292 */ 2293 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2294 2295 return 0; 2296 } 2297 2298 /* 2299 * This function handles all OS-owned events on the event ring. It may drop 2300 * xhci->lock between event processing (e.g. to pass up port status changes). 2301 * Returns >0 for "possibly more events to process" (caller should call again), 2302 * otherwise 0 if done. In future, <0 returns should indicate error code. 2303 */ 2304 static int xhci_handle_event(struct xhci_hcd *xhci) 2305 { 2306 union xhci_trb *event; 2307 int update_ptrs = 1; 2308 int ret; 2309 2310 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2311 xhci->error_bitmask |= 1 << 1; 2312 return 0; 2313 } 2314 2315 event = xhci->event_ring->dequeue; 2316 /* Does the HC or OS own the TRB? */ 2317 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2318 xhci->event_ring->cycle_state) { 2319 xhci->error_bitmask |= 1 << 2; 2320 return 0; 2321 } 2322 2323 /* 2324 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2325 * speculative reads of the event's flags/data below. 2326 */ 2327 rmb(); 2328 /* FIXME: Handle more event types. */ 2329 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2330 case TRB_TYPE(TRB_COMPLETION): 2331 handle_cmd_completion(xhci, &event->event_cmd); 2332 break; 2333 case TRB_TYPE(TRB_PORT_STATUS): 2334 handle_port_status(xhci, event); 2335 update_ptrs = 0; 2336 break; 2337 case TRB_TYPE(TRB_TRANSFER): 2338 ret = handle_tx_event(xhci, &event->trans_event); 2339 if (ret < 0) 2340 xhci->error_bitmask |= 1 << 9; 2341 else 2342 update_ptrs = 0; 2343 break; 2344 case TRB_TYPE(TRB_DEV_NOTE): 2345 handle_device_notification(xhci, event); 2346 break; 2347 default: 2348 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2349 TRB_TYPE(48)) 2350 handle_vendor_event(xhci, event); 2351 else 2352 xhci->error_bitmask |= 1 << 3; 2353 } 2354 /* Any of the above functions may drop and re-acquire the lock, so check 2355 * to make sure a watchdog timer didn't mark the host as non-responsive. 2356 */ 2357 if (xhci->xhc_state & XHCI_STATE_DYING) { 2358 xhci_dbg(xhci, "xHCI host dying, returning from " 2359 "event handler.\n"); 2360 return 0; 2361 } 2362 2363 if (update_ptrs) 2364 /* Update SW event ring dequeue pointer */ 2365 inc_deq(xhci, xhci->event_ring); 2366 2367 /* Are there more items on the event ring? Caller will call us again to 2368 * check. 2369 */ 2370 return 1; 2371 } 2372 2373 /* 2374 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2375 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2376 * indicators of an event TRB error, but we check the status *first* to be safe. 2377 */ 2378 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2379 { 2380 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2381 u32 status; 2382 union xhci_trb *trb; 2383 u64 temp_64; 2384 union xhci_trb *event_ring_deq; 2385 dma_addr_t deq; 2386 2387 spin_lock(&xhci->lock); 2388 trb = xhci->event_ring->dequeue; 2389 /* Check if the xHC generated the interrupt, or the irq is shared */ 2390 status = xhci_readl(xhci, &xhci->op_regs->status); 2391 if (status == 0xffffffff) 2392 goto hw_died; 2393 2394 if (!(status & STS_EINT)) { 2395 spin_unlock(&xhci->lock); 2396 return IRQ_NONE; 2397 } 2398 if (status & STS_FATAL) { 2399 xhci_warn(xhci, "WARNING: Host System Error\n"); 2400 xhci_halt(xhci); 2401 hw_died: 2402 spin_unlock(&xhci->lock); 2403 return -ESHUTDOWN; 2404 } 2405 2406 /* 2407 * Clear the op reg interrupt status first, 2408 * so we can receive interrupts from other MSI-X interrupters. 2409 * Write 1 to clear the interrupt status. 2410 */ 2411 status |= STS_EINT; 2412 xhci_writel(xhci, status, &xhci->op_regs->status); 2413 /* FIXME when MSI-X is supported and there are multiple vectors */ 2414 /* Clear the MSI-X event interrupt status */ 2415 2416 if (hcd->irq) { 2417 u32 irq_pending; 2418 /* Acknowledge the PCI interrupt */ 2419 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2420 irq_pending |= IMAN_IP; 2421 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2422 } 2423 2424 if (xhci->xhc_state & XHCI_STATE_DYING) { 2425 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2426 "Shouldn't IRQs be disabled?\n"); 2427 /* Clear the event handler busy flag (RW1C); 2428 * the event ring should be empty. 2429 */ 2430 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2431 xhci_write_64(xhci, temp_64 | ERST_EHB, 2432 &xhci->ir_set->erst_dequeue); 2433 spin_unlock(&xhci->lock); 2434 2435 return IRQ_HANDLED; 2436 } 2437 2438 event_ring_deq = xhci->event_ring->dequeue; 2439 /* FIXME this should be a delayed service routine 2440 * that clears the EHB. 2441 */ 2442 while (xhci_handle_event(xhci) > 0) {} 2443 2444 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2445 /* If necessary, update the HW's version of the event ring deq ptr. */ 2446 if (event_ring_deq != xhci->event_ring->dequeue) { 2447 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2448 xhci->event_ring->dequeue); 2449 if (deq == 0) 2450 xhci_warn(xhci, "WARN something wrong with SW event " 2451 "ring dequeue ptr.\n"); 2452 /* Update HC event ring dequeue pointer */ 2453 temp_64 &= ERST_PTR_MASK; 2454 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2455 } 2456 2457 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2458 temp_64 |= ERST_EHB; 2459 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2460 2461 spin_unlock(&xhci->lock); 2462 2463 return IRQ_HANDLED; 2464 } 2465 2466 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2467 { 2468 return xhci_irq(hcd); 2469 } 2470 2471 /**** Endpoint Ring Operations ****/ 2472 2473 /* 2474 * Generic function for queueing a TRB on a ring. 2475 * The caller must have checked to make sure there's room on the ring. 2476 * 2477 * @more_trbs_coming: Will you enqueue more TRBs before calling 2478 * prepare_transfer()? 2479 */ 2480 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2481 bool more_trbs_coming, 2482 u32 field1, u32 field2, u32 field3, u32 field4) 2483 { 2484 struct xhci_generic_trb *trb; 2485 2486 trb = &ring->enqueue->generic; 2487 trb->field[0] = cpu_to_le32(field1); 2488 trb->field[1] = cpu_to_le32(field2); 2489 trb->field[2] = cpu_to_le32(field3); 2490 trb->field[3] = cpu_to_le32(field4); 2491 inc_enq(xhci, ring, more_trbs_coming); 2492 } 2493 2494 /* 2495 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2496 * FIXME allocate segments if the ring is full. 2497 */ 2498 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2499 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2500 { 2501 unsigned int num_trbs_needed; 2502 2503 /* Make sure the endpoint has been added to xHC schedule */ 2504 switch (ep_state) { 2505 case EP_STATE_DISABLED: 2506 /* 2507 * USB core changed config/interfaces without notifying us, 2508 * or hardware is reporting the wrong state. 2509 */ 2510 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2511 return -ENOENT; 2512 case EP_STATE_ERROR: 2513 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2514 /* FIXME event handling code for error needs to clear it */ 2515 /* XXX not sure if this should be -ENOENT or not */ 2516 return -EINVAL; 2517 case EP_STATE_HALTED: 2518 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2519 case EP_STATE_STOPPED: 2520 case EP_STATE_RUNNING: 2521 break; 2522 default: 2523 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2524 /* 2525 * FIXME issue Configure Endpoint command to try to get the HC 2526 * back into a known state. 2527 */ 2528 return -EINVAL; 2529 } 2530 2531 while (1) { 2532 if (room_on_ring(xhci, ep_ring, num_trbs)) 2533 break; 2534 2535 if (ep_ring == xhci->cmd_ring) { 2536 xhci_err(xhci, "Do not support expand command ring\n"); 2537 return -ENOMEM; 2538 } 2539 2540 xhci_dbg(xhci, "ERROR no room on ep ring, " 2541 "try ring expansion\n"); 2542 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2543 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2544 mem_flags)) { 2545 xhci_err(xhci, "Ring expansion failed\n"); 2546 return -ENOMEM; 2547 } 2548 }; 2549 2550 if (enqueue_is_link_trb(ep_ring)) { 2551 struct xhci_ring *ring = ep_ring; 2552 union xhci_trb *next; 2553 2554 next = ring->enqueue; 2555 2556 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2557 /* If we're not dealing with 0.95 hardware or isoc rings 2558 * on AMD 0.96 host, clear the chain bit. 2559 */ 2560 if (!xhci_link_trb_quirk(xhci) && 2561 !(ring->type == TYPE_ISOC && 2562 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2563 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2564 else 2565 next->link.control |= cpu_to_le32(TRB_CHAIN); 2566 2567 wmb(); 2568 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2569 2570 /* Toggle the cycle bit after the last ring segment. */ 2571 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2572 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2573 } 2574 ring->enq_seg = ring->enq_seg->next; 2575 ring->enqueue = ring->enq_seg->trbs; 2576 next = ring->enqueue; 2577 } 2578 } 2579 2580 return 0; 2581 } 2582 2583 static int prepare_transfer(struct xhci_hcd *xhci, 2584 struct xhci_virt_device *xdev, 2585 unsigned int ep_index, 2586 unsigned int stream_id, 2587 unsigned int num_trbs, 2588 struct urb *urb, 2589 unsigned int td_index, 2590 gfp_t mem_flags) 2591 { 2592 int ret; 2593 struct urb_priv *urb_priv; 2594 struct xhci_td *td; 2595 struct xhci_ring *ep_ring; 2596 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2597 2598 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2599 if (!ep_ring) { 2600 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2601 stream_id); 2602 return -EINVAL; 2603 } 2604 2605 ret = prepare_ring(xhci, ep_ring, 2606 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2607 num_trbs, mem_flags); 2608 if (ret) 2609 return ret; 2610 2611 urb_priv = urb->hcpriv; 2612 td = urb_priv->td[td_index]; 2613 2614 INIT_LIST_HEAD(&td->td_list); 2615 INIT_LIST_HEAD(&td->cancelled_td_list); 2616 2617 if (td_index == 0) { 2618 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2619 if (unlikely(ret)) 2620 return ret; 2621 } 2622 2623 td->urb = urb; 2624 /* Add this TD to the tail of the endpoint ring's TD list */ 2625 list_add_tail(&td->td_list, &ep_ring->td_list); 2626 td->start_seg = ep_ring->enq_seg; 2627 td->first_trb = ep_ring->enqueue; 2628 2629 urb_priv->td[td_index] = td; 2630 2631 return 0; 2632 } 2633 2634 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2635 { 2636 int num_sgs, num_trbs, running_total, temp, i; 2637 struct scatterlist *sg; 2638 2639 sg = NULL; 2640 num_sgs = urb->num_mapped_sgs; 2641 temp = urb->transfer_buffer_length; 2642 2643 num_trbs = 0; 2644 for_each_sg(urb->sg, sg, num_sgs, i) { 2645 unsigned int len = sg_dma_len(sg); 2646 2647 /* Scatter gather list entries may cross 64KB boundaries */ 2648 running_total = TRB_MAX_BUFF_SIZE - 2649 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2650 running_total &= TRB_MAX_BUFF_SIZE - 1; 2651 if (running_total != 0) 2652 num_trbs++; 2653 2654 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2655 while (running_total < sg_dma_len(sg) && running_total < temp) { 2656 num_trbs++; 2657 running_total += TRB_MAX_BUFF_SIZE; 2658 } 2659 len = min_t(int, len, temp); 2660 temp -= len; 2661 if (temp == 0) 2662 break; 2663 } 2664 return num_trbs; 2665 } 2666 2667 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2668 { 2669 if (num_trbs != 0) 2670 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2671 "TRBs, %d left\n", __func__, 2672 urb->ep->desc.bEndpointAddress, num_trbs); 2673 if (running_total != urb->transfer_buffer_length) 2674 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2675 "queued %#x (%d), asked for %#x (%d)\n", 2676 __func__, 2677 urb->ep->desc.bEndpointAddress, 2678 running_total, running_total, 2679 urb->transfer_buffer_length, 2680 urb->transfer_buffer_length); 2681 } 2682 2683 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2684 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2685 struct xhci_generic_trb *start_trb) 2686 { 2687 /* 2688 * Pass all the TRBs to the hardware at once and make sure this write 2689 * isn't reordered. 2690 */ 2691 wmb(); 2692 if (start_cycle) 2693 start_trb->field[3] |= cpu_to_le32(start_cycle); 2694 else 2695 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2696 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2697 } 2698 2699 /* 2700 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2701 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2702 * (comprised of sg list entries) can take several service intervals to 2703 * transmit. 2704 */ 2705 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2706 struct urb *urb, int slot_id, unsigned int ep_index) 2707 { 2708 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2709 xhci->devs[slot_id]->out_ctx, ep_index); 2710 int xhci_interval; 2711 int ep_interval; 2712 2713 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2714 ep_interval = urb->interval; 2715 /* Convert to microframes */ 2716 if (urb->dev->speed == USB_SPEED_LOW || 2717 urb->dev->speed == USB_SPEED_FULL) 2718 ep_interval *= 8; 2719 /* FIXME change this to a warning and a suggestion to use the new API 2720 * to set the polling interval (once the API is added). 2721 */ 2722 if (xhci_interval != ep_interval) { 2723 if (printk_ratelimit()) 2724 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2725 " (%d microframe%s) than xHCI " 2726 "(%d microframe%s)\n", 2727 ep_interval, 2728 ep_interval == 1 ? "" : "s", 2729 xhci_interval, 2730 xhci_interval == 1 ? "" : "s"); 2731 urb->interval = xhci_interval; 2732 /* Convert back to frames for LS/FS devices */ 2733 if (urb->dev->speed == USB_SPEED_LOW || 2734 urb->dev->speed == USB_SPEED_FULL) 2735 urb->interval /= 8; 2736 } 2737 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 2738 } 2739 2740 /* 2741 * The TD size is the number of bytes remaining in the TD (including this TRB), 2742 * right shifted by 10. 2743 * It must fit in bits 21:17, so it can't be bigger than 31. 2744 */ 2745 static u32 xhci_td_remainder(unsigned int remainder) 2746 { 2747 u32 max = (1 << (21 - 17 + 1)) - 1; 2748 2749 if ((remainder >> 10) >= max) 2750 return max << 17; 2751 else 2752 return (remainder >> 10) << 17; 2753 } 2754 2755 /* 2756 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2757 * the TD (*not* including this TRB). 2758 * 2759 * Total TD packet count = total_packet_count = 2760 * roundup(TD size in bytes / wMaxPacketSize) 2761 * 2762 * Packets transferred up to and including this TRB = packets_transferred = 2763 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2764 * 2765 * TD size = total_packet_count - packets_transferred 2766 * 2767 * It must fit in bits 21:17, so it can't be bigger than 31. 2768 */ 2769 2770 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2771 unsigned int total_packet_count, struct urb *urb) 2772 { 2773 int packets_transferred; 2774 2775 /* One TRB with a zero-length data packet. */ 2776 if (running_total == 0 && trb_buff_len == 0) 2777 return 0; 2778 2779 /* All the TRB queueing functions don't count the current TRB in 2780 * running_total. 2781 */ 2782 packets_transferred = (running_total + trb_buff_len) / 2783 usb_endpoint_maxp(&urb->ep->desc); 2784 2785 return xhci_td_remainder(total_packet_count - packets_transferred); 2786 } 2787 2788 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2789 struct urb *urb, int slot_id, unsigned int ep_index) 2790 { 2791 struct xhci_ring *ep_ring; 2792 unsigned int num_trbs; 2793 struct urb_priv *urb_priv; 2794 struct xhci_td *td; 2795 struct scatterlist *sg; 2796 int num_sgs; 2797 int trb_buff_len, this_sg_len, running_total; 2798 unsigned int total_packet_count; 2799 bool first_trb; 2800 u64 addr; 2801 bool more_trbs_coming; 2802 2803 struct xhci_generic_trb *start_trb; 2804 int start_cycle; 2805 2806 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2807 if (!ep_ring) 2808 return -EINVAL; 2809 2810 num_trbs = count_sg_trbs_needed(xhci, urb); 2811 num_sgs = urb->num_mapped_sgs; 2812 total_packet_count = roundup(urb->transfer_buffer_length, 2813 usb_endpoint_maxp(&urb->ep->desc)); 2814 2815 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2816 ep_index, urb->stream_id, 2817 num_trbs, urb, 0, mem_flags); 2818 if (trb_buff_len < 0) 2819 return trb_buff_len; 2820 2821 urb_priv = urb->hcpriv; 2822 td = urb_priv->td[0]; 2823 2824 /* 2825 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2826 * until we've finished creating all the other TRBs. The ring's cycle 2827 * state may change as we enqueue the other TRBs, so save it too. 2828 */ 2829 start_trb = &ep_ring->enqueue->generic; 2830 start_cycle = ep_ring->cycle_state; 2831 2832 running_total = 0; 2833 /* 2834 * How much data is in the first TRB? 2835 * 2836 * There are three forces at work for TRB buffer pointers and lengths: 2837 * 1. We don't want to walk off the end of this sg-list entry buffer. 2838 * 2. The transfer length that the driver requested may be smaller than 2839 * the amount of memory allocated for this scatter-gather list. 2840 * 3. TRBs buffers can't cross 64KB boundaries. 2841 */ 2842 sg = urb->sg; 2843 addr = (u64) sg_dma_address(sg); 2844 this_sg_len = sg_dma_len(sg); 2845 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2846 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2847 if (trb_buff_len > urb->transfer_buffer_length) 2848 trb_buff_len = urb->transfer_buffer_length; 2849 2850 first_trb = true; 2851 /* Queue the first TRB, even if it's zero-length */ 2852 do { 2853 u32 field = 0; 2854 u32 length_field = 0; 2855 u32 remainder = 0; 2856 2857 /* Don't change the cycle bit of the first TRB until later */ 2858 if (first_trb) { 2859 first_trb = false; 2860 if (start_cycle == 0) 2861 field |= 0x1; 2862 } else 2863 field |= ep_ring->cycle_state; 2864 2865 /* Chain all the TRBs together; clear the chain bit in the last 2866 * TRB to indicate it's the last TRB in the chain. 2867 */ 2868 if (num_trbs > 1) { 2869 field |= TRB_CHAIN; 2870 } else { 2871 /* FIXME - add check for ZERO_PACKET flag before this */ 2872 td->last_trb = ep_ring->enqueue; 2873 field |= TRB_IOC; 2874 } 2875 2876 /* Only set interrupt on short packet for IN endpoints */ 2877 if (usb_urb_dir_in(urb)) 2878 field |= TRB_ISP; 2879 2880 if (TRB_MAX_BUFF_SIZE - 2881 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2882 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2883 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2884 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2885 (unsigned int) addr + trb_buff_len); 2886 } 2887 2888 /* Set the TRB length, TD size, and interrupter fields. */ 2889 if (xhci->hci_version < 0x100) { 2890 remainder = xhci_td_remainder( 2891 urb->transfer_buffer_length - 2892 running_total); 2893 } else { 2894 remainder = xhci_v1_0_td_remainder(running_total, 2895 trb_buff_len, total_packet_count, urb); 2896 } 2897 length_field = TRB_LEN(trb_buff_len) | 2898 remainder | 2899 TRB_INTR_TARGET(0); 2900 2901 if (num_trbs > 1) 2902 more_trbs_coming = true; 2903 else 2904 more_trbs_coming = false; 2905 queue_trb(xhci, ep_ring, more_trbs_coming, 2906 lower_32_bits(addr), 2907 upper_32_bits(addr), 2908 length_field, 2909 field | TRB_TYPE(TRB_NORMAL)); 2910 --num_trbs; 2911 running_total += trb_buff_len; 2912 2913 /* Calculate length for next transfer -- 2914 * Are we done queueing all the TRBs for this sg entry? 2915 */ 2916 this_sg_len -= trb_buff_len; 2917 if (this_sg_len == 0) { 2918 --num_sgs; 2919 if (num_sgs == 0) 2920 break; 2921 sg = sg_next(sg); 2922 addr = (u64) sg_dma_address(sg); 2923 this_sg_len = sg_dma_len(sg); 2924 } else { 2925 addr += trb_buff_len; 2926 } 2927 2928 trb_buff_len = TRB_MAX_BUFF_SIZE - 2929 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2930 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2931 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2932 trb_buff_len = 2933 urb->transfer_buffer_length - running_total; 2934 } while (running_total < urb->transfer_buffer_length); 2935 2936 check_trb_math(urb, num_trbs, running_total); 2937 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2938 start_cycle, start_trb); 2939 return 0; 2940 } 2941 2942 /* This is very similar to what ehci-q.c qtd_fill() does */ 2943 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2944 struct urb *urb, int slot_id, unsigned int ep_index) 2945 { 2946 struct xhci_ring *ep_ring; 2947 struct urb_priv *urb_priv; 2948 struct xhci_td *td; 2949 int num_trbs; 2950 struct xhci_generic_trb *start_trb; 2951 bool first_trb; 2952 bool more_trbs_coming; 2953 int start_cycle; 2954 u32 field, length_field; 2955 2956 int running_total, trb_buff_len, ret; 2957 unsigned int total_packet_count; 2958 u64 addr; 2959 2960 if (urb->num_sgs) 2961 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2962 2963 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2964 if (!ep_ring) 2965 return -EINVAL; 2966 2967 num_trbs = 0; 2968 /* How much data is (potentially) left before the 64KB boundary? */ 2969 running_total = TRB_MAX_BUFF_SIZE - 2970 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2971 running_total &= TRB_MAX_BUFF_SIZE - 1; 2972 2973 /* If there's some data on this 64KB chunk, or we have to send a 2974 * zero-length transfer, we need at least one TRB 2975 */ 2976 if (running_total != 0 || urb->transfer_buffer_length == 0) 2977 num_trbs++; 2978 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2979 while (running_total < urb->transfer_buffer_length) { 2980 num_trbs++; 2981 running_total += TRB_MAX_BUFF_SIZE; 2982 } 2983 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2984 2985 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2986 ep_index, urb->stream_id, 2987 num_trbs, urb, 0, mem_flags); 2988 if (ret < 0) 2989 return ret; 2990 2991 urb_priv = urb->hcpriv; 2992 td = urb_priv->td[0]; 2993 2994 /* 2995 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2996 * until we've finished creating all the other TRBs. The ring's cycle 2997 * state may change as we enqueue the other TRBs, so save it too. 2998 */ 2999 start_trb = &ep_ring->enqueue->generic; 3000 start_cycle = ep_ring->cycle_state; 3001 3002 running_total = 0; 3003 total_packet_count = roundup(urb->transfer_buffer_length, 3004 usb_endpoint_maxp(&urb->ep->desc)); 3005 /* How much data is in the first TRB? */ 3006 addr = (u64) urb->transfer_dma; 3007 trb_buff_len = TRB_MAX_BUFF_SIZE - 3008 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3009 if (trb_buff_len > urb->transfer_buffer_length) 3010 trb_buff_len = urb->transfer_buffer_length; 3011 3012 first_trb = true; 3013 3014 /* Queue the first TRB, even if it's zero-length */ 3015 do { 3016 u32 remainder = 0; 3017 field = 0; 3018 3019 /* Don't change the cycle bit of the first TRB until later */ 3020 if (first_trb) { 3021 first_trb = false; 3022 if (start_cycle == 0) 3023 field |= 0x1; 3024 } else 3025 field |= ep_ring->cycle_state; 3026 3027 /* Chain all the TRBs together; clear the chain bit in the last 3028 * TRB to indicate it's the last TRB in the chain. 3029 */ 3030 if (num_trbs > 1) { 3031 field |= TRB_CHAIN; 3032 } else { 3033 /* FIXME - add check for ZERO_PACKET flag before this */ 3034 td->last_trb = ep_ring->enqueue; 3035 field |= TRB_IOC; 3036 } 3037 3038 /* Only set interrupt on short packet for IN endpoints */ 3039 if (usb_urb_dir_in(urb)) 3040 field |= TRB_ISP; 3041 3042 /* Set the TRB length, TD size, and interrupter fields. */ 3043 if (xhci->hci_version < 0x100) { 3044 remainder = xhci_td_remainder( 3045 urb->transfer_buffer_length - 3046 running_total); 3047 } else { 3048 remainder = xhci_v1_0_td_remainder(running_total, 3049 trb_buff_len, total_packet_count, urb); 3050 } 3051 length_field = TRB_LEN(trb_buff_len) | 3052 remainder | 3053 TRB_INTR_TARGET(0); 3054 3055 if (num_trbs > 1) 3056 more_trbs_coming = true; 3057 else 3058 more_trbs_coming = false; 3059 queue_trb(xhci, ep_ring, more_trbs_coming, 3060 lower_32_bits(addr), 3061 upper_32_bits(addr), 3062 length_field, 3063 field | TRB_TYPE(TRB_NORMAL)); 3064 --num_trbs; 3065 running_total += trb_buff_len; 3066 3067 /* Calculate length for next transfer */ 3068 addr += trb_buff_len; 3069 trb_buff_len = urb->transfer_buffer_length - running_total; 3070 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3071 trb_buff_len = TRB_MAX_BUFF_SIZE; 3072 } while (running_total < urb->transfer_buffer_length); 3073 3074 check_trb_math(urb, num_trbs, running_total); 3075 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3076 start_cycle, start_trb); 3077 return 0; 3078 } 3079 3080 /* Caller must have locked xhci->lock */ 3081 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3082 struct urb *urb, int slot_id, unsigned int ep_index) 3083 { 3084 struct xhci_ring *ep_ring; 3085 int num_trbs; 3086 int ret; 3087 struct usb_ctrlrequest *setup; 3088 struct xhci_generic_trb *start_trb; 3089 int start_cycle; 3090 u32 field, length_field; 3091 struct urb_priv *urb_priv; 3092 struct xhci_td *td; 3093 3094 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3095 if (!ep_ring) 3096 return -EINVAL; 3097 3098 /* 3099 * Need to copy setup packet into setup TRB, so we can't use the setup 3100 * DMA address. 3101 */ 3102 if (!urb->setup_packet) 3103 return -EINVAL; 3104 3105 /* 1 TRB for setup, 1 for status */ 3106 num_trbs = 2; 3107 /* 3108 * Don't need to check if we need additional event data and normal TRBs, 3109 * since data in control transfers will never get bigger than 16MB 3110 * XXX: can we get a buffer that crosses 64KB boundaries? 3111 */ 3112 if (urb->transfer_buffer_length > 0) 3113 num_trbs++; 3114 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3115 ep_index, urb->stream_id, 3116 num_trbs, urb, 0, mem_flags); 3117 if (ret < 0) 3118 return ret; 3119 3120 urb_priv = urb->hcpriv; 3121 td = urb_priv->td[0]; 3122 3123 /* 3124 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3125 * until we've finished creating all the other TRBs. The ring's cycle 3126 * state may change as we enqueue the other TRBs, so save it too. 3127 */ 3128 start_trb = &ep_ring->enqueue->generic; 3129 start_cycle = ep_ring->cycle_state; 3130 3131 /* Queue setup TRB - see section 6.4.1.2.1 */ 3132 /* FIXME better way to translate setup_packet into two u32 fields? */ 3133 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3134 field = 0; 3135 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3136 if (start_cycle == 0) 3137 field |= 0x1; 3138 3139 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3140 if (xhci->hci_version == 0x100) { 3141 if (urb->transfer_buffer_length > 0) { 3142 if (setup->bRequestType & USB_DIR_IN) 3143 field |= TRB_TX_TYPE(TRB_DATA_IN); 3144 else 3145 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3146 } 3147 } 3148 3149 queue_trb(xhci, ep_ring, true, 3150 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3151 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3152 TRB_LEN(8) | TRB_INTR_TARGET(0), 3153 /* Immediate data in pointer */ 3154 field); 3155 3156 /* If there's data, queue data TRBs */ 3157 /* Only set interrupt on short packet for IN endpoints */ 3158 if (usb_urb_dir_in(urb)) 3159 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3160 else 3161 field = TRB_TYPE(TRB_DATA); 3162 3163 length_field = TRB_LEN(urb->transfer_buffer_length) | 3164 xhci_td_remainder(urb->transfer_buffer_length) | 3165 TRB_INTR_TARGET(0); 3166 if (urb->transfer_buffer_length > 0) { 3167 if (setup->bRequestType & USB_DIR_IN) 3168 field |= TRB_DIR_IN; 3169 queue_trb(xhci, ep_ring, true, 3170 lower_32_bits(urb->transfer_dma), 3171 upper_32_bits(urb->transfer_dma), 3172 length_field, 3173 field | ep_ring->cycle_state); 3174 } 3175 3176 /* Save the DMA address of the last TRB in the TD */ 3177 td->last_trb = ep_ring->enqueue; 3178 3179 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3180 /* If the device sent data, the status stage is an OUT transfer */ 3181 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3182 field = 0; 3183 else 3184 field = TRB_DIR_IN; 3185 queue_trb(xhci, ep_ring, false, 3186 0, 3187 0, 3188 TRB_INTR_TARGET(0), 3189 /* Event on completion */ 3190 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3191 3192 giveback_first_trb(xhci, slot_id, ep_index, 0, 3193 start_cycle, start_trb); 3194 return 0; 3195 } 3196 3197 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3198 struct urb *urb, int i) 3199 { 3200 int num_trbs = 0; 3201 u64 addr, td_len; 3202 3203 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3204 td_len = urb->iso_frame_desc[i].length; 3205 3206 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3207 TRB_MAX_BUFF_SIZE); 3208 if (num_trbs == 0) 3209 num_trbs++; 3210 3211 return num_trbs; 3212 } 3213 3214 /* 3215 * The transfer burst count field of the isochronous TRB defines the number of 3216 * bursts that are required to move all packets in this TD. Only SuperSpeed 3217 * devices can burst up to bMaxBurst number of packets per service interval. 3218 * This field is zero based, meaning a value of zero in the field means one 3219 * burst. Basically, for everything but SuperSpeed devices, this field will be 3220 * zero. Only xHCI 1.0 host controllers support this field. 3221 */ 3222 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3223 struct usb_device *udev, 3224 struct urb *urb, unsigned int total_packet_count) 3225 { 3226 unsigned int max_burst; 3227 3228 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3229 return 0; 3230 3231 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3232 return roundup(total_packet_count, max_burst + 1) - 1; 3233 } 3234 3235 /* 3236 * Returns the number of packets in the last "burst" of packets. This field is 3237 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3238 * the last burst packet count is equal to the total number of packets in the 3239 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3240 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3241 * contain 1 to (bMaxBurst + 1) packets. 3242 */ 3243 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3244 struct usb_device *udev, 3245 struct urb *urb, unsigned int total_packet_count) 3246 { 3247 unsigned int max_burst; 3248 unsigned int residue; 3249 3250 if (xhci->hci_version < 0x100) 3251 return 0; 3252 3253 switch (udev->speed) { 3254 case USB_SPEED_SUPER: 3255 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3256 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3257 residue = total_packet_count % (max_burst + 1); 3258 /* If residue is zero, the last burst contains (max_burst + 1) 3259 * number of packets, but the TLBPC field is zero-based. 3260 */ 3261 if (residue == 0) 3262 return max_burst; 3263 return residue - 1; 3264 default: 3265 if (total_packet_count == 0) 3266 return 0; 3267 return total_packet_count - 1; 3268 } 3269 } 3270 3271 /* This is for isoc transfer */ 3272 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3273 struct urb *urb, int slot_id, unsigned int ep_index) 3274 { 3275 struct xhci_ring *ep_ring; 3276 struct urb_priv *urb_priv; 3277 struct xhci_td *td; 3278 int num_tds, trbs_per_td; 3279 struct xhci_generic_trb *start_trb; 3280 bool first_trb; 3281 int start_cycle; 3282 u32 field, length_field; 3283 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3284 u64 start_addr, addr; 3285 int i, j; 3286 bool more_trbs_coming; 3287 3288 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3289 3290 num_tds = urb->number_of_packets; 3291 if (num_tds < 1) { 3292 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3293 return -EINVAL; 3294 } 3295 3296 start_addr = (u64) urb->transfer_dma; 3297 start_trb = &ep_ring->enqueue->generic; 3298 start_cycle = ep_ring->cycle_state; 3299 3300 urb_priv = urb->hcpriv; 3301 /* Queue the first TRB, even if it's zero-length */ 3302 for (i = 0; i < num_tds; i++) { 3303 unsigned int total_packet_count; 3304 unsigned int burst_count; 3305 unsigned int residue; 3306 3307 first_trb = true; 3308 running_total = 0; 3309 addr = start_addr + urb->iso_frame_desc[i].offset; 3310 td_len = urb->iso_frame_desc[i].length; 3311 td_remain_len = td_len; 3312 total_packet_count = roundup(td_len, 3313 usb_endpoint_maxp(&urb->ep->desc)); 3314 /* A zero-length transfer still involves at least one packet. */ 3315 if (total_packet_count == 0) 3316 total_packet_count++; 3317 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3318 total_packet_count); 3319 residue = xhci_get_last_burst_packet_count(xhci, 3320 urb->dev, urb, total_packet_count); 3321 3322 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3323 3324 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3325 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3326 if (ret < 0) { 3327 if (i == 0) 3328 return ret; 3329 goto cleanup; 3330 } 3331 3332 td = urb_priv->td[i]; 3333 for (j = 0; j < trbs_per_td; j++) { 3334 u32 remainder = 0; 3335 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3336 3337 if (first_trb) { 3338 /* Queue the isoc TRB */ 3339 field |= TRB_TYPE(TRB_ISOC); 3340 /* Assume URB_ISO_ASAP is set */ 3341 field |= TRB_SIA; 3342 if (i == 0) { 3343 if (start_cycle == 0) 3344 field |= 0x1; 3345 } else 3346 field |= ep_ring->cycle_state; 3347 first_trb = false; 3348 } else { 3349 /* Queue other normal TRBs */ 3350 field |= TRB_TYPE(TRB_NORMAL); 3351 field |= ep_ring->cycle_state; 3352 } 3353 3354 /* Only set interrupt on short packet for IN EPs */ 3355 if (usb_urb_dir_in(urb)) 3356 field |= TRB_ISP; 3357 3358 /* Chain all the TRBs together; clear the chain bit in 3359 * the last TRB to indicate it's the last TRB in the 3360 * chain. 3361 */ 3362 if (j < trbs_per_td - 1) { 3363 field |= TRB_CHAIN; 3364 more_trbs_coming = true; 3365 } else { 3366 td->last_trb = ep_ring->enqueue; 3367 field |= TRB_IOC; 3368 if (xhci->hci_version == 0x100) { 3369 /* Set BEI bit except for the last td */ 3370 if (i < num_tds - 1) 3371 field |= TRB_BEI; 3372 } 3373 more_trbs_coming = false; 3374 } 3375 3376 /* Calculate TRB length */ 3377 trb_buff_len = TRB_MAX_BUFF_SIZE - 3378 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3379 if (trb_buff_len > td_remain_len) 3380 trb_buff_len = td_remain_len; 3381 3382 /* Set the TRB length, TD size, & interrupter fields. */ 3383 if (xhci->hci_version < 0x100) { 3384 remainder = xhci_td_remainder( 3385 td_len - running_total); 3386 } else { 3387 remainder = xhci_v1_0_td_remainder( 3388 running_total, trb_buff_len, 3389 total_packet_count, urb); 3390 } 3391 length_field = TRB_LEN(trb_buff_len) | 3392 remainder | 3393 TRB_INTR_TARGET(0); 3394 3395 queue_trb(xhci, ep_ring, more_trbs_coming, 3396 lower_32_bits(addr), 3397 upper_32_bits(addr), 3398 length_field, 3399 field); 3400 running_total += trb_buff_len; 3401 3402 addr += trb_buff_len; 3403 td_remain_len -= trb_buff_len; 3404 } 3405 3406 /* Check TD length */ 3407 if (running_total != td_len) { 3408 xhci_err(xhci, "ISOC TD length unmatch\n"); 3409 ret = -EINVAL; 3410 goto cleanup; 3411 } 3412 } 3413 3414 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3415 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3416 usb_amd_quirk_pll_disable(); 3417 } 3418 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3419 3420 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3421 start_cycle, start_trb); 3422 return 0; 3423 cleanup: 3424 /* Clean up a partially enqueued isoc transfer. */ 3425 3426 for (i--; i >= 0; i--) 3427 list_del_init(&urb_priv->td[i]->td_list); 3428 3429 /* Use the first TD as a temporary variable to turn the TDs we've queued 3430 * into No-ops with a software-owned cycle bit. That way the hardware 3431 * won't accidentally start executing bogus TDs when we partially 3432 * overwrite them. td->first_trb and td->start_seg are already set. 3433 */ 3434 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3435 /* Every TRB except the first & last will have its cycle bit flipped. */ 3436 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3437 3438 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3439 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3440 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3441 ep_ring->cycle_state = start_cycle; 3442 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3443 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3444 return ret; 3445 } 3446 3447 /* 3448 * Check transfer ring to guarantee there is enough room for the urb. 3449 * Update ISO URB start_frame and interval. 3450 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3451 * update the urb->start_frame by now. 3452 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3453 */ 3454 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3455 struct urb *urb, int slot_id, unsigned int ep_index) 3456 { 3457 struct xhci_virt_device *xdev; 3458 struct xhci_ring *ep_ring; 3459 struct xhci_ep_ctx *ep_ctx; 3460 int start_frame; 3461 int xhci_interval; 3462 int ep_interval; 3463 int num_tds, num_trbs, i; 3464 int ret; 3465 3466 xdev = xhci->devs[slot_id]; 3467 ep_ring = xdev->eps[ep_index].ring; 3468 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3469 3470 num_trbs = 0; 3471 num_tds = urb->number_of_packets; 3472 for (i = 0; i < num_tds; i++) 3473 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3474 3475 /* Check the ring to guarantee there is enough room for the whole urb. 3476 * Do not insert any td of the urb to the ring if the check failed. 3477 */ 3478 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3479 num_trbs, mem_flags); 3480 if (ret) 3481 return ret; 3482 3483 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3484 start_frame &= 0x3fff; 3485 3486 urb->start_frame = start_frame; 3487 if (urb->dev->speed == USB_SPEED_LOW || 3488 urb->dev->speed == USB_SPEED_FULL) 3489 urb->start_frame >>= 3; 3490 3491 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3492 ep_interval = urb->interval; 3493 /* Convert to microframes */ 3494 if (urb->dev->speed == USB_SPEED_LOW || 3495 urb->dev->speed == USB_SPEED_FULL) 3496 ep_interval *= 8; 3497 /* FIXME change this to a warning and a suggestion to use the new API 3498 * to set the polling interval (once the API is added). 3499 */ 3500 if (xhci_interval != ep_interval) { 3501 if (printk_ratelimit()) 3502 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3503 " (%d microframe%s) than xHCI " 3504 "(%d microframe%s)\n", 3505 ep_interval, 3506 ep_interval == 1 ? "" : "s", 3507 xhci_interval, 3508 xhci_interval == 1 ? "" : "s"); 3509 urb->interval = xhci_interval; 3510 /* Convert back to frames for LS/FS devices */ 3511 if (urb->dev->speed == USB_SPEED_LOW || 3512 urb->dev->speed == USB_SPEED_FULL) 3513 urb->interval /= 8; 3514 } 3515 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3516 3517 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3518 } 3519 3520 /**** Command Ring Operations ****/ 3521 3522 /* Generic function for queueing a command TRB on the command ring. 3523 * Check to make sure there's room on the command ring for one command TRB. 3524 * Also check that there's room reserved for commands that must not fail. 3525 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3526 * then only check for the number of reserved spots. 3527 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3528 * because the command event handler may want to resubmit a failed command. 3529 */ 3530 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3531 u32 field3, u32 field4, bool command_must_succeed) 3532 { 3533 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3534 int ret; 3535 3536 if (!command_must_succeed) 3537 reserved_trbs++; 3538 3539 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3540 reserved_trbs, GFP_ATOMIC); 3541 if (ret < 0) { 3542 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3543 if (command_must_succeed) 3544 xhci_err(xhci, "ERR: Reserved TRB counting for " 3545 "unfailable commands failed.\n"); 3546 return ret; 3547 } 3548 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3549 field4 | xhci->cmd_ring->cycle_state); 3550 return 0; 3551 } 3552 3553 /* Queue a slot enable or disable request on the command ring */ 3554 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3555 { 3556 return queue_command(xhci, 0, 0, 0, 3557 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3558 } 3559 3560 /* Queue an address device command TRB */ 3561 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3562 u32 slot_id) 3563 { 3564 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3565 upper_32_bits(in_ctx_ptr), 0, 3566 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3567 false); 3568 } 3569 3570 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3571 u32 field1, u32 field2, u32 field3, u32 field4) 3572 { 3573 return queue_command(xhci, field1, field2, field3, field4, false); 3574 } 3575 3576 /* Queue a reset device command TRB */ 3577 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3578 { 3579 return queue_command(xhci, 0, 0, 0, 3580 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3581 false); 3582 } 3583 3584 /* Queue a configure endpoint command TRB */ 3585 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3586 u32 slot_id, bool command_must_succeed) 3587 { 3588 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3589 upper_32_bits(in_ctx_ptr), 0, 3590 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3591 command_must_succeed); 3592 } 3593 3594 /* Queue an evaluate context command TRB */ 3595 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3596 u32 slot_id) 3597 { 3598 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3599 upper_32_bits(in_ctx_ptr), 0, 3600 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3601 false); 3602 } 3603 3604 /* 3605 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3606 * activity on an endpoint that is about to be suspended. 3607 */ 3608 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3609 unsigned int ep_index, int suspend) 3610 { 3611 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3612 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3613 u32 type = TRB_TYPE(TRB_STOP_RING); 3614 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3615 3616 return queue_command(xhci, 0, 0, 0, 3617 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3618 } 3619 3620 /* Set Transfer Ring Dequeue Pointer command. 3621 * This should not be used for endpoints that have streams enabled. 3622 */ 3623 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3624 unsigned int ep_index, unsigned int stream_id, 3625 struct xhci_segment *deq_seg, 3626 union xhci_trb *deq_ptr, u32 cycle_state) 3627 { 3628 dma_addr_t addr; 3629 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3630 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3631 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3632 u32 type = TRB_TYPE(TRB_SET_DEQ); 3633 struct xhci_virt_ep *ep; 3634 3635 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3636 if (addr == 0) { 3637 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3638 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3639 deq_seg, deq_ptr); 3640 return 0; 3641 } 3642 ep = &xhci->devs[slot_id]->eps[ep_index]; 3643 if ((ep->ep_state & SET_DEQ_PENDING)) { 3644 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3645 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3646 return 0; 3647 } 3648 ep->queued_deq_seg = deq_seg; 3649 ep->queued_deq_ptr = deq_ptr; 3650 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3651 upper_32_bits(addr), trb_stream_id, 3652 trb_slot_id | trb_ep_index | type, false); 3653 } 3654 3655 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3656 unsigned int ep_index) 3657 { 3658 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3659 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3660 u32 type = TRB_TYPE(TRB_RESET_EP); 3661 3662 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3663 false); 3664 } 3665