xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 63dc02bd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 		struct xhci_virt_device *virt_dev,
73 		struct xhci_event_cmd *event);
74 
75 /*
76  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77  * address of the TRB.
78  */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 		union xhci_trb *trb)
81 {
82 	unsigned long segment_offset;
83 
84 	if (!seg || !trb || trb < seg->trbs)
85 		return 0;
86 	/* offset in TRBs */
87 	segment_offset = trb - seg->trbs;
88 	if (segment_offset > TRBS_PER_SEGMENT)
89 		return 0;
90 	return seg->dma + (segment_offset * sizeof(*trb));
91 }
92 
93 /* Does this link TRB point to the first segment in a ring,
94  * or was the previous TRB the last TRB on the last segment in the ERST?
95  */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 		struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 	if (ring == xhci->event_ring)
100 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 			(seg->next == xhci->event_ring->first_seg);
102 	else
103 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107  * segment?  I.e. would the updated event TRB pointer step off the end of the
108  * event seg?
109  */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 		struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 	if (ring == xhci->event_ring)
114 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 	else
116 		return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118 
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 	struct xhci_link_trb *link = &ring->enqueue->link;
122 	return TRB_TYPE_LINK_LE32(link->control);
123 }
124 
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
127  * effect the ring dequeue or enqueue pointers.
128  */
129 static void next_trb(struct xhci_hcd *xhci,
130 		struct xhci_ring *ring,
131 		struct xhci_segment **seg,
132 		union xhci_trb **trb)
133 {
134 	if (last_trb(xhci, ring, *seg, *trb)) {
135 		*seg = (*seg)->next;
136 		*trb = ((*seg)->trbs);
137 	} else {
138 		(*trb)++;
139 	}
140 }
141 
142 /*
143  * See Cycle bit rules. SW is the consumer for the event ring only.
144  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
145  */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
147 {
148 	union xhci_trb *next;
149 	unsigned long long addr;
150 
151 	ring->deq_updates++;
152 
153 	/* If this is not event ring, there is one more usable TRB */
154 	if (ring->type != TYPE_EVENT &&
155 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
156 		ring->num_trbs_free++;
157 	next = ++(ring->dequeue);
158 
159 	/* Update the dequeue pointer further if that was a link TRB or we're at
160 	 * the end of an event ring segment (which doesn't have link TRBS)
161 	 */
162 	while (last_trb(xhci, ring, ring->deq_seg, next)) {
163 		if (ring->type == TYPE_EVENT &&	last_trb_on_last_seg(xhci,
164 				ring, ring->deq_seg, next)) {
165 			ring->cycle_state = (ring->cycle_state ? 0 : 1);
166 		}
167 		ring->deq_seg = ring->deq_seg->next;
168 		ring->dequeue = ring->deq_seg->trbs;
169 		next = ring->dequeue;
170 	}
171 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
172 }
173 
174 /*
175  * See Cycle bit rules. SW is the consumer for the event ring only.
176  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
177  *
178  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
179  * chain bit is set), then set the chain bit in all the following link TRBs.
180  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
181  * have their chain bit cleared (so that each Link TRB is a separate TD).
182  *
183  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
184  * set, but other sections talk about dealing with the chain bit set.  This was
185  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
186  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
187  *
188  * @more_trbs_coming:	Will you enqueue more TRBs before calling
189  *			prepare_transfer()?
190  */
191 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
192 			bool more_trbs_coming)
193 {
194 	u32 chain;
195 	union xhci_trb *next;
196 	unsigned long long addr;
197 
198 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
199 	/* If this is not event ring, there is one less usable TRB */
200 	if (ring->type != TYPE_EVENT &&
201 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
202 		ring->num_trbs_free--;
203 	next = ++(ring->enqueue);
204 
205 	ring->enq_updates++;
206 	/* Update the dequeue pointer further if that was a link TRB or we're at
207 	 * the end of an event ring segment (which doesn't have link TRBS)
208 	 */
209 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 		if (ring->type != TYPE_EVENT) {
211 			/*
212 			 * If the caller doesn't plan on enqueueing more
213 			 * TDs before ringing the doorbell, then we
214 			 * don't want to give the link TRB to the
215 			 * hardware just yet.  We'll give the link TRB
216 			 * back in prepare_ring() just before we enqueue
217 			 * the TD at the top of the ring.
218 			 */
219 			if (!chain && !more_trbs_coming)
220 				break;
221 
222 			/* If we're not dealing with 0.95 hardware or
223 			 * isoc rings on AMD 0.96 host,
224 			 * carry over the chain bit of the previous TRB
225 			 * (which may mean the chain bit is cleared).
226 			 */
227 			if (!(ring->type == TYPE_ISOC &&
228 					(xhci->quirks & XHCI_AMD_0x96_HOST))
229 						&& !xhci_link_trb_quirk(xhci)) {
230 				next->link.control &=
231 					cpu_to_le32(~TRB_CHAIN);
232 				next->link.control |=
233 					cpu_to_le32(chain);
234 			}
235 			/* Give this link TRB to the hardware */
236 			wmb();
237 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
238 
239 			/* Toggle the cycle bit after the last ring segment. */
240 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
241 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
242 			}
243 		}
244 		ring->enq_seg = ring->enq_seg->next;
245 		ring->enqueue = ring->enq_seg->trbs;
246 		next = ring->enqueue;
247 	}
248 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
249 }
250 
251 /*
252  * Check to see if there's room to enqueue num_trbs on the ring and make sure
253  * enqueue pointer will not advance into dequeue segment. See rules above.
254  */
255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 		unsigned int num_trbs)
257 {
258 	int num_trbs_in_deq_seg;
259 
260 	if (ring->num_trbs_free < num_trbs)
261 		return 0;
262 
263 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 			return 0;
267 	}
268 
269 	return 1;
270 }
271 
272 /* Ring the host controller doorbell after placing a command on the ring */
273 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274 {
275 	xhci_dbg(xhci, "// Ding dong!\n");
276 	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
277 	/* Flush PCI posted writes */
278 	xhci_readl(xhci, &xhci->dba->doorbell[0]);
279 }
280 
281 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
282 		unsigned int slot_id,
283 		unsigned int ep_index,
284 		unsigned int stream_id)
285 {
286 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
287 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
288 	unsigned int ep_state = ep->ep_state;
289 
290 	/* Don't ring the doorbell for this endpoint if there are pending
291 	 * cancellations because we don't want to interrupt processing.
292 	 * We don't want to restart any stream rings if there's a set dequeue
293 	 * pointer command pending because the device can choose to start any
294 	 * stream once the endpoint is on the HW schedule.
295 	 * FIXME - check all the stream rings for pending cancellations.
296 	 */
297 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
298 	    (ep_state & EP_HALTED))
299 		return;
300 	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
301 	/* The CPU has better things to do at this point than wait for a
302 	 * write-posting flush.  It'll get there soon enough.
303 	 */
304 }
305 
306 /* Ring the doorbell for any rings with pending URBs */
307 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
308 		unsigned int slot_id,
309 		unsigned int ep_index)
310 {
311 	unsigned int stream_id;
312 	struct xhci_virt_ep *ep;
313 
314 	ep = &xhci->devs[slot_id]->eps[ep_index];
315 
316 	/* A ring has pending URBs if its TD list is not empty */
317 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
318 		if (!(list_empty(&ep->ring->td_list)))
319 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
320 		return;
321 	}
322 
323 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
324 			stream_id++) {
325 		struct xhci_stream_info *stream_info = ep->stream_info;
326 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
327 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
328 						stream_id);
329 	}
330 }
331 
332 /*
333  * Find the segment that trb is in.  Start searching in start_seg.
334  * If we must move past a segment that has a link TRB with a toggle cycle state
335  * bit set, then we will toggle the value pointed at by cycle_state.
336  */
337 static struct xhci_segment *find_trb_seg(
338 		struct xhci_segment *start_seg,
339 		union xhci_trb	*trb, int *cycle_state)
340 {
341 	struct xhci_segment *cur_seg = start_seg;
342 	struct xhci_generic_trb *generic_trb;
343 
344 	while (cur_seg->trbs > trb ||
345 			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
346 		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
347 		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
348 			*cycle_state ^= 0x1;
349 		cur_seg = cur_seg->next;
350 		if (cur_seg == start_seg)
351 			/* Looped over the entire list.  Oops! */
352 			return NULL;
353 	}
354 	return cur_seg;
355 }
356 
357 
358 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
359 		unsigned int slot_id, unsigned int ep_index,
360 		unsigned int stream_id)
361 {
362 	struct xhci_virt_ep *ep;
363 
364 	ep = &xhci->devs[slot_id]->eps[ep_index];
365 	/* Common case: no streams */
366 	if (!(ep->ep_state & EP_HAS_STREAMS))
367 		return ep->ring;
368 
369 	if (stream_id == 0) {
370 		xhci_warn(xhci,
371 				"WARN: Slot ID %u, ep index %u has streams, "
372 				"but URB has no stream ID.\n",
373 				slot_id, ep_index);
374 		return NULL;
375 	}
376 
377 	if (stream_id < ep->stream_info->num_streams)
378 		return ep->stream_info->stream_rings[stream_id];
379 
380 	xhci_warn(xhci,
381 			"WARN: Slot ID %u, ep index %u has "
382 			"stream IDs 1 to %u allocated, "
383 			"but stream ID %u is requested.\n",
384 			slot_id, ep_index,
385 			ep->stream_info->num_streams - 1,
386 			stream_id);
387 	return NULL;
388 }
389 
390 /* Get the right ring for the given URB.
391  * If the endpoint supports streams, boundary check the URB's stream ID.
392  * If the endpoint doesn't support streams, return the singular endpoint ring.
393  */
394 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
395 		struct urb *urb)
396 {
397 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
398 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
399 }
400 
401 /*
402  * Move the xHC's endpoint ring dequeue pointer past cur_td.
403  * Record the new state of the xHC's endpoint ring dequeue segment,
404  * dequeue pointer, and new consumer cycle state in state.
405  * Update our internal representation of the ring's dequeue pointer.
406  *
407  * We do this in three jumps:
408  *  - First we update our new ring state to be the same as when the xHC stopped.
409  *  - Then we traverse the ring to find the segment that contains
410  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
411  *    any link TRBs with the toggle cycle bit set.
412  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
413  *    if we've moved it past a link TRB with the toggle cycle bit set.
414  *
415  * Some of the uses of xhci_generic_trb are grotty, but if they're done
416  * with correct __le32 accesses they should work fine.  Only users of this are
417  * in here.
418  */
419 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
420 		unsigned int slot_id, unsigned int ep_index,
421 		unsigned int stream_id, struct xhci_td *cur_td,
422 		struct xhci_dequeue_state *state)
423 {
424 	struct xhci_virt_device *dev = xhci->devs[slot_id];
425 	struct xhci_ring *ep_ring;
426 	struct xhci_generic_trb *trb;
427 	struct xhci_ep_ctx *ep_ctx;
428 	dma_addr_t addr;
429 
430 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
431 			ep_index, stream_id);
432 	if (!ep_ring) {
433 		xhci_warn(xhci, "WARN can't find new dequeue state "
434 				"for invalid stream ID %u.\n",
435 				stream_id);
436 		return;
437 	}
438 	state->new_cycle_state = 0;
439 	xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
440 	state->new_deq_seg = find_trb_seg(cur_td->start_seg,
441 			dev->eps[ep_index].stopped_trb,
442 			&state->new_cycle_state);
443 	if (!state->new_deq_seg) {
444 		WARN_ON(1);
445 		return;
446 	}
447 
448 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
449 	xhci_dbg(xhci, "Finding endpoint context\n");
450 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
451 	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
452 
453 	state->new_deq_ptr = cur_td->last_trb;
454 	xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
455 	state->new_deq_seg = find_trb_seg(state->new_deq_seg,
456 			state->new_deq_ptr,
457 			&state->new_cycle_state);
458 	if (!state->new_deq_seg) {
459 		WARN_ON(1);
460 		return;
461 	}
462 
463 	trb = &state->new_deq_ptr->generic;
464 	if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
465 	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
466 		state->new_cycle_state ^= 0x1;
467 	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
468 
469 	/*
470 	 * If there is only one segment in a ring, find_trb_seg()'s while loop
471 	 * will not run, and it will return before it has a chance to see if it
472 	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer
473 	 * ended just before the link TRB on a one-segment ring, or if the TD
474 	 * wrapped around the top of the ring, because it doesn't have the TD in
475 	 * question.  Look for the one-segment case where stalled TRB's address
476 	 * is greater than the new dequeue pointer address.
477 	 */
478 	if (ep_ring->first_seg == ep_ring->first_seg->next &&
479 			state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
480 		state->new_cycle_state ^= 0x1;
481 	xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
482 
483 	/* Don't update the ring cycle state for the producer (us). */
484 	xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
485 			state->new_deq_seg);
486 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
487 	xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
488 			(unsigned long long) addr);
489 }
490 
491 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
492  * (The last TRB actually points to the ring enqueue pointer, which is not part
493  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
494  */
495 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
496 		struct xhci_td *cur_td, bool flip_cycle)
497 {
498 	struct xhci_segment *cur_seg;
499 	union xhci_trb *cur_trb;
500 
501 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
502 			true;
503 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
504 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
505 			/* Unchain any chained Link TRBs, but
506 			 * leave the pointers intact.
507 			 */
508 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
509 			/* Flip the cycle bit (link TRBs can't be the first
510 			 * or last TRB).
511 			 */
512 			if (flip_cycle)
513 				cur_trb->generic.field[3] ^=
514 					cpu_to_le32(TRB_CYCLE);
515 			xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
516 			xhci_dbg(xhci, "Address = %p (0x%llx dma); "
517 					"in seg %p (0x%llx dma)\n",
518 					cur_trb,
519 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
520 					cur_seg,
521 					(unsigned long long)cur_seg->dma);
522 		} else {
523 			cur_trb->generic.field[0] = 0;
524 			cur_trb->generic.field[1] = 0;
525 			cur_trb->generic.field[2] = 0;
526 			/* Preserve only the cycle bit of this TRB */
527 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
528 			/* Flip the cycle bit except on the first or last TRB */
529 			if (flip_cycle && cur_trb != cur_td->first_trb &&
530 					cur_trb != cur_td->last_trb)
531 				cur_trb->generic.field[3] ^=
532 					cpu_to_le32(TRB_CYCLE);
533 			cur_trb->generic.field[3] |= cpu_to_le32(
534 				TRB_TYPE(TRB_TR_NOOP));
535 			xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
536 					(unsigned long long)
537 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
538 		}
539 		if (cur_trb == cur_td->last_trb)
540 			break;
541 	}
542 }
543 
544 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
545 		unsigned int ep_index, unsigned int stream_id,
546 		struct xhci_segment *deq_seg,
547 		union xhci_trb *deq_ptr, u32 cycle_state);
548 
549 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
550 		unsigned int slot_id, unsigned int ep_index,
551 		unsigned int stream_id,
552 		struct xhci_dequeue_state *deq_state)
553 {
554 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
555 
556 	xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
557 			"new deq ptr = %p (0x%llx dma), new cycle = %u\n",
558 			deq_state->new_deq_seg,
559 			(unsigned long long)deq_state->new_deq_seg->dma,
560 			deq_state->new_deq_ptr,
561 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
562 			deq_state->new_cycle_state);
563 	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
564 			deq_state->new_deq_seg,
565 			deq_state->new_deq_ptr,
566 			(u32) deq_state->new_cycle_state);
567 	/* Stop the TD queueing code from ringing the doorbell until
568 	 * this command completes.  The HC won't set the dequeue pointer
569 	 * if the ring is running, and ringing the doorbell starts the
570 	 * ring running.
571 	 */
572 	ep->ep_state |= SET_DEQ_PENDING;
573 }
574 
575 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
576 		struct xhci_virt_ep *ep)
577 {
578 	ep->ep_state &= ~EP_HALT_PENDING;
579 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
580 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
581 	 * (since we didn't successfully stop the watchdog timer).
582 	 */
583 	if (del_timer(&ep->stop_cmd_timer))
584 		ep->stop_cmds_pending--;
585 }
586 
587 /* Must be called with xhci->lock held in interrupt context */
588 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
589 		struct xhci_td *cur_td, int status, char *adjective)
590 {
591 	struct usb_hcd *hcd;
592 	struct urb	*urb;
593 	struct urb_priv	*urb_priv;
594 
595 	urb = cur_td->urb;
596 	urb_priv = urb->hcpriv;
597 	urb_priv->td_cnt++;
598 	hcd = bus_to_hcd(urb->dev->bus);
599 
600 	/* Only giveback urb when this is the last td in urb */
601 	if (urb_priv->td_cnt == urb_priv->length) {
602 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
603 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
604 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
605 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
606 					usb_amd_quirk_pll_enable();
607 			}
608 		}
609 		usb_hcd_unlink_urb_from_ep(hcd, urb);
610 
611 		spin_unlock(&xhci->lock);
612 		usb_hcd_giveback_urb(hcd, urb, status);
613 		xhci_urb_free_priv(xhci, urb_priv);
614 		spin_lock(&xhci->lock);
615 	}
616 }
617 
618 /*
619  * When we get a command completion for a Stop Endpoint Command, we need to
620  * unlink any cancelled TDs from the ring.  There are two ways to do that:
621  *
622  *  1. If the HW was in the middle of processing the TD that needs to be
623  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
624  *     in the TD with a Set Dequeue Pointer Command.
625  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
626  *     bit cleared) so that the HW will skip over them.
627  */
628 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
629 		union xhci_trb *trb, struct xhci_event_cmd *event)
630 {
631 	unsigned int slot_id;
632 	unsigned int ep_index;
633 	struct xhci_virt_device *virt_dev;
634 	struct xhci_ring *ep_ring;
635 	struct xhci_virt_ep *ep;
636 	struct list_head *entry;
637 	struct xhci_td *cur_td = NULL;
638 	struct xhci_td *last_unlinked_td;
639 
640 	struct xhci_dequeue_state deq_state;
641 
642 	if (unlikely(TRB_TO_SUSPEND_PORT(
643 			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
644 		slot_id = TRB_TO_SLOT_ID(
645 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
646 		virt_dev = xhci->devs[slot_id];
647 		if (virt_dev)
648 			handle_cmd_in_cmd_wait_list(xhci, virt_dev,
649 				event);
650 		else
651 			xhci_warn(xhci, "Stop endpoint command "
652 				"completion for disabled slot %u\n",
653 				slot_id);
654 		return;
655 	}
656 
657 	memset(&deq_state, 0, sizeof(deq_state));
658 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
659 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
660 	ep = &xhci->devs[slot_id]->eps[ep_index];
661 
662 	if (list_empty(&ep->cancelled_td_list)) {
663 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
664 		ep->stopped_td = NULL;
665 		ep->stopped_trb = NULL;
666 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
667 		return;
668 	}
669 
670 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
671 	 * We have the xHCI lock, so nothing can modify this list until we drop
672 	 * it.  We're also in the event handler, so we can't get re-interrupted
673 	 * if another Stop Endpoint command completes
674 	 */
675 	list_for_each(entry, &ep->cancelled_td_list) {
676 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
677 		xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
678 				(unsigned long long)xhci_trb_virt_to_dma(
679 					cur_td->start_seg, cur_td->first_trb));
680 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
681 		if (!ep_ring) {
682 			/* This shouldn't happen unless a driver is mucking
683 			 * with the stream ID after submission.  This will
684 			 * leave the TD on the hardware ring, and the hardware
685 			 * will try to execute it, and may access a buffer
686 			 * that has already been freed.  In the best case, the
687 			 * hardware will execute it, and the event handler will
688 			 * ignore the completion event for that TD, since it was
689 			 * removed from the td_list for that endpoint.  In
690 			 * short, don't muck with the stream ID after
691 			 * submission.
692 			 */
693 			xhci_warn(xhci, "WARN Cancelled URB %p "
694 					"has invalid stream ID %u.\n",
695 					cur_td->urb,
696 					cur_td->urb->stream_id);
697 			goto remove_finished_td;
698 		}
699 		/*
700 		 * If we stopped on the TD we need to cancel, then we have to
701 		 * move the xHC endpoint ring dequeue pointer past this TD.
702 		 */
703 		if (cur_td == ep->stopped_td)
704 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
705 					cur_td->urb->stream_id,
706 					cur_td, &deq_state);
707 		else
708 			td_to_noop(xhci, ep_ring, cur_td, false);
709 remove_finished_td:
710 		/*
711 		 * The event handler won't see a completion for this TD anymore,
712 		 * so remove it from the endpoint ring's TD list.  Keep it in
713 		 * the cancelled TD list for URB completion later.
714 		 */
715 		list_del_init(&cur_td->td_list);
716 	}
717 	last_unlinked_td = cur_td;
718 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
719 
720 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
721 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
722 		xhci_queue_new_dequeue_state(xhci,
723 				slot_id, ep_index,
724 				ep->stopped_td->urb->stream_id,
725 				&deq_state);
726 		xhci_ring_cmd_db(xhci);
727 	} else {
728 		/* Otherwise ring the doorbell(s) to restart queued transfers */
729 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
730 	}
731 	ep->stopped_td = NULL;
732 	ep->stopped_trb = NULL;
733 
734 	/*
735 	 * Drop the lock and complete the URBs in the cancelled TD list.
736 	 * New TDs to be cancelled might be added to the end of the list before
737 	 * we can complete all the URBs for the TDs we already unlinked.
738 	 * So stop when we've completed the URB for the last TD we unlinked.
739 	 */
740 	do {
741 		cur_td = list_entry(ep->cancelled_td_list.next,
742 				struct xhci_td, cancelled_td_list);
743 		list_del_init(&cur_td->cancelled_td_list);
744 
745 		/* Clean up the cancelled URB */
746 		/* Doesn't matter what we pass for status, since the core will
747 		 * just overwrite it (because the URB has been unlinked).
748 		 */
749 		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
750 
751 		/* Stop processing the cancelled list if the watchdog timer is
752 		 * running.
753 		 */
754 		if (xhci->xhc_state & XHCI_STATE_DYING)
755 			return;
756 	} while (cur_td != last_unlinked_td);
757 
758 	/* Return to the event handler with xhci->lock re-acquired */
759 }
760 
761 /* Watchdog timer function for when a stop endpoint command fails to complete.
762  * In this case, we assume the host controller is broken or dying or dead.  The
763  * host may still be completing some other events, so we have to be careful to
764  * let the event ring handler and the URB dequeueing/enqueueing functions know
765  * through xhci->state.
766  *
767  * The timer may also fire if the host takes a very long time to respond to the
768  * command, and the stop endpoint command completion handler cannot delete the
769  * timer before the timer function is called.  Another endpoint cancellation may
770  * sneak in before the timer function can grab the lock, and that may queue
771  * another stop endpoint command and add the timer back.  So we cannot use a
772  * simple flag to say whether there is a pending stop endpoint command for a
773  * particular endpoint.
774  *
775  * Instead we use a combination of that flag and a counter for the number of
776  * pending stop endpoint commands.  If the timer is the tail end of the last
777  * stop endpoint command, and the endpoint's command is still pending, we assume
778  * the host is dying.
779  */
780 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
781 {
782 	struct xhci_hcd *xhci;
783 	struct xhci_virt_ep *ep;
784 	struct xhci_virt_ep *temp_ep;
785 	struct xhci_ring *ring;
786 	struct xhci_td *cur_td;
787 	int ret, i, j;
788 	unsigned long flags;
789 
790 	ep = (struct xhci_virt_ep *) arg;
791 	xhci = ep->xhci;
792 
793 	spin_lock_irqsave(&xhci->lock, flags);
794 
795 	ep->stop_cmds_pending--;
796 	if (xhci->xhc_state & XHCI_STATE_DYING) {
797 		xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
798 				"xHCI as DYING, exiting.\n");
799 		spin_unlock_irqrestore(&xhci->lock, flags);
800 		return;
801 	}
802 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
803 		xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
804 				"exiting.\n");
805 		spin_unlock_irqrestore(&xhci->lock, flags);
806 		return;
807 	}
808 
809 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
810 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
811 	/* Oops, HC is dead or dying or at least not responding to the stop
812 	 * endpoint command.
813 	 */
814 	xhci->xhc_state |= XHCI_STATE_DYING;
815 	/* Disable interrupts from the host controller and start halting it */
816 	xhci_quiesce(xhci);
817 	spin_unlock_irqrestore(&xhci->lock, flags);
818 
819 	ret = xhci_halt(xhci);
820 
821 	spin_lock_irqsave(&xhci->lock, flags);
822 	if (ret < 0) {
823 		/* This is bad; the host is not responding to commands and it's
824 		 * not allowing itself to be halted.  At least interrupts are
825 		 * disabled. If we call usb_hc_died(), it will attempt to
826 		 * disconnect all device drivers under this host.  Those
827 		 * disconnect() methods will wait for all URBs to be unlinked,
828 		 * so we must complete them.
829 		 */
830 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
831 		xhci_warn(xhci, "Completing active URBs anyway.\n");
832 		/* We could turn all TDs on the rings to no-ops.  This won't
833 		 * help if the host has cached part of the ring, and is slow if
834 		 * we want to preserve the cycle bit.  Skip it and hope the host
835 		 * doesn't touch the memory.
836 		 */
837 	}
838 	for (i = 0; i < MAX_HC_SLOTS; i++) {
839 		if (!xhci->devs[i])
840 			continue;
841 		for (j = 0; j < 31; j++) {
842 			temp_ep = &xhci->devs[i]->eps[j];
843 			ring = temp_ep->ring;
844 			if (!ring)
845 				continue;
846 			xhci_dbg(xhci, "Killing URBs for slot ID %u, "
847 					"ep index %u\n", i, j);
848 			while (!list_empty(&ring->td_list)) {
849 				cur_td = list_first_entry(&ring->td_list,
850 						struct xhci_td,
851 						td_list);
852 				list_del_init(&cur_td->td_list);
853 				if (!list_empty(&cur_td->cancelled_td_list))
854 					list_del_init(&cur_td->cancelled_td_list);
855 				xhci_giveback_urb_in_irq(xhci, cur_td,
856 						-ESHUTDOWN, "killed");
857 			}
858 			while (!list_empty(&temp_ep->cancelled_td_list)) {
859 				cur_td = list_first_entry(
860 						&temp_ep->cancelled_td_list,
861 						struct xhci_td,
862 						cancelled_td_list);
863 				list_del_init(&cur_td->cancelled_td_list);
864 				xhci_giveback_urb_in_irq(xhci, cur_td,
865 						-ESHUTDOWN, "killed");
866 			}
867 		}
868 	}
869 	spin_unlock_irqrestore(&xhci->lock, flags);
870 	xhci_dbg(xhci, "Calling usb_hc_died()\n");
871 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
872 	xhci_dbg(xhci, "xHCI host controller is dead.\n");
873 }
874 
875 
876 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
877 		struct xhci_virt_device *dev,
878 		struct xhci_ring *ep_ring,
879 		unsigned int ep_index)
880 {
881 	union xhci_trb *dequeue_temp;
882 	int num_trbs_free_temp;
883 	bool revert = false;
884 
885 	num_trbs_free_temp = ep_ring->num_trbs_free;
886 	dequeue_temp = ep_ring->dequeue;
887 
888 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
889 		/* We have more usable TRBs */
890 		ep_ring->num_trbs_free++;
891 		ep_ring->dequeue++;
892 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
893 				ep_ring->dequeue)) {
894 			if (ep_ring->dequeue ==
895 					dev->eps[ep_index].queued_deq_ptr)
896 				break;
897 			ep_ring->deq_seg = ep_ring->deq_seg->next;
898 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
899 		}
900 		if (ep_ring->dequeue == dequeue_temp) {
901 			revert = true;
902 			break;
903 		}
904 	}
905 
906 	if (revert) {
907 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
908 		ep_ring->num_trbs_free = num_trbs_free_temp;
909 	}
910 }
911 
912 /*
913  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
914  * we need to clear the set deq pending flag in the endpoint ring state, so that
915  * the TD queueing code can ring the doorbell again.  We also need to ring the
916  * endpoint doorbell to restart the ring, but only if there aren't more
917  * cancellations pending.
918  */
919 static void handle_set_deq_completion(struct xhci_hcd *xhci,
920 		struct xhci_event_cmd *event,
921 		union xhci_trb *trb)
922 {
923 	unsigned int slot_id;
924 	unsigned int ep_index;
925 	unsigned int stream_id;
926 	struct xhci_ring *ep_ring;
927 	struct xhci_virt_device *dev;
928 	struct xhci_ep_ctx *ep_ctx;
929 	struct xhci_slot_ctx *slot_ctx;
930 
931 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
932 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
933 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
934 	dev = xhci->devs[slot_id];
935 
936 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
937 	if (!ep_ring) {
938 		xhci_warn(xhci, "WARN Set TR deq ptr command for "
939 				"freed stream ID %u\n",
940 				stream_id);
941 		/* XXX: Harmless??? */
942 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
943 		return;
944 	}
945 
946 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
947 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
948 
949 	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
950 		unsigned int ep_state;
951 		unsigned int slot_state;
952 
953 		switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
954 		case COMP_TRB_ERR:
955 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
956 					"of stream ID configuration\n");
957 			break;
958 		case COMP_CTX_STATE:
959 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
960 					"to incorrect slot or ep state.\n");
961 			ep_state = le32_to_cpu(ep_ctx->ep_info);
962 			ep_state &= EP_STATE_MASK;
963 			slot_state = le32_to_cpu(slot_ctx->dev_state);
964 			slot_state = GET_SLOT_STATE(slot_state);
965 			xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
966 					slot_state, ep_state);
967 			break;
968 		case COMP_EBADSLT:
969 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
970 					"slot %u was not enabled.\n", slot_id);
971 			break;
972 		default:
973 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
974 					"completion code of %u.\n",
975 				  GET_COMP_CODE(le32_to_cpu(event->status)));
976 			break;
977 		}
978 		/* OK what do we do now?  The endpoint state is hosed, and we
979 		 * should never get to this point if the synchronization between
980 		 * queueing, and endpoint state are correct.  This might happen
981 		 * if the device gets disconnected after we've finished
982 		 * cancelling URBs, which might not be an error...
983 		 */
984 	} else {
985 		xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
986 			 le64_to_cpu(ep_ctx->deq));
987 		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
988 					 dev->eps[ep_index].queued_deq_ptr) ==
989 		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
990 			/* Update the ring's dequeue segment and dequeue pointer
991 			 * to reflect the new position.
992 			 */
993 			update_ring_for_set_deq_completion(xhci, dev,
994 				ep_ring, ep_index);
995 		} else {
996 			xhci_warn(xhci, "Mismatch between completed Set TR Deq "
997 					"Ptr command & xHCI internal state.\n");
998 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
999 					dev->eps[ep_index].queued_deq_seg,
1000 					dev->eps[ep_index].queued_deq_ptr);
1001 		}
1002 	}
1003 
1004 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1005 	dev->eps[ep_index].queued_deq_seg = NULL;
1006 	dev->eps[ep_index].queued_deq_ptr = NULL;
1007 	/* Restart any rings with pending URBs */
1008 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1009 }
1010 
1011 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1012 		struct xhci_event_cmd *event,
1013 		union xhci_trb *trb)
1014 {
1015 	int slot_id;
1016 	unsigned int ep_index;
1017 
1018 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1019 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1020 	/* This command will only fail if the endpoint wasn't halted,
1021 	 * but we don't care.
1022 	 */
1023 	xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1024 		 GET_COMP_CODE(le32_to_cpu(event->status)));
1025 
1026 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1027 	 * command complete before the endpoint can be used.  Queue that here
1028 	 * because the HW can't handle two commands being queued in a row.
1029 	 */
1030 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1031 		xhci_dbg(xhci, "Queueing configure endpoint command\n");
1032 		xhci_queue_configure_endpoint(xhci,
1033 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1034 				false);
1035 		xhci_ring_cmd_db(xhci);
1036 	} else {
1037 		/* Clear our internal halted state and restart the ring(s) */
1038 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1039 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1040 	}
1041 }
1042 
1043 /* Check to see if a command in the device's command queue matches this one.
1044  * Signal the completion or free the command, and return 1.  Return 0 if the
1045  * completed command isn't at the head of the command list.
1046  */
1047 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1048 		struct xhci_virt_device *virt_dev,
1049 		struct xhci_event_cmd *event)
1050 {
1051 	struct xhci_command *command;
1052 
1053 	if (list_empty(&virt_dev->cmd_list))
1054 		return 0;
1055 
1056 	command = list_entry(virt_dev->cmd_list.next,
1057 			struct xhci_command, cmd_list);
1058 	if (xhci->cmd_ring->dequeue != command->command_trb)
1059 		return 0;
1060 
1061 	command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1062 	list_del(&command->cmd_list);
1063 	if (command->completion)
1064 		complete(command->completion);
1065 	else
1066 		xhci_free_command(xhci, command);
1067 	return 1;
1068 }
1069 
1070 static void handle_cmd_completion(struct xhci_hcd *xhci,
1071 		struct xhci_event_cmd *event)
1072 {
1073 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1074 	u64 cmd_dma;
1075 	dma_addr_t cmd_dequeue_dma;
1076 	struct xhci_input_control_ctx *ctrl_ctx;
1077 	struct xhci_virt_device *virt_dev;
1078 	unsigned int ep_index;
1079 	struct xhci_ring *ep_ring;
1080 	unsigned int ep_state;
1081 
1082 	cmd_dma = le64_to_cpu(event->cmd_trb);
1083 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1084 			xhci->cmd_ring->dequeue);
1085 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1086 	if (cmd_dequeue_dma == 0) {
1087 		xhci->error_bitmask |= 1 << 4;
1088 		return;
1089 	}
1090 	/* Does the DMA address match our internal dequeue pointer address? */
1091 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1092 		xhci->error_bitmask |= 1 << 5;
1093 		return;
1094 	}
1095 	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1096 		& TRB_TYPE_BITMASK) {
1097 	case TRB_TYPE(TRB_ENABLE_SLOT):
1098 		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1099 			xhci->slot_id = slot_id;
1100 		else
1101 			xhci->slot_id = 0;
1102 		complete(&xhci->addr_dev);
1103 		break;
1104 	case TRB_TYPE(TRB_DISABLE_SLOT):
1105 		if (xhci->devs[slot_id]) {
1106 			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1107 				/* Delete default control endpoint resources */
1108 				xhci_free_device_endpoint_resources(xhci,
1109 						xhci->devs[slot_id], true);
1110 			xhci_free_virt_device(xhci, slot_id);
1111 		}
1112 		break;
1113 	case TRB_TYPE(TRB_CONFIG_EP):
1114 		virt_dev = xhci->devs[slot_id];
1115 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1116 			break;
1117 		/*
1118 		 * Configure endpoint commands can come from the USB core
1119 		 * configuration or alt setting changes, or because the HW
1120 		 * needed an extra configure endpoint command after a reset
1121 		 * endpoint command or streams were being configured.
1122 		 * If the command was for a halted endpoint, the xHCI driver
1123 		 * is not waiting on the configure endpoint command.
1124 		 */
1125 		ctrl_ctx = xhci_get_input_control_ctx(xhci,
1126 				virt_dev->in_ctx);
1127 		/* Input ctx add_flags are the endpoint index plus one */
1128 		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1129 		/* A usb_set_interface() call directly after clearing a halted
1130 		 * condition may race on this quirky hardware.  Not worth
1131 		 * worrying about, since this is prototype hardware.  Not sure
1132 		 * if this will work for streams, but streams support was
1133 		 * untested on this prototype.
1134 		 */
1135 		if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1136 				ep_index != (unsigned int) -1 &&
1137 		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1138 		    le32_to_cpu(ctrl_ctx->drop_flags)) {
1139 			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1140 			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1141 			if (!(ep_state & EP_HALTED))
1142 				goto bandwidth_change;
1143 			xhci_dbg(xhci, "Completed config ep cmd - "
1144 					"last ep index = %d, state = %d\n",
1145 					ep_index, ep_state);
1146 			/* Clear internal halted state and restart ring(s) */
1147 			xhci->devs[slot_id]->eps[ep_index].ep_state &=
1148 				~EP_HALTED;
1149 			ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1150 			break;
1151 		}
1152 bandwidth_change:
1153 		xhci_dbg(xhci, "Completed config ep cmd\n");
1154 		xhci->devs[slot_id]->cmd_status =
1155 			GET_COMP_CODE(le32_to_cpu(event->status));
1156 		complete(&xhci->devs[slot_id]->cmd_completion);
1157 		break;
1158 	case TRB_TYPE(TRB_EVAL_CONTEXT):
1159 		virt_dev = xhci->devs[slot_id];
1160 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1161 			break;
1162 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1163 		complete(&xhci->devs[slot_id]->cmd_completion);
1164 		break;
1165 	case TRB_TYPE(TRB_ADDR_DEV):
1166 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1167 		complete(&xhci->addr_dev);
1168 		break;
1169 	case TRB_TYPE(TRB_STOP_RING):
1170 		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1171 		break;
1172 	case TRB_TYPE(TRB_SET_DEQ):
1173 		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1174 		break;
1175 	case TRB_TYPE(TRB_CMD_NOOP):
1176 		break;
1177 	case TRB_TYPE(TRB_RESET_EP):
1178 		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1179 		break;
1180 	case TRB_TYPE(TRB_RESET_DEV):
1181 		xhci_dbg(xhci, "Completed reset device command.\n");
1182 		slot_id = TRB_TO_SLOT_ID(
1183 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1184 		virt_dev = xhci->devs[slot_id];
1185 		if (virt_dev)
1186 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1187 		else
1188 			xhci_warn(xhci, "Reset device command completion "
1189 					"for disabled slot %u\n", slot_id);
1190 		break;
1191 	case TRB_TYPE(TRB_NEC_GET_FW):
1192 		if (!(xhci->quirks & XHCI_NEC_HOST)) {
1193 			xhci->error_bitmask |= 1 << 6;
1194 			break;
1195 		}
1196 		xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1197 			 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1198 			 NEC_FW_MINOR(le32_to_cpu(event->status)));
1199 		break;
1200 	default:
1201 		/* Skip over unknown commands on the event ring */
1202 		xhci->error_bitmask |= 1 << 6;
1203 		break;
1204 	}
1205 	inc_deq(xhci, xhci->cmd_ring);
1206 }
1207 
1208 static void handle_vendor_event(struct xhci_hcd *xhci,
1209 		union xhci_trb *event)
1210 {
1211 	u32 trb_type;
1212 
1213 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1214 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1215 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1216 		handle_cmd_completion(xhci, &event->event_cmd);
1217 }
1218 
1219 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1220  * port registers -- USB 3.0 and USB 2.0).
1221  *
1222  * Returns a zero-based port number, which is suitable for indexing into each of
1223  * the split roothubs' port arrays and bus state arrays.
1224  * Add one to it in order to call xhci_find_slot_id_by_port.
1225  */
1226 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1227 		struct xhci_hcd *xhci, u32 port_id)
1228 {
1229 	unsigned int i;
1230 	unsigned int num_similar_speed_ports = 0;
1231 
1232 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1233 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1234 	 * speed ports, up to 1 port before this port.
1235 	 */
1236 	for (i = 0; i < (port_id - 1); i++) {
1237 		u8 port_speed = xhci->port_array[i];
1238 
1239 		/*
1240 		 * Skip ports that don't have known speeds, or have duplicate
1241 		 * Extended Capabilities port speed entries.
1242 		 */
1243 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1244 			continue;
1245 
1246 		/*
1247 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1248 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1249 		 * matches the device speed, it's a similar speed port.
1250 		 */
1251 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1252 			num_similar_speed_ports++;
1253 	}
1254 	return num_similar_speed_ports;
1255 }
1256 
1257 static void handle_device_notification(struct xhci_hcd *xhci,
1258 		union xhci_trb *event)
1259 {
1260 	u32 slot_id;
1261 	struct usb_device *udev;
1262 
1263 	slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1264 	if (!xhci->devs[slot_id]) {
1265 		xhci_warn(xhci, "Device Notification event for "
1266 				"unused slot %u\n", slot_id);
1267 		return;
1268 	}
1269 
1270 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1271 			slot_id);
1272 	udev = xhci->devs[slot_id]->udev;
1273 	if (udev && udev->parent)
1274 		usb_wakeup_notification(udev->parent, udev->portnum);
1275 }
1276 
1277 static void handle_port_status(struct xhci_hcd *xhci,
1278 		union xhci_trb *event)
1279 {
1280 	struct usb_hcd *hcd;
1281 	u32 port_id;
1282 	u32 temp, temp1;
1283 	int max_ports;
1284 	int slot_id;
1285 	unsigned int faked_port_index;
1286 	u8 major_revision;
1287 	struct xhci_bus_state *bus_state;
1288 	__le32 __iomem **port_array;
1289 	bool bogus_port_status = false;
1290 
1291 	/* Port status change events always have a successful completion code */
1292 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1293 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1294 		xhci->error_bitmask |= 1 << 8;
1295 	}
1296 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1297 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1298 
1299 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1300 	if ((port_id <= 0) || (port_id > max_ports)) {
1301 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1302 		bogus_port_status = true;
1303 		goto cleanup;
1304 	}
1305 
1306 	/* Figure out which usb_hcd this port is attached to:
1307 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1308 	 */
1309 	major_revision = xhci->port_array[port_id - 1];
1310 	if (major_revision == 0) {
1311 		xhci_warn(xhci, "Event for port %u not in "
1312 				"Extended Capabilities, ignoring.\n",
1313 				port_id);
1314 		bogus_port_status = true;
1315 		goto cleanup;
1316 	}
1317 	if (major_revision == DUPLICATE_ENTRY) {
1318 		xhci_warn(xhci, "Event for port %u duplicated in"
1319 				"Extended Capabilities, ignoring.\n",
1320 				port_id);
1321 		bogus_port_status = true;
1322 		goto cleanup;
1323 	}
1324 
1325 	/*
1326 	 * Hardware port IDs reported by a Port Status Change Event include USB
1327 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1328 	 * resume event, but we first need to translate the hardware port ID
1329 	 * into the index into the ports on the correct split roothub, and the
1330 	 * correct bus_state structure.
1331 	 */
1332 	/* Find the right roothub. */
1333 	hcd = xhci_to_hcd(xhci);
1334 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1335 		hcd = xhci->shared_hcd;
1336 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1337 	if (hcd->speed == HCD_USB3)
1338 		port_array = xhci->usb3_ports;
1339 	else
1340 		port_array = xhci->usb2_ports;
1341 	/* Find the faked port hub number */
1342 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1343 			port_id);
1344 
1345 	temp = xhci_readl(xhci, port_array[faked_port_index]);
1346 	if (hcd->state == HC_STATE_SUSPENDED) {
1347 		xhci_dbg(xhci, "resume root hub\n");
1348 		usb_hcd_resume_root_hub(hcd);
1349 	}
1350 
1351 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1352 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1353 
1354 		temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1355 		if (!(temp1 & CMD_RUN)) {
1356 			xhci_warn(xhci, "xHC is not running.\n");
1357 			goto cleanup;
1358 		}
1359 
1360 		if (DEV_SUPERSPEED(temp)) {
1361 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1362 			/* Set a flag to say the port signaled remote wakeup,
1363 			 * so we can tell the difference between the end of
1364 			 * device and host initiated resume.
1365 			 */
1366 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1367 			xhci_test_and_clear_bit(xhci, port_array,
1368 					faked_port_index, PORT_PLC);
1369 			xhci_set_link_state(xhci, port_array, faked_port_index,
1370 						XDEV_U0);
1371 			/* Need to wait until the next link state change
1372 			 * indicates the device is actually in U0.
1373 			 */
1374 			bogus_port_status = true;
1375 			goto cleanup;
1376 		} else {
1377 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1378 			bus_state->resume_done[faked_port_index] = jiffies +
1379 				msecs_to_jiffies(20);
1380 			mod_timer(&hcd->rh_timer,
1381 				  bus_state->resume_done[faked_port_index]);
1382 			/* Do the rest in GetPortStatus */
1383 		}
1384 	}
1385 
1386 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1387 			DEV_SUPERSPEED(temp)) {
1388 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1389 		/* We've just brought the device into U0 through either the
1390 		 * Resume state after a device remote wakeup, or through the
1391 		 * U3Exit state after a host-initiated resume.  If it's a device
1392 		 * initiated remote wake, don't pass up the link state change,
1393 		 * so the roothub behavior is consistent with external
1394 		 * USB 3.0 hub behavior.
1395 		 */
1396 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1397 				faked_port_index + 1);
1398 		if (slot_id && xhci->devs[slot_id])
1399 			xhci_ring_device(xhci, slot_id);
1400 		if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
1401 			bus_state->port_remote_wakeup &=
1402 				~(1 << faked_port_index);
1403 			xhci_test_and_clear_bit(xhci, port_array,
1404 					faked_port_index, PORT_PLC);
1405 			usb_wakeup_notification(hcd->self.root_hub,
1406 					faked_port_index + 1);
1407 			bogus_port_status = true;
1408 			goto cleanup;
1409 		}
1410 	}
1411 
1412 	if (hcd->speed != HCD_USB3)
1413 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1414 					PORT_PLC);
1415 
1416 cleanup:
1417 	/* Update event ring dequeue pointer before dropping the lock */
1418 	inc_deq(xhci, xhci->event_ring);
1419 
1420 	/* Don't make the USB core poll the roothub if we got a bad port status
1421 	 * change event.  Besides, at that point we can't tell which roothub
1422 	 * (USB 2.0 or USB 3.0) to kick.
1423 	 */
1424 	if (bogus_port_status)
1425 		return;
1426 
1427 	spin_unlock(&xhci->lock);
1428 	/* Pass this up to the core */
1429 	usb_hcd_poll_rh_status(hcd);
1430 	spin_lock(&xhci->lock);
1431 }
1432 
1433 /*
1434  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1435  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1436  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1437  * returns 0.
1438  */
1439 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1440 		union xhci_trb	*start_trb,
1441 		union xhci_trb	*end_trb,
1442 		dma_addr_t	suspect_dma)
1443 {
1444 	dma_addr_t start_dma;
1445 	dma_addr_t end_seg_dma;
1446 	dma_addr_t end_trb_dma;
1447 	struct xhci_segment *cur_seg;
1448 
1449 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1450 	cur_seg = start_seg;
1451 
1452 	do {
1453 		if (start_dma == 0)
1454 			return NULL;
1455 		/* We may get an event for a Link TRB in the middle of a TD */
1456 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1457 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1458 		/* If the end TRB isn't in this segment, this is set to 0 */
1459 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1460 
1461 		if (end_trb_dma > 0) {
1462 			/* The end TRB is in this segment, so suspect should be here */
1463 			if (start_dma <= end_trb_dma) {
1464 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1465 					return cur_seg;
1466 			} else {
1467 				/* Case for one segment with
1468 				 * a TD wrapped around to the top
1469 				 */
1470 				if ((suspect_dma >= start_dma &&
1471 							suspect_dma <= end_seg_dma) ||
1472 						(suspect_dma >= cur_seg->dma &&
1473 						 suspect_dma <= end_trb_dma))
1474 					return cur_seg;
1475 			}
1476 			return NULL;
1477 		} else {
1478 			/* Might still be somewhere in this segment */
1479 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1480 				return cur_seg;
1481 		}
1482 		cur_seg = cur_seg->next;
1483 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1484 	} while (cur_seg != start_seg);
1485 
1486 	return NULL;
1487 }
1488 
1489 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1490 		unsigned int slot_id, unsigned int ep_index,
1491 		unsigned int stream_id,
1492 		struct xhci_td *td, union xhci_trb *event_trb)
1493 {
1494 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1495 	ep->ep_state |= EP_HALTED;
1496 	ep->stopped_td = td;
1497 	ep->stopped_trb = event_trb;
1498 	ep->stopped_stream = stream_id;
1499 
1500 	xhci_queue_reset_ep(xhci, slot_id, ep_index);
1501 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1502 
1503 	ep->stopped_td = NULL;
1504 	ep->stopped_trb = NULL;
1505 	ep->stopped_stream = 0;
1506 
1507 	xhci_ring_cmd_db(xhci);
1508 }
1509 
1510 /* Check if an error has halted the endpoint ring.  The class driver will
1511  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1512  * However, a babble and other errors also halt the endpoint ring, and the class
1513  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1514  * Ring Dequeue Pointer command manually.
1515  */
1516 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1517 		struct xhci_ep_ctx *ep_ctx,
1518 		unsigned int trb_comp_code)
1519 {
1520 	/* TRB completion codes that may require a manual halt cleanup */
1521 	if (trb_comp_code == COMP_TX_ERR ||
1522 			trb_comp_code == COMP_BABBLE ||
1523 			trb_comp_code == COMP_SPLIT_ERR)
1524 		/* The 0.96 spec says a babbling control endpoint
1525 		 * is not halted. The 0.96 spec says it is.  Some HW
1526 		 * claims to be 0.95 compliant, but it halts the control
1527 		 * endpoint anyway.  Check if a babble halted the
1528 		 * endpoint.
1529 		 */
1530 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1531 		    cpu_to_le32(EP_STATE_HALTED))
1532 			return 1;
1533 
1534 	return 0;
1535 }
1536 
1537 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1538 {
1539 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1540 		/* Vendor defined "informational" completion code,
1541 		 * treat as not-an-error.
1542 		 */
1543 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1544 				trb_comp_code);
1545 		xhci_dbg(xhci, "Treating code as success.\n");
1546 		return 1;
1547 	}
1548 	return 0;
1549 }
1550 
1551 /*
1552  * Finish the td processing, remove the td from td list;
1553  * Return 1 if the urb can be given back.
1554  */
1555 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1556 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1557 	struct xhci_virt_ep *ep, int *status, bool skip)
1558 {
1559 	struct xhci_virt_device *xdev;
1560 	struct xhci_ring *ep_ring;
1561 	unsigned int slot_id;
1562 	int ep_index;
1563 	struct urb *urb = NULL;
1564 	struct xhci_ep_ctx *ep_ctx;
1565 	int ret = 0;
1566 	struct urb_priv	*urb_priv;
1567 	u32 trb_comp_code;
1568 
1569 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1570 	xdev = xhci->devs[slot_id];
1571 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1572 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1573 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1574 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1575 
1576 	if (skip)
1577 		goto td_cleanup;
1578 
1579 	if (trb_comp_code == COMP_STOP_INVAL ||
1580 			trb_comp_code == COMP_STOP) {
1581 		/* The Endpoint Stop Command completion will take care of any
1582 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1583 		 * the ring dequeue pointer or take this TD off any lists yet.
1584 		 */
1585 		ep->stopped_td = td;
1586 		ep->stopped_trb = event_trb;
1587 		return 0;
1588 	} else {
1589 		if (trb_comp_code == COMP_STALL) {
1590 			/* The transfer is completed from the driver's
1591 			 * perspective, but we need to issue a set dequeue
1592 			 * command for this stalled endpoint to move the dequeue
1593 			 * pointer past the TD.  We can't do that here because
1594 			 * the halt condition must be cleared first.  Let the
1595 			 * USB class driver clear the stall later.
1596 			 */
1597 			ep->stopped_td = td;
1598 			ep->stopped_trb = event_trb;
1599 			ep->stopped_stream = ep_ring->stream_id;
1600 		} else if (xhci_requires_manual_halt_cleanup(xhci,
1601 					ep_ctx, trb_comp_code)) {
1602 			/* Other types of errors halt the endpoint, but the
1603 			 * class driver doesn't call usb_reset_endpoint() unless
1604 			 * the error is -EPIPE.  Clear the halted status in the
1605 			 * xHCI hardware manually.
1606 			 */
1607 			xhci_cleanup_halted_endpoint(xhci,
1608 					slot_id, ep_index, ep_ring->stream_id,
1609 					td, event_trb);
1610 		} else {
1611 			/* Update ring dequeue pointer */
1612 			while (ep_ring->dequeue != td->last_trb)
1613 				inc_deq(xhci, ep_ring);
1614 			inc_deq(xhci, ep_ring);
1615 		}
1616 
1617 td_cleanup:
1618 		/* Clean up the endpoint's TD list */
1619 		urb = td->urb;
1620 		urb_priv = urb->hcpriv;
1621 
1622 		/* Do one last check of the actual transfer length.
1623 		 * If the host controller said we transferred more data than
1624 		 * the buffer length, urb->actual_length will be a very big
1625 		 * number (since it's unsigned).  Play it safe and say we didn't
1626 		 * transfer anything.
1627 		 */
1628 		if (urb->actual_length > urb->transfer_buffer_length) {
1629 			xhci_warn(xhci, "URB transfer length is wrong, "
1630 					"xHC issue? req. len = %u, "
1631 					"act. len = %u\n",
1632 					urb->transfer_buffer_length,
1633 					urb->actual_length);
1634 			urb->actual_length = 0;
1635 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1636 				*status = -EREMOTEIO;
1637 			else
1638 				*status = 0;
1639 		}
1640 		list_del_init(&td->td_list);
1641 		/* Was this TD slated to be cancelled but completed anyway? */
1642 		if (!list_empty(&td->cancelled_td_list))
1643 			list_del_init(&td->cancelled_td_list);
1644 
1645 		urb_priv->td_cnt++;
1646 		/* Giveback the urb when all the tds are completed */
1647 		if (urb_priv->td_cnt == urb_priv->length) {
1648 			ret = 1;
1649 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1650 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1651 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1652 					== 0) {
1653 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1654 						usb_amd_quirk_pll_enable();
1655 				}
1656 			}
1657 		}
1658 	}
1659 
1660 	return ret;
1661 }
1662 
1663 /*
1664  * Process control tds, update urb status and actual_length.
1665  */
1666 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1667 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1668 	struct xhci_virt_ep *ep, int *status)
1669 {
1670 	struct xhci_virt_device *xdev;
1671 	struct xhci_ring *ep_ring;
1672 	unsigned int slot_id;
1673 	int ep_index;
1674 	struct xhci_ep_ctx *ep_ctx;
1675 	u32 trb_comp_code;
1676 
1677 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1678 	xdev = xhci->devs[slot_id];
1679 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1680 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1681 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1682 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1683 
1684 	switch (trb_comp_code) {
1685 	case COMP_SUCCESS:
1686 		if (event_trb == ep_ring->dequeue) {
1687 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1688 					"without IOC set??\n");
1689 			*status = -ESHUTDOWN;
1690 		} else if (event_trb != td->last_trb) {
1691 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1692 					"without IOC set??\n");
1693 			*status = -ESHUTDOWN;
1694 		} else {
1695 			*status = 0;
1696 		}
1697 		break;
1698 	case COMP_SHORT_TX:
1699 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1700 			*status = -EREMOTEIO;
1701 		else
1702 			*status = 0;
1703 		break;
1704 	case COMP_STOP_INVAL:
1705 	case COMP_STOP:
1706 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1707 	default:
1708 		if (!xhci_requires_manual_halt_cleanup(xhci,
1709 					ep_ctx, trb_comp_code))
1710 			break;
1711 		xhci_dbg(xhci, "TRB error code %u, "
1712 				"halted endpoint index = %u\n",
1713 				trb_comp_code, ep_index);
1714 		/* else fall through */
1715 	case COMP_STALL:
1716 		/* Did we transfer part of the data (middle) phase? */
1717 		if (event_trb != ep_ring->dequeue &&
1718 				event_trb != td->last_trb)
1719 			td->urb->actual_length =
1720 				td->urb->transfer_buffer_length
1721 				- TRB_LEN(le32_to_cpu(event->transfer_len));
1722 		else
1723 			td->urb->actual_length = 0;
1724 
1725 		xhci_cleanup_halted_endpoint(xhci,
1726 			slot_id, ep_index, 0, td, event_trb);
1727 		return finish_td(xhci, td, event_trb, event, ep, status, true);
1728 	}
1729 	/*
1730 	 * Did we transfer any data, despite the errors that might have
1731 	 * happened?  I.e. did we get past the setup stage?
1732 	 */
1733 	if (event_trb != ep_ring->dequeue) {
1734 		/* The event was for the status stage */
1735 		if (event_trb == td->last_trb) {
1736 			if (td->urb->actual_length != 0) {
1737 				/* Don't overwrite a previously set error code
1738 				 */
1739 				if ((*status == -EINPROGRESS || *status == 0) &&
1740 						(td->urb->transfer_flags
1741 						 & URB_SHORT_NOT_OK))
1742 					/* Did we already see a short data
1743 					 * stage? */
1744 					*status = -EREMOTEIO;
1745 			} else {
1746 				td->urb->actual_length =
1747 					td->urb->transfer_buffer_length;
1748 			}
1749 		} else {
1750 		/* Maybe the event was for the data stage? */
1751 			td->urb->actual_length =
1752 				td->urb->transfer_buffer_length -
1753 				TRB_LEN(le32_to_cpu(event->transfer_len));
1754 			xhci_dbg(xhci, "Waiting for status "
1755 					"stage event\n");
1756 			return 0;
1757 		}
1758 	}
1759 
1760 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1761 }
1762 
1763 /*
1764  * Process isochronous tds, update urb packet status and actual_length.
1765  */
1766 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1767 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1768 	struct xhci_virt_ep *ep, int *status)
1769 {
1770 	struct xhci_ring *ep_ring;
1771 	struct urb_priv *urb_priv;
1772 	int idx;
1773 	int len = 0;
1774 	union xhci_trb *cur_trb;
1775 	struct xhci_segment *cur_seg;
1776 	struct usb_iso_packet_descriptor *frame;
1777 	u32 trb_comp_code;
1778 	bool skip_td = false;
1779 
1780 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1781 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1782 	urb_priv = td->urb->hcpriv;
1783 	idx = urb_priv->td_cnt;
1784 	frame = &td->urb->iso_frame_desc[idx];
1785 
1786 	/* handle completion code */
1787 	switch (trb_comp_code) {
1788 	case COMP_SUCCESS:
1789 		frame->status = 0;
1790 		break;
1791 	case COMP_SHORT_TX:
1792 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1793 				-EREMOTEIO : 0;
1794 		break;
1795 	case COMP_BW_OVER:
1796 		frame->status = -ECOMM;
1797 		skip_td = true;
1798 		break;
1799 	case COMP_BUFF_OVER:
1800 	case COMP_BABBLE:
1801 		frame->status = -EOVERFLOW;
1802 		skip_td = true;
1803 		break;
1804 	case COMP_DEV_ERR:
1805 	case COMP_STALL:
1806 		frame->status = -EPROTO;
1807 		skip_td = true;
1808 		break;
1809 	case COMP_STOP:
1810 	case COMP_STOP_INVAL:
1811 		break;
1812 	default:
1813 		frame->status = -1;
1814 		break;
1815 	}
1816 
1817 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
1818 		frame->actual_length = frame->length;
1819 		td->urb->actual_length += frame->length;
1820 	} else {
1821 		for (cur_trb = ep_ring->dequeue,
1822 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1823 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1824 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1825 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1826 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1827 		}
1828 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1829 			TRB_LEN(le32_to_cpu(event->transfer_len));
1830 
1831 		if (trb_comp_code != COMP_STOP_INVAL) {
1832 			frame->actual_length = len;
1833 			td->urb->actual_length += len;
1834 		}
1835 	}
1836 
1837 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1838 }
1839 
1840 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1841 			struct xhci_transfer_event *event,
1842 			struct xhci_virt_ep *ep, int *status)
1843 {
1844 	struct xhci_ring *ep_ring;
1845 	struct urb_priv *urb_priv;
1846 	struct usb_iso_packet_descriptor *frame;
1847 	int idx;
1848 
1849 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1850 	urb_priv = td->urb->hcpriv;
1851 	idx = urb_priv->td_cnt;
1852 	frame = &td->urb->iso_frame_desc[idx];
1853 
1854 	/* The transfer is partly done. */
1855 	frame->status = -EXDEV;
1856 
1857 	/* calc actual length */
1858 	frame->actual_length = 0;
1859 
1860 	/* Update ring dequeue pointer */
1861 	while (ep_ring->dequeue != td->last_trb)
1862 		inc_deq(xhci, ep_ring);
1863 	inc_deq(xhci, ep_ring);
1864 
1865 	return finish_td(xhci, td, NULL, event, ep, status, true);
1866 }
1867 
1868 /*
1869  * Process bulk and interrupt tds, update urb status and actual_length.
1870  */
1871 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1872 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1873 	struct xhci_virt_ep *ep, int *status)
1874 {
1875 	struct xhci_ring *ep_ring;
1876 	union xhci_trb *cur_trb;
1877 	struct xhci_segment *cur_seg;
1878 	u32 trb_comp_code;
1879 
1880 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1881 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1882 
1883 	switch (trb_comp_code) {
1884 	case COMP_SUCCESS:
1885 		/* Double check that the HW transferred everything. */
1886 		if (event_trb != td->last_trb) {
1887 			xhci_warn(xhci, "WARN Successful completion "
1888 					"on short TX\n");
1889 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1890 				*status = -EREMOTEIO;
1891 			else
1892 				*status = 0;
1893 		} else {
1894 			*status = 0;
1895 		}
1896 		break;
1897 	case COMP_SHORT_TX:
1898 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1899 			*status = -EREMOTEIO;
1900 		else
1901 			*status = 0;
1902 		break;
1903 	default:
1904 		/* Others already handled above */
1905 		break;
1906 	}
1907 	if (trb_comp_code == COMP_SHORT_TX)
1908 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1909 				"%d bytes untransferred\n",
1910 				td->urb->ep->desc.bEndpointAddress,
1911 				td->urb->transfer_buffer_length,
1912 				TRB_LEN(le32_to_cpu(event->transfer_len)));
1913 	/* Fast path - was this the last TRB in the TD for this URB? */
1914 	if (event_trb == td->last_trb) {
1915 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1916 			td->urb->actual_length =
1917 				td->urb->transfer_buffer_length -
1918 				TRB_LEN(le32_to_cpu(event->transfer_len));
1919 			if (td->urb->transfer_buffer_length <
1920 					td->urb->actual_length) {
1921 				xhci_warn(xhci, "HC gave bad length "
1922 						"of %d bytes left\n",
1923 					  TRB_LEN(le32_to_cpu(event->transfer_len)));
1924 				td->urb->actual_length = 0;
1925 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1926 					*status = -EREMOTEIO;
1927 				else
1928 					*status = 0;
1929 			}
1930 			/* Don't overwrite a previously set error code */
1931 			if (*status == -EINPROGRESS) {
1932 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1933 					*status = -EREMOTEIO;
1934 				else
1935 					*status = 0;
1936 			}
1937 		} else {
1938 			td->urb->actual_length =
1939 				td->urb->transfer_buffer_length;
1940 			/* Ignore a short packet completion if the
1941 			 * untransferred length was zero.
1942 			 */
1943 			if (*status == -EREMOTEIO)
1944 				*status = 0;
1945 		}
1946 	} else {
1947 		/* Slow path - walk the list, starting from the dequeue
1948 		 * pointer, to get the actual length transferred.
1949 		 */
1950 		td->urb->actual_length = 0;
1951 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1952 				cur_trb != event_trb;
1953 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1954 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1955 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1956 				td->urb->actual_length +=
1957 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1958 		}
1959 		/* If the ring didn't stop on a Link or No-op TRB, add
1960 		 * in the actual bytes transferred from the Normal TRB
1961 		 */
1962 		if (trb_comp_code != COMP_STOP_INVAL)
1963 			td->urb->actual_length +=
1964 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1965 				TRB_LEN(le32_to_cpu(event->transfer_len));
1966 	}
1967 
1968 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1969 }
1970 
1971 /*
1972  * If this function returns an error condition, it means it got a Transfer
1973  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1974  * At this point, the host controller is probably hosed and should be reset.
1975  */
1976 static int handle_tx_event(struct xhci_hcd *xhci,
1977 		struct xhci_transfer_event *event)
1978 {
1979 	struct xhci_virt_device *xdev;
1980 	struct xhci_virt_ep *ep;
1981 	struct xhci_ring *ep_ring;
1982 	unsigned int slot_id;
1983 	int ep_index;
1984 	struct xhci_td *td = NULL;
1985 	dma_addr_t event_dma;
1986 	struct xhci_segment *event_seg;
1987 	union xhci_trb *event_trb;
1988 	struct urb *urb = NULL;
1989 	int status = -EINPROGRESS;
1990 	struct urb_priv *urb_priv;
1991 	struct xhci_ep_ctx *ep_ctx;
1992 	struct list_head *tmp;
1993 	u32 trb_comp_code;
1994 	int ret = 0;
1995 	int td_num = 0;
1996 
1997 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1998 	xdev = xhci->devs[slot_id];
1999 	if (!xdev) {
2000 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2001 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2002 			 (unsigned long long) xhci_trb_virt_to_dma(
2003 				 xhci->event_ring->deq_seg,
2004 				 xhci->event_ring->dequeue),
2005 			 lower_32_bits(le64_to_cpu(event->buffer)),
2006 			 upper_32_bits(le64_to_cpu(event->buffer)),
2007 			 le32_to_cpu(event->transfer_len),
2008 			 le32_to_cpu(event->flags));
2009 		xhci_dbg(xhci, "Event ring:\n");
2010 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2011 		return -ENODEV;
2012 	}
2013 
2014 	/* Endpoint ID is 1 based, our index is zero based */
2015 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2016 	ep = &xdev->eps[ep_index];
2017 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2018 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2019 	if (!ep_ring ||
2020 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2021 	    EP_STATE_DISABLED) {
2022 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2023 				"or incorrect stream ring\n");
2024 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2025 			 (unsigned long long) xhci_trb_virt_to_dma(
2026 				 xhci->event_ring->deq_seg,
2027 				 xhci->event_ring->dequeue),
2028 			 lower_32_bits(le64_to_cpu(event->buffer)),
2029 			 upper_32_bits(le64_to_cpu(event->buffer)),
2030 			 le32_to_cpu(event->transfer_len),
2031 			 le32_to_cpu(event->flags));
2032 		xhci_dbg(xhci, "Event ring:\n");
2033 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2034 		return -ENODEV;
2035 	}
2036 
2037 	/* Count current td numbers if ep->skip is set */
2038 	if (ep->skip) {
2039 		list_for_each(tmp, &ep_ring->td_list)
2040 			td_num++;
2041 	}
2042 
2043 	event_dma = le64_to_cpu(event->buffer);
2044 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2045 	/* Look for common error cases */
2046 	switch (trb_comp_code) {
2047 	/* Skip codes that require special handling depending on
2048 	 * transfer type
2049 	 */
2050 	case COMP_SUCCESS:
2051 	case COMP_SHORT_TX:
2052 		break;
2053 	case COMP_STOP:
2054 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2055 		break;
2056 	case COMP_STOP_INVAL:
2057 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2058 		break;
2059 	case COMP_STALL:
2060 		xhci_dbg(xhci, "Stalled endpoint\n");
2061 		ep->ep_state |= EP_HALTED;
2062 		status = -EPIPE;
2063 		break;
2064 	case COMP_TRB_ERR:
2065 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2066 		status = -EILSEQ;
2067 		break;
2068 	case COMP_SPLIT_ERR:
2069 	case COMP_TX_ERR:
2070 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2071 		status = -EPROTO;
2072 		break;
2073 	case COMP_BABBLE:
2074 		xhci_dbg(xhci, "Babble error on endpoint\n");
2075 		status = -EOVERFLOW;
2076 		break;
2077 	case COMP_DB_ERR:
2078 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2079 		status = -ENOSR;
2080 		break;
2081 	case COMP_BW_OVER:
2082 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2083 		break;
2084 	case COMP_BUFF_OVER:
2085 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2086 		break;
2087 	case COMP_UNDERRUN:
2088 		/*
2089 		 * When the Isoch ring is empty, the xHC will generate
2090 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2091 		 * Underrun Event for OUT Isoch endpoint.
2092 		 */
2093 		xhci_dbg(xhci, "underrun event on endpoint\n");
2094 		if (!list_empty(&ep_ring->td_list))
2095 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2096 					"still with TDs queued?\n",
2097 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2098 				 ep_index);
2099 		goto cleanup;
2100 	case COMP_OVERRUN:
2101 		xhci_dbg(xhci, "overrun event on endpoint\n");
2102 		if (!list_empty(&ep_ring->td_list))
2103 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2104 					"still with TDs queued?\n",
2105 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2106 				 ep_index);
2107 		goto cleanup;
2108 	case COMP_DEV_ERR:
2109 		xhci_warn(xhci, "WARN: detect an incompatible device");
2110 		status = -EPROTO;
2111 		break;
2112 	case COMP_MISSED_INT:
2113 		/*
2114 		 * When encounter missed service error, one or more isoc tds
2115 		 * may be missed by xHC.
2116 		 * Set skip flag of the ep_ring; Complete the missed tds as
2117 		 * short transfer when process the ep_ring next time.
2118 		 */
2119 		ep->skip = true;
2120 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2121 		goto cleanup;
2122 	default:
2123 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2124 			status = 0;
2125 			break;
2126 		}
2127 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2128 				"busted\n");
2129 		goto cleanup;
2130 	}
2131 
2132 	do {
2133 		/* This TRB should be in the TD at the head of this ring's
2134 		 * TD list.
2135 		 */
2136 		if (list_empty(&ep_ring->td_list)) {
2137 			xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2138 					"with no TDs queued?\n",
2139 				  TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2140 				  ep_index);
2141 			xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2142 				 (le32_to_cpu(event->flags) &
2143 				  TRB_TYPE_BITMASK)>>10);
2144 			xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2145 			if (ep->skip) {
2146 				ep->skip = false;
2147 				xhci_dbg(xhci, "td_list is empty while skip "
2148 						"flag set. Clear skip flag.\n");
2149 			}
2150 			ret = 0;
2151 			goto cleanup;
2152 		}
2153 
2154 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2155 		if (ep->skip && td_num == 0) {
2156 			ep->skip = false;
2157 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2158 						"Clear skip flag.\n");
2159 			ret = 0;
2160 			goto cleanup;
2161 		}
2162 
2163 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2164 		if (ep->skip)
2165 			td_num--;
2166 
2167 		/* Is this a TRB in the currently executing TD? */
2168 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2169 				td->last_trb, event_dma);
2170 
2171 		/*
2172 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2173 		 * is not in the current TD pointed by ep_ring->dequeue because
2174 		 * that the hardware dequeue pointer still at the previous TRB
2175 		 * of the current TD. The previous TRB maybe a Link TD or the
2176 		 * last TRB of the previous TD. The command completion handle
2177 		 * will take care the rest.
2178 		 */
2179 		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2180 			ret = 0;
2181 			goto cleanup;
2182 		}
2183 
2184 		if (!event_seg) {
2185 			if (!ep->skip ||
2186 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2187 				/* Some host controllers give a spurious
2188 				 * successful event after a short transfer.
2189 				 * Ignore it.
2190 				 */
2191 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2192 						ep_ring->last_td_was_short) {
2193 					ep_ring->last_td_was_short = false;
2194 					ret = 0;
2195 					goto cleanup;
2196 				}
2197 				/* HC is busted, give up! */
2198 				xhci_err(xhci,
2199 					"ERROR Transfer event TRB DMA ptr not "
2200 					"part of current TD\n");
2201 				return -ESHUTDOWN;
2202 			}
2203 
2204 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2205 			goto cleanup;
2206 		}
2207 		if (trb_comp_code == COMP_SHORT_TX)
2208 			ep_ring->last_td_was_short = true;
2209 		else
2210 			ep_ring->last_td_was_short = false;
2211 
2212 		if (ep->skip) {
2213 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2214 			ep->skip = false;
2215 		}
2216 
2217 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2218 						sizeof(*event_trb)];
2219 		/*
2220 		 * No-op TRB should not trigger interrupts.
2221 		 * If event_trb is a no-op TRB, it means the
2222 		 * corresponding TD has been cancelled. Just ignore
2223 		 * the TD.
2224 		 */
2225 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2226 			xhci_dbg(xhci,
2227 				 "event_trb is a no-op TRB. Skip it\n");
2228 			goto cleanup;
2229 		}
2230 
2231 		/* Now update the urb's actual_length and give back to
2232 		 * the core
2233 		 */
2234 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2235 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2236 						 &status);
2237 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2238 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2239 						 &status);
2240 		else
2241 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2242 						 ep, &status);
2243 
2244 cleanup:
2245 		/*
2246 		 * Do not update event ring dequeue pointer if ep->skip is set.
2247 		 * Will roll back to continue process missed tds.
2248 		 */
2249 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2250 			inc_deq(xhci, xhci->event_ring);
2251 		}
2252 
2253 		if (ret) {
2254 			urb = td->urb;
2255 			urb_priv = urb->hcpriv;
2256 			/* Leave the TD around for the reset endpoint function
2257 			 * to use(but only if it's not a control endpoint,
2258 			 * since we already queued the Set TR dequeue pointer
2259 			 * command for stalled control endpoints).
2260 			 */
2261 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2262 				(trb_comp_code != COMP_STALL &&
2263 					trb_comp_code != COMP_BABBLE))
2264 				xhci_urb_free_priv(xhci, urb_priv);
2265 
2266 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2267 			if ((urb->actual_length != urb->transfer_buffer_length &&
2268 						(urb->transfer_flags &
2269 						 URB_SHORT_NOT_OK)) ||
2270 					(status != 0 &&
2271 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2272 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2273 						"expected = %x, status = %d\n",
2274 						urb, urb->actual_length,
2275 						urb->transfer_buffer_length,
2276 						status);
2277 			spin_unlock(&xhci->lock);
2278 			/* EHCI, UHCI, and OHCI always unconditionally set the
2279 			 * urb->status of an isochronous endpoint to 0.
2280 			 */
2281 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2282 				status = 0;
2283 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2284 			spin_lock(&xhci->lock);
2285 		}
2286 
2287 	/*
2288 	 * If ep->skip is set, it means there are missed tds on the
2289 	 * endpoint ring need to take care of.
2290 	 * Process them as short transfer until reach the td pointed by
2291 	 * the event.
2292 	 */
2293 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2294 
2295 	return 0;
2296 }
2297 
2298 /*
2299  * This function handles all OS-owned events on the event ring.  It may drop
2300  * xhci->lock between event processing (e.g. to pass up port status changes).
2301  * Returns >0 for "possibly more events to process" (caller should call again),
2302  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2303  */
2304 static int xhci_handle_event(struct xhci_hcd *xhci)
2305 {
2306 	union xhci_trb *event;
2307 	int update_ptrs = 1;
2308 	int ret;
2309 
2310 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2311 		xhci->error_bitmask |= 1 << 1;
2312 		return 0;
2313 	}
2314 
2315 	event = xhci->event_ring->dequeue;
2316 	/* Does the HC or OS own the TRB? */
2317 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2318 	    xhci->event_ring->cycle_state) {
2319 		xhci->error_bitmask |= 1 << 2;
2320 		return 0;
2321 	}
2322 
2323 	/*
2324 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2325 	 * speculative reads of the event's flags/data below.
2326 	 */
2327 	rmb();
2328 	/* FIXME: Handle more event types. */
2329 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2330 	case TRB_TYPE(TRB_COMPLETION):
2331 		handle_cmd_completion(xhci, &event->event_cmd);
2332 		break;
2333 	case TRB_TYPE(TRB_PORT_STATUS):
2334 		handle_port_status(xhci, event);
2335 		update_ptrs = 0;
2336 		break;
2337 	case TRB_TYPE(TRB_TRANSFER):
2338 		ret = handle_tx_event(xhci, &event->trans_event);
2339 		if (ret < 0)
2340 			xhci->error_bitmask |= 1 << 9;
2341 		else
2342 			update_ptrs = 0;
2343 		break;
2344 	case TRB_TYPE(TRB_DEV_NOTE):
2345 		handle_device_notification(xhci, event);
2346 		break;
2347 	default:
2348 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2349 		    TRB_TYPE(48))
2350 			handle_vendor_event(xhci, event);
2351 		else
2352 			xhci->error_bitmask |= 1 << 3;
2353 	}
2354 	/* Any of the above functions may drop and re-acquire the lock, so check
2355 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2356 	 */
2357 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2358 		xhci_dbg(xhci, "xHCI host dying, returning from "
2359 				"event handler.\n");
2360 		return 0;
2361 	}
2362 
2363 	if (update_ptrs)
2364 		/* Update SW event ring dequeue pointer */
2365 		inc_deq(xhci, xhci->event_ring);
2366 
2367 	/* Are there more items on the event ring?  Caller will call us again to
2368 	 * check.
2369 	 */
2370 	return 1;
2371 }
2372 
2373 /*
2374  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2375  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2376  * indicators of an event TRB error, but we check the status *first* to be safe.
2377  */
2378 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2379 {
2380 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2381 	u32 status;
2382 	union xhci_trb *trb;
2383 	u64 temp_64;
2384 	union xhci_trb *event_ring_deq;
2385 	dma_addr_t deq;
2386 
2387 	spin_lock(&xhci->lock);
2388 	trb = xhci->event_ring->dequeue;
2389 	/* Check if the xHC generated the interrupt, or the irq is shared */
2390 	status = xhci_readl(xhci, &xhci->op_regs->status);
2391 	if (status == 0xffffffff)
2392 		goto hw_died;
2393 
2394 	if (!(status & STS_EINT)) {
2395 		spin_unlock(&xhci->lock);
2396 		return IRQ_NONE;
2397 	}
2398 	if (status & STS_FATAL) {
2399 		xhci_warn(xhci, "WARNING: Host System Error\n");
2400 		xhci_halt(xhci);
2401 hw_died:
2402 		spin_unlock(&xhci->lock);
2403 		return -ESHUTDOWN;
2404 	}
2405 
2406 	/*
2407 	 * Clear the op reg interrupt status first,
2408 	 * so we can receive interrupts from other MSI-X interrupters.
2409 	 * Write 1 to clear the interrupt status.
2410 	 */
2411 	status |= STS_EINT;
2412 	xhci_writel(xhci, status, &xhci->op_regs->status);
2413 	/* FIXME when MSI-X is supported and there are multiple vectors */
2414 	/* Clear the MSI-X event interrupt status */
2415 
2416 	if (hcd->irq) {
2417 		u32 irq_pending;
2418 		/* Acknowledge the PCI interrupt */
2419 		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2420 		irq_pending |= IMAN_IP;
2421 		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2422 	}
2423 
2424 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2425 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2426 				"Shouldn't IRQs be disabled?\n");
2427 		/* Clear the event handler busy flag (RW1C);
2428 		 * the event ring should be empty.
2429 		 */
2430 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2431 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2432 				&xhci->ir_set->erst_dequeue);
2433 		spin_unlock(&xhci->lock);
2434 
2435 		return IRQ_HANDLED;
2436 	}
2437 
2438 	event_ring_deq = xhci->event_ring->dequeue;
2439 	/* FIXME this should be a delayed service routine
2440 	 * that clears the EHB.
2441 	 */
2442 	while (xhci_handle_event(xhci) > 0) {}
2443 
2444 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2445 	/* If necessary, update the HW's version of the event ring deq ptr. */
2446 	if (event_ring_deq != xhci->event_ring->dequeue) {
2447 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2448 				xhci->event_ring->dequeue);
2449 		if (deq == 0)
2450 			xhci_warn(xhci, "WARN something wrong with SW event "
2451 					"ring dequeue ptr.\n");
2452 		/* Update HC event ring dequeue pointer */
2453 		temp_64 &= ERST_PTR_MASK;
2454 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2455 	}
2456 
2457 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2458 	temp_64 |= ERST_EHB;
2459 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2460 
2461 	spin_unlock(&xhci->lock);
2462 
2463 	return IRQ_HANDLED;
2464 }
2465 
2466 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2467 {
2468 	return xhci_irq(hcd);
2469 }
2470 
2471 /****		Endpoint Ring Operations	****/
2472 
2473 /*
2474  * Generic function for queueing a TRB on a ring.
2475  * The caller must have checked to make sure there's room on the ring.
2476  *
2477  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2478  *			prepare_transfer()?
2479  */
2480 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2481 		bool more_trbs_coming,
2482 		u32 field1, u32 field2, u32 field3, u32 field4)
2483 {
2484 	struct xhci_generic_trb *trb;
2485 
2486 	trb = &ring->enqueue->generic;
2487 	trb->field[0] = cpu_to_le32(field1);
2488 	trb->field[1] = cpu_to_le32(field2);
2489 	trb->field[2] = cpu_to_le32(field3);
2490 	trb->field[3] = cpu_to_le32(field4);
2491 	inc_enq(xhci, ring, more_trbs_coming);
2492 }
2493 
2494 /*
2495  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2496  * FIXME allocate segments if the ring is full.
2497  */
2498 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2499 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2500 {
2501 	unsigned int num_trbs_needed;
2502 
2503 	/* Make sure the endpoint has been added to xHC schedule */
2504 	switch (ep_state) {
2505 	case EP_STATE_DISABLED:
2506 		/*
2507 		 * USB core changed config/interfaces without notifying us,
2508 		 * or hardware is reporting the wrong state.
2509 		 */
2510 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2511 		return -ENOENT;
2512 	case EP_STATE_ERROR:
2513 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2514 		/* FIXME event handling code for error needs to clear it */
2515 		/* XXX not sure if this should be -ENOENT or not */
2516 		return -EINVAL;
2517 	case EP_STATE_HALTED:
2518 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2519 	case EP_STATE_STOPPED:
2520 	case EP_STATE_RUNNING:
2521 		break;
2522 	default:
2523 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2524 		/*
2525 		 * FIXME issue Configure Endpoint command to try to get the HC
2526 		 * back into a known state.
2527 		 */
2528 		return -EINVAL;
2529 	}
2530 
2531 	while (1) {
2532 		if (room_on_ring(xhci, ep_ring, num_trbs))
2533 			break;
2534 
2535 		if (ep_ring == xhci->cmd_ring) {
2536 			xhci_err(xhci, "Do not support expand command ring\n");
2537 			return -ENOMEM;
2538 		}
2539 
2540 		xhci_dbg(xhci, "ERROR no room on ep ring, "
2541 					"try ring expansion\n");
2542 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2543 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2544 					mem_flags)) {
2545 			xhci_err(xhci, "Ring expansion failed\n");
2546 			return -ENOMEM;
2547 		}
2548 	};
2549 
2550 	if (enqueue_is_link_trb(ep_ring)) {
2551 		struct xhci_ring *ring = ep_ring;
2552 		union xhci_trb *next;
2553 
2554 		next = ring->enqueue;
2555 
2556 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2557 			/* If we're not dealing with 0.95 hardware or isoc rings
2558 			 * on AMD 0.96 host, clear the chain bit.
2559 			 */
2560 			if (!xhci_link_trb_quirk(xhci) &&
2561 					!(ring->type == TYPE_ISOC &&
2562 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2563 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2564 			else
2565 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2566 
2567 			wmb();
2568 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2569 
2570 			/* Toggle the cycle bit after the last ring segment. */
2571 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2572 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2573 			}
2574 			ring->enq_seg = ring->enq_seg->next;
2575 			ring->enqueue = ring->enq_seg->trbs;
2576 			next = ring->enqueue;
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static int prepare_transfer(struct xhci_hcd *xhci,
2584 		struct xhci_virt_device *xdev,
2585 		unsigned int ep_index,
2586 		unsigned int stream_id,
2587 		unsigned int num_trbs,
2588 		struct urb *urb,
2589 		unsigned int td_index,
2590 		gfp_t mem_flags)
2591 {
2592 	int ret;
2593 	struct urb_priv *urb_priv;
2594 	struct xhci_td	*td;
2595 	struct xhci_ring *ep_ring;
2596 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2597 
2598 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2599 	if (!ep_ring) {
2600 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2601 				stream_id);
2602 		return -EINVAL;
2603 	}
2604 
2605 	ret = prepare_ring(xhci, ep_ring,
2606 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2607 			   num_trbs, mem_flags);
2608 	if (ret)
2609 		return ret;
2610 
2611 	urb_priv = urb->hcpriv;
2612 	td = urb_priv->td[td_index];
2613 
2614 	INIT_LIST_HEAD(&td->td_list);
2615 	INIT_LIST_HEAD(&td->cancelled_td_list);
2616 
2617 	if (td_index == 0) {
2618 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2619 		if (unlikely(ret))
2620 			return ret;
2621 	}
2622 
2623 	td->urb = urb;
2624 	/* Add this TD to the tail of the endpoint ring's TD list */
2625 	list_add_tail(&td->td_list, &ep_ring->td_list);
2626 	td->start_seg = ep_ring->enq_seg;
2627 	td->first_trb = ep_ring->enqueue;
2628 
2629 	urb_priv->td[td_index] = td;
2630 
2631 	return 0;
2632 }
2633 
2634 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2635 {
2636 	int num_sgs, num_trbs, running_total, temp, i;
2637 	struct scatterlist *sg;
2638 
2639 	sg = NULL;
2640 	num_sgs = urb->num_mapped_sgs;
2641 	temp = urb->transfer_buffer_length;
2642 
2643 	num_trbs = 0;
2644 	for_each_sg(urb->sg, sg, num_sgs, i) {
2645 		unsigned int len = sg_dma_len(sg);
2646 
2647 		/* Scatter gather list entries may cross 64KB boundaries */
2648 		running_total = TRB_MAX_BUFF_SIZE -
2649 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2650 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2651 		if (running_total != 0)
2652 			num_trbs++;
2653 
2654 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2655 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2656 			num_trbs++;
2657 			running_total += TRB_MAX_BUFF_SIZE;
2658 		}
2659 		len = min_t(int, len, temp);
2660 		temp -= len;
2661 		if (temp == 0)
2662 			break;
2663 	}
2664 	return num_trbs;
2665 }
2666 
2667 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2668 {
2669 	if (num_trbs != 0)
2670 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2671 				"TRBs, %d left\n", __func__,
2672 				urb->ep->desc.bEndpointAddress, num_trbs);
2673 	if (running_total != urb->transfer_buffer_length)
2674 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2675 				"queued %#x (%d), asked for %#x (%d)\n",
2676 				__func__,
2677 				urb->ep->desc.bEndpointAddress,
2678 				running_total, running_total,
2679 				urb->transfer_buffer_length,
2680 				urb->transfer_buffer_length);
2681 }
2682 
2683 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2684 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2685 		struct xhci_generic_trb *start_trb)
2686 {
2687 	/*
2688 	 * Pass all the TRBs to the hardware at once and make sure this write
2689 	 * isn't reordered.
2690 	 */
2691 	wmb();
2692 	if (start_cycle)
2693 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2694 	else
2695 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2696 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2697 }
2698 
2699 /*
2700  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2701  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2702  * (comprised of sg list entries) can take several service intervals to
2703  * transmit.
2704  */
2705 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2706 		struct urb *urb, int slot_id, unsigned int ep_index)
2707 {
2708 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2709 			xhci->devs[slot_id]->out_ctx, ep_index);
2710 	int xhci_interval;
2711 	int ep_interval;
2712 
2713 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2714 	ep_interval = urb->interval;
2715 	/* Convert to microframes */
2716 	if (urb->dev->speed == USB_SPEED_LOW ||
2717 			urb->dev->speed == USB_SPEED_FULL)
2718 		ep_interval *= 8;
2719 	/* FIXME change this to a warning and a suggestion to use the new API
2720 	 * to set the polling interval (once the API is added).
2721 	 */
2722 	if (xhci_interval != ep_interval) {
2723 		if (printk_ratelimit())
2724 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
2725 					" (%d microframe%s) than xHCI "
2726 					"(%d microframe%s)\n",
2727 					ep_interval,
2728 					ep_interval == 1 ? "" : "s",
2729 					xhci_interval,
2730 					xhci_interval == 1 ? "" : "s");
2731 		urb->interval = xhci_interval;
2732 		/* Convert back to frames for LS/FS devices */
2733 		if (urb->dev->speed == USB_SPEED_LOW ||
2734 				urb->dev->speed == USB_SPEED_FULL)
2735 			urb->interval /= 8;
2736 	}
2737 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2738 }
2739 
2740 /*
2741  * The TD size is the number of bytes remaining in the TD (including this TRB),
2742  * right shifted by 10.
2743  * It must fit in bits 21:17, so it can't be bigger than 31.
2744  */
2745 static u32 xhci_td_remainder(unsigned int remainder)
2746 {
2747 	u32 max = (1 << (21 - 17 + 1)) - 1;
2748 
2749 	if ((remainder >> 10) >= max)
2750 		return max << 17;
2751 	else
2752 		return (remainder >> 10) << 17;
2753 }
2754 
2755 /*
2756  * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2757  * the TD (*not* including this TRB).
2758  *
2759  * Total TD packet count = total_packet_count =
2760  *     roundup(TD size in bytes / wMaxPacketSize)
2761  *
2762  * Packets transferred up to and including this TRB = packets_transferred =
2763  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2764  *
2765  * TD size = total_packet_count - packets_transferred
2766  *
2767  * It must fit in bits 21:17, so it can't be bigger than 31.
2768  */
2769 
2770 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2771 		unsigned int total_packet_count, struct urb *urb)
2772 {
2773 	int packets_transferred;
2774 
2775 	/* One TRB with a zero-length data packet. */
2776 	if (running_total == 0 && trb_buff_len == 0)
2777 		return 0;
2778 
2779 	/* All the TRB queueing functions don't count the current TRB in
2780 	 * running_total.
2781 	 */
2782 	packets_transferred = (running_total + trb_buff_len) /
2783 		usb_endpoint_maxp(&urb->ep->desc);
2784 
2785 	return xhci_td_remainder(total_packet_count - packets_transferred);
2786 }
2787 
2788 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2789 		struct urb *urb, int slot_id, unsigned int ep_index)
2790 {
2791 	struct xhci_ring *ep_ring;
2792 	unsigned int num_trbs;
2793 	struct urb_priv *urb_priv;
2794 	struct xhci_td *td;
2795 	struct scatterlist *sg;
2796 	int num_sgs;
2797 	int trb_buff_len, this_sg_len, running_total;
2798 	unsigned int total_packet_count;
2799 	bool first_trb;
2800 	u64 addr;
2801 	bool more_trbs_coming;
2802 
2803 	struct xhci_generic_trb *start_trb;
2804 	int start_cycle;
2805 
2806 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2807 	if (!ep_ring)
2808 		return -EINVAL;
2809 
2810 	num_trbs = count_sg_trbs_needed(xhci, urb);
2811 	num_sgs = urb->num_mapped_sgs;
2812 	total_packet_count = roundup(urb->transfer_buffer_length,
2813 			usb_endpoint_maxp(&urb->ep->desc));
2814 
2815 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2816 			ep_index, urb->stream_id,
2817 			num_trbs, urb, 0, mem_flags);
2818 	if (trb_buff_len < 0)
2819 		return trb_buff_len;
2820 
2821 	urb_priv = urb->hcpriv;
2822 	td = urb_priv->td[0];
2823 
2824 	/*
2825 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2826 	 * until we've finished creating all the other TRBs.  The ring's cycle
2827 	 * state may change as we enqueue the other TRBs, so save it too.
2828 	 */
2829 	start_trb = &ep_ring->enqueue->generic;
2830 	start_cycle = ep_ring->cycle_state;
2831 
2832 	running_total = 0;
2833 	/*
2834 	 * How much data is in the first TRB?
2835 	 *
2836 	 * There are three forces at work for TRB buffer pointers and lengths:
2837 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
2838 	 * 2. The transfer length that the driver requested may be smaller than
2839 	 *    the amount of memory allocated for this scatter-gather list.
2840 	 * 3. TRBs buffers can't cross 64KB boundaries.
2841 	 */
2842 	sg = urb->sg;
2843 	addr = (u64) sg_dma_address(sg);
2844 	this_sg_len = sg_dma_len(sg);
2845 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2846 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2847 	if (trb_buff_len > urb->transfer_buffer_length)
2848 		trb_buff_len = urb->transfer_buffer_length;
2849 
2850 	first_trb = true;
2851 	/* Queue the first TRB, even if it's zero-length */
2852 	do {
2853 		u32 field = 0;
2854 		u32 length_field = 0;
2855 		u32 remainder = 0;
2856 
2857 		/* Don't change the cycle bit of the first TRB until later */
2858 		if (first_trb) {
2859 			first_trb = false;
2860 			if (start_cycle == 0)
2861 				field |= 0x1;
2862 		} else
2863 			field |= ep_ring->cycle_state;
2864 
2865 		/* Chain all the TRBs together; clear the chain bit in the last
2866 		 * TRB to indicate it's the last TRB in the chain.
2867 		 */
2868 		if (num_trbs > 1) {
2869 			field |= TRB_CHAIN;
2870 		} else {
2871 			/* FIXME - add check for ZERO_PACKET flag before this */
2872 			td->last_trb = ep_ring->enqueue;
2873 			field |= TRB_IOC;
2874 		}
2875 
2876 		/* Only set interrupt on short packet for IN endpoints */
2877 		if (usb_urb_dir_in(urb))
2878 			field |= TRB_ISP;
2879 
2880 		if (TRB_MAX_BUFF_SIZE -
2881 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2882 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2883 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2884 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2885 					(unsigned int) addr + trb_buff_len);
2886 		}
2887 
2888 		/* Set the TRB length, TD size, and interrupter fields. */
2889 		if (xhci->hci_version < 0x100) {
2890 			remainder = xhci_td_remainder(
2891 					urb->transfer_buffer_length -
2892 					running_total);
2893 		} else {
2894 			remainder = xhci_v1_0_td_remainder(running_total,
2895 					trb_buff_len, total_packet_count, urb);
2896 		}
2897 		length_field = TRB_LEN(trb_buff_len) |
2898 			remainder |
2899 			TRB_INTR_TARGET(0);
2900 
2901 		if (num_trbs > 1)
2902 			more_trbs_coming = true;
2903 		else
2904 			more_trbs_coming = false;
2905 		queue_trb(xhci, ep_ring, more_trbs_coming,
2906 				lower_32_bits(addr),
2907 				upper_32_bits(addr),
2908 				length_field,
2909 				field | TRB_TYPE(TRB_NORMAL));
2910 		--num_trbs;
2911 		running_total += trb_buff_len;
2912 
2913 		/* Calculate length for next transfer --
2914 		 * Are we done queueing all the TRBs for this sg entry?
2915 		 */
2916 		this_sg_len -= trb_buff_len;
2917 		if (this_sg_len == 0) {
2918 			--num_sgs;
2919 			if (num_sgs == 0)
2920 				break;
2921 			sg = sg_next(sg);
2922 			addr = (u64) sg_dma_address(sg);
2923 			this_sg_len = sg_dma_len(sg);
2924 		} else {
2925 			addr += trb_buff_len;
2926 		}
2927 
2928 		trb_buff_len = TRB_MAX_BUFF_SIZE -
2929 			(addr & (TRB_MAX_BUFF_SIZE - 1));
2930 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2931 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
2932 			trb_buff_len =
2933 				urb->transfer_buffer_length - running_total;
2934 	} while (running_total < urb->transfer_buffer_length);
2935 
2936 	check_trb_math(urb, num_trbs, running_total);
2937 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2938 			start_cycle, start_trb);
2939 	return 0;
2940 }
2941 
2942 /* This is very similar to what ehci-q.c qtd_fill() does */
2943 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2944 		struct urb *urb, int slot_id, unsigned int ep_index)
2945 {
2946 	struct xhci_ring *ep_ring;
2947 	struct urb_priv *urb_priv;
2948 	struct xhci_td *td;
2949 	int num_trbs;
2950 	struct xhci_generic_trb *start_trb;
2951 	bool first_trb;
2952 	bool more_trbs_coming;
2953 	int start_cycle;
2954 	u32 field, length_field;
2955 
2956 	int running_total, trb_buff_len, ret;
2957 	unsigned int total_packet_count;
2958 	u64 addr;
2959 
2960 	if (urb->num_sgs)
2961 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2962 
2963 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2964 	if (!ep_ring)
2965 		return -EINVAL;
2966 
2967 	num_trbs = 0;
2968 	/* How much data is (potentially) left before the 64KB boundary? */
2969 	running_total = TRB_MAX_BUFF_SIZE -
2970 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2971 	running_total &= TRB_MAX_BUFF_SIZE - 1;
2972 
2973 	/* If there's some data on this 64KB chunk, or we have to send a
2974 	 * zero-length transfer, we need at least one TRB
2975 	 */
2976 	if (running_total != 0 || urb->transfer_buffer_length == 0)
2977 		num_trbs++;
2978 	/* How many more 64KB chunks to transfer, how many more TRBs? */
2979 	while (running_total < urb->transfer_buffer_length) {
2980 		num_trbs++;
2981 		running_total += TRB_MAX_BUFF_SIZE;
2982 	}
2983 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2984 
2985 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
2986 			ep_index, urb->stream_id,
2987 			num_trbs, urb, 0, mem_flags);
2988 	if (ret < 0)
2989 		return ret;
2990 
2991 	urb_priv = urb->hcpriv;
2992 	td = urb_priv->td[0];
2993 
2994 	/*
2995 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2996 	 * until we've finished creating all the other TRBs.  The ring's cycle
2997 	 * state may change as we enqueue the other TRBs, so save it too.
2998 	 */
2999 	start_trb = &ep_ring->enqueue->generic;
3000 	start_cycle = ep_ring->cycle_state;
3001 
3002 	running_total = 0;
3003 	total_packet_count = roundup(urb->transfer_buffer_length,
3004 			usb_endpoint_maxp(&urb->ep->desc));
3005 	/* How much data is in the first TRB? */
3006 	addr = (u64) urb->transfer_dma;
3007 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3008 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3009 	if (trb_buff_len > urb->transfer_buffer_length)
3010 		trb_buff_len = urb->transfer_buffer_length;
3011 
3012 	first_trb = true;
3013 
3014 	/* Queue the first TRB, even if it's zero-length */
3015 	do {
3016 		u32 remainder = 0;
3017 		field = 0;
3018 
3019 		/* Don't change the cycle bit of the first TRB until later */
3020 		if (first_trb) {
3021 			first_trb = false;
3022 			if (start_cycle == 0)
3023 				field |= 0x1;
3024 		} else
3025 			field |= ep_ring->cycle_state;
3026 
3027 		/* Chain all the TRBs together; clear the chain bit in the last
3028 		 * TRB to indicate it's the last TRB in the chain.
3029 		 */
3030 		if (num_trbs > 1) {
3031 			field |= TRB_CHAIN;
3032 		} else {
3033 			/* FIXME - add check for ZERO_PACKET flag before this */
3034 			td->last_trb = ep_ring->enqueue;
3035 			field |= TRB_IOC;
3036 		}
3037 
3038 		/* Only set interrupt on short packet for IN endpoints */
3039 		if (usb_urb_dir_in(urb))
3040 			field |= TRB_ISP;
3041 
3042 		/* Set the TRB length, TD size, and interrupter fields. */
3043 		if (xhci->hci_version < 0x100) {
3044 			remainder = xhci_td_remainder(
3045 					urb->transfer_buffer_length -
3046 					running_total);
3047 		} else {
3048 			remainder = xhci_v1_0_td_remainder(running_total,
3049 					trb_buff_len, total_packet_count, urb);
3050 		}
3051 		length_field = TRB_LEN(trb_buff_len) |
3052 			remainder |
3053 			TRB_INTR_TARGET(0);
3054 
3055 		if (num_trbs > 1)
3056 			more_trbs_coming = true;
3057 		else
3058 			more_trbs_coming = false;
3059 		queue_trb(xhci, ep_ring, more_trbs_coming,
3060 				lower_32_bits(addr),
3061 				upper_32_bits(addr),
3062 				length_field,
3063 				field | TRB_TYPE(TRB_NORMAL));
3064 		--num_trbs;
3065 		running_total += trb_buff_len;
3066 
3067 		/* Calculate length for next transfer */
3068 		addr += trb_buff_len;
3069 		trb_buff_len = urb->transfer_buffer_length - running_total;
3070 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3071 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3072 	} while (running_total < urb->transfer_buffer_length);
3073 
3074 	check_trb_math(urb, num_trbs, running_total);
3075 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3076 			start_cycle, start_trb);
3077 	return 0;
3078 }
3079 
3080 /* Caller must have locked xhci->lock */
3081 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3082 		struct urb *urb, int slot_id, unsigned int ep_index)
3083 {
3084 	struct xhci_ring *ep_ring;
3085 	int num_trbs;
3086 	int ret;
3087 	struct usb_ctrlrequest *setup;
3088 	struct xhci_generic_trb *start_trb;
3089 	int start_cycle;
3090 	u32 field, length_field;
3091 	struct urb_priv *urb_priv;
3092 	struct xhci_td *td;
3093 
3094 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3095 	if (!ep_ring)
3096 		return -EINVAL;
3097 
3098 	/*
3099 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3100 	 * DMA address.
3101 	 */
3102 	if (!urb->setup_packet)
3103 		return -EINVAL;
3104 
3105 	/* 1 TRB for setup, 1 for status */
3106 	num_trbs = 2;
3107 	/*
3108 	 * Don't need to check if we need additional event data and normal TRBs,
3109 	 * since data in control transfers will never get bigger than 16MB
3110 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3111 	 */
3112 	if (urb->transfer_buffer_length > 0)
3113 		num_trbs++;
3114 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3115 			ep_index, urb->stream_id,
3116 			num_trbs, urb, 0, mem_flags);
3117 	if (ret < 0)
3118 		return ret;
3119 
3120 	urb_priv = urb->hcpriv;
3121 	td = urb_priv->td[0];
3122 
3123 	/*
3124 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3125 	 * until we've finished creating all the other TRBs.  The ring's cycle
3126 	 * state may change as we enqueue the other TRBs, so save it too.
3127 	 */
3128 	start_trb = &ep_ring->enqueue->generic;
3129 	start_cycle = ep_ring->cycle_state;
3130 
3131 	/* Queue setup TRB - see section 6.4.1.2.1 */
3132 	/* FIXME better way to translate setup_packet into two u32 fields? */
3133 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3134 	field = 0;
3135 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3136 	if (start_cycle == 0)
3137 		field |= 0x1;
3138 
3139 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3140 	if (xhci->hci_version == 0x100) {
3141 		if (urb->transfer_buffer_length > 0) {
3142 			if (setup->bRequestType & USB_DIR_IN)
3143 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3144 			else
3145 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3146 		}
3147 	}
3148 
3149 	queue_trb(xhci, ep_ring, true,
3150 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3151 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3152 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3153 		  /* Immediate data in pointer */
3154 		  field);
3155 
3156 	/* If there's data, queue data TRBs */
3157 	/* Only set interrupt on short packet for IN endpoints */
3158 	if (usb_urb_dir_in(urb))
3159 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3160 	else
3161 		field = TRB_TYPE(TRB_DATA);
3162 
3163 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3164 		xhci_td_remainder(urb->transfer_buffer_length) |
3165 		TRB_INTR_TARGET(0);
3166 	if (urb->transfer_buffer_length > 0) {
3167 		if (setup->bRequestType & USB_DIR_IN)
3168 			field |= TRB_DIR_IN;
3169 		queue_trb(xhci, ep_ring, true,
3170 				lower_32_bits(urb->transfer_dma),
3171 				upper_32_bits(urb->transfer_dma),
3172 				length_field,
3173 				field | ep_ring->cycle_state);
3174 	}
3175 
3176 	/* Save the DMA address of the last TRB in the TD */
3177 	td->last_trb = ep_ring->enqueue;
3178 
3179 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3180 	/* If the device sent data, the status stage is an OUT transfer */
3181 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3182 		field = 0;
3183 	else
3184 		field = TRB_DIR_IN;
3185 	queue_trb(xhci, ep_ring, false,
3186 			0,
3187 			0,
3188 			TRB_INTR_TARGET(0),
3189 			/* Event on completion */
3190 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3191 
3192 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3193 			start_cycle, start_trb);
3194 	return 0;
3195 }
3196 
3197 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3198 		struct urb *urb, int i)
3199 {
3200 	int num_trbs = 0;
3201 	u64 addr, td_len;
3202 
3203 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3204 	td_len = urb->iso_frame_desc[i].length;
3205 
3206 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3207 			TRB_MAX_BUFF_SIZE);
3208 	if (num_trbs == 0)
3209 		num_trbs++;
3210 
3211 	return num_trbs;
3212 }
3213 
3214 /*
3215  * The transfer burst count field of the isochronous TRB defines the number of
3216  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3217  * devices can burst up to bMaxBurst number of packets per service interval.
3218  * This field is zero based, meaning a value of zero in the field means one
3219  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3220  * zero.  Only xHCI 1.0 host controllers support this field.
3221  */
3222 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3223 		struct usb_device *udev,
3224 		struct urb *urb, unsigned int total_packet_count)
3225 {
3226 	unsigned int max_burst;
3227 
3228 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3229 		return 0;
3230 
3231 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3232 	return roundup(total_packet_count, max_burst + 1) - 1;
3233 }
3234 
3235 /*
3236  * Returns the number of packets in the last "burst" of packets.  This field is
3237  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3238  * the last burst packet count is equal to the total number of packets in the
3239  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3240  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3241  * contain 1 to (bMaxBurst + 1) packets.
3242  */
3243 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3244 		struct usb_device *udev,
3245 		struct urb *urb, unsigned int total_packet_count)
3246 {
3247 	unsigned int max_burst;
3248 	unsigned int residue;
3249 
3250 	if (xhci->hci_version < 0x100)
3251 		return 0;
3252 
3253 	switch (udev->speed) {
3254 	case USB_SPEED_SUPER:
3255 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3256 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3257 		residue = total_packet_count % (max_burst + 1);
3258 		/* If residue is zero, the last burst contains (max_burst + 1)
3259 		 * number of packets, but the TLBPC field is zero-based.
3260 		 */
3261 		if (residue == 0)
3262 			return max_burst;
3263 		return residue - 1;
3264 	default:
3265 		if (total_packet_count == 0)
3266 			return 0;
3267 		return total_packet_count - 1;
3268 	}
3269 }
3270 
3271 /* This is for isoc transfer */
3272 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3273 		struct urb *urb, int slot_id, unsigned int ep_index)
3274 {
3275 	struct xhci_ring *ep_ring;
3276 	struct urb_priv *urb_priv;
3277 	struct xhci_td *td;
3278 	int num_tds, trbs_per_td;
3279 	struct xhci_generic_trb *start_trb;
3280 	bool first_trb;
3281 	int start_cycle;
3282 	u32 field, length_field;
3283 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3284 	u64 start_addr, addr;
3285 	int i, j;
3286 	bool more_trbs_coming;
3287 
3288 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3289 
3290 	num_tds = urb->number_of_packets;
3291 	if (num_tds < 1) {
3292 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3293 		return -EINVAL;
3294 	}
3295 
3296 	start_addr = (u64) urb->transfer_dma;
3297 	start_trb = &ep_ring->enqueue->generic;
3298 	start_cycle = ep_ring->cycle_state;
3299 
3300 	urb_priv = urb->hcpriv;
3301 	/* Queue the first TRB, even if it's zero-length */
3302 	for (i = 0; i < num_tds; i++) {
3303 		unsigned int total_packet_count;
3304 		unsigned int burst_count;
3305 		unsigned int residue;
3306 
3307 		first_trb = true;
3308 		running_total = 0;
3309 		addr = start_addr + urb->iso_frame_desc[i].offset;
3310 		td_len = urb->iso_frame_desc[i].length;
3311 		td_remain_len = td_len;
3312 		total_packet_count = roundup(td_len,
3313 				usb_endpoint_maxp(&urb->ep->desc));
3314 		/* A zero-length transfer still involves at least one packet. */
3315 		if (total_packet_count == 0)
3316 			total_packet_count++;
3317 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3318 				total_packet_count);
3319 		residue = xhci_get_last_burst_packet_count(xhci,
3320 				urb->dev, urb, total_packet_count);
3321 
3322 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3323 
3324 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3325 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3326 		if (ret < 0) {
3327 			if (i == 0)
3328 				return ret;
3329 			goto cleanup;
3330 		}
3331 
3332 		td = urb_priv->td[i];
3333 		for (j = 0; j < trbs_per_td; j++) {
3334 			u32 remainder = 0;
3335 			field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3336 
3337 			if (first_trb) {
3338 				/* Queue the isoc TRB */
3339 				field |= TRB_TYPE(TRB_ISOC);
3340 				/* Assume URB_ISO_ASAP is set */
3341 				field |= TRB_SIA;
3342 				if (i == 0) {
3343 					if (start_cycle == 0)
3344 						field |= 0x1;
3345 				} else
3346 					field |= ep_ring->cycle_state;
3347 				first_trb = false;
3348 			} else {
3349 				/* Queue other normal TRBs */
3350 				field |= TRB_TYPE(TRB_NORMAL);
3351 				field |= ep_ring->cycle_state;
3352 			}
3353 
3354 			/* Only set interrupt on short packet for IN EPs */
3355 			if (usb_urb_dir_in(urb))
3356 				field |= TRB_ISP;
3357 
3358 			/* Chain all the TRBs together; clear the chain bit in
3359 			 * the last TRB to indicate it's the last TRB in the
3360 			 * chain.
3361 			 */
3362 			if (j < trbs_per_td - 1) {
3363 				field |= TRB_CHAIN;
3364 				more_trbs_coming = true;
3365 			} else {
3366 				td->last_trb = ep_ring->enqueue;
3367 				field |= TRB_IOC;
3368 				if (xhci->hci_version == 0x100) {
3369 					/* Set BEI bit except for the last td */
3370 					if (i < num_tds - 1)
3371 						field |= TRB_BEI;
3372 				}
3373 				more_trbs_coming = false;
3374 			}
3375 
3376 			/* Calculate TRB length */
3377 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3378 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3379 			if (trb_buff_len > td_remain_len)
3380 				trb_buff_len = td_remain_len;
3381 
3382 			/* Set the TRB length, TD size, & interrupter fields. */
3383 			if (xhci->hci_version < 0x100) {
3384 				remainder = xhci_td_remainder(
3385 						td_len - running_total);
3386 			} else {
3387 				remainder = xhci_v1_0_td_remainder(
3388 						running_total, trb_buff_len,
3389 						total_packet_count, urb);
3390 			}
3391 			length_field = TRB_LEN(trb_buff_len) |
3392 				remainder |
3393 				TRB_INTR_TARGET(0);
3394 
3395 			queue_trb(xhci, ep_ring, more_trbs_coming,
3396 				lower_32_bits(addr),
3397 				upper_32_bits(addr),
3398 				length_field,
3399 				field);
3400 			running_total += trb_buff_len;
3401 
3402 			addr += trb_buff_len;
3403 			td_remain_len -= trb_buff_len;
3404 		}
3405 
3406 		/* Check TD length */
3407 		if (running_total != td_len) {
3408 			xhci_err(xhci, "ISOC TD length unmatch\n");
3409 			ret = -EINVAL;
3410 			goto cleanup;
3411 		}
3412 	}
3413 
3414 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3415 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3416 			usb_amd_quirk_pll_disable();
3417 	}
3418 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3419 
3420 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3421 			start_cycle, start_trb);
3422 	return 0;
3423 cleanup:
3424 	/* Clean up a partially enqueued isoc transfer. */
3425 
3426 	for (i--; i >= 0; i--)
3427 		list_del_init(&urb_priv->td[i]->td_list);
3428 
3429 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3430 	 * into No-ops with a software-owned cycle bit. That way the hardware
3431 	 * won't accidentally start executing bogus TDs when we partially
3432 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3433 	 */
3434 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3435 	/* Every TRB except the first & last will have its cycle bit flipped. */
3436 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3437 
3438 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3439 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3440 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3441 	ep_ring->cycle_state = start_cycle;
3442 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3443 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3444 	return ret;
3445 }
3446 
3447 /*
3448  * Check transfer ring to guarantee there is enough room for the urb.
3449  * Update ISO URB start_frame and interval.
3450  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3451  * update the urb->start_frame by now.
3452  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3453  */
3454 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3455 		struct urb *urb, int slot_id, unsigned int ep_index)
3456 {
3457 	struct xhci_virt_device *xdev;
3458 	struct xhci_ring *ep_ring;
3459 	struct xhci_ep_ctx *ep_ctx;
3460 	int start_frame;
3461 	int xhci_interval;
3462 	int ep_interval;
3463 	int num_tds, num_trbs, i;
3464 	int ret;
3465 
3466 	xdev = xhci->devs[slot_id];
3467 	ep_ring = xdev->eps[ep_index].ring;
3468 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3469 
3470 	num_trbs = 0;
3471 	num_tds = urb->number_of_packets;
3472 	for (i = 0; i < num_tds; i++)
3473 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3474 
3475 	/* Check the ring to guarantee there is enough room for the whole urb.
3476 	 * Do not insert any td of the urb to the ring if the check failed.
3477 	 */
3478 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3479 			   num_trbs, mem_flags);
3480 	if (ret)
3481 		return ret;
3482 
3483 	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3484 	start_frame &= 0x3fff;
3485 
3486 	urb->start_frame = start_frame;
3487 	if (urb->dev->speed == USB_SPEED_LOW ||
3488 			urb->dev->speed == USB_SPEED_FULL)
3489 		urb->start_frame >>= 3;
3490 
3491 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3492 	ep_interval = urb->interval;
3493 	/* Convert to microframes */
3494 	if (urb->dev->speed == USB_SPEED_LOW ||
3495 			urb->dev->speed == USB_SPEED_FULL)
3496 		ep_interval *= 8;
3497 	/* FIXME change this to a warning and a suggestion to use the new API
3498 	 * to set the polling interval (once the API is added).
3499 	 */
3500 	if (xhci_interval != ep_interval) {
3501 		if (printk_ratelimit())
3502 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
3503 					" (%d microframe%s) than xHCI "
3504 					"(%d microframe%s)\n",
3505 					ep_interval,
3506 					ep_interval == 1 ? "" : "s",
3507 					xhci_interval,
3508 					xhci_interval == 1 ? "" : "s");
3509 		urb->interval = xhci_interval;
3510 		/* Convert back to frames for LS/FS devices */
3511 		if (urb->dev->speed == USB_SPEED_LOW ||
3512 				urb->dev->speed == USB_SPEED_FULL)
3513 			urb->interval /= 8;
3514 	}
3515 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3516 
3517 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3518 }
3519 
3520 /****		Command Ring Operations		****/
3521 
3522 /* Generic function for queueing a command TRB on the command ring.
3523  * Check to make sure there's room on the command ring for one command TRB.
3524  * Also check that there's room reserved for commands that must not fail.
3525  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3526  * then only check for the number of reserved spots.
3527  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3528  * because the command event handler may want to resubmit a failed command.
3529  */
3530 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3531 		u32 field3, u32 field4, bool command_must_succeed)
3532 {
3533 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3534 	int ret;
3535 
3536 	if (!command_must_succeed)
3537 		reserved_trbs++;
3538 
3539 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3540 			reserved_trbs, GFP_ATOMIC);
3541 	if (ret < 0) {
3542 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3543 		if (command_must_succeed)
3544 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3545 					"unfailable commands failed.\n");
3546 		return ret;
3547 	}
3548 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3549 			field4 | xhci->cmd_ring->cycle_state);
3550 	return 0;
3551 }
3552 
3553 /* Queue a slot enable or disable request on the command ring */
3554 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3555 {
3556 	return queue_command(xhci, 0, 0, 0,
3557 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3558 }
3559 
3560 /* Queue an address device command TRB */
3561 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3562 		u32 slot_id)
3563 {
3564 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3565 			upper_32_bits(in_ctx_ptr), 0,
3566 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3567 			false);
3568 }
3569 
3570 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3571 		u32 field1, u32 field2, u32 field3, u32 field4)
3572 {
3573 	return queue_command(xhci, field1, field2, field3, field4, false);
3574 }
3575 
3576 /* Queue a reset device command TRB */
3577 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3578 {
3579 	return queue_command(xhci, 0, 0, 0,
3580 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3581 			false);
3582 }
3583 
3584 /* Queue a configure endpoint command TRB */
3585 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3586 		u32 slot_id, bool command_must_succeed)
3587 {
3588 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3589 			upper_32_bits(in_ctx_ptr), 0,
3590 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3591 			command_must_succeed);
3592 }
3593 
3594 /* Queue an evaluate context command TRB */
3595 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3596 		u32 slot_id)
3597 {
3598 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3599 			upper_32_bits(in_ctx_ptr), 0,
3600 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3601 			false);
3602 }
3603 
3604 /*
3605  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3606  * activity on an endpoint that is about to be suspended.
3607  */
3608 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3609 		unsigned int ep_index, int suspend)
3610 {
3611 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3612 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3613 	u32 type = TRB_TYPE(TRB_STOP_RING);
3614 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3615 
3616 	return queue_command(xhci, 0, 0, 0,
3617 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3618 }
3619 
3620 /* Set Transfer Ring Dequeue Pointer command.
3621  * This should not be used for endpoints that have streams enabled.
3622  */
3623 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3624 		unsigned int ep_index, unsigned int stream_id,
3625 		struct xhci_segment *deq_seg,
3626 		union xhci_trb *deq_ptr, u32 cycle_state)
3627 {
3628 	dma_addr_t addr;
3629 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3630 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3631 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3632 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3633 	struct xhci_virt_ep *ep;
3634 
3635 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3636 	if (addr == 0) {
3637 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3638 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3639 				deq_seg, deq_ptr);
3640 		return 0;
3641 	}
3642 	ep = &xhci->devs[slot_id]->eps[ep_index];
3643 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3644 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3645 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3646 		return 0;
3647 	}
3648 	ep->queued_deq_seg = deq_seg;
3649 	ep->queued_deq_ptr = deq_ptr;
3650 	return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3651 			upper_32_bits(addr), trb_stream_id,
3652 			trb_slot_id | trb_ep_index | type, false);
3653 }
3654 
3655 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3656 		unsigned int ep_index)
3657 {
3658 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3659 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3660 	u32 type = TRB_TYPE(TRB_RESET_EP);
3661 
3662 	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3663 			false);
3664 }
3665