1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 284 /* Flush PCI posted writes */ 285 readl(&xhci->dba->doorbell[0]); 286 } 287 288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 289 { 290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 291 } 292 293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 294 { 295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 296 cmd_list); 297 } 298 299 /* 300 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 301 * If there are other commands waiting then restart the ring and kick the timer. 302 * This must be called with command ring stopped and xhci->lock held. 303 */ 304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 305 struct xhci_command *cur_cmd) 306 { 307 struct xhci_command *i_cmd; 308 309 /* Turn all aborted commands in list to no-ops, then restart */ 310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 311 312 if (i_cmd->status != COMP_COMMAND_ABORTED) 313 continue; 314 315 i_cmd->status = COMP_COMMAND_RING_STOPPED; 316 317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 318 i_cmd->command_trb); 319 320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 321 322 /* 323 * caller waiting for completion is called when command 324 * completion event is received for these no-op commands 325 */ 326 } 327 328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 329 330 /* ring command ring doorbell to restart the command ring */ 331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 332 !(xhci->xhc_state & XHCI_STATE_DYING)) { 333 xhci->current_cmd = cur_cmd; 334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 335 xhci_ring_cmd_db(xhci); 336 } 337 } 338 339 /* Must be called with xhci->lock held, releases and aquires lock back */ 340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 341 { 342 u64 temp_64; 343 int ret; 344 345 xhci_dbg(xhci, "Abort command ring\n"); 346 347 reinit_completion(&xhci->cmd_ring_stop_completion); 348 349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 351 &xhci->op_regs->cmd_ring); 352 353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 354 * completion of the Command Abort operation. If CRR is not negated in 5 355 * seconds then driver handles it as if host died (-ENODEV). 356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 357 * and try to recover a -ETIMEDOUT with a host controller reset. 358 */ 359 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 361 if (ret < 0) { 362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 363 xhci_halt(xhci); 364 xhci_hc_died(xhci); 365 return ret; 366 } 367 /* 368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 370 * but the completion event in never sent. Wait 2 secs (arbitrary 371 * number) to handle those cases after negation of CMD_RING_RUNNING. 372 */ 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 375 msecs_to_jiffies(2000)); 376 spin_lock_irqsave(&xhci->lock, flags); 377 if (!ret) { 378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 379 xhci_cleanup_command_queue(xhci); 380 } else { 381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 382 } 383 return 0; 384 } 385 386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 387 unsigned int slot_id, 388 unsigned int ep_index, 389 unsigned int stream_id) 390 { 391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 393 unsigned int ep_state = ep->ep_state; 394 395 /* Don't ring the doorbell for this endpoint if there are pending 396 * cancellations because we don't want to interrupt processing. 397 * We don't want to restart any stream rings if there's a set dequeue 398 * pointer command pending because the device can choose to start any 399 * stream once the endpoint is on the HW schedule. 400 */ 401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 402 (ep_state & EP_HALTED)) 403 return; 404 writel(DB_VALUE(ep_index, stream_id), db_addr); 405 /* The CPU has better things to do at this point than wait for a 406 * write-posting flush. It'll get there soon enough. 407 */ 408 } 409 410 /* Ring the doorbell for any rings with pending URBs */ 411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index) 414 { 415 unsigned int stream_id; 416 struct xhci_virt_ep *ep; 417 418 ep = &xhci->devs[slot_id]->eps[ep_index]; 419 420 /* A ring has pending URBs if its TD list is not empty */ 421 if (!(ep->ep_state & EP_HAS_STREAMS)) { 422 if (ep->ring && !(list_empty(&ep->ring->td_list))) 423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 424 return; 425 } 426 427 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 428 stream_id++) { 429 struct xhci_stream_info *stream_info = ep->stream_info; 430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 432 stream_id); 433 } 434 } 435 436 /* Get the right ring for the given slot_id, ep_index and stream_id. 437 * If the endpoint supports streams, boundary check the URB's stream ID. 438 * If the endpoint doesn't support streams, return the singular endpoint ring. 439 */ 440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 441 unsigned int slot_id, unsigned int ep_index, 442 unsigned int stream_id) 443 { 444 struct xhci_virt_ep *ep; 445 446 ep = &xhci->devs[slot_id]->eps[ep_index]; 447 /* Common case: no streams */ 448 if (!(ep->ep_state & EP_HAS_STREAMS)) 449 return ep->ring; 450 451 if (stream_id == 0) { 452 xhci_warn(xhci, 453 "WARN: Slot ID %u, ep index %u has streams, " 454 "but URB has no stream ID.\n", 455 slot_id, ep_index); 456 return NULL; 457 } 458 459 if (stream_id < ep->stream_info->num_streams) 460 return ep->stream_info->stream_rings[stream_id]; 461 462 xhci_warn(xhci, 463 "WARN: Slot ID %u, ep index %u has " 464 "stream IDs 1 to %u allocated, " 465 "but stream ID %u is requested.\n", 466 slot_id, ep_index, 467 ep->stream_info->num_streams - 1, 468 stream_id); 469 return NULL; 470 } 471 472 473 /* 474 * Get the hw dequeue pointer xHC stopped on, either directly from the 475 * endpoint context, or if streams are in use from the stream context. 476 * The returned hw_dequeue contains the lowest four bits with cycle state 477 * and possbile stream context type. 478 */ 479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 480 unsigned int ep_index, unsigned int stream_id) 481 { 482 struct xhci_ep_ctx *ep_ctx; 483 struct xhci_stream_ctx *st_ctx; 484 struct xhci_virt_ep *ep; 485 486 ep = &vdev->eps[ep_index]; 487 488 if (ep->ep_state & EP_HAS_STREAMS) { 489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 490 return le64_to_cpu(st_ctx->stream_ring); 491 } 492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 493 return le64_to_cpu(ep_ctx->deq); 494 } 495 496 /* 497 * Move the xHC's endpoint ring dequeue pointer past cur_td. 498 * Record the new state of the xHC's endpoint ring dequeue segment, 499 * dequeue pointer, stream id, and new consumer cycle state in state. 500 * Update our internal representation of the ring's dequeue pointer. 501 * 502 * We do this in three jumps: 503 * - First we update our new ring state to be the same as when the xHC stopped. 504 * - Then we traverse the ring to find the segment that contains 505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 506 * any link TRBs with the toggle cycle bit set. 507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 508 * if we've moved it past a link TRB with the toggle cycle bit set. 509 * 510 * Some of the uses of xhci_generic_trb are grotty, but if they're done 511 * with correct __le32 accesses they should work fine. Only users of this are 512 * in here. 513 */ 514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 515 unsigned int slot_id, unsigned int ep_index, 516 unsigned int stream_id, struct xhci_td *cur_td, 517 struct xhci_dequeue_state *state) 518 { 519 struct xhci_virt_device *dev = xhci->devs[slot_id]; 520 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 521 struct xhci_ring *ep_ring; 522 struct xhci_segment *new_seg; 523 union xhci_trb *new_deq; 524 dma_addr_t addr; 525 u64 hw_dequeue; 526 bool cycle_found = false; 527 bool td_last_trb_found = false; 528 529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 530 ep_index, stream_id); 531 if (!ep_ring) { 532 xhci_warn(xhci, "WARN can't find new dequeue state " 533 "for invalid stream ID %u.\n", 534 stream_id); 535 return; 536 } 537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 539 "Finding endpoint context"); 540 541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 542 new_seg = ep_ring->deq_seg; 543 new_deq = ep_ring->dequeue; 544 state->new_cycle_state = hw_dequeue & 0x1; 545 state->stream_id = stream_id; 546 547 /* 548 * We want to find the pointer, segment and cycle state of the new trb 549 * (the one after current TD's last_trb). We know the cycle state at 550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 551 * found. 552 */ 553 do { 554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 555 == (dma_addr_t)(hw_dequeue & ~0xf)) { 556 cycle_found = true; 557 if (td_last_trb_found) 558 break; 559 } 560 if (new_deq == cur_td->last_trb) 561 td_last_trb_found = true; 562 563 if (cycle_found && trb_is_link(new_deq) && 564 link_trb_toggles_cycle(new_deq)) 565 state->new_cycle_state ^= 0x1; 566 567 next_trb(xhci, ep_ring, &new_seg, &new_deq); 568 569 /* Search wrapped around, bail out */ 570 if (new_deq == ep->ring->dequeue) { 571 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 572 state->new_deq_seg = NULL; 573 state->new_deq_ptr = NULL; 574 return; 575 } 576 577 } while (!cycle_found || !td_last_trb_found); 578 579 state->new_deq_seg = new_seg; 580 state->new_deq_ptr = new_deq; 581 582 /* Don't update the ring cycle state for the producer (us). */ 583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 584 "Cycle state = 0x%x", state->new_cycle_state); 585 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue segment = %p (virtual)", 588 state->new_deq_seg); 589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 591 "New dequeue pointer = 0x%llx (DMA)", 592 (unsigned long long) addr); 593 } 594 595 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 596 * (The last TRB actually points to the ring enqueue pointer, which is not part 597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 598 */ 599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 600 struct xhci_td *td, bool flip_cycle) 601 { 602 struct xhci_segment *seg = td->start_seg; 603 union xhci_trb *trb = td->first_trb; 604 605 while (1) { 606 trb_to_noop(trb, TRB_TR_NOOP); 607 608 /* flip cycle if asked to */ 609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 611 612 if (trb == td->last_trb) 613 break; 614 615 next_trb(xhci, ep_ring, &seg, &trb); 616 } 617 } 618 619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 620 struct xhci_virt_ep *ep) 621 { 622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 623 /* Can't del_timer_sync in interrupt */ 624 del_timer(&ep->stop_cmd_timer); 625 } 626 627 /* 628 * Must be called with xhci->lock held in interrupt context, 629 * releases and re-acquires xhci->lock 630 */ 631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 632 struct xhci_td *cur_td, int status) 633 { 634 struct urb *urb = cur_td->urb; 635 struct urb_priv *urb_priv = urb->hcpriv; 636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 637 638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_quirk_pll_enable(); 643 } 644 } 645 xhci_urb_free_priv(urb_priv); 646 usb_hcd_unlink_urb_from_ep(hcd, urb); 647 spin_unlock(&xhci->lock); 648 trace_xhci_urb_giveback(urb); 649 usb_hcd_giveback_urb(hcd, urb, status); 650 spin_lock(&xhci->lock); 651 } 652 653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 654 struct xhci_ring *ring, struct xhci_td *td) 655 { 656 struct device *dev = xhci_to_hcd(xhci)->self.controller; 657 struct xhci_segment *seg = td->bounce_seg; 658 struct urb *urb = td->urb; 659 660 if (!ring || !seg || !urb) 661 return; 662 663 if (usb_urb_dir_out(urb)) { 664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 665 DMA_TO_DEVICE); 666 return; 667 } 668 669 /* for in tranfers we need to copy the data from bounce to sg */ 670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 671 seg->bounce_len, seg->bounce_offs); 672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 673 DMA_FROM_DEVICE); 674 seg->bounce_len = 0; 675 seg->bounce_offs = 0; 676 } 677 678 /* 679 * When we get a command completion for a Stop Endpoint Command, we need to 680 * unlink any cancelled TDs from the ring. There are two ways to do that: 681 * 682 * 1. If the HW was in the middle of processing the TD that needs to be 683 * cancelled, then we must move the ring's dequeue pointer past the last TRB 684 * in the TD with a Set Dequeue Pointer Command. 685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 686 * bit cleared) so that the HW will skip over them. 687 */ 688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 689 union xhci_trb *trb, struct xhci_event_cmd *event) 690 { 691 unsigned int ep_index; 692 struct xhci_ring *ep_ring; 693 struct xhci_virt_ep *ep; 694 struct xhci_td *cur_td = NULL; 695 struct xhci_td *last_unlinked_td; 696 struct xhci_ep_ctx *ep_ctx; 697 struct xhci_virt_device *vdev; 698 u64 hw_deq; 699 struct xhci_dequeue_state deq_state; 700 701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 702 if (!xhci->devs[slot_id]) 703 xhci_warn(xhci, "Stop endpoint command " 704 "completion for disabled slot %u\n", 705 slot_id); 706 return; 707 } 708 709 memset(&deq_state, 0, sizeof(deq_state)); 710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 711 712 vdev = xhci->devs[slot_id]; 713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 714 trace_xhci_handle_cmd_stop_ep(ep_ctx); 715 716 ep = &xhci->devs[slot_id]->eps[ep_index]; 717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 718 struct xhci_td, cancelled_td_list); 719 720 if (list_empty(&ep->cancelled_td_list)) { 721 xhci_stop_watchdog_timer_in_irq(xhci, ep); 722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 723 return; 724 } 725 726 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 727 * We have the xHCI lock, so nothing can modify this list until we drop 728 * it. We're also in the event handler, so we can't get re-interrupted 729 * if another Stop Endpoint command completes 730 */ 731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 733 "Removing canceled TD starting at 0x%llx (dma).", 734 (unsigned long long)xhci_trb_virt_to_dma( 735 cur_td->start_seg, cur_td->first_trb)); 736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 737 if (!ep_ring) { 738 /* This shouldn't happen unless a driver is mucking 739 * with the stream ID after submission. This will 740 * leave the TD on the hardware ring, and the hardware 741 * will try to execute it, and may access a buffer 742 * that has already been freed. In the best case, the 743 * hardware will execute it, and the event handler will 744 * ignore the completion event for that TD, since it was 745 * removed from the td_list for that endpoint. In 746 * short, don't muck with the stream ID after 747 * submission. 748 */ 749 xhci_warn(xhci, "WARN Cancelled URB %p " 750 "has invalid stream ID %u.\n", 751 cur_td->urb, 752 cur_td->urb->stream_id); 753 goto remove_finished_td; 754 } 755 /* 756 * If we stopped on the TD we need to cancel, then we have to 757 * move the xHC endpoint ring dequeue pointer past this TD. 758 */ 759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 760 cur_td->urb->stream_id); 761 hw_deq &= ~0xf; 762 763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 764 cur_td->last_trb, hw_deq, false)) { 765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 766 cur_td->urb->stream_id, 767 cur_td, &deq_state); 768 } else { 769 td_to_noop(xhci, ep_ring, cur_td, false); 770 } 771 772 remove_finished_td: 773 /* 774 * The event handler won't see a completion for this TD anymore, 775 * so remove it from the endpoint ring's TD list. Keep it in 776 * the cancelled TD list for URB completion later. 777 */ 778 list_del_init(&cur_td->td_list); 779 } 780 781 xhci_stop_watchdog_timer_in_irq(xhci, ep); 782 783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 786 &deq_state); 787 xhci_ring_cmd_db(xhci); 788 } else { 789 /* Otherwise ring the doorbell(s) to restart queued transfers */ 790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 791 } 792 793 /* 794 * Drop the lock and complete the URBs in the cancelled TD list. 795 * New TDs to be cancelled might be added to the end of the list before 796 * we can complete all the URBs for the TDs we already unlinked. 797 * So stop when we've completed the URB for the last TD we unlinked. 798 */ 799 do { 800 cur_td = list_first_entry(&ep->cancelled_td_list, 801 struct xhci_td, cancelled_td_list); 802 list_del_init(&cur_td->cancelled_td_list); 803 804 /* Clean up the cancelled URB */ 805 /* Doesn't matter what we pass for status, since the core will 806 * just overwrite it (because the URB has been unlinked). 807 */ 808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 810 inc_td_cnt(cur_td->urb); 811 if (last_td_in_urb(cur_td)) 812 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 813 814 /* Stop processing the cancelled list if the watchdog timer is 815 * running. 816 */ 817 if (xhci->xhc_state & XHCI_STATE_DYING) 818 return; 819 } while (cur_td != last_unlinked_td); 820 821 /* Return to the event handler with xhci->lock re-acquired */ 822 } 823 824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 825 { 826 struct xhci_td *cur_td; 827 struct xhci_td *tmp; 828 829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 830 list_del_init(&cur_td->td_list); 831 832 if (!list_empty(&cur_td->cancelled_td_list)) 833 list_del_init(&cur_td->cancelled_td_list); 834 835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 836 837 inc_td_cnt(cur_td->urb); 838 if (last_td_in_urb(cur_td)) 839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 840 } 841 } 842 843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 844 int slot_id, int ep_index) 845 { 846 struct xhci_td *cur_td; 847 struct xhci_td *tmp; 848 struct xhci_virt_ep *ep; 849 struct xhci_ring *ring; 850 851 ep = &xhci->devs[slot_id]->eps[ep_index]; 852 if ((ep->ep_state & EP_HAS_STREAMS) || 853 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 854 int stream_id; 855 856 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 857 stream_id++) { 858 ring = ep->stream_info->stream_rings[stream_id]; 859 if (!ring) 860 continue; 861 862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 863 "Killing URBs for slot ID %u, ep index %u, stream %u", 864 slot_id, ep_index, stream_id); 865 xhci_kill_ring_urbs(xhci, ring); 866 } 867 } else { 868 ring = ep->ring; 869 if (!ring) 870 return; 871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 872 "Killing URBs for slot ID %u, ep index %u", 873 slot_id, ep_index); 874 xhci_kill_ring_urbs(xhci, ring); 875 } 876 877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 878 cancelled_td_list) { 879 list_del_init(&cur_td->cancelled_td_list); 880 inc_td_cnt(cur_td->urb); 881 882 if (last_td_in_urb(cur_td)) 883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 884 } 885 } 886 887 /* 888 * host controller died, register read returns 0xffffffff 889 * Complete pending commands, mark them ABORTED. 890 * URBs need to be given back as usb core might be waiting with device locks 891 * held for the URBs to finish during device disconnect, blocking host remove. 892 * 893 * Call with xhci->lock held. 894 * lock is relased and re-acquired while giving back urb. 895 */ 896 void xhci_hc_died(struct xhci_hcd *xhci) 897 { 898 int i, j; 899 900 if (xhci->xhc_state & XHCI_STATE_DYING) 901 return; 902 903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 904 xhci->xhc_state |= XHCI_STATE_DYING; 905 906 xhci_cleanup_command_queue(xhci); 907 908 /* return any pending urbs, remove may be waiting for them */ 909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 910 if (!xhci->devs[i]) 911 continue; 912 for (j = 0; j < 31; j++) 913 xhci_kill_endpoint_urbs(xhci, i, j); 914 } 915 916 /* inform usb core hc died if PCI remove isn't already handling it */ 917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 918 usb_hc_died(xhci_to_hcd(xhci)); 919 } 920 921 /* Watchdog timer function for when a stop endpoint command fails to complete. 922 * In this case, we assume the host controller is broken or dying or dead. The 923 * host may still be completing some other events, so we have to be careful to 924 * let the event ring handler and the URB dequeueing/enqueueing functions know 925 * through xhci->state. 926 * 927 * The timer may also fire if the host takes a very long time to respond to the 928 * command, and the stop endpoint command completion handler cannot delete the 929 * timer before the timer function is called. Another endpoint cancellation may 930 * sneak in before the timer function can grab the lock, and that may queue 931 * another stop endpoint command and add the timer back. So we cannot use a 932 * simple flag to say whether there is a pending stop endpoint command for a 933 * particular endpoint. 934 * 935 * Instead we use a combination of that flag and checking if a new timer is 936 * pending. 937 */ 938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 939 { 940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 941 struct xhci_hcd *xhci = ep->xhci; 942 unsigned long flags; 943 944 spin_lock_irqsave(&xhci->lock, flags); 945 946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 948 timer_pending(&ep->stop_cmd_timer)) { 949 spin_unlock_irqrestore(&xhci->lock, flags); 950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 951 return; 952 } 953 954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 955 ep->ep_state &= ~EP_STOP_CMD_PENDING; 956 957 xhci_halt(xhci); 958 959 /* 960 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 962 * and try to recover a -ETIMEDOUT with a host controller reset 963 */ 964 xhci_hc_died(xhci); 965 966 spin_unlock_irqrestore(&xhci->lock, flags); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 968 "xHCI host controller is dead."); 969 } 970 971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 972 struct xhci_virt_device *dev, 973 struct xhci_ring *ep_ring, 974 unsigned int ep_index) 975 { 976 union xhci_trb *dequeue_temp; 977 int num_trbs_free_temp; 978 bool revert = false; 979 980 num_trbs_free_temp = ep_ring->num_trbs_free; 981 dequeue_temp = ep_ring->dequeue; 982 983 /* If we get two back-to-back stalls, and the first stalled transfer 984 * ends just before a link TRB, the dequeue pointer will be left on 985 * the link TRB by the code in the while loop. So we have to update 986 * the dequeue pointer one segment further, or we'll jump off 987 * the segment into la-la-land. 988 */ 989 if (trb_is_link(ep_ring->dequeue)) { 990 ep_ring->deq_seg = ep_ring->deq_seg->next; 991 ep_ring->dequeue = ep_ring->deq_seg->trbs; 992 } 993 994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 995 /* We have more usable TRBs */ 996 ep_ring->num_trbs_free++; 997 ep_ring->dequeue++; 998 if (trb_is_link(ep_ring->dequeue)) { 999 if (ep_ring->dequeue == 1000 dev->eps[ep_index].queued_deq_ptr) 1001 break; 1002 ep_ring->deq_seg = ep_ring->deq_seg->next; 1003 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1004 } 1005 if (ep_ring->dequeue == dequeue_temp) { 1006 revert = true; 1007 break; 1008 } 1009 } 1010 1011 if (revert) { 1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1013 ep_ring->num_trbs_free = num_trbs_free_temp; 1014 } 1015 } 1016 1017 /* 1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1019 * we need to clear the set deq pending flag in the endpoint ring state, so that 1020 * the TD queueing code can ring the doorbell again. We also need to ring the 1021 * endpoint doorbell to restart the ring, but only if there aren't more 1022 * cancellations pending. 1023 */ 1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1025 union xhci_trb *trb, u32 cmd_comp_code) 1026 { 1027 unsigned int ep_index; 1028 unsigned int stream_id; 1029 struct xhci_ring *ep_ring; 1030 struct xhci_virt_device *dev; 1031 struct xhci_virt_ep *ep; 1032 struct xhci_ep_ctx *ep_ctx; 1033 struct xhci_slot_ctx *slot_ctx; 1034 1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1037 dev = xhci->devs[slot_id]; 1038 ep = &dev->eps[ep_index]; 1039 1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1041 if (!ep_ring) { 1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1043 stream_id); 1044 /* XXX: Harmless??? */ 1045 goto cleanup; 1046 } 1047 1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1050 trace_xhci_handle_cmd_set_deq(slot_ctx); 1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1052 1053 if (cmd_comp_code != COMP_SUCCESS) { 1054 unsigned int ep_state; 1055 unsigned int slot_state; 1056 1057 switch (cmd_comp_code) { 1058 case COMP_TRB_ERROR: 1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1060 break; 1061 case COMP_CONTEXT_STATE_ERROR: 1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1063 ep_state = GET_EP_CTX_STATE(ep_ctx); 1064 slot_state = le32_to_cpu(slot_ctx->dev_state); 1065 slot_state = GET_SLOT_STATE(slot_state); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1067 "Slot state = %u, EP state = %u", 1068 slot_state, ep_state); 1069 break; 1070 case COMP_SLOT_NOT_ENABLED_ERROR: 1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1072 slot_id); 1073 break; 1074 default: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1076 cmd_comp_code); 1077 break; 1078 } 1079 /* OK what do we do now? The endpoint state is hosed, and we 1080 * should never get to this point if the synchronization between 1081 * queueing, and endpoint state are correct. This might happen 1082 * if the device gets disconnected after we've finished 1083 * cancelling URBs, which might not be an error... 1084 */ 1085 } else { 1086 u64 deq; 1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1088 if (ep->ep_state & EP_HAS_STREAMS) { 1089 struct xhci_stream_ctx *ctx = 1090 &ep->stream_info->stream_ctx_array[stream_id]; 1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1092 } else { 1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1094 } 1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1098 ep->queued_deq_ptr) == deq) { 1099 /* Update the ring's dequeue segment and dequeue pointer 1100 * to reflect the new position. 1101 */ 1102 update_ring_for_set_deq_completion(xhci, dev, 1103 ep_ring, ep_index); 1104 } else { 1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1107 ep->queued_deq_seg, ep->queued_deq_ptr); 1108 } 1109 } 1110 1111 cleanup: 1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1113 dev->eps[ep_index].queued_deq_seg = NULL; 1114 dev->eps[ep_index].queued_deq_ptr = NULL; 1115 /* Restart any rings with pending URBs */ 1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1117 } 1118 1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1120 union xhci_trb *trb, u32 cmd_comp_code) 1121 { 1122 struct xhci_virt_device *vdev; 1123 struct xhci_ep_ctx *ep_ctx; 1124 unsigned int ep_index; 1125 1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1127 vdev = xhci->devs[slot_id]; 1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1129 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1130 1131 /* This command will only fail if the endpoint wasn't halted, 1132 * but we don't care. 1133 */ 1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1135 "Ignoring reset ep completion code of %u", cmd_comp_code); 1136 1137 /* HW with the reset endpoint quirk needs to have a configure endpoint 1138 * command complete before the endpoint can be used. Queue that here 1139 * because the HW can't handle two commands being queued in a row. 1140 */ 1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1142 struct xhci_command *command; 1143 1144 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1145 if (!command) 1146 return; 1147 1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1149 "Queueing configure endpoint command"); 1150 xhci_queue_configure_endpoint(xhci, command, 1151 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1152 false); 1153 xhci_ring_cmd_db(xhci); 1154 } else { 1155 /* Clear our internal halted state */ 1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1157 } 1158 1159 /* if this was a soft reset, then restart */ 1160 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1161 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1162 } 1163 1164 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1165 struct xhci_command *command, u32 cmd_comp_code) 1166 { 1167 if (cmd_comp_code == COMP_SUCCESS) 1168 command->slot_id = slot_id; 1169 else 1170 command->slot_id = 0; 1171 } 1172 1173 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1174 { 1175 struct xhci_virt_device *virt_dev; 1176 struct xhci_slot_ctx *slot_ctx; 1177 1178 virt_dev = xhci->devs[slot_id]; 1179 if (!virt_dev) 1180 return; 1181 1182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1183 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1184 1185 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1186 /* Delete default control endpoint resources */ 1187 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1188 xhci_free_virt_device(xhci, slot_id); 1189 } 1190 1191 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1192 struct xhci_event_cmd *event, u32 cmd_comp_code) 1193 { 1194 struct xhci_virt_device *virt_dev; 1195 struct xhci_input_control_ctx *ctrl_ctx; 1196 struct xhci_ep_ctx *ep_ctx; 1197 unsigned int ep_index; 1198 unsigned int ep_state; 1199 u32 add_flags, drop_flags; 1200 1201 /* 1202 * Configure endpoint commands can come from the USB core 1203 * configuration or alt setting changes, or because the HW 1204 * needed an extra configure endpoint command after a reset 1205 * endpoint command or streams were being configured. 1206 * If the command was for a halted endpoint, the xHCI driver 1207 * is not waiting on the configure endpoint command. 1208 */ 1209 virt_dev = xhci->devs[slot_id]; 1210 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1211 if (!ctrl_ctx) { 1212 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1213 return; 1214 } 1215 1216 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1217 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1218 /* Input ctx add_flags are the endpoint index plus one */ 1219 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1220 1221 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1222 trace_xhci_handle_cmd_config_ep(ep_ctx); 1223 1224 /* A usb_set_interface() call directly after clearing a halted 1225 * condition may race on this quirky hardware. Not worth 1226 * worrying about, since this is prototype hardware. Not sure 1227 * if this will work for streams, but streams support was 1228 * untested on this prototype. 1229 */ 1230 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1231 ep_index != (unsigned int) -1 && 1232 add_flags - SLOT_FLAG == drop_flags) { 1233 ep_state = virt_dev->eps[ep_index].ep_state; 1234 if (!(ep_state & EP_HALTED)) 1235 return; 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1237 "Completed config ep cmd - " 1238 "last ep index = %d, state = %d", 1239 ep_index, ep_state); 1240 /* Clear internal halted state and restart ring(s) */ 1241 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1242 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1243 return; 1244 } 1245 return; 1246 } 1247 1248 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1249 { 1250 struct xhci_virt_device *vdev; 1251 struct xhci_slot_ctx *slot_ctx; 1252 1253 vdev = xhci->devs[slot_id]; 1254 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1255 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1256 } 1257 1258 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1259 struct xhci_event_cmd *event) 1260 { 1261 struct xhci_virt_device *vdev; 1262 struct xhci_slot_ctx *slot_ctx; 1263 1264 vdev = xhci->devs[slot_id]; 1265 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1266 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1267 1268 xhci_dbg(xhci, "Completed reset device command.\n"); 1269 if (!xhci->devs[slot_id]) 1270 xhci_warn(xhci, "Reset device command completion " 1271 "for disabled slot %u\n", slot_id); 1272 } 1273 1274 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1275 struct xhci_event_cmd *event) 1276 { 1277 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1278 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1279 return; 1280 } 1281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1282 "NEC firmware version %2x.%02x", 1283 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1284 NEC_FW_MINOR(le32_to_cpu(event->status))); 1285 } 1286 1287 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1288 { 1289 list_del(&cmd->cmd_list); 1290 1291 if (cmd->completion) { 1292 cmd->status = status; 1293 complete(cmd->completion); 1294 } else { 1295 kfree(cmd); 1296 } 1297 } 1298 1299 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1300 { 1301 struct xhci_command *cur_cmd, *tmp_cmd; 1302 xhci->current_cmd = NULL; 1303 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1304 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1305 } 1306 1307 void xhci_handle_command_timeout(struct work_struct *work) 1308 { 1309 struct xhci_hcd *xhci; 1310 unsigned long flags; 1311 u64 hw_ring_state; 1312 1313 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1314 1315 spin_lock_irqsave(&xhci->lock, flags); 1316 1317 /* 1318 * If timeout work is pending, or current_cmd is NULL, it means we 1319 * raced with command completion. Command is handled so just return. 1320 */ 1321 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1322 spin_unlock_irqrestore(&xhci->lock, flags); 1323 return; 1324 } 1325 /* mark this command to be cancelled */ 1326 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1327 1328 /* Make sure command ring is running before aborting it */ 1329 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1330 if (hw_ring_state == ~(u64)0) { 1331 xhci_hc_died(xhci); 1332 goto time_out_completed; 1333 } 1334 1335 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1336 (hw_ring_state & CMD_RING_RUNNING)) { 1337 /* Prevent new doorbell, and start command abort */ 1338 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1339 xhci_dbg(xhci, "Command timeout\n"); 1340 xhci_abort_cmd_ring(xhci, flags); 1341 goto time_out_completed; 1342 } 1343 1344 /* host removed. Bail out */ 1345 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1346 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1347 xhci_cleanup_command_queue(xhci); 1348 1349 goto time_out_completed; 1350 } 1351 1352 /* command timeout on stopped ring, ring can't be aborted */ 1353 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1354 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1355 1356 time_out_completed: 1357 spin_unlock_irqrestore(&xhci->lock, flags); 1358 return; 1359 } 1360 1361 static void handle_cmd_completion(struct xhci_hcd *xhci, 1362 struct xhci_event_cmd *event) 1363 { 1364 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1365 u64 cmd_dma; 1366 dma_addr_t cmd_dequeue_dma; 1367 u32 cmd_comp_code; 1368 union xhci_trb *cmd_trb; 1369 struct xhci_command *cmd; 1370 u32 cmd_type; 1371 1372 cmd_dma = le64_to_cpu(event->cmd_trb); 1373 cmd_trb = xhci->cmd_ring->dequeue; 1374 1375 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1376 1377 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1378 cmd_trb); 1379 /* 1380 * Check whether the completion event is for our internal kept 1381 * command. 1382 */ 1383 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1384 xhci_warn(xhci, 1385 "ERROR mismatched command completion event\n"); 1386 return; 1387 } 1388 1389 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1390 1391 cancel_delayed_work(&xhci->cmd_timer); 1392 1393 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1394 1395 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1396 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1397 complete_all(&xhci->cmd_ring_stop_completion); 1398 return; 1399 } 1400 1401 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1402 xhci_err(xhci, 1403 "Command completion event does not match command\n"); 1404 return; 1405 } 1406 1407 /* 1408 * Host aborted the command ring, check if the current command was 1409 * supposed to be aborted, otherwise continue normally. 1410 * The command ring is stopped now, but the xHC will issue a Command 1411 * Ring Stopped event which will cause us to restart it. 1412 */ 1413 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1414 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1415 if (cmd->status == COMP_COMMAND_ABORTED) { 1416 if (xhci->current_cmd == cmd) 1417 xhci->current_cmd = NULL; 1418 goto event_handled; 1419 } 1420 } 1421 1422 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1423 switch (cmd_type) { 1424 case TRB_ENABLE_SLOT: 1425 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1426 break; 1427 case TRB_DISABLE_SLOT: 1428 xhci_handle_cmd_disable_slot(xhci, slot_id); 1429 break; 1430 case TRB_CONFIG_EP: 1431 if (!cmd->completion) 1432 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1433 cmd_comp_code); 1434 break; 1435 case TRB_EVAL_CONTEXT: 1436 break; 1437 case TRB_ADDR_DEV: 1438 xhci_handle_cmd_addr_dev(xhci, slot_id); 1439 break; 1440 case TRB_STOP_RING: 1441 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1442 le32_to_cpu(cmd_trb->generic.field[3]))); 1443 if (!cmd->completion) 1444 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1445 break; 1446 case TRB_SET_DEQ: 1447 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1448 le32_to_cpu(cmd_trb->generic.field[3]))); 1449 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1450 break; 1451 case TRB_CMD_NOOP: 1452 /* Is this an aborted command turned to NO-OP? */ 1453 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1454 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1455 break; 1456 case TRB_RESET_EP: 1457 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1458 le32_to_cpu(cmd_trb->generic.field[3]))); 1459 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1460 break; 1461 case TRB_RESET_DEV: 1462 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1463 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1464 */ 1465 slot_id = TRB_TO_SLOT_ID( 1466 le32_to_cpu(cmd_trb->generic.field[3])); 1467 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1468 break; 1469 case TRB_NEC_GET_FW: 1470 xhci_handle_cmd_nec_get_fw(xhci, event); 1471 break; 1472 default: 1473 /* Skip over unknown commands on the event ring */ 1474 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1475 break; 1476 } 1477 1478 /* restart timer if this wasn't the last command */ 1479 if (!list_is_singular(&xhci->cmd_list)) { 1480 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1481 struct xhci_command, cmd_list); 1482 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1483 } else if (xhci->current_cmd == cmd) { 1484 xhci->current_cmd = NULL; 1485 } 1486 1487 event_handled: 1488 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1489 1490 inc_deq(xhci, xhci->cmd_ring); 1491 } 1492 1493 static void handle_vendor_event(struct xhci_hcd *xhci, 1494 union xhci_trb *event) 1495 { 1496 u32 trb_type; 1497 1498 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1499 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1500 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1501 handle_cmd_completion(xhci, &event->event_cmd); 1502 } 1503 1504 static void handle_device_notification(struct xhci_hcd *xhci, 1505 union xhci_trb *event) 1506 { 1507 u32 slot_id; 1508 struct usb_device *udev; 1509 1510 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1511 if (!xhci->devs[slot_id]) { 1512 xhci_warn(xhci, "Device Notification event for " 1513 "unused slot %u\n", slot_id); 1514 return; 1515 } 1516 1517 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1518 slot_id); 1519 udev = xhci->devs[slot_id]->udev; 1520 if (udev && udev->parent) 1521 usb_wakeup_notification(udev->parent, udev->portnum); 1522 } 1523 1524 /* 1525 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1526 * Controller. 1527 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1528 * If a connection to a USB 1 device is followed by another connection 1529 * to a USB 2 device. 1530 * 1531 * Reset the PHY after the USB device is disconnected if device speed 1532 * is less than HCD_USB3. 1533 * Retry the reset sequence max of 4 times checking the PLL lock status. 1534 * 1535 */ 1536 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1537 { 1538 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1539 u32 pll_lock_check; 1540 u32 retry_count = 4; 1541 1542 do { 1543 /* Assert PHY reset */ 1544 writel(0x6F, hcd->regs + 0x1048); 1545 udelay(10); 1546 /* De-assert the PHY reset */ 1547 writel(0x7F, hcd->regs + 0x1048); 1548 udelay(200); 1549 pll_lock_check = readl(hcd->regs + 0x1070); 1550 } while (!(pll_lock_check & 0x1) && --retry_count); 1551 } 1552 1553 static void handle_port_status(struct xhci_hcd *xhci, 1554 union xhci_trb *event) 1555 { 1556 struct usb_hcd *hcd; 1557 u32 port_id; 1558 u32 portsc, cmd_reg; 1559 int max_ports; 1560 int slot_id; 1561 unsigned int hcd_portnum; 1562 struct xhci_bus_state *bus_state; 1563 bool bogus_port_status = false; 1564 struct xhci_port *port; 1565 1566 /* Port status change events always have a successful completion code */ 1567 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1568 xhci_warn(xhci, 1569 "WARN: xHC returned failed port status event\n"); 1570 1571 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1572 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1573 1574 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1575 if ((port_id <= 0) || (port_id > max_ports)) { 1576 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1577 inc_deq(xhci, xhci->event_ring); 1578 return; 1579 } 1580 1581 port = &xhci->hw_ports[port_id - 1]; 1582 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1583 xhci_warn(xhci, "Event for invalid port %u\n", port_id); 1584 bogus_port_status = true; 1585 goto cleanup; 1586 } 1587 1588 /* We might get interrupts after shared_hcd is removed */ 1589 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1590 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1591 bogus_port_status = true; 1592 goto cleanup; 1593 } 1594 1595 hcd = port->rhub->hcd; 1596 bus_state = &port->rhub->bus_state; 1597 hcd_portnum = port->hcd_portnum; 1598 portsc = readl(port->addr); 1599 1600 trace_xhci_handle_port_status(hcd_portnum, portsc); 1601 1602 if (hcd->state == HC_STATE_SUSPENDED) { 1603 xhci_dbg(xhci, "resume root hub\n"); 1604 usb_hcd_resume_root_hub(hcd); 1605 } 1606 1607 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1608 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1609 1610 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1611 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1612 1613 cmd_reg = readl(&xhci->op_regs->command); 1614 if (!(cmd_reg & CMD_RUN)) { 1615 xhci_warn(xhci, "xHC is not running.\n"); 1616 goto cleanup; 1617 } 1618 1619 if (DEV_SUPERSPEED_ANY(portsc)) { 1620 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1621 /* Set a flag to say the port signaled remote wakeup, 1622 * so we can tell the difference between the end of 1623 * device and host initiated resume. 1624 */ 1625 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1626 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1627 xhci_set_link_state(xhci, port, XDEV_U0); 1628 /* Need to wait until the next link state change 1629 * indicates the device is actually in U0. 1630 */ 1631 bogus_port_status = true; 1632 goto cleanup; 1633 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1634 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1635 bus_state->resume_done[hcd_portnum] = jiffies + 1636 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1637 set_bit(hcd_portnum, &bus_state->resuming_ports); 1638 /* Do the rest in GetPortStatus after resume time delay. 1639 * Avoid polling roothub status before that so that a 1640 * usb device auto-resume latency around ~40ms. 1641 */ 1642 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1643 mod_timer(&hcd->rh_timer, 1644 bus_state->resume_done[hcd_portnum]); 1645 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1646 bogus_port_status = true; 1647 } 1648 } 1649 1650 if ((portsc & PORT_PLC) && 1651 DEV_SUPERSPEED_ANY(portsc) && 1652 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1653 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1654 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1655 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1656 /* We've just brought the device into U0/1/2 through either the 1657 * Resume state after a device remote wakeup, or through the 1658 * U3Exit state after a host-initiated resume. If it's a device 1659 * initiated remote wake, don't pass up the link state change, 1660 * so the roothub behavior is consistent with external 1661 * USB 3.0 hub behavior. 1662 */ 1663 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1664 if (slot_id && xhci->devs[slot_id]) 1665 xhci_ring_device(xhci, slot_id); 1666 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1667 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1668 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1669 usb_wakeup_notification(hcd->self.root_hub, 1670 hcd_portnum + 1); 1671 bogus_port_status = true; 1672 goto cleanup; 1673 } 1674 } 1675 1676 /* 1677 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1678 * RExit to a disconnect state). If so, let the the driver know it's 1679 * out of the RExit state. 1680 */ 1681 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1682 test_and_clear_bit(hcd_portnum, 1683 &bus_state->rexit_ports)) { 1684 complete(&bus_state->rexit_done[hcd_portnum]); 1685 bogus_port_status = true; 1686 goto cleanup; 1687 } 1688 1689 if (hcd->speed < HCD_USB3) { 1690 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1691 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1692 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1693 xhci_cavium_reset_phy_quirk(xhci); 1694 } 1695 1696 cleanup: 1697 /* Update event ring dequeue pointer before dropping the lock */ 1698 inc_deq(xhci, xhci->event_ring); 1699 1700 /* Don't make the USB core poll the roothub if we got a bad port status 1701 * change event. Besides, at that point we can't tell which roothub 1702 * (USB 2.0 or USB 3.0) to kick. 1703 */ 1704 if (bogus_port_status) 1705 return; 1706 1707 /* 1708 * xHCI port-status-change events occur when the "or" of all the 1709 * status-change bits in the portsc register changes from 0 to 1. 1710 * New status changes won't cause an event if any other change 1711 * bits are still set. When an event occurs, switch over to 1712 * polling to avoid losing status changes. 1713 */ 1714 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1715 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1716 spin_unlock(&xhci->lock); 1717 /* Pass this up to the core */ 1718 usb_hcd_poll_rh_status(hcd); 1719 spin_lock(&xhci->lock); 1720 } 1721 1722 /* 1723 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1724 * at end_trb, which may be in another segment. If the suspect DMA address is a 1725 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1726 * returns 0. 1727 */ 1728 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1729 struct xhci_segment *start_seg, 1730 union xhci_trb *start_trb, 1731 union xhci_trb *end_trb, 1732 dma_addr_t suspect_dma, 1733 bool debug) 1734 { 1735 dma_addr_t start_dma; 1736 dma_addr_t end_seg_dma; 1737 dma_addr_t end_trb_dma; 1738 struct xhci_segment *cur_seg; 1739 1740 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1741 cur_seg = start_seg; 1742 1743 do { 1744 if (start_dma == 0) 1745 return NULL; 1746 /* We may get an event for a Link TRB in the middle of a TD */ 1747 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1748 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1749 /* If the end TRB isn't in this segment, this is set to 0 */ 1750 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1751 1752 if (debug) 1753 xhci_warn(xhci, 1754 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1755 (unsigned long long)suspect_dma, 1756 (unsigned long long)start_dma, 1757 (unsigned long long)end_trb_dma, 1758 (unsigned long long)cur_seg->dma, 1759 (unsigned long long)end_seg_dma); 1760 1761 if (end_trb_dma > 0) { 1762 /* The end TRB is in this segment, so suspect should be here */ 1763 if (start_dma <= end_trb_dma) { 1764 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1765 return cur_seg; 1766 } else { 1767 /* Case for one segment with 1768 * a TD wrapped around to the top 1769 */ 1770 if ((suspect_dma >= start_dma && 1771 suspect_dma <= end_seg_dma) || 1772 (suspect_dma >= cur_seg->dma && 1773 suspect_dma <= end_trb_dma)) 1774 return cur_seg; 1775 } 1776 return NULL; 1777 } else { 1778 /* Might still be somewhere in this segment */ 1779 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1780 return cur_seg; 1781 } 1782 cur_seg = cur_seg->next; 1783 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1784 } while (cur_seg != start_seg); 1785 1786 return NULL; 1787 } 1788 1789 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1790 unsigned int slot_id, unsigned int ep_index, 1791 unsigned int stream_id, struct xhci_td *td, 1792 enum xhci_ep_reset_type reset_type) 1793 { 1794 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1795 struct xhci_command *command; 1796 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1797 if (!command) 1798 return; 1799 1800 ep->ep_state |= EP_HALTED; 1801 1802 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1803 1804 if (reset_type == EP_HARD_RESET) { 1805 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1806 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1807 } 1808 xhci_ring_cmd_db(xhci); 1809 } 1810 1811 /* Check if an error has halted the endpoint ring. The class driver will 1812 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1813 * However, a babble and other errors also halt the endpoint ring, and the class 1814 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1815 * Ring Dequeue Pointer command manually. 1816 */ 1817 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1818 struct xhci_ep_ctx *ep_ctx, 1819 unsigned int trb_comp_code) 1820 { 1821 /* TRB completion codes that may require a manual halt cleanup */ 1822 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1823 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1824 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1825 /* The 0.95 spec says a babbling control endpoint 1826 * is not halted. The 0.96 spec says it is. Some HW 1827 * claims to be 0.95 compliant, but it halts the control 1828 * endpoint anyway. Check if a babble halted the 1829 * endpoint. 1830 */ 1831 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1832 return 1; 1833 1834 return 0; 1835 } 1836 1837 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1838 { 1839 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1840 /* Vendor defined "informational" completion code, 1841 * treat as not-an-error. 1842 */ 1843 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1844 trb_comp_code); 1845 xhci_dbg(xhci, "Treating code as success.\n"); 1846 return 1; 1847 } 1848 return 0; 1849 } 1850 1851 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1852 struct xhci_ring *ep_ring, int *status) 1853 { 1854 struct urb *urb = NULL; 1855 1856 /* Clean up the endpoint's TD list */ 1857 urb = td->urb; 1858 1859 /* if a bounce buffer was used to align this td then unmap it */ 1860 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1861 1862 /* Do one last check of the actual transfer length. 1863 * If the host controller said we transferred more data than the buffer 1864 * length, urb->actual_length will be a very big number (since it's 1865 * unsigned). Play it safe and say we didn't transfer anything. 1866 */ 1867 if (urb->actual_length > urb->transfer_buffer_length) { 1868 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1869 urb->transfer_buffer_length, urb->actual_length); 1870 urb->actual_length = 0; 1871 *status = 0; 1872 } 1873 list_del_init(&td->td_list); 1874 /* Was this TD slated to be cancelled but completed anyway? */ 1875 if (!list_empty(&td->cancelled_td_list)) 1876 list_del_init(&td->cancelled_td_list); 1877 1878 inc_td_cnt(urb); 1879 /* Giveback the urb when all the tds are completed */ 1880 if (last_td_in_urb(td)) { 1881 if ((urb->actual_length != urb->transfer_buffer_length && 1882 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1883 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1884 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1885 urb, urb->actual_length, 1886 urb->transfer_buffer_length, *status); 1887 1888 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1889 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1890 *status = 0; 1891 xhci_giveback_urb_in_irq(xhci, td, *status); 1892 } 1893 1894 return 0; 1895 } 1896 1897 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1898 struct xhci_transfer_event *event, 1899 struct xhci_virt_ep *ep, int *status) 1900 { 1901 struct xhci_virt_device *xdev; 1902 struct xhci_ep_ctx *ep_ctx; 1903 struct xhci_ring *ep_ring; 1904 unsigned int slot_id; 1905 u32 trb_comp_code; 1906 int ep_index; 1907 1908 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1909 xdev = xhci->devs[slot_id]; 1910 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1911 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1912 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1913 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1914 1915 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1916 trb_comp_code == COMP_STOPPED || 1917 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1918 /* The Endpoint Stop Command completion will take care of any 1919 * stopped TDs. A stopped TD may be restarted, so don't update 1920 * the ring dequeue pointer or take this TD off any lists yet. 1921 */ 1922 return 0; 1923 } 1924 if (trb_comp_code == COMP_STALL_ERROR || 1925 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1926 trb_comp_code)) { 1927 /* Issue a reset endpoint command to clear the host side 1928 * halt, followed by a set dequeue command to move the 1929 * dequeue pointer past the TD. 1930 * The class driver clears the device side halt later. 1931 */ 1932 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1933 ep_ring->stream_id, td, EP_HARD_RESET); 1934 } else { 1935 /* Update ring dequeue pointer */ 1936 while (ep_ring->dequeue != td->last_trb) 1937 inc_deq(xhci, ep_ring); 1938 inc_deq(xhci, ep_ring); 1939 } 1940 1941 return xhci_td_cleanup(xhci, td, ep_ring, status); 1942 } 1943 1944 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1945 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1946 union xhci_trb *stop_trb) 1947 { 1948 u32 sum; 1949 union xhci_trb *trb = ring->dequeue; 1950 struct xhci_segment *seg = ring->deq_seg; 1951 1952 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1953 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1954 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1955 } 1956 return sum; 1957 } 1958 1959 /* 1960 * Process control tds, update urb status and actual_length. 1961 */ 1962 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1963 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1964 struct xhci_virt_ep *ep, int *status) 1965 { 1966 struct xhci_virt_device *xdev; 1967 unsigned int slot_id; 1968 int ep_index; 1969 struct xhci_ep_ctx *ep_ctx; 1970 u32 trb_comp_code; 1971 u32 remaining, requested; 1972 u32 trb_type; 1973 1974 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1975 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1976 xdev = xhci->devs[slot_id]; 1977 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1978 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1979 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1980 requested = td->urb->transfer_buffer_length; 1981 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1982 1983 switch (trb_comp_code) { 1984 case COMP_SUCCESS: 1985 if (trb_type != TRB_STATUS) { 1986 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 1987 (trb_type == TRB_DATA) ? "data" : "setup"); 1988 *status = -ESHUTDOWN; 1989 break; 1990 } 1991 *status = 0; 1992 break; 1993 case COMP_SHORT_PACKET: 1994 *status = 0; 1995 break; 1996 case COMP_STOPPED_SHORT_PACKET: 1997 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 1998 td->urb->actual_length = remaining; 1999 else 2000 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2001 goto finish_td; 2002 case COMP_STOPPED: 2003 switch (trb_type) { 2004 case TRB_SETUP: 2005 td->urb->actual_length = 0; 2006 goto finish_td; 2007 case TRB_DATA: 2008 case TRB_NORMAL: 2009 td->urb->actual_length = requested - remaining; 2010 goto finish_td; 2011 case TRB_STATUS: 2012 td->urb->actual_length = requested; 2013 goto finish_td; 2014 default: 2015 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2016 trb_type); 2017 goto finish_td; 2018 } 2019 case COMP_STOPPED_LENGTH_INVALID: 2020 goto finish_td; 2021 default: 2022 if (!xhci_requires_manual_halt_cleanup(xhci, 2023 ep_ctx, trb_comp_code)) 2024 break; 2025 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2026 trb_comp_code, ep_index); 2027 /* else fall through */ 2028 case COMP_STALL_ERROR: 2029 /* Did we transfer part of the data (middle) phase? */ 2030 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2031 td->urb->actual_length = requested - remaining; 2032 else if (!td->urb_length_set) 2033 td->urb->actual_length = 0; 2034 goto finish_td; 2035 } 2036 2037 /* stopped at setup stage, no data transferred */ 2038 if (trb_type == TRB_SETUP) 2039 goto finish_td; 2040 2041 /* 2042 * if on data stage then update the actual_length of the URB and flag it 2043 * as set, so it won't be overwritten in the event for the last TRB. 2044 */ 2045 if (trb_type == TRB_DATA || 2046 trb_type == TRB_NORMAL) { 2047 td->urb_length_set = true; 2048 td->urb->actual_length = requested - remaining; 2049 xhci_dbg(xhci, "Waiting for status stage event\n"); 2050 return 0; 2051 } 2052 2053 /* at status stage */ 2054 if (!td->urb_length_set) 2055 td->urb->actual_length = requested; 2056 2057 finish_td: 2058 return finish_td(xhci, td, event, ep, status); 2059 } 2060 2061 /* 2062 * Process isochronous tds, update urb packet status and actual_length. 2063 */ 2064 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2065 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2066 struct xhci_virt_ep *ep, int *status) 2067 { 2068 struct xhci_ring *ep_ring; 2069 struct urb_priv *urb_priv; 2070 int idx; 2071 struct usb_iso_packet_descriptor *frame; 2072 u32 trb_comp_code; 2073 bool sum_trbs_for_length = false; 2074 u32 remaining, requested, ep_trb_len; 2075 int short_framestatus; 2076 2077 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2078 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2079 urb_priv = td->urb->hcpriv; 2080 idx = urb_priv->num_tds_done; 2081 frame = &td->urb->iso_frame_desc[idx]; 2082 requested = frame->length; 2083 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2084 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2085 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2086 -EREMOTEIO : 0; 2087 2088 /* handle completion code */ 2089 switch (trb_comp_code) { 2090 case COMP_SUCCESS: 2091 if (remaining) { 2092 frame->status = short_framestatus; 2093 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2094 sum_trbs_for_length = true; 2095 break; 2096 } 2097 frame->status = 0; 2098 break; 2099 case COMP_SHORT_PACKET: 2100 frame->status = short_framestatus; 2101 sum_trbs_for_length = true; 2102 break; 2103 case COMP_BANDWIDTH_OVERRUN_ERROR: 2104 frame->status = -ECOMM; 2105 break; 2106 case COMP_ISOCH_BUFFER_OVERRUN: 2107 case COMP_BABBLE_DETECTED_ERROR: 2108 frame->status = -EOVERFLOW; 2109 break; 2110 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2111 case COMP_STALL_ERROR: 2112 frame->status = -EPROTO; 2113 break; 2114 case COMP_USB_TRANSACTION_ERROR: 2115 frame->status = -EPROTO; 2116 if (ep_trb != td->last_trb) 2117 return 0; 2118 break; 2119 case COMP_STOPPED: 2120 sum_trbs_for_length = true; 2121 break; 2122 case COMP_STOPPED_SHORT_PACKET: 2123 /* field normally containing residue now contains tranferred */ 2124 frame->status = short_framestatus; 2125 requested = remaining; 2126 break; 2127 case COMP_STOPPED_LENGTH_INVALID: 2128 requested = 0; 2129 remaining = 0; 2130 break; 2131 default: 2132 sum_trbs_for_length = true; 2133 frame->status = -1; 2134 break; 2135 } 2136 2137 if (sum_trbs_for_length) 2138 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2139 ep_trb_len - remaining; 2140 else 2141 frame->actual_length = requested; 2142 2143 td->urb->actual_length += frame->actual_length; 2144 2145 return finish_td(xhci, td, event, ep, status); 2146 } 2147 2148 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2149 struct xhci_transfer_event *event, 2150 struct xhci_virt_ep *ep, int *status) 2151 { 2152 struct xhci_ring *ep_ring; 2153 struct urb_priv *urb_priv; 2154 struct usb_iso_packet_descriptor *frame; 2155 int idx; 2156 2157 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2158 urb_priv = td->urb->hcpriv; 2159 idx = urb_priv->num_tds_done; 2160 frame = &td->urb->iso_frame_desc[idx]; 2161 2162 /* The transfer is partly done. */ 2163 frame->status = -EXDEV; 2164 2165 /* calc actual length */ 2166 frame->actual_length = 0; 2167 2168 /* Update ring dequeue pointer */ 2169 while (ep_ring->dequeue != td->last_trb) 2170 inc_deq(xhci, ep_ring); 2171 inc_deq(xhci, ep_ring); 2172 2173 return xhci_td_cleanup(xhci, td, ep_ring, status); 2174 } 2175 2176 /* 2177 * Process bulk and interrupt tds, update urb status and actual_length. 2178 */ 2179 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2180 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2181 struct xhci_virt_ep *ep, int *status) 2182 { 2183 struct xhci_slot_ctx *slot_ctx; 2184 struct xhci_ring *ep_ring; 2185 u32 trb_comp_code; 2186 u32 remaining, requested, ep_trb_len; 2187 unsigned int slot_id; 2188 int ep_index; 2189 2190 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2191 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2192 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2193 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2194 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2195 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2196 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2197 requested = td->urb->transfer_buffer_length; 2198 2199 switch (trb_comp_code) { 2200 case COMP_SUCCESS: 2201 ep_ring->err_count = 0; 2202 /* handle success with untransferred data as short packet */ 2203 if (ep_trb != td->last_trb || remaining) { 2204 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2205 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2206 td->urb->ep->desc.bEndpointAddress, 2207 requested, remaining); 2208 } 2209 *status = 0; 2210 break; 2211 case COMP_SHORT_PACKET: 2212 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2213 td->urb->ep->desc.bEndpointAddress, 2214 requested, remaining); 2215 *status = 0; 2216 break; 2217 case COMP_STOPPED_SHORT_PACKET: 2218 td->urb->actual_length = remaining; 2219 goto finish_td; 2220 case COMP_STOPPED_LENGTH_INVALID: 2221 /* stopped on ep trb with invalid length, exclude it */ 2222 ep_trb_len = 0; 2223 remaining = 0; 2224 break; 2225 case COMP_USB_TRANSACTION_ERROR: 2226 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2227 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2228 break; 2229 *status = 0; 2230 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2231 ep_ring->stream_id, td, EP_SOFT_RESET); 2232 return 0; 2233 default: 2234 /* do nothing */ 2235 break; 2236 } 2237 2238 if (ep_trb == td->last_trb) 2239 td->urb->actual_length = requested - remaining; 2240 else 2241 td->urb->actual_length = 2242 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2243 ep_trb_len - remaining; 2244 finish_td: 2245 if (remaining > requested) { 2246 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2247 remaining); 2248 td->urb->actual_length = 0; 2249 } 2250 return finish_td(xhci, td, event, ep, status); 2251 } 2252 2253 /* 2254 * If this function returns an error condition, it means it got a Transfer 2255 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2256 * At this point, the host controller is probably hosed and should be reset. 2257 */ 2258 static int handle_tx_event(struct xhci_hcd *xhci, 2259 struct xhci_transfer_event *event) 2260 { 2261 struct xhci_virt_device *xdev; 2262 struct xhci_virt_ep *ep; 2263 struct xhci_ring *ep_ring; 2264 unsigned int slot_id; 2265 int ep_index; 2266 struct xhci_td *td = NULL; 2267 dma_addr_t ep_trb_dma; 2268 struct xhci_segment *ep_seg; 2269 union xhci_trb *ep_trb; 2270 int status = -EINPROGRESS; 2271 struct xhci_ep_ctx *ep_ctx; 2272 struct list_head *tmp; 2273 u32 trb_comp_code; 2274 int td_num = 0; 2275 bool handling_skipped_tds = false; 2276 2277 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2278 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2279 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2280 ep_trb_dma = le64_to_cpu(event->buffer); 2281 2282 xdev = xhci->devs[slot_id]; 2283 if (!xdev) { 2284 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2285 slot_id); 2286 goto err_out; 2287 } 2288 2289 ep = &xdev->eps[ep_index]; 2290 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2291 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2292 2293 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2294 xhci_err(xhci, 2295 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2296 slot_id, ep_index); 2297 goto err_out; 2298 } 2299 2300 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2301 if (!ep_ring) { 2302 switch (trb_comp_code) { 2303 case COMP_STALL_ERROR: 2304 case COMP_USB_TRANSACTION_ERROR: 2305 case COMP_INVALID_STREAM_TYPE_ERROR: 2306 case COMP_INVALID_STREAM_ID_ERROR: 2307 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2308 NULL, EP_SOFT_RESET); 2309 goto cleanup; 2310 case COMP_RING_UNDERRUN: 2311 case COMP_RING_OVERRUN: 2312 case COMP_STOPPED_LENGTH_INVALID: 2313 goto cleanup; 2314 default: 2315 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2316 slot_id, ep_index); 2317 goto err_out; 2318 } 2319 } 2320 2321 /* Count current td numbers if ep->skip is set */ 2322 if (ep->skip) { 2323 list_for_each(tmp, &ep_ring->td_list) 2324 td_num++; 2325 } 2326 2327 /* Look for common error cases */ 2328 switch (trb_comp_code) { 2329 /* Skip codes that require special handling depending on 2330 * transfer type 2331 */ 2332 case COMP_SUCCESS: 2333 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2334 break; 2335 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2336 trb_comp_code = COMP_SHORT_PACKET; 2337 else 2338 xhci_warn_ratelimited(xhci, 2339 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2340 slot_id, ep_index); 2341 case COMP_SHORT_PACKET: 2342 break; 2343 /* Completion codes for endpoint stopped state */ 2344 case COMP_STOPPED: 2345 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2346 slot_id, ep_index); 2347 break; 2348 case COMP_STOPPED_LENGTH_INVALID: 2349 xhci_dbg(xhci, 2350 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2351 slot_id, ep_index); 2352 break; 2353 case COMP_STOPPED_SHORT_PACKET: 2354 xhci_dbg(xhci, 2355 "Stopped with short packet transfer detected for slot %u ep %u\n", 2356 slot_id, ep_index); 2357 break; 2358 /* Completion codes for endpoint halted state */ 2359 case COMP_STALL_ERROR: 2360 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2361 ep_index); 2362 ep->ep_state |= EP_HALTED; 2363 status = -EPIPE; 2364 break; 2365 case COMP_SPLIT_TRANSACTION_ERROR: 2366 case COMP_USB_TRANSACTION_ERROR: 2367 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2368 slot_id, ep_index); 2369 status = -EPROTO; 2370 break; 2371 case COMP_BABBLE_DETECTED_ERROR: 2372 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2373 slot_id, ep_index); 2374 status = -EOVERFLOW; 2375 break; 2376 /* Completion codes for endpoint error state */ 2377 case COMP_TRB_ERROR: 2378 xhci_warn(xhci, 2379 "WARN: TRB error for slot %u ep %u on endpoint\n", 2380 slot_id, ep_index); 2381 status = -EILSEQ; 2382 break; 2383 /* completion codes not indicating endpoint state change */ 2384 case COMP_DATA_BUFFER_ERROR: 2385 xhci_warn(xhci, 2386 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2387 slot_id, ep_index); 2388 status = -ENOSR; 2389 break; 2390 case COMP_BANDWIDTH_OVERRUN_ERROR: 2391 xhci_warn(xhci, 2392 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2393 slot_id, ep_index); 2394 break; 2395 case COMP_ISOCH_BUFFER_OVERRUN: 2396 xhci_warn(xhci, 2397 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2398 slot_id, ep_index); 2399 break; 2400 case COMP_RING_UNDERRUN: 2401 /* 2402 * When the Isoch ring is empty, the xHC will generate 2403 * a Ring Overrun Event for IN Isoch endpoint or Ring 2404 * Underrun Event for OUT Isoch endpoint. 2405 */ 2406 xhci_dbg(xhci, "underrun event on endpoint\n"); 2407 if (!list_empty(&ep_ring->td_list)) 2408 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2409 "still with TDs queued?\n", 2410 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2411 ep_index); 2412 goto cleanup; 2413 case COMP_RING_OVERRUN: 2414 xhci_dbg(xhci, "overrun event on endpoint\n"); 2415 if (!list_empty(&ep_ring->td_list)) 2416 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2417 "still with TDs queued?\n", 2418 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2419 ep_index); 2420 goto cleanup; 2421 case COMP_MISSED_SERVICE_ERROR: 2422 /* 2423 * When encounter missed service error, one or more isoc tds 2424 * may be missed by xHC. 2425 * Set skip flag of the ep_ring; Complete the missed tds as 2426 * short transfer when process the ep_ring next time. 2427 */ 2428 ep->skip = true; 2429 xhci_dbg(xhci, 2430 "Miss service interval error for slot %u ep %u, set skip flag\n", 2431 slot_id, ep_index); 2432 goto cleanup; 2433 case COMP_NO_PING_RESPONSE_ERROR: 2434 ep->skip = true; 2435 xhci_dbg(xhci, 2436 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2437 slot_id, ep_index); 2438 goto cleanup; 2439 2440 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2441 /* needs disable slot command to recover */ 2442 xhci_warn(xhci, 2443 "WARN: detect an incompatible device for slot %u ep %u", 2444 slot_id, ep_index); 2445 status = -EPROTO; 2446 break; 2447 default: 2448 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2449 status = 0; 2450 break; 2451 } 2452 xhci_warn(xhci, 2453 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2454 trb_comp_code, slot_id, ep_index); 2455 goto cleanup; 2456 } 2457 2458 do { 2459 /* This TRB should be in the TD at the head of this ring's 2460 * TD list. 2461 */ 2462 if (list_empty(&ep_ring->td_list)) { 2463 /* 2464 * Don't print wanings if it's due to a stopped endpoint 2465 * generating an extra completion event if the device 2466 * was suspended. Or, a event for the last TRB of a 2467 * short TD we already got a short event for. 2468 * The short TD is already removed from the TD list. 2469 */ 2470 2471 if (!(trb_comp_code == COMP_STOPPED || 2472 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2473 ep_ring->last_td_was_short)) { 2474 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2475 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2476 ep_index); 2477 } 2478 if (ep->skip) { 2479 ep->skip = false; 2480 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2481 slot_id, ep_index); 2482 } 2483 goto cleanup; 2484 } 2485 2486 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2487 if (ep->skip && td_num == 0) { 2488 ep->skip = false; 2489 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2490 slot_id, ep_index); 2491 goto cleanup; 2492 } 2493 2494 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2495 td_list); 2496 if (ep->skip) 2497 td_num--; 2498 2499 /* Is this a TRB in the currently executing TD? */ 2500 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2501 td->last_trb, ep_trb_dma, false); 2502 2503 /* 2504 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2505 * is not in the current TD pointed by ep_ring->dequeue because 2506 * that the hardware dequeue pointer still at the previous TRB 2507 * of the current TD. The previous TRB maybe a Link TD or the 2508 * last TRB of the previous TD. The command completion handle 2509 * will take care the rest. 2510 */ 2511 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2512 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2513 goto cleanup; 2514 } 2515 2516 if (!ep_seg) { 2517 if (!ep->skip || 2518 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2519 /* Some host controllers give a spurious 2520 * successful event after a short transfer. 2521 * Ignore it. 2522 */ 2523 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2524 ep_ring->last_td_was_short) { 2525 ep_ring->last_td_was_short = false; 2526 goto cleanup; 2527 } 2528 /* HC is busted, give up! */ 2529 xhci_err(xhci, 2530 "ERROR Transfer event TRB DMA ptr not " 2531 "part of current TD ep_index %d " 2532 "comp_code %u\n", ep_index, 2533 trb_comp_code); 2534 trb_in_td(xhci, ep_ring->deq_seg, 2535 ep_ring->dequeue, td->last_trb, 2536 ep_trb_dma, true); 2537 return -ESHUTDOWN; 2538 } 2539 2540 skip_isoc_td(xhci, td, event, ep, &status); 2541 goto cleanup; 2542 } 2543 if (trb_comp_code == COMP_SHORT_PACKET) 2544 ep_ring->last_td_was_short = true; 2545 else 2546 ep_ring->last_td_was_short = false; 2547 2548 if (ep->skip) { 2549 xhci_dbg(xhci, 2550 "Found td. Clear skip flag for slot %u ep %u.\n", 2551 slot_id, ep_index); 2552 ep->skip = false; 2553 } 2554 2555 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2556 sizeof(*ep_trb)]; 2557 2558 trace_xhci_handle_transfer(ep_ring, 2559 (struct xhci_generic_trb *) ep_trb); 2560 2561 /* 2562 * No-op TRB could trigger interrupts in a case where 2563 * a URB was killed and a STALL_ERROR happens right 2564 * after the endpoint ring stopped. Reset the halted 2565 * endpoint. Otherwise, the endpoint remains stalled 2566 * indefinitely. 2567 */ 2568 if (trb_is_noop(ep_trb)) { 2569 if (trb_comp_code == COMP_STALL_ERROR || 2570 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2571 trb_comp_code)) 2572 xhci_cleanup_halted_endpoint(xhci, slot_id, 2573 ep_index, 2574 ep_ring->stream_id, 2575 td, EP_HARD_RESET); 2576 goto cleanup; 2577 } 2578 2579 /* update the urb's actual_length and give back to the core */ 2580 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2581 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2582 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2583 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2584 else 2585 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2586 &status); 2587 cleanup: 2588 handling_skipped_tds = ep->skip && 2589 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2590 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2591 2592 /* 2593 * Do not update event ring dequeue pointer if we're in a loop 2594 * processing missed tds. 2595 */ 2596 if (!handling_skipped_tds) 2597 inc_deq(xhci, xhci->event_ring); 2598 2599 /* 2600 * If ep->skip is set, it means there are missed tds on the 2601 * endpoint ring need to take care of. 2602 * Process them as short transfer until reach the td pointed by 2603 * the event. 2604 */ 2605 } while (handling_skipped_tds); 2606 2607 return 0; 2608 2609 err_out: 2610 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2611 (unsigned long long) xhci_trb_virt_to_dma( 2612 xhci->event_ring->deq_seg, 2613 xhci->event_ring->dequeue), 2614 lower_32_bits(le64_to_cpu(event->buffer)), 2615 upper_32_bits(le64_to_cpu(event->buffer)), 2616 le32_to_cpu(event->transfer_len), 2617 le32_to_cpu(event->flags)); 2618 return -ENODEV; 2619 } 2620 2621 /* 2622 * This function handles all OS-owned events on the event ring. It may drop 2623 * xhci->lock between event processing (e.g. to pass up port status changes). 2624 * Returns >0 for "possibly more events to process" (caller should call again), 2625 * otherwise 0 if done. In future, <0 returns should indicate error code. 2626 */ 2627 static int xhci_handle_event(struct xhci_hcd *xhci) 2628 { 2629 union xhci_trb *event; 2630 int update_ptrs = 1; 2631 int ret; 2632 2633 /* Event ring hasn't been allocated yet. */ 2634 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2635 xhci_err(xhci, "ERROR event ring not ready\n"); 2636 return -ENOMEM; 2637 } 2638 2639 event = xhci->event_ring->dequeue; 2640 /* Does the HC or OS own the TRB? */ 2641 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2642 xhci->event_ring->cycle_state) 2643 return 0; 2644 2645 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2646 2647 /* 2648 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2649 * speculative reads of the event's flags/data below. 2650 */ 2651 rmb(); 2652 /* FIXME: Handle more event types. */ 2653 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2654 case TRB_TYPE(TRB_COMPLETION): 2655 handle_cmd_completion(xhci, &event->event_cmd); 2656 break; 2657 case TRB_TYPE(TRB_PORT_STATUS): 2658 handle_port_status(xhci, event); 2659 update_ptrs = 0; 2660 break; 2661 case TRB_TYPE(TRB_TRANSFER): 2662 ret = handle_tx_event(xhci, &event->trans_event); 2663 if (ret >= 0) 2664 update_ptrs = 0; 2665 break; 2666 case TRB_TYPE(TRB_DEV_NOTE): 2667 handle_device_notification(xhci, event); 2668 break; 2669 default: 2670 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2671 TRB_TYPE(48)) 2672 handle_vendor_event(xhci, event); 2673 else 2674 xhci_warn(xhci, "ERROR unknown event type %d\n", 2675 TRB_FIELD_TO_TYPE( 2676 le32_to_cpu(event->event_cmd.flags))); 2677 } 2678 /* Any of the above functions may drop and re-acquire the lock, so check 2679 * to make sure a watchdog timer didn't mark the host as non-responsive. 2680 */ 2681 if (xhci->xhc_state & XHCI_STATE_DYING) { 2682 xhci_dbg(xhci, "xHCI host dying, returning from " 2683 "event handler.\n"); 2684 return 0; 2685 } 2686 2687 if (update_ptrs) 2688 /* Update SW event ring dequeue pointer */ 2689 inc_deq(xhci, xhci->event_ring); 2690 2691 /* Are there more items on the event ring? Caller will call us again to 2692 * check. 2693 */ 2694 return 1; 2695 } 2696 2697 /* 2698 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2699 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2700 * indicators of an event TRB error, but we check the status *first* to be safe. 2701 */ 2702 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2703 { 2704 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2705 union xhci_trb *event_ring_deq; 2706 irqreturn_t ret = IRQ_NONE; 2707 unsigned long flags; 2708 dma_addr_t deq; 2709 u64 temp_64; 2710 u32 status; 2711 2712 spin_lock_irqsave(&xhci->lock, flags); 2713 /* Check if the xHC generated the interrupt, or the irq is shared */ 2714 status = readl(&xhci->op_regs->status); 2715 if (status == ~(u32)0) { 2716 xhci_hc_died(xhci); 2717 ret = IRQ_HANDLED; 2718 goto out; 2719 } 2720 2721 if (!(status & STS_EINT)) 2722 goto out; 2723 2724 if (status & STS_FATAL) { 2725 xhci_warn(xhci, "WARNING: Host System Error\n"); 2726 xhci_halt(xhci); 2727 ret = IRQ_HANDLED; 2728 goto out; 2729 } 2730 2731 /* 2732 * Clear the op reg interrupt status first, 2733 * so we can receive interrupts from other MSI-X interrupters. 2734 * Write 1 to clear the interrupt status. 2735 */ 2736 status |= STS_EINT; 2737 writel(status, &xhci->op_regs->status); 2738 2739 if (!hcd->msi_enabled) { 2740 u32 irq_pending; 2741 irq_pending = readl(&xhci->ir_set->irq_pending); 2742 irq_pending |= IMAN_IP; 2743 writel(irq_pending, &xhci->ir_set->irq_pending); 2744 } 2745 2746 if (xhci->xhc_state & XHCI_STATE_DYING || 2747 xhci->xhc_state & XHCI_STATE_HALTED) { 2748 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2749 "Shouldn't IRQs be disabled?\n"); 2750 /* Clear the event handler busy flag (RW1C); 2751 * the event ring should be empty. 2752 */ 2753 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2754 xhci_write_64(xhci, temp_64 | ERST_EHB, 2755 &xhci->ir_set->erst_dequeue); 2756 ret = IRQ_HANDLED; 2757 goto out; 2758 } 2759 2760 event_ring_deq = xhci->event_ring->dequeue; 2761 /* FIXME this should be a delayed service routine 2762 * that clears the EHB. 2763 */ 2764 while (xhci_handle_event(xhci) > 0) {} 2765 2766 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2767 /* If necessary, update the HW's version of the event ring deq ptr. */ 2768 if (event_ring_deq != xhci->event_ring->dequeue) { 2769 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2770 xhci->event_ring->dequeue); 2771 if (deq == 0) 2772 xhci_warn(xhci, "WARN something wrong with SW event " 2773 "ring dequeue ptr.\n"); 2774 /* Update HC event ring dequeue pointer */ 2775 temp_64 &= ERST_PTR_MASK; 2776 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2777 } 2778 2779 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2780 temp_64 |= ERST_EHB; 2781 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2782 ret = IRQ_HANDLED; 2783 2784 out: 2785 spin_unlock_irqrestore(&xhci->lock, flags); 2786 2787 return ret; 2788 } 2789 2790 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2791 { 2792 return xhci_irq(hcd); 2793 } 2794 2795 /**** Endpoint Ring Operations ****/ 2796 2797 /* 2798 * Generic function for queueing a TRB on a ring. 2799 * The caller must have checked to make sure there's room on the ring. 2800 * 2801 * @more_trbs_coming: Will you enqueue more TRBs before calling 2802 * prepare_transfer()? 2803 */ 2804 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2805 bool more_trbs_coming, 2806 u32 field1, u32 field2, u32 field3, u32 field4) 2807 { 2808 struct xhci_generic_trb *trb; 2809 2810 trb = &ring->enqueue->generic; 2811 trb->field[0] = cpu_to_le32(field1); 2812 trb->field[1] = cpu_to_le32(field2); 2813 trb->field[2] = cpu_to_le32(field3); 2814 trb->field[3] = cpu_to_le32(field4); 2815 2816 trace_xhci_queue_trb(ring, trb); 2817 2818 inc_enq(xhci, ring, more_trbs_coming); 2819 } 2820 2821 /* 2822 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2823 * FIXME allocate segments if the ring is full. 2824 */ 2825 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2826 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2827 { 2828 unsigned int num_trbs_needed; 2829 2830 /* Make sure the endpoint has been added to xHC schedule */ 2831 switch (ep_state) { 2832 case EP_STATE_DISABLED: 2833 /* 2834 * USB core changed config/interfaces without notifying us, 2835 * or hardware is reporting the wrong state. 2836 */ 2837 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2838 return -ENOENT; 2839 case EP_STATE_ERROR: 2840 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2841 /* FIXME event handling code for error needs to clear it */ 2842 /* XXX not sure if this should be -ENOENT or not */ 2843 return -EINVAL; 2844 case EP_STATE_HALTED: 2845 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2846 case EP_STATE_STOPPED: 2847 case EP_STATE_RUNNING: 2848 break; 2849 default: 2850 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2851 /* 2852 * FIXME issue Configure Endpoint command to try to get the HC 2853 * back into a known state. 2854 */ 2855 return -EINVAL; 2856 } 2857 2858 while (1) { 2859 if (room_on_ring(xhci, ep_ring, num_trbs)) 2860 break; 2861 2862 if (ep_ring == xhci->cmd_ring) { 2863 xhci_err(xhci, "Do not support expand command ring\n"); 2864 return -ENOMEM; 2865 } 2866 2867 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2868 "ERROR no room on ep ring, try ring expansion"); 2869 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2870 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2871 mem_flags)) { 2872 xhci_err(xhci, "Ring expansion failed\n"); 2873 return -ENOMEM; 2874 } 2875 } 2876 2877 while (trb_is_link(ep_ring->enqueue)) { 2878 /* If we're not dealing with 0.95 hardware or isoc rings 2879 * on AMD 0.96 host, clear the chain bit. 2880 */ 2881 if (!xhci_link_trb_quirk(xhci) && 2882 !(ep_ring->type == TYPE_ISOC && 2883 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2884 ep_ring->enqueue->link.control &= 2885 cpu_to_le32(~TRB_CHAIN); 2886 else 2887 ep_ring->enqueue->link.control |= 2888 cpu_to_le32(TRB_CHAIN); 2889 2890 wmb(); 2891 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2892 2893 /* Toggle the cycle bit after the last ring segment. */ 2894 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2895 ep_ring->cycle_state ^= 1; 2896 2897 ep_ring->enq_seg = ep_ring->enq_seg->next; 2898 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2899 } 2900 return 0; 2901 } 2902 2903 static int prepare_transfer(struct xhci_hcd *xhci, 2904 struct xhci_virt_device *xdev, 2905 unsigned int ep_index, 2906 unsigned int stream_id, 2907 unsigned int num_trbs, 2908 struct urb *urb, 2909 unsigned int td_index, 2910 gfp_t mem_flags) 2911 { 2912 int ret; 2913 struct urb_priv *urb_priv; 2914 struct xhci_td *td; 2915 struct xhci_ring *ep_ring; 2916 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2917 2918 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2919 if (!ep_ring) { 2920 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2921 stream_id); 2922 return -EINVAL; 2923 } 2924 2925 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2926 num_trbs, mem_flags); 2927 if (ret) 2928 return ret; 2929 2930 urb_priv = urb->hcpriv; 2931 td = &urb_priv->td[td_index]; 2932 2933 INIT_LIST_HEAD(&td->td_list); 2934 INIT_LIST_HEAD(&td->cancelled_td_list); 2935 2936 if (td_index == 0) { 2937 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2938 if (unlikely(ret)) 2939 return ret; 2940 } 2941 2942 td->urb = urb; 2943 /* Add this TD to the tail of the endpoint ring's TD list */ 2944 list_add_tail(&td->td_list, &ep_ring->td_list); 2945 td->start_seg = ep_ring->enq_seg; 2946 td->first_trb = ep_ring->enqueue; 2947 2948 return 0; 2949 } 2950 2951 unsigned int count_trbs(u64 addr, u64 len) 2952 { 2953 unsigned int num_trbs; 2954 2955 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2956 TRB_MAX_BUFF_SIZE); 2957 if (num_trbs == 0) 2958 num_trbs++; 2959 2960 return num_trbs; 2961 } 2962 2963 static inline unsigned int count_trbs_needed(struct urb *urb) 2964 { 2965 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2966 } 2967 2968 static unsigned int count_sg_trbs_needed(struct urb *urb) 2969 { 2970 struct scatterlist *sg; 2971 unsigned int i, len, full_len, num_trbs = 0; 2972 2973 full_len = urb->transfer_buffer_length; 2974 2975 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2976 len = sg_dma_len(sg); 2977 num_trbs += count_trbs(sg_dma_address(sg), len); 2978 len = min_t(unsigned int, len, full_len); 2979 full_len -= len; 2980 if (full_len == 0) 2981 break; 2982 } 2983 2984 return num_trbs; 2985 } 2986 2987 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2988 { 2989 u64 addr, len; 2990 2991 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2992 len = urb->iso_frame_desc[i].length; 2993 2994 return count_trbs(addr, len); 2995 } 2996 2997 static void check_trb_math(struct urb *urb, int running_total) 2998 { 2999 if (unlikely(running_total != urb->transfer_buffer_length)) 3000 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3001 "queued %#x (%d), asked for %#x (%d)\n", 3002 __func__, 3003 urb->ep->desc.bEndpointAddress, 3004 running_total, running_total, 3005 urb->transfer_buffer_length, 3006 urb->transfer_buffer_length); 3007 } 3008 3009 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3010 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3011 struct xhci_generic_trb *start_trb) 3012 { 3013 /* 3014 * Pass all the TRBs to the hardware at once and make sure this write 3015 * isn't reordered. 3016 */ 3017 wmb(); 3018 if (start_cycle) 3019 start_trb->field[3] |= cpu_to_le32(start_cycle); 3020 else 3021 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3022 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3023 } 3024 3025 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3026 struct xhci_ep_ctx *ep_ctx) 3027 { 3028 int xhci_interval; 3029 int ep_interval; 3030 3031 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3032 ep_interval = urb->interval; 3033 3034 /* Convert to microframes */ 3035 if (urb->dev->speed == USB_SPEED_LOW || 3036 urb->dev->speed == USB_SPEED_FULL) 3037 ep_interval *= 8; 3038 3039 /* FIXME change this to a warning and a suggestion to use the new API 3040 * to set the polling interval (once the API is added). 3041 */ 3042 if (xhci_interval != ep_interval) { 3043 dev_dbg_ratelimited(&urb->dev->dev, 3044 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3045 ep_interval, ep_interval == 1 ? "" : "s", 3046 xhci_interval, xhci_interval == 1 ? "" : "s"); 3047 urb->interval = xhci_interval; 3048 /* Convert back to frames for LS/FS devices */ 3049 if (urb->dev->speed == USB_SPEED_LOW || 3050 urb->dev->speed == USB_SPEED_FULL) 3051 urb->interval /= 8; 3052 } 3053 } 3054 3055 /* 3056 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3057 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3058 * (comprised of sg list entries) can take several service intervals to 3059 * transmit. 3060 */ 3061 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3062 struct urb *urb, int slot_id, unsigned int ep_index) 3063 { 3064 struct xhci_ep_ctx *ep_ctx; 3065 3066 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3067 check_interval(xhci, urb, ep_ctx); 3068 3069 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3070 } 3071 3072 /* 3073 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3074 * packets remaining in the TD (*not* including this TRB). 3075 * 3076 * Total TD packet count = total_packet_count = 3077 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3078 * 3079 * Packets transferred up to and including this TRB = packets_transferred = 3080 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3081 * 3082 * TD size = total_packet_count - packets_transferred 3083 * 3084 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3085 * including this TRB, right shifted by 10 3086 * 3087 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3088 * This is taken care of in the TRB_TD_SIZE() macro 3089 * 3090 * The last TRB in a TD must have the TD size set to zero. 3091 */ 3092 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3093 int trb_buff_len, unsigned int td_total_len, 3094 struct urb *urb, bool more_trbs_coming) 3095 { 3096 u32 maxp, total_packet_count; 3097 3098 /* MTK xHCI 0.96 contains some features from 1.0 */ 3099 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3100 return ((td_total_len - transferred) >> 10); 3101 3102 /* One TRB with a zero-length data packet. */ 3103 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3104 trb_buff_len == td_total_len) 3105 return 0; 3106 3107 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3108 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3109 trb_buff_len = 0; 3110 3111 maxp = usb_endpoint_maxp(&urb->ep->desc); 3112 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3113 3114 /* Queueing functions don't count the current TRB into transferred */ 3115 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3116 } 3117 3118 3119 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3120 u32 *trb_buff_len, struct xhci_segment *seg) 3121 { 3122 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3123 unsigned int unalign; 3124 unsigned int max_pkt; 3125 u32 new_buff_len; 3126 3127 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3128 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3129 3130 /* we got lucky, last normal TRB data on segment is packet aligned */ 3131 if (unalign == 0) 3132 return 0; 3133 3134 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3135 unalign, *trb_buff_len); 3136 3137 /* is the last nornal TRB alignable by splitting it */ 3138 if (*trb_buff_len > unalign) { 3139 *trb_buff_len -= unalign; 3140 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3141 return 0; 3142 } 3143 3144 /* 3145 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3146 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3147 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3148 */ 3149 new_buff_len = max_pkt - (enqd_len % max_pkt); 3150 3151 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3152 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3153 3154 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3155 if (usb_urb_dir_out(urb)) { 3156 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3157 seg->bounce_buf, new_buff_len, enqd_len); 3158 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3159 max_pkt, DMA_TO_DEVICE); 3160 } else { 3161 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3162 max_pkt, DMA_FROM_DEVICE); 3163 } 3164 3165 if (dma_mapping_error(dev, seg->bounce_dma)) { 3166 /* try without aligning. Some host controllers survive */ 3167 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3168 return 0; 3169 } 3170 *trb_buff_len = new_buff_len; 3171 seg->bounce_len = new_buff_len; 3172 seg->bounce_offs = enqd_len; 3173 3174 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3175 3176 return 1; 3177 } 3178 3179 /* This is very similar to what ehci-q.c qtd_fill() does */ 3180 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3181 struct urb *urb, int slot_id, unsigned int ep_index) 3182 { 3183 struct xhci_ring *ring; 3184 struct urb_priv *urb_priv; 3185 struct xhci_td *td; 3186 struct xhci_generic_trb *start_trb; 3187 struct scatterlist *sg = NULL; 3188 bool more_trbs_coming = true; 3189 bool need_zero_pkt = false; 3190 bool first_trb = true; 3191 unsigned int num_trbs; 3192 unsigned int start_cycle, num_sgs = 0; 3193 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3194 int sent_len, ret; 3195 u32 field, length_field, remainder; 3196 u64 addr, send_addr; 3197 3198 ring = xhci_urb_to_transfer_ring(xhci, urb); 3199 if (!ring) 3200 return -EINVAL; 3201 3202 full_len = urb->transfer_buffer_length; 3203 /* If we have scatter/gather list, we use it. */ 3204 if (urb->num_sgs) { 3205 num_sgs = urb->num_mapped_sgs; 3206 sg = urb->sg; 3207 addr = (u64) sg_dma_address(sg); 3208 block_len = sg_dma_len(sg); 3209 num_trbs = count_sg_trbs_needed(urb); 3210 } else { 3211 num_trbs = count_trbs_needed(urb); 3212 addr = (u64) urb->transfer_dma; 3213 block_len = full_len; 3214 } 3215 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3216 ep_index, urb->stream_id, 3217 num_trbs, urb, 0, mem_flags); 3218 if (unlikely(ret < 0)) 3219 return ret; 3220 3221 urb_priv = urb->hcpriv; 3222 3223 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3224 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3225 need_zero_pkt = true; 3226 3227 td = &urb_priv->td[0]; 3228 3229 /* 3230 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3231 * until we've finished creating all the other TRBs. The ring's cycle 3232 * state may change as we enqueue the other TRBs, so save it too. 3233 */ 3234 start_trb = &ring->enqueue->generic; 3235 start_cycle = ring->cycle_state; 3236 send_addr = addr; 3237 3238 /* Queue the TRBs, even if they are zero-length */ 3239 for (enqd_len = 0; first_trb || enqd_len < full_len; 3240 enqd_len += trb_buff_len) { 3241 field = TRB_TYPE(TRB_NORMAL); 3242 3243 /* TRB buffer should not cross 64KB boundaries */ 3244 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3245 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3246 3247 if (enqd_len + trb_buff_len > full_len) 3248 trb_buff_len = full_len - enqd_len; 3249 3250 /* Don't change the cycle bit of the first TRB until later */ 3251 if (first_trb) { 3252 first_trb = false; 3253 if (start_cycle == 0) 3254 field |= TRB_CYCLE; 3255 } else 3256 field |= ring->cycle_state; 3257 3258 /* Chain all the TRBs together; clear the chain bit in the last 3259 * TRB to indicate it's the last TRB in the chain. 3260 */ 3261 if (enqd_len + trb_buff_len < full_len) { 3262 field |= TRB_CHAIN; 3263 if (trb_is_link(ring->enqueue + 1)) { 3264 if (xhci_align_td(xhci, urb, enqd_len, 3265 &trb_buff_len, 3266 ring->enq_seg)) { 3267 send_addr = ring->enq_seg->bounce_dma; 3268 /* assuming TD won't span 2 segs */ 3269 td->bounce_seg = ring->enq_seg; 3270 } 3271 } 3272 } 3273 if (enqd_len + trb_buff_len >= full_len) { 3274 field &= ~TRB_CHAIN; 3275 field |= TRB_IOC; 3276 more_trbs_coming = false; 3277 td->last_trb = ring->enqueue; 3278 } 3279 3280 /* Only set interrupt on short packet for IN endpoints */ 3281 if (usb_urb_dir_in(urb)) 3282 field |= TRB_ISP; 3283 3284 /* Set the TRB length, TD size, and interrupter fields. */ 3285 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3286 full_len, urb, more_trbs_coming); 3287 3288 length_field = TRB_LEN(trb_buff_len) | 3289 TRB_TD_SIZE(remainder) | 3290 TRB_INTR_TARGET(0); 3291 3292 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3293 lower_32_bits(send_addr), 3294 upper_32_bits(send_addr), 3295 length_field, 3296 field); 3297 3298 addr += trb_buff_len; 3299 sent_len = trb_buff_len; 3300 3301 while (sg && sent_len >= block_len) { 3302 /* New sg entry */ 3303 --num_sgs; 3304 sent_len -= block_len; 3305 if (num_sgs != 0) { 3306 sg = sg_next(sg); 3307 block_len = sg_dma_len(sg); 3308 addr = (u64) sg_dma_address(sg); 3309 addr += sent_len; 3310 } 3311 } 3312 block_len -= sent_len; 3313 send_addr = addr; 3314 } 3315 3316 if (need_zero_pkt) { 3317 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3318 ep_index, urb->stream_id, 3319 1, urb, 1, mem_flags); 3320 urb_priv->td[1].last_trb = ring->enqueue; 3321 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3322 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3323 } 3324 3325 check_trb_math(urb, enqd_len); 3326 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3327 start_cycle, start_trb); 3328 return 0; 3329 } 3330 3331 /* Caller must have locked xhci->lock */ 3332 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3333 struct urb *urb, int slot_id, unsigned int ep_index) 3334 { 3335 struct xhci_ring *ep_ring; 3336 int num_trbs; 3337 int ret; 3338 struct usb_ctrlrequest *setup; 3339 struct xhci_generic_trb *start_trb; 3340 int start_cycle; 3341 u32 field; 3342 struct urb_priv *urb_priv; 3343 struct xhci_td *td; 3344 3345 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3346 if (!ep_ring) 3347 return -EINVAL; 3348 3349 /* 3350 * Need to copy setup packet into setup TRB, so we can't use the setup 3351 * DMA address. 3352 */ 3353 if (!urb->setup_packet) 3354 return -EINVAL; 3355 3356 /* 1 TRB for setup, 1 for status */ 3357 num_trbs = 2; 3358 /* 3359 * Don't need to check if we need additional event data and normal TRBs, 3360 * since data in control transfers will never get bigger than 16MB 3361 * XXX: can we get a buffer that crosses 64KB boundaries? 3362 */ 3363 if (urb->transfer_buffer_length > 0) 3364 num_trbs++; 3365 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3366 ep_index, urb->stream_id, 3367 num_trbs, urb, 0, mem_flags); 3368 if (ret < 0) 3369 return ret; 3370 3371 urb_priv = urb->hcpriv; 3372 td = &urb_priv->td[0]; 3373 3374 /* 3375 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3376 * until we've finished creating all the other TRBs. The ring's cycle 3377 * state may change as we enqueue the other TRBs, so save it too. 3378 */ 3379 start_trb = &ep_ring->enqueue->generic; 3380 start_cycle = ep_ring->cycle_state; 3381 3382 /* Queue setup TRB - see section 6.4.1.2.1 */ 3383 /* FIXME better way to translate setup_packet into two u32 fields? */ 3384 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3385 field = 0; 3386 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3387 if (start_cycle == 0) 3388 field |= 0x1; 3389 3390 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3391 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3392 if (urb->transfer_buffer_length > 0) { 3393 if (setup->bRequestType & USB_DIR_IN) 3394 field |= TRB_TX_TYPE(TRB_DATA_IN); 3395 else 3396 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3397 } 3398 } 3399 3400 queue_trb(xhci, ep_ring, true, 3401 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3402 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3403 TRB_LEN(8) | TRB_INTR_TARGET(0), 3404 /* Immediate data in pointer */ 3405 field); 3406 3407 /* If there's data, queue data TRBs */ 3408 /* Only set interrupt on short packet for IN endpoints */ 3409 if (usb_urb_dir_in(urb)) 3410 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3411 else 3412 field = TRB_TYPE(TRB_DATA); 3413 3414 if (urb->transfer_buffer_length > 0) { 3415 u32 length_field, remainder; 3416 3417 remainder = xhci_td_remainder(xhci, 0, 3418 urb->transfer_buffer_length, 3419 urb->transfer_buffer_length, 3420 urb, 1); 3421 length_field = TRB_LEN(urb->transfer_buffer_length) | 3422 TRB_TD_SIZE(remainder) | 3423 TRB_INTR_TARGET(0); 3424 if (setup->bRequestType & USB_DIR_IN) 3425 field |= TRB_DIR_IN; 3426 queue_trb(xhci, ep_ring, true, 3427 lower_32_bits(urb->transfer_dma), 3428 upper_32_bits(urb->transfer_dma), 3429 length_field, 3430 field | ep_ring->cycle_state); 3431 } 3432 3433 /* Save the DMA address of the last TRB in the TD */ 3434 td->last_trb = ep_ring->enqueue; 3435 3436 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3437 /* If the device sent data, the status stage is an OUT transfer */ 3438 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3439 field = 0; 3440 else 3441 field = TRB_DIR_IN; 3442 queue_trb(xhci, ep_ring, false, 3443 0, 3444 0, 3445 TRB_INTR_TARGET(0), 3446 /* Event on completion */ 3447 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3448 3449 giveback_first_trb(xhci, slot_id, ep_index, 0, 3450 start_cycle, start_trb); 3451 return 0; 3452 } 3453 3454 /* 3455 * The transfer burst count field of the isochronous TRB defines the number of 3456 * bursts that are required to move all packets in this TD. Only SuperSpeed 3457 * devices can burst up to bMaxBurst number of packets per service interval. 3458 * This field is zero based, meaning a value of zero in the field means one 3459 * burst. Basically, for everything but SuperSpeed devices, this field will be 3460 * zero. Only xHCI 1.0 host controllers support this field. 3461 */ 3462 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3463 struct urb *urb, unsigned int total_packet_count) 3464 { 3465 unsigned int max_burst; 3466 3467 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3468 return 0; 3469 3470 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3471 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3472 } 3473 3474 /* 3475 * Returns the number of packets in the last "burst" of packets. This field is 3476 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3477 * the last burst packet count is equal to the total number of packets in the 3478 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3479 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3480 * contain 1 to (bMaxBurst + 1) packets. 3481 */ 3482 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3483 struct urb *urb, unsigned int total_packet_count) 3484 { 3485 unsigned int max_burst; 3486 unsigned int residue; 3487 3488 if (xhci->hci_version < 0x100) 3489 return 0; 3490 3491 if (urb->dev->speed >= USB_SPEED_SUPER) { 3492 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3493 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3494 residue = total_packet_count % (max_burst + 1); 3495 /* If residue is zero, the last burst contains (max_burst + 1) 3496 * number of packets, but the TLBPC field is zero-based. 3497 */ 3498 if (residue == 0) 3499 return max_burst; 3500 return residue - 1; 3501 } 3502 if (total_packet_count == 0) 3503 return 0; 3504 return total_packet_count - 1; 3505 } 3506 3507 /* 3508 * Calculates Frame ID field of the isochronous TRB identifies the 3509 * target frame that the Interval associated with this Isochronous 3510 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3511 * 3512 * Returns actual frame id on success, negative value on error. 3513 */ 3514 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3515 struct urb *urb, int index) 3516 { 3517 int start_frame, ist, ret = 0; 3518 int start_frame_id, end_frame_id, current_frame_id; 3519 3520 if (urb->dev->speed == USB_SPEED_LOW || 3521 urb->dev->speed == USB_SPEED_FULL) 3522 start_frame = urb->start_frame + index * urb->interval; 3523 else 3524 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3525 3526 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3527 * 3528 * If bit [3] of IST is cleared to '0', software can add a TRB no 3529 * later than IST[2:0] Microframes before that TRB is scheduled to 3530 * be executed. 3531 * If bit [3] of IST is set to '1', software can add a TRB no later 3532 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3533 */ 3534 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3535 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3536 ist <<= 3; 3537 3538 /* Software shall not schedule an Isoch TD with a Frame ID value that 3539 * is less than the Start Frame ID or greater than the End Frame ID, 3540 * where: 3541 * 3542 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3543 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3544 * 3545 * Both the End Frame ID and Start Frame ID values are calculated 3546 * in microframes. When software determines the valid Frame ID value; 3547 * The End Frame ID value should be rounded down to the nearest Frame 3548 * boundary, and the Start Frame ID value should be rounded up to the 3549 * nearest Frame boundary. 3550 */ 3551 current_frame_id = readl(&xhci->run_regs->microframe_index); 3552 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3553 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3554 3555 start_frame &= 0x7ff; 3556 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3557 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3558 3559 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3560 __func__, index, readl(&xhci->run_regs->microframe_index), 3561 start_frame_id, end_frame_id, start_frame); 3562 3563 if (start_frame_id < end_frame_id) { 3564 if (start_frame > end_frame_id || 3565 start_frame < start_frame_id) 3566 ret = -EINVAL; 3567 } else if (start_frame_id > end_frame_id) { 3568 if ((start_frame > end_frame_id && 3569 start_frame < start_frame_id)) 3570 ret = -EINVAL; 3571 } else { 3572 ret = -EINVAL; 3573 } 3574 3575 if (index == 0) { 3576 if (ret == -EINVAL || start_frame == start_frame_id) { 3577 start_frame = start_frame_id + 1; 3578 if (urb->dev->speed == USB_SPEED_LOW || 3579 urb->dev->speed == USB_SPEED_FULL) 3580 urb->start_frame = start_frame; 3581 else 3582 urb->start_frame = start_frame << 3; 3583 ret = 0; 3584 } 3585 } 3586 3587 if (ret) { 3588 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3589 start_frame, current_frame_id, index, 3590 start_frame_id, end_frame_id); 3591 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3592 return ret; 3593 } 3594 3595 return start_frame; 3596 } 3597 3598 /* This is for isoc transfer */ 3599 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3600 struct urb *urb, int slot_id, unsigned int ep_index) 3601 { 3602 struct xhci_ring *ep_ring; 3603 struct urb_priv *urb_priv; 3604 struct xhci_td *td; 3605 int num_tds, trbs_per_td; 3606 struct xhci_generic_trb *start_trb; 3607 bool first_trb; 3608 int start_cycle; 3609 u32 field, length_field; 3610 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3611 u64 start_addr, addr; 3612 int i, j; 3613 bool more_trbs_coming; 3614 struct xhci_virt_ep *xep; 3615 int frame_id; 3616 3617 xep = &xhci->devs[slot_id]->eps[ep_index]; 3618 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3619 3620 num_tds = urb->number_of_packets; 3621 if (num_tds < 1) { 3622 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3623 return -EINVAL; 3624 } 3625 start_addr = (u64) urb->transfer_dma; 3626 start_trb = &ep_ring->enqueue->generic; 3627 start_cycle = ep_ring->cycle_state; 3628 3629 urb_priv = urb->hcpriv; 3630 /* Queue the TRBs for each TD, even if they are zero-length */ 3631 for (i = 0; i < num_tds; i++) { 3632 unsigned int total_pkt_count, max_pkt; 3633 unsigned int burst_count, last_burst_pkt_count; 3634 u32 sia_frame_id; 3635 3636 first_trb = true; 3637 running_total = 0; 3638 addr = start_addr + urb->iso_frame_desc[i].offset; 3639 td_len = urb->iso_frame_desc[i].length; 3640 td_remain_len = td_len; 3641 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3642 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3643 3644 /* A zero-length transfer still involves at least one packet. */ 3645 if (total_pkt_count == 0) 3646 total_pkt_count++; 3647 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3648 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3649 urb, total_pkt_count); 3650 3651 trbs_per_td = count_isoc_trbs_needed(urb, i); 3652 3653 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3654 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3655 if (ret < 0) { 3656 if (i == 0) 3657 return ret; 3658 goto cleanup; 3659 } 3660 td = &urb_priv->td[i]; 3661 3662 /* use SIA as default, if frame id is used overwrite it */ 3663 sia_frame_id = TRB_SIA; 3664 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3665 HCC_CFC(xhci->hcc_params)) { 3666 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3667 if (frame_id >= 0) 3668 sia_frame_id = TRB_FRAME_ID(frame_id); 3669 } 3670 /* 3671 * Set isoc specific data for the first TRB in a TD. 3672 * Prevent HW from getting the TRBs by keeping the cycle state 3673 * inverted in the first TDs isoc TRB. 3674 */ 3675 field = TRB_TYPE(TRB_ISOC) | 3676 TRB_TLBPC(last_burst_pkt_count) | 3677 sia_frame_id | 3678 (i ? ep_ring->cycle_state : !start_cycle); 3679 3680 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3681 if (!xep->use_extended_tbc) 3682 field |= TRB_TBC(burst_count); 3683 3684 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3685 for (j = 0; j < trbs_per_td; j++) { 3686 u32 remainder = 0; 3687 3688 /* only first TRB is isoc, overwrite otherwise */ 3689 if (!first_trb) 3690 field = TRB_TYPE(TRB_NORMAL) | 3691 ep_ring->cycle_state; 3692 3693 /* Only set interrupt on short packet for IN EPs */ 3694 if (usb_urb_dir_in(urb)) 3695 field |= TRB_ISP; 3696 3697 /* Set the chain bit for all except the last TRB */ 3698 if (j < trbs_per_td - 1) { 3699 more_trbs_coming = true; 3700 field |= TRB_CHAIN; 3701 } else { 3702 more_trbs_coming = false; 3703 td->last_trb = ep_ring->enqueue; 3704 field |= TRB_IOC; 3705 /* set BEI, except for the last TD */ 3706 if (xhci->hci_version >= 0x100 && 3707 !(xhci->quirks & XHCI_AVOID_BEI) && 3708 i < num_tds - 1) 3709 field |= TRB_BEI; 3710 } 3711 /* Calculate TRB length */ 3712 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3713 if (trb_buff_len > td_remain_len) 3714 trb_buff_len = td_remain_len; 3715 3716 /* Set the TRB length, TD size, & interrupter fields. */ 3717 remainder = xhci_td_remainder(xhci, running_total, 3718 trb_buff_len, td_len, 3719 urb, more_trbs_coming); 3720 3721 length_field = TRB_LEN(trb_buff_len) | 3722 TRB_INTR_TARGET(0); 3723 3724 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3725 if (first_trb && xep->use_extended_tbc) 3726 length_field |= TRB_TD_SIZE_TBC(burst_count); 3727 else 3728 length_field |= TRB_TD_SIZE(remainder); 3729 first_trb = false; 3730 3731 queue_trb(xhci, ep_ring, more_trbs_coming, 3732 lower_32_bits(addr), 3733 upper_32_bits(addr), 3734 length_field, 3735 field); 3736 running_total += trb_buff_len; 3737 3738 addr += trb_buff_len; 3739 td_remain_len -= trb_buff_len; 3740 } 3741 3742 /* Check TD length */ 3743 if (running_total != td_len) { 3744 xhci_err(xhci, "ISOC TD length unmatch\n"); 3745 ret = -EINVAL; 3746 goto cleanup; 3747 } 3748 } 3749 3750 /* store the next frame id */ 3751 if (HCC_CFC(xhci->hcc_params)) 3752 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3753 3754 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3755 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3756 usb_amd_quirk_pll_disable(); 3757 } 3758 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3759 3760 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3761 start_cycle, start_trb); 3762 return 0; 3763 cleanup: 3764 /* Clean up a partially enqueued isoc transfer. */ 3765 3766 for (i--; i >= 0; i--) 3767 list_del_init(&urb_priv->td[i].td_list); 3768 3769 /* Use the first TD as a temporary variable to turn the TDs we've queued 3770 * into No-ops with a software-owned cycle bit. That way the hardware 3771 * won't accidentally start executing bogus TDs when we partially 3772 * overwrite them. td->first_trb and td->start_seg are already set. 3773 */ 3774 urb_priv->td[0].last_trb = ep_ring->enqueue; 3775 /* Every TRB except the first & last will have its cycle bit flipped. */ 3776 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3777 3778 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3779 ep_ring->enqueue = urb_priv->td[0].first_trb; 3780 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3781 ep_ring->cycle_state = start_cycle; 3782 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3783 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3784 return ret; 3785 } 3786 3787 /* 3788 * Check transfer ring to guarantee there is enough room for the urb. 3789 * Update ISO URB start_frame and interval. 3790 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3791 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3792 * Contiguous Frame ID is not supported by HC. 3793 */ 3794 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3795 struct urb *urb, int slot_id, unsigned int ep_index) 3796 { 3797 struct xhci_virt_device *xdev; 3798 struct xhci_ring *ep_ring; 3799 struct xhci_ep_ctx *ep_ctx; 3800 int start_frame; 3801 int num_tds, num_trbs, i; 3802 int ret; 3803 struct xhci_virt_ep *xep; 3804 int ist; 3805 3806 xdev = xhci->devs[slot_id]; 3807 xep = &xhci->devs[slot_id]->eps[ep_index]; 3808 ep_ring = xdev->eps[ep_index].ring; 3809 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3810 3811 num_trbs = 0; 3812 num_tds = urb->number_of_packets; 3813 for (i = 0; i < num_tds; i++) 3814 num_trbs += count_isoc_trbs_needed(urb, i); 3815 3816 /* Check the ring to guarantee there is enough room for the whole urb. 3817 * Do not insert any td of the urb to the ring if the check failed. 3818 */ 3819 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3820 num_trbs, mem_flags); 3821 if (ret) 3822 return ret; 3823 3824 /* 3825 * Check interval value. This should be done before we start to 3826 * calculate the start frame value. 3827 */ 3828 check_interval(xhci, urb, ep_ctx); 3829 3830 /* Calculate the start frame and put it in urb->start_frame. */ 3831 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3832 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3833 urb->start_frame = xep->next_frame_id; 3834 goto skip_start_over; 3835 } 3836 } 3837 3838 start_frame = readl(&xhci->run_regs->microframe_index); 3839 start_frame &= 0x3fff; 3840 /* 3841 * Round up to the next frame and consider the time before trb really 3842 * gets scheduled by hardare. 3843 */ 3844 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3845 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3846 ist <<= 3; 3847 start_frame += ist + XHCI_CFC_DELAY; 3848 start_frame = roundup(start_frame, 8); 3849 3850 /* 3851 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3852 * is greate than 8 microframes. 3853 */ 3854 if (urb->dev->speed == USB_SPEED_LOW || 3855 urb->dev->speed == USB_SPEED_FULL) { 3856 start_frame = roundup(start_frame, urb->interval << 3); 3857 urb->start_frame = start_frame >> 3; 3858 } else { 3859 start_frame = roundup(start_frame, urb->interval); 3860 urb->start_frame = start_frame; 3861 } 3862 3863 skip_start_over: 3864 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3865 3866 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3867 } 3868 3869 /**** Command Ring Operations ****/ 3870 3871 /* Generic function for queueing a command TRB on the command ring. 3872 * Check to make sure there's room on the command ring for one command TRB. 3873 * Also check that there's room reserved for commands that must not fail. 3874 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3875 * then only check for the number of reserved spots. 3876 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3877 * because the command event handler may want to resubmit a failed command. 3878 */ 3879 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3880 u32 field1, u32 field2, 3881 u32 field3, u32 field4, bool command_must_succeed) 3882 { 3883 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3884 int ret; 3885 3886 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3887 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3888 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3889 return -ESHUTDOWN; 3890 } 3891 3892 if (!command_must_succeed) 3893 reserved_trbs++; 3894 3895 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3896 reserved_trbs, GFP_ATOMIC); 3897 if (ret < 0) { 3898 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3899 if (command_must_succeed) 3900 xhci_err(xhci, "ERR: Reserved TRB counting for " 3901 "unfailable commands failed.\n"); 3902 return ret; 3903 } 3904 3905 cmd->command_trb = xhci->cmd_ring->enqueue; 3906 3907 /* if there are no other commands queued we start the timeout timer */ 3908 if (list_empty(&xhci->cmd_list)) { 3909 xhci->current_cmd = cmd; 3910 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3911 } 3912 3913 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3914 3915 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3916 field4 | xhci->cmd_ring->cycle_state); 3917 return 0; 3918 } 3919 3920 /* Queue a slot enable or disable request on the command ring */ 3921 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3922 u32 trb_type, u32 slot_id) 3923 { 3924 return queue_command(xhci, cmd, 0, 0, 0, 3925 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3926 } 3927 3928 /* Queue an address device command TRB */ 3929 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3930 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3931 { 3932 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3933 upper_32_bits(in_ctx_ptr), 0, 3934 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3935 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3936 } 3937 3938 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3939 u32 field1, u32 field2, u32 field3, u32 field4) 3940 { 3941 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3942 } 3943 3944 /* Queue a reset device command TRB */ 3945 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3946 u32 slot_id) 3947 { 3948 return queue_command(xhci, cmd, 0, 0, 0, 3949 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3950 false); 3951 } 3952 3953 /* Queue a configure endpoint command TRB */ 3954 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3955 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3956 u32 slot_id, bool command_must_succeed) 3957 { 3958 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3959 upper_32_bits(in_ctx_ptr), 0, 3960 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3961 command_must_succeed); 3962 } 3963 3964 /* Queue an evaluate context command TRB */ 3965 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3966 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3967 { 3968 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3969 upper_32_bits(in_ctx_ptr), 0, 3970 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3971 command_must_succeed); 3972 } 3973 3974 /* 3975 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3976 * activity on an endpoint that is about to be suspended. 3977 */ 3978 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3979 int slot_id, unsigned int ep_index, int suspend) 3980 { 3981 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3982 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3983 u32 type = TRB_TYPE(TRB_STOP_RING); 3984 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3985 3986 return queue_command(xhci, cmd, 0, 0, 0, 3987 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3988 } 3989 3990 /* Set Transfer Ring Dequeue Pointer command */ 3991 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3992 unsigned int slot_id, unsigned int ep_index, 3993 struct xhci_dequeue_state *deq_state) 3994 { 3995 dma_addr_t addr; 3996 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3997 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3998 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 3999 u32 trb_sct = 0; 4000 u32 type = TRB_TYPE(TRB_SET_DEQ); 4001 struct xhci_virt_ep *ep; 4002 struct xhci_command *cmd; 4003 int ret; 4004 4005 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4006 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4007 deq_state->new_deq_seg, 4008 (unsigned long long)deq_state->new_deq_seg->dma, 4009 deq_state->new_deq_ptr, 4010 (unsigned long long)xhci_trb_virt_to_dma( 4011 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4012 deq_state->new_cycle_state); 4013 4014 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4015 deq_state->new_deq_ptr); 4016 if (addr == 0) { 4017 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4018 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4019 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4020 return; 4021 } 4022 ep = &xhci->devs[slot_id]->eps[ep_index]; 4023 if ((ep->ep_state & SET_DEQ_PENDING)) { 4024 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4025 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4026 return; 4027 } 4028 4029 /* This function gets called from contexts where it cannot sleep */ 4030 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4031 if (!cmd) 4032 return; 4033 4034 ep->queued_deq_seg = deq_state->new_deq_seg; 4035 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4036 if (deq_state->stream_id) 4037 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4038 ret = queue_command(xhci, cmd, 4039 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4040 upper_32_bits(addr), trb_stream_id, 4041 trb_slot_id | trb_ep_index | type, false); 4042 if (ret < 0) { 4043 xhci_free_command(xhci, cmd); 4044 return; 4045 } 4046 4047 /* Stop the TD queueing code from ringing the doorbell until 4048 * this command completes. The HC won't set the dequeue pointer 4049 * if the ring is running, and ringing the doorbell starts the 4050 * ring running. 4051 */ 4052 ep->ep_state |= SET_DEQ_PENDING; 4053 } 4054 4055 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4056 int slot_id, unsigned int ep_index, 4057 enum xhci_ep_reset_type reset_type) 4058 { 4059 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4060 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4061 u32 type = TRB_TYPE(TRB_RESET_EP); 4062 4063 if (reset_type == EP_SOFT_RESET) 4064 type |= TRB_TSP; 4065 4066 return queue_command(xhci, cmd, 0, 0, 0, 4067 trb_slot_id | trb_ep_index | type, false); 4068 } 4069