1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) 147 { 148 union xhci_trb *next = ++(ring->dequeue); 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 /* Update the dequeue pointer further if that was a link TRB or we're at 153 * the end of an event ring segment (which doesn't have link TRBS) 154 */ 155 while (last_trb(xhci, ring, ring->deq_seg, next)) { 156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { 157 ring->cycle_state = (ring->cycle_state ? 0 : 1); 158 if (!in_interrupt()) 159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 160 ring, 161 (unsigned int) ring->cycle_state); 162 } 163 ring->deq_seg = ring->deq_seg->next; 164 ring->dequeue = ring->deq_seg->trbs; 165 next = ring->dequeue; 166 } 167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 168 } 169 170 /* 171 * See Cycle bit rules. SW is the consumer for the event ring only. 172 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 173 * 174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 175 * chain bit is set), then set the chain bit in all the following link TRBs. 176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 177 * have their chain bit cleared (so that each Link TRB is a separate TD). 178 * 179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 180 * set, but other sections talk about dealing with the chain bit set. This was 181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 182 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 183 * 184 * @more_trbs_coming: Will you enqueue more TRBs before calling 185 * prepare_transfer()? 186 */ 187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 188 bool consumer, bool more_trbs_coming, bool isoc) 189 { 190 u32 chain; 191 union xhci_trb *next; 192 unsigned long long addr; 193 194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 195 next = ++(ring->enqueue); 196 197 ring->enq_updates++; 198 /* Update the dequeue pointer further if that was a link TRB or we're at 199 * the end of an event ring segment (which doesn't have link TRBS) 200 */ 201 while (last_trb(xhci, ring, ring->enq_seg, next)) { 202 if (!consumer) { 203 if (ring != xhci->event_ring) { 204 /* 205 * If the caller doesn't plan on enqueueing more 206 * TDs before ringing the doorbell, then we 207 * don't want to give the link TRB to the 208 * hardware just yet. We'll give the link TRB 209 * back in prepare_ring() just before we enqueue 210 * the TD at the top of the ring. 211 */ 212 if (!chain && !more_trbs_coming) 213 break; 214 215 /* If we're not dealing with 0.95 hardware or 216 * isoc rings on AMD 0.96 host, 217 * carry over the chain bit of the previous TRB 218 * (which may mean the chain bit is cleared). 219 */ 220 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)) 221 && !xhci_link_trb_quirk(xhci)) { 222 next->link.control &= 223 cpu_to_le32(~TRB_CHAIN); 224 next->link.control |= 225 cpu_to_le32(chain); 226 } 227 /* Give this link TRB to the hardware */ 228 wmb(); 229 next->link.control ^= cpu_to_le32(TRB_CYCLE); 230 } 231 /* Toggle the cycle bit after the last ring segment. */ 232 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 233 ring->cycle_state = (ring->cycle_state ? 0 : 1); 234 if (!in_interrupt()) 235 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 236 ring, 237 (unsigned int) ring->cycle_state); 238 } 239 } 240 ring->enq_seg = ring->enq_seg->next; 241 ring->enqueue = ring->enq_seg->trbs; 242 next = ring->enqueue; 243 } 244 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 245 } 246 247 /* 248 * Check to see if there's room to enqueue num_trbs on the ring. See rules 249 * above. 250 * FIXME: this would be simpler and faster if we just kept track of the number 251 * of free TRBs in a ring. 252 */ 253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 254 unsigned int num_trbs) 255 { 256 int i; 257 union xhci_trb *enq = ring->enqueue; 258 struct xhci_segment *enq_seg = ring->enq_seg; 259 struct xhci_segment *cur_seg; 260 unsigned int left_on_ring; 261 262 /* If we are currently pointing to a link TRB, advance the 263 * enqueue pointer before checking for space */ 264 while (last_trb(xhci, ring, enq_seg, enq)) { 265 enq_seg = enq_seg->next; 266 enq = enq_seg->trbs; 267 } 268 269 /* Check if ring is empty */ 270 if (enq == ring->dequeue) { 271 /* Can't use link trbs */ 272 left_on_ring = TRBS_PER_SEGMENT - 1; 273 for (cur_seg = enq_seg->next; cur_seg != enq_seg; 274 cur_seg = cur_seg->next) 275 left_on_ring += TRBS_PER_SEGMENT - 1; 276 277 /* Always need one TRB free in the ring. */ 278 left_on_ring -= 1; 279 if (num_trbs > left_on_ring) { 280 xhci_warn(xhci, "Not enough room on ring; " 281 "need %u TRBs, %u TRBs left\n", 282 num_trbs, left_on_ring); 283 return 0; 284 } 285 return 1; 286 } 287 /* Make sure there's an extra empty TRB available */ 288 for (i = 0; i <= num_trbs; ++i) { 289 if (enq == ring->dequeue) 290 return 0; 291 enq++; 292 while (last_trb(xhci, ring, enq_seg, enq)) { 293 enq_seg = enq_seg->next; 294 enq = enq_seg->trbs; 295 } 296 } 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 xhci_dbg(xhci, "// Ding dong!\n"); 304 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 305 /* Flush PCI posted writes */ 306 xhci_readl(xhci, &xhci->dba->doorbell[0]); 307 } 308 309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 310 unsigned int slot_id, 311 unsigned int ep_index, 312 unsigned int stream_id) 313 { 314 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 315 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 316 unsigned int ep_state = ep->ep_state; 317 318 /* Don't ring the doorbell for this endpoint if there are pending 319 * cancellations because we don't want to interrupt processing. 320 * We don't want to restart any stream rings if there's a set dequeue 321 * pointer command pending because the device can choose to start any 322 * stream once the endpoint is on the HW schedule. 323 * FIXME - check all the stream rings for pending cancellations. 324 */ 325 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 326 (ep_state & EP_HALTED)) 327 return; 328 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 329 /* The CPU has better things to do at this point than wait for a 330 * write-posting flush. It'll get there soon enough. 331 */ 332 } 333 334 /* Ring the doorbell for any rings with pending URBs */ 335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 336 unsigned int slot_id, 337 unsigned int ep_index) 338 { 339 unsigned int stream_id; 340 struct xhci_virt_ep *ep; 341 342 ep = &xhci->devs[slot_id]->eps[ep_index]; 343 344 /* A ring has pending URBs if its TD list is not empty */ 345 if (!(ep->ep_state & EP_HAS_STREAMS)) { 346 if (!(list_empty(&ep->ring->td_list))) 347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 348 return; 349 } 350 351 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 352 stream_id++) { 353 struct xhci_stream_info *stream_info = ep->stream_info; 354 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 356 stream_id); 357 } 358 } 359 360 /* 361 * Find the segment that trb is in. Start searching in start_seg. 362 * If we must move past a segment that has a link TRB with a toggle cycle state 363 * bit set, then we will toggle the value pointed at by cycle_state. 364 */ 365 static struct xhci_segment *find_trb_seg( 366 struct xhci_segment *start_seg, 367 union xhci_trb *trb, int *cycle_state) 368 { 369 struct xhci_segment *cur_seg = start_seg; 370 struct xhci_generic_trb *generic_trb; 371 372 while (cur_seg->trbs > trb || 373 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 374 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 375 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 376 *cycle_state ^= 0x1; 377 cur_seg = cur_seg->next; 378 if (cur_seg == start_seg) 379 /* Looped over the entire list. Oops! */ 380 return NULL; 381 } 382 return cur_seg; 383 } 384 385 386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 387 unsigned int slot_id, unsigned int ep_index, 388 unsigned int stream_id) 389 { 390 struct xhci_virt_ep *ep; 391 392 ep = &xhci->devs[slot_id]->eps[ep_index]; 393 /* Common case: no streams */ 394 if (!(ep->ep_state & EP_HAS_STREAMS)) 395 return ep->ring; 396 397 if (stream_id == 0) { 398 xhci_warn(xhci, 399 "WARN: Slot ID %u, ep index %u has streams, " 400 "but URB has no stream ID.\n", 401 slot_id, ep_index); 402 return NULL; 403 } 404 405 if (stream_id < ep->stream_info->num_streams) 406 return ep->stream_info->stream_rings[stream_id]; 407 408 xhci_warn(xhci, 409 "WARN: Slot ID %u, ep index %u has " 410 "stream IDs 1 to %u allocated, " 411 "but stream ID %u is requested.\n", 412 slot_id, ep_index, 413 ep->stream_info->num_streams - 1, 414 stream_id); 415 return NULL; 416 } 417 418 /* Get the right ring for the given URB. 419 * If the endpoint supports streams, boundary check the URB's stream ID. 420 * If the endpoint doesn't support streams, return the singular endpoint ring. 421 */ 422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 423 struct urb *urb) 424 { 425 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 426 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 427 } 428 429 /* 430 * Move the xHC's endpoint ring dequeue pointer past cur_td. 431 * Record the new state of the xHC's endpoint ring dequeue segment, 432 * dequeue pointer, and new consumer cycle state in state. 433 * Update our internal representation of the ring's dequeue pointer. 434 * 435 * We do this in three jumps: 436 * - First we update our new ring state to be the same as when the xHC stopped. 437 * - Then we traverse the ring to find the segment that contains 438 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 439 * any link TRBs with the toggle cycle bit set. 440 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 441 * if we've moved it past a link TRB with the toggle cycle bit set. 442 * 443 * Some of the uses of xhci_generic_trb are grotty, but if they're done 444 * with correct __le32 accesses they should work fine. Only users of this are 445 * in here. 446 */ 447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 448 unsigned int slot_id, unsigned int ep_index, 449 unsigned int stream_id, struct xhci_td *cur_td, 450 struct xhci_dequeue_state *state) 451 { 452 struct xhci_virt_device *dev = xhci->devs[slot_id]; 453 struct xhci_ring *ep_ring; 454 struct xhci_generic_trb *trb; 455 struct xhci_ep_ctx *ep_ctx; 456 dma_addr_t addr; 457 458 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 459 ep_index, stream_id); 460 if (!ep_ring) { 461 xhci_warn(xhci, "WARN can't find new dequeue state " 462 "for invalid stream ID %u.\n", 463 stream_id); 464 return; 465 } 466 state->new_cycle_state = 0; 467 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 468 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 469 dev->eps[ep_index].stopped_trb, 470 &state->new_cycle_state); 471 if (!state->new_deq_seg) { 472 WARN_ON(1); 473 return; 474 } 475 476 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 477 xhci_dbg(xhci, "Finding endpoint context\n"); 478 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 479 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 480 481 state->new_deq_ptr = cur_td->last_trb; 482 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 483 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 484 state->new_deq_ptr, 485 &state->new_cycle_state); 486 if (!state->new_deq_seg) { 487 WARN_ON(1); 488 return; 489 } 490 491 trb = &state->new_deq_ptr->generic; 492 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 493 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 494 state->new_cycle_state ^= 0x1; 495 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 496 497 /* 498 * If there is only one segment in a ring, find_trb_seg()'s while loop 499 * will not run, and it will return before it has a chance to see if it 500 * needs to toggle the cycle bit. It can't tell if the stalled transfer 501 * ended just before the link TRB on a one-segment ring, or if the TD 502 * wrapped around the top of the ring, because it doesn't have the TD in 503 * question. Look for the one-segment case where stalled TRB's address 504 * is greater than the new dequeue pointer address. 505 */ 506 if (ep_ring->first_seg == ep_ring->first_seg->next && 507 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 508 state->new_cycle_state ^= 0x1; 509 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 510 511 /* Don't update the ring cycle state for the producer (us). */ 512 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 513 state->new_deq_seg); 514 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 515 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 516 (unsigned long long) addr); 517 } 518 519 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 520 * (The last TRB actually points to the ring enqueue pointer, which is not part 521 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 522 */ 523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 524 struct xhci_td *cur_td, bool flip_cycle) 525 { 526 struct xhci_segment *cur_seg; 527 union xhci_trb *cur_trb; 528 529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 530 true; 531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 532 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 533 /* Unchain any chained Link TRBs, but 534 * leave the pointers intact. 535 */ 536 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 537 /* Flip the cycle bit (link TRBs can't be the first 538 * or last TRB). 539 */ 540 if (flip_cycle) 541 cur_trb->generic.field[3] ^= 542 cpu_to_le32(TRB_CYCLE); 543 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 544 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 545 "in seg %p (0x%llx dma)\n", 546 cur_trb, 547 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 548 cur_seg, 549 (unsigned long long)cur_seg->dma); 550 } else { 551 cur_trb->generic.field[0] = 0; 552 cur_trb->generic.field[1] = 0; 553 cur_trb->generic.field[2] = 0; 554 /* Preserve only the cycle bit of this TRB */ 555 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 556 /* Flip the cycle bit except on the first or last TRB */ 557 if (flip_cycle && cur_trb != cur_td->first_trb && 558 cur_trb != cur_td->last_trb) 559 cur_trb->generic.field[3] ^= 560 cpu_to_le32(TRB_CYCLE); 561 cur_trb->generic.field[3] |= cpu_to_le32( 562 TRB_TYPE(TRB_TR_NOOP)); 563 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " 564 "in seg %p (0x%llx dma)\n", 565 cur_trb, 566 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 567 cur_seg, 568 (unsigned long long)cur_seg->dma); 569 } 570 if (cur_trb == cur_td->last_trb) 571 break; 572 } 573 } 574 575 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 576 unsigned int ep_index, unsigned int stream_id, 577 struct xhci_segment *deq_seg, 578 union xhci_trb *deq_ptr, u32 cycle_state); 579 580 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 581 unsigned int slot_id, unsigned int ep_index, 582 unsigned int stream_id, 583 struct xhci_dequeue_state *deq_state) 584 { 585 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 586 587 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 588 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 589 deq_state->new_deq_seg, 590 (unsigned long long)deq_state->new_deq_seg->dma, 591 deq_state->new_deq_ptr, 592 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 593 deq_state->new_cycle_state); 594 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 595 deq_state->new_deq_seg, 596 deq_state->new_deq_ptr, 597 (u32) deq_state->new_cycle_state); 598 /* Stop the TD queueing code from ringing the doorbell until 599 * this command completes. The HC won't set the dequeue pointer 600 * if the ring is running, and ringing the doorbell starts the 601 * ring running. 602 */ 603 ep->ep_state |= SET_DEQ_PENDING; 604 } 605 606 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 607 struct xhci_virt_ep *ep) 608 { 609 ep->ep_state &= ~EP_HALT_PENDING; 610 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 611 * timer is running on another CPU, we don't decrement stop_cmds_pending 612 * (since we didn't successfully stop the watchdog timer). 613 */ 614 if (del_timer(&ep->stop_cmd_timer)) 615 ep->stop_cmds_pending--; 616 } 617 618 /* Must be called with xhci->lock held in interrupt context */ 619 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 620 struct xhci_td *cur_td, int status, char *adjective) 621 { 622 struct usb_hcd *hcd; 623 struct urb *urb; 624 struct urb_priv *urb_priv; 625 626 urb = cur_td->urb; 627 urb_priv = urb->hcpriv; 628 urb_priv->td_cnt++; 629 hcd = bus_to_hcd(urb->dev->bus); 630 631 /* Only giveback urb when this is the last td in urb */ 632 if (urb_priv->td_cnt == urb_priv->length) { 633 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 634 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 635 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 636 if (xhci->quirks & XHCI_AMD_PLL_FIX) 637 usb_amd_quirk_pll_enable(); 638 } 639 } 640 usb_hcd_unlink_urb_from_ep(hcd, urb); 641 642 spin_unlock(&xhci->lock); 643 usb_hcd_giveback_urb(hcd, urb, status); 644 xhci_urb_free_priv(xhci, urb_priv); 645 spin_lock(&xhci->lock); 646 } 647 } 648 649 /* 650 * When we get a command completion for a Stop Endpoint Command, we need to 651 * unlink any cancelled TDs from the ring. There are two ways to do that: 652 * 653 * 1. If the HW was in the middle of processing the TD that needs to be 654 * cancelled, then we must move the ring's dequeue pointer past the last TRB 655 * in the TD with a Set Dequeue Pointer Command. 656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 657 * bit cleared) so that the HW will skip over them. 658 */ 659 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 660 union xhci_trb *trb, struct xhci_event_cmd *event) 661 { 662 unsigned int slot_id; 663 unsigned int ep_index; 664 struct xhci_virt_device *virt_dev; 665 struct xhci_ring *ep_ring; 666 struct xhci_virt_ep *ep; 667 struct list_head *entry; 668 struct xhci_td *cur_td = NULL; 669 struct xhci_td *last_unlinked_td; 670 671 struct xhci_dequeue_state deq_state; 672 673 if (unlikely(TRB_TO_SUSPEND_PORT( 674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 675 slot_id = TRB_TO_SLOT_ID( 676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 677 virt_dev = xhci->devs[slot_id]; 678 if (virt_dev) 679 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 680 event); 681 else 682 xhci_warn(xhci, "Stop endpoint command " 683 "completion for disabled slot %u\n", 684 slot_id); 685 return; 686 } 687 688 memset(&deq_state, 0, sizeof(deq_state)); 689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 691 ep = &xhci->devs[slot_id]->eps[ep_index]; 692 693 if (list_empty(&ep->cancelled_td_list)) { 694 xhci_stop_watchdog_timer_in_irq(xhci, ep); 695 ep->stopped_td = NULL; 696 ep->stopped_trb = NULL; 697 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 698 return; 699 } 700 701 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 702 * We have the xHCI lock, so nothing can modify this list until we drop 703 * it. We're also in the event handler, so we can't get re-interrupted 704 * if another Stop Endpoint command completes 705 */ 706 list_for_each(entry, &ep->cancelled_td_list) { 707 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 708 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", 709 cur_td->first_trb, 710 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); 711 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 712 if (!ep_ring) { 713 /* This shouldn't happen unless a driver is mucking 714 * with the stream ID after submission. This will 715 * leave the TD on the hardware ring, and the hardware 716 * will try to execute it, and may access a buffer 717 * that has already been freed. In the best case, the 718 * hardware will execute it, and the event handler will 719 * ignore the completion event for that TD, since it was 720 * removed from the td_list for that endpoint. In 721 * short, don't muck with the stream ID after 722 * submission. 723 */ 724 xhci_warn(xhci, "WARN Cancelled URB %p " 725 "has invalid stream ID %u.\n", 726 cur_td->urb, 727 cur_td->urb->stream_id); 728 goto remove_finished_td; 729 } 730 /* 731 * If we stopped on the TD we need to cancel, then we have to 732 * move the xHC endpoint ring dequeue pointer past this TD. 733 */ 734 if (cur_td == ep->stopped_td) 735 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 736 cur_td->urb->stream_id, 737 cur_td, &deq_state); 738 else 739 td_to_noop(xhci, ep_ring, cur_td, false); 740 remove_finished_td: 741 /* 742 * The event handler won't see a completion for this TD anymore, 743 * so remove it from the endpoint ring's TD list. Keep it in 744 * the cancelled TD list for URB completion later. 745 */ 746 list_del_init(&cur_td->td_list); 747 } 748 last_unlinked_td = cur_td; 749 xhci_stop_watchdog_timer_in_irq(xhci, ep); 750 751 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 752 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 753 xhci_queue_new_dequeue_state(xhci, 754 slot_id, ep_index, 755 ep->stopped_td->urb->stream_id, 756 &deq_state); 757 xhci_ring_cmd_db(xhci); 758 } else { 759 /* Otherwise ring the doorbell(s) to restart queued transfers */ 760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 761 } 762 ep->stopped_td = NULL; 763 ep->stopped_trb = NULL; 764 765 /* 766 * Drop the lock and complete the URBs in the cancelled TD list. 767 * New TDs to be cancelled might be added to the end of the list before 768 * we can complete all the URBs for the TDs we already unlinked. 769 * So stop when we've completed the URB for the last TD we unlinked. 770 */ 771 do { 772 cur_td = list_entry(ep->cancelled_td_list.next, 773 struct xhci_td, cancelled_td_list); 774 list_del_init(&cur_td->cancelled_td_list); 775 776 /* Clean up the cancelled URB */ 777 /* Doesn't matter what we pass for status, since the core will 778 * just overwrite it (because the URB has been unlinked). 779 */ 780 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 781 782 /* Stop processing the cancelled list if the watchdog timer is 783 * running. 784 */ 785 if (xhci->xhc_state & XHCI_STATE_DYING) 786 return; 787 } while (cur_td != last_unlinked_td); 788 789 /* Return to the event handler with xhci->lock re-acquired */ 790 } 791 792 /* Watchdog timer function for when a stop endpoint command fails to complete. 793 * In this case, we assume the host controller is broken or dying or dead. The 794 * host may still be completing some other events, so we have to be careful to 795 * let the event ring handler and the URB dequeueing/enqueueing functions know 796 * through xhci->state. 797 * 798 * The timer may also fire if the host takes a very long time to respond to the 799 * command, and the stop endpoint command completion handler cannot delete the 800 * timer before the timer function is called. Another endpoint cancellation may 801 * sneak in before the timer function can grab the lock, and that may queue 802 * another stop endpoint command and add the timer back. So we cannot use a 803 * simple flag to say whether there is a pending stop endpoint command for a 804 * particular endpoint. 805 * 806 * Instead we use a combination of that flag and a counter for the number of 807 * pending stop endpoint commands. If the timer is the tail end of the last 808 * stop endpoint command, and the endpoint's command is still pending, we assume 809 * the host is dying. 810 */ 811 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 812 { 813 struct xhci_hcd *xhci; 814 struct xhci_virt_ep *ep; 815 struct xhci_virt_ep *temp_ep; 816 struct xhci_ring *ring; 817 struct xhci_td *cur_td; 818 int ret, i, j; 819 820 ep = (struct xhci_virt_ep *) arg; 821 xhci = ep->xhci; 822 823 spin_lock(&xhci->lock); 824 825 ep->stop_cmds_pending--; 826 if (xhci->xhc_state & XHCI_STATE_DYING) { 827 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 828 "xHCI as DYING, exiting.\n"); 829 spin_unlock(&xhci->lock); 830 return; 831 } 832 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 833 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 834 "exiting.\n"); 835 spin_unlock(&xhci->lock); 836 return; 837 } 838 839 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 840 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 841 /* Oops, HC is dead or dying or at least not responding to the stop 842 * endpoint command. 843 */ 844 xhci->xhc_state |= XHCI_STATE_DYING; 845 /* Disable interrupts from the host controller and start halting it */ 846 xhci_quiesce(xhci); 847 spin_unlock(&xhci->lock); 848 849 ret = xhci_halt(xhci); 850 851 spin_lock(&xhci->lock); 852 if (ret < 0) { 853 /* This is bad; the host is not responding to commands and it's 854 * not allowing itself to be halted. At least interrupts are 855 * disabled. If we call usb_hc_died(), it will attempt to 856 * disconnect all device drivers under this host. Those 857 * disconnect() methods will wait for all URBs to be unlinked, 858 * so we must complete them. 859 */ 860 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 861 xhci_warn(xhci, "Completing active URBs anyway.\n"); 862 /* We could turn all TDs on the rings to no-ops. This won't 863 * help if the host has cached part of the ring, and is slow if 864 * we want to preserve the cycle bit. Skip it and hope the host 865 * doesn't touch the memory. 866 */ 867 } 868 for (i = 0; i < MAX_HC_SLOTS; i++) { 869 if (!xhci->devs[i]) 870 continue; 871 for (j = 0; j < 31; j++) { 872 temp_ep = &xhci->devs[i]->eps[j]; 873 ring = temp_ep->ring; 874 if (!ring) 875 continue; 876 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 877 "ep index %u\n", i, j); 878 while (!list_empty(&ring->td_list)) { 879 cur_td = list_first_entry(&ring->td_list, 880 struct xhci_td, 881 td_list); 882 list_del_init(&cur_td->td_list); 883 if (!list_empty(&cur_td->cancelled_td_list)) 884 list_del_init(&cur_td->cancelled_td_list); 885 xhci_giveback_urb_in_irq(xhci, cur_td, 886 -ESHUTDOWN, "killed"); 887 } 888 while (!list_empty(&temp_ep->cancelled_td_list)) { 889 cur_td = list_first_entry( 890 &temp_ep->cancelled_td_list, 891 struct xhci_td, 892 cancelled_td_list); 893 list_del_init(&cur_td->cancelled_td_list); 894 xhci_giveback_urb_in_irq(xhci, cur_td, 895 -ESHUTDOWN, "killed"); 896 } 897 } 898 } 899 spin_unlock(&xhci->lock); 900 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 901 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 902 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 903 } 904 905 /* 906 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 907 * we need to clear the set deq pending flag in the endpoint ring state, so that 908 * the TD queueing code can ring the doorbell again. We also need to ring the 909 * endpoint doorbell to restart the ring, but only if there aren't more 910 * cancellations pending. 911 */ 912 static void handle_set_deq_completion(struct xhci_hcd *xhci, 913 struct xhci_event_cmd *event, 914 union xhci_trb *trb) 915 { 916 unsigned int slot_id; 917 unsigned int ep_index; 918 unsigned int stream_id; 919 struct xhci_ring *ep_ring; 920 struct xhci_virt_device *dev; 921 struct xhci_ep_ctx *ep_ctx; 922 struct xhci_slot_ctx *slot_ctx; 923 924 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 925 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 926 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 927 dev = xhci->devs[slot_id]; 928 929 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 930 if (!ep_ring) { 931 xhci_warn(xhci, "WARN Set TR deq ptr command for " 932 "freed stream ID %u\n", 933 stream_id); 934 /* XXX: Harmless??? */ 935 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 936 return; 937 } 938 939 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 940 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 941 942 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 943 unsigned int ep_state; 944 unsigned int slot_state; 945 946 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 947 case COMP_TRB_ERR: 948 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 949 "of stream ID configuration\n"); 950 break; 951 case COMP_CTX_STATE: 952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 953 "to incorrect slot or ep state.\n"); 954 ep_state = le32_to_cpu(ep_ctx->ep_info); 955 ep_state &= EP_STATE_MASK; 956 slot_state = le32_to_cpu(slot_ctx->dev_state); 957 slot_state = GET_SLOT_STATE(slot_state); 958 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 959 slot_state, ep_state); 960 break; 961 case COMP_EBADSLT: 962 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 963 "slot %u was not enabled.\n", slot_id); 964 break; 965 default: 966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 967 "completion code of %u.\n", 968 GET_COMP_CODE(le32_to_cpu(event->status))); 969 break; 970 } 971 /* OK what do we do now? The endpoint state is hosed, and we 972 * should never get to this point if the synchronization between 973 * queueing, and endpoint state are correct. This might happen 974 * if the device gets disconnected after we've finished 975 * cancelling URBs, which might not be an error... 976 */ 977 } else { 978 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 979 le64_to_cpu(ep_ctx->deq)); 980 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 981 dev->eps[ep_index].queued_deq_ptr) == 982 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 983 /* Update the ring's dequeue segment and dequeue pointer 984 * to reflect the new position. 985 */ 986 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; 987 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; 988 } else { 989 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 990 "Ptr command & xHCI internal state.\n"); 991 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 992 dev->eps[ep_index].queued_deq_seg, 993 dev->eps[ep_index].queued_deq_ptr); 994 } 995 } 996 997 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 998 dev->eps[ep_index].queued_deq_seg = NULL; 999 dev->eps[ep_index].queued_deq_ptr = NULL; 1000 /* Restart any rings with pending URBs */ 1001 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1002 } 1003 1004 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1005 struct xhci_event_cmd *event, 1006 union xhci_trb *trb) 1007 { 1008 int slot_id; 1009 unsigned int ep_index; 1010 1011 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1012 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1013 /* This command will only fail if the endpoint wasn't halted, 1014 * but we don't care. 1015 */ 1016 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1017 GET_COMP_CODE(le32_to_cpu(event->status))); 1018 1019 /* HW with the reset endpoint quirk needs to have a configure endpoint 1020 * command complete before the endpoint can be used. Queue that here 1021 * because the HW can't handle two commands being queued in a row. 1022 */ 1023 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1024 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1025 xhci_queue_configure_endpoint(xhci, 1026 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1027 false); 1028 xhci_ring_cmd_db(xhci); 1029 } else { 1030 /* Clear our internal halted state and restart the ring(s) */ 1031 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1032 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1033 } 1034 } 1035 1036 /* Check to see if a command in the device's command queue matches this one. 1037 * Signal the completion or free the command, and return 1. Return 0 if the 1038 * completed command isn't at the head of the command list. 1039 */ 1040 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1041 struct xhci_virt_device *virt_dev, 1042 struct xhci_event_cmd *event) 1043 { 1044 struct xhci_command *command; 1045 1046 if (list_empty(&virt_dev->cmd_list)) 1047 return 0; 1048 1049 command = list_entry(virt_dev->cmd_list.next, 1050 struct xhci_command, cmd_list); 1051 if (xhci->cmd_ring->dequeue != command->command_trb) 1052 return 0; 1053 1054 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1055 list_del(&command->cmd_list); 1056 if (command->completion) 1057 complete(command->completion); 1058 else 1059 xhci_free_command(xhci, command); 1060 return 1; 1061 } 1062 1063 static void handle_cmd_completion(struct xhci_hcd *xhci, 1064 struct xhci_event_cmd *event) 1065 { 1066 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1067 u64 cmd_dma; 1068 dma_addr_t cmd_dequeue_dma; 1069 struct xhci_input_control_ctx *ctrl_ctx; 1070 struct xhci_virt_device *virt_dev; 1071 unsigned int ep_index; 1072 struct xhci_ring *ep_ring; 1073 unsigned int ep_state; 1074 1075 cmd_dma = le64_to_cpu(event->cmd_trb); 1076 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1077 xhci->cmd_ring->dequeue); 1078 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1079 if (cmd_dequeue_dma == 0) { 1080 xhci->error_bitmask |= 1 << 4; 1081 return; 1082 } 1083 /* Does the DMA address match our internal dequeue pointer address? */ 1084 if (cmd_dma != (u64) cmd_dequeue_dma) { 1085 xhci->error_bitmask |= 1 << 5; 1086 return; 1087 } 1088 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1089 & TRB_TYPE_BITMASK) { 1090 case TRB_TYPE(TRB_ENABLE_SLOT): 1091 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1092 xhci->slot_id = slot_id; 1093 else 1094 xhci->slot_id = 0; 1095 complete(&xhci->addr_dev); 1096 break; 1097 case TRB_TYPE(TRB_DISABLE_SLOT): 1098 if (xhci->devs[slot_id]) { 1099 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1100 /* Delete default control endpoint resources */ 1101 xhci_free_device_endpoint_resources(xhci, 1102 xhci->devs[slot_id], true); 1103 xhci_free_virt_device(xhci, slot_id); 1104 } 1105 break; 1106 case TRB_TYPE(TRB_CONFIG_EP): 1107 virt_dev = xhci->devs[slot_id]; 1108 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1109 break; 1110 /* 1111 * Configure endpoint commands can come from the USB core 1112 * configuration or alt setting changes, or because the HW 1113 * needed an extra configure endpoint command after a reset 1114 * endpoint command or streams were being configured. 1115 * If the command was for a halted endpoint, the xHCI driver 1116 * is not waiting on the configure endpoint command. 1117 */ 1118 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1119 virt_dev->in_ctx); 1120 /* Input ctx add_flags are the endpoint index plus one */ 1121 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1122 /* A usb_set_interface() call directly after clearing a halted 1123 * condition may race on this quirky hardware. Not worth 1124 * worrying about, since this is prototype hardware. Not sure 1125 * if this will work for streams, but streams support was 1126 * untested on this prototype. 1127 */ 1128 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1129 ep_index != (unsigned int) -1 && 1130 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1131 le32_to_cpu(ctrl_ctx->drop_flags)) { 1132 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1133 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1134 if (!(ep_state & EP_HALTED)) 1135 goto bandwidth_change; 1136 xhci_dbg(xhci, "Completed config ep cmd - " 1137 "last ep index = %d, state = %d\n", 1138 ep_index, ep_state); 1139 /* Clear internal halted state and restart ring(s) */ 1140 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1141 ~EP_HALTED; 1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1143 break; 1144 } 1145 bandwidth_change: 1146 xhci_dbg(xhci, "Completed config ep cmd\n"); 1147 xhci->devs[slot_id]->cmd_status = 1148 GET_COMP_CODE(le32_to_cpu(event->status)); 1149 complete(&xhci->devs[slot_id]->cmd_completion); 1150 break; 1151 case TRB_TYPE(TRB_EVAL_CONTEXT): 1152 virt_dev = xhci->devs[slot_id]; 1153 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1154 break; 1155 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1156 complete(&xhci->devs[slot_id]->cmd_completion); 1157 break; 1158 case TRB_TYPE(TRB_ADDR_DEV): 1159 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1160 complete(&xhci->addr_dev); 1161 break; 1162 case TRB_TYPE(TRB_STOP_RING): 1163 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1164 break; 1165 case TRB_TYPE(TRB_SET_DEQ): 1166 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1167 break; 1168 case TRB_TYPE(TRB_CMD_NOOP): 1169 break; 1170 case TRB_TYPE(TRB_RESET_EP): 1171 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1172 break; 1173 case TRB_TYPE(TRB_RESET_DEV): 1174 xhci_dbg(xhci, "Completed reset device command.\n"); 1175 slot_id = TRB_TO_SLOT_ID( 1176 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1177 virt_dev = xhci->devs[slot_id]; 1178 if (virt_dev) 1179 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1180 else 1181 xhci_warn(xhci, "Reset device command completion " 1182 "for disabled slot %u\n", slot_id); 1183 break; 1184 case TRB_TYPE(TRB_NEC_GET_FW): 1185 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1186 xhci->error_bitmask |= 1 << 6; 1187 break; 1188 } 1189 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1190 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1191 NEC_FW_MINOR(le32_to_cpu(event->status))); 1192 break; 1193 default: 1194 /* Skip over unknown commands on the event ring */ 1195 xhci->error_bitmask |= 1 << 6; 1196 break; 1197 } 1198 inc_deq(xhci, xhci->cmd_ring, false); 1199 } 1200 1201 static void handle_vendor_event(struct xhci_hcd *xhci, 1202 union xhci_trb *event) 1203 { 1204 u32 trb_type; 1205 1206 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1207 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1208 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1209 handle_cmd_completion(xhci, &event->event_cmd); 1210 } 1211 1212 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1213 * port registers -- USB 3.0 and USB 2.0). 1214 * 1215 * Returns a zero-based port number, which is suitable for indexing into each of 1216 * the split roothubs' port arrays and bus state arrays. 1217 */ 1218 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1219 struct xhci_hcd *xhci, u32 port_id) 1220 { 1221 unsigned int i; 1222 unsigned int num_similar_speed_ports = 0; 1223 1224 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1225 * and usb2_ports are 0-based indexes. Count the number of similar 1226 * speed ports, up to 1 port before this port. 1227 */ 1228 for (i = 0; i < (port_id - 1); i++) { 1229 u8 port_speed = xhci->port_array[i]; 1230 1231 /* 1232 * Skip ports that don't have known speeds, or have duplicate 1233 * Extended Capabilities port speed entries. 1234 */ 1235 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1236 continue; 1237 1238 /* 1239 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1240 * 1.1 ports are under the USB 2.0 hub. If the port speed 1241 * matches the device speed, it's a similar speed port. 1242 */ 1243 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1244 num_similar_speed_ports++; 1245 } 1246 return num_similar_speed_ports; 1247 } 1248 1249 static void handle_port_status(struct xhci_hcd *xhci, 1250 union xhci_trb *event) 1251 { 1252 struct usb_hcd *hcd; 1253 u32 port_id; 1254 u32 temp, temp1; 1255 int max_ports; 1256 int slot_id; 1257 unsigned int faked_port_index; 1258 u8 major_revision; 1259 struct xhci_bus_state *bus_state; 1260 __le32 __iomem **port_array; 1261 bool bogus_port_status = false; 1262 1263 /* Port status change events always have a successful completion code */ 1264 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1265 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1266 xhci->error_bitmask |= 1 << 8; 1267 } 1268 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1269 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1270 1271 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1272 if ((port_id <= 0) || (port_id > max_ports)) { 1273 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1274 bogus_port_status = true; 1275 goto cleanup; 1276 } 1277 1278 /* Figure out which usb_hcd this port is attached to: 1279 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1280 */ 1281 major_revision = xhci->port_array[port_id - 1]; 1282 if (major_revision == 0) { 1283 xhci_warn(xhci, "Event for port %u not in " 1284 "Extended Capabilities, ignoring.\n", 1285 port_id); 1286 bogus_port_status = true; 1287 goto cleanup; 1288 } 1289 if (major_revision == DUPLICATE_ENTRY) { 1290 xhci_warn(xhci, "Event for port %u duplicated in" 1291 "Extended Capabilities, ignoring.\n", 1292 port_id); 1293 bogus_port_status = true; 1294 goto cleanup; 1295 } 1296 1297 /* 1298 * Hardware port IDs reported by a Port Status Change Event include USB 1299 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1300 * resume event, but we first need to translate the hardware port ID 1301 * into the index into the ports on the correct split roothub, and the 1302 * correct bus_state structure. 1303 */ 1304 /* Find the right roothub. */ 1305 hcd = xhci_to_hcd(xhci); 1306 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1307 hcd = xhci->shared_hcd; 1308 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1309 if (hcd->speed == HCD_USB3) 1310 port_array = xhci->usb3_ports; 1311 else 1312 port_array = xhci->usb2_ports; 1313 /* Find the faked port hub number */ 1314 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1315 port_id); 1316 1317 temp = xhci_readl(xhci, port_array[faked_port_index]); 1318 if (hcd->state == HC_STATE_SUSPENDED) { 1319 xhci_dbg(xhci, "resume root hub\n"); 1320 usb_hcd_resume_root_hub(hcd); 1321 } 1322 1323 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1324 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1325 1326 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1327 if (!(temp1 & CMD_RUN)) { 1328 xhci_warn(xhci, "xHC is not running.\n"); 1329 goto cleanup; 1330 } 1331 1332 if (DEV_SUPERSPEED(temp)) { 1333 xhci_dbg(xhci, "resume SS port %d\n", port_id); 1334 xhci_set_link_state(xhci, port_array, faked_port_index, 1335 XDEV_U0); 1336 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1337 faked_port_index); 1338 if (!slot_id) { 1339 xhci_dbg(xhci, "slot_id is zero\n"); 1340 goto cleanup; 1341 } 1342 xhci_ring_device(xhci, slot_id); 1343 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1344 /* Clear PORT_PLC */ 1345 xhci_test_and_clear_bit(xhci, port_array, 1346 faked_port_index, PORT_PLC); 1347 } else { 1348 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1349 bus_state->resume_done[faked_port_index] = jiffies + 1350 msecs_to_jiffies(20); 1351 mod_timer(&hcd->rh_timer, 1352 bus_state->resume_done[faked_port_index]); 1353 /* Do the rest in GetPortStatus */ 1354 } 1355 } 1356 1357 if (hcd->speed != HCD_USB3) 1358 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1359 PORT_PLC); 1360 1361 cleanup: 1362 /* Update event ring dequeue pointer before dropping the lock */ 1363 inc_deq(xhci, xhci->event_ring, true); 1364 1365 /* Don't make the USB core poll the roothub if we got a bad port status 1366 * change event. Besides, at that point we can't tell which roothub 1367 * (USB 2.0 or USB 3.0) to kick. 1368 */ 1369 if (bogus_port_status) 1370 return; 1371 1372 spin_unlock(&xhci->lock); 1373 /* Pass this up to the core */ 1374 usb_hcd_poll_rh_status(hcd); 1375 spin_lock(&xhci->lock); 1376 } 1377 1378 /* 1379 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1380 * at end_trb, which may be in another segment. If the suspect DMA address is a 1381 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1382 * returns 0. 1383 */ 1384 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1385 union xhci_trb *start_trb, 1386 union xhci_trb *end_trb, 1387 dma_addr_t suspect_dma) 1388 { 1389 dma_addr_t start_dma; 1390 dma_addr_t end_seg_dma; 1391 dma_addr_t end_trb_dma; 1392 struct xhci_segment *cur_seg; 1393 1394 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1395 cur_seg = start_seg; 1396 1397 do { 1398 if (start_dma == 0) 1399 return NULL; 1400 /* We may get an event for a Link TRB in the middle of a TD */ 1401 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1402 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1403 /* If the end TRB isn't in this segment, this is set to 0 */ 1404 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1405 1406 if (end_trb_dma > 0) { 1407 /* The end TRB is in this segment, so suspect should be here */ 1408 if (start_dma <= end_trb_dma) { 1409 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1410 return cur_seg; 1411 } else { 1412 /* Case for one segment with 1413 * a TD wrapped around to the top 1414 */ 1415 if ((suspect_dma >= start_dma && 1416 suspect_dma <= end_seg_dma) || 1417 (suspect_dma >= cur_seg->dma && 1418 suspect_dma <= end_trb_dma)) 1419 return cur_seg; 1420 } 1421 return NULL; 1422 } else { 1423 /* Might still be somewhere in this segment */ 1424 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1425 return cur_seg; 1426 } 1427 cur_seg = cur_seg->next; 1428 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1429 } while (cur_seg != start_seg); 1430 1431 return NULL; 1432 } 1433 1434 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1435 unsigned int slot_id, unsigned int ep_index, 1436 unsigned int stream_id, 1437 struct xhci_td *td, union xhci_trb *event_trb) 1438 { 1439 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1440 ep->ep_state |= EP_HALTED; 1441 ep->stopped_td = td; 1442 ep->stopped_trb = event_trb; 1443 ep->stopped_stream = stream_id; 1444 1445 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1446 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1447 1448 ep->stopped_td = NULL; 1449 ep->stopped_trb = NULL; 1450 ep->stopped_stream = 0; 1451 1452 xhci_ring_cmd_db(xhci); 1453 } 1454 1455 /* Check if an error has halted the endpoint ring. The class driver will 1456 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1457 * However, a babble and other errors also halt the endpoint ring, and the class 1458 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1459 * Ring Dequeue Pointer command manually. 1460 */ 1461 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1462 struct xhci_ep_ctx *ep_ctx, 1463 unsigned int trb_comp_code) 1464 { 1465 /* TRB completion codes that may require a manual halt cleanup */ 1466 if (trb_comp_code == COMP_TX_ERR || 1467 trb_comp_code == COMP_BABBLE || 1468 trb_comp_code == COMP_SPLIT_ERR) 1469 /* The 0.96 spec says a babbling control endpoint 1470 * is not halted. The 0.96 spec says it is. Some HW 1471 * claims to be 0.95 compliant, but it halts the control 1472 * endpoint anyway. Check if a babble halted the 1473 * endpoint. 1474 */ 1475 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1476 cpu_to_le32(EP_STATE_HALTED)) 1477 return 1; 1478 1479 return 0; 1480 } 1481 1482 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1483 { 1484 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1485 /* Vendor defined "informational" completion code, 1486 * treat as not-an-error. 1487 */ 1488 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1489 trb_comp_code); 1490 xhci_dbg(xhci, "Treating code as success.\n"); 1491 return 1; 1492 } 1493 return 0; 1494 } 1495 1496 /* 1497 * Finish the td processing, remove the td from td list; 1498 * Return 1 if the urb can be given back. 1499 */ 1500 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1501 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1502 struct xhci_virt_ep *ep, int *status, bool skip) 1503 { 1504 struct xhci_virt_device *xdev; 1505 struct xhci_ring *ep_ring; 1506 unsigned int slot_id; 1507 int ep_index; 1508 struct urb *urb = NULL; 1509 struct xhci_ep_ctx *ep_ctx; 1510 int ret = 0; 1511 struct urb_priv *urb_priv; 1512 u32 trb_comp_code; 1513 1514 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1515 xdev = xhci->devs[slot_id]; 1516 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1517 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1518 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1519 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1520 1521 if (skip) 1522 goto td_cleanup; 1523 1524 if (trb_comp_code == COMP_STOP_INVAL || 1525 trb_comp_code == COMP_STOP) { 1526 /* The Endpoint Stop Command completion will take care of any 1527 * stopped TDs. A stopped TD may be restarted, so don't update 1528 * the ring dequeue pointer or take this TD off any lists yet. 1529 */ 1530 ep->stopped_td = td; 1531 ep->stopped_trb = event_trb; 1532 return 0; 1533 } else { 1534 if (trb_comp_code == COMP_STALL) { 1535 /* The transfer is completed from the driver's 1536 * perspective, but we need to issue a set dequeue 1537 * command for this stalled endpoint to move the dequeue 1538 * pointer past the TD. We can't do that here because 1539 * the halt condition must be cleared first. Let the 1540 * USB class driver clear the stall later. 1541 */ 1542 ep->stopped_td = td; 1543 ep->stopped_trb = event_trb; 1544 ep->stopped_stream = ep_ring->stream_id; 1545 } else if (xhci_requires_manual_halt_cleanup(xhci, 1546 ep_ctx, trb_comp_code)) { 1547 /* Other types of errors halt the endpoint, but the 1548 * class driver doesn't call usb_reset_endpoint() unless 1549 * the error is -EPIPE. Clear the halted status in the 1550 * xHCI hardware manually. 1551 */ 1552 xhci_cleanup_halted_endpoint(xhci, 1553 slot_id, ep_index, ep_ring->stream_id, 1554 td, event_trb); 1555 } else { 1556 /* Update ring dequeue pointer */ 1557 while (ep_ring->dequeue != td->last_trb) 1558 inc_deq(xhci, ep_ring, false); 1559 inc_deq(xhci, ep_ring, false); 1560 } 1561 1562 td_cleanup: 1563 /* Clean up the endpoint's TD list */ 1564 urb = td->urb; 1565 urb_priv = urb->hcpriv; 1566 1567 /* Do one last check of the actual transfer length. 1568 * If the host controller said we transferred more data than 1569 * the buffer length, urb->actual_length will be a very big 1570 * number (since it's unsigned). Play it safe and say we didn't 1571 * transfer anything. 1572 */ 1573 if (urb->actual_length > urb->transfer_buffer_length) { 1574 xhci_warn(xhci, "URB transfer length is wrong, " 1575 "xHC issue? req. len = %u, " 1576 "act. len = %u\n", 1577 urb->transfer_buffer_length, 1578 urb->actual_length); 1579 urb->actual_length = 0; 1580 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1581 *status = -EREMOTEIO; 1582 else 1583 *status = 0; 1584 } 1585 list_del_init(&td->td_list); 1586 /* Was this TD slated to be cancelled but completed anyway? */ 1587 if (!list_empty(&td->cancelled_td_list)) 1588 list_del_init(&td->cancelled_td_list); 1589 1590 urb_priv->td_cnt++; 1591 /* Giveback the urb when all the tds are completed */ 1592 if (urb_priv->td_cnt == urb_priv->length) { 1593 ret = 1; 1594 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1595 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1596 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1597 == 0) { 1598 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1599 usb_amd_quirk_pll_enable(); 1600 } 1601 } 1602 } 1603 } 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * Process control tds, update urb status and actual_length. 1610 */ 1611 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1612 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1613 struct xhci_virt_ep *ep, int *status) 1614 { 1615 struct xhci_virt_device *xdev; 1616 struct xhci_ring *ep_ring; 1617 unsigned int slot_id; 1618 int ep_index; 1619 struct xhci_ep_ctx *ep_ctx; 1620 u32 trb_comp_code; 1621 1622 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1623 xdev = xhci->devs[slot_id]; 1624 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1625 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1626 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1627 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1628 1629 xhci_debug_trb(xhci, xhci->event_ring->dequeue); 1630 switch (trb_comp_code) { 1631 case COMP_SUCCESS: 1632 if (event_trb == ep_ring->dequeue) { 1633 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1634 "without IOC set??\n"); 1635 *status = -ESHUTDOWN; 1636 } else if (event_trb != td->last_trb) { 1637 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1638 "without IOC set??\n"); 1639 *status = -ESHUTDOWN; 1640 } else { 1641 *status = 0; 1642 } 1643 break; 1644 case COMP_SHORT_TX: 1645 xhci_warn(xhci, "WARN: short transfer on control ep\n"); 1646 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1647 *status = -EREMOTEIO; 1648 else 1649 *status = 0; 1650 break; 1651 case COMP_STOP_INVAL: 1652 case COMP_STOP: 1653 return finish_td(xhci, td, event_trb, event, ep, status, false); 1654 default: 1655 if (!xhci_requires_manual_halt_cleanup(xhci, 1656 ep_ctx, trb_comp_code)) 1657 break; 1658 xhci_dbg(xhci, "TRB error code %u, " 1659 "halted endpoint index = %u\n", 1660 trb_comp_code, ep_index); 1661 /* else fall through */ 1662 case COMP_STALL: 1663 /* Did we transfer part of the data (middle) phase? */ 1664 if (event_trb != ep_ring->dequeue && 1665 event_trb != td->last_trb) 1666 td->urb->actual_length = 1667 td->urb->transfer_buffer_length 1668 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1669 else 1670 td->urb->actual_length = 0; 1671 1672 xhci_cleanup_halted_endpoint(xhci, 1673 slot_id, ep_index, 0, td, event_trb); 1674 return finish_td(xhci, td, event_trb, event, ep, status, true); 1675 } 1676 /* 1677 * Did we transfer any data, despite the errors that might have 1678 * happened? I.e. did we get past the setup stage? 1679 */ 1680 if (event_trb != ep_ring->dequeue) { 1681 /* The event was for the status stage */ 1682 if (event_trb == td->last_trb) { 1683 if (td->urb->actual_length != 0) { 1684 /* Don't overwrite a previously set error code 1685 */ 1686 if ((*status == -EINPROGRESS || *status == 0) && 1687 (td->urb->transfer_flags 1688 & URB_SHORT_NOT_OK)) 1689 /* Did we already see a short data 1690 * stage? */ 1691 *status = -EREMOTEIO; 1692 } else { 1693 td->urb->actual_length = 1694 td->urb->transfer_buffer_length; 1695 } 1696 } else { 1697 /* Maybe the event was for the data stage? */ 1698 td->urb->actual_length = 1699 td->urb->transfer_buffer_length - 1700 TRB_LEN(le32_to_cpu(event->transfer_len)); 1701 xhci_dbg(xhci, "Waiting for status " 1702 "stage event\n"); 1703 return 0; 1704 } 1705 } 1706 1707 return finish_td(xhci, td, event_trb, event, ep, status, false); 1708 } 1709 1710 /* 1711 * Process isochronous tds, update urb packet status and actual_length. 1712 */ 1713 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1714 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1715 struct xhci_virt_ep *ep, int *status) 1716 { 1717 struct xhci_ring *ep_ring; 1718 struct urb_priv *urb_priv; 1719 int idx; 1720 int len = 0; 1721 union xhci_trb *cur_trb; 1722 struct xhci_segment *cur_seg; 1723 struct usb_iso_packet_descriptor *frame; 1724 u32 trb_comp_code; 1725 bool skip_td = false; 1726 1727 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1728 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1729 urb_priv = td->urb->hcpriv; 1730 idx = urb_priv->td_cnt; 1731 frame = &td->urb->iso_frame_desc[idx]; 1732 1733 /* handle completion code */ 1734 switch (trb_comp_code) { 1735 case COMP_SUCCESS: 1736 frame->status = 0; 1737 break; 1738 case COMP_SHORT_TX: 1739 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1740 -EREMOTEIO : 0; 1741 break; 1742 case COMP_BW_OVER: 1743 frame->status = -ECOMM; 1744 skip_td = true; 1745 break; 1746 case COMP_BUFF_OVER: 1747 case COMP_BABBLE: 1748 frame->status = -EOVERFLOW; 1749 skip_td = true; 1750 break; 1751 case COMP_DEV_ERR: 1752 case COMP_STALL: 1753 frame->status = -EPROTO; 1754 skip_td = true; 1755 break; 1756 case COMP_STOP: 1757 case COMP_STOP_INVAL: 1758 break; 1759 default: 1760 frame->status = -1; 1761 break; 1762 } 1763 1764 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1765 frame->actual_length = frame->length; 1766 td->urb->actual_length += frame->length; 1767 } else { 1768 for (cur_trb = ep_ring->dequeue, 1769 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1770 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1771 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1772 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1773 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1774 } 1775 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1776 TRB_LEN(le32_to_cpu(event->transfer_len)); 1777 1778 if (trb_comp_code != COMP_STOP_INVAL) { 1779 frame->actual_length = len; 1780 td->urb->actual_length += len; 1781 } 1782 } 1783 1784 return finish_td(xhci, td, event_trb, event, ep, status, false); 1785 } 1786 1787 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1788 struct xhci_transfer_event *event, 1789 struct xhci_virt_ep *ep, int *status) 1790 { 1791 struct xhci_ring *ep_ring; 1792 struct urb_priv *urb_priv; 1793 struct usb_iso_packet_descriptor *frame; 1794 int idx; 1795 1796 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1797 urb_priv = td->urb->hcpriv; 1798 idx = urb_priv->td_cnt; 1799 frame = &td->urb->iso_frame_desc[idx]; 1800 1801 /* The transfer is partly done. */ 1802 frame->status = -EXDEV; 1803 1804 /* calc actual length */ 1805 frame->actual_length = 0; 1806 1807 /* Update ring dequeue pointer */ 1808 while (ep_ring->dequeue != td->last_trb) 1809 inc_deq(xhci, ep_ring, false); 1810 inc_deq(xhci, ep_ring, false); 1811 1812 return finish_td(xhci, td, NULL, event, ep, status, true); 1813 } 1814 1815 /* 1816 * Process bulk and interrupt tds, update urb status and actual_length. 1817 */ 1818 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1819 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1820 struct xhci_virt_ep *ep, int *status) 1821 { 1822 struct xhci_ring *ep_ring; 1823 union xhci_trb *cur_trb; 1824 struct xhci_segment *cur_seg; 1825 u32 trb_comp_code; 1826 1827 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1828 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1829 1830 switch (trb_comp_code) { 1831 case COMP_SUCCESS: 1832 /* Double check that the HW transferred everything. */ 1833 if (event_trb != td->last_trb) { 1834 xhci_warn(xhci, "WARN Successful completion " 1835 "on short TX\n"); 1836 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1837 *status = -EREMOTEIO; 1838 else 1839 *status = 0; 1840 } else { 1841 *status = 0; 1842 } 1843 break; 1844 case COMP_SHORT_TX: 1845 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1846 *status = -EREMOTEIO; 1847 else 1848 *status = 0; 1849 break; 1850 default: 1851 /* Others already handled above */ 1852 break; 1853 } 1854 if (trb_comp_code == COMP_SHORT_TX) 1855 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1856 "%d bytes untransferred\n", 1857 td->urb->ep->desc.bEndpointAddress, 1858 td->urb->transfer_buffer_length, 1859 TRB_LEN(le32_to_cpu(event->transfer_len))); 1860 /* Fast path - was this the last TRB in the TD for this URB? */ 1861 if (event_trb == td->last_trb) { 1862 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1863 td->urb->actual_length = 1864 td->urb->transfer_buffer_length - 1865 TRB_LEN(le32_to_cpu(event->transfer_len)); 1866 if (td->urb->transfer_buffer_length < 1867 td->urb->actual_length) { 1868 xhci_warn(xhci, "HC gave bad length " 1869 "of %d bytes left\n", 1870 TRB_LEN(le32_to_cpu(event->transfer_len))); 1871 td->urb->actual_length = 0; 1872 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1873 *status = -EREMOTEIO; 1874 else 1875 *status = 0; 1876 } 1877 /* Don't overwrite a previously set error code */ 1878 if (*status == -EINPROGRESS) { 1879 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1880 *status = -EREMOTEIO; 1881 else 1882 *status = 0; 1883 } 1884 } else { 1885 td->urb->actual_length = 1886 td->urb->transfer_buffer_length; 1887 /* Ignore a short packet completion if the 1888 * untransferred length was zero. 1889 */ 1890 if (*status == -EREMOTEIO) 1891 *status = 0; 1892 } 1893 } else { 1894 /* Slow path - walk the list, starting from the dequeue 1895 * pointer, to get the actual length transferred. 1896 */ 1897 td->urb->actual_length = 0; 1898 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1899 cur_trb != event_trb; 1900 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1901 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1902 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1903 td->urb->actual_length += 1904 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1905 } 1906 /* If the ring didn't stop on a Link or No-op TRB, add 1907 * in the actual bytes transferred from the Normal TRB 1908 */ 1909 if (trb_comp_code != COMP_STOP_INVAL) 1910 td->urb->actual_length += 1911 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1912 TRB_LEN(le32_to_cpu(event->transfer_len)); 1913 } 1914 1915 return finish_td(xhci, td, event_trb, event, ep, status, false); 1916 } 1917 1918 /* 1919 * If this function returns an error condition, it means it got a Transfer 1920 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1921 * At this point, the host controller is probably hosed and should be reset. 1922 */ 1923 static int handle_tx_event(struct xhci_hcd *xhci, 1924 struct xhci_transfer_event *event) 1925 { 1926 struct xhci_virt_device *xdev; 1927 struct xhci_virt_ep *ep; 1928 struct xhci_ring *ep_ring; 1929 unsigned int slot_id; 1930 int ep_index; 1931 struct xhci_td *td = NULL; 1932 dma_addr_t event_dma; 1933 struct xhci_segment *event_seg; 1934 union xhci_trb *event_trb; 1935 struct urb *urb = NULL; 1936 int status = -EINPROGRESS; 1937 struct urb_priv *urb_priv; 1938 struct xhci_ep_ctx *ep_ctx; 1939 struct list_head *tmp; 1940 u32 trb_comp_code; 1941 int ret = 0; 1942 int td_num = 0; 1943 1944 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1945 xdev = xhci->devs[slot_id]; 1946 if (!xdev) { 1947 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 1948 return -ENODEV; 1949 } 1950 1951 /* Endpoint ID is 1 based, our index is zero based */ 1952 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1953 ep = &xdev->eps[ep_index]; 1954 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1955 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1956 if (!ep_ring || 1957 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 1958 EP_STATE_DISABLED) { 1959 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 1960 "or incorrect stream ring\n"); 1961 return -ENODEV; 1962 } 1963 1964 /* Count current td numbers if ep->skip is set */ 1965 if (ep->skip) { 1966 list_for_each(tmp, &ep_ring->td_list) 1967 td_num++; 1968 } 1969 1970 event_dma = le64_to_cpu(event->buffer); 1971 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1972 /* Look for common error cases */ 1973 switch (trb_comp_code) { 1974 /* Skip codes that require special handling depending on 1975 * transfer type 1976 */ 1977 case COMP_SUCCESS: 1978 case COMP_SHORT_TX: 1979 break; 1980 case COMP_STOP: 1981 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 1982 break; 1983 case COMP_STOP_INVAL: 1984 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 1985 break; 1986 case COMP_STALL: 1987 xhci_warn(xhci, "WARN: Stalled endpoint\n"); 1988 ep->ep_state |= EP_HALTED; 1989 status = -EPIPE; 1990 break; 1991 case COMP_TRB_ERR: 1992 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 1993 status = -EILSEQ; 1994 break; 1995 case COMP_SPLIT_ERR: 1996 case COMP_TX_ERR: 1997 xhci_warn(xhci, "WARN: transfer error on endpoint\n"); 1998 status = -EPROTO; 1999 break; 2000 case COMP_BABBLE: 2001 xhci_warn(xhci, "WARN: babble error on endpoint\n"); 2002 status = -EOVERFLOW; 2003 break; 2004 case COMP_DB_ERR: 2005 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2006 status = -ENOSR; 2007 break; 2008 case COMP_BW_OVER: 2009 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2010 break; 2011 case COMP_BUFF_OVER: 2012 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2013 break; 2014 case COMP_UNDERRUN: 2015 /* 2016 * When the Isoch ring is empty, the xHC will generate 2017 * a Ring Overrun Event for IN Isoch endpoint or Ring 2018 * Underrun Event for OUT Isoch endpoint. 2019 */ 2020 xhci_dbg(xhci, "underrun event on endpoint\n"); 2021 if (!list_empty(&ep_ring->td_list)) 2022 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2023 "still with TDs queued?\n", 2024 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2025 ep_index); 2026 goto cleanup; 2027 case COMP_OVERRUN: 2028 xhci_dbg(xhci, "overrun event on endpoint\n"); 2029 if (!list_empty(&ep_ring->td_list)) 2030 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2031 "still with TDs queued?\n", 2032 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2033 ep_index); 2034 goto cleanup; 2035 case COMP_DEV_ERR: 2036 xhci_warn(xhci, "WARN: detect an incompatible device"); 2037 status = -EPROTO; 2038 break; 2039 case COMP_MISSED_INT: 2040 /* 2041 * When encounter missed service error, one or more isoc tds 2042 * may be missed by xHC. 2043 * Set skip flag of the ep_ring; Complete the missed tds as 2044 * short transfer when process the ep_ring next time. 2045 */ 2046 ep->skip = true; 2047 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2048 goto cleanup; 2049 default: 2050 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2051 status = 0; 2052 break; 2053 } 2054 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2055 "busted\n"); 2056 goto cleanup; 2057 } 2058 2059 do { 2060 /* This TRB should be in the TD at the head of this ring's 2061 * TD list. 2062 */ 2063 if (list_empty(&ep_ring->td_list)) { 2064 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2065 "with no TDs queued?\n", 2066 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2067 ep_index); 2068 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2069 (le32_to_cpu(event->flags) & 2070 TRB_TYPE_BITMASK)>>10); 2071 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2072 if (ep->skip) { 2073 ep->skip = false; 2074 xhci_dbg(xhci, "td_list is empty while skip " 2075 "flag set. Clear skip flag.\n"); 2076 } 2077 ret = 0; 2078 goto cleanup; 2079 } 2080 2081 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2082 if (ep->skip && td_num == 0) { 2083 ep->skip = false; 2084 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2085 "Clear skip flag.\n"); 2086 ret = 0; 2087 goto cleanup; 2088 } 2089 2090 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2091 if (ep->skip) 2092 td_num--; 2093 2094 /* Is this a TRB in the currently executing TD? */ 2095 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2096 td->last_trb, event_dma); 2097 2098 /* 2099 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2100 * is not in the current TD pointed by ep_ring->dequeue because 2101 * that the hardware dequeue pointer still at the previous TRB 2102 * of the current TD. The previous TRB maybe a Link TD or the 2103 * last TRB of the previous TD. The command completion handle 2104 * will take care the rest. 2105 */ 2106 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2107 ret = 0; 2108 goto cleanup; 2109 } 2110 2111 if (!event_seg) { 2112 if (!ep->skip || 2113 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2114 /* Some host controllers give a spurious 2115 * successful event after a short transfer. 2116 * Ignore it. 2117 */ 2118 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2119 ep_ring->last_td_was_short) { 2120 ep_ring->last_td_was_short = false; 2121 ret = 0; 2122 goto cleanup; 2123 } 2124 /* HC is busted, give up! */ 2125 xhci_err(xhci, 2126 "ERROR Transfer event TRB DMA ptr not " 2127 "part of current TD\n"); 2128 return -ESHUTDOWN; 2129 } 2130 2131 ret = skip_isoc_td(xhci, td, event, ep, &status); 2132 goto cleanup; 2133 } 2134 if (trb_comp_code == COMP_SHORT_TX) 2135 ep_ring->last_td_was_short = true; 2136 else 2137 ep_ring->last_td_was_short = false; 2138 2139 if (ep->skip) { 2140 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2141 ep->skip = false; 2142 } 2143 2144 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2145 sizeof(*event_trb)]; 2146 /* 2147 * No-op TRB should not trigger interrupts. 2148 * If event_trb is a no-op TRB, it means the 2149 * corresponding TD has been cancelled. Just ignore 2150 * the TD. 2151 */ 2152 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2153 xhci_dbg(xhci, 2154 "event_trb is a no-op TRB. Skip it\n"); 2155 goto cleanup; 2156 } 2157 2158 /* Now update the urb's actual_length and give back to 2159 * the core 2160 */ 2161 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2162 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2163 &status); 2164 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2165 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2166 &status); 2167 else 2168 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2169 ep, &status); 2170 2171 cleanup: 2172 /* 2173 * Do not update event ring dequeue pointer if ep->skip is set. 2174 * Will roll back to continue process missed tds. 2175 */ 2176 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2177 inc_deq(xhci, xhci->event_ring, true); 2178 } 2179 2180 if (ret) { 2181 urb = td->urb; 2182 urb_priv = urb->hcpriv; 2183 /* Leave the TD around for the reset endpoint function 2184 * to use(but only if it's not a control endpoint, 2185 * since we already queued the Set TR dequeue pointer 2186 * command for stalled control endpoints). 2187 */ 2188 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2189 (trb_comp_code != COMP_STALL && 2190 trb_comp_code != COMP_BABBLE)) 2191 xhci_urb_free_priv(xhci, urb_priv); 2192 2193 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2194 if ((urb->actual_length != urb->transfer_buffer_length && 2195 (urb->transfer_flags & 2196 URB_SHORT_NOT_OK)) || 2197 (status != 0 && 2198 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2199 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2200 "expected = %x, status = %d\n", 2201 urb, urb->actual_length, 2202 urb->transfer_buffer_length, 2203 status); 2204 spin_unlock(&xhci->lock); 2205 /* EHCI, UHCI, and OHCI always unconditionally set the 2206 * urb->status of an isochronous endpoint to 0. 2207 */ 2208 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2209 status = 0; 2210 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2211 spin_lock(&xhci->lock); 2212 } 2213 2214 /* 2215 * If ep->skip is set, it means there are missed tds on the 2216 * endpoint ring need to take care of. 2217 * Process them as short transfer until reach the td pointed by 2218 * the event. 2219 */ 2220 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2221 2222 return 0; 2223 } 2224 2225 /* 2226 * This function handles all OS-owned events on the event ring. It may drop 2227 * xhci->lock between event processing (e.g. to pass up port status changes). 2228 * Returns >0 for "possibly more events to process" (caller should call again), 2229 * otherwise 0 if done. In future, <0 returns should indicate error code. 2230 */ 2231 static int xhci_handle_event(struct xhci_hcd *xhci) 2232 { 2233 union xhci_trb *event; 2234 int update_ptrs = 1; 2235 int ret; 2236 2237 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2238 xhci->error_bitmask |= 1 << 1; 2239 return 0; 2240 } 2241 2242 event = xhci->event_ring->dequeue; 2243 /* Does the HC or OS own the TRB? */ 2244 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2245 xhci->event_ring->cycle_state) { 2246 xhci->error_bitmask |= 1 << 2; 2247 return 0; 2248 } 2249 2250 /* 2251 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2252 * speculative reads of the event's flags/data below. 2253 */ 2254 rmb(); 2255 /* FIXME: Handle more event types. */ 2256 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2257 case TRB_TYPE(TRB_COMPLETION): 2258 handle_cmd_completion(xhci, &event->event_cmd); 2259 break; 2260 case TRB_TYPE(TRB_PORT_STATUS): 2261 handle_port_status(xhci, event); 2262 update_ptrs = 0; 2263 break; 2264 case TRB_TYPE(TRB_TRANSFER): 2265 ret = handle_tx_event(xhci, &event->trans_event); 2266 if (ret < 0) 2267 xhci->error_bitmask |= 1 << 9; 2268 else 2269 update_ptrs = 0; 2270 break; 2271 default: 2272 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2273 TRB_TYPE(48)) 2274 handle_vendor_event(xhci, event); 2275 else 2276 xhci->error_bitmask |= 1 << 3; 2277 } 2278 /* Any of the above functions may drop and re-acquire the lock, so check 2279 * to make sure a watchdog timer didn't mark the host as non-responsive. 2280 */ 2281 if (xhci->xhc_state & XHCI_STATE_DYING) { 2282 xhci_dbg(xhci, "xHCI host dying, returning from " 2283 "event handler.\n"); 2284 return 0; 2285 } 2286 2287 if (update_ptrs) 2288 /* Update SW event ring dequeue pointer */ 2289 inc_deq(xhci, xhci->event_ring, true); 2290 2291 /* Are there more items on the event ring? Caller will call us again to 2292 * check. 2293 */ 2294 return 1; 2295 } 2296 2297 /* 2298 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2299 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2300 * indicators of an event TRB error, but we check the status *first* to be safe. 2301 */ 2302 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2303 { 2304 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2305 u32 status; 2306 union xhci_trb *trb; 2307 u64 temp_64; 2308 union xhci_trb *event_ring_deq; 2309 dma_addr_t deq; 2310 2311 spin_lock(&xhci->lock); 2312 trb = xhci->event_ring->dequeue; 2313 /* Check if the xHC generated the interrupt, or the irq is shared */ 2314 status = xhci_readl(xhci, &xhci->op_regs->status); 2315 if (status == 0xffffffff) 2316 goto hw_died; 2317 2318 if (!(status & STS_EINT)) { 2319 spin_unlock(&xhci->lock); 2320 return IRQ_NONE; 2321 } 2322 if (status & STS_FATAL) { 2323 xhci_warn(xhci, "WARNING: Host System Error\n"); 2324 xhci_halt(xhci); 2325 hw_died: 2326 spin_unlock(&xhci->lock); 2327 return -ESHUTDOWN; 2328 } 2329 2330 /* 2331 * Clear the op reg interrupt status first, 2332 * so we can receive interrupts from other MSI-X interrupters. 2333 * Write 1 to clear the interrupt status. 2334 */ 2335 status |= STS_EINT; 2336 xhci_writel(xhci, status, &xhci->op_regs->status); 2337 /* FIXME when MSI-X is supported and there are multiple vectors */ 2338 /* Clear the MSI-X event interrupt status */ 2339 2340 if (hcd->irq != -1) { 2341 u32 irq_pending; 2342 /* Acknowledge the PCI interrupt */ 2343 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2344 irq_pending |= 0x3; 2345 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2346 } 2347 2348 if (xhci->xhc_state & XHCI_STATE_DYING) { 2349 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2350 "Shouldn't IRQs be disabled?\n"); 2351 /* Clear the event handler busy flag (RW1C); 2352 * the event ring should be empty. 2353 */ 2354 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2355 xhci_write_64(xhci, temp_64 | ERST_EHB, 2356 &xhci->ir_set->erst_dequeue); 2357 spin_unlock(&xhci->lock); 2358 2359 return IRQ_HANDLED; 2360 } 2361 2362 event_ring_deq = xhci->event_ring->dequeue; 2363 /* FIXME this should be a delayed service routine 2364 * that clears the EHB. 2365 */ 2366 while (xhci_handle_event(xhci) > 0) {} 2367 2368 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2369 /* If necessary, update the HW's version of the event ring deq ptr. */ 2370 if (event_ring_deq != xhci->event_ring->dequeue) { 2371 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2372 xhci->event_ring->dequeue); 2373 if (deq == 0) 2374 xhci_warn(xhci, "WARN something wrong with SW event " 2375 "ring dequeue ptr.\n"); 2376 /* Update HC event ring dequeue pointer */ 2377 temp_64 &= ERST_PTR_MASK; 2378 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2379 } 2380 2381 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2382 temp_64 |= ERST_EHB; 2383 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2384 2385 spin_unlock(&xhci->lock); 2386 2387 return IRQ_HANDLED; 2388 } 2389 2390 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2391 { 2392 irqreturn_t ret; 2393 struct xhci_hcd *xhci; 2394 2395 xhci = hcd_to_xhci(hcd); 2396 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2397 if (xhci->shared_hcd) 2398 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags); 2399 2400 ret = xhci_irq(hcd); 2401 2402 return ret; 2403 } 2404 2405 /**** Endpoint Ring Operations ****/ 2406 2407 /* 2408 * Generic function for queueing a TRB on a ring. 2409 * The caller must have checked to make sure there's room on the ring. 2410 * 2411 * @more_trbs_coming: Will you enqueue more TRBs before calling 2412 * prepare_transfer()? 2413 */ 2414 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2415 bool consumer, bool more_trbs_coming, bool isoc, 2416 u32 field1, u32 field2, u32 field3, u32 field4) 2417 { 2418 struct xhci_generic_trb *trb; 2419 2420 trb = &ring->enqueue->generic; 2421 trb->field[0] = cpu_to_le32(field1); 2422 trb->field[1] = cpu_to_le32(field2); 2423 trb->field[2] = cpu_to_le32(field3); 2424 trb->field[3] = cpu_to_le32(field4); 2425 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc); 2426 } 2427 2428 /* 2429 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2430 * FIXME allocate segments if the ring is full. 2431 */ 2432 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2433 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags) 2434 { 2435 /* Make sure the endpoint has been added to xHC schedule */ 2436 switch (ep_state) { 2437 case EP_STATE_DISABLED: 2438 /* 2439 * USB core changed config/interfaces without notifying us, 2440 * or hardware is reporting the wrong state. 2441 */ 2442 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2443 return -ENOENT; 2444 case EP_STATE_ERROR: 2445 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2446 /* FIXME event handling code for error needs to clear it */ 2447 /* XXX not sure if this should be -ENOENT or not */ 2448 return -EINVAL; 2449 case EP_STATE_HALTED: 2450 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2451 case EP_STATE_STOPPED: 2452 case EP_STATE_RUNNING: 2453 break; 2454 default: 2455 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2456 /* 2457 * FIXME issue Configure Endpoint command to try to get the HC 2458 * back into a known state. 2459 */ 2460 return -EINVAL; 2461 } 2462 if (!room_on_ring(xhci, ep_ring, num_trbs)) { 2463 /* FIXME allocate more room */ 2464 xhci_err(xhci, "ERROR no room on ep ring\n"); 2465 return -ENOMEM; 2466 } 2467 2468 if (enqueue_is_link_trb(ep_ring)) { 2469 struct xhci_ring *ring = ep_ring; 2470 union xhci_trb *next; 2471 2472 next = ring->enqueue; 2473 2474 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2475 /* If we're not dealing with 0.95 hardware or isoc rings 2476 * on AMD 0.96 host, clear the chain bit. 2477 */ 2478 if (!xhci_link_trb_quirk(xhci) && !(isoc && 2479 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2480 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2481 else 2482 next->link.control |= cpu_to_le32(TRB_CHAIN); 2483 2484 wmb(); 2485 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2486 2487 /* Toggle the cycle bit after the last ring segment. */ 2488 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2489 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2490 if (!in_interrupt()) { 2491 xhci_dbg(xhci, "queue_trb: Toggle cycle " 2492 "state for ring %p = %i\n", 2493 ring, (unsigned int)ring->cycle_state); 2494 } 2495 } 2496 ring->enq_seg = ring->enq_seg->next; 2497 ring->enqueue = ring->enq_seg->trbs; 2498 next = ring->enqueue; 2499 } 2500 } 2501 2502 return 0; 2503 } 2504 2505 static int prepare_transfer(struct xhci_hcd *xhci, 2506 struct xhci_virt_device *xdev, 2507 unsigned int ep_index, 2508 unsigned int stream_id, 2509 unsigned int num_trbs, 2510 struct urb *urb, 2511 unsigned int td_index, 2512 bool isoc, 2513 gfp_t mem_flags) 2514 { 2515 int ret; 2516 struct urb_priv *urb_priv; 2517 struct xhci_td *td; 2518 struct xhci_ring *ep_ring; 2519 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2520 2521 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2522 if (!ep_ring) { 2523 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2524 stream_id); 2525 return -EINVAL; 2526 } 2527 2528 ret = prepare_ring(xhci, ep_ring, 2529 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2530 num_trbs, isoc, mem_flags); 2531 if (ret) 2532 return ret; 2533 2534 urb_priv = urb->hcpriv; 2535 td = urb_priv->td[td_index]; 2536 2537 INIT_LIST_HEAD(&td->td_list); 2538 INIT_LIST_HEAD(&td->cancelled_td_list); 2539 2540 if (td_index == 0) { 2541 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2542 if (unlikely(ret)) 2543 return ret; 2544 } 2545 2546 td->urb = urb; 2547 /* Add this TD to the tail of the endpoint ring's TD list */ 2548 list_add_tail(&td->td_list, &ep_ring->td_list); 2549 td->start_seg = ep_ring->enq_seg; 2550 td->first_trb = ep_ring->enqueue; 2551 2552 urb_priv->td[td_index] = td; 2553 2554 return 0; 2555 } 2556 2557 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2558 { 2559 int num_sgs, num_trbs, running_total, temp, i; 2560 struct scatterlist *sg; 2561 2562 sg = NULL; 2563 num_sgs = urb->num_sgs; 2564 temp = urb->transfer_buffer_length; 2565 2566 xhci_dbg(xhci, "count sg list trbs: \n"); 2567 num_trbs = 0; 2568 for_each_sg(urb->sg, sg, num_sgs, i) { 2569 unsigned int previous_total_trbs = num_trbs; 2570 unsigned int len = sg_dma_len(sg); 2571 2572 /* Scatter gather list entries may cross 64KB boundaries */ 2573 running_total = TRB_MAX_BUFF_SIZE - 2574 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2575 running_total &= TRB_MAX_BUFF_SIZE - 1; 2576 if (running_total != 0) 2577 num_trbs++; 2578 2579 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2580 while (running_total < sg_dma_len(sg) && running_total < temp) { 2581 num_trbs++; 2582 running_total += TRB_MAX_BUFF_SIZE; 2583 } 2584 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", 2585 i, (unsigned long long)sg_dma_address(sg), 2586 len, len, num_trbs - previous_total_trbs); 2587 2588 len = min_t(int, len, temp); 2589 temp -= len; 2590 if (temp == 0) 2591 break; 2592 } 2593 xhci_dbg(xhci, "\n"); 2594 if (!in_interrupt()) 2595 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, " 2596 "num_trbs = %d\n", 2597 urb->ep->desc.bEndpointAddress, 2598 urb->transfer_buffer_length, 2599 num_trbs); 2600 return num_trbs; 2601 } 2602 2603 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2604 { 2605 if (num_trbs != 0) 2606 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2607 "TRBs, %d left\n", __func__, 2608 urb->ep->desc.bEndpointAddress, num_trbs); 2609 if (running_total != urb->transfer_buffer_length) 2610 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2611 "queued %#x (%d), asked for %#x (%d)\n", 2612 __func__, 2613 urb->ep->desc.bEndpointAddress, 2614 running_total, running_total, 2615 urb->transfer_buffer_length, 2616 urb->transfer_buffer_length); 2617 } 2618 2619 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2620 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2621 struct xhci_generic_trb *start_trb) 2622 { 2623 /* 2624 * Pass all the TRBs to the hardware at once and make sure this write 2625 * isn't reordered. 2626 */ 2627 wmb(); 2628 if (start_cycle) 2629 start_trb->field[3] |= cpu_to_le32(start_cycle); 2630 else 2631 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2632 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2633 } 2634 2635 /* 2636 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2637 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2638 * (comprised of sg list entries) can take several service intervals to 2639 * transmit. 2640 */ 2641 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2642 struct urb *urb, int slot_id, unsigned int ep_index) 2643 { 2644 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2645 xhci->devs[slot_id]->out_ctx, ep_index); 2646 int xhci_interval; 2647 int ep_interval; 2648 2649 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2650 ep_interval = urb->interval; 2651 /* Convert to microframes */ 2652 if (urb->dev->speed == USB_SPEED_LOW || 2653 urb->dev->speed == USB_SPEED_FULL) 2654 ep_interval *= 8; 2655 /* FIXME change this to a warning and a suggestion to use the new API 2656 * to set the polling interval (once the API is added). 2657 */ 2658 if (xhci_interval != ep_interval) { 2659 if (printk_ratelimit()) 2660 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2661 " (%d microframe%s) than xHCI " 2662 "(%d microframe%s)\n", 2663 ep_interval, 2664 ep_interval == 1 ? "" : "s", 2665 xhci_interval, 2666 xhci_interval == 1 ? "" : "s"); 2667 urb->interval = xhci_interval; 2668 /* Convert back to frames for LS/FS devices */ 2669 if (urb->dev->speed == USB_SPEED_LOW || 2670 urb->dev->speed == USB_SPEED_FULL) 2671 urb->interval /= 8; 2672 } 2673 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 2674 } 2675 2676 /* 2677 * The TD size is the number of bytes remaining in the TD (including this TRB), 2678 * right shifted by 10. 2679 * It must fit in bits 21:17, so it can't be bigger than 31. 2680 */ 2681 static u32 xhci_td_remainder(unsigned int remainder) 2682 { 2683 u32 max = (1 << (21 - 17 + 1)) - 1; 2684 2685 if ((remainder >> 10) >= max) 2686 return max << 17; 2687 else 2688 return (remainder >> 10) << 17; 2689 } 2690 2691 /* 2692 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2693 * the TD (*not* including this TRB). 2694 * 2695 * Total TD packet count = total_packet_count = 2696 * roundup(TD size in bytes / wMaxPacketSize) 2697 * 2698 * Packets transferred up to and including this TRB = packets_transferred = 2699 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2700 * 2701 * TD size = total_packet_count - packets_transferred 2702 * 2703 * It must fit in bits 21:17, so it can't be bigger than 31. 2704 */ 2705 2706 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2707 unsigned int total_packet_count, struct urb *urb) 2708 { 2709 int packets_transferred; 2710 2711 /* One TRB with a zero-length data packet. */ 2712 if (running_total == 0 && trb_buff_len == 0) 2713 return 0; 2714 2715 /* All the TRB queueing functions don't count the current TRB in 2716 * running_total. 2717 */ 2718 packets_transferred = (running_total + trb_buff_len) / 2719 usb_endpoint_maxp(&urb->ep->desc); 2720 2721 return xhci_td_remainder(total_packet_count - packets_transferred); 2722 } 2723 2724 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2725 struct urb *urb, int slot_id, unsigned int ep_index) 2726 { 2727 struct xhci_ring *ep_ring; 2728 unsigned int num_trbs; 2729 struct urb_priv *urb_priv; 2730 struct xhci_td *td; 2731 struct scatterlist *sg; 2732 int num_sgs; 2733 int trb_buff_len, this_sg_len, running_total; 2734 unsigned int total_packet_count; 2735 bool first_trb; 2736 u64 addr; 2737 bool more_trbs_coming; 2738 2739 struct xhci_generic_trb *start_trb; 2740 int start_cycle; 2741 2742 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2743 if (!ep_ring) 2744 return -EINVAL; 2745 2746 num_trbs = count_sg_trbs_needed(xhci, urb); 2747 num_sgs = urb->num_sgs; 2748 total_packet_count = roundup(urb->transfer_buffer_length, 2749 usb_endpoint_maxp(&urb->ep->desc)); 2750 2751 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2752 ep_index, urb->stream_id, 2753 num_trbs, urb, 0, false, mem_flags); 2754 if (trb_buff_len < 0) 2755 return trb_buff_len; 2756 2757 urb_priv = urb->hcpriv; 2758 td = urb_priv->td[0]; 2759 2760 /* 2761 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2762 * until we've finished creating all the other TRBs. The ring's cycle 2763 * state may change as we enqueue the other TRBs, so save it too. 2764 */ 2765 start_trb = &ep_ring->enqueue->generic; 2766 start_cycle = ep_ring->cycle_state; 2767 2768 running_total = 0; 2769 /* 2770 * How much data is in the first TRB? 2771 * 2772 * There are three forces at work for TRB buffer pointers and lengths: 2773 * 1. We don't want to walk off the end of this sg-list entry buffer. 2774 * 2. The transfer length that the driver requested may be smaller than 2775 * the amount of memory allocated for this scatter-gather list. 2776 * 3. TRBs buffers can't cross 64KB boundaries. 2777 */ 2778 sg = urb->sg; 2779 addr = (u64) sg_dma_address(sg); 2780 this_sg_len = sg_dma_len(sg); 2781 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2782 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2783 if (trb_buff_len > urb->transfer_buffer_length) 2784 trb_buff_len = urb->transfer_buffer_length; 2785 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", 2786 trb_buff_len); 2787 2788 first_trb = true; 2789 /* Queue the first TRB, even if it's zero-length */ 2790 do { 2791 u32 field = 0; 2792 u32 length_field = 0; 2793 u32 remainder = 0; 2794 2795 /* Don't change the cycle bit of the first TRB until later */ 2796 if (first_trb) { 2797 first_trb = false; 2798 if (start_cycle == 0) 2799 field |= 0x1; 2800 } else 2801 field |= ep_ring->cycle_state; 2802 2803 /* Chain all the TRBs together; clear the chain bit in the last 2804 * TRB to indicate it's the last TRB in the chain. 2805 */ 2806 if (num_trbs > 1) { 2807 field |= TRB_CHAIN; 2808 } else { 2809 /* FIXME - add check for ZERO_PACKET flag before this */ 2810 td->last_trb = ep_ring->enqueue; 2811 field |= TRB_IOC; 2812 } 2813 2814 /* Only set interrupt on short packet for IN endpoints */ 2815 if (usb_urb_dir_in(urb)) 2816 field |= TRB_ISP; 2817 2818 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " 2819 "64KB boundary at %#x, end dma = %#x\n", 2820 (unsigned int) addr, trb_buff_len, trb_buff_len, 2821 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2822 (unsigned int) addr + trb_buff_len); 2823 if (TRB_MAX_BUFF_SIZE - 2824 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2825 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2826 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2827 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2828 (unsigned int) addr + trb_buff_len); 2829 } 2830 2831 /* Set the TRB length, TD size, and interrupter fields. */ 2832 if (xhci->hci_version < 0x100) { 2833 remainder = xhci_td_remainder( 2834 urb->transfer_buffer_length - 2835 running_total); 2836 } else { 2837 remainder = xhci_v1_0_td_remainder(running_total, 2838 trb_buff_len, total_packet_count, urb); 2839 } 2840 length_field = TRB_LEN(trb_buff_len) | 2841 remainder | 2842 TRB_INTR_TARGET(0); 2843 2844 if (num_trbs > 1) 2845 more_trbs_coming = true; 2846 else 2847 more_trbs_coming = false; 2848 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 2849 lower_32_bits(addr), 2850 upper_32_bits(addr), 2851 length_field, 2852 field | TRB_TYPE(TRB_NORMAL)); 2853 --num_trbs; 2854 running_total += trb_buff_len; 2855 2856 /* Calculate length for next transfer -- 2857 * Are we done queueing all the TRBs for this sg entry? 2858 */ 2859 this_sg_len -= trb_buff_len; 2860 if (this_sg_len == 0) { 2861 --num_sgs; 2862 if (num_sgs == 0) 2863 break; 2864 sg = sg_next(sg); 2865 addr = (u64) sg_dma_address(sg); 2866 this_sg_len = sg_dma_len(sg); 2867 } else { 2868 addr += trb_buff_len; 2869 } 2870 2871 trb_buff_len = TRB_MAX_BUFF_SIZE - 2872 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2873 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2874 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2875 trb_buff_len = 2876 urb->transfer_buffer_length - running_total; 2877 } while (running_total < urb->transfer_buffer_length); 2878 2879 check_trb_math(urb, num_trbs, running_total); 2880 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2881 start_cycle, start_trb); 2882 return 0; 2883 } 2884 2885 /* This is very similar to what ehci-q.c qtd_fill() does */ 2886 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2887 struct urb *urb, int slot_id, unsigned int ep_index) 2888 { 2889 struct xhci_ring *ep_ring; 2890 struct urb_priv *urb_priv; 2891 struct xhci_td *td; 2892 int num_trbs; 2893 struct xhci_generic_trb *start_trb; 2894 bool first_trb; 2895 bool more_trbs_coming; 2896 int start_cycle; 2897 u32 field, length_field; 2898 2899 int running_total, trb_buff_len, ret; 2900 unsigned int total_packet_count; 2901 u64 addr; 2902 2903 if (urb->num_sgs) 2904 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2905 2906 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2907 if (!ep_ring) 2908 return -EINVAL; 2909 2910 num_trbs = 0; 2911 /* How much data is (potentially) left before the 64KB boundary? */ 2912 running_total = TRB_MAX_BUFF_SIZE - 2913 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2914 running_total &= TRB_MAX_BUFF_SIZE - 1; 2915 2916 /* If there's some data on this 64KB chunk, or we have to send a 2917 * zero-length transfer, we need at least one TRB 2918 */ 2919 if (running_total != 0 || urb->transfer_buffer_length == 0) 2920 num_trbs++; 2921 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2922 while (running_total < urb->transfer_buffer_length) { 2923 num_trbs++; 2924 running_total += TRB_MAX_BUFF_SIZE; 2925 } 2926 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2927 2928 if (!in_interrupt()) 2929 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), " 2930 "addr = %#llx, num_trbs = %d\n", 2931 urb->ep->desc.bEndpointAddress, 2932 urb->transfer_buffer_length, 2933 urb->transfer_buffer_length, 2934 (unsigned long long)urb->transfer_dma, 2935 num_trbs); 2936 2937 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2938 ep_index, urb->stream_id, 2939 num_trbs, urb, 0, false, mem_flags); 2940 if (ret < 0) 2941 return ret; 2942 2943 urb_priv = urb->hcpriv; 2944 td = urb_priv->td[0]; 2945 2946 /* 2947 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2948 * until we've finished creating all the other TRBs. The ring's cycle 2949 * state may change as we enqueue the other TRBs, so save it too. 2950 */ 2951 start_trb = &ep_ring->enqueue->generic; 2952 start_cycle = ep_ring->cycle_state; 2953 2954 running_total = 0; 2955 total_packet_count = roundup(urb->transfer_buffer_length, 2956 usb_endpoint_maxp(&urb->ep->desc)); 2957 /* How much data is in the first TRB? */ 2958 addr = (u64) urb->transfer_dma; 2959 trb_buff_len = TRB_MAX_BUFF_SIZE - 2960 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2961 if (trb_buff_len > urb->transfer_buffer_length) 2962 trb_buff_len = urb->transfer_buffer_length; 2963 2964 first_trb = true; 2965 2966 /* Queue the first TRB, even if it's zero-length */ 2967 do { 2968 u32 remainder = 0; 2969 field = 0; 2970 2971 /* Don't change the cycle bit of the first TRB until later */ 2972 if (first_trb) { 2973 first_trb = false; 2974 if (start_cycle == 0) 2975 field |= 0x1; 2976 } else 2977 field |= ep_ring->cycle_state; 2978 2979 /* Chain all the TRBs together; clear the chain bit in the last 2980 * TRB to indicate it's the last TRB in the chain. 2981 */ 2982 if (num_trbs > 1) { 2983 field |= TRB_CHAIN; 2984 } else { 2985 /* FIXME - add check for ZERO_PACKET flag before this */ 2986 td->last_trb = ep_ring->enqueue; 2987 field |= TRB_IOC; 2988 } 2989 2990 /* Only set interrupt on short packet for IN endpoints */ 2991 if (usb_urb_dir_in(urb)) 2992 field |= TRB_ISP; 2993 2994 /* Set the TRB length, TD size, and interrupter fields. */ 2995 if (xhci->hci_version < 0x100) { 2996 remainder = xhci_td_remainder( 2997 urb->transfer_buffer_length - 2998 running_total); 2999 } else { 3000 remainder = xhci_v1_0_td_remainder(running_total, 3001 trb_buff_len, total_packet_count, urb); 3002 } 3003 length_field = TRB_LEN(trb_buff_len) | 3004 remainder | 3005 TRB_INTR_TARGET(0); 3006 3007 if (num_trbs > 1) 3008 more_trbs_coming = true; 3009 else 3010 more_trbs_coming = false; 3011 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 3012 lower_32_bits(addr), 3013 upper_32_bits(addr), 3014 length_field, 3015 field | TRB_TYPE(TRB_NORMAL)); 3016 --num_trbs; 3017 running_total += trb_buff_len; 3018 3019 /* Calculate length for next transfer */ 3020 addr += trb_buff_len; 3021 trb_buff_len = urb->transfer_buffer_length - running_total; 3022 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3023 trb_buff_len = TRB_MAX_BUFF_SIZE; 3024 } while (running_total < urb->transfer_buffer_length); 3025 3026 check_trb_math(urb, num_trbs, running_total); 3027 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3028 start_cycle, start_trb); 3029 return 0; 3030 } 3031 3032 /* Caller must have locked xhci->lock */ 3033 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3034 struct urb *urb, int slot_id, unsigned int ep_index) 3035 { 3036 struct xhci_ring *ep_ring; 3037 int num_trbs; 3038 int ret; 3039 struct usb_ctrlrequest *setup; 3040 struct xhci_generic_trb *start_trb; 3041 int start_cycle; 3042 u32 field, length_field; 3043 struct urb_priv *urb_priv; 3044 struct xhci_td *td; 3045 3046 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3047 if (!ep_ring) 3048 return -EINVAL; 3049 3050 /* 3051 * Need to copy setup packet into setup TRB, so we can't use the setup 3052 * DMA address. 3053 */ 3054 if (!urb->setup_packet) 3055 return -EINVAL; 3056 3057 if (!in_interrupt()) 3058 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", 3059 slot_id, ep_index); 3060 /* 1 TRB for setup, 1 for status */ 3061 num_trbs = 2; 3062 /* 3063 * Don't need to check if we need additional event data and normal TRBs, 3064 * since data in control transfers will never get bigger than 16MB 3065 * XXX: can we get a buffer that crosses 64KB boundaries? 3066 */ 3067 if (urb->transfer_buffer_length > 0) 3068 num_trbs++; 3069 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3070 ep_index, urb->stream_id, 3071 num_trbs, urb, 0, false, mem_flags); 3072 if (ret < 0) 3073 return ret; 3074 3075 urb_priv = urb->hcpriv; 3076 td = urb_priv->td[0]; 3077 3078 /* 3079 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3080 * until we've finished creating all the other TRBs. The ring's cycle 3081 * state may change as we enqueue the other TRBs, so save it too. 3082 */ 3083 start_trb = &ep_ring->enqueue->generic; 3084 start_cycle = ep_ring->cycle_state; 3085 3086 /* Queue setup TRB - see section 6.4.1.2.1 */ 3087 /* FIXME better way to translate setup_packet into two u32 fields? */ 3088 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3089 field = 0; 3090 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3091 if (start_cycle == 0) 3092 field |= 0x1; 3093 3094 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3095 if (xhci->hci_version == 0x100) { 3096 if (urb->transfer_buffer_length > 0) { 3097 if (setup->bRequestType & USB_DIR_IN) 3098 field |= TRB_TX_TYPE(TRB_DATA_IN); 3099 else 3100 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3101 } 3102 } 3103 3104 queue_trb(xhci, ep_ring, false, true, false, 3105 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3106 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3107 TRB_LEN(8) | TRB_INTR_TARGET(0), 3108 /* Immediate data in pointer */ 3109 field); 3110 3111 /* If there's data, queue data TRBs */ 3112 /* Only set interrupt on short packet for IN endpoints */ 3113 if (usb_urb_dir_in(urb)) 3114 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3115 else 3116 field = TRB_TYPE(TRB_DATA); 3117 3118 length_field = TRB_LEN(urb->transfer_buffer_length) | 3119 xhci_td_remainder(urb->transfer_buffer_length) | 3120 TRB_INTR_TARGET(0); 3121 if (urb->transfer_buffer_length > 0) { 3122 if (setup->bRequestType & USB_DIR_IN) 3123 field |= TRB_DIR_IN; 3124 queue_trb(xhci, ep_ring, false, true, false, 3125 lower_32_bits(urb->transfer_dma), 3126 upper_32_bits(urb->transfer_dma), 3127 length_field, 3128 field | ep_ring->cycle_state); 3129 } 3130 3131 /* Save the DMA address of the last TRB in the TD */ 3132 td->last_trb = ep_ring->enqueue; 3133 3134 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3135 /* If the device sent data, the status stage is an OUT transfer */ 3136 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3137 field = 0; 3138 else 3139 field = TRB_DIR_IN; 3140 queue_trb(xhci, ep_ring, false, false, false, 3141 0, 3142 0, 3143 TRB_INTR_TARGET(0), 3144 /* Event on completion */ 3145 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3146 3147 giveback_first_trb(xhci, slot_id, ep_index, 0, 3148 start_cycle, start_trb); 3149 return 0; 3150 } 3151 3152 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3153 struct urb *urb, int i) 3154 { 3155 int num_trbs = 0; 3156 u64 addr, td_len; 3157 3158 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3159 td_len = urb->iso_frame_desc[i].length; 3160 3161 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3162 TRB_MAX_BUFF_SIZE); 3163 if (num_trbs == 0) 3164 num_trbs++; 3165 3166 return num_trbs; 3167 } 3168 3169 /* 3170 * The transfer burst count field of the isochronous TRB defines the number of 3171 * bursts that are required to move all packets in this TD. Only SuperSpeed 3172 * devices can burst up to bMaxBurst number of packets per service interval. 3173 * This field is zero based, meaning a value of zero in the field means one 3174 * burst. Basically, for everything but SuperSpeed devices, this field will be 3175 * zero. Only xHCI 1.0 host controllers support this field. 3176 */ 3177 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3178 struct usb_device *udev, 3179 struct urb *urb, unsigned int total_packet_count) 3180 { 3181 unsigned int max_burst; 3182 3183 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3184 return 0; 3185 3186 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3187 return roundup(total_packet_count, max_burst + 1) - 1; 3188 } 3189 3190 /* 3191 * Returns the number of packets in the last "burst" of packets. This field is 3192 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3193 * the last burst packet count is equal to the total number of packets in the 3194 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3195 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3196 * contain 1 to (bMaxBurst + 1) packets. 3197 */ 3198 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3199 struct usb_device *udev, 3200 struct urb *urb, unsigned int total_packet_count) 3201 { 3202 unsigned int max_burst; 3203 unsigned int residue; 3204 3205 if (xhci->hci_version < 0x100) 3206 return 0; 3207 3208 switch (udev->speed) { 3209 case USB_SPEED_SUPER: 3210 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3211 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3212 residue = total_packet_count % (max_burst + 1); 3213 /* If residue is zero, the last burst contains (max_burst + 1) 3214 * number of packets, but the TLBPC field is zero-based. 3215 */ 3216 if (residue == 0) 3217 return max_burst; 3218 return residue - 1; 3219 default: 3220 if (total_packet_count == 0) 3221 return 0; 3222 return total_packet_count - 1; 3223 } 3224 } 3225 3226 /* This is for isoc transfer */ 3227 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3228 struct urb *urb, int slot_id, unsigned int ep_index) 3229 { 3230 struct xhci_ring *ep_ring; 3231 struct urb_priv *urb_priv; 3232 struct xhci_td *td; 3233 int num_tds, trbs_per_td; 3234 struct xhci_generic_trb *start_trb; 3235 bool first_trb; 3236 int start_cycle; 3237 u32 field, length_field; 3238 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3239 u64 start_addr, addr; 3240 int i, j; 3241 bool more_trbs_coming; 3242 3243 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3244 3245 num_tds = urb->number_of_packets; 3246 if (num_tds < 1) { 3247 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3248 return -EINVAL; 3249 } 3250 3251 if (!in_interrupt()) 3252 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d)," 3253 " addr = %#llx, num_tds = %d\n", 3254 urb->ep->desc.bEndpointAddress, 3255 urb->transfer_buffer_length, 3256 urb->transfer_buffer_length, 3257 (unsigned long long)urb->transfer_dma, 3258 num_tds); 3259 3260 start_addr = (u64) urb->transfer_dma; 3261 start_trb = &ep_ring->enqueue->generic; 3262 start_cycle = ep_ring->cycle_state; 3263 3264 urb_priv = urb->hcpriv; 3265 /* Queue the first TRB, even if it's zero-length */ 3266 for (i = 0; i < num_tds; i++) { 3267 unsigned int total_packet_count; 3268 unsigned int burst_count; 3269 unsigned int residue; 3270 3271 first_trb = true; 3272 running_total = 0; 3273 addr = start_addr + urb->iso_frame_desc[i].offset; 3274 td_len = urb->iso_frame_desc[i].length; 3275 td_remain_len = td_len; 3276 total_packet_count = roundup(td_len, 3277 usb_endpoint_maxp(&urb->ep->desc)); 3278 /* A zero-length transfer still involves at least one packet. */ 3279 if (total_packet_count == 0) 3280 total_packet_count++; 3281 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3282 total_packet_count); 3283 residue = xhci_get_last_burst_packet_count(xhci, 3284 urb->dev, urb, total_packet_count); 3285 3286 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3287 3288 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3289 urb->stream_id, trbs_per_td, urb, i, true, 3290 mem_flags); 3291 if (ret < 0) { 3292 if (i == 0) 3293 return ret; 3294 goto cleanup; 3295 } 3296 3297 td = urb_priv->td[i]; 3298 for (j = 0; j < trbs_per_td; j++) { 3299 u32 remainder = 0; 3300 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3301 3302 if (first_trb) { 3303 /* Queue the isoc TRB */ 3304 field |= TRB_TYPE(TRB_ISOC); 3305 /* Assume URB_ISO_ASAP is set */ 3306 field |= TRB_SIA; 3307 if (i == 0) { 3308 if (start_cycle == 0) 3309 field |= 0x1; 3310 } else 3311 field |= ep_ring->cycle_state; 3312 first_trb = false; 3313 } else { 3314 /* Queue other normal TRBs */ 3315 field |= TRB_TYPE(TRB_NORMAL); 3316 field |= ep_ring->cycle_state; 3317 } 3318 3319 /* Only set interrupt on short packet for IN EPs */ 3320 if (usb_urb_dir_in(urb)) 3321 field |= TRB_ISP; 3322 3323 /* Chain all the TRBs together; clear the chain bit in 3324 * the last TRB to indicate it's the last TRB in the 3325 * chain. 3326 */ 3327 if (j < trbs_per_td - 1) { 3328 field |= TRB_CHAIN; 3329 more_trbs_coming = true; 3330 } else { 3331 td->last_trb = ep_ring->enqueue; 3332 field |= TRB_IOC; 3333 if (xhci->hci_version == 0x100) { 3334 /* Set BEI bit except for the last td */ 3335 if (i < num_tds - 1) 3336 field |= TRB_BEI; 3337 } 3338 more_trbs_coming = false; 3339 } 3340 3341 /* Calculate TRB length */ 3342 trb_buff_len = TRB_MAX_BUFF_SIZE - 3343 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3344 if (trb_buff_len > td_remain_len) 3345 trb_buff_len = td_remain_len; 3346 3347 /* Set the TRB length, TD size, & interrupter fields. */ 3348 if (xhci->hci_version < 0x100) { 3349 remainder = xhci_td_remainder( 3350 td_len - running_total); 3351 } else { 3352 remainder = xhci_v1_0_td_remainder( 3353 running_total, trb_buff_len, 3354 total_packet_count, urb); 3355 } 3356 length_field = TRB_LEN(trb_buff_len) | 3357 remainder | 3358 TRB_INTR_TARGET(0); 3359 3360 queue_trb(xhci, ep_ring, false, more_trbs_coming, true, 3361 lower_32_bits(addr), 3362 upper_32_bits(addr), 3363 length_field, 3364 field); 3365 running_total += trb_buff_len; 3366 3367 addr += trb_buff_len; 3368 td_remain_len -= trb_buff_len; 3369 } 3370 3371 /* Check TD length */ 3372 if (running_total != td_len) { 3373 xhci_err(xhci, "ISOC TD length unmatch\n"); 3374 return -EINVAL; 3375 } 3376 } 3377 3378 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3379 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3380 usb_amd_quirk_pll_disable(); 3381 } 3382 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3383 3384 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3385 start_cycle, start_trb); 3386 return 0; 3387 cleanup: 3388 /* Clean up a partially enqueued isoc transfer. */ 3389 3390 for (i--; i >= 0; i--) 3391 list_del_init(&urb_priv->td[i]->td_list); 3392 3393 /* Use the first TD as a temporary variable to turn the TDs we've queued 3394 * into No-ops with a software-owned cycle bit. That way the hardware 3395 * won't accidentally start executing bogus TDs when we partially 3396 * overwrite them. td->first_trb and td->start_seg are already set. 3397 */ 3398 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3399 /* Every TRB except the first & last will have its cycle bit flipped. */ 3400 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3401 3402 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3403 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3404 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3405 ep_ring->cycle_state = start_cycle; 3406 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3407 return ret; 3408 } 3409 3410 /* 3411 * Check transfer ring to guarantee there is enough room for the urb. 3412 * Update ISO URB start_frame and interval. 3413 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3414 * update the urb->start_frame by now. 3415 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3416 */ 3417 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3418 struct urb *urb, int slot_id, unsigned int ep_index) 3419 { 3420 struct xhci_virt_device *xdev; 3421 struct xhci_ring *ep_ring; 3422 struct xhci_ep_ctx *ep_ctx; 3423 int start_frame; 3424 int xhci_interval; 3425 int ep_interval; 3426 int num_tds, num_trbs, i; 3427 int ret; 3428 3429 xdev = xhci->devs[slot_id]; 3430 ep_ring = xdev->eps[ep_index].ring; 3431 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3432 3433 num_trbs = 0; 3434 num_tds = urb->number_of_packets; 3435 for (i = 0; i < num_tds; i++) 3436 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3437 3438 /* Check the ring to guarantee there is enough room for the whole urb. 3439 * Do not insert any td of the urb to the ring if the check failed. 3440 */ 3441 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3442 num_trbs, true, mem_flags); 3443 if (ret) 3444 return ret; 3445 3446 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3447 start_frame &= 0x3fff; 3448 3449 urb->start_frame = start_frame; 3450 if (urb->dev->speed == USB_SPEED_LOW || 3451 urb->dev->speed == USB_SPEED_FULL) 3452 urb->start_frame >>= 3; 3453 3454 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3455 ep_interval = urb->interval; 3456 /* Convert to microframes */ 3457 if (urb->dev->speed == USB_SPEED_LOW || 3458 urb->dev->speed == USB_SPEED_FULL) 3459 ep_interval *= 8; 3460 /* FIXME change this to a warning and a suggestion to use the new API 3461 * to set the polling interval (once the API is added). 3462 */ 3463 if (xhci_interval != ep_interval) { 3464 if (printk_ratelimit()) 3465 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3466 " (%d microframe%s) than xHCI " 3467 "(%d microframe%s)\n", 3468 ep_interval, 3469 ep_interval == 1 ? "" : "s", 3470 xhci_interval, 3471 xhci_interval == 1 ? "" : "s"); 3472 urb->interval = xhci_interval; 3473 /* Convert back to frames for LS/FS devices */ 3474 if (urb->dev->speed == USB_SPEED_LOW || 3475 urb->dev->speed == USB_SPEED_FULL) 3476 urb->interval /= 8; 3477 } 3478 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 3479 } 3480 3481 /**** Command Ring Operations ****/ 3482 3483 /* Generic function for queueing a command TRB on the command ring. 3484 * Check to make sure there's room on the command ring for one command TRB. 3485 * Also check that there's room reserved for commands that must not fail. 3486 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3487 * then only check for the number of reserved spots. 3488 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3489 * because the command event handler may want to resubmit a failed command. 3490 */ 3491 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3492 u32 field3, u32 field4, bool command_must_succeed) 3493 { 3494 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3495 int ret; 3496 3497 if (!command_must_succeed) 3498 reserved_trbs++; 3499 3500 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3501 reserved_trbs, false, GFP_ATOMIC); 3502 if (ret < 0) { 3503 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3504 if (command_must_succeed) 3505 xhci_err(xhci, "ERR: Reserved TRB counting for " 3506 "unfailable commands failed.\n"); 3507 return ret; 3508 } 3509 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2, 3510 field3, field4 | xhci->cmd_ring->cycle_state); 3511 return 0; 3512 } 3513 3514 /* Queue a slot enable or disable request on the command ring */ 3515 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3516 { 3517 return queue_command(xhci, 0, 0, 0, 3518 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3519 } 3520 3521 /* Queue an address device command TRB */ 3522 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3523 u32 slot_id) 3524 { 3525 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3526 upper_32_bits(in_ctx_ptr), 0, 3527 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3528 false); 3529 } 3530 3531 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3532 u32 field1, u32 field2, u32 field3, u32 field4) 3533 { 3534 return queue_command(xhci, field1, field2, field3, field4, false); 3535 } 3536 3537 /* Queue a reset device command TRB */ 3538 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3539 { 3540 return queue_command(xhci, 0, 0, 0, 3541 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3542 false); 3543 } 3544 3545 /* Queue a configure endpoint command TRB */ 3546 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3547 u32 slot_id, bool command_must_succeed) 3548 { 3549 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3550 upper_32_bits(in_ctx_ptr), 0, 3551 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3552 command_must_succeed); 3553 } 3554 3555 /* Queue an evaluate context command TRB */ 3556 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3557 u32 slot_id) 3558 { 3559 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3560 upper_32_bits(in_ctx_ptr), 0, 3561 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3562 false); 3563 } 3564 3565 /* 3566 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3567 * activity on an endpoint that is about to be suspended. 3568 */ 3569 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3570 unsigned int ep_index, int suspend) 3571 { 3572 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3573 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3574 u32 type = TRB_TYPE(TRB_STOP_RING); 3575 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3576 3577 return queue_command(xhci, 0, 0, 0, 3578 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3579 } 3580 3581 /* Set Transfer Ring Dequeue Pointer command. 3582 * This should not be used for endpoints that have streams enabled. 3583 */ 3584 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3585 unsigned int ep_index, unsigned int stream_id, 3586 struct xhci_segment *deq_seg, 3587 union xhci_trb *deq_ptr, u32 cycle_state) 3588 { 3589 dma_addr_t addr; 3590 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3591 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3592 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3593 u32 type = TRB_TYPE(TRB_SET_DEQ); 3594 struct xhci_virt_ep *ep; 3595 3596 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3597 if (addr == 0) { 3598 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3599 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3600 deq_seg, deq_ptr); 3601 return 0; 3602 } 3603 ep = &xhci->devs[slot_id]->eps[ep_index]; 3604 if ((ep->ep_state & SET_DEQ_PENDING)) { 3605 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3606 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3607 return 0; 3608 } 3609 ep->queued_deq_seg = deq_seg; 3610 ep->queued_deq_ptr = deq_ptr; 3611 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3612 upper_32_bits(addr), trb_stream_id, 3613 trb_slot_id | trb_ep_index | type, false); 3614 } 3615 3616 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3617 unsigned int ep_index) 3618 { 3619 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3620 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3621 u32 type = TRB_TYPE(TRB_RESET_EP); 3622 3623 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3624 false); 3625 } 3626