xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 615c36f5)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 		struct xhci_virt_device *virt_dev,
73 		struct xhci_event_cmd *event);
74 
75 /*
76  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77  * address of the TRB.
78  */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 		union xhci_trb *trb)
81 {
82 	unsigned long segment_offset;
83 
84 	if (!seg || !trb || trb < seg->trbs)
85 		return 0;
86 	/* offset in TRBs */
87 	segment_offset = trb - seg->trbs;
88 	if (segment_offset > TRBS_PER_SEGMENT)
89 		return 0;
90 	return seg->dma + (segment_offset * sizeof(*trb));
91 }
92 
93 /* Does this link TRB point to the first segment in a ring,
94  * or was the previous TRB the last TRB on the last segment in the ERST?
95  */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 		struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 	if (ring == xhci->event_ring)
100 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 			(seg->next == xhci->event_ring->first_seg);
102 	else
103 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107  * segment?  I.e. would the updated event TRB pointer step off the end of the
108  * event seg?
109  */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 		struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 	if (ring == xhci->event_ring)
114 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 	else
116 		return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118 
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 	struct xhci_link_trb *link = &ring->enqueue->link;
122 	return TRB_TYPE_LINK_LE32(link->control);
123 }
124 
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
127  * effect the ring dequeue or enqueue pointers.
128  */
129 static void next_trb(struct xhci_hcd *xhci,
130 		struct xhci_ring *ring,
131 		struct xhci_segment **seg,
132 		union xhci_trb **trb)
133 {
134 	if (last_trb(xhci, ring, *seg, *trb)) {
135 		*seg = (*seg)->next;
136 		*trb = ((*seg)->trbs);
137 	} else {
138 		(*trb)++;
139 	}
140 }
141 
142 /*
143  * See Cycle bit rules. SW is the consumer for the event ring only.
144  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
145  */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 	union xhci_trb *next = ++(ring->dequeue);
149 	unsigned long long addr;
150 
151 	ring->deq_updates++;
152 	/* Update the dequeue pointer further if that was a link TRB or we're at
153 	 * the end of an event ring segment (which doesn't have link TRBS)
154 	 */
155 	while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 		if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 			ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 			if (!in_interrupt())
159 				xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 						ring,
161 						(unsigned int) ring->cycle_state);
162 		}
163 		ring->deq_seg = ring->deq_seg->next;
164 		ring->dequeue = ring->deq_seg->trbs;
165 		next = ring->dequeue;
166 	}
167 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 }
169 
170 /*
171  * See Cycle bit rules. SW is the consumer for the event ring only.
172  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
173  *
174  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175  * chain bit is set), then set the chain bit in all the following link TRBs.
176  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177  * have their chain bit cleared (so that each Link TRB is a separate TD).
178  *
179  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180  * set, but other sections talk about dealing with the chain bit set.  This was
181  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
183  *
184  * @more_trbs_coming:	Will you enqueue more TRBs before calling
185  *			prepare_transfer()?
186  */
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 		bool consumer, bool more_trbs_coming, bool isoc)
189 {
190 	u32 chain;
191 	union xhci_trb *next;
192 	unsigned long long addr;
193 
194 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 	next = ++(ring->enqueue);
196 
197 	ring->enq_updates++;
198 	/* Update the dequeue pointer further if that was a link TRB or we're at
199 	 * the end of an event ring segment (which doesn't have link TRBS)
200 	 */
201 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 		if (!consumer) {
203 			if (ring != xhci->event_ring) {
204 				/*
205 				 * If the caller doesn't plan on enqueueing more
206 				 * TDs before ringing the doorbell, then we
207 				 * don't want to give the link TRB to the
208 				 * hardware just yet.  We'll give the link TRB
209 				 * back in prepare_ring() just before we enqueue
210 				 * the TD at the top of the ring.
211 				 */
212 				if (!chain && !more_trbs_coming)
213 					break;
214 
215 				/* If we're not dealing with 0.95 hardware or
216 				 * isoc rings on AMD 0.96 host,
217 				 * carry over the chain bit of the previous TRB
218 				 * (which may mean the chain bit is cleared).
219 				 */
220 				if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))
221 						&& !xhci_link_trb_quirk(xhci)) {
222 					next->link.control &=
223 						cpu_to_le32(~TRB_CHAIN);
224 					next->link.control |=
225 						cpu_to_le32(chain);
226 				}
227 				/* Give this link TRB to the hardware */
228 				wmb();
229 				next->link.control ^= cpu_to_le32(TRB_CYCLE);
230 			}
231 			/* Toggle the cycle bit after the last ring segment. */
232 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
233 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
234 				if (!in_interrupt())
235 					xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
236 							ring,
237 							(unsigned int) ring->cycle_state);
238 			}
239 		}
240 		ring->enq_seg = ring->enq_seg->next;
241 		ring->enqueue = ring->enq_seg->trbs;
242 		next = ring->enqueue;
243 	}
244 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
245 }
246 
247 /*
248  * Check to see if there's room to enqueue num_trbs on the ring.  See rules
249  * above.
250  * FIXME: this would be simpler and faster if we just kept track of the number
251  * of free TRBs in a ring.
252  */
253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
254 		unsigned int num_trbs)
255 {
256 	int i;
257 	union xhci_trb *enq = ring->enqueue;
258 	struct xhci_segment *enq_seg = ring->enq_seg;
259 	struct xhci_segment *cur_seg;
260 	unsigned int left_on_ring;
261 
262 	/* If we are currently pointing to a link TRB, advance the
263 	 * enqueue pointer before checking for space */
264 	while (last_trb(xhci, ring, enq_seg, enq)) {
265 		enq_seg = enq_seg->next;
266 		enq = enq_seg->trbs;
267 	}
268 
269 	/* Check if ring is empty */
270 	if (enq == ring->dequeue) {
271 		/* Can't use link trbs */
272 		left_on_ring = TRBS_PER_SEGMENT - 1;
273 		for (cur_seg = enq_seg->next; cur_seg != enq_seg;
274 				cur_seg = cur_seg->next)
275 			left_on_ring += TRBS_PER_SEGMENT - 1;
276 
277 		/* Always need one TRB free in the ring. */
278 		left_on_ring -= 1;
279 		if (num_trbs > left_on_ring) {
280 			xhci_warn(xhci, "Not enough room on ring; "
281 					"need %u TRBs, %u TRBs left\n",
282 					num_trbs, left_on_ring);
283 			return 0;
284 		}
285 		return 1;
286 	}
287 	/* Make sure there's an extra empty TRB available */
288 	for (i = 0; i <= num_trbs; ++i) {
289 		if (enq == ring->dequeue)
290 			return 0;
291 		enq++;
292 		while (last_trb(xhci, ring, enq_seg, enq)) {
293 			enq_seg = enq_seg->next;
294 			enq = enq_seg->trbs;
295 		}
296 	}
297 	return 1;
298 }
299 
300 /* Ring the host controller doorbell after placing a command on the ring */
301 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
302 {
303 	xhci_dbg(xhci, "// Ding dong!\n");
304 	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
305 	/* Flush PCI posted writes */
306 	xhci_readl(xhci, &xhci->dba->doorbell[0]);
307 }
308 
309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
310 		unsigned int slot_id,
311 		unsigned int ep_index,
312 		unsigned int stream_id)
313 {
314 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
315 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
316 	unsigned int ep_state = ep->ep_state;
317 
318 	/* Don't ring the doorbell for this endpoint if there are pending
319 	 * cancellations because we don't want to interrupt processing.
320 	 * We don't want to restart any stream rings if there's a set dequeue
321 	 * pointer command pending because the device can choose to start any
322 	 * stream once the endpoint is on the HW schedule.
323 	 * FIXME - check all the stream rings for pending cancellations.
324 	 */
325 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
326 	    (ep_state & EP_HALTED))
327 		return;
328 	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
329 	/* The CPU has better things to do at this point than wait for a
330 	 * write-posting flush.  It'll get there soon enough.
331 	 */
332 }
333 
334 /* Ring the doorbell for any rings with pending URBs */
335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
336 		unsigned int slot_id,
337 		unsigned int ep_index)
338 {
339 	unsigned int stream_id;
340 	struct xhci_virt_ep *ep;
341 
342 	ep = &xhci->devs[slot_id]->eps[ep_index];
343 
344 	/* A ring has pending URBs if its TD list is not empty */
345 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
346 		if (!(list_empty(&ep->ring->td_list)))
347 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
348 		return;
349 	}
350 
351 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
352 			stream_id++) {
353 		struct xhci_stream_info *stream_info = ep->stream_info;
354 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
355 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
356 						stream_id);
357 	}
358 }
359 
360 /*
361  * Find the segment that trb is in.  Start searching in start_seg.
362  * If we must move past a segment that has a link TRB with a toggle cycle state
363  * bit set, then we will toggle the value pointed at by cycle_state.
364  */
365 static struct xhci_segment *find_trb_seg(
366 		struct xhci_segment *start_seg,
367 		union xhci_trb	*trb, int *cycle_state)
368 {
369 	struct xhci_segment *cur_seg = start_seg;
370 	struct xhci_generic_trb *generic_trb;
371 
372 	while (cur_seg->trbs > trb ||
373 			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
374 		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
375 		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
376 			*cycle_state ^= 0x1;
377 		cur_seg = cur_seg->next;
378 		if (cur_seg == start_seg)
379 			/* Looped over the entire list.  Oops! */
380 			return NULL;
381 	}
382 	return cur_seg;
383 }
384 
385 
386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
387 		unsigned int slot_id, unsigned int ep_index,
388 		unsigned int stream_id)
389 {
390 	struct xhci_virt_ep *ep;
391 
392 	ep = &xhci->devs[slot_id]->eps[ep_index];
393 	/* Common case: no streams */
394 	if (!(ep->ep_state & EP_HAS_STREAMS))
395 		return ep->ring;
396 
397 	if (stream_id == 0) {
398 		xhci_warn(xhci,
399 				"WARN: Slot ID %u, ep index %u has streams, "
400 				"but URB has no stream ID.\n",
401 				slot_id, ep_index);
402 		return NULL;
403 	}
404 
405 	if (stream_id < ep->stream_info->num_streams)
406 		return ep->stream_info->stream_rings[stream_id];
407 
408 	xhci_warn(xhci,
409 			"WARN: Slot ID %u, ep index %u has "
410 			"stream IDs 1 to %u allocated, "
411 			"but stream ID %u is requested.\n",
412 			slot_id, ep_index,
413 			ep->stream_info->num_streams - 1,
414 			stream_id);
415 	return NULL;
416 }
417 
418 /* Get the right ring for the given URB.
419  * If the endpoint supports streams, boundary check the URB's stream ID.
420  * If the endpoint doesn't support streams, return the singular endpoint ring.
421  */
422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
423 		struct urb *urb)
424 {
425 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
426 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
427 }
428 
429 /*
430  * Move the xHC's endpoint ring dequeue pointer past cur_td.
431  * Record the new state of the xHC's endpoint ring dequeue segment,
432  * dequeue pointer, and new consumer cycle state in state.
433  * Update our internal representation of the ring's dequeue pointer.
434  *
435  * We do this in three jumps:
436  *  - First we update our new ring state to be the same as when the xHC stopped.
437  *  - Then we traverse the ring to find the segment that contains
438  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
439  *    any link TRBs with the toggle cycle bit set.
440  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
441  *    if we've moved it past a link TRB with the toggle cycle bit set.
442  *
443  * Some of the uses of xhci_generic_trb are grotty, but if they're done
444  * with correct __le32 accesses they should work fine.  Only users of this are
445  * in here.
446  */
447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
448 		unsigned int slot_id, unsigned int ep_index,
449 		unsigned int stream_id, struct xhci_td *cur_td,
450 		struct xhci_dequeue_state *state)
451 {
452 	struct xhci_virt_device *dev = xhci->devs[slot_id];
453 	struct xhci_ring *ep_ring;
454 	struct xhci_generic_trb *trb;
455 	struct xhci_ep_ctx *ep_ctx;
456 	dma_addr_t addr;
457 
458 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
459 			ep_index, stream_id);
460 	if (!ep_ring) {
461 		xhci_warn(xhci, "WARN can't find new dequeue state "
462 				"for invalid stream ID %u.\n",
463 				stream_id);
464 		return;
465 	}
466 	state->new_cycle_state = 0;
467 	xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
468 	state->new_deq_seg = find_trb_seg(cur_td->start_seg,
469 			dev->eps[ep_index].stopped_trb,
470 			&state->new_cycle_state);
471 	if (!state->new_deq_seg) {
472 		WARN_ON(1);
473 		return;
474 	}
475 
476 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
477 	xhci_dbg(xhci, "Finding endpoint context\n");
478 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
479 	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
480 
481 	state->new_deq_ptr = cur_td->last_trb;
482 	xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
483 	state->new_deq_seg = find_trb_seg(state->new_deq_seg,
484 			state->new_deq_ptr,
485 			&state->new_cycle_state);
486 	if (!state->new_deq_seg) {
487 		WARN_ON(1);
488 		return;
489 	}
490 
491 	trb = &state->new_deq_ptr->generic;
492 	if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
493 	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
494 		state->new_cycle_state ^= 0x1;
495 	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
496 
497 	/*
498 	 * If there is only one segment in a ring, find_trb_seg()'s while loop
499 	 * will not run, and it will return before it has a chance to see if it
500 	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer
501 	 * ended just before the link TRB on a one-segment ring, or if the TD
502 	 * wrapped around the top of the ring, because it doesn't have the TD in
503 	 * question.  Look for the one-segment case where stalled TRB's address
504 	 * is greater than the new dequeue pointer address.
505 	 */
506 	if (ep_ring->first_seg == ep_ring->first_seg->next &&
507 			state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
508 		state->new_cycle_state ^= 0x1;
509 	xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
510 
511 	/* Don't update the ring cycle state for the producer (us). */
512 	xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
513 			state->new_deq_seg);
514 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
515 	xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
516 			(unsigned long long) addr);
517 }
518 
519 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
520  * (The last TRB actually points to the ring enqueue pointer, which is not part
521  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
522  */
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 		struct xhci_td *cur_td, bool flip_cycle)
525 {
526 	struct xhci_segment *cur_seg;
527 	union xhci_trb *cur_trb;
528 
529 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 			true;
531 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
533 			/* Unchain any chained Link TRBs, but
534 			 * leave the pointers intact.
535 			 */
536 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
537 			/* Flip the cycle bit (link TRBs can't be the first
538 			 * or last TRB).
539 			 */
540 			if (flip_cycle)
541 				cur_trb->generic.field[3] ^=
542 					cpu_to_le32(TRB_CYCLE);
543 			xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
544 			xhci_dbg(xhci, "Address = %p (0x%llx dma); "
545 					"in seg %p (0x%llx dma)\n",
546 					cur_trb,
547 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
548 					cur_seg,
549 					(unsigned long long)cur_seg->dma);
550 		} else {
551 			cur_trb->generic.field[0] = 0;
552 			cur_trb->generic.field[1] = 0;
553 			cur_trb->generic.field[2] = 0;
554 			/* Preserve only the cycle bit of this TRB */
555 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
556 			/* Flip the cycle bit except on the first or last TRB */
557 			if (flip_cycle && cur_trb != cur_td->first_trb &&
558 					cur_trb != cur_td->last_trb)
559 				cur_trb->generic.field[3] ^=
560 					cpu_to_le32(TRB_CYCLE);
561 			cur_trb->generic.field[3] |= cpu_to_le32(
562 				TRB_TYPE(TRB_TR_NOOP));
563 			xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
564 					"in seg %p (0x%llx dma)\n",
565 					cur_trb,
566 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
567 					cur_seg,
568 					(unsigned long long)cur_seg->dma);
569 		}
570 		if (cur_trb == cur_td->last_trb)
571 			break;
572 	}
573 }
574 
575 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
576 		unsigned int ep_index, unsigned int stream_id,
577 		struct xhci_segment *deq_seg,
578 		union xhci_trb *deq_ptr, u32 cycle_state);
579 
580 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
581 		unsigned int slot_id, unsigned int ep_index,
582 		unsigned int stream_id,
583 		struct xhci_dequeue_state *deq_state)
584 {
585 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
586 
587 	xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
588 			"new deq ptr = %p (0x%llx dma), new cycle = %u\n",
589 			deq_state->new_deq_seg,
590 			(unsigned long long)deq_state->new_deq_seg->dma,
591 			deq_state->new_deq_ptr,
592 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
593 			deq_state->new_cycle_state);
594 	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
595 			deq_state->new_deq_seg,
596 			deq_state->new_deq_ptr,
597 			(u32) deq_state->new_cycle_state);
598 	/* Stop the TD queueing code from ringing the doorbell until
599 	 * this command completes.  The HC won't set the dequeue pointer
600 	 * if the ring is running, and ringing the doorbell starts the
601 	 * ring running.
602 	 */
603 	ep->ep_state |= SET_DEQ_PENDING;
604 }
605 
606 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
607 		struct xhci_virt_ep *ep)
608 {
609 	ep->ep_state &= ~EP_HALT_PENDING;
610 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
611 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
612 	 * (since we didn't successfully stop the watchdog timer).
613 	 */
614 	if (del_timer(&ep->stop_cmd_timer))
615 		ep->stop_cmds_pending--;
616 }
617 
618 /* Must be called with xhci->lock held in interrupt context */
619 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
620 		struct xhci_td *cur_td, int status, char *adjective)
621 {
622 	struct usb_hcd *hcd;
623 	struct urb	*urb;
624 	struct urb_priv	*urb_priv;
625 
626 	urb = cur_td->urb;
627 	urb_priv = urb->hcpriv;
628 	urb_priv->td_cnt++;
629 	hcd = bus_to_hcd(urb->dev->bus);
630 
631 	/* Only giveback urb when this is the last td in urb */
632 	if (urb_priv->td_cnt == urb_priv->length) {
633 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
634 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
635 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
636 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 					usb_amd_quirk_pll_enable();
638 			}
639 		}
640 		usb_hcd_unlink_urb_from_ep(hcd, urb);
641 
642 		spin_unlock(&xhci->lock);
643 		usb_hcd_giveback_urb(hcd, urb, status);
644 		xhci_urb_free_priv(xhci, urb_priv);
645 		spin_lock(&xhci->lock);
646 	}
647 }
648 
649 /*
650  * When we get a command completion for a Stop Endpoint Command, we need to
651  * unlink any cancelled TDs from the ring.  There are two ways to do that:
652  *
653  *  1. If the HW was in the middle of processing the TD that needs to be
654  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
655  *     in the TD with a Set Dequeue Pointer Command.
656  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657  *     bit cleared) so that the HW will skip over them.
658  */
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 		union xhci_trb *trb, struct xhci_event_cmd *event)
661 {
662 	unsigned int slot_id;
663 	unsigned int ep_index;
664 	struct xhci_virt_device *virt_dev;
665 	struct xhci_ring *ep_ring;
666 	struct xhci_virt_ep *ep;
667 	struct list_head *entry;
668 	struct xhci_td *cur_td = NULL;
669 	struct xhci_td *last_unlinked_td;
670 
671 	struct xhci_dequeue_state deq_state;
672 
673 	if (unlikely(TRB_TO_SUSPEND_PORT(
674 			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 		slot_id = TRB_TO_SLOT_ID(
676 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 		virt_dev = xhci->devs[slot_id];
678 		if (virt_dev)
679 			handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 				event);
681 		else
682 			xhci_warn(xhci, "Stop endpoint command "
683 				"completion for disabled slot %u\n",
684 				slot_id);
685 		return;
686 	}
687 
688 	memset(&deq_state, 0, sizeof(deq_state));
689 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 	ep = &xhci->devs[slot_id]->eps[ep_index];
692 
693 	if (list_empty(&ep->cancelled_td_list)) {
694 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 		ep->stopped_td = NULL;
696 		ep->stopped_trb = NULL;
697 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
698 		return;
699 	}
700 
701 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
702 	 * We have the xHCI lock, so nothing can modify this list until we drop
703 	 * it.  We're also in the event handler, so we can't get re-interrupted
704 	 * if another Stop Endpoint command completes
705 	 */
706 	list_for_each(entry, &ep->cancelled_td_list) {
707 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
708 		xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
709 				cur_td->first_trb,
710 				(unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
711 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
712 		if (!ep_ring) {
713 			/* This shouldn't happen unless a driver is mucking
714 			 * with the stream ID after submission.  This will
715 			 * leave the TD on the hardware ring, and the hardware
716 			 * will try to execute it, and may access a buffer
717 			 * that has already been freed.  In the best case, the
718 			 * hardware will execute it, and the event handler will
719 			 * ignore the completion event for that TD, since it was
720 			 * removed from the td_list for that endpoint.  In
721 			 * short, don't muck with the stream ID after
722 			 * submission.
723 			 */
724 			xhci_warn(xhci, "WARN Cancelled URB %p "
725 					"has invalid stream ID %u.\n",
726 					cur_td->urb,
727 					cur_td->urb->stream_id);
728 			goto remove_finished_td;
729 		}
730 		/*
731 		 * If we stopped on the TD we need to cancel, then we have to
732 		 * move the xHC endpoint ring dequeue pointer past this TD.
733 		 */
734 		if (cur_td == ep->stopped_td)
735 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
736 					cur_td->urb->stream_id,
737 					cur_td, &deq_state);
738 		else
739 			td_to_noop(xhci, ep_ring, cur_td, false);
740 remove_finished_td:
741 		/*
742 		 * The event handler won't see a completion for this TD anymore,
743 		 * so remove it from the endpoint ring's TD list.  Keep it in
744 		 * the cancelled TD list for URB completion later.
745 		 */
746 		list_del_init(&cur_td->td_list);
747 	}
748 	last_unlinked_td = cur_td;
749 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
750 
751 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
752 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
753 		xhci_queue_new_dequeue_state(xhci,
754 				slot_id, ep_index,
755 				ep->stopped_td->urb->stream_id,
756 				&deq_state);
757 		xhci_ring_cmd_db(xhci);
758 	} else {
759 		/* Otherwise ring the doorbell(s) to restart queued transfers */
760 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
761 	}
762 	ep->stopped_td = NULL;
763 	ep->stopped_trb = NULL;
764 
765 	/*
766 	 * Drop the lock and complete the URBs in the cancelled TD list.
767 	 * New TDs to be cancelled might be added to the end of the list before
768 	 * we can complete all the URBs for the TDs we already unlinked.
769 	 * So stop when we've completed the URB for the last TD we unlinked.
770 	 */
771 	do {
772 		cur_td = list_entry(ep->cancelled_td_list.next,
773 				struct xhci_td, cancelled_td_list);
774 		list_del_init(&cur_td->cancelled_td_list);
775 
776 		/* Clean up the cancelled URB */
777 		/* Doesn't matter what we pass for status, since the core will
778 		 * just overwrite it (because the URB has been unlinked).
779 		 */
780 		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
781 
782 		/* Stop processing the cancelled list if the watchdog timer is
783 		 * running.
784 		 */
785 		if (xhci->xhc_state & XHCI_STATE_DYING)
786 			return;
787 	} while (cur_td != last_unlinked_td);
788 
789 	/* Return to the event handler with xhci->lock re-acquired */
790 }
791 
792 /* Watchdog timer function for when a stop endpoint command fails to complete.
793  * In this case, we assume the host controller is broken or dying or dead.  The
794  * host may still be completing some other events, so we have to be careful to
795  * let the event ring handler and the URB dequeueing/enqueueing functions know
796  * through xhci->state.
797  *
798  * The timer may also fire if the host takes a very long time to respond to the
799  * command, and the stop endpoint command completion handler cannot delete the
800  * timer before the timer function is called.  Another endpoint cancellation may
801  * sneak in before the timer function can grab the lock, and that may queue
802  * another stop endpoint command and add the timer back.  So we cannot use a
803  * simple flag to say whether there is a pending stop endpoint command for a
804  * particular endpoint.
805  *
806  * Instead we use a combination of that flag and a counter for the number of
807  * pending stop endpoint commands.  If the timer is the tail end of the last
808  * stop endpoint command, and the endpoint's command is still pending, we assume
809  * the host is dying.
810  */
811 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
812 {
813 	struct xhci_hcd *xhci;
814 	struct xhci_virt_ep *ep;
815 	struct xhci_virt_ep *temp_ep;
816 	struct xhci_ring *ring;
817 	struct xhci_td *cur_td;
818 	int ret, i, j;
819 
820 	ep = (struct xhci_virt_ep *) arg;
821 	xhci = ep->xhci;
822 
823 	spin_lock(&xhci->lock);
824 
825 	ep->stop_cmds_pending--;
826 	if (xhci->xhc_state & XHCI_STATE_DYING) {
827 		xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
828 				"xHCI as DYING, exiting.\n");
829 		spin_unlock(&xhci->lock);
830 		return;
831 	}
832 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
833 		xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
834 				"exiting.\n");
835 		spin_unlock(&xhci->lock);
836 		return;
837 	}
838 
839 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
840 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
841 	/* Oops, HC is dead or dying or at least not responding to the stop
842 	 * endpoint command.
843 	 */
844 	xhci->xhc_state |= XHCI_STATE_DYING;
845 	/* Disable interrupts from the host controller and start halting it */
846 	xhci_quiesce(xhci);
847 	spin_unlock(&xhci->lock);
848 
849 	ret = xhci_halt(xhci);
850 
851 	spin_lock(&xhci->lock);
852 	if (ret < 0) {
853 		/* This is bad; the host is not responding to commands and it's
854 		 * not allowing itself to be halted.  At least interrupts are
855 		 * disabled. If we call usb_hc_died(), it will attempt to
856 		 * disconnect all device drivers under this host.  Those
857 		 * disconnect() methods will wait for all URBs to be unlinked,
858 		 * so we must complete them.
859 		 */
860 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
861 		xhci_warn(xhci, "Completing active URBs anyway.\n");
862 		/* We could turn all TDs on the rings to no-ops.  This won't
863 		 * help if the host has cached part of the ring, and is slow if
864 		 * we want to preserve the cycle bit.  Skip it and hope the host
865 		 * doesn't touch the memory.
866 		 */
867 	}
868 	for (i = 0; i < MAX_HC_SLOTS; i++) {
869 		if (!xhci->devs[i])
870 			continue;
871 		for (j = 0; j < 31; j++) {
872 			temp_ep = &xhci->devs[i]->eps[j];
873 			ring = temp_ep->ring;
874 			if (!ring)
875 				continue;
876 			xhci_dbg(xhci, "Killing URBs for slot ID %u, "
877 					"ep index %u\n", i, j);
878 			while (!list_empty(&ring->td_list)) {
879 				cur_td = list_first_entry(&ring->td_list,
880 						struct xhci_td,
881 						td_list);
882 				list_del_init(&cur_td->td_list);
883 				if (!list_empty(&cur_td->cancelled_td_list))
884 					list_del_init(&cur_td->cancelled_td_list);
885 				xhci_giveback_urb_in_irq(xhci, cur_td,
886 						-ESHUTDOWN, "killed");
887 			}
888 			while (!list_empty(&temp_ep->cancelled_td_list)) {
889 				cur_td = list_first_entry(
890 						&temp_ep->cancelled_td_list,
891 						struct xhci_td,
892 						cancelled_td_list);
893 				list_del_init(&cur_td->cancelled_td_list);
894 				xhci_giveback_urb_in_irq(xhci, cur_td,
895 						-ESHUTDOWN, "killed");
896 			}
897 		}
898 	}
899 	spin_unlock(&xhci->lock);
900 	xhci_dbg(xhci, "Calling usb_hc_died()\n");
901 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
902 	xhci_dbg(xhci, "xHCI host controller is dead.\n");
903 }
904 
905 /*
906  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
907  * we need to clear the set deq pending flag in the endpoint ring state, so that
908  * the TD queueing code can ring the doorbell again.  We also need to ring the
909  * endpoint doorbell to restart the ring, but only if there aren't more
910  * cancellations pending.
911  */
912 static void handle_set_deq_completion(struct xhci_hcd *xhci,
913 		struct xhci_event_cmd *event,
914 		union xhci_trb *trb)
915 {
916 	unsigned int slot_id;
917 	unsigned int ep_index;
918 	unsigned int stream_id;
919 	struct xhci_ring *ep_ring;
920 	struct xhci_virt_device *dev;
921 	struct xhci_ep_ctx *ep_ctx;
922 	struct xhci_slot_ctx *slot_ctx;
923 
924 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
925 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
926 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
927 	dev = xhci->devs[slot_id];
928 
929 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
930 	if (!ep_ring) {
931 		xhci_warn(xhci, "WARN Set TR deq ptr command for "
932 				"freed stream ID %u\n",
933 				stream_id);
934 		/* XXX: Harmless??? */
935 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
936 		return;
937 	}
938 
939 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
940 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
941 
942 	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
943 		unsigned int ep_state;
944 		unsigned int slot_state;
945 
946 		switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
947 		case COMP_TRB_ERR:
948 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
949 					"of stream ID configuration\n");
950 			break;
951 		case COMP_CTX_STATE:
952 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
953 					"to incorrect slot or ep state.\n");
954 			ep_state = le32_to_cpu(ep_ctx->ep_info);
955 			ep_state &= EP_STATE_MASK;
956 			slot_state = le32_to_cpu(slot_ctx->dev_state);
957 			slot_state = GET_SLOT_STATE(slot_state);
958 			xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
959 					slot_state, ep_state);
960 			break;
961 		case COMP_EBADSLT:
962 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
963 					"slot %u was not enabled.\n", slot_id);
964 			break;
965 		default:
966 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
967 					"completion code of %u.\n",
968 				  GET_COMP_CODE(le32_to_cpu(event->status)));
969 			break;
970 		}
971 		/* OK what do we do now?  The endpoint state is hosed, and we
972 		 * should never get to this point if the synchronization between
973 		 * queueing, and endpoint state are correct.  This might happen
974 		 * if the device gets disconnected after we've finished
975 		 * cancelling URBs, which might not be an error...
976 		 */
977 	} else {
978 		xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
979 			 le64_to_cpu(ep_ctx->deq));
980 		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
981 					 dev->eps[ep_index].queued_deq_ptr) ==
982 		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
983 			/* Update the ring's dequeue segment and dequeue pointer
984 			 * to reflect the new position.
985 			 */
986 			ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
987 			ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
988 		} else {
989 			xhci_warn(xhci, "Mismatch between completed Set TR Deq "
990 					"Ptr command & xHCI internal state.\n");
991 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
992 					dev->eps[ep_index].queued_deq_seg,
993 					dev->eps[ep_index].queued_deq_ptr);
994 		}
995 	}
996 
997 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
998 	dev->eps[ep_index].queued_deq_seg = NULL;
999 	dev->eps[ep_index].queued_deq_ptr = NULL;
1000 	/* Restart any rings with pending URBs */
1001 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1002 }
1003 
1004 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1005 		struct xhci_event_cmd *event,
1006 		union xhci_trb *trb)
1007 {
1008 	int slot_id;
1009 	unsigned int ep_index;
1010 
1011 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1012 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1013 	/* This command will only fail if the endpoint wasn't halted,
1014 	 * but we don't care.
1015 	 */
1016 	xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1017 		 GET_COMP_CODE(le32_to_cpu(event->status)));
1018 
1019 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1020 	 * command complete before the endpoint can be used.  Queue that here
1021 	 * because the HW can't handle two commands being queued in a row.
1022 	 */
1023 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1024 		xhci_dbg(xhci, "Queueing configure endpoint command\n");
1025 		xhci_queue_configure_endpoint(xhci,
1026 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1027 				false);
1028 		xhci_ring_cmd_db(xhci);
1029 	} else {
1030 		/* Clear our internal halted state and restart the ring(s) */
1031 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1032 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1033 	}
1034 }
1035 
1036 /* Check to see if a command in the device's command queue matches this one.
1037  * Signal the completion or free the command, and return 1.  Return 0 if the
1038  * completed command isn't at the head of the command list.
1039  */
1040 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1041 		struct xhci_virt_device *virt_dev,
1042 		struct xhci_event_cmd *event)
1043 {
1044 	struct xhci_command *command;
1045 
1046 	if (list_empty(&virt_dev->cmd_list))
1047 		return 0;
1048 
1049 	command = list_entry(virt_dev->cmd_list.next,
1050 			struct xhci_command, cmd_list);
1051 	if (xhci->cmd_ring->dequeue != command->command_trb)
1052 		return 0;
1053 
1054 	command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1055 	list_del(&command->cmd_list);
1056 	if (command->completion)
1057 		complete(command->completion);
1058 	else
1059 		xhci_free_command(xhci, command);
1060 	return 1;
1061 }
1062 
1063 static void handle_cmd_completion(struct xhci_hcd *xhci,
1064 		struct xhci_event_cmd *event)
1065 {
1066 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1067 	u64 cmd_dma;
1068 	dma_addr_t cmd_dequeue_dma;
1069 	struct xhci_input_control_ctx *ctrl_ctx;
1070 	struct xhci_virt_device *virt_dev;
1071 	unsigned int ep_index;
1072 	struct xhci_ring *ep_ring;
1073 	unsigned int ep_state;
1074 
1075 	cmd_dma = le64_to_cpu(event->cmd_trb);
1076 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1077 			xhci->cmd_ring->dequeue);
1078 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1079 	if (cmd_dequeue_dma == 0) {
1080 		xhci->error_bitmask |= 1 << 4;
1081 		return;
1082 	}
1083 	/* Does the DMA address match our internal dequeue pointer address? */
1084 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1085 		xhci->error_bitmask |= 1 << 5;
1086 		return;
1087 	}
1088 	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1089 		& TRB_TYPE_BITMASK) {
1090 	case TRB_TYPE(TRB_ENABLE_SLOT):
1091 		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1092 			xhci->slot_id = slot_id;
1093 		else
1094 			xhci->slot_id = 0;
1095 		complete(&xhci->addr_dev);
1096 		break;
1097 	case TRB_TYPE(TRB_DISABLE_SLOT):
1098 		if (xhci->devs[slot_id]) {
1099 			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1100 				/* Delete default control endpoint resources */
1101 				xhci_free_device_endpoint_resources(xhci,
1102 						xhci->devs[slot_id], true);
1103 			xhci_free_virt_device(xhci, slot_id);
1104 		}
1105 		break;
1106 	case TRB_TYPE(TRB_CONFIG_EP):
1107 		virt_dev = xhci->devs[slot_id];
1108 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1109 			break;
1110 		/*
1111 		 * Configure endpoint commands can come from the USB core
1112 		 * configuration or alt setting changes, or because the HW
1113 		 * needed an extra configure endpoint command after a reset
1114 		 * endpoint command or streams were being configured.
1115 		 * If the command was for a halted endpoint, the xHCI driver
1116 		 * is not waiting on the configure endpoint command.
1117 		 */
1118 		ctrl_ctx = xhci_get_input_control_ctx(xhci,
1119 				virt_dev->in_ctx);
1120 		/* Input ctx add_flags are the endpoint index plus one */
1121 		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1122 		/* A usb_set_interface() call directly after clearing a halted
1123 		 * condition may race on this quirky hardware.  Not worth
1124 		 * worrying about, since this is prototype hardware.  Not sure
1125 		 * if this will work for streams, but streams support was
1126 		 * untested on this prototype.
1127 		 */
1128 		if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1129 				ep_index != (unsigned int) -1 &&
1130 		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1131 		    le32_to_cpu(ctrl_ctx->drop_flags)) {
1132 			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1133 			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1134 			if (!(ep_state & EP_HALTED))
1135 				goto bandwidth_change;
1136 			xhci_dbg(xhci, "Completed config ep cmd - "
1137 					"last ep index = %d, state = %d\n",
1138 					ep_index, ep_state);
1139 			/* Clear internal halted state and restart ring(s) */
1140 			xhci->devs[slot_id]->eps[ep_index].ep_state &=
1141 				~EP_HALTED;
1142 			ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1143 			break;
1144 		}
1145 bandwidth_change:
1146 		xhci_dbg(xhci, "Completed config ep cmd\n");
1147 		xhci->devs[slot_id]->cmd_status =
1148 			GET_COMP_CODE(le32_to_cpu(event->status));
1149 		complete(&xhci->devs[slot_id]->cmd_completion);
1150 		break;
1151 	case TRB_TYPE(TRB_EVAL_CONTEXT):
1152 		virt_dev = xhci->devs[slot_id];
1153 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1154 			break;
1155 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1156 		complete(&xhci->devs[slot_id]->cmd_completion);
1157 		break;
1158 	case TRB_TYPE(TRB_ADDR_DEV):
1159 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1160 		complete(&xhci->addr_dev);
1161 		break;
1162 	case TRB_TYPE(TRB_STOP_RING):
1163 		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1164 		break;
1165 	case TRB_TYPE(TRB_SET_DEQ):
1166 		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1167 		break;
1168 	case TRB_TYPE(TRB_CMD_NOOP):
1169 		break;
1170 	case TRB_TYPE(TRB_RESET_EP):
1171 		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1172 		break;
1173 	case TRB_TYPE(TRB_RESET_DEV):
1174 		xhci_dbg(xhci, "Completed reset device command.\n");
1175 		slot_id = TRB_TO_SLOT_ID(
1176 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1177 		virt_dev = xhci->devs[slot_id];
1178 		if (virt_dev)
1179 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1180 		else
1181 			xhci_warn(xhci, "Reset device command completion "
1182 					"for disabled slot %u\n", slot_id);
1183 		break;
1184 	case TRB_TYPE(TRB_NEC_GET_FW):
1185 		if (!(xhci->quirks & XHCI_NEC_HOST)) {
1186 			xhci->error_bitmask |= 1 << 6;
1187 			break;
1188 		}
1189 		xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1190 			 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1191 			 NEC_FW_MINOR(le32_to_cpu(event->status)));
1192 		break;
1193 	default:
1194 		/* Skip over unknown commands on the event ring */
1195 		xhci->error_bitmask |= 1 << 6;
1196 		break;
1197 	}
1198 	inc_deq(xhci, xhci->cmd_ring, false);
1199 }
1200 
1201 static void handle_vendor_event(struct xhci_hcd *xhci,
1202 		union xhci_trb *event)
1203 {
1204 	u32 trb_type;
1205 
1206 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1207 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1208 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1209 		handle_cmd_completion(xhci, &event->event_cmd);
1210 }
1211 
1212 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1213  * port registers -- USB 3.0 and USB 2.0).
1214  *
1215  * Returns a zero-based port number, which is suitable for indexing into each of
1216  * the split roothubs' port arrays and bus state arrays.
1217  */
1218 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1219 		struct xhci_hcd *xhci, u32 port_id)
1220 {
1221 	unsigned int i;
1222 	unsigned int num_similar_speed_ports = 0;
1223 
1224 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1225 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1226 	 * speed ports, up to 1 port before this port.
1227 	 */
1228 	for (i = 0; i < (port_id - 1); i++) {
1229 		u8 port_speed = xhci->port_array[i];
1230 
1231 		/*
1232 		 * Skip ports that don't have known speeds, or have duplicate
1233 		 * Extended Capabilities port speed entries.
1234 		 */
1235 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1236 			continue;
1237 
1238 		/*
1239 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1240 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1241 		 * matches the device speed, it's a similar speed port.
1242 		 */
1243 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1244 			num_similar_speed_ports++;
1245 	}
1246 	return num_similar_speed_ports;
1247 }
1248 
1249 static void handle_port_status(struct xhci_hcd *xhci,
1250 		union xhci_trb *event)
1251 {
1252 	struct usb_hcd *hcd;
1253 	u32 port_id;
1254 	u32 temp, temp1;
1255 	int max_ports;
1256 	int slot_id;
1257 	unsigned int faked_port_index;
1258 	u8 major_revision;
1259 	struct xhci_bus_state *bus_state;
1260 	__le32 __iomem **port_array;
1261 	bool bogus_port_status = false;
1262 
1263 	/* Port status change events always have a successful completion code */
1264 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1265 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1266 		xhci->error_bitmask |= 1 << 8;
1267 	}
1268 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1269 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1270 
1271 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1272 	if ((port_id <= 0) || (port_id > max_ports)) {
1273 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1274 		bogus_port_status = true;
1275 		goto cleanup;
1276 	}
1277 
1278 	/* Figure out which usb_hcd this port is attached to:
1279 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1280 	 */
1281 	major_revision = xhci->port_array[port_id - 1];
1282 	if (major_revision == 0) {
1283 		xhci_warn(xhci, "Event for port %u not in "
1284 				"Extended Capabilities, ignoring.\n",
1285 				port_id);
1286 		bogus_port_status = true;
1287 		goto cleanup;
1288 	}
1289 	if (major_revision == DUPLICATE_ENTRY) {
1290 		xhci_warn(xhci, "Event for port %u duplicated in"
1291 				"Extended Capabilities, ignoring.\n",
1292 				port_id);
1293 		bogus_port_status = true;
1294 		goto cleanup;
1295 	}
1296 
1297 	/*
1298 	 * Hardware port IDs reported by a Port Status Change Event include USB
1299 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1300 	 * resume event, but we first need to translate the hardware port ID
1301 	 * into the index into the ports on the correct split roothub, and the
1302 	 * correct bus_state structure.
1303 	 */
1304 	/* Find the right roothub. */
1305 	hcd = xhci_to_hcd(xhci);
1306 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1307 		hcd = xhci->shared_hcd;
1308 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1309 	if (hcd->speed == HCD_USB3)
1310 		port_array = xhci->usb3_ports;
1311 	else
1312 		port_array = xhci->usb2_ports;
1313 	/* Find the faked port hub number */
1314 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1315 			port_id);
1316 
1317 	temp = xhci_readl(xhci, port_array[faked_port_index]);
1318 	if (hcd->state == HC_STATE_SUSPENDED) {
1319 		xhci_dbg(xhci, "resume root hub\n");
1320 		usb_hcd_resume_root_hub(hcd);
1321 	}
1322 
1323 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1324 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1325 
1326 		temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1327 		if (!(temp1 & CMD_RUN)) {
1328 			xhci_warn(xhci, "xHC is not running.\n");
1329 			goto cleanup;
1330 		}
1331 
1332 		if (DEV_SUPERSPEED(temp)) {
1333 			xhci_dbg(xhci, "resume SS port %d\n", port_id);
1334 			xhci_set_link_state(xhci, port_array, faked_port_index,
1335 						XDEV_U0);
1336 			slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1337 					faked_port_index);
1338 			if (!slot_id) {
1339 				xhci_dbg(xhci, "slot_id is zero\n");
1340 				goto cleanup;
1341 			}
1342 			xhci_ring_device(xhci, slot_id);
1343 			xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1344 			/* Clear PORT_PLC */
1345 			xhci_test_and_clear_bit(xhci, port_array,
1346 						faked_port_index, PORT_PLC);
1347 		} else {
1348 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1349 			bus_state->resume_done[faked_port_index] = jiffies +
1350 				msecs_to_jiffies(20);
1351 			mod_timer(&hcd->rh_timer,
1352 				  bus_state->resume_done[faked_port_index]);
1353 			/* Do the rest in GetPortStatus */
1354 		}
1355 	}
1356 
1357 	if (hcd->speed != HCD_USB3)
1358 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1359 					PORT_PLC);
1360 
1361 cleanup:
1362 	/* Update event ring dequeue pointer before dropping the lock */
1363 	inc_deq(xhci, xhci->event_ring, true);
1364 
1365 	/* Don't make the USB core poll the roothub if we got a bad port status
1366 	 * change event.  Besides, at that point we can't tell which roothub
1367 	 * (USB 2.0 or USB 3.0) to kick.
1368 	 */
1369 	if (bogus_port_status)
1370 		return;
1371 
1372 	spin_unlock(&xhci->lock);
1373 	/* Pass this up to the core */
1374 	usb_hcd_poll_rh_status(hcd);
1375 	spin_lock(&xhci->lock);
1376 }
1377 
1378 /*
1379  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1380  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1381  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1382  * returns 0.
1383  */
1384 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1385 		union xhci_trb	*start_trb,
1386 		union xhci_trb	*end_trb,
1387 		dma_addr_t	suspect_dma)
1388 {
1389 	dma_addr_t start_dma;
1390 	dma_addr_t end_seg_dma;
1391 	dma_addr_t end_trb_dma;
1392 	struct xhci_segment *cur_seg;
1393 
1394 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1395 	cur_seg = start_seg;
1396 
1397 	do {
1398 		if (start_dma == 0)
1399 			return NULL;
1400 		/* We may get an event for a Link TRB in the middle of a TD */
1401 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1402 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1403 		/* If the end TRB isn't in this segment, this is set to 0 */
1404 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1405 
1406 		if (end_trb_dma > 0) {
1407 			/* The end TRB is in this segment, so suspect should be here */
1408 			if (start_dma <= end_trb_dma) {
1409 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1410 					return cur_seg;
1411 			} else {
1412 				/* Case for one segment with
1413 				 * a TD wrapped around to the top
1414 				 */
1415 				if ((suspect_dma >= start_dma &&
1416 							suspect_dma <= end_seg_dma) ||
1417 						(suspect_dma >= cur_seg->dma &&
1418 						 suspect_dma <= end_trb_dma))
1419 					return cur_seg;
1420 			}
1421 			return NULL;
1422 		} else {
1423 			/* Might still be somewhere in this segment */
1424 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1425 				return cur_seg;
1426 		}
1427 		cur_seg = cur_seg->next;
1428 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1429 	} while (cur_seg != start_seg);
1430 
1431 	return NULL;
1432 }
1433 
1434 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1435 		unsigned int slot_id, unsigned int ep_index,
1436 		unsigned int stream_id,
1437 		struct xhci_td *td, union xhci_trb *event_trb)
1438 {
1439 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1440 	ep->ep_state |= EP_HALTED;
1441 	ep->stopped_td = td;
1442 	ep->stopped_trb = event_trb;
1443 	ep->stopped_stream = stream_id;
1444 
1445 	xhci_queue_reset_ep(xhci, slot_id, ep_index);
1446 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1447 
1448 	ep->stopped_td = NULL;
1449 	ep->stopped_trb = NULL;
1450 	ep->stopped_stream = 0;
1451 
1452 	xhci_ring_cmd_db(xhci);
1453 }
1454 
1455 /* Check if an error has halted the endpoint ring.  The class driver will
1456  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1457  * However, a babble and other errors also halt the endpoint ring, and the class
1458  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1459  * Ring Dequeue Pointer command manually.
1460  */
1461 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1462 		struct xhci_ep_ctx *ep_ctx,
1463 		unsigned int trb_comp_code)
1464 {
1465 	/* TRB completion codes that may require a manual halt cleanup */
1466 	if (trb_comp_code == COMP_TX_ERR ||
1467 			trb_comp_code == COMP_BABBLE ||
1468 			trb_comp_code == COMP_SPLIT_ERR)
1469 		/* The 0.96 spec says a babbling control endpoint
1470 		 * is not halted. The 0.96 spec says it is.  Some HW
1471 		 * claims to be 0.95 compliant, but it halts the control
1472 		 * endpoint anyway.  Check if a babble halted the
1473 		 * endpoint.
1474 		 */
1475 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1476 		    cpu_to_le32(EP_STATE_HALTED))
1477 			return 1;
1478 
1479 	return 0;
1480 }
1481 
1482 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1483 {
1484 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1485 		/* Vendor defined "informational" completion code,
1486 		 * treat as not-an-error.
1487 		 */
1488 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1489 				trb_comp_code);
1490 		xhci_dbg(xhci, "Treating code as success.\n");
1491 		return 1;
1492 	}
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Finish the td processing, remove the td from td list;
1498  * Return 1 if the urb can be given back.
1499  */
1500 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1501 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1502 	struct xhci_virt_ep *ep, int *status, bool skip)
1503 {
1504 	struct xhci_virt_device *xdev;
1505 	struct xhci_ring *ep_ring;
1506 	unsigned int slot_id;
1507 	int ep_index;
1508 	struct urb *urb = NULL;
1509 	struct xhci_ep_ctx *ep_ctx;
1510 	int ret = 0;
1511 	struct urb_priv	*urb_priv;
1512 	u32 trb_comp_code;
1513 
1514 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1515 	xdev = xhci->devs[slot_id];
1516 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1517 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1518 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1519 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1520 
1521 	if (skip)
1522 		goto td_cleanup;
1523 
1524 	if (trb_comp_code == COMP_STOP_INVAL ||
1525 			trb_comp_code == COMP_STOP) {
1526 		/* The Endpoint Stop Command completion will take care of any
1527 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1528 		 * the ring dequeue pointer or take this TD off any lists yet.
1529 		 */
1530 		ep->stopped_td = td;
1531 		ep->stopped_trb = event_trb;
1532 		return 0;
1533 	} else {
1534 		if (trb_comp_code == COMP_STALL) {
1535 			/* The transfer is completed from the driver's
1536 			 * perspective, but we need to issue a set dequeue
1537 			 * command for this stalled endpoint to move the dequeue
1538 			 * pointer past the TD.  We can't do that here because
1539 			 * the halt condition must be cleared first.  Let the
1540 			 * USB class driver clear the stall later.
1541 			 */
1542 			ep->stopped_td = td;
1543 			ep->stopped_trb = event_trb;
1544 			ep->stopped_stream = ep_ring->stream_id;
1545 		} else if (xhci_requires_manual_halt_cleanup(xhci,
1546 					ep_ctx, trb_comp_code)) {
1547 			/* Other types of errors halt the endpoint, but the
1548 			 * class driver doesn't call usb_reset_endpoint() unless
1549 			 * the error is -EPIPE.  Clear the halted status in the
1550 			 * xHCI hardware manually.
1551 			 */
1552 			xhci_cleanup_halted_endpoint(xhci,
1553 					slot_id, ep_index, ep_ring->stream_id,
1554 					td, event_trb);
1555 		} else {
1556 			/* Update ring dequeue pointer */
1557 			while (ep_ring->dequeue != td->last_trb)
1558 				inc_deq(xhci, ep_ring, false);
1559 			inc_deq(xhci, ep_ring, false);
1560 		}
1561 
1562 td_cleanup:
1563 		/* Clean up the endpoint's TD list */
1564 		urb = td->urb;
1565 		urb_priv = urb->hcpriv;
1566 
1567 		/* Do one last check of the actual transfer length.
1568 		 * If the host controller said we transferred more data than
1569 		 * the buffer length, urb->actual_length will be a very big
1570 		 * number (since it's unsigned).  Play it safe and say we didn't
1571 		 * transfer anything.
1572 		 */
1573 		if (urb->actual_length > urb->transfer_buffer_length) {
1574 			xhci_warn(xhci, "URB transfer length is wrong, "
1575 					"xHC issue? req. len = %u, "
1576 					"act. len = %u\n",
1577 					urb->transfer_buffer_length,
1578 					urb->actual_length);
1579 			urb->actual_length = 0;
1580 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1581 				*status = -EREMOTEIO;
1582 			else
1583 				*status = 0;
1584 		}
1585 		list_del_init(&td->td_list);
1586 		/* Was this TD slated to be cancelled but completed anyway? */
1587 		if (!list_empty(&td->cancelled_td_list))
1588 			list_del_init(&td->cancelled_td_list);
1589 
1590 		urb_priv->td_cnt++;
1591 		/* Giveback the urb when all the tds are completed */
1592 		if (urb_priv->td_cnt == urb_priv->length) {
1593 			ret = 1;
1594 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1595 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1596 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1597 					== 0) {
1598 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1599 						usb_amd_quirk_pll_enable();
1600 				}
1601 			}
1602 		}
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Process control tds, update urb status and actual_length.
1610  */
1611 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1612 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1613 	struct xhci_virt_ep *ep, int *status)
1614 {
1615 	struct xhci_virt_device *xdev;
1616 	struct xhci_ring *ep_ring;
1617 	unsigned int slot_id;
1618 	int ep_index;
1619 	struct xhci_ep_ctx *ep_ctx;
1620 	u32 trb_comp_code;
1621 
1622 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1623 	xdev = xhci->devs[slot_id];
1624 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1625 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1626 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1627 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1628 
1629 	xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1630 	switch (trb_comp_code) {
1631 	case COMP_SUCCESS:
1632 		if (event_trb == ep_ring->dequeue) {
1633 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1634 					"without IOC set??\n");
1635 			*status = -ESHUTDOWN;
1636 		} else if (event_trb != td->last_trb) {
1637 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1638 					"without IOC set??\n");
1639 			*status = -ESHUTDOWN;
1640 		} else {
1641 			*status = 0;
1642 		}
1643 		break;
1644 	case COMP_SHORT_TX:
1645 		xhci_warn(xhci, "WARN: short transfer on control ep\n");
1646 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1647 			*status = -EREMOTEIO;
1648 		else
1649 			*status = 0;
1650 		break;
1651 	case COMP_STOP_INVAL:
1652 	case COMP_STOP:
1653 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1654 	default:
1655 		if (!xhci_requires_manual_halt_cleanup(xhci,
1656 					ep_ctx, trb_comp_code))
1657 			break;
1658 		xhci_dbg(xhci, "TRB error code %u, "
1659 				"halted endpoint index = %u\n",
1660 				trb_comp_code, ep_index);
1661 		/* else fall through */
1662 	case COMP_STALL:
1663 		/* Did we transfer part of the data (middle) phase? */
1664 		if (event_trb != ep_ring->dequeue &&
1665 				event_trb != td->last_trb)
1666 			td->urb->actual_length =
1667 				td->urb->transfer_buffer_length
1668 				- TRB_LEN(le32_to_cpu(event->transfer_len));
1669 		else
1670 			td->urb->actual_length = 0;
1671 
1672 		xhci_cleanup_halted_endpoint(xhci,
1673 			slot_id, ep_index, 0, td, event_trb);
1674 		return finish_td(xhci, td, event_trb, event, ep, status, true);
1675 	}
1676 	/*
1677 	 * Did we transfer any data, despite the errors that might have
1678 	 * happened?  I.e. did we get past the setup stage?
1679 	 */
1680 	if (event_trb != ep_ring->dequeue) {
1681 		/* The event was for the status stage */
1682 		if (event_trb == td->last_trb) {
1683 			if (td->urb->actual_length != 0) {
1684 				/* Don't overwrite a previously set error code
1685 				 */
1686 				if ((*status == -EINPROGRESS || *status == 0) &&
1687 						(td->urb->transfer_flags
1688 						 & URB_SHORT_NOT_OK))
1689 					/* Did we already see a short data
1690 					 * stage? */
1691 					*status = -EREMOTEIO;
1692 			} else {
1693 				td->urb->actual_length =
1694 					td->urb->transfer_buffer_length;
1695 			}
1696 		} else {
1697 		/* Maybe the event was for the data stage? */
1698 			td->urb->actual_length =
1699 				td->urb->transfer_buffer_length -
1700 				TRB_LEN(le32_to_cpu(event->transfer_len));
1701 			xhci_dbg(xhci, "Waiting for status "
1702 					"stage event\n");
1703 			return 0;
1704 		}
1705 	}
1706 
1707 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1708 }
1709 
1710 /*
1711  * Process isochronous tds, update urb packet status and actual_length.
1712  */
1713 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1714 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1715 	struct xhci_virt_ep *ep, int *status)
1716 {
1717 	struct xhci_ring *ep_ring;
1718 	struct urb_priv *urb_priv;
1719 	int idx;
1720 	int len = 0;
1721 	union xhci_trb *cur_trb;
1722 	struct xhci_segment *cur_seg;
1723 	struct usb_iso_packet_descriptor *frame;
1724 	u32 trb_comp_code;
1725 	bool skip_td = false;
1726 
1727 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1728 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1729 	urb_priv = td->urb->hcpriv;
1730 	idx = urb_priv->td_cnt;
1731 	frame = &td->urb->iso_frame_desc[idx];
1732 
1733 	/* handle completion code */
1734 	switch (trb_comp_code) {
1735 	case COMP_SUCCESS:
1736 		frame->status = 0;
1737 		break;
1738 	case COMP_SHORT_TX:
1739 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1740 				-EREMOTEIO : 0;
1741 		break;
1742 	case COMP_BW_OVER:
1743 		frame->status = -ECOMM;
1744 		skip_td = true;
1745 		break;
1746 	case COMP_BUFF_OVER:
1747 	case COMP_BABBLE:
1748 		frame->status = -EOVERFLOW;
1749 		skip_td = true;
1750 		break;
1751 	case COMP_DEV_ERR:
1752 	case COMP_STALL:
1753 		frame->status = -EPROTO;
1754 		skip_td = true;
1755 		break;
1756 	case COMP_STOP:
1757 	case COMP_STOP_INVAL:
1758 		break;
1759 	default:
1760 		frame->status = -1;
1761 		break;
1762 	}
1763 
1764 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
1765 		frame->actual_length = frame->length;
1766 		td->urb->actual_length += frame->length;
1767 	} else {
1768 		for (cur_trb = ep_ring->dequeue,
1769 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1770 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1771 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1772 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1773 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1774 		}
1775 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1776 			TRB_LEN(le32_to_cpu(event->transfer_len));
1777 
1778 		if (trb_comp_code != COMP_STOP_INVAL) {
1779 			frame->actual_length = len;
1780 			td->urb->actual_length += len;
1781 		}
1782 	}
1783 
1784 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1785 }
1786 
1787 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1788 			struct xhci_transfer_event *event,
1789 			struct xhci_virt_ep *ep, int *status)
1790 {
1791 	struct xhci_ring *ep_ring;
1792 	struct urb_priv *urb_priv;
1793 	struct usb_iso_packet_descriptor *frame;
1794 	int idx;
1795 
1796 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1797 	urb_priv = td->urb->hcpriv;
1798 	idx = urb_priv->td_cnt;
1799 	frame = &td->urb->iso_frame_desc[idx];
1800 
1801 	/* The transfer is partly done. */
1802 	frame->status = -EXDEV;
1803 
1804 	/* calc actual length */
1805 	frame->actual_length = 0;
1806 
1807 	/* Update ring dequeue pointer */
1808 	while (ep_ring->dequeue != td->last_trb)
1809 		inc_deq(xhci, ep_ring, false);
1810 	inc_deq(xhci, ep_ring, false);
1811 
1812 	return finish_td(xhci, td, NULL, event, ep, status, true);
1813 }
1814 
1815 /*
1816  * Process bulk and interrupt tds, update urb status and actual_length.
1817  */
1818 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1819 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1820 	struct xhci_virt_ep *ep, int *status)
1821 {
1822 	struct xhci_ring *ep_ring;
1823 	union xhci_trb *cur_trb;
1824 	struct xhci_segment *cur_seg;
1825 	u32 trb_comp_code;
1826 
1827 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1828 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1829 
1830 	switch (trb_comp_code) {
1831 	case COMP_SUCCESS:
1832 		/* Double check that the HW transferred everything. */
1833 		if (event_trb != td->last_trb) {
1834 			xhci_warn(xhci, "WARN Successful completion "
1835 					"on short TX\n");
1836 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1837 				*status = -EREMOTEIO;
1838 			else
1839 				*status = 0;
1840 		} else {
1841 			*status = 0;
1842 		}
1843 		break;
1844 	case COMP_SHORT_TX:
1845 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1846 			*status = -EREMOTEIO;
1847 		else
1848 			*status = 0;
1849 		break;
1850 	default:
1851 		/* Others already handled above */
1852 		break;
1853 	}
1854 	if (trb_comp_code == COMP_SHORT_TX)
1855 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1856 				"%d bytes untransferred\n",
1857 				td->urb->ep->desc.bEndpointAddress,
1858 				td->urb->transfer_buffer_length,
1859 				TRB_LEN(le32_to_cpu(event->transfer_len)));
1860 	/* Fast path - was this the last TRB in the TD for this URB? */
1861 	if (event_trb == td->last_trb) {
1862 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1863 			td->urb->actual_length =
1864 				td->urb->transfer_buffer_length -
1865 				TRB_LEN(le32_to_cpu(event->transfer_len));
1866 			if (td->urb->transfer_buffer_length <
1867 					td->urb->actual_length) {
1868 				xhci_warn(xhci, "HC gave bad length "
1869 						"of %d bytes left\n",
1870 					  TRB_LEN(le32_to_cpu(event->transfer_len)));
1871 				td->urb->actual_length = 0;
1872 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1873 					*status = -EREMOTEIO;
1874 				else
1875 					*status = 0;
1876 			}
1877 			/* Don't overwrite a previously set error code */
1878 			if (*status == -EINPROGRESS) {
1879 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1880 					*status = -EREMOTEIO;
1881 				else
1882 					*status = 0;
1883 			}
1884 		} else {
1885 			td->urb->actual_length =
1886 				td->urb->transfer_buffer_length;
1887 			/* Ignore a short packet completion if the
1888 			 * untransferred length was zero.
1889 			 */
1890 			if (*status == -EREMOTEIO)
1891 				*status = 0;
1892 		}
1893 	} else {
1894 		/* Slow path - walk the list, starting from the dequeue
1895 		 * pointer, to get the actual length transferred.
1896 		 */
1897 		td->urb->actual_length = 0;
1898 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1899 				cur_trb != event_trb;
1900 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1901 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1902 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1903 				td->urb->actual_length +=
1904 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1905 		}
1906 		/* If the ring didn't stop on a Link or No-op TRB, add
1907 		 * in the actual bytes transferred from the Normal TRB
1908 		 */
1909 		if (trb_comp_code != COMP_STOP_INVAL)
1910 			td->urb->actual_length +=
1911 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1912 				TRB_LEN(le32_to_cpu(event->transfer_len));
1913 	}
1914 
1915 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1916 }
1917 
1918 /*
1919  * If this function returns an error condition, it means it got a Transfer
1920  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1921  * At this point, the host controller is probably hosed and should be reset.
1922  */
1923 static int handle_tx_event(struct xhci_hcd *xhci,
1924 		struct xhci_transfer_event *event)
1925 {
1926 	struct xhci_virt_device *xdev;
1927 	struct xhci_virt_ep *ep;
1928 	struct xhci_ring *ep_ring;
1929 	unsigned int slot_id;
1930 	int ep_index;
1931 	struct xhci_td *td = NULL;
1932 	dma_addr_t event_dma;
1933 	struct xhci_segment *event_seg;
1934 	union xhci_trb *event_trb;
1935 	struct urb *urb = NULL;
1936 	int status = -EINPROGRESS;
1937 	struct urb_priv *urb_priv;
1938 	struct xhci_ep_ctx *ep_ctx;
1939 	struct list_head *tmp;
1940 	u32 trb_comp_code;
1941 	int ret = 0;
1942 	int td_num = 0;
1943 
1944 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1945 	xdev = xhci->devs[slot_id];
1946 	if (!xdev) {
1947 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1948 		return -ENODEV;
1949 	}
1950 
1951 	/* Endpoint ID is 1 based, our index is zero based */
1952 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1953 	ep = &xdev->eps[ep_index];
1954 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1955 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1956 	if (!ep_ring ||
1957 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1958 	    EP_STATE_DISABLED) {
1959 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1960 				"or incorrect stream ring\n");
1961 		return -ENODEV;
1962 	}
1963 
1964 	/* Count current td numbers if ep->skip is set */
1965 	if (ep->skip) {
1966 		list_for_each(tmp, &ep_ring->td_list)
1967 			td_num++;
1968 	}
1969 
1970 	event_dma = le64_to_cpu(event->buffer);
1971 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1972 	/* Look for common error cases */
1973 	switch (trb_comp_code) {
1974 	/* Skip codes that require special handling depending on
1975 	 * transfer type
1976 	 */
1977 	case COMP_SUCCESS:
1978 	case COMP_SHORT_TX:
1979 		break;
1980 	case COMP_STOP:
1981 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1982 		break;
1983 	case COMP_STOP_INVAL:
1984 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1985 		break;
1986 	case COMP_STALL:
1987 		xhci_warn(xhci, "WARN: Stalled endpoint\n");
1988 		ep->ep_state |= EP_HALTED;
1989 		status = -EPIPE;
1990 		break;
1991 	case COMP_TRB_ERR:
1992 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1993 		status = -EILSEQ;
1994 		break;
1995 	case COMP_SPLIT_ERR:
1996 	case COMP_TX_ERR:
1997 		xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1998 		status = -EPROTO;
1999 		break;
2000 	case COMP_BABBLE:
2001 		xhci_warn(xhci, "WARN: babble error on endpoint\n");
2002 		status = -EOVERFLOW;
2003 		break;
2004 	case COMP_DB_ERR:
2005 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2006 		status = -ENOSR;
2007 		break;
2008 	case COMP_BW_OVER:
2009 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2010 		break;
2011 	case COMP_BUFF_OVER:
2012 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2013 		break;
2014 	case COMP_UNDERRUN:
2015 		/*
2016 		 * When the Isoch ring is empty, the xHC will generate
2017 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2018 		 * Underrun Event for OUT Isoch endpoint.
2019 		 */
2020 		xhci_dbg(xhci, "underrun event on endpoint\n");
2021 		if (!list_empty(&ep_ring->td_list))
2022 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2023 					"still with TDs queued?\n",
2024 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2025 				 ep_index);
2026 		goto cleanup;
2027 	case COMP_OVERRUN:
2028 		xhci_dbg(xhci, "overrun event on endpoint\n");
2029 		if (!list_empty(&ep_ring->td_list))
2030 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2031 					"still with TDs queued?\n",
2032 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2033 				 ep_index);
2034 		goto cleanup;
2035 	case COMP_DEV_ERR:
2036 		xhci_warn(xhci, "WARN: detect an incompatible device");
2037 		status = -EPROTO;
2038 		break;
2039 	case COMP_MISSED_INT:
2040 		/*
2041 		 * When encounter missed service error, one or more isoc tds
2042 		 * may be missed by xHC.
2043 		 * Set skip flag of the ep_ring; Complete the missed tds as
2044 		 * short transfer when process the ep_ring next time.
2045 		 */
2046 		ep->skip = true;
2047 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2048 		goto cleanup;
2049 	default:
2050 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2051 			status = 0;
2052 			break;
2053 		}
2054 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2055 				"busted\n");
2056 		goto cleanup;
2057 	}
2058 
2059 	do {
2060 		/* This TRB should be in the TD at the head of this ring's
2061 		 * TD list.
2062 		 */
2063 		if (list_empty(&ep_ring->td_list)) {
2064 			xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2065 					"with no TDs queued?\n",
2066 				  TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2067 				  ep_index);
2068 			xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2069 				 (le32_to_cpu(event->flags) &
2070 				  TRB_TYPE_BITMASK)>>10);
2071 			xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2072 			if (ep->skip) {
2073 				ep->skip = false;
2074 				xhci_dbg(xhci, "td_list is empty while skip "
2075 						"flag set. Clear skip flag.\n");
2076 			}
2077 			ret = 0;
2078 			goto cleanup;
2079 		}
2080 
2081 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2082 		if (ep->skip && td_num == 0) {
2083 			ep->skip = false;
2084 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2085 						"Clear skip flag.\n");
2086 			ret = 0;
2087 			goto cleanup;
2088 		}
2089 
2090 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2091 		if (ep->skip)
2092 			td_num--;
2093 
2094 		/* Is this a TRB in the currently executing TD? */
2095 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2096 				td->last_trb, event_dma);
2097 
2098 		/*
2099 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2100 		 * is not in the current TD pointed by ep_ring->dequeue because
2101 		 * that the hardware dequeue pointer still at the previous TRB
2102 		 * of the current TD. The previous TRB maybe a Link TD or the
2103 		 * last TRB of the previous TD. The command completion handle
2104 		 * will take care the rest.
2105 		 */
2106 		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2107 			ret = 0;
2108 			goto cleanup;
2109 		}
2110 
2111 		if (!event_seg) {
2112 			if (!ep->skip ||
2113 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2114 				/* Some host controllers give a spurious
2115 				 * successful event after a short transfer.
2116 				 * Ignore it.
2117 				 */
2118 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2119 						ep_ring->last_td_was_short) {
2120 					ep_ring->last_td_was_short = false;
2121 					ret = 0;
2122 					goto cleanup;
2123 				}
2124 				/* HC is busted, give up! */
2125 				xhci_err(xhci,
2126 					"ERROR Transfer event TRB DMA ptr not "
2127 					"part of current TD\n");
2128 				return -ESHUTDOWN;
2129 			}
2130 
2131 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2132 			goto cleanup;
2133 		}
2134 		if (trb_comp_code == COMP_SHORT_TX)
2135 			ep_ring->last_td_was_short = true;
2136 		else
2137 			ep_ring->last_td_was_short = false;
2138 
2139 		if (ep->skip) {
2140 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2141 			ep->skip = false;
2142 		}
2143 
2144 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2145 						sizeof(*event_trb)];
2146 		/*
2147 		 * No-op TRB should not trigger interrupts.
2148 		 * If event_trb is a no-op TRB, it means the
2149 		 * corresponding TD has been cancelled. Just ignore
2150 		 * the TD.
2151 		 */
2152 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2153 			xhci_dbg(xhci,
2154 				 "event_trb is a no-op TRB. Skip it\n");
2155 			goto cleanup;
2156 		}
2157 
2158 		/* Now update the urb's actual_length and give back to
2159 		 * the core
2160 		 */
2161 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2162 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2163 						 &status);
2164 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2165 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2166 						 &status);
2167 		else
2168 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2169 						 ep, &status);
2170 
2171 cleanup:
2172 		/*
2173 		 * Do not update event ring dequeue pointer if ep->skip is set.
2174 		 * Will roll back to continue process missed tds.
2175 		 */
2176 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2177 			inc_deq(xhci, xhci->event_ring, true);
2178 		}
2179 
2180 		if (ret) {
2181 			urb = td->urb;
2182 			urb_priv = urb->hcpriv;
2183 			/* Leave the TD around for the reset endpoint function
2184 			 * to use(but only if it's not a control endpoint,
2185 			 * since we already queued the Set TR dequeue pointer
2186 			 * command for stalled control endpoints).
2187 			 */
2188 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2189 				(trb_comp_code != COMP_STALL &&
2190 					trb_comp_code != COMP_BABBLE))
2191 				xhci_urb_free_priv(xhci, urb_priv);
2192 
2193 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2194 			if ((urb->actual_length != urb->transfer_buffer_length &&
2195 						(urb->transfer_flags &
2196 						 URB_SHORT_NOT_OK)) ||
2197 					(status != 0 &&
2198 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2199 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2200 						"expected = %x, status = %d\n",
2201 						urb, urb->actual_length,
2202 						urb->transfer_buffer_length,
2203 						status);
2204 			spin_unlock(&xhci->lock);
2205 			/* EHCI, UHCI, and OHCI always unconditionally set the
2206 			 * urb->status of an isochronous endpoint to 0.
2207 			 */
2208 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2209 				status = 0;
2210 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2211 			spin_lock(&xhci->lock);
2212 		}
2213 
2214 	/*
2215 	 * If ep->skip is set, it means there are missed tds on the
2216 	 * endpoint ring need to take care of.
2217 	 * Process them as short transfer until reach the td pointed by
2218 	 * the event.
2219 	 */
2220 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * This function handles all OS-owned events on the event ring.  It may drop
2227  * xhci->lock between event processing (e.g. to pass up port status changes).
2228  * Returns >0 for "possibly more events to process" (caller should call again),
2229  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2230  */
2231 static int xhci_handle_event(struct xhci_hcd *xhci)
2232 {
2233 	union xhci_trb *event;
2234 	int update_ptrs = 1;
2235 	int ret;
2236 
2237 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2238 		xhci->error_bitmask |= 1 << 1;
2239 		return 0;
2240 	}
2241 
2242 	event = xhci->event_ring->dequeue;
2243 	/* Does the HC or OS own the TRB? */
2244 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2245 	    xhci->event_ring->cycle_state) {
2246 		xhci->error_bitmask |= 1 << 2;
2247 		return 0;
2248 	}
2249 
2250 	/*
2251 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2252 	 * speculative reads of the event's flags/data below.
2253 	 */
2254 	rmb();
2255 	/* FIXME: Handle more event types. */
2256 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2257 	case TRB_TYPE(TRB_COMPLETION):
2258 		handle_cmd_completion(xhci, &event->event_cmd);
2259 		break;
2260 	case TRB_TYPE(TRB_PORT_STATUS):
2261 		handle_port_status(xhci, event);
2262 		update_ptrs = 0;
2263 		break;
2264 	case TRB_TYPE(TRB_TRANSFER):
2265 		ret = handle_tx_event(xhci, &event->trans_event);
2266 		if (ret < 0)
2267 			xhci->error_bitmask |= 1 << 9;
2268 		else
2269 			update_ptrs = 0;
2270 		break;
2271 	default:
2272 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2273 		    TRB_TYPE(48))
2274 			handle_vendor_event(xhci, event);
2275 		else
2276 			xhci->error_bitmask |= 1 << 3;
2277 	}
2278 	/* Any of the above functions may drop and re-acquire the lock, so check
2279 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2280 	 */
2281 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2282 		xhci_dbg(xhci, "xHCI host dying, returning from "
2283 				"event handler.\n");
2284 		return 0;
2285 	}
2286 
2287 	if (update_ptrs)
2288 		/* Update SW event ring dequeue pointer */
2289 		inc_deq(xhci, xhci->event_ring, true);
2290 
2291 	/* Are there more items on the event ring?  Caller will call us again to
2292 	 * check.
2293 	 */
2294 	return 1;
2295 }
2296 
2297 /*
2298  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2299  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2300  * indicators of an event TRB error, but we check the status *first* to be safe.
2301  */
2302 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2303 {
2304 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2305 	u32 status;
2306 	union xhci_trb *trb;
2307 	u64 temp_64;
2308 	union xhci_trb *event_ring_deq;
2309 	dma_addr_t deq;
2310 
2311 	spin_lock(&xhci->lock);
2312 	trb = xhci->event_ring->dequeue;
2313 	/* Check if the xHC generated the interrupt, or the irq is shared */
2314 	status = xhci_readl(xhci, &xhci->op_regs->status);
2315 	if (status == 0xffffffff)
2316 		goto hw_died;
2317 
2318 	if (!(status & STS_EINT)) {
2319 		spin_unlock(&xhci->lock);
2320 		return IRQ_NONE;
2321 	}
2322 	if (status & STS_FATAL) {
2323 		xhci_warn(xhci, "WARNING: Host System Error\n");
2324 		xhci_halt(xhci);
2325 hw_died:
2326 		spin_unlock(&xhci->lock);
2327 		return -ESHUTDOWN;
2328 	}
2329 
2330 	/*
2331 	 * Clear the op reg interrupt status first,
2332 	 * so we can receive interrupts from other MSI-X interrupters.
2333 	 * Write 1 to clear the interrupt status.
2334 	 */
2335 	status |= STS_EINT;
2336 	xhci_writel(xhci, status, &xhci->op_regs->status);
2337 	/* FIXME when MSI-X is supported and there are multiple vectors */
2338 	/* Clear the MSI-X event interrupt status */
2339 
2340 	if (hcd->irq != -1) {
2341 		u32 irq_pending;
2342 		/* Acknowledge the PCI interrupt */
2343 		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2344 		irq_pending |= 0x3;
2345 		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2346 	}
2347 
2348 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2349 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2350 				"Shouldn't IRQs be disabled?\n");
2351 		/* Clear the event handler busy flag (RW1C);
2352 		 * the event ring should be empty.
2353 		 */
2354 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2355 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2356 				&xhci->ir_set->erst_dequeue);
2357 		spin_unlock(&xhci->lock);
2358 
2359 		return IRQ_HANDLED;
2360 	}
2361 
2362 	event_ring_deq = xhci->event_ring->dequeue;
2363 	/* FIXME this should be a delayed service routine
2364 	 * that clears the EHB.
2365 	 */
2366 	while (xhci_handle_event(xhci) > 0) {}
2367 
2368 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2369 	/* If necessary, update the HW's version of the event ring deq ptr. */
2370 	if (event_ring_deq != xhci->event_ring->dequeue) {
2371 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2372 				xhci->event_ring->dequeue);
2373 		if (deq == 0)
2374 			xhci_warn(xhci, "WARN something wrong with SW event "
2375 					"ring dequeue ptr.\n");
2376 		/* Update HC event ring dequeue pointer */
2377 		temp_64 &= ERST_PTR_MASK;
2378 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2379 	}
2380 
2381 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2382 	temp_64 |= ERST_EHB;
2383 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2384 
2385 	spin_unlock(&xhci->lock);
2386 
2387 	return IRQ_HANDLED;
2388 }
2389 
2390 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2391 {
2392 	irqreturn_t ret;
2393 	struct xhci_hcd *xhci;
2394 
2395 	xhci = hcd_to_xhci(hcd);
2396 	set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2397 	if (xhci->shared_hcd)
2398 		set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2399 
2400 	ret = xhci_irq(hcd);
2401 
2402 	return ret;
2403 }
2404 
2405 /****		Endpoint Ring Operations	****/
2406 
2407 /*
2408  * Generic function for queueing a TRB on a ring.
2409  * The caller must have checked to make sure there's room on the ring.
2410  *
2411  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2412  *			prepare_transfer()?
2413  */
2414 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2415 		bool consumer, bool more_trbs_coming, bool isoc,
2416 		u32 field1, u32 field2, u32 field3, u32 field4)
2417 {
2418 	struct xhci_generic_trb *trb;
2419 
2420 	trb = &ring->enqueue->generic;
2421 	trb->field[0] = cpu_to_le32(field1);
2422 	trb->field[1] = cpu_to_le32(field2);
2423 	trb->field[2] = cpu_to_le32(field3);
2424 	trb->field[3] = cpu_to_le32(field4);
2425 	inc_enq(xhci, ring, consumer, more_trbs_coming, isoc);
2426 }
2427 
2428 /*
2429  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2430  * FIXME allocate segments if the ring is full.
2431  */
2432 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2433 		u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags)
2434 {
2435 	/* Make sure the endpoint has been added to xHC schedule */
2436 	switch (ep_state) {
2437 	case EP_STATE_DISABLED:
2438 		/*
2439 		 * USB core changed config/interfaces without notifying us,
2440 		 * or hardware is reporting the wrong state.
2441 		 */
2442 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2443 		return -ENOENT;
2444 	case EP_STATE_ERROR:
2445 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2446 		/* FIXME event handling code for error needs to clear it */
2447 		/* XXX not sure if this should be -ENOENT or not */
2448 		return -EINVAL;
2449 	case EP_STATE_HALTED:
2450 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2451 	case EP_STATE_STOPPED:
2452 	case EP_STATE_RUNNING:
2453 		break;
2454 	default:
2455 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2456 		/*
2457 		 * FIXME issue Configure Endpoint command to try to get the HC
2458 		 * back into a known state.
2459 		 */
2460 		return -EINVAL;
2461 	}
2462 	if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2463 		/* FIXME allocate more room */
2464 		xhci_err(xhci, "ERROR no room on ep ring\n");
2465 		return -ENOMEM;
2466 	}
2467 
2468 	if (enqueue_is_link_trb(ep_ring)) {
2469 		struct xhci_ring *ring = ep_ring;
2470 		union xhci_trb *next;
2471 
2472 		next = ring->enqueue;
2473 
2474 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2475 			/* If we're not dealing with 0.95 hardware or isoc rings
2476 			 * on AMD 0.96 host, clear the chain bit.
2477 			 */
2478 			if (!xhci_link_trb_quirk(xhci) && !(isoc &&
2479 					(xhci->quirks & XHCI_AMD_0x96_HOST)))
2480 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2481 			else
2482 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2483 
2484 			wmb();
2485 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2486 
2487 			/* Toggle the cycle bit after the last ring segment. */
2488 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2489 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2490 				if (!in_interrupt()) {
2491 					xhci_dbg(xhci, "queue_trb: Toggle cycle "
2492 						"state for ring %p = %i\n",
2493 						ring, (unsigned int)ring->cycle_state);
2494 				}
2495 			}
2496 			ring->enq_seg = ring->enq_seg->next;
2497 			ring->enqueue = ring->enq_seg->trbs;
2498 			next = ring->enqueue;
2499 		}
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static int prepare_transfer(struct xhci_hcd *xhci,
2506 		struct xhci_virt_device *xdev,
2507 		unsigned int ep_index,
2508 		unsigned int stream_id,
2509 		unsigned int num_trbs,
2510 		struct urb *urb,
2511 		unsigned int td_index,
2512 		bool isoc,
2513 		gfp_t mem_flags)
2514 {
2515 	int ret;
2516 	struct urb_priv *urb_priv;
2517 	struct xhci_td	*td;
2518 	struct xhci_ring *ep_ring;
2519 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2520 
2521 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2522 	if (!ep_ring) {
2523 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2524 				stream_id);
2525 		return -EINVAL;
2526 	}
2527 
2528 	ret = prepare_ring(xhci, ep_ring,
2529 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2530 			   num_trbs, isoc, mem_flags);
2531 	if (ret)
2532 		return ret;
2533 
2534 	urb_priv = urb->hcpriv;
2535 	td = urb_priv->td[td_index];
2536 
2537 	INIT_LIST_HEAD(&td->td_list);
2538 	INIT_LIST_HEAD(&td->cancelled_td_list);
2539 
2540 	if (td_index == 0) {
2541 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2542 		if (unlikely(ret))
2543 			return ret;
2544 	}
2545 
2546 	td->urb = urb;
2547 	/* Add this TD to the tail of the endpoint ring's TD list */
2548 	list_add_tail(&td->td_list, &ep_ring->td_list);
2549 	td->start_seg = ep_ring->enq_seg;
2550 	td->first_trb = ep_ring->enqueue;
2551 
2552 	urb_priv->td[td_index] = td;
2553 
2554 	return 0;
2555 }
2556 
2557 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2558 {
2559 	int num_sgs, num_trbs, running_total, temp, i;
2560 	struct scatterlist *sg;
2561 
2562 	sg = NULL;
2563 	num_sgs = urb->num_sgs;
2564 	temp = urb->transfer_buffer_length;
2565 
2566 	xhci_dbg(xhci, "count sg list trbs: \n");
2567 	num_trbs = 0;
2568 	for_each_sg(urb->sg, sg, num_sgs, i) {
2569 		unsigned int previous_total_trbs = num_trbs;
2570 		unsigned int len = sg_dma_len(sg);
2571 
2572 		/* Scatter gather list entries may cross 64KB boundaries */
2573 		running_total = TRB_MAX_BUFF_SIZE -
2574 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2575 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2576 		if (running_total != 0)
2577 			num_trbs++;
2578 
2579 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2580 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2581 			num_trbs++;
2582 			running_total += TRB_MAX_BUFF_SIZE;
2583 		}
2584 		xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2585 				i, (unsigned long long)sg_dma_address(sg),
2586 				len, len, num_trbs - previous_total_trbs);
2587 
2588 		len = min_t(int, len, temp);
2589 		temp -= len;
2590 		if (temp == 0)
2591 			break;
2592 	}
2593 	xhci_dbg(xhci, "\n");
2594 	if (!in_interrupt())
2595 		xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2596 				"num_trbs = %d\n",
2597 				urb->ep->desc.bEndpointAddress,
2598 				urb->transfer_buffer_length,
2599 				num_trbs);
2600 	return num_trbs;
2601 }
2602 
2603 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2604 {
2605 	if (num_trbs != 0)
2606 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2607 				"TRBs, %d left\n", __func__,
2608 				urb->ep->desc.bEndpointAddress, num_trbs);
2609 	if (running_total != urb->transfer_buffer_length)
2610 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2611 				"queued %#x (%d), asked for %#x (%d)\n",
2612 				__func__,
2613 				urb->ep->desc.bEndpointAddress,
2614 				running_total, running_total,
2615 				urb->transfer_buffer_length,
2616 				urb->transfer_buffer_length);
2617 }
2618 
2619 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2620 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2621 		struct xhci_generic_trb *start_trb)
2622 {
2623 	/*
2624 	 * Pass all the TRBs to the hardware at once and make sure this write
2625 	 * isn't reordered.
2626 	 */
2627 	wmb();
2628 	if (start_cycle)
2629 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2630 	else
2631 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2632 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2633 }
2634 
2635 /*
2636  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2637  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2638  * (comprised of sg list entries) can take several service intervals to
2639  * transmit.
2640  */
2641 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2642 		struct urb *urb, int slot_id, unsigned int ep_index)
2643 {
2644 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2645 			xhci->devs[slot_id]->out_ctx, ep_index);
2646 	int xhci_interval;
2647 	int ep_interval;
2648 
2649 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2650 	ep_interval = urb->interval;
2651 	/* Convert to microframes */
2652 	if (urb->dev->speed == USB_SPEED_LOW ||
2653 			urb->dev->speed == USB_SPEED_FULL)
2654 		ep_interval *= 8;
2655 	/* FIXME change this to a warning and a suggestion to use the new API
2656 	 * to set the polling interval (once the API is added).
2657 	 */
2658 	if (xhci_interval != ep_interval) {
2659 		if (printk_ratelimit())
2660 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
2661 					" (%d microframe%s) than xHCI "
2662 					"(%d microframe%s)\n",
2663 					ep_interval,
2664 					ep_interval == 1 ? "" : "s",
2665 					xhci_interval,
2666 					xhci_interval == 1 ? "" : "s");
2667 		urb->interval = xhci_interval;
2668 		/* Convert back to frames for LS/FS devices */
2669 		if (urb->dev->speed == USB_SPEED_LOW ||
2670 				urb->dev->speed == USB_SPEED_FULL)
2671 			urb->interval /= 8;
2672 	}
2673 	return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2674 }
2675 
2676 /*
2677  * The TD size is the number of bytes remaining in the TD (including this TRB),
2678  * right shifted by 10.
2679  * It must fit in bits 21:17, so it can't be bigger than 31.
2680  */
2681 static u32 xhci_td_remainder(unsigned int remainder)
2682 {
2683 	u32 max = (1 << (21 - 17 + 1)) - 1;
2684 
2685 	if ((remainder >> 10) >= max)
2686 		return max << 17;
2687 	else
2688 		return (remainder >> 10) << 17;
2689 }
2690 
2691 /*
2692  * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2693  * the TD (*not* including this TRB).
2694  *
2695  * Total TD packet count = total_packet_count =
2696  *     roundup(TD size in bytes / wMaxPacketSize)
2697  *
2698  * Packets transferred up to and including this TRB = packets_transferred =
2699  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2700  *
2701  * TD size = total_packet_count - packets_transferred
2702  *
2703  * It must fit in bits 21:17, so it can't be bigger than 31.
2704  */
2705 
2706 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2707 		unsigned int total_packet_count, struct urb *urb)
2708 {
2709 	int packets_transferred;
2710 
2711 	/* One TRB with a zero-length data packet. */
2712 	if (running_total == 0 && trb_buff_len == 0)
2713 		return 0;
2714 
2715 	/* All the TRB queueing functions don't count the current TRB in
2716 	 * running_total.
2717 	 */
2718 	packets_transferred = (running_total + trb_buff_len) /
2719 		usb_endpoint_maxp(&urb->ep->desc);
2720 
2721 	return xhci_td_remainder(total_packet_count - packets_transferred);
2722 }
2723 
2724 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2725 		struct urb *urb, int slot_id, unsigned int ep_index)
2726 {
2727 	struct xhci_ring *ep_ring;
2728 	unsigned int num_trbs;
2729 	struct urb_priv *urb_priv;
2730 	struct xhci_td *td;
2731 	struct scatterlist *sg;
2732 	int num_sgs;
2733 	int trb_buff_len, this_sg_len, running_total;
2734 	unsigned int total_packet_count;
2735 	bool first_trb;
2736 	u64 addr;
2737 	bool more_trbs_coming;
2738 
2739 	struct xhci_generic_trb *start_trb;
2740 	int start_cycle;
2741 
2742 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2743 	if (!ep_ring)
2744 		return -EINVAL;
2745 
2746 	num_trbs = count_sg_trbs_needed(xhci, urb);
2747 	num_sgs = urb->num_sgs;
2748 	total_packet_count = roundup(urb->transfer_buffer_length,
2749 			usb_endpoint_maxp(&urb->ep->desc));
2750 
2751 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2752 			ep_index, urb->stream_id,
2753 			num_trbs, urb, 0, false, mem_flags);
2754 	if (trb_buff_len < 0)
2755 		return trb_buff_len;
2756 
2757 	urb_priv = urb->hcpriv;
2758 	td = urb_priv->td[0];
2759 
2760 	/*
2761 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2762 	 * until we've finished creating all the other TRBs.  The ring's cycle
2763 	 * state may change as we enqueue the other TRBs, so save it too.
2764 	 */
2765 	start_trb = &ep_ring->enqueue->generic;
2766 	start_cycle = ep_ring->cycle_state;
2767 
2768 	running_total = 0;
2769 	/*
2770 	 * How much data is in the first TRB?
2771 	 *
2772 	 * There are three forces at work for TRB buffer pointers and lengths:
2773 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
2774 	 * 2. The transfer length that the driver requested may be smaller than
2775 	 *    the amount of memory allocated for this scatter-gather list.
2776 	 * 3. TRBs buffers can't cross 64KB boundaries.
2777 	 */
2778 	sg = urb->sg;
2779 	addr = (u64) sg_dma_address(sg);
2780 	this_sg_len = sg_dma_len(sg);
2781 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2782 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2783 	if (trb_buff_len > urb->transfer_buffer_length)
2784 		trb_buff_len = urb->transfer_buffer_length;
2785 	xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2786 			trb_buff_len);
2787 
2788 	first_trb = true;
2789 	/* Queue the first TRB, even if it's zero-length */
2790 	do {
2791 		u32 field = 0;
2792 		u32 length_field = 0;
2793 		u32 remainder = 0;
2794 
2795 		/* Don't change the cycle bit of the first TRB until later */
2796 		if (first_trb) {
2797 			first_trb = false;
2798 			if (start_cycle == 0)
2799 				field |= 0x1;
2800 		} else
2801 			field |= ep_ring->cycle_state;
2802 
2803 		/* Chain all the TRBs together; clear the chain bit in the last
2804 		 * TRB to indicate it's the last TRB in the chain.
2805 		 */
2806 		if (num_trbs > 1) {
2807 			field |= TRB_CHAIN;
2808 		} else {
2809 			/* FIXME - add check for ZERO_PACKET flag before this */
2810 			td->last_trb = ep_ring->enqueue;
2811 			field |= TRB_IOC;
2812 		}
2813 
2814 		/* Only set interrupt on short packet for IN endpoints */
2815 		if (usb_urb_dir_in(urb))
2816 			field |= TRB_ISP;
2817 
2818 		xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2819 				"64KB boundary at %#x, end dma = %#x\n",
2820 				(unsigned int) addr, trb_buff_len, trb_buff_len,
2821 				(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2822 				(unsigned int) addr + trb_buff_len);
2823 		if (TRB_MAX_BUFF_SIZE -
2824 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2825 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2826 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2827 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2828 					(unsigned int) addr + trb_buff_len);
2829 		}
2830 
2831 		/* Set the TRB length, TD size, and interrupter fields. */
2832 		if (xhci->hci_version < 0x100) {
2833 			remainder = xhci_td_remainder(
2834 					urb->transfer_buffer_length -
2835 					running_total);
2836 		} else {
2837 			remainder = xhci_v1_0_td_remainder(running_total,
2838 					trb_buff_len, total_packet_count, urb);
2839 		}
2840 		length_field = TRB_LEN(trb_buff_len) |
2841 			remainder |
2842 			TRB_INTR_TARGET(0);
2843 
2844 		if (num_trbs > 1)
2845 			more_trbs_coming = true;
2846 		else
2847 			more_trbs_coming = false;
2848 		queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
2849 				lower_32_bits(addr),
2850 				upper_32_bits(addr),
2851 				length_field,
2852 				field | TRB_TYPE(TRB_NORMAL));
2853 		--num_trbs;
2854 		running_total += trb_buff_len;
2855 
2856 		/* Calculate length for next transfer --
2857 		 * Are we done queueing all the TRBs for this sg entry?
2858 		 */
2859 		this_sg_len -= trb_buff_len;
2860 		if (this_sg_len == 0) {
2861 			--num_sgs;
2862 			if (num_sgs == 0)
2863 				break;
2864 			sg = sg_next(sg);
2865 			addr = (u64) sg_dma_address(sg);
2866 			this_sg_len = sg_dma_len(sg);
2867 		} else {
2868 			addr += trb_buff_len;
2869 		}
2870 
2871 		trb_buff_len = TRB_MAX_BUFF_SIZE -
2872 			(addr & (TRB_MAX_BUFF_SIZE - 1));
2873 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2874 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
2875 			trb_buff_len =
2876 				urb->transfer_buffer_length - running_total;
2877 	} while (running_total < urb->transfer_buffer_length);
2878 
2879 	check_trb_math(urb, num_trbs, running_total);
2880 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2881 			start_cycle, start_trb);
2882 	return 0;
2883 }
2884 
2885 /* This is very similar to what ehci-q.c qtd_fill() does */
2886 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2887 		struct urb *urb, int slot_id, unsigned int ep_index)
2888 {
2889 	struct xhci_ring *ep_ring;
2890 	struct urb_priv *urb_priv;
2891 	struct xhci_td *td;
2892 	int num_trbs;
2893 	struct xhci_generic_trb *start_trb;
2894 	bool first_trb;
2895 	bool more_trbs_coming;
2896 	int start_cycle;
2897 	u32 field, length_field;
2898 
2899 	int running_total, trb_buff_len, ret;
2900 	unsigned int total_packet_count;
2901 	u64 addr;
2902 
2903 	if (urb->num_sgs)
2904 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2905 
2906 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2907 	if (!ep_ring)
2908 		return -EINVAL;
2909 
2910 	num_trbs = 0;
2911 	/* How much data is (potentially) left before the 64KB boundary? */
2912 	running_total = TRB_MAX_BUFF_SIZE -
2913 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2914 	running_total &= TRB_MAX_BUFF_SIZE - 1;
2915 
2916 	/* If there's some data on this 64KB chunk, or we have to send a
2917 	 * zero-length transfer, we need at least one TRB
2918 	 */
2919 	if (running_total != 0 || urb->transfer_buffer_length == 0)
2920 		num_trbs++;
2921 	/* How many more 64KB chunks to transfer, how many more TRBs? */
2922 	while (running_total < urb->transfer_buffer_length) {
2923 		num_trbs++;
2924 		running_total += TRB_MAX_BUFF_SIZE;
2925 	}
2926 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2927 
2928 	if (!in_interrupt())
2929 		xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2930 				"addr = %#llx, num_trbs = %d\n",
2931 				urb->ep->desc.bEndpointAddress,
2932 				urb->transfer_buffer_length,
2933 				urb->transfer_buffer_length,
2934 				(unsigned long long)urb->transfer_dma,
2935 				num_trbs);
2936 
2937 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
2938 			ep_index, urb->stream_id,
2939 			num_trbs, urb, 0, false, mem_flags);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	urb_priv = urb->hcpriv;
2944 	td = urb_priv->td[0];
2945 
2946 	/*
2947 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2948 	 * until we've finished creating all the other TRBs.  The ring's cycle
2949 	 * state may change as we enqueue the other TRBs, so save it too.
2950 	 */
2951 	start_trb = &ep_ring->enqueue->generic;
2952 	start_cycle = ep_ring->cycle_state;
2953 
2954 	running_total = 0;
2955 	total_packet_count = roundup(urb->transfer_buffer_length,
2956 			usb_endpoint_maxp(&urb->ep->desc));
2957 	/* How much data is in the first TRB? */
2958 	addr = (u64) urb->transfer_dma;
2959 	trb_buff_len = TRB_MAX_BUFF_SIZE -
2960 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2961 	if (trb_buff_len > urb->transfer_buffer_length)
2962 		trb_buff_len = urb->transfer_buffer_length;
2963 
2964 	first_trb = true;
2965 
2966 	/* Queue the first TRB, even if it's zero-length */
2967 	do {
2968 		u32 remainder = 0;
2969 		field = 0;
2970 
2971 		/* Don't change the cycle bit of the first TRB until later */
2972 		if (first_trb) {
2973 			first_trb = false;
2974 			if (start_cycle == 0)
2975 				field |= 0x1;
2976 		} else
2977 			field |= ep_ring->cycle_state;
2978 
2979 		/* Chain all the TRBs together; clear the chain bit in the last
2980 		 * TRB to indicate it's the last TRB in the chain.
2981 		 */
2982 		if (num_trbs > 1) {
2983 			field |= TRB_CHAIN;
2984 		} else {
2985 			/* FIXME - add check for ZERO_PACKET flag before this */
2986 			td->last_trb = ep_ring->enqueue;
2987 			field |= TRB_IOC;
2988 		}
2989 
2990 		/* Only set interrupt on short packet for IN endpoints */
2991 		if (usb_urb_dir_in(urb))
2992 			field |= TRB_ISP;
2993 
2994 		/* Set the TRB length, TD size, and interrupter fields. */
2995 		if (xhci->hci_version < 0x100) {
2996 			remainder = xhci_td_remainder(
2997 					urb->transfer_buffer_length -
2998 					running_total);
2999 		} else {
3000 			remainder = xhci_v1_0_td_remainder(running_total,
3001 					trb_buff_len, total_packet_count, urb);
3002 		}
3003 		length_field = TRB_LEN(trb_buff_len) |
3004 			remainder |
3005 			TRB_INTR_TARGET(0);
3006 
3007 		if (num_trbs > 1)
3008 			more_trbs_coming = true;
3009 		else
3010 			more_trbs_coming = false;
3011 		queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
3012 				lower_32_bits(addr),
3013 				upper_32_bits(addr),
3014 				length_field,
3015 				field | TRB_TYPE(TRB_NORMAL));
3016 		--num_trbs;
3017 		running_total += trb_buff_len;
3018 
3019 		/* Calculate length for next transfer */
3020 		addr += trb_buff_len;
3021 		trb_buff_len = urb->transfer_buffer_length - running_total;
3022 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3023 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3024 	} while (running_total < urb->transfer_buffer_length);
3025 
3026 	check_trb_math(urb, num_trbs, running_total);
3027 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3028 			start_cycle, start_trb);
3029 	return 0;
3030 }
3031 
3032 /* Caller must have locked xhci->lock */
3033 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3034 		struct urb *urb, int slot_id, unsigned int ep_index)
3035 {
3036 	struct xhci_ring *ep_ring;
3037 	int num_trbs;
3038 	int ret;
3039 	struct usb_ctrlrequest *setup;
3040 	struct xhci_generic_trb *start_trb;
3041 	int start_cycle;
3042 	u32 field, length_field;
3043 	struct urb_priv *urb_priv;
3044 	struct xhci_td *td;
3045 
3046 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3047 	if (!ep_ring)
3048 		return -EINVAL;
3049 
3050 	/*
3051 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3052 	 * DMA address.
3053 	 */
3054 	if (!urb->setup_packet)
3055 		return -EINVAL;
3056 
3057 	if (!in_interrupt())
3058 		xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3059 				slot_id, ep_index);
3060 	/* 1 TRB for setup, 1 for status */
3061 	num_trbs = 2;
3062 	/*
3063 	 * Don't need to check if we need additional event data and normal TRBs,
3064 	 * since data in control transfers will never get bigger than 16MB
3065 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3066 	 */
3067 	if (urb->transfer_buffer_length > 0)
3068 		num_trbs++;
3069 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3070 			ep_index, urb->stream_id,
3071 			num_trbs, urb, 0, false, mem_flags);
3072 	if (ret < 0)
3073 		return ret;
3074 
3075 	urb_priv = urb->hcpriv;
3076 	td = urb_priv->td[0];
3077 
3078 	/*
3079 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3080 	 * until we've finished creating all the other TRBs.  The ring's cycle
3081 	 * state may change as we enqueue the other TRBs, so save it too.
3082 	 */
3083 	start_trb = &ep_ring->enqueue->generic;
3084 	start_cycle = ep_ring->cycle_state;
3085 
3086 	/* Queue setup TRB - see section 6.4.1.2.1 */
3087 	/* FIXME better way to translate setup_packet into two u32 fields? */
3088 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3089 	field = 0;
3090 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3091 	if (start_cycle == 0)
3092 		field |= 0x1;
3093 
3094 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3095 	if (xhci->hci_version == 0x100) {
3096 		if (urb->transfer_buffer_length > 0) {
3097 			if (setup->bRequestType & USB_DIR_IN)
3098 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3099 			else
3100 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3101 		}
3102 	}
3103 
3104 	queue_trb(xhci, ep_ring, false, true, false,
3105 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3106 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3107 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3108 		  /* Immediate data in pointer */
3109 		  field);
3110 
3111 	/* If there's data, queue data TRBs */
3112 	/* Only set interrupt on short packet for IN endpoints */
3113 	if (usb_urb_dir_in(urb))
3114 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3115 	else
3116 		field = TRB_TYPE(TRB_DATA);
3117 
3118 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3119 		xhci_td_remainder(urb->transfer_buffer_length) |
3120 		TRB_INTR_TARGET(0);
3121 	if (urb->transfer_buffer_length > 0) {
3122 		if (setup->bRequestType & USB_DIR_IN)
3123 			field |= TRB_DIR_IN;
3124 		queue_trb(xhci, ep_ring, false, true, false,
3125 				lower_32_bits(urb->transfer_dma),
3126 				upper_32_bits(urb->transfer_dma),
3127 				length_field,
3128 				field | ep_ring->cycle_state);
3129 	}
3130 
3131 	/* Save the DMA address of the last TRB in the TD */
3132 	td->last_trb = ep_ring->enqueue;
3133 
3134 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3135 	/* If the device sent data, the status stage is an OUT transfer */
3136 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3137 		field = 0;
3138 	else
3139 		field = TRB_DIR_IN;
3140 	queue_trb(xhci, ep_ring, false, false, false,
3141 			0,
3142 			0,
3143 			TRB_INTR_TARGET(0),
3144 			/* Event on completion */
3145 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3146 
3147 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3148 			start_cycle, start_trb);
3149 	return 0;
3150 }
3151 
3152 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3153 		struct urb *urb, int i)
3154 {
3155 	int num_trbs = 0;
3156 	u64 addr, td_len;
3157 
3158 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3159 	td_len = urb->iso_frame_desc[i].length;
3160 
3161 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3162 			TRB_MAX_BUFF_SIZE);
3163 	if (num_trbs == 0)
3164 		num_trbs++;
3165 
3166 	return num_trbs;
3167 }
3168 
3169 /*
3170  * The transfer burst count field of the isochronous TRB defines the number of
3171  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3172  * devices can burst up to bMaxBurst number of packets per service interval.
3173  * This field is zero based, meaning a value of zero in the field means one
3174  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3175  * zero.  Only xHCI 1.0 host controllers support this field.
3176  */
3177 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3178 		struct usb_device *udev,
3179 		struct urb *urb, unsigned int total_packet_count)
3180 {
3181 	unsigned int max_burst;
3182 
3183 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3184 		return 0;
3185 
3186 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3187 	return roundup(total_packet_count, max_burst + 1) - 1;
3188 }
3189 
3190 /*
3191  * Returns the number of packets in the last "burst" of packets.  This field is
3192  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3193  * the last burst packet count is equal to the total number of packets in the
3194  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3195  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3196  * contain 1 to (bMaxBurst + 1) packets.
3197  */
3198 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3199 		struct usb_device *udev,
3200 		struct urb *urb, unsigned int total_packet_count)
3201 {
3202 	unsigned int max_burst;
3203 	unsigned int residue;
3204 
3205 	if (xhci->hci_version < 0x100)
3206 		return 0;
3207 
3208 	switch (udev->speed) {
3209 	case USB_SPEED_SUPER:
3210 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3211 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3212 		residue = total_packet_count % (max_burst + 1);
3213 		/* If residue is zero, the last burst contains (max_burst + 1)
3214 		 * number of packets, but the TLBPC field is zero-based.
3215 		 */
3216 		if (residue == 0)
3217 			return max_burst;
3218 		return residue - 1;
3219 	default:
3220 		if (total_packet_count == 0)
3221 			return 0;
3222 		return total_packet_count - 1;
3223 	}
3224 }
3225 
3226 /* This is for isoc transfer */
3227 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3228 		struct urb *urb, int slot_id, unsigned int ep_index)
3229 {
3230 	struct xhci_ring *ep_ring;
3231 	struct urb_priv *urb_priv;
3232 	struct xhci_td *td;
3233 	int num_tds, trbs_per_td;
3234 	struct xhci_generic_trb *start_trb;
3235 	bool first_trb;
3236 	int start_cycle;
3237 	u32 field, length_field;
3238 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3239 	u64 start_addr, addr;
3240 	int i, j;
3241 	bool more_trbs_coming;
3242 
3243 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3244 
3245 	num_tds = urb->number_of_packets;
3246 	if (num_tds < 1) {
3247 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3248 		return -EINVAL;
3249 	}
3250 
3251 	if (!in_interrupt())
3252 		xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3253 				" addr = %#llx, num_tds = %d\n",
3254 				urb->ep->desc.bEndpointAddress,
3255 				urb->transfer_buffer_length,
3256 				urb->transfer_buffer_length,
3257 				(unsigned long long)urb->transfer_dma,
3258 				num_tds);
3259 
3260 	start_addr = (u64) urb->transfer_dma;
3261 	start_trb = &ep_ring->enqueue->generic;
3262 	start_cycle = ep_ring->cycle_state;
3263 
3264 	urb_priv = urb->hcpriv;
3265 	/* Queue the first TRB, even if it's zero-length */
3266 	for (i = 0; i < num_tds; i++) {
3267 		unsigned int total_packet_count;
3268 		unsigned int burst_count;
3269 		unsigned int residue;
3270 
3271 		first_trb = true;
3272 		running_total = 0;
3273 		addr = start_addr + urb->iso_frame_desc[i].offset;
3274 		td_len = urb->iso_frame_desc[i].length;
3275 		td_remain_len = td_len;
3276 		total_packet_count = roundup(td_len,
3277 				usb_endpoint_maxp(&urb->ep->desc));
3278 		/* A zero-length transfer still involves at least one packet. */
3279 		if (total_packet_count == 0)
3280 			total_packet_count++;
3281 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3282 				total_packet_count);
3283 		residue = xhci_get_last_burst_packet_count(xhci,
3284 				urb->dev, urb, total_packet_count);
3285 
3286 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3287 
3288 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3289 				urb->stream_id, trbs_per_td, urb, i, true,
3290 				mem_flags);
3291 		if (ret < 0) {
3292 			if (i == 0)
3293 				return ret;
3294 			goto cleanup;
3295 		}
3296 
3297 		td = urb_priv->td[i];
3298 		for (j = 0; j < trbs_per_td; j++) {
3299 			u32 remainder = 0;
3300 			field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3301 
3302 			if (first_trb) {
3303 				/* Queue the isoc TRB */
3304 				field |= TRB_TYPE(TRB_ISOC);
3305 				/* Assume URB_ISO_ASAP is set */
3306 				field |= TRB_SIA;
3307 				if (i == 0) {
3308 					if (start_cycle == 0)
3309 						field |= 0x1;
3310 				} else
3311 					field |= ep_ring->cycle_state;
3312 				first_trb = false;
3313 			} else {
3314 				/* Queue other normal TRBs */
3315 				field |= TRB_TYPE(TRB_NORMAL);
3316 				field |= ep_ring->cycle_state;
3317 			}
3318 
3319 			/* Only set interrupt on short packet for IN EPs */
3320 			if (usb_urb_dir_in(urb))
3321 				field |= TRB_ISP;
3322 
3323 			/* Chain all the TRBs together; clear the chain bit in
3324 			 * the last TRB to indicate it's the last TRB in the
3325 			 * chain.
3326 			 */
3327 			if (j < trbs_per_td - 1) {
3328 				field |= TRB_CHAIN;
3329 				more_trbs_coming = true;
3330 			} else {
3331 				td->last_trb = ep_ring->enqueue;
3332 				field |= TRB_IOC;
3333 				if (xhci->hci_version == 0x100) {
3334 					/* Set BEI bit except for the last td */
3335 					if (i < num_tds - 1)
3336 						field |= TRB_BEI;
3337 				}
3338 				more_trbs_coming = false;
3339 			}
3340 
3341 			/* Calculate TRB length */
3342 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3343 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3344 			if (trb_buff_len > td_remain_len)
3345 				trb_buff_len = td_remain_len;
3346 
3347 			/* Set the TRB length, TD size, & interrupter fields. */
3348 			if (xhci->hci_version < 0x100) {
3349 				remainder = xhci_td_remainder(
3350 						td_len - running_total);
3351 			} else {
3352 				remainder = xhci_v1_0_td_remainder(
3353 						running_total, trb_buff_len,
3354 						total_packet_count, urb);
3355 			}
3356 			length_field = TRB_LEN(trb_buff_len) |
3357 				remainder |
3358 				TRB_INTR_TARGET(0);
3359 
3360 			queue_trb(xhci, ep_ring, false, more_trbs_coming, true,
3361 				lower_32_bits(addr),
3362 				upper_32_bits(addr),
3363 				length_field,
3364 				field);
3365 			running_total += trb_buff_len;
3366 
3367 			addr += trb_buff_len;
3368 			td_remain_len -= trb_buff_len;
3369 		}
3370 
3371 		/* Check TD length */
3372 		if (running_total != td_len) {
3373 			xhci_err(xhci, "ISOC TD length unmatch\n");
3374 			return -EINVAL;
3375 		}
3376 	}
3377 
3378 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3379 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3380 			usb_amd_quirk_pll_disable();
3381 	}
3382 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3383 
3384 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3385 			start_cycle, start_trb);
3386 	return 0;
3387 cleanup:
3388 	/* Clean up a partially enqueued isoc transfer. */
3389 
3390 	for (i--; i >= 0; i--)
3391 		list_del_init(&urb_priv->td[i]->td_list);
3392 
3393 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3394 	 * into No-ops with a software-owned cycle bit. That way the hardware
3395 	 * won't accidentally start executing bogus TDs when we partially
3396 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3397 	 */
3398 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3399 	/* Every TRB except the first & last will have its cycle bit flipped. */
3400 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3401 
3402 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3403 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3404 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3405 	ep_ring->cycle_state = start_cycle;
3406 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3407 	return ret;
3408 }
3409 
3410 /*
3411  * Check transfer ring to guarantee there is enough room for the urb.
3412  * Update ISO URB start_frame and interval.
3413  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3414  * update the urb->start_frame by now.
3415  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3416  */
3417 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3418 		struct urb *urb, int slot_id, unsigned int ep_index)
3419 {
3420 	struct xhci_virt_device *xdev;
3421 	struct xhci_ring *ep_ring;
3422 	struct xhci_ep_ctx *ep_ctx;
3423 	int start_frame;
3424 	int xhci_interval;
3425 	int ep_interval;
3426 	int num_tds, num_trbs, i;
3427 	int ret;
3428 
3429 	xdev = xhci->devs[slot_id];
3430 	ep_ring = xdev->eps[ep_index].ring;
3431 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3432 
3433 	num_trbs = 0;
3434 	num_tds = urb->number_of_packets;
3435 	for (i = 0; i < num_tds; i++)
3436 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3437 
3438 	/* Check the ring to guarantee there is enough room for the whole urb.
3439 	 * Do not insert any td of the urb to the ring if the check failed.
3440 	 */
3441 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3442 			   num_trbs, true, mem_flags);
3443 	if (ret)
3444 		return ret;
3445 
3446 	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3447 	start_frame &= 0x3fff;
3448 
3449 	urb->start_frame = start_frame;
3450 	if (urb->dev->speed == USB_SPEED_LOW ||
3451 			urb->dev->speed == USB_SPEED_FULL)
3452 		urb->start_frame >>= 3;
3453 
3454 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3455 	ep_interval = urb->interval;
3456 	/* Convert to microframes */
3457 	if (urb->dev->speed == USB_SPEED_LOW ||
3458 			urb->dev->speed == USB_SPEED_FULL)
3459 		ep_interval *= 8;
3460 	/* FIXME change this to a warning and a suggestion to use the new API
3461 	 * to set the polling interval (once the API is added).
3462 	 */
3463 	if (xhci_interval != ep_interval) {
3464 		if (printk_ratelimit())
3465 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
3466 					" (%d microframe%s) than xHCI "
3467 					"(%d microframe%s)\n",
3468 					ep_interval,
3469 					ep_interval == 1 ? "" : "s",
3470 					xhci_interval,
3471 					xhci_interval == 1 ? "" : "s");
3472 		urb->interval = xhci_interval;
3473 		/* Convert back to frames for LS/FS devices */
3474 		if (urb->dev->speed == USB_SPEED_LOW ||
3475 				urb->dev->speed == USB_SPEED_FULL)
3476 			urb->interval /= 8;
3477 	}
3478 	return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3479 }
3480 
3481 /****		Command Ring Operations		****/
3482 
3483 /* Generic function for queueing a command TRB on the command ring.
3484  * Check to make sure there's room on the command ring for one command TRB.
3485  * Also check that there's room reserved for commands that must not fail.
3486  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3487  * then only check for the number of reserved spots.
3488  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3489  * because the command event handler may want to resubmit a failed command.
3490  */
3491 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3492 		u32 field3, u32 field4, bool command_must_succeed)
3493 {
3494 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3495 	int ret;
3496 
3497 	if (!command_must_succeed)
3498 		reserved_trbs++;
3499 
3500 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3501 			reserved_trbs, false, GFP_ATOMIC);
3502 	if (ret < 0) {
3503 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3504 		if (command_must_succeed)
3505 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3506 					"unfailable commands failed.\n");
3507 		return ret;
3508 	}
3509 	queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2,
3510 			field3,	field4 | xhci->cmd_ring->cycle_state);
3511 	return 0;
3512 }
3513 
3514 /* Queue a slot enable or disable request on the command ring */
3515 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3516 {
3517 	return queue_command(xhci, 0, 0, 0,
3518 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3519 }
3520 
3521 /* Queue an address device command TRB */
3522 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3523 		u32 slot_id)
3524 {
3525 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3526 			upper_32_bits(in_ctx_ptr), 0,
3527 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3528 			false);
3529 }
3530 
3531 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3532 		u32 field1, u32 field2, u32 field3, u32 field4)
3533 {
3534 	return queue_command(xhci, field1, field2, field3, field4, false);
3535 }
3536 
3537 /* Queue a reset device command TRB */
3538 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3539 {
3540 	return queue_command(xhci, 0, 0, 0,
3541 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3542 			false);
3543 }
3544 
3545 /* Queue a configure endpoint command TRB */
3546 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3547 		u32 slot_id, bool command_must_succeed)
3548 {
3549 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3550 			upper_32_bits(in_ctx_ptr), 0,
3551 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3552 			command_must_succeed);
3553 }
3554 
3555 /* Queue an evaluate context command TRB */
3556 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3557 		u32 slot_id)
3558 {
3559 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3560 			upper_32_bits(in_ctx_ptr), 0,
3561 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3562 			false);
3563 }
3564 
3565 /*
3566  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3567  * activity on an endpoint that is about to be suspended.
3568  */
3569 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3570 		unsigned int ep_index, int suspend)
3571 {
3572 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3573 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3574 	u32 type = TRB_TYPE(TRB_STOP_RING);
3575 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3576 
3577 	return queue_command(xhci, 0, 0, 0,
3578 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3579 }
3580 
3581 /* Set Transfer Ring Dequeue Pointer command.
3582  * This should not be used for endpoints that have streams enabled.
3583  */
3584 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3585 		unsigned int ep_index, unsigned int stream_id,
3586 		struct xhci_segment *deq_seg,
3587 		union xhci_trb *deq_ptr, u32 cycle_state)
3588 {
3589 	dma_addr_t addr;
3590 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3591 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3592 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3593 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3594 	struct xhci_virt_ep *ep;
3595 
3596 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3597 	if (addr == 0) {
3598 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3599 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3600 				deq_seg, deq_ptr);
3601 		return 0;
3602 	}
3603 	ep = &xhci->devs[slot_id]->eps[ep_index];
3604 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3605 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3606 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3607 		return 0;
3608 	}
3609 	ep->queued_deq_seg = deq_seg;
3610 	ep->queued_deq_ptr = deq_ptr;
3611 	return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3612 			upper_32_bits(addr), trb_stream_id,
3613 			trb_slot_id | trb_ep_index | type, false);
3614 }
3615 
3616 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3617 		unsigned int ep_index)
3618 {
3619 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3620 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3621 	u32 type = TRB_TYPE(TRB_RESET_EP);
3622 
3623 	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3624 			false);
3625 }
3626