xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 5d331b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 /*
12  * Ring initialization rules:
13  * 1. Each segment is initialized to zero, except for link TRBs.
14  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
15  *    Consumer Cycle State (CCS), depending on ring function.
16  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17  *
18  * Ring behavior rules:
19  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
20  *    least one free TRB in the ring.  This is useful if you want to turn that
21  *    into a link TRB and expand the ring.
22  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23  *    link TRB, then load the pointer with the address in the link TRB.  If the
24  *    link TRB had its toggle bit set, you may need to update the ring cycle
25  *    state (see cycle bit rules).  You may have to do this multiple times
26  *    until you reach a non-link TRB.
27  * 3. A ring is full if enqueue++ (for the definition of increment above)
28  *    equals the dequeue pointer.
29  *
30  * Cycle bit rules:
31  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32  *    in a link TRB, it must toggle the ring cycle state.
33  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34  *    in a link TRB, it must toggle the ring cycle state.
35  *
36  * Producer rules:
37  * 1. Check if ring is full before you enqueue.
38  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39  *    Update enqueue pointer between each write (which may update the ring
40  *    cycle state).
41  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
42  *    and endpoint rings.  If HC is the producer for the event ring,
43  *    and it generates an interrupt according to interrupt modulation rules.
44  *
45  * Consumer rules:
46  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
47  *    the TRB is owned by the consumer.
48  * 2. Update dequeue pointer (which may update the ring cycle state) and
49  *    continue processing TRBs until you reach a TRB which is not owned by you.
50  * 3. Notify the producer.  SW is the consumer for the event ring, and it
51  *   updates event ring dequeue pointer.  HC is the consumer for the command and
52  *   endpoint rings; it generates events on the event ring for these.
53  */
54 
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61 
62 /*
63  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64  * address of the TRB.
65  */
66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 		union xhci_trb *trb)
68 {
69 	unsigned long segment_offset;
70 
71 	if (!seg || !trb || trb < seg->trbs)
72 		return 0;
73 	/* offset in TRBs */
74 	segment_offset = trb - seg->trbs;
75 	if (segment_offset >= TRBS_PER_SEGMENT)
76 		return 0;
77 	return seg->dma + (segment_offset * sizeof(*trb));
78 }
79 
80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84 
85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 	return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89 
90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94 
95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 			struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100 
101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 	struct urb_priv *urb_priv = td->urb->hcpriv;
109 
110 	return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112 
113 static void inc_td_cnt(struct urb *urb)
114 {
115 	struct urb_priv *urb_priv = urb->hcpriv;
116 
117 	urb_priv->num_tds_done++;
118 }
119 
120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 	if (trb_is_link(trb)) {
123 		/* unchain chained link TRBs */
124 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 	} else {
126 		trb->generic.field[0] = 0;
127 		trb->generic.field[1] = 0;
128 		trb->generic.field[2] = 0;
129 		/* Preserve only the cycle bit of this TRB */
130 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 	}
133 }
134 
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
137  * effect the ring dequeue or enqueue pointers.
138  */
139 static void next_trb(struct xhci_hcd *xhci,
140 		struct xhci_ring *ring,
141 		struct xhci_segment **seg,
142 		union xhci_trb **trb)
143 {
144 	if (trb_is_link(*trb)) {
145 		*seg = (*seg)->next;
146 		*trb = ((*seg)->trbs);
147 	} else {
148 		(*trb)++;
149 	}
150 }
151 
152 /*
153  * See Cycle bit rules. SW is the consumer for the event ring only.
154  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
155  */
156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 	/* event ring doesn't have link trbs, check for last trb */
159 	if (ring->type == TYPE_EVENT) {
160 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 			ring->dequeue++;
162 			goto out;
163 		}
164 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 			ring->cycle_state ^= 1;
166 		ring->deq_seg = ring->deq_seg->next;
167 		ring->dequeue = ring->deq_seg->trbs;
168 		goto out;
169 	}
170 
171 	/* All other rings have link trbs */
172 	if (!trb_is_link(ring->dequeue)) {
173 		ring->dequeue++;
174 		ring->num_trbs_free++;
175 	}
176 	while (trb_is_link(ring->dequeue)) {
177 		ring->deq_seg = ring->deq_seg->next;
178 		ring->dequeue = ring->deq_seg->trbs;
179 	}
180 
181 out:
182 	trace_xhci_inc_deq(ring);
183 
184 	return;
185 }
186 
187 /*
188  * See Cycle bit rules. SW is the consumer for the event ring only.
189  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
190  *
191  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192  * chain bit is set), then set the chain bit in all the following link TRBs.
193  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194  * have their chain bit cleared (so that each Link TRB is a separate TD).
195  *
196  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197  * set, but other sections talk about dealing with the chain bit set.  This was
198  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200  *
201  * @more_trbs_coming:	Will you enqueue more TRBs before calling
202  *			prepare_transfer()?
203  */
204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 			bool more_trbs_coming)
206 {
207 	u32 chain;
208 	union xhci_trb *next;
209 
210 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 	/* If this is not event ring, there is one less usable TRB */
212 	if (!trb_is_link(ring->enqueue))
213 		ring->num_trbs_free--;
214 	next = ++(ring->enqueue);
215 
216 	/* Update the dequeue pointer further if that was a link TRB */
217 	while (trb_is_link(next)) {
218 
219 		/*
220 		 * If the caller doesn't plan on enqueueing more TDs before
221 		 * ringing the doorbell, then we don't want to give the link TRB
222 		 * to the hardware just yet. We'll give the link TRB back in
223 		 * prepare_ring() just before we enqueue the TD at the top of
224 		 * the ring.
225 		 */
226 		if (!chain && !more_trbs_coming)
227 			break;
228 
229 		/* If we're not dealing with 0.95 hardware or isoc rings on
230 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 		 * (which may mean the chain bit is cleared).
232 		 */
233 		if (!(ring->type == TYPE_ISOC &&
234 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 		    !xhci_link_trb_quirk(xhci)) {
236 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 			next->link.control |= cpu_to_le32(chain);
238 		}
239 		/* Give this link TRB to the hardware */
240 		wmb();
241 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
242 
243 		/* Toggle the cycle bit after the last ring segment. */
244 		if (link_trb_toggles_cycle(next))
245 			ring->cycle_state ^= 1;
246 
247 		ring->enq_seg = ring->enq_seg->next;
248 		ring->enqueue = ring->enq_seg->trbs;
249 		next = ring->enqueue;
250 	}
251 
252 	trace_xhci_inc_enq(ring);
253 }
254 
255 /*
256  * Check to see if there's room to enqueue num_trbs on the ring and make sure
257  * enqueue pointer will not advance into dequeue segment. See rules above.
258  */
259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 		unsigned int num_trbs)
261 {
262 	int num_trbs_in_deq_seg;
263 
264 	if (ring->num_trbs_free < num_trbs)
265 		return 0;
266 
267 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 			return 0;
271 	}
272 
273 	return 1;
274 }
275 
276 /* Ring the host controller doorbell after placing a command on the ring */
277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 		return;
281 
282 	xhci_dbg(xhci, "// Ding dong!\n");
283 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 	/* Flush PCI posted writes */
285 	readl(&xhci->dba->doorbell[0]);
286 }
287 
288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
289 {
290 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
291 }
292 
293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
294 {
295 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 					cmd_list);
297 }
298 
299 /*
300  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301  * If there are other commands waiting then restart the ring and kick the timer.
302  * This must be called with command ring stopped and xhci->lock held.
303  */
304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 					 struct xhci_command *cur_cmd)
306 {
307 	struct xhci_command *i_cmd;
308 
309 	/* Turn all aborted commands in list to no-ops, then restart */
310 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
311 
312 		if (i_cmd->status != COMP_COMMAND_ABORTED)
313 			continue;
314 
315 		i_cmd->status = COMP_COMMAND_RING_STOPPED;
316 
317 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 			 i_cmd->command_trb);
319 
320 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
321 
322 		/*
323 		 * caller waiting for completion is called when command
324 		 *  completion event is received for these no-op commands
325 		 */
326 	}
327 
328 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
329 
330 	/* ring command ring doorbell to restart the command ring */
331 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 		xhci->current_cmd = cur_cmd;
334 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 		xhci_ring_cmd_db(xhci);
336 	}
337 }
338 
339 /* Must be called with xhci->lock held, releases and aquires lock back */
340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
341 {
342 	u64 temp_64;
343 	int ret;
344 
345 	xhci_dbg(xhci, "Abort command ring\n");
346 
347 	reinit_completion(&xhci->cmd_ring_stop_completion);
348 
349 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 			&xhci->op_regs->cmd_ring);
352 
353 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 	 * completion of the Command Abort operation. If CRR is not negated in 5
355 	 * seconds then driver handles it as if host died (-ENODEV).
356 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 	 * and try to recover a -ETIMEDOUT with a host controller reset.
358 	 */
359 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 	if (ret < 0) {
362 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 		xhci_halt(xhci);
364 		xhci_hc_died(xhci);
365 		return ret;
366 	}
367 	/*
368 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 	 * but the completion event in never sent. Wait 2 secs (arbitrary
371 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
372 	 */
373 	spin_unlock_irqrestore(&xhci->lock, flags);
374 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 					  msecs_to_jiffies(2000));
376 	spin_lock_irqsave(&xhci->lock, flags);
377 	if (!ret) {
378 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 		xhci_cleanup_command_queue(xhci);
380 	} else {
381 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
382 	}
383 	return 0;
384 }
385 
386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 		unsigned int slot_id,
388 		unsigned int ep_index,
389 		unsigned int stream_id)
390 {
391 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 	unsigned int ep_state = ep->ep_state;
394 
395 	/* Don't ring the doorbell for this endpoint if there are pending
396 	 * cancellations because we don't want to interrupt processing.
397 	 * We don't want to restart any stream rings if there's a set dequeue
398 	 * pointer command pending because the device can choose to start any
399 	 * stream once the endpoint is on the HW schedule.
400 	 */
401 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 	    (ep_state & EP_HALTED))
403 		return;
404 	writel(DB_VALUE(ep_index, stream_id), db_addr);
405 	/* The CPU has better things to do at this point than wait for a
406 	 * write-posting flush.  It'll get there soon enough.
407 	 */
408 }
409 
410 /* Ring the doorbell for any rings with pending URBs */
411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 		unsigned int slot_id,
413 		unsigned int ep_index)
414 {
415 	unsigned int stream_id;
416 	struct xhci_virt_ep *ep;
417 
418 	ep = &xhci->devs[slot_id]->eps[ep_index];
419 
420 	/* A ring has pending URBs if its TD list is not empty */
421 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 		return;
425 	}
426 
427 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 			stream_id++) {
429 		struct xhci_stream_info *stream_info = ep->stream_info;
430 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 						stream_id);
433 	}
434 }
435 
436 /* Get the right ring for the given slot_id, ep_index and stream_id.
437  * If the endpoint supports streams, boundary check the URB's stream ID.
438  * If the endpoint doesn't support streams, return the singular endpoint ring.
439  */
440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
441 		unsigned int slot_id, unsigned int ep_index,
442 		unsigned int stream_id)
443 {
444 	struct xhci_virt_ep *ep;
445 
446 	ep = &xhci->devs[slot_id]->eps[ep_index];
447 	/* Common case: no streams */
448 	if (!(ep->ep_state & EP_HAS_STREAMS))
449 		return ep->ring;
450 
451 	if (stream_id == 0) {
452 		xhci_warn(xhci,
453 				"WARN: Slot ID %u, ep index %u has streams, "
454 				"but URB has no stream ID.\n",
455 				slot_id, ep_index);
456 		return NULL;
457 	}
458 
459 	if (stream_id < ep->stream_info->num_streams)
460 		return ep->stream_info->stream_rings[stream_id];
461 
462 	xhci_warn(xhci,
463 			"WARN: Slot ID %u, ep index %u has "
464 			"stream IDs 1 to %u allocated, "
465 			"but stream ID %u is requested.\n",
466 			slot_id, ep_index,
467 			ep->stream_info->num_streams - 1,
468 			stream_id);
469 	return NULL;
470 }
471 
472 
473 /*
474  * Get the hw dequeue pointer xHC stopped on, either directly from the
475  * endpoint context, or if streams are in use from the stream context.
476  * The returned hw_dequeue contains the lowest four bits with cycle state
477  * and possbile stream context type.
478  */
479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
480 			   unsigned int ep_index, unsigned int stream_id)
481 {
482 	struct xhci_ep_ctx *ep_ctx;
483 	struct xhci_stream_ctx *st_ctx;
484 	struct xhci_virt_ep *ep;
485 
486 	ep = &vdev->eps[ep_index];
487 
488 	if (ep->ep_state & EP_HAS_STREAMS) {
489 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
490 		return le64_to_cpu(st_ctx->stream_ring);
491 	}
492 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
493 	return le64_to_cpu(ep_ctx->deq);
494 }
495 
496 /*
497  * Move the xHC's endpoint ring dequeue pointer past cur_td.
498  * Record the new state of the xHC's endpoint ring dequeue segment,
499  * dequeue pointer, stream id, and new consumer cycle state in state.
500  * Update our internal representation of the ring's dequeue pointer.
501  *
502  * We do this in three jumps:
503  *  - First we update our new ring state to be the same as when the xHC stopped.
504  *  - Then we traverse the ring to find the segment that contains
505  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
506  *    any link TRBs with the toggle cycle bit set.
507  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
508  *    if we've moved it past a link TRB with the toggle cycle bit set.
509  *
510  * Some of the uses of xhci_generic_trb are grotty, but if they're done
511  * with correct __le32 accesses they should work fine.  Only users of this are
512  * in here.
513  */
514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
515 		unsigned int slot_id, unsigned int ep_index,
516 		unsigned int stream_id, struct xhci_td *cur_td,
517 		struct xhci_dequeue_state *state)
518 {
519 	struct xhci_virt_device *dev = xhci->devs[slot_id];
520 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
521 	struct xhci_ring *ep_ring;
522 	struct xhci_segment *new_seg;
523 	union xhci_trb *new_deq;
524 	dma_addr_t addr;
525 	u64 hw_dequeue;
526 	bool cycle_found = false;
527 	bool td_last_trb_found = false;
528 
529 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
530 			ep_index, stream_id);
531 	if (!ep_ring) {
532 		xhci_warn(xhci, "WARN can't find new dequeue state "
533 				"for invalid stream ID %u.\n",
534 				stream_id);
535 		return;
536 	}
537 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
539 			"Finding endpoint context");
540 
541 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
542 	new_seg = ep_ring->deq_seg;
543 	new_deq = ep_ring->dequeue;
544 	state->new_cycle_state = hw_dequeue & 0x1;
545 	state->stream_id = stream_id;
546 
547 	/*
548 	 * We want to find the pointer, segment and cycle state of the new trb
549 	 * (the one after current TD's last_trb). We know the cycle state at
550 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
551 	 * found.
552 	 */
553 	do {
554 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
555 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
556 			cycle_found = true;
557 			if (td_last_trb_found)
558 				break;
559 		}
560 		if (new_deq == cur_td->last_trb)
561 			td_last_trb_found = true;
562 
563 		if (cycle_found && trb_is_link(new_deq) &&
564 		    link_trb_toggles_cycle(new_deq))
565 			state->new_cycle_state ^= 0x1;
566 
567 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
568 
569 		/* Search wrapped around, bail out */
570 		if (new_deq == ep->ring->dequeue) {
571 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
572 			state->new_deq_seg = NULL;
573 			state->new_deq_ptr = NULL;
574 			return;
575 		}
576 
577 	} while (!cycle_found || !td_last_trb_found);
578 
579 	state->new_deq_seg = new_seg;
580 	state->new_deq_ptr = new_deq;
581 
582 	/* Don't update the ring cycle state for the producer (us). */
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
584 			"Cycle state = 0x%x", state->new_cycle_state);
585 
586 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 			"New dequeue segment = %p (virtual)",
588 			state->new_deq_seg);
589 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
590 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 			"New dequeue pointer = 0x%llx (DMA)",
592 			(unsigned long long) addr);
593 }
594 
595 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
596  * (The last TRB actually points to the ring enqueue pointer, which is not part
597  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
598  */
599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
600 		       struct xhci_td *td, bool flip_cycle)
601 {
602 	struct xhci_segment *seg	= td->start_seg;
603 	union xhci_trb *trb		= td->first_trb;
604 
605 	while (1) {
606 		trb_to_noop(trb, TRB_TR_NOOP);
607 
608 		/* flip cycle if asked to */
609 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
610 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
611 
612 		if (trb == td->last_trb)
613 			break;
614 
615 		next_trb(xhci, ep_ring, &seg, &trb);
616 	}
617 }
618 
619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
620 		struct xhci_virt_ep *ep)
621 {
622 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
623 	/* Can't del_timer_sync in interrupt */
624 	del_timer(&ep->stop_cmd_timer);
625 }
626 
627 /*
628  * Must be called with xhci->lock held in interrupt context,
629  * releases and re-acquires xhci->lock
630  */
631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
632 				     struct xhci_td *cur_td, int status)
633 {
634 	struct urb	*urb		= cur_td->urb;
635 	struct urb_priv	*urb_priv	= urb->hcpriv;
636 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
637 
638 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
639 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
640 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
641 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 				usb_amd_quirk_pll_enable();
643 		}
644 	}
645 	xhci_urb_free_priv(urb_priv);
646 	usb_hcd_unlink_urb_from_ep(hcd, urb);
647 	spin_unlock(&xhci->lock);
648 	trace_xhci_urb_giveback(urb);
649 	usb_hcd_giveback_urb(hcd, urb, status);
650 	spin_lock(&xhci->lock);
651 }
652 
653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
654 		struct xhci_ring *ring, struct xhci_td *td)
655 {
656 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
657 	struct xhci_segment *seg = td->bounce_seg;
658 	struct urb *urb = td->urb;
659 
660 	if (!ring || !seg || !urb)
661 		return;
662 
663 	if (usb_urb_dir_out(urb)) {
664 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
665 				 DMA_TO_DEVICE);
666 		return;
667 	}
668 
669 	/* for in tranfers we need to copy the data from bounce to sg */
670 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
671 			     seg->bounce_len, seg->bounce_offs);
672 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 			 DMA_FROM_DEVICE);
674 	seg->bounce_len = 0;
675 	seg->bounce_offs = 0;
676 }
677 
678 /*
679  * When we get a command completion for a Stop Endpoint Command, we need to
680  * unlink any cancelled TDs from the ring.  There are two ways to do that:
681  *
682  *  1. If the HW was in the middle of processing the TD that needs to be
683  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
684  *     in the TD with a Set Dequeue Pointer Command.
685  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
686  *     bit cleared) so that the HW will skip over them.
687  */
688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
689 		union xhci_trb *trb, struct xhci_event_cmd *event)
690 {
691 	unsigned int ep_index;
692 	struct xhci_ring *ep_ring;
693 	struct xhci_virt_ep *ep;
694 	struct xhci_td *cur_td = NULL;
695 	struct xhci_td *last_unlinked_td;
696 	struct xhci_ep_ctx *ep_ctx;
697 	struct xhci_virt_device *vdev;
698 	u64 hw_deq;
699 	struct xhci_dequeue_state deq_state;
700 
701 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
702 		if (!xhci->devs[slot_id])
703 			xhci_warn(xhci, "Stop endpoint command "
704 				"completion for disabled slot %u\n",
705 				slot_id);
706 		return;
707 	}
708 
709 	memset(&deq_state, 0, sizeof(deq_state));
710 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
711 
712 	vdev = xhci->devs[slot_id];
713 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
714 	trace_xhci_handle_cmd_stop_ep(ep_ctx);
715 
716 	ep = &xhci->devs[slot_id]->eps[ep_index];
717 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
718 			struct xhci_td, cancelled_td_list);
719 
720 	if (list_empty(&ep->cancelled_td_list)) {
721 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
722 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
723 		return;
724 	}
725 
726 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
727 	 * We have the xHCI lock, so nothing can modify this list until we drop
728 	 * it.  We're also in the event handler, so we can't get re-interrupted
729 	 * if another Stop Endpoint command completes
730 	 */
731 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
732 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
733 				"Removing canceled TD starting at 0x%llx (dma).",
734 				(unsigned long long)xhci_trb_virt_to_dma(
735 					cur_td->start_seg, cur_td->first_trb));
736 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
737 		if (!ep_ring) {
738 			/* This shouldn't happen unless a driver is mucking
739 			 * with the stream ID after submission.  This will
740 			 * leave the TD on the hardware ring, and the hardware
741 			 * will try to execute it, and may access a buffer
742 			 * that has already been freed.  In the best case, the
743 			 * hardware will execute it, and the event handler will
744 			 * ignore the completion event for that TD, since it was
745 			 * removed from the td_list for that endpoint.  In
746 			 * short, don't muck with the stream ID after
747 			 * submission.
748 			 */
749 			xhci_warn(xhci, "WARN Cancelled URB %p "
750 					"has invalid stream ID %u.\n",
751 					cur_td->urb,
752 					cur_td->urb->stream_id);
753 			goto remove_finished_td;
754 		}
755 		/*
756 		 * If we stopped on the TD we need to cancel, then we have to
757 		 * move the xHC endpoint ring dequeue pointer past this TD.
758 		 */
759 		hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
760 					 cur_td->urb->stream_id);
761 		hw_deq &= ~0xf;
762 
763 		if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
764 			      cur_td->last_trb, hw_deq, false)) {
765 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
766 						    cur_td->urb->stream_id,
767 						    cur_td, &deq_state);
768 		} else {
769 			td_to_noop(xhci, ep_ring, cur_td, false);
770 		}
771 
772 remove_finished_td:
773 		/*
774 		 * The event handler won't see a completion for this TD anymore,
775 		 * so remove it from the endpoint ring's TD list.  Keep it in
776 		 * the cancelled TD list for URB completion later.
777 		 */
778 		list_del_init(&cur_td->td_list);
779 	}
780 
781 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
782 
783 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
784 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
785 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
786 					     &deq_state);
787 		xhci_ring_cmd_db(xhci);
788 	} else {
789 		/* Otherwise ring the doorbell(s) to restart queued transfers */
790 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
791 	}
792 
793 	/*
794 	 * Drop the lock and complete the URBs in the cancelled TD list.
795 	 * New TDs to be cancelled might be added to the end of the list before
796 	 * we can complete all the URBs for the TDs we already unlinked.
797 	 * So stop when we've completed the URB for the last TD we unlinked.
798 	 */
799 	do {
800 		cur_td = list_first_entry(&ep->cancelled_td_list,
801 				struct xhci_td, cancelled_td_list);
802 		list_del_init(&cur_td->cancelled_td_list);
803 
804 		/* Clean up the cancelled URB */
805 		/* Doesn't matter what we pass for status, since the core will
806 		 * just overwrite it (because the URB has been unlinked).
807 		 */
808 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
809 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
810 		inc_td_cnt(cur_td->urb);
811 		if (last_td_in_urb(cur_td))
812 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
813 
814 		/* Stop processing the cancelled list if the watchdog timer is
815 		 * running.
816 		 */
817 		if (xhci->xhc_state & XHCI_STATE_DYING)
818 			return;
819 	} while (cur_td != last_unlinked_td);
820 
821 	/* Return to the event handler with xhci->lock re-acquired */
822 }
823 
824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
825 {
826 	struct xhci_td *cur_td;
827 	struct xhci_td *tmp;
828 
829 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
830 		list_del_init(&cur_td->td_list);
831 
832 		if (!list_empty(&cur_td->cancelled_td_list))
833 			list_del_init(&cur_td->cancelled_td_list);
834 
835 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
836 
837 		inc_td_cnt(cur_td->urb);
838 		if (last_td_in_urb(cur_td))
839 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
840 	}
841 }
842 
843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
844 		int slot_id, int ep_index)
845 {
846 	struct xhci_td *cur_td;
847 	struct xhci_td *tmp;
848 	struct xhci_virt_ep *ep;
849 	struct xhci_ring *ring;
850 
851 	ep = &xhci->devs[slot_id]->eps[ep_index];
852 	if ((ep->ep_state & EP_HAS_STREAMS) ||
853 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
854 		int stream_id;
855 
856 		for (stream_id = 1; stream_id < ep->stream_info->num_streams;
857 				stream_id++) {
858 			ring = ep->stream_info->stream_rings[stream_id];
859 			if (!ring)
860 				continue;
861 
862 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
863 					"Killing URBs for slot ID %u, ep index %u, stream %u",
864 					slot_id, ep_index, stream_id);
865 			xhci_kill_ring_urbs(xhci, ring);
866 		}
867 	} else {
868 		ring = ep->ring;
869 		if (!ring)
870 			return;
871 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
872 				"Killing URBs for slot ID %u, ep index %u",
873 				slot_id, ep_index);
874 		xhci_kill_ring_urbs(xhci, ring);
875 	}
876 
877 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
878 			cancelled_td_list) {
879 		list_del_init(&cur_td->cancelled_td_list);
880 		inc_td_cnt(cur_td->urb);
881 
882 		if (last_td_in_urb(cur_td))
883 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
884 	}
885 }
886 
887 /*
888  * host controller died, register read returns 0xffffffff
889  * Complete pending commands, mark them ABORTED.
890  * URBs need to be given back as usb core might be waiting with device locks
891  * held for the URBs to finish during device disconnect, blocking host remove.
892  *
893  * Call with xhci->lock held.
894  * lock is relased and re-acquired while giving back urb.
895  */
896 void xhci_hc_died(struct xhci_hcd *xhci)
897 {
898 	int i, j;
899 
900 	if (xhci->xhc_state & XHCI_STATE_DYING)
901 		return;
902 
903 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
904 	xhci->xhc_state |= XHCI_STATE_DYING;
905 
906 	xhci_cleanup_command_queue(xhci);
907 
908 	/* return any pending urbs, remove may be waiting for them */
909 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
910 		if (!xhci->devs[i])
911 			continue;
912 		for (j = 0; j < 31; j++)
913 			xhci_kill_endpoint_urbs(xhci, i, j);
914 	}
915 
916 	/* inform usb core hc died if PCI remove isn't already handling it */
917 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
918 		usb_hc_died(xhci_to_hcd(xhci));
919 }
920 
921 /* Watchdog timer function for when a stop endpoint command fails to complete.
922  * In this case, we assume the host controller is broken or dying or dead.  The
923  * host may still be completing some other events, so we have to be careful to
924  * let the event ring handler and the URB dequeueing/enqueueing functions know
925  * through xhci->state.
926  *
927  * The timer may also fire if the host takes a very long time to respond to the
928  * command, and the stop endpoint command completion handler cannot delete the
929  * timer before the timer function is called.  Another endpoint cancellation may
930  * sneak in before the timer function can grab the lock, and that may queue
931  * another stop endpoint command and add the timer back.  So we cannot use a
932  * simple flag to say whether there is a pending stop endpoint command for a
933  * particular endpoint.
934  *
935  * Instead we use a combination of that flag and checking if a new timer is
936  * pending.
937  */
938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
939 {
940 	struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
941 	struct xhci_hcd *xhci = ep->xhci;
942 	unsigned long flags;
943 
944 	spin_lock_irqsave(&xhci->lock, flags);
945 
946 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
947 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
948 	    timer_pending(&ep->stop_cmd_timer)) {
949 		spin_unlock_irqrestore(&xhci->lock, flags);
950 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
951 		return;
952 	}
953 
954 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
955 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
956 
957 	xhci_halt(xhci);
958 
959 	/*
960 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
961 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
962 	 * and try to recover a -ETIMEDOUT with a host controller reset
963 	 */
964 	xhci_hc_died(xhci);
965 
966 	spin_unlock_irqrestore(&xhci->lock, flags);
967 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
968 			"xHCI host controller is dead.");
969 }
970 
971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
972 		struct xhci_virt_device *dev,
973 		struct xhci_ring *ep_ring,
974 		unsigned int ep_index)
975 {
976 	union xhci_trb *dequeue_temp;
977 	int num_trbs_free_temp;
978 	bool revert = false;
979 
980 	num_trbs_free_temp = ep_ring->num_trbs_free;
981 	dequeue_temp = ep_ring->dequeue;
982 
983 	/* If we get two back-to-back stalls, and the first stalled transfer
984 	 * ends just before a link TRB, the dequeue pointer will be left on
985 	 * the link TRB by the code in the while loop.  So we have to update
986 	 * the dequeue pointer one segment further, or we'll jump off
987 	 * the segment into la-la-land.
988 	 */
989 	if (trb_is_link(ep_ring->dequeue)) {
990 		ep_ring->deq_seg = ep_ring->deq_seg->next;
991 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
992 	}
993 
994 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
995 		/* We have more usable TRBs */
996 		ep_ring->num_trbs_free++;
997 		ep_ring->dequeue++;
998 		if (trb_is_link(ep_ring->dequeue)) {
999 			if (ep_ring->dequeue ==
1000 					dev->eps[ep_index].queued_deq_ptr)
1001 				break;
1002 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1003 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1004 		}
1005 		if (ep_ring->dequeue == dequeue_temp) {
1006 			revert = true;
1007 			break;
1008 		}
1009 	}
1010 
1011 	if (revert) {
1012 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1013 		ep_ring->num_trbs_free = num_trbs_free_temp;
1014 	}
1015 }
1016 
1017 /*
1018  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1019  * we need to clear the set deq pending flag in the endpoint ring state, so that
1020  * the TD queueing code can ring the doorbell again.  We also need to ring the
1021  * endpoint doorbell to restart the ring, but only if there aren't more
1022  * cancellations pending.
1023  */
1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1025 		union xhci_trb *trb, u32 cmd_comp_code)
1026 {
1027 	unsigned int ep_index;
1028 	unsigned int stream_id;
1029 	struct xhci_ring *ep_ring;
1030 	struct xhci_virt_device *dev;
1031 	struct xhci_virt_ep *ep;
1032 	struct xhci_ep_ctx *ep_ctx;
1033 	struct xhci_slot_ctx *slot_ctx;
1034 
1035 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1036 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1037 	dev = xhci->devs[slot_id];
1038 	ep = &dev->eps[ep_index];
1039 
1040 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1041 	if (!ep_ring) {
1042 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1043 				stream_id);
1044 		/* XXX: Harmless??? */
1045 		goto cleanup;
1046 	}
1047 
1048 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1049 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1050 	trace_xhci_handle_cmd_set_deq(slot_ctx);
1051 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1052 
1053 	if (cmd_comp_code != COMP_SUCCESS) {
1054 		unsigned int ep_state;
1055 		unsigned int slot_state;
1056 
1057 		switch (cmd_comp_code) {
1058 		case COMP_TRB_ERROR:
1059 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1060 			break;
1061 		case COMP_CONTEXT_STATE_ERROR:
1062 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1063 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1064 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1065 			slot_state = GET_SLOT_STATE(slot_state);
1066 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1067 					"Slot state = %u, EP state = %u",
1068 					slot_state, ep_state);
1069 			break;
1070 		case COMP_SLOT_NOT_ENABLED_ERROR:
1071 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1072 					slot_id);
1073 			break;
1074 		default:
1075 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1076 					cmd_comp_code);
1077 			break;
1078 		}
1079 		/* OK what do we do now?  The endpoint state is hosed, and we
1080 		 * should never get to this point if the synchronization between
1081 		 * queueing, and endpoint state are correct.  This might happen
1082 		 * if the device gets disconnected after we've finished
1083 		 * cancelling URBs, which might not be an error...
1084 		 */
1085 	} else {
1086 		u64 deq;
1087 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1088 		if (ep->ep_state & EP_HAS_STREAMS) {
1089 			struct xhci_stream_ctx *ctx =
1090 				&ep->stream_info->stream_ctx_array[stream_id];
1091 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1092 		} else {
1093 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1094 		}
1095 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1096 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1097 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1098 					 ep->queued_deq_ptr) == deq) {
1099 			/* Update the ring's dequeue segment and dequeue pointer
1100 			 * to reflect the new position.
1101 			 */
1102 			update_ring_for_set_deq_completion(xhci, dev,
1103 				ep_ring, ep_index);
1104 		} else {
1105 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1106 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1107 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1108 		}
1109 	}
1110 
1111 cleanup:
1112 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1113 	dev->eps[ep_index].queued_deq_seg = NULL;
1114 	dev->eps[ep_index].queued_deq_ptr = NULL;
1115 	/* Restart any rings with pending URBs */
1116 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1117 }
1118 
1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1120 		union xhci_trb *trb, u32 cmd_comp_code)
1121 {
1122 	struct xhci_virt_device *vdev;
1123 	struct xhci_ep_ctx *ep_ctx;
1124 	unsigned int ep_index;
1125 
1126 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1127 	vdev = xhci->devs[slot_id];
1128 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1129 	trace_xhci_handle_cmd_reset_ep(ep_ctx);
1130 
1131 	/* This command will only fail if the endpoint wasn't halted,
1132 	 * but we don't care.
1133 	 */
1134 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1135 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1136 
1137 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1138 	 * command complete before the endpoint can be used.  Queue that here
1139 	 * because the HW can't handle two commands being queued in a row.
1140 	 */
1141 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1142 		struct xhci_command *command;
1143 
1144 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1145 		if (!command)
1146 			return;
1147 
1148 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 				"Queueing configure endpoint command");
1150 		xhci_queue_configure_endpoint(xhci, command,
1151 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1152 				false);
1153 		xhci_ring_cmd_db(xhci);
1154 	} else {
1155 		/* Clear our internal halted state */
1156 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1157 	}
1158 
1159 	/* if this was a soft reset, then restart */
1160 	if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1161 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1162 }
1163 
1164 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1165 		struct xhci_command *command, u32 cmd_comp_code)
1166 {
1167 	if (cmd_comp_code == COMP_SUCCESS)
1168 		command->slot_id = slot_id;
1169 	else
1170 		command->slot_id = 0;
1171 }
1172 
1173 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1174 {
1175 	struct xhci_virt_device *virt_dev;
1176 	struct xhci_slot_ctx *slot_ctx;
1177 
1178 	virt_dev = xhci->devs[slot_id];
1179 	if (!virt_dev)
1180 		return;
1181 
1182 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1183 	trace_xhci_handle_cmd_disable_slot(slot_ctx);
1184 
1185 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1186 		/* Delete default control endpoint resources */
1187 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1188 	xhci_free_virt_device(xhci, slot_id);
1189 }
1190 
1191 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1192 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1193 {
1194 	struct xhci_virt_device *virt_dev;
1195 	struct xhci_input_control_ctx *ctrl_ctx;
1196 	struct xhci_ep_ctx *ep_ctx;
1197 	unsigned int ep_index;
1198 	unsigned int ep_state;
1199 	u32 add_flags, drop_flags;
1200 
1201 	/*
1202 	 * Configure endpoint commands can come from the USB core
1203 	 * configuration or alt setting changes, or because the HW
1204 	 * needed an extra configure endpoint command after a reset
1205 	 * endpoint command or streams were being configured.
1206 	 * If the command was for a halted endpoint, the xHCI driver
1207 	 * is not waiting on the configure endpoint command.
1208 	 */
1209 	virt_dev = xhci->devs[slot_id];
1210 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1211 	if (!ctrl_ctx) {
1212 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1213 		return;
1214 	}
1215 
1216 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1217 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1218 	/* Input ctx add_flags are the endpoint index plus one */
1219 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1220 
1221 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1222 	trace_xhci_handle_cmd_config_ep(ep_ctx);
1223 
1224 	/* A usb_set_interface() call directly after clearing a halted
1225 	 * condition may race on this quirky hardware.  Not worth
1226 	 * worrying about, since this is prototype hardware.  Not sure
1227 	 * if this will work for streams, but streams support was
1228 	 * untested on this prototype.
1229 	 */
1230 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1231 			ep_index != (unsigned int) -1 &&
1232 			add_flags - SLOT_FLAG == drop_flags) {
1233 		ep_state = virt_dev->eps[ep_index].ep_state;
1234 		if (!(ep_state & EP_HALTED))
1235 			return;
1236 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1237 				"Completed config ep cmd - "
1238 				"last ep index = %d, state = %d",
1239 				ep_index, ep_state);
1240 		/* Clear internal halted state and restart ring(s) */
1241 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1242 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1243 		return;
1244 	}
1245 	return;
1246 }
1247 
1248 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1249 {
1250 	struct xhci_virt_device *vdev;
1251 	struct xhci_slot_ctx *slot_ctx;
1252 
1253 	vdev = xhci->devs[slot_id];
1254 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1255 	trace_xhci_handle_cmd_addr_dev(slot_ctx);
1256 }
1257 
1258 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1259 		struct xhci_event_cmd *event)
1260 {
1261 	struct xhci_virt_device *vdev;
1262 	struct xhci_slot_ctx *slot_ctx;
1263 
1264 	vdev = xhci->devs[slot_id];
1265 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1266 	trace_xhci_handle_cmd_reset_dev(slot_ctx);
1267 
1268 	xhci_dbg(xhci, "Completed reset device command.\n");
1269 	if (!xhci->devs[slot_id])
1270 		xhci_warn(xhci, "Reset device command completion "
1271 				"for disabled slot %u\n", slot_id);
1272 }
1273 
1274 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1275 		struct xhci_event_cmd *event)
1276 {
1277 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1278 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1279 		return;
1280 	}
1281 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1282 			"NEC firmware version %2x.%02x",
1283 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1284 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1285 }
1286 
1287 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1288 {
1289 	list_del(&cmd->cmd_list);
1290 
1291 	if (cmd->completion) {
1292 		cmd->status = status;
1293 		complete(cmd->completion);
1294 	} else {
1295 		kfree(cmd);
1296 	}
1297 }
1298 
1299 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1300 {
1301 	struct xhci_command *cur_cmd, *tmp_cmd;
1302 	xhci->current_cmd = NULL;
1303 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1304 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1305 }
1306 
1307 void xhci_handle_command_timeout(struct work_struct *work)
1308 {
1309 	struct xhci_hcd *xhci;
1310 	unsigned long flags;
1311 	u64 hw_ring_state;
1312 
1313 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1314 
1315 	spin_lock_irqsave(&xhci->lock, flags);
1316 
1317 	/*
1318 	 * If timeout work is pending, or current_cmd is NULL, it means we
1319 	 * raced with command completion. Command is handled so just return.
1320 	 */
1321 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1322 		spin_unlock_irqrestore(&xhci->lock, flags);
1323 		return;
1324 	}
1325 	/* mark this command to be cancelled */
1326 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1327 
1328 	/* Make sure command ring is running before aborting it */
1329 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1330 	if (hw_ring_state == ~(u64)0) {
1331 		xhci_hc_died(xhci);
1332 		goto time_out_completed;
1333 	}
1334 
1335 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1336 	    (hw_ring_state & CMD_RING_RUNNING))  {
1337 		/* Prevent new doorbell, and start command abort */
1338 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1339 		xhci_dbg(xhci, "Command timeout\n");
1340 		xhci_abort_cmd_ring(xhci, flags);
1341 		goto time_out_completed;
1342 	}
1343 
1344 	/* host removed. Bail out */
1345 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1346 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1347 		xhci_cleanup_command_queue(xhci);
1348 
1349 		goto time_out_completed;
1350 	}
1351 
1352 	/* command timeout on stopped ring, ring can't be aborted */
1353 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1354 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1355 
1356 time_out_completed:
1357 	spin_unlock_irqrestore(&xhci->lock, flags);
1358 	return;
1359 }
1360 
1361 static void handle_cmd_completion(struct xhci_hcd *xhci,
1362 		struct xhci_event_cmd *event)
1363 {
1364 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1365 	u64 cmd_dma;
1366 	dma_addr_t cmd_dequeue_dma;
1367 	u32 cmd_comp_code;
1368 	union xhci_trb *cmd_trb;
1369 	struct xhci_command *cmd;
1370 	u32 cmd_type;
1371 
1372 	cmd_dma = le64_to_cpu(event->cmd_trb);
1373 	cmd_trb = xhci->cmd_ring->dequeue;
1374 
1375 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1376 
1377 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1378 			cmd_trb);
1379 	/*
1380 	 * Check whether the completion event is for our internal kept
1381 	 * command.
1382 	 */
1383 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1384 		xhci_warn(xhci,
1385 			  "ERROR mismatched command completion event\n");
1386 		return;
1387 	}
1388 
1389 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1390 
1391 	cancel_delayed_work(&xhci->cmd_timer);
1392 
1393 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1394 
1395 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1396 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1397 		complete_all(&xhci->cmd_ring_stop_completion);
1398 		return;
1399 	}
1400 
1401 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1402 		xhci_err(xhci,
1403 			 "Command completion event does not match command\n");
1404 		return;
1405 	}
1406 
1407 	/*
1408 	 * Host aborted the command ring, check if the current command was
1409 	 * supposed to be aborted, otherwise continue normally.
1410 	 * The command ring is stopped now, but the xHC will issue a Command
1411 	 * Ring Stopped event which will cause us to restart it.
1412 	 */
1413 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1414 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1415 		if (cmd->status == COMP_COMMAND_ABORTED) {
1416 			if (xhci->current_cmd == cmd)
1417 				xhci->current_cmd = NULL;
1418 			goto event_handled;
1419 		}
1420 	}
1421 
1422 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1423 	switch (cmd_type) {
1424 	case TRB_ENABLE_SLOT:
1425 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1426 		break;
1427 	case TRB_DISABLE_SLOT:
1428 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1429 		break;
1430 	case TRB_CONFIG_EP:
1431 		if (!cmd->completion)
1432 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1433 						  cmd_comp_code);
1434 		break;
1435 	case TRB_EVAL_CONTEXT:
1436 		break;
1437 	case TRB_ADDR_DEV:
1438 		xhci_handle_cmd_addr_dev(xhci, slot_id);
1439 		break;
1440 	case TRB_STOP_RING:
1441 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1442 				le32_to_cpu(cmd_trb->generic.field[3])));
1443 		if (!cmd->completion)
1444 			xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1445 		break;
1446 	case TRB_SET_DEQ:
1447 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1448 				le32_to_cpu(cmd_trb->generic.field[3])));
1449 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1450 		break;
1451 	case TRB_CMD_NOOP:
1452 		/* Is this an aborted command turned to NO-OP? */
1453 		if (cmd->status == COMP_COMMAND_RING_STOPPED)
1454 			cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1455 		break;
1456 	case TRB_RESET_EP:
1457 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1458 				le32_to_cpu(cmd_trb->generic.field[3])));
1459 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1460 		break;
1461 	case TRB_RESET_DEV:
1462 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1463 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1464 		 */
1465 		slot_id = TRB_TO_SLOT_ID(
1466 				le32_to_cpu(cmd_trb->generic.field[3]));
1467 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1468 		break;
1469 	case TRB_NEC_GET_FW:
1470 		xhci_handle_cmd_nec_get_fw(xhci, event);
1471 		break;
1472 	default:
1473 		/* Skip over unknown commands on the event ring */
1474 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1475 		break;
1476 	}
1477 
1478 	/* restart timer if this wasn't the last command */
1479 	if (!list_is_singular(&xhci->cmd_list)) {
1480 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1481 						struct xhci_command, cmd_list);
1482 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1483 	} else if (xhci->current_cmd == cmd) {
1484 		xhci->current_cmd = NULL;
1485 	}
1486 
1487 event_handled:
1488 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1489 
1490 	inc_deq(xhci, xhci->cmd_ring);
1491 }
1492 
1493 static void handle_vendor_event(struct xhci_hcd *xhci,
1494 		union xhci_trb *event)
1495 {
1496 	u32 trb_type;
1497 
1498 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1499 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1500 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1501 		handle_cmd_completion(xhci, &event->event_cmd);
1502 }
1503 
1504 static void handle_device_notification(struct xhci_hcd *xhci,
1505 		union xhci_trb *event)
1506 {
1507 	u32 slot_id;
1508 	struct usb_device *udev;
1509 
1510 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1511 	if (!xhci->devs[slot_id]) {
1512 		xhci_warn(xhci, "Device Notification event for "
1513 				"unused slot %u\n", slot_id);
1514 		return;
1515 	}
1516 
1517 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1518 			slot_id);
1519 	udev = xhci->devs[slot_id]->udev;
1520 	if (udev && udev->parent)
1521 		usb_wakeup_notification(udev->parent, udev->portnum);
1522 }
1523 
1524 static void handle_port_status(struct xhci_hcd *xhci,
1525 		union xhci_trb *event)
1526 {
1527 	struct usb_hcd *hcd;
1528 	u32 port_id;
1529 	u32 portsc, cmd_reg;
1530 	int max_ports;
1531 	int slot_id;
1532 	unsigned int hcd_portnum;
1533 	struct xhci_bus_state *bus_state;
1534 	bool bogus_port_status = false;
1535 	struct xhci_port *port;
1536 
1537 	/* Port status change events always have a successful completion code */
1538 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1539 		xhci_warn(xhci,
1540 			  "WARN: xHC returned failed port status event\n");
1541 
1542 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1543 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1544 
1545 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1546 	if ((port_id <= 0) || (port_id > max_ports)) {
1547 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1548 		inc_deq(xhci, xhci->event_ring);
1549 		return;
1550 	}
1551 
1552 	port = &xhci->hw_ports[port_id - 1];
1553 	if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1554 		xhci_warn(xhci, "Event for invalid port %u\n", port_id);
1555 		bogus_port_status = true;
1556 		goto cleanup;
1557 	}
1558 
1559 	hcd = port->rhub->hcd;
1560 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1561 	hcd_portnum = port->hcd_portnum;
1562 	portsc = readl(port->addr);
1563 
1564 	trace_xhci_handle_port_status(hcd_portnum, portsc);
1565 
1566 	if (hcd->state == HC_STATE_SUSPENDED) {
1567 		xhci_dbg(xhci, "resume root hub\n");
1568 		usb_hcd_resume_root_hub(hcd);
1569 	}
1570 
1571 	if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1572 		bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1573 
1574 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1575 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1576 
1577 		cmd_reg = readl(&xhci->op_regs->command);
1578 		if (!(cmd_reg & CMD_RUN)) {
1579 			xhci_warn(xhci, "xHC is not running.\n");
1580 			goto cleanup;
1581 		}
1582 
1583 		if (DEV_SUPERSPEED_ANY(portsc)) {
1584 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1585 			/* Set a flag to say the port signaled remote wakeup,
1586 			 * so we can tell the difference between the end of
1587 			 * device and host initiated resume.
1588 			 */
1589 			bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1590 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1591 			xhci_set_link_state(xhci, port, XDEV_U0);
1592 			/* Need to wait until the next link state change
1593 			 * indicates the device is actually in U0.
1594 			 */
1595 			bogus_port_status = true;
1596 			goto cleanup;
1597 		} else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1598 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1599 			bus_state->resume_done[hcd_portnum] = jiffies +
1600 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1601 			set_bit(hcd_portnum, &bus_state->resuming_ports);
1602 			/* Do the rest in GetPortStatus after resume time delay.
1603 			 * Avoid polling roothub status before that so that a
1604 			 * usb device auto-resume latency around ~40ms.
1605 			 */
1606 			set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1607 			mod_timer(&hcd->rh_timer,
1608 				  bus_state->resume_done[hcd_portnum]);
1609 			usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1610 			bogus_port_status = true;
1611 		}
1612 	}
1613 
1614 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1615 			DEV_SUPERSPEED_ANY(portsc)) {
1616 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1617 		/* We've just brought the device into U0 through either the
1618 		 * Resume state after a device remote wakeup, or through the
1619 		 * U3Exit state after a host-initiated resume.  If it's a device
1620 		 * initiated remote wake, don't pass up the link state change,
1621 		 * so the roothub behavior is consistent with external
1622 		 * USB 3.0 hub behavior.
1623 		 */
1624 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1625 		if (slot_id && xhci->devs[slot_id])
1626 			xhci_ring_device(xhci, slot_id);
1627 		if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1628 			bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1629 			xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1630 			usb_wakeup_notification(hcd->self.root_hub,
1631 					hcd_portnum + 1);
1632 			bogus_port_status = true;
1633 			goto cleanup;
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1639 	 * RExit to a disconnect state).  If so, let the the driver know it's
1640 	 * out of the RExit state.
1641 	 */
1642 	if (!DEV_SUPERSPEED_ANY(portsc) &&
1643 			test_and_clear_bit(hcd_portnum,
1644 				&bus_state->rexit_ports)) {
1645 		complete(&bus_state->rexit_done[hcd_portnum]);
1646 		bogus_port_status = true;
1647 		goto cleanup;
1648 	}
1649 
1650 	if (hcd->speed < HCD_USB3)
1651 		xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1652 
1653 cleanup:
1654 	/* Update event ring dequeue pointer before dropping the lock */
1655 	inc_deq(xhci, xhci->event_ring);
1656 
1657 	/* Don't make the USB core poll the roothub if we got a bad port status
1658 	 * change event.  Besides, at that point we can't tell which roothub
1659 	 * (USB 2.0 or USB 3.0) to kick.
1660 	 */
1661 	if (bogus_port_status)
1662 		return;
1663 
1664 	/*
1665 	 * xHCI port-status-change events occur when the "or" of all the
1666 	 * status-change bits in the portsc register changes from 0 to 1.
1667 	 * New status changes won't cause an event if any other change
1668 	 * bits are still set.  When an event occurs, switch over to
1669 	 * polling to avoid losing status changes.
1670 	 */
1671 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1672 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1673 	spin_unlock(&xhci->lock);
1674 	/* Pass this up to the core */
1675 	usb_hcd_poll_rh_status(hcd);
1676 	spin_lock(&xhci->lock);
1677 }
1678 
1679 /*
1680  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1681  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1682  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1683  * returns 0.
1684  */
1685 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1686 		struct xhci_segment *start_seg,
1687 		union xhci_trb	*start_trb,
1688 		union xhci_trb	*end_trb,
1689 		dma_addr_t	suspect_dma,
1690 		bool		debug)
1691 {
1692 	dma_addr_t start_dma;
1693 	dma_addr_t end_seg_dma;
1694 	dma_addr_t end_trb_dma;
1695 	struct xhci_segment *cur_seg;
1696 
1697 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1698 	cur_seg = start_seg;
1699 
1700 	do {
1701 		if (start_dma == 0)
1702 			return NULL;
1703 		/* We may get an event for a Link TRB in the middle of a TD */
1704 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1705 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1706 		/* If the end TRB isn't in this segment, this is set to 0 */
1707 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1708 
1709 		if (debug)
1710 			xhci_warn(xhci,
1711 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1712 				(unsigned long long)suspect_dma,
1713 				(unsigned long long)start_dma,
1714 				(unsigned long long)end_trb_dma,
1715 				(unsigned long long)cur_seg->dma,
1716 				(unsigned long long)end_seg_dma);
1717 
1718 		if (end_trb_dma > 0) {
1719 			/* The end TRB is in this segment, so suspect should be here */
1720 			if (start_dma <= end_trb_dma) {
1721 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1722 					return cur_seg;
1723 			} else {
1724 				/* Case for one segment with
1725 				 * a TD wrapped around to the top
1726 				 */
1727 				if ((suspect_dma >= start_dma &&
1728 							suspect_dma <= end_seg_dma) ||
1729 						(suspect_dma >= cur_seg->dma &&
1730 						 suspect_dma <= end_trb_dma))
1731 					return cur_seg;
1732 			}
1733 			return NULL;
1734 		} else {
1735 			/* Might still be somewhere in this segment */
1736 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1737 				return cur_seg;
1738 		}
1739 		cur_seg = cur_seg->next;
1740 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1741 	} while (cur_seg != start_seg);
1742 
1743 	return NULL;
1744 }
1745 
1746 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1747 		unsigned int slot_id, unsigned int ep_index,
1748 		unsigned int stream_id, struct xhci_td *td,
1749 		enum xhci_ep_reset_type reset_type)
1750 {
1751 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1752 	struct xhci_command *command;
1753 	command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1754 	if (!command)
1755 		return;
1756 
1757 	ep->ep_state |= EP_HALTED;
1758 
1759 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1760 
1761 	if (reset_type == EP_HARD_RESET) {
1762 		ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1763 		xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1764 	}
1765 	xhci_ring_cmd_db(xhci);
1766 }
1767 
1768 /* Check if an error has halted the endpoint ring.  The class driver will
1769  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1770  * However, a babble and other errors also halt the endpoint ring, and the class
1771  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1772  * Ring Dequeue Pointer command manually.
1773  */
1774 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1775 		struct xhci_ep_ctx *ep_ctx,
1776 		unsigned int trb_comp_code)
1777 {
1778 	/* TRB completion codes that may require a manual halt cleanup */
1779 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1780 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1781 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1782 		/* The 0.95 spec says a babbling control endpoint
1783 		 * is not halted. The 0.96 spec says it is.  Some HW
1784 		 * claims to be 0.95 compliant, but it halts the control
1785 		 * endpoint anyway.  Check if a babble halted the
1786 		 * endpoint.
1787 		 */
1788 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1789 			return 1;
1790 
1791 	return 0;
1792 }
1793 
1794 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1795 {
1796 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1797 		/* Vendor defined "informational" completion code,
1798 		 * treat as not-an-error.
1799 		 */
1800 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1801 				trb_comp_code);
1802 		xhci_dbg(xhci, "Treating code as success.\n");
1803 		return 1;
1804 	}
1805 	return 0;
1806 }
1807 
1808 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1809 		struct xhci_ring *ep_ring, int *status)
1810 {
1811 	struct urb *urb = NULL;
1812 
1813 	/* Clean up the endpoint's TD list */
1814 	urb = td->urb;
1815 
1816 	/* if a bounce buffer was used to align this td then unmap it */
1817 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1818 
1819 	/* Do one last check of the actual transfer length.
1820 	 * If the host controller said we transferred more data than the buffer
1821 	 * length, urb->actual_length will be a very big number (since it's
1822 	 * unsigned).  Play it safe and say we didn't transfer anything.
1823 	 */
1824 	if (urb->actual_length > urb->transfer_buffer_length) {
1825 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1826 			  urb->transfer_buffer_length, urb->actual_length);
1827 		urb->actual_length = 0;
1828 		*status = 0;
1829 	}
1830 	list_del_init(&td->td_list);
1831 	/* Was this TD slated to be cancelled but completed anyway? */
1832 	if (!list_empty(&td->cancelled_td_list))
1833 		list_del_init(&td->cancelled_td_list);
1834 
1835 	inc_td_cnt(urb);
1836 	/* Giveback the urb when all the tds are completed */
1837 	if (last_td_in_urb(td)) {
1838 		if ((urb->actual_length != urb->transfer_buffer_length &&
1839 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1840 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1841 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1842 				 urb, urb->actual_length,
1843 				 urb->transfer_buffer_length, *status);
1844 
1845 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1846 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1847 			*status = 0;
1848 		xhci_giveback_urb_in_irq(xhci, td, *status);
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1855 	struct xhci_transfer_event *event,
1856 	struct xhci_virt_ep *ep, int *status)
1857 {
1858 	struct xhci_virt_device *xdev;
1859 	struct xhci_ep_ctx *ep_ctx;
1860 	struct xhci_ring *ep_ring;
1861 	unsigned int slot_id;
1862 	u32 trb_comp_code;
1863 	int ep_index;
1864 
1865 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1866 	xdev = xhci->devs[slot_id];
1867 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1868 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1869 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1870 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1871 
1872 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1873 			trb_comp_code == COMP_STOPPED ||
1874 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1875 		/* The Endpoint Stop Command completion will take care of any
1876 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1877 		 * the ring dequeue pointer or take this TD off any lists yet.
1878 		 */
1879 		return 0;
1880 	}
1881 	if (trb_comp_code == COMP_STALL_ERROR ||
1882 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1883 						trb_comp_code)) {
1884 		/* Issue a reset endpoint command to clear the host side
1885 		 * halt, followed by a set dequeue command to move the
1886 		 * dequeue pointer past the TD.
1887 		 * The class driver clears the device side halt later.
1888 		 */
1889 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1890 					ep_ring->stream_id, td, EP_HARD_RESET);
1891 	} else {
1892 		/* Update ring dequeue pointer */
1893 		while (ep_ring->dequeue != td->last_trb)
1894 			inc_deq(xhci, ep_ring);
1895 		inc_deq(xhci, ep_ring);
1896 	}
1897 
1898 	return xhci_td_cleanup(xhci, td, ep_ring, status);
1899 }
1900 
1901 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1902 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1903 			   union xhci_trb *stop_trb)
1904 {
1905 	u32 sum;
1906 	union xhci_trb *trb = ring->dequeue;
1907 	struct xhci_segment *seg = ring->deq_seg;
1908 
1909 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1910 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1911 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1912 	}
1913 	return sum;
1914 }
1915 
1916 /*
1917  * Process control tds, update urb status and actual_length.
1918  */
1919 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1920 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1921 	struct xhci_virt_ep *ep, int *status)
1922 {
1923 	struct xhci_virt_device *xdev;
1924 	unsigned int slot_id;
1925 	int ep_index;
1926 	struct xhci_ep_ctx *ep_ctx;
1927 	u32 trb_comp_code;
1928 	u32 remaining, requested;
1929 	u32 trb_type;
1930 
1931 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
1932 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1933 	xdev = xhci->devs[slot_id];
1934 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1935 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1936 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1937 	requested = td->urb->transfer_buffer_length;
1938 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1939 
1940 	switch (trb_comp_code) {
1941 	case COMP_SUCCESS:
1942 		if (trb_type != TRB_STATUS) {
1943 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
1944 				  (trb_type == TRB_DATA) ? "data" : "setup");
1945 			*status = -ESHUTDOWN;
1946 			break;
1947 		}
1948 		*status = 0;
1949 		break;
1950 	case COMP_SHORT_PACKET:
1951 		*status = 0;
1952 		break;
1953 	case COMP_STOPPED_SHORT_PACKET:
1954 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1955 			td->urb->actual_length = remaining;
1956 		else
1957 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1958 		goto finish_td;
1959 	case COMP_STOPPED:
1960 		switch (trb_type) {
1961 		case TRB_SETUP:
1962 			td->urb->actual_length = 0;
1963 			goto finish_td;
1964 		case TRB_DATA:
1965 		case TRB_NORMAL:
1966 			td->urb->actual_length = requested - remaining;
1967 			goto finish_td;
1968 		case TRB_STATUS:
1969 			td->urb->actual_length = requested;
1970 			goto finish_td;
1971 		default:
1972 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
1973 				  trb_type);
1974 			goto finish_td;
1975 		}
1976 	case COMP_STOPPED_LENGTH_INVALID:
1977 		goto finish_td;
1978 	default:
1979 		if (!xhci_requires_manual_halt_cleanup(xhci,
1980 						       ep_ctx, trb_comp_code))
1981 			break;
1982 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
1983 			 trb_comp_code, ep_index);
1984 		/* else fall through */
1985 	case COMP_STALL_ERROR:
1986 		/* Did we transfer part of the data (middle) phase? */
1987 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1988 			td->urb->actual_length = requested - remaining;
1989 		else if (!td->urb_length_set)
1990 			td->urb->actual_length = 0;
1991 		goto finish_td;
1992 	}
1993 
1994 	/* stopped at setup stage, no data transferred */
1995 	if (trb_type == TRB_SETUP)
1996 		goto finish_td;
1997 
1998 	/*
1999 	 * if on data stage then update the actual_length of the URB and flag it
2000 	 * as set, so it won't be overwritten in the event for the last TRB.
2001 	 */
2002 	if (trb_type == TRB_DATA ||
2003 		trb_type == TRB_NORMAL) {
2004 		td->urb_length_set = true;
2005 		td->urb->actual_length = requested - remaining;
2006 		xhci_dbg(xhci, "Waiting for status stage event\n");
2007 		return 0;
2008 	}
2009 
2010 	/* at status stage */
2011 	if (!td->urb_length_set)
2012 		td->urb->actual_length = requested;
2013 
2014 finish_td:
2015 	return finish_td(xhci, td, event, ep, status);
2016 }
2017 
2018 /*
2019  * Process isochronous tds, update urb packet status and actual_length.
2020  */
2021 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2022 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2023 	struct xhci_virt_ep *ep, int *status)
2024 {
2025 	struct xhci_ring *ep_ring;
2026 	struct urb_priv *urb_priv;
2027 	int idx;
2028 	struct usb_iso_packet_descriptor *frame;
2029 	u32 trb_comp_code;
2030 	bool sum_trbs_for_length = false;
2031 	u32 remaining, requested, ep_trb_len;
2032 	int short_framestatus;
2033 
2034 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2035 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2036 	urb_priv = td->urb->hcpriv;
2037 	idx = urb_priv->num_tds_done;
2038 	frame = &td->urb->iso_frame_desc[idx];
2039 	requested = frame->length;
2040 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2041 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2042 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2043 		-EREMOTEIO : 0;
2044 
2045 	/* handle completion code */
2046 	switch (trb_comp_code) {
2047 	case COMP_SUCCESS:
2048 		if (remaining) {
2049 			frame->status = short_framestatus;
2050 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2051 				sum_trbs_for_length = true;
2052 			break;
2053 		}
2054 		frame->status = 0;
2055 		break;
2056 	case COMP_SHORT_PACKET:
2057 		frame->status = short_framestatus;
2058 		sum_trbs_for_length = true;
2059 		break;
2060 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2061 		frame->status = -ECOMM;
2062 		break;
2063 	case COMP_ISOCH_BUFFER_OVERRUN:
2064 	case COMP_BABBLE_DETECTED_ERROR:
2065 		frame->status = -EOVERFLOW;
2066 		break;
2067 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2068 	case COMP_STALL_ERROR:
2069 		frame->status = -EPROTO;
2070 		break;
2071 	case COMP_USB_TRANSACTION_ERROR:
2072 		frame->status = -EPROTO;
2073 		if (ep_trb != td->last_trb)
2074 			return 0;
2075 		break;
2076 	case COMP_STOPPED:
2077 		sum_trbs_for_length = true;
2078 		break;
2079 	case COMP_STOPPED_SHORT_PACKET:
2080 		/* field normally containing residue now contains tranferred */
2081 		frame->status = short_framestatus;
2082 		requested = remaining;
2083 		break;
2084 	case COMP_STOPPED_LENGTH_INVALID:
2085 		requested = 0;
2086 		remaining = 0;
2087 		break;
2088 	default:
2089 		sum_trbs_for_length = true;
2090 		frame->status = -1;
2091 		break;
2092 	}
2093 
2094 	if (sum_trbs_for_length)
2095 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2096 			ep_trb_len - remaining;
2097 	else
2098 		frame->actual_length = requested;
2099 
2100 	td->urb->actual_length += frame->actual_length;
2101 
2102 	return finish_td(xhci, td, event, ep, status);
2103 }
2104 
2105 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2106 			struct xhci_transfer_event *event,
2107 			struct xhci_virt_ep *ep, int *status)
2108 {
2109 	struct xhci_ring *ep_ring;
2110 	struct urb_priv *urb_priv;
2111 	struct usb_iso_packet_descriptor *frame;
2112 	int idx;
2113 
2114 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2115 	urb_priv = td->urb->hcpriv;
2116 	idx = urb_priv->num_tds_done;
2117 	frame = &td->urb->iso_frame_desc[idx];
2118 
2119 	/* The transfer is partly done. */
2120 	frame->status = -EXDEV;
2121 
2122 	/* calc actual length */
2123 	frame->actual_length = 0;
2124 
2125 	/* Update ring dequeue pointer */
2126 	while (ep_ring->dequeue != td->last_trb)
2127 		inc_deq(xhci, ep_ring);
2128 	inc_deq(xhci, ep_ring);
2129 
2130 	return xhci_td_cleanup(xhci, td, ep_ring, status);
2131 }
2132 
2133 /*
2134  * Process bulk and interrupt tds, update urb status and actual_length.
2135  */
2136 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2137 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2138 	struct xhci_virt_ep *ep, int *status)
2139 {
2140 	struct xhci_slot_ctx *slot_ctx;
2141 	struct xhci_ring *ep_ring;
2142 	u32 trb_comp_code;
2143 	u32 remaining, requested, ep_trb_len;
2144 	unsigned int slot_id;
2145 	int ep_index;
2146 
2147 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2148 	slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx);
2149 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2150 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2151 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2152 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2153 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2154 	requested = td->urb->transfer_buffer_length;
2155 
2156 	switch (trb_comp_code) {
2157 	case COMP_SUCCESS:
2158 		ep_ring->err_count = 0;
2159 		/* handle success with untransferred data as short packet */
2160 		if (ep_trb != td->last_trb || remaining) {
2161 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2162 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2163 				 td->urb->ep->desc.bEndpointAddress,
2164 				 requested, remaining);
2165 		}
2166 		*status = 0;
2167 		break;
2168 	case COMP_SHORT_PACKET:
2169 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2170 			 td->urb->ep->desc.bEndpointAddress,
2171 			 requested, remaining);
2172 		*status = 0;
2173 		break;
2174 	case COMP_STOPPED_SHORT_PACKET:
2175 		td->urb->actual_length = remaining;
2176 		goto finish_td;
2177 	case COMP_STOPPED_LENGTH_INVALID:
2178 		/* stopped on ep trb with invalid length, exclude it */
2179 		ep_trb_len	= 0;
2180 		remaining	= 0;
2181 		break;
2182 	case COMP_USB_TRANSACTION_ERROR:
2183 		if ((ep_ring->err_count++ > MAX_SOFT_RETRY) ||
2184 		    le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2185 			break;
2186 		*status = 0;
2187 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
2188 					ep_ring->stream_id, td, EP_SOFT_RESET);
2189 		return 0;
2190 	default:
2191 		/* do nothing */
2192 		break;
2193 	}
2194 
2195 	if (ep_trb == td->last_trb)
2196 		td->urb->actual_length = requested - remaining;
2197 	else
2198 		td->urb->actual_length =
2199 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2200 			ep_trb_len - remaining;
2201 finish_td:
2202 	if (remaining > requested) {
2203 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2204 			  remaining);
2205 		td->urb->actual_length = 0;
2206 	}
2207 	return finish_td(xhci, td, event, ep, status);
2208 }
2209 
2210 /*
2211  * If this function returns an error condition, it means it got a Transfer
2212  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2213  * At this point, the host controller is probably hosed and should be reset.
2214  */
2215 static int handle_tx_event(struct xhci_hcd *xhci,
2216 		struct xhci_transfer_event *event)
2217 {
2218 	struct xhci_virt_device *xdev;
2219 	struct xhci_virt_ep *ep;
2220 	struct xhci_ring *ep_ring;
2221 	unsigned int slot_id;
2222 	int ep_index;
2223 	struct xhci_td *td = NULL;
2224 	dma_addr_t ep_trb_dma;
2225 	struct xhci_segment *ep_seg;
2226 	union xhci_trb *ep_trb;
2227 	int status = -EINPROGRESS;
2228 	struct xhci_ep_ctx *ep_ctx;
2229 	struct list_head *tmp;
2230 	u32 trb_comp_code;
2231 	int td_num = 0;
2232 	bool handling_skipped_tds = false;
2233 
2234 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2235 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2236 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2237 	ep_trb_dma = le64_to_cpu(event->buffer);
2238 
2239 	xdev = xhci->devs[slot_id];
2240 	if (!xdev) {
2241 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2242 			 slot_id);
2243 		goto err_out;
2244 	}
2245 
2246 	ep = &xdev->eps[ep_index];
2247 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2248 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2249 
2250 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2251 		xhci_err(xhci,
2252 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2253 			  slot_id, ep_index);
2254 		goto err_out;
2255 	}
2256 
2257 	/* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2258 	if (!ep_ring) {
2259 		switch (trb_comp_code) {
2260 		case COMP_STALL_ERROR:
2261 		case COMP_USB_TRANSACTION_ERROR:
2262 		case COMP_INVALID_STREAM_TYPE_ERROR:
2263 		case COMP_INVALID_STREAM_ID_ERROR:
2264 			xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2265 						     NULL, EP_SOFT_RESET);
2266 			goto cleanup;
2267 		case COMP_RING_UNDERRUN:
2268 		case COMP_RING_OVERRUN:
2269 			goto cleanup;
2270 		default:
2271 			xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2272 				 slot_id, ep_index);
2273 			goto err_out;
2274 		}
2275 	}
2276 
2277 	/* Count current td numbers if ep->skip is set */
2278 	if (ep->skip) {
2279 		list_for_each(tmp, &ep_ring->td_list)
2280 			td_num++;
2281 	}
2282 
2283 	/* Look for common error cases */
2284 	switch (trb_comp_code) {
2285 	/* Skip codes that require special handling depending on
2286 	 * transfer type
2287 	 */
2288 	case COMP_SUCCESS:
2289 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2290 			break;
2291 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2292 			trb_comp_code = COMP_SHORT_PACKET;
2293 		else
2294 			xhci_warn_ratelimited(xhci,
2295 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2296 					      slot_id, ep_index);
2297 	case COMP_SHORT_PACKET:
2298 		break;
2299 	/* Completion codes for endpoint stopped state */
2300 	case COMP_STOPPED:
2301 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2302 			 slot_id, ep_index);
2303 		break;
2304 	case COMP_STOPPED_LENGTH_INVALID:
2305 		xhci_dbg(xhci,
2306 			 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2307 			 slot_id, ep_index);
2308 		break;
2309 	case COMP_STOPPED_SHORT_PACKET:
2310 		xhci_dbg(xhci,
2311 			 "Stopped with short packet transfer detected for slot %u ep %u\n",
2312 			 slot_id, ep_index);
2313 		break;
2314 	/* Completion codes for endpoint halted state */
2315 	case COMP_STALL_ERROR:
2316 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2317 			 ep_index);
2318 		ep->ep_state |= EP_HALTED;
2319 		status = -EPIPE;
2320 		break;
2321 	case COMP_SPLIT_TRANSACTION_ERROR:
2322 	case COMP_USB_TRANSACTION_ERROR:
2323 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2324 			 slot_id, ep_index);
2325 		status = -EPROTO;
2326 		break;
2327 	case COMP_BABBLE_DETECTED_ERROR:
2328 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2329 			 slot_id, ep_index);
2330 		status = -EOVERFLOW;
2331 		break;
2332 	/* Completion codes for endpoint error state */
2333 	case COMP_TRB_ERROR:
2334 		xhci_warn(xhci,
2335 			  "WARN: TRB error for slot %u ep %u on endpoint\n",
2336 			  slot_id, ep_index);
2337 		status = -EILSEQ;
2338 		break;
2339 	/* completion codes not indicating endpoint state change */
2340 	case COMP_DATA_BUFFER_ERROR:
2341 		xhci_warn(xhci,
2342 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2343 			  slot_id, ep_index);
2344 		status = -ENOSR;
2345 		break;
2346 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2347 		xhci_warn(xhci,
2348 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2349 			  slot_id, ep_index);
2350 		break;
2351 	case COMP_ISOCH_BUFFER_OVERRUN:
2352 		xhci_warn(xhci,
2353 			  "WARN: buffer overrun event for slot %u ep %u on endpoint",
2354 			  slot_id, ep_index);
2355 		break;
2356 	case COMP_RING_UNDERRUN:
2357 		/*
2358 		 * When the Isoch ring is empty, the xHC will generate
2359 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2360 		 * Underrun Event for OUT Isoch endpoint.
2361 		 */
2362 		xhci_dbg(xhci, "underrun event on endpoint\n");
2363 		if (!list_empty(&ep_ring->td_list))
2364 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2365 					"still with TDs queued?\n",
2366 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2367 				 ep_index);
2368 		goto cleanup;
2369 	case COMP_RING_OVERRUN:
2370 		xhci_dbg(xhci, "overrun event on endpoint\n");
2371 		if (!list_empty(&ep_ring->td_list))
2372 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2373 					"still with TDs queued?\n",
2374 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2375 				 ep_index);
2376 		goto cleanup;
2377 	case COMP_MISSED_SERVICE_ERROR:
2378 		/*
2379 		 * When encounter missed service error, one or more isoc tds
2380 		 * may be missed by xHC.
2381 		 * Set skip flag of the ep_ring; Complete the missed tds as
2382 		 * short transfer when process the ep_ring next time.
2383 		 */
2384 		ep->skip = true;
2385 		xhci_dbg(xhci,
2386 			 "Miss service interval error for slot %u ep %u, set skip flag\n",
2387 			 slot_id, ep_index);
2388 		goto cleanup;
2389 	case COMP_NO_PING_RESPONSE_ERROR:
2390 		ep->skip = true;
2391 		xhci_dbg(xhci,
2392 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2393 			 slot_id, ep_index);
2394 		goto cleanup;
2395 
2396 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2397 		/* needs disable slot command to recover */
2398 		xhci_warn(xhci,
2399 			  "WARN: detect an incompatible device for slot %u ep %u",
2400 			  slot_id, ep_index);
2401 		status = -EPROTO;
2402 		break;
2403 	default:
2404 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2405 			status = 0;
2406 			break;
2407 		}
2408 		xhci_warn(xhci,
2409 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2410 			  trb_comp_code, slot_id, ep_index);
2411 		goto cleanup;
2412 	}
2413 
2414 	do {
2415 		/* This TRB should be in the TD at the head of this ring's
2416 		 * TD list.
2417 		 */
2418 		if (list_empty(&ep_ring->td_list)) {
2419 			/*
2420 			 * Don't print wanings if it's due to a stopped endpoint
2421 			 * generating an extra completion event if the device
2422 			 * was suspended. Or, a event for the last TRB of a
2423 			 * short TD we already got a short event for.
2424 			 * The short TD is already removed from the TD list.
2425 			 */
2426 
2427 			if (!(trb_comp_code == COMP_STOPPED ||
2428 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2429 			      ep_ring->last_td_was_short)) {
2430 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2431 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2432 						ep_index);
2433 			}
2434 			if (ep->skip) {
2435 				ep->skip = false;
2436 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2437 					 slot_id, ep_index);
2438 			}
2439 			goto cleanup;
2440 		}
2441 
2442 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2443 		if (ep->skip && td_num == 0) {
2444 			ep->skip = false;
2445 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2446 				 slot_id, ep_index);
2447 			goto cleanup;
2448 		}
2449 
2450 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2451 				      td_list);
2452 		if (ep->skip)
2453 			td_num--;
2454 
2455 		/* Is this a TRB in the currently executing TD? */
2456 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2457 				td->last_trb, ep_trb_dma, false);
2458 
2459 		/*
2460 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2461 		 * is not in the current TD pointed by ep_ring->dequeue because
2462 		 * that the hardware dequeue pointer still at the previous TRB
2463 		 * of the current TD. The previous TRB maybe a Link TD or the
2464 		 * last TRB of the previous TD. The command completion handle
2465 		 * will take care the rest.
2466 		 */
2467 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2468 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2469 			goto cleanup;
2470 		}
2471 
2472 		if (!ep_seg) {
2473 			if (!ep->skip ||
2474 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2475 				/* Some host controllers give a spurious
2476 				 * successful event after a short transfer.
2477 				 * Ignore it.
2478 				 */
2479 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2480 						ep_ring->last_td_was_short) {
2481 					ep_ring->last_td_was_short = false;
2482 					goto cleanup;
2483 				}
2484 				/* HC is busted, give up! */
2485 				xhci_err(xhci,
2486 					"ERROR Transfer event TRB DMA ptr not "
2487 					"part of current TD ep_index %d "
2488 					"comp_code %u\n", ep_index,
2489 					trb_comp_code);
2490 				trb_in_td(xhci, ep_ring->deq_seg,
2491 					  ep_ring->dequeue, td->last_trb,
2492 					  ep_trb_dma, true);
2493 				return -ESHUTDOWN;
2494 			}
2495 
2496 			skip_isoc_td(xhci, td, event, ep, &status);
2497 			goto cleanup;
2498 		}
2499 		if (trb_comp_code == COMP_SHORT_PACKET)
2500 			ep_ring->last_td_was_short = true;
2501 		else
2502 			ep_ring->last_td_was_short = false;
2503 
2504 		if (ep->skip) {
2505 			xhci_dbg(xhci,
2506 				 "Found td. Clear skip flag for slot %u ep %u.\n",
2507 				 slot_id, ep_index);
2508 			ep->skip = false;
2509 		}
2510 
2511 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2512 						sizeof(*ep_trb)];
2513 
2514 		trace_xhci_handle_transfer(ep_ring,
2515 				(struct xhci_generic_trb *) ep_trb);
2516 
2517 		/*
2518 		 * No-op TRB could trigger interrupts in a case where
2519 		 * a URB was killed and a STALL_ERROR happens right
2520 		 * after the endpoint ring stopped. Reset the halted
2521 		 * endpoint. Otherwise, the endpoint remains stalled
2522 		 * indefinitely.
2523 		 */
2524 		if (trb_is_noop(ep_trb)) {
2525 			if (trb_comp_code == COMP_STALL_ERROR ||
2526 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2527 							      trb_comp_code))
2528 				xhci_cleanup_halted_endpoint(xhci, slot_id,
2529 							     ep_index,
2530 							     ep_ring->stream_id,
2531 							     td, EP_HARD_RESET);
2532 			goto cleanup;
2533 		}
2534 
2535 		/* update the urb's actual_length and give back to the core */
2536 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2537 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2538 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2539 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2540 		else
2541 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2542 					     &status);
2543 cleanup:
2544 		handling_skipped_tds = ep->skip &&
2545 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2546 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2547 
2548 		/*
2549 		 * Do not update event ring dequeue pointer if we're in a loop
2550 		 * processing missed tds.
2551 		 */
2552 		if (!handling_skipped_tds)
2553 			inc_deq(xhci, xhci->event_ring);
2554 
2555 	/*
2556 	 * If ep->skip is set, it means there are missed tds on the
2557 	 * endpoint ring need to take care of.
2558 	 * Process them as short transfer until reach the td pointed by
2559 	 * the event.
2560 	 */
2561 	} while (handling_skipped_tds);
2562 
2563 	return 0;
2564 
2565 err_out:
2566 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2567 		 (unsigned long long) xhci_trb_virt_to_dma(
2568 			 xhci->event_ring->deq_seg,
2569 			 xhci->event_ring->dequeue),
2570 		 lower_32_bits(le64_to_cpu(event->buffer)),
2571 		 upper_32_bits(le64_to_cpu(event->buffer)),
2572 		 le32_to_cpu(event->transfer_len),
2573 		 le32_to_cpu(event->flags));
2574 	return -ENODEV;
2575 }
2576 
2577 /*
2578  * This function handles all OS-owned events on the event ring.  It may drop
2579  * xhci->lock between event processing (e.g. to pass up port status changes).
2580  * Returns >0 for "possibly more events to process" (caller should call again),
2581  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2582  */
2583 static int xhci_handle_event(struct xhci_hcd *xhci)
2584 {
2585 	union xhci_trb *event;
2586 	int update_ptrs = 1;
2587 	int ret;
2588 
2589 	/* Event ring hasn't been allocated yet. */
2590 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2591 		xhci_err(xhci, "ERROR event ring not ready\n");
2592 		return -ENOMEM;
2593 	}
2594 
2595 	event = xhci->event_ring->dequeue;
2596 	/* Does the HC or OS own the TRB? */
2597 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2598 	    xhci->event_ring->cycle_state)
2599 		return 0;
2600 
2601 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2602 
2603 	/*
2604 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2605 	 * speculative reads of the event's flags/data below.
2606 	 */
2607 	rmb();
2608 	/* FIXME: Handle more event types. */
2609 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2610 	case TRB_TYPE(TRB_COMPLETION):
2611 		handle_cmd_completion(xhci, &event->event_cmd);
2612 		break;
2613 	case TRB_TYPE(TRB_PORT_STATUS):
2614 		handle_port_status(xhci, event);
2615 		update_ptrs = 0;
2616 		break;
2617 	case TRB_TYPE(TRB_TRANSFER):
2618 		ret = handle_tx_event(xhci, &event->trans_event);
2619 		if (ret >= 0)
2620 			update_ptrs = 0;
2621 		break;
2622 	case TRB_TYPE(TRB_DEV_NOTE):
2623 		handle_device_notification(xhci, event);
2624 		break;
2625 	default:
2626 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2627 		    TRB_TYPE(48))
2628 			handle_vendor_event(xhci, event);
2629 		else
2630 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2631 				  TRB_FIELD_TO_TYPE(
2632 				  le32_to_cpu(event->event_cmd.flags)));
2633 	}
2634 	/* Any of the above functions may drop and re-acquire the lock, so check
2635 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2636 	 */
2637 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2638 		xhci_dbg(xhci, "xHCI host dying, returning from "
2639 				"event handler.\n");
2640 		return 0;
2641 	}
2642 
2643 	if (update_ptrs)
2644 		/* Update SW event ring dequeue pointer */
2645 		inc_deq(xhci, xhci->event_ring);
2646 
2647 	/* Are there more items on the event ring?  Caller will call us again to
2648 	 * check.
2649 	 */
2650 	return 1;
2651 }
2652 
2653 /*
2654  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2655  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2656  * indicators of an event TRB error, but we check the status *first* to be safe.
2657  */
2658 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2659 {
2660 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2661 	union xhci_trb *event_ring_deq;
2662 	irqreturn_t ret = IRQ_NONE;
2663 	unsigned long flags;
2664 	dma_addr_t deq;
2665 	u64 temp_64;
2666 	u32 status;
2667 
2668 	spin_lock_irqsave(&xhci->lock, flags);
2669 	/* Check if the xHC generated the interrupt, or the irq is shared */
2670 	status = readl(&xhci->op_regs->status);
2671 	if (status == ~(u32)0) {
2672 		xhci_hc_died(xhci);
2673 		ret = IRQ_HANDLED;
2674 		goto out;
2675 	}
2676 
2677 	if (!(status & STS_EINT))
2678 		goto out;
2679 
2680 	if (status & STS_FATAL) {
2681 		xhci_warn(xhci, "WARNING: Host System Error\n");
2682 		xhci_halt(xhci);
2683 		ret = IRQ_HANDLED;
2684 		goto out;
2685 	}
2686 
2687 	/*
2688 	 * Clear the op reg interrupt status first,
2689 	 * so we can receive interrupts from other MSI-X interrupters.
2690 	 * Write 1 to clear the interrupt status.
2691 	 */
2692 	status |= STS_EINT;
2693 	writel(status, &xhci->op_regs->status);
2694 
2695 	if (!hcd->msi_enabled) {
2696 		u32 irq_pending;
2697 		irq_pending = readl(&xhci->ir_set->irq_pending);
2698 		irq_pending |= IMAN_IP;
2699 		writel(irq_pending, &xhci->ir_set->irq_pending);
2700 	}
2701 
2702 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2703 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2704 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2705 				"Shouldn't IRQs be disabled?\n");
2706 		/* Clear the event handler busy flag (RW1C);
2707 		 * the event ring should be empty.
2708 		 */
2709 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2710 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2711 				&xhci->ir_set->erst_dequeue);
2712 		ret = IRQ_HANDLED;
2713 		goto out;
2714 	}
2715 
2716 	event_ring_deq = xhci->event_ring->dequeue;
2717 	/* FIXME this should be a delayed service routine
2718 	 * that clears the EHB.
2719 	 */
2720 	while (xhci_handle_event(xhci) > 0) {}
2721 
2722 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2723 	/* If necessary, update the HW's version of the event ring deq ptr. */
2724 	if (event_ring_deq != xhci->event_ring->dequeue) {
2725 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2726 				xhci->event_ring->dequeue);
2727 		if (deq == 0)
2728 			xhci_warn(xhci, "WARN something wrong with SW event "
2729 					"ring dequeue ptr.\n");
2730 		/* Update HC event ring dequeue pointer */
2731 		temp_64 &= ERST_PTR_MASK;
2732 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2733 	}
2734 
2735 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2736 	temp_64 |= ERST_EHB;
2737 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2738 	ret = IRQ_HANDLED;
2739 
2740 out:
2741 	spin_unlock_irqrestore(&xhci->lock, flags);
2742 
2743 	return ret;
2744 }
2745 
2746 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2747 {
2748 	return xhci_irq(hcd);
2749 }
2750 
2751 /****		Endpoint Ring Operations	****/
2752 
2753 /*
2754  * Generic function for queueing a TRB on a ring.
2755  * The caller must have checked to make sure there's room on the ring.
2756  *
2757  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2758  *			prepare_transfer()?
2759  */
2760 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2761 		bool more_trbs_coming,
2762 		u32 field1, u32 field2, u32 field3, u32 field4)
2763 {
2764 	struct xhci_generic_trb *trb;
2765 
2766 	trb = &ring->enqueue->generic;
2767 	trb->field[0] = cpu_to_le32(field1);
2768 	trb->field[1] = cpu_to_le32(field2);
2769 	trb->field[2] = cpu_to_le32(field3);
2770 	trb->field[3] = cpu_to_le32(field4);
2771 
2772 	trace_xhci_queue_trb(ring, trb);
2773 
2774 	inc_enq(xhci, ring, more_trbs_coming);
2775 }
2776 
2777 /*
2778  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2779  * FIXME allocate segments if the ring is full.
2780  */
2781 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2782 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2783 {
2784 	unsigned int num_trbs_needed;
2785 
2786 	/* Make sure the endpoint has been added to xHC schedule */
2787 	switch (ep_state) {
2788 	case EP_STATE_DISABLED:
2789 		/*
2790 		 * USB core changed config/interfaces without notifying us,
2791 		 * or hardware is reporting the wrong state.
2792 		 */
2793 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2794 		return -ENOENT;
2795 	case EP_STATE_ERROR:
2796 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2797 		/* FIXME event handling code for error needs to clear it */
2798 		/* XXX not sure if this should be -ENOENT or not */
2799 		return -EINVAL;
2800 	case EP_STATE_HALTED:
2801 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2802 	case EP_STATE_STOPPED:
2803 	case EP_STATE_RUNNING:
2804 		break;
2805 	default:
2806 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2807 		/*
2808 		 * FIXME issue Configure Endpoint command to try to get the HC
2809 		 * back into a known state.
2810 		 */
2811 		return -EINVAL;
2812 	}
2813 
2814 	while (1) {
2815 		if (room_on_ring(xhci, ep_ring, num_trbs))
2816 			break;
2817 
2818 		if (ep_ring == xhci->cmd_ring) {
2819 			xhci_err(xhci, "Do not support expand command ring\n");
2820 			return -ENOMEM;
2821 		}
2822 
2823 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2824 				"ERROR no room on ep ring, try ring expansion");
2825 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2826 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2827 					mem_flags)) {
2828 			xhci_err(xhci, "Ring expansion failed\n");
2829 			return -ENOMEM;
2830 		}
2831 	}
2832 
2833 	while (trb_is_link(ep_ring->enqueue)) {
2834 		/* If we're not dealing with 0.95 hardware or isoc rings
2835 		 * on AMD 0.96 host, clear the chain bit.
2836 		 */
2837 		if (!xhci_link_trb_quirk(xhci) &&
2838 		    !(ep_ring->type == TYPE_ISOC &&
2839 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2840 			ep_ring->enqueue->link.control &=
2841 				cpu_to_le32(~TRB_CHAIN);
2842 		else
2843 			ep_ring->enqueue->link.control |=
2844 				cpu_to_le32(TRB_CHAIN);
2845 
2846 		wmb();
2847 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2848 
2849 		/* Toggle the cycle bit after the last ring segment. */
2850 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2851 			ep_ring->cycle_state ^= 1;
2852 
2853 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2854 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2855 	}
2856 	return 0;
2857 }
2858 
2859 static int prepare_transfer(struct xhci_hcd *xhci,
2860 		struct xhci_virt_device *xdev,
2861 		unsigned int ep_index,
2862 		unsigned int stream_id,
2863 		unsigned int num_trbs,
2864 		struct urb *urb,
2865 		unsigned int td_index,
2866 		gfp_t mem_flags)
2867 {
2868 	int ret;
2869 	struct urb_priv *urb_priv;
2870 	struct xhci_td	*td;
2871 	struct xhci_ring *ep_ring;
2872 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2873 
2874 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2875 	if (!ep_ring) {
2876 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2877 				stream_id);
2878 		return -EINVAL;
2879 	}
2880 
2881 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2882 			   num_trbs, mem_flags);
2883 	if (ret)
2884 		return ret;
2885 
2886 	urb_priv = urb->hcpriv;
2887 	td = &urb_priv->td[td_index];
2888 
2889 	INIT_LIST_HEAD(&td->td_list);
2890 	INIT_LIST_HEAD(&td->cancelled_td_list);
2891 
2892 	if (td_index == 0) {
2893 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2894 		if (unlikely(ret))
2895 			return ret;
2896 	}
2897 
2898 	td->urb = urb;
2899 	/* Add this TD to the tail of the endpoint ring's TD list */
2900 	list_add_tail(&td->td_list, &ep_ring->td_list);
2901 	td->start_seg = ep_ring->enq_seg;
2902 	td->first_trb = ep_ring->enqueue;
2903 
2904 	return 0;
2905 }
2906 
2907 unsigned int count_trbs(u64 addr, u64 len)
2908 {
2909 	unsigned int num_trbs;
2910 
2911 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2912 			TRB_MAX_BUFF_SIZE);
2913 	if (num_trbs == 0)
2914 		num_trbs++;
2915 
2916 	return num_trbs;
2917 }
2918 
2919 static inline unsigned int count_trbs_needed(struct urb *urb)
2920 {
2921 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2922 }
2923 
2924 static unsigned int count_sg_trbs_needed(struct urb *urb)
2925 {
2926 	struct scatterlist *sg;
2927 	unsigned int i, len, full_len, num_trbs = 0;
2928 
2929 	full_len = urb->transfer_buffer_length;
2930 
2931 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2932 		len = sg_dma_len(sg);
2933 		num_trbs += count_trbs(sg_dma_address(sg), len);
2934 		len = min_t(unsigned int, len, full_len);
2935 		full_len -= len;
2936 		if (full_len == 0)
2937 			break;
2938 	}
2939 
2940 	return num_trbs;
2941 }
2942 
2943 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2944 {
2945 	u64 addr, len;
2946 
2947 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2948 	len = urb->iso_frame_desc[i].length;
2949 
2950 	return count_trbs(addr, len);
2951 }
2952 
2953 static void check_trb_math(struct urb *urb, int running_total)
2954 {
2955 	if (unlikely(running_total != urb->transfer_buffer_length))
2956 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2957 				"queued %#x (%d), asked for %#x (%d)\n",
2958 				__func__,
2959 				urb->ep->desc.bEndpointAddress,
2960 				running_total, running_total,
2961 				urb->transfer_buffer_length,
2962 				urb->transfer_buffer_length);
2963 }
2964 
2965 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2966 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2967 		struct xhci_generic_trb *start_trb)
2968 {
2969 	/*
2970 	 * Pass all the TRBs to the hardware at once and make sure this write
2971 	 * isn't reordered.
2972 	 */
2973 	wmb();
2974 	if (start_cycle)
2975 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2976 	else
2977 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2978 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2979 }
2980 
2981 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
2982 						struct xhci_ep_ctx *ep_ctx)
2983 {
2984 	int xhci_interval;
2985 	int ep_interval;
2986 
2987 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2988 	ep_interval = urb->interval;
2989 
2990 	/* Convert to microframes */
2991 	if (urb->dev->speed == USB_SPEED_LOW ||
2992 			urb->dev->speed == USB_SPEED_FULL)
2993 		ep_interval *= 8;
2994 
2995 	/* FIXME change this to a warning and a suggestion to use the new API
2996 	 * to set the polling interval (once the API is added).
2997 	 */
2998 	if (xhci_interval != ep_interval) {
2999 		dev_dbg_ratelimited(&urb->dev->dev,
3000 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3001 				ep_interval, ep_interval == 1 ? "" : "s",
3002 				xhci_interval, xhci_interval == 1 ? "" : "s");
3003 		urb->interval = xhci_interval;
3004 		/* Convert back to frames for LS/FS devices */
3005 		if (urb->dev->speed == USB_SPEED_LOW ||
3006 				urb->dev->speed == USB_SPEED_FULL)
3007 			urb->interval /= 8;
3008 	}
3009 }
3010 
3011 /*
3012  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3013  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3014  * (comprised of sg list entries) can take several service intervals to
3015  * transmit.
3016  */
3017 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3018 		struct urb *urb, int slot_id, unsigned int ep_index)
3019 {
3020 	struct xhci_ep_ctx *ep_ctx;
3021 
3022 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3023 	check_interval(xhci, urb, ep_ctx);
3024 
3025 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3026 }
3027 
3028 /*
3029  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3030  * packets remaining in the TD (*not* including this TRB).
3031  *
3032  * Total TD packet count = total_packet_count =
3033  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3034  *
3035  * Packets transferred up to and including this TRB = packets_transferred =
3036  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3037  *
3038  * TD size = total_packet_count - packets_transferred
3039  *
3040  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3041  * including this TRB, right shifted by 10
3042  *
3043  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3044  * This is taken care of in the TRB_TD_SIZE() macro
3045  *
3046  * The last TRB in a TD must have the TD size set to zero.
3047  */
3048 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3049 			      int trb_buff_len, unsigned int td_total_len,
3050 			      struct urb *urb, bool more_trbs_coming)
3051 {
3052 	u32 maxp, total_packet_count;
3053 
3054 	/* MTK xHCI 0.96 contains some features from 1.0 */
3055 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3056 		return ((td_total_len - transferred) >> 10);
3057 
3058 	/* One TRB with a zero-length data packet. */
3059 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3060 	    trb_buff_len == td_total_len)
3061 		return 0;
3062 
3063 	/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3064 	if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3065 		trb_buff_len = 0;
3066 
3067 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3068 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3069 
3070 	/* Queueing functions don't count the current TRB into transferred */
3071 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3072 }
3073 
3074 
3075 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3076 			 u32 *trb_buff_len, struct xhci_segment *seg)
3077 {
3078 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3079 	unsigned int unalign;
3080 	unsigned int max_pkt;
3081 	u32 new_buff_len;
3082 
3083 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3084 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3085 
3086 	/* we got lucky, last normal TRB data on segment is packet aligned */
3087 	if (unalign == 0)
3088 		return 0;
3089 
3090 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3091 		 unalign, *trb_buff_len);
3092 
3093 	/* is the last nornal TRB alignable by splitting it */
3094 	if (*trb_buff_len > unalign) {
3095 		*trb_buff_len -= unalign;
3096 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3097 		return 0;
3098 	}
3099 
3100 	/*
3101 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3102 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3103 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3104 	 */
3105 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3106 
3107 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3108 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3109 
3110 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3111 	if (usb_urb_dir_out(urb)) {
3112 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3113 				   seg->bounce_buf, new_buff_len, enqd_len);
3114 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3115 						 max_pkt, DMA_TO_DEVICE);
3116 	} else {
3117 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3118 						 max_pkt, DMA_FROM_DEVICE);
3119 	}
3120 
3121 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3122 		/* try without aligning. Some host controllers survive */
3123 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3124 		return 0;
3125 	}
3126 	*trb_buff_len = new_buff_len;
3127 	seg->bounce_len = new_buff_len;
3128 	seg->bounce_offs = enqd_len;
3129 
3130 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3131 
3132 	return 1;
3133 }
3134 
3135 /* This is very similar to what ehci-q.c qtd_fill() does */
3136 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3137 		struct urb *urb, int slot_id, unsigned int ep_index)
3138 {
3139 	struct xhci_ring *ring;
3140 	struct urb_priv *urb_priv;
3141 	struct xhci_td *td;
3142 	struct xhci_generic_trb *start_trb;
3143 	struct scatterlist *sg = NULL;
3144 	bool more_trbs_coming = true;
3145 	bool need_zero_pkt = false;
3146 	bool first_trb = true;
3147 	unsigned int num_trbs;
3148 	unsigned int start_cycle, num_sgs = 0;
3149 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3150 	int sent_len, ret;
3151 	u32 field, length_field, remainder;
3152 	u64 addr, send_addr;
3153 
3154 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3155 	if (!ring)
3156 		return -EINVAL;
3157 
3158 	full_len = urb->transfer_buffer_length;
3159 	/* If we have scatter/gather list, we use it. */
3160 	if (urb->num_sgs) {
3161 		num_sgs = urb->num_mapped_sgs;
3162 		sg = urb->sg;
3163 		addr = (u64) sg_dma_address(sg);
3164 		block_len = sg_dma_len(sg);
3165 		num_trbs = count_sg_trbs_needed(urb);
3166 	} else {
3167 		num_trbs = count_trbs_needed(urb);
3168 		addr = (u64) urb->transfer_dma;
3169 		block_len = full_len;
3170 	}
3171 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3172 			ep_index, urb->stream_id,
3173 			num_trbs, urb, 0, mem_flags);
3174 	if (unlikely(ret < 0))
3175 		return ret;
3176 
3177 	urb_priv = urb->hcpriv;
3178 
3179 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3180 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3181 		need_zero_pkt = true;
3182 
3183 	td = &urb_priv->td[0];
3184 
3185 	/*
3186 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3187 	 * until we've finished creating all the other TRBs.  The ring's cycle
3188 	 * state may change as we enqueue the other TRBs, so save it too.
3189 	 */
3190 	start_trb = &ring->enqueue->generic;
3191 	start_cycle = ring->cycle_state;
3192 	send_addr = addr;
3193 
3194 	/* Queue the TRBs, even if they are zero-length */
3195 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3196 			enqd_len += trb_buff_len) {
3197 		field = TRB_TYPE(TRB_NORMAL);
3198 
3199 		/* TRB buffer should not cross 64KB boundaries */
3200 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3201 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3202 
3203 		if (enqd_len + trb_buff_len > full_len)
3204 			trb_buff_len = full_len - enqd_len;
3205 
3206 		/* Don't change the cycle bit of the first TRB until later */
3207 		if (first_trb) {
3208 			first_trb = false;
3209 			if (start_cycle == 0)
3210 				field |= TRB_CYCLE;
3211 		} else
3212 			field |= ring->cycle_state;
3213 
3214 		/* Chain all the TRBs together; clear the chain bit in the last
3215 		 * TRB to indicate it's the last TRB in the chain.
3216 		 */
3217 		if (enqd_len + trb_buff_len < full_len) {
3218 			field |= TRB_CHAIN;
3219 			if (trb_is_link(ring->enqueue + 1)) {
3220 				if (xhci_align_td(xhci, urb, enqd_len,
3221 						  &trb_buff_len,
3222 						  ring->enq_seg)) {
3223 					send_addr = ring->enq_seg->bounce_dma;
3224 					/* assuming TD won't span 2 segs */
3225 					td->bounce_seg = ring->enq_seg;
3226 				}
3227 			}
3228 		}
3229 		if (enqd_len + trb_buff_len >= full_len) {
3230 			field &= ~TRB_CHAIN;
3231 			field |= TRB_IOC;
3232 			more_trbs_coming = false;
3233 			td->last_trb = ring->enqueue;
3234 		}
3235 
3236 		/* Only set interrupt on short packet for IN endpoints */
3237 		if (usb_urb_dir_in(urb))
3238 			field |= TRB_ISP;
3239 
3240 		/* Set the TRB length, TD size, and interrupter fields. */
3241 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3242 					      full_len, urb, more_trbs_coming);
3243 
3244 		length_field = TRB_LEN(trb_buff_len) |
3245 			TRB_TD_SIZE(remainder) |
3246 			TRB_INTR_TARGET(0);
3247 
3248 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3249 				lower_32_bits(send_addr),
3250 				upper_32_bits(send_addr),
3251 				length_field,
3252 				field);
3253 
3254 		addr += trb_buff_len;
3255 		sent_len = trb_buff_len;
3256 
3257 		while (sg && sent_len >= block_len) {
3258 			/* New sg entry */
3259 			--num_sgs;
3260 			sent_len -= block_len;
3261 			if (num_sgs != 0) {
3262 				sg = sg_next(sg);
3263 				block_len = sg_dma_len(sg);
3264 				addr = (u64) sg_dma_address(sg);
3265 				addr += sent_len;
3266 			}
3267 		}
3268 		block_len -= sent_len;
3269 		send_addr = addr;
3270 	}
3271 
3272 	if (need_zero_pkt) {
3273 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3274 				       ep_index, urb->stream_id,
3275 				       1, urb, 1, mem_flags);
3276 		urb_priv->td[1].last_trb = ring->enqueue;
3277 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3278 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3279 	}
3280 
3281 	check_trb_math(urb, enqd_len);
3282 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3283 			start_cycle, start_trb);
3284 	return 0;
3285 }
3286 
3287 /* Caller must have locked xhci->lock */
3288 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3289 		struct urb *urb, int slot_id, unsigned int ep_index)
3290 {
3291 	struct xhci_ring *ep_ring;
3292 	int num_trbs;
3293 	int ret;
3294 	struct usb_ctrlrequest *setup;
3295 	struct xhci_generic_trb *start_trb;
3296 	int start_cycle;
3297 	u32 field;
3298 	struct urb_priv *urb_priv;
3299 	struct xhci_td *td;
3300 
3301 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3302 	if (!ep_ring)
3303 		return -EINVAL;
3304 
3305 	/*
3306 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3307 	 * DMA address.
3308 	 */
3309 	if (!urb->setup_packet)
3310 		return -EINVAL;
3311 
3312 	/* 1 TRB for setup, 1 for status */
3313 	num_trbs = 2;
3314 	/*
3315 	 * Don't need to check if we need additional event data and normal TRBs,
3316 	 * since data in control transfers will never get bigger than 16MB
3317 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3318 	 */
3319 	if (urb->transfer_buffer_length > 0)
3320 		num_trbs++;
3321 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3322 			ep_index, urb->stream_id,
3323 			num_trbs, urb, 0, mem_flags);
3324 	if (ret < 0)
3325 		return ret;
3326 
3327 	urb_priv = urb->hcpriv;
3328 	td = &urb_priv->td[0];
3329 
3330 	/*
3331 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3332 	 * until we've finished creating all the other TRBs.  The ring's cycle
3333 	 * state may change as we enqueue the other TRBs, so save it too.
3334 	 */
3335 	start_trb = &ep_ring->enqueue->generic;
3336 	start_cycle = ep_ring->cycle_state;
3337 
3338 	/* Queue setup TRB - see section 6.4.1.2.1 */
3339 	/* FIXME better way to translate setup_packet into two u32 fields? */
3340 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3341 	field = 0;
3342 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3343 	if (start_cycle == 0)
3344 		field |= 0x1;
3345 
3346 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3347 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3348 		if (urb->transfer_buffer_length > 0) {
3349 			if (setup->bRequestType & USB_DIR_IN)
3350 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3351 			else
3352 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3353 		}
3354 	}
3355 
3356 	queue_trb(xhci, ep_ring, true,
3357 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3358 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3359 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3360 		  /* Immediate data in pointer */
3361 		  field);
3362 
3363 	/* If there's data, queue data TRBs */
3364 	/* Only set interrupt on short packet for IN endpoints */
3365 	if (usb_urb_dir_in(urb))
3366 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3367 	else
3368 		field = TRB_TYPE(TRB_DATA);
3369 
3370 	if (urb->transfer_buffer_length > 0) {
3371 		u32 length_field, remainder;
3372 
3373 		remainder = xhci_td_remainder(xhci, 0,
3374 				urb->transfer_buffer_length,
3375 				urb->transfer_buffer_length,
3376 				urb, 1);
3377 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3378 				TRB_TD_SIZE(remainder) |
3379 				TRB_INTR_TARGET(0);
3380 		if (setup->bRequestType & USB_DIR_IN)
3381 			field |= TRB_DIR_IN;
3382 		queue_trb(xhci, ep_ring, true,
3383 				lower_32_bits(urb->transfer_dma),
3384 				upper_32_bits(urb->transfer_dma),
3385 				length_field,
3386 				field | ep_ring->cycle_state);
3387 	}
3388 
3389 	/* Save the DMA address of the last TRB in the TD */
3390 	td->last_trb = ep_ring->enqueue;
3391 
3392 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3393 	/* If the device sent data, the status stage is an OUT transfer */
3394 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3395 		field = 0;
3396 	else
3397 		field = TRB_DIR_IN;
3398 	queue_trb(xhci, ep_ring, false,
3399 			0,
3400 			0,
3401 			TRB_INTR_TARGET(0),
3402 			/* Event on completion */
3403 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3404 
3405 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3406 			start_cycle, start_trb);
3407 	return 0;
3408 }
3409 
3410 /*
3411  * The transfer burst count field of the isochronous TRB defines the number of
3412  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3413  * devices can burst up to bMaxBurst number of packets per service interval.
3414  * This field is zero based, meaning a value of zero in the field means one
3415  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3416  * zero.  Only xHCI 1.0 host controllers support this field.
3417  */
3418 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3419 		struct urb *urb, unsigned int total_packet_count)
3420 {
3421 	unsigned int max_burst;
3422 
3423 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3424 		return 0;
3425 
3426 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3427 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3428 }
3429 
3430 /*
3431  * Returns the number of packets in the last "burst" of packets.  This field is
3432  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3433  * the last burst packet count is equal to the total number of packets in the
3434  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3435  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3436  * contain 1 to (bMaxBurst + 1) packets.
3437  */
3438 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3439 		struct urb *urb, unsigned int total_packet_count)
3440 {
3441 	unsigned int max_burst;
3442 	unsigned int residue;
3443 
3444 	if (xhci->hci_version < 0x100)
3445 		return 0;
3446 
3447 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3448 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3449 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3450 		residue = total_packet_count % (max_burst + 1);
3451 		/* If residue is zero, the last burst contains (max_burst + 1)
3452 		 * number of packets, but the TLBPC field is zero-based.
3453 		 */
3454 		if (residue == 0)
3455 			return max_burst;
3456 		return residue - 1;
3457 	}
3458 	if (total_packet_count == 0)
3459 		return 0;
3460 	return total_packet_count - 1;
3461 }
3462 
3463 /*
3464  * Calculates Frame ID field of the isochronous TRB identifies the
3465  * target frame that the Interval associated with this Isochronous
3466  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3467  *
3468  * Returns actual frame id on success, negative value on error.
3469  */
3470 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3471 		struct urb *urb, int index)
3472 {
3473 	int start_frame, ist, ret = 0;
3474 	int start_frame_id, end_frame_id, current_frame_id;
3475 
3476 	if (urb->dev->speed == USB_SPEED_LOW ||
3477 			urb->dev->speed == USB_SPEED_FULL)
3478 		start_frame = urb->start_frame + index * urb->interval;
3479 	else
3480 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3481 
3482 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3483 	 *
3484 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3485 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3486 	 * be executed.
3487 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3488 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3489 	 */
3490 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3491 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3492 		ist <<= 3;
3493 
3494 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3495 	 * is less than the Start Frame ID or greater than the End Frame ID,
3496 	 * where:
3497 	 *
3498 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3499 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3500 	 *
3501 	 * Both the End Frame ID and Start Frame ID values are calculated
3502 	 * in microframes. When software determines the valid Frame ID value;
3503 	 * The End Frame ID value should be rounded down to the nearest Frame
3504 	 * boundary, and the Start Frame ID value should be rounded up to the
3505 	 * nearest Frame boundary.
3506 	 */
3507 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3508 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3509 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3510 
3511 	start_frame &= 0x7ff;
3512 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3513 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3514 
3515 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3516 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3517 		 start_frame_id, end_frame_id, start_frame);
3518 
3519 	if (start_frame_id < end_frame_id) {
3520 		if (start_frame > end_frame_id ||
3521 				start_frame < start_frame_id)
3522 			ret = -EINVAL;
3523 	} else if (start_frame_id > end_frame_id) {
3524 		if ((start_frame > end_frame_id &&
3525 				start_frame < start_frame_id))
3526 			ret = -EINVAL;
3527 	} else {
3528 			ret = -EINVAL;
3529 	}
3530 
3531 	if (index == 0) {
3532 		if (ret == -EINVAL || start_frame == start_frame_id) {
3533 			start_frame = start_frame_id + 1;
3534 			if (urb->dev->speed == USB_SPEED_LOW ||
3535 					urb->dev->speed == USB_SPEED_FULL)
3536 				urb->start_frame = start_frame;
3537 			else
3538 				urb->start_frame = start_frame << 3;
3539 			ret = 0;
3540 		}
3541 	}
3542 
3543 	if (ret) {
3544 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3545 				start_frame, current_frame_id, index,
3546 				start_frame_id, end_frame_id);
3547 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3548 		return ret;
3549 	}
3550 
3551 	return start_frame;
3552 }
3553 
3554 /* This is for isoc transfer */
3555 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3556 		struct urb *urb, int slot_id, unsigned int ep_index)
3557 {
3558 	struct xhci_ring *ep_ring;
3559 	struct urb_priv *urb_priv;
3560 	struct xhci_td *td;
3561 	int num_tds, trbs_per_td;
3562 	struct xhci_generic_trb *start_trb;
3563 	bool first_trb;
3564 	int start_cycle;
3565 	u32 field, length_field;
3566 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3567 	u64 start_addr, addr;
3568 	int i, j;
3569 	bool more_trbs_coming;
3570 	struct xhci_virt_ep *xep;
3571 	int frame_id;
3572 
3573 	xep = &xhci->devs[slot_id]->eps[ep_index];
3574 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3575 
3576 	num_tds = urb->number_of_packets;
3577 	if (num_tds < 1) {
3578 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3579 		return -EINVAL;
3580 	}
3581 	start_addr = (u64) urb->transfer_dma;
3582 	start_trb = &ep_ring->enqueue->generic;
3583 	start_cycle = ep_ring->cycle_state;
3584 
3585 	urb_priv = urb->hcpriv;
3586 	/* Queue the TRBs for each TD, even if they are zero-length */
3587 	for (i = 0; i < num_tds; i++) {
3588 		unsigned int total_pkt_count, max_pkt;
3589 		unsigned int burst_count, last_burst_pkt_count;
3590 		u32 sia_frame_id;
3591 
3592 		first_trb = true;
3593 		running_total = 0;
3594 		addr = start_addr + urb->iso_frame_desc[i].offset;
3595 		td_len = urb->iso_frame_desc[i].length;
3596 		td_remain_len = td_len;
3597 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3598 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3599 
3600 		/* A zero-length transfer still involves at least one packet. */
3601 		if (total_pkt_count == 0)
3602 			total_pkt_count++;
3603 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3604 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3605 							urb, total_pkt_count);
3606 
3607 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3608 
3609 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3610 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3611 		if (ret < 0) {
3612 			if (i == 0)
3613 				return ret;
3614 			goto cleanup;
3615 		}
3616 		td = &urb_priv->td[i];
3617 
3618 		/* use SIA as default, if frame id is used overwrite it */
3619 		sia_frame_id = TRB_SIA;
3620 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3621 		    HCC_CFC(xhci->hcc_params)) {
3622 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3623 			if (frame_id >= 0)
3624 				sia_frame_id = TRB_FRAME_ID(frame_id);
3625 		}
3626 		/*
3627 		 * Set isoc specific data for the first TRB in a TD.
3628 		 * Prevent HW from getting the TRBs by keeping the cycle state
3629 		 * inverted in the first TDs isoc TRB.
3630 		 */
3631 		field = TRB_TYPE(TRB_ISOC) |
3632 			TRB_TLBPC(last_burst_pkt_count) |
3633 			sia_frame_id |
3634 			(i ? ep_ring->cycle_state : !start_cycle);
3635 
3636 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3637 		if (!xep->use_extended_tbc)
3638 			field |= TRB_TBC(burst_count);
3639 
3640 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3641 		for (j = 0; j < trbs_per_td; j++) {
3642 			u32 remainder = 0;
3643 
3644 			/* only first TRB is isoc, overwrite otherwise */
3645 			if (!first_trb)
3646 				field = TRB_TYPE(TRB_NORMAL) |
3647 					ep_ring->cycle_state;
3648 
3649 			/* Only set interrupt on short packet for IN EPs */
3650 			if (usb_urb_dir_in(urb))
3651 				field |= TRB_ISP;
3652 
3653 			/* Set the chain bit for all except the last TRB  */
3654 			if (j < trbs_per_td - 1) {
3655 				more_trbs_coming = true;
3656 				field |= TRB_CHAIN;
3657 			} else {
3658 				more_trbs_coming = false;
3659 				td->last_trb = ep_ring->enqueue;
3660 				field |= TRB_IOC;
3661 				/* set BEI, except for the last TD */
3662 				if (xhci->hci_version >= 0x100 &&
3663 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3664 				    i < num_tds - 1)
3665 					field |= TRB_BEI;
3666 			}
3667 			/* Calculate TRB length */
3668 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3669 			if (trb_buff_len > td_remain_len)
3670 				trb_buff_len = td_remain_len;
3671 
3672 			/* Set the TRB length, TD size, & interrupter fields. */
3673 			remainder = xhci_td_remainder(xhci, running_total,
3674 						   trb_buff_len, td_len,
3675 						   urb, more_trbs_coming);
3676 
3677 			length_field = TRB_LEN(trb_buff_len) |
3678 				TRB_INTR_TARGET(0);
3679 
3680 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3681 			if (first_trb && xep->use_extended_tbc)
3682 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3683 			else
3684 				length_field |= TRB_TD_SIZE(remainder);
3685 			first_trb = false;
3686 
3687 			queue_trb(xhci, ep_ring, more_trbs_coming,
3688 				lower_32_bits(addr),
3689 				upper_32_bits(addr),
3690 				length_field,
3691 				field);
3692 			running_total += trb_buff_len;
3693 
3694 			addr += trb_buff_len;
3695 			td_remain_len -= trb_buff_len;
3696 		}
3697 
3698 		/* Check TD length */
3699 		if (running_total != td_len) {
3700 			xhci_err(xhci, "ISOC TD length unmatch\n");
3701 			ret = -EINVAL;
3702 			goto cleanup;
3703 		}
3704 	}
3705 
3706 	/* store the next frame id */
3707 	if (HCC_CFC(xhci->hcc_params))
3708 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3709 
3710 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3711 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3712 			usb_amd_quirk_pll_disable();
3713 	}
3714 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3715 
3716 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3717 			start_cycle, start_trb);
3718 	return 0;
3719 cleanup:
3720 	/* Clean up a partially enqueued isoc transfer. */
3721 
3722 	for (i--; i >= 0; i--)
3723 		list_del_init(&urb_priv->td[i].td_list);
3724 
3725 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3726 	 * into No-ops with a software-owned cycle bit. That way the hardware
3727 	 * won't accidentally start executing bogus TDs when we partially
3728 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3729 	 */
3730 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3731 	/* Every TRB except the first & last will have its cycle bit flipped. */
3732 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3733 
3734 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3735 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3736 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3737 	ep_ring->cycle_state = start_cycle;
3738 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3739 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3740 	return ret;
3741 }
3742 
3743 /*
3744  * Check transfer ring to guarantee there is enough room for the urb.
3745  * Update ISO URB start_frame and interval.
3746  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3747  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3748  * Contiguous Frame ID is not supported by HC.
3749  */
3750 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3751 		struct urb *urb, int slot_id, unsigned int ep_index)
3752 {
3753 	struct xhci_virt_device *xdev;
3754 	struct xhci_ring *ep_ring;
3755 	struct xhci_ep_ctx *ep_ctx;
3756 	int start_frame;
3757 	int num_tds, num_trbs, i;
3758 	int ret;
3759 	struct xhci_virt_ep *xep;
3760 	int ist;
3761 
3762 	xdev = xhci->devs[slot_id];
3763 	xep = &xhci->devs[slot_id]->eps[ep_index];
3764 	ep_ring = xdev->eps[ep_index].ring;
3765 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3766 
3767 	num_trbs = 0;
3768 	num_tds = urb->number_of_packets;
3769 	for (i = 0; i < num_tds; i++)
3770 		num_trbs += count_isoc_trbs_needed(urb, i);
3771 
3772 	/* Check the ring to guarantee there is enough room for the whole urb.
3773 	 * Do not insert any td of the urb to the ring if the check failed.
3774 	 */
3775 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3776 			   num_trbs, mem_flags);
3777 	if (ret)
3778 		return ret;
3779 
3780 	/*
3781 	 * Check interval value. This should be done before we start to
3782 	 * calculate the start frame value.
3783 	 */
3784 	check_interval(xhci, urb, ep_ctx);
3785 
3786 	/* Calculate the start frame and put it in urb->start_frame. */
3787 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3788 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3789 			urb->start_frame = xep->next_frame_id;
3790 			goto skip_start_over;
3791 		}
3792 	}
3793 
3794 	start_frame = readl(&xhci->run_regs->microframe_index);
3795 	start_frame &= 0x3fff;
3796 	/*
3797 	 * Round up to the next frame and consider the time before trb really
3798 	 * gets scheduled by hardare.
3799 	 */
3800 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3801 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3802 		ist <<= 3;
3803 	start_frame += ist + XHCI_CFC_DELAY;
3804 	start_frame = roundup(start_frame, 8);
3805 
3806 	/*
3807 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3808 	 * is greate than 8 microframes.
3809 	 */
3810 	if (urb->dev->speed == USB_SPEED_LOW ||
3811 			urb->dev->speed == USB_SPEED_FULL) {
3812 		start_frame = roundup(start_frame, urb->interval << 3);
3813 		urb->start_frame = start_frame >> 3;
3814 	} else {
3815 		start_frame = roundup(start_frame, urb->interval);
3816 		urb->start_frame = start_frame;
3817 	}
3818 
3819 skip_start_over:
3820 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3821 
3822 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3823 }
3824 
3825 /****		Command Ring Operations		****/
3826 
3827 /* Generic function for queueing a command TRB on the command ring.
3828  * Check to make sure there's room on the command ring for one command TRB.
3829  * Also check that there's room reserved for commands that must not fail.
3830  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3831  * then only check for the number of reserved spots.
3832  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3833  * because the command event handler may want to resubmit a failed command.
3834  */
3835 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3836 			 u32 field1, u32 field2,
3837 			 u32 field3, u32 field4, bool command_must_succeed)
3838 {
3839 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3840 	int ret;
3841 
3842 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3843 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3844 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3845 		return -ESHUTDOWN;
3846 	}
3847 
3848 	if (!command_must_succeed)
3849 		reserved_trbs++;
3850 
3851 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3852 			reserved_trbs, GFP_ATOMIC);
3853 	if (ret < 0) {
3854 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3855 		if (command_must_succeed)
3856 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3857 					"unfailable commands failed.\n");
3858 		return ret;
3859 	}
3860 
3861 	cmd->command_trb = xhci->cmd_ring->enqueue;
3862 
3863 	/* if there are no other commands queued we start the timeout timer */
3864 	if (list_empty(&xhci->cmd_list)) {
3865 		xhci->current_cmd = cmd;
3866 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3867 	}
3868 
3869 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3870 
3871 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3872 			field4 | xhci->cmd_ring->cycle_state);
3873 	return 0;
3874 }
3875 
3876 /* Queue a slot enable or disable request on the command ring */
3877 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3878 		u32 trb_type, u32 slot_id)
3879 {
3880 	return queue_command(xhci, cmd, 0, 0, 0,
3881 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3882 }
3883 
3884 /* Queue an address device command TRB */
3885 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3886 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3887 {
3888 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3889 			upper_32_bits(in_ctx_ptr), 0,
3890 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3891 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3892 }
3893 
3894 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3895 		u32 field1, u32 field2, u32 field3, u32 field4)
3896 {
3897 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3898 }
3899 
3900 /* Queue a reset device command TRB */
3901 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3902 		u32 slot_id)
3903 {
3904 	return queue_command(xhci, cmd, 0, 0, 0,
3905 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3906 			false);
3907 }
3908 
3909 /* Queue a configure endpoint command TRB */
3910 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3911 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3912 		u32 slot_id, bool command_must_succeed)
3913 {
3914 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3915 			upper_32_bits(in_ctx_ptr), 0,
3916 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3917 			command_must_succeed);
3918 }
3919 
3920 /* Queue an evaluate context command TRB */
3921 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3922 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3923 {
3924 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3925 			upper_32_bits(in_ctx_ptr), 0,
3926 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3927 			command_must_succeed);
3928 }
3929 
3930 /*
3931  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3932  * activity on an endpoint that is about to be suspended.
3933  */
3934 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3935 			     int slot_id, unsigned int ep_index, int suspend)
3936 {
3937 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3938 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3939 	u32 type = TRB_TYPE(TRB_STOP_RING);
3940 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3941 
3942 	return queue_command(xhci, cmd, 0, 0, 0,
3943 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3944 }
3945 
3946 /* Set Transfer Ring Dequeue Pointer command */
3947 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3948 		unsigned int slot_id, unsigned int ep_index,
3949 		struct xhci_dequeue_state *deq_state)
3950 {
3951 	dma_addr_t addr;
3952 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3953 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3954 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
3955 	u32 trb_sct = 0;
3956 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3957 	struct xhci_virt_ep *ep;
3958 	struct xhci_command *cmd;
3959 	int ret;
3960 
3961 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3962 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3963 		deq_state->new_deq_seg,
3964 		(unsigned long long)deq_state->new_deq_seg->dma,
3965 		deq_state->new_deq_ptr,
3966 		(unsigned long long)xhci_trb_virt_to_dma(
3967 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3968 		deq_state->new_cycle_state);
3969 
3970 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3971 				    deq_state->new_deq_ptr);
3972 	if (addr == 0) {
3973 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3974 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3975 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3976 		return;
3977 	}
3978 	ep = &xhci->devs[slot_id]->eps[ep_index];
3979 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3980 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3981 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3982 		return;
3983 	}
3984 
3985 	/* This function gets called from contexts where it cannot sleep */
3986 	cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
3987 	if (!cmd)
3988 		return;
3989 
3990 	ep->queued_deq_seg = deq_state->new_deq_seg;
3991 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3992 	if (deq_state->stream_id)
3993 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3994 	ret = queue_command(xhci, cmd,
3995 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3996 		upper_32_bits(addr), trb_stream_id,
3997 		trb_slot_id | trb_ep_index | type, false);
3998 	if (ret < 0) {
3999 		xhci_free_command(xhci, cmd);
4000 		return;
4001 	}
4002 
4003 	/* Stop the TD queueing code from ringing the doorbell until
4004 	 * this command completes.  The HC won't set the dequeue pointer
4005 	 * if the ring is running, and ringing the doorbell starts the
4006 	 * ring running.
4007 	 */
4008 	ep->ep_state |= SET_DEQ_PENDING;
4009 }
4010 
4011 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4012 			int slot_id, unsigned int ep_index,
4013 			enum xhci_ep_reset_type reset_type)
4014 {
4015 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4016 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4017 	u32 type = TRB_TYPE(TRB_RESET_EP);
4018 
4019 	if (reset_type == EP_SOFT_RESET)
4020 		type |= TRB_TSP;
4021 
4022 	return queue_command(xhci, cmd, 0, 0, 0,
4023 			trb_slot_id | trb_ep_index | type, false);
4024 }
4025