1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 284 /* Flush PCI posted writes */ 285 readl(&xhci->dba->doorbell[0]); 286 } 287 288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 289 { 290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 291 } 292 293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 294 { 295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 296 cmd_list); 297 } 298 299 /* 300 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 301 * If there are other commands waiting then restart the ring and kick the timer. 302 * This must be called with command ring stopped and xhci->lock held. 303 */ 304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 305 struct xhci_command *cur_cmd) 306 { 307 struct xhci_command *i_cmd; 308 309 /* Turn all aborted commands in list to no-ops, then restart */ 310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 311 312 if (i_cmd->status != COMP_COMMAND_ABORTED) 313 continue; 314 315 i_cmd->status = COMP_COMMAND_RING_STOPPED; 316 317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 318 i_cmd->command_trb); 319 320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 321 322 /* 323 * caller waiting for completion is called when command 324 * completion event is received for these no-op commands 325 */ 326 } 327 328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 329 330 /* ring command ring doorbell to restart the command ring */ 331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 332 !(xhci->xhc_state & XHCI_STATE_DYING)) { 333 xhci->current_cmd = cur_cmd; 334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 335 xhci_ring_cmd_db(xhci); 336 } 337 } 338 339 /* Must be called with xhci->lock held, releases and aquires lock back */ 340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 341 { 342 u64 temp_64; 343 int ret; 344 345 xhci_dbg(xhci, "Abort command ring\n"); 346 347 reinit_completion(&xhci->cmd_ring_stop_completion); 348 349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 351 &xhci->op_regs->cmd_ring); 352 353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 354 * completion of the Command Abort operation. If CRR is not negated in 5 355 * seconds then driver handles it as if host died (-ENODEV). 356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 357 * and try to recover a -ETIMEDOUT with a host controller reset. 358 */ 359 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 361 if (ret < 0) { 362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 363 xhci_halt(xhci); 364 xhci_hc_died(xhci); 365 return ret; 366 } 367 /* 368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 370 * but the completion event in never sent. Wait 2 secs (arbitrary 371 * number) to handle those cases after negation of CMD_RING_RUNNING. 372 */ 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 375 msecs_to_jiffies(2000)); 376 spin_lock_irqsave(&xhci->lock, flags); 377 if (!ret) { 378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 379 xhci_cleanup_command_queue(xhci); 380 } else { 381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 382 } 383 return 0; 384 } 385 386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 387 unsigned int slot_id, 388 unsigned int ep_index, 389 unsigned int stream_id) 390 { 391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 393 unsigned int ep_state = ep->ep_state; 394 395 /* Don't ring the doorbell for this endpoint if there are pending 396 * cancellations because we don't want to interrupt processing. 397 * We don't want to restart any stream rings if there's a set dequeue 398 * pointer command pending because the device can choose to start any 399 * stream once the endpoint is on the HW schedule. 400 */ 401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 402 (ep_state & EP_HALTED)) 403 return; 404 writel(DB_VALUE(ep_index, stream_id), db_addr); 405 /* The CPU has better things to do at this point than wait for a 406 * write-posting flush. It'll get there soon enough. 407 */ 408 } 409 410 /* Ring the doorbell for any rings with pending URBs */ 411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index) 414 { 415 unsigned int stream_id; 416 struct xhci_virt_ep *ep; 417 418 ep = &xhci->devs[slot_id]->eps[ep_index]; 419 420 /* A ring has pending URBs if its TD list is not empty */ 421 if (!(ep->ep_state & EP_HAS_STREAMS)) { 422 if (ep->ring && !(list_empty(&ep->ring->td_list))) 423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 424 return; 425 } 426 427 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 428 stream_id++) { 429 struct xhci_stream_info *stream_info = ep->stream_info; 430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 432 stream_id); 433 } 434 } 435 436 /* Get the right ring for the given slot_id, ep_index and stream_id. 437 * If the endpoint supports streams, boundary check the URB's stream ID. 438 * If the endpoint doesn't support streams, return the singular endpoint ring. 439 */ 440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 441 unsigned int slot_id, unsigned int ep_index, 442 unsigned int stream_id) 443 { 444 struct xhci_virt_ep *ep; 445 446 ep = &xhci->devs[slot_id]->eps[ep_index]; 447 /* Common case: no streams */ 448 if (!(ep->ep_state & EP_HAS_STREAMS)) 449 return ep->ring; 450 451 if (stream_id == 0) { 452 xhci_warn(xhci, 453 "WARN: Slot ID %u, ep index %u has streams, " 454 "but URB has no stream ID.\n", 455 slot_id, ep_index); 456 return NULL; 457 } 458 459 if (stream_id < ep->stream_info->num_streams) 460 return ep->stream_info->stream_rings[stream_id]; 461 462 xhci_warn(xhci, 463 "WARN: Slot ID %u, ep index %u has " 464 "stream IDs 1 to %u allocated, " 465 "but stream ID %u is requested.\n", 466 slot_id, ep_index, 467 ep->stream_info->num_streams - 1, 468 stream_id); 469 return NULL; 470 } 471 472 473 /* 474 * Get the hw dequeue pointer xHC stopped on, either directly from the 475 * endpoint context, or if streams are in use from the stream context. 476 * The returned hw_dequeue contains the lowest four bits with cycle state 477 * and possbile stream context type. 478 */ 479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 480 unsigned int ep_index, unsigned int stream_id) 481 { 482 struct xhci_ep_ctx *ep_ctx; 483 struct xhci_stream_ctx *st_ctx; 484 struct xhci_virt_ep *ep; 485 486 ep = &vdev->eps[ep_index]; 487 488 if (ep->ep_state & EP_HAS_STREAMS) { 489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 490 return le64_to_cpu(st_ctx->stream_ring); 491 } 492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 493 return le64_to_cpu(ep_ctx->deq); 494 } 495 496 /* 497 * Move the xHC's endpoint ring dequeue pointer past cur_td. 498 * Record the new state of the xHC's endpoint ring dequeue segment, 499 * dequeue pointer, stream id, and new consumer cycle state in state. 500 * Update our internal representation of the ring's dequeue pointer. 501 * 502 * We do this in three jumps: 503 * - First we update our new ring state to be the same as when the xHC stopped. 504 * - Then we traverse the ring to find the segment that contains 505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 506 * any link TRBs with the toggle cycle bit set. 507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 508 * if we've moved it past a link TRB with the toggle cycle bit set. 509 * 510 * Some of the uses of xhci_generic_trb are grotty, but if they're done 511 * with correct __le32 accesses they should work fine. Only users of this are 512 * in here. 513 */ 514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 515 unsigned int slot_id, unsigned int ep_index, 516 unsigned int stream_id, struct xhci_td *cur_td, 517 struct xhci_dequeue_state *state) 518 { 519 struct xhci_virt_device *dev = xhci->devs[slot_id]; 520 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 521 struct xhci_ring *ep_ring; 522 struct xhci_segment *new_seg; 523 union xhci_trb *new_deq; 524 dma_addr_t addr; 525 u64 hw_dequeue; 526 bool cycle_found = false; 527 bool td_last_trb_found = false; 528 529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 530 ep_index, stream_id); 531 if (!ep_ring) { 532 xhci_warn(xhci, "WARN can't find new dequeue state " 533 "for invalid stream ID %u.\n", 534 stream_id); 535 return; 536 } 537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 539 "Finding endpoint context"); 540 541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 542 new_seg = ep_ring->deq_seg; 543 new_deq = ep_ring->dequeue; 544 state->new_cycle_state = hw_dequeue & 0x1; 545 state->stream_id = stream_id; 546 547 /* 548 * We want to find the pointer, segment and cycle state of the new trb 549 * (the one after current TD's last_trb). We know the cycle state at 550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 551 * found. 552 */ 553 do { 554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 555 == (dma_addr_t)(hw_dequeue & ~0xf)) { 556 cycle_found = true; 557 if (td_last_trb_found) 558 break; 559 } 560 if (new_deq == cur_td->last_trb) 561 td_last_trb_found = true; 562 563 if (cycle_found && trb_is_link(new_deq) && 564 link_trb_toggles_cycle(new_deq)) 565 state->new_cycle_state ^= 0x1; 566 567 next_trb(xhci, ep_ring, &new_seg, &new_deq); 568 569 /* Search wrapped around, bail out */ 570 if (new_deq == ep->ring->dequeue) { 571 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 572 state->new_deq_seg = NULL; 573 state->new_deq_ptr = NULL; 574 return; 575 } 576 577 } while (!cycle_found || !td_last_trb_found); 578 579 state->new_deq_seg = new_seg; 580 state->new_deq_ptr = new_deq; 581 582 /* Don't update the ring cycle state for the producer (us). */ 583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 584 "Cycle state = 0x%x", state->new_cycle_state); 585 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue segment = %p (virtual)", 588 state->new_deq_seg); 589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 591 "New dequeue pointer = 0x%llx (DMA)", 592 (unsigned long long) addr); 593 } 594 595 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 596 * (The last TRB actually points to the ring enqueue pointer, which is not part 597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 598 */ 599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 600 struct xhci_td *td, bool flip_cycle) 601 { 602 struct xhci_segment *seg = td->start_seg; 603 union xhci_trb *trb = td->first_trb; 604 605 while (1) { 606 trb_to_noop(trb, TRB_TR_NOOP); 607 608 /* flip cycle if asked to */ 609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 611 612 if (trb == td->last_trb) 613 break; 614 615 next_trb(xhci, ep_ring, &seg, &trb); 616 } 617 } 618 619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 620 struct xhci_virt_ep *ep) 621 { 622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 623 /* Can't del_timer_sync in interrupt */ 624 del_timer(&ep->stop_cmd_timer); 625 } 626 627 /* 628 * Must be called with xhci->lock held in interrupt context, 629 * releases and re-acquires xhci->lock 630 */ 631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 632 struct xhci_td *cur_td, int status) 633 { 634 struct urb *urb = cur_td->urb; 635 struct urb_priv *urb_priv = urb->hcpriv; 636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 637 638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_quirk_pll_enable(); 643 } 644 } 645 xhci_urb_free_priv(urb_priv); 646 usb_hcd_unlink_urb_from_ep(hcd, urb); 647 spin_unlock(&xhci->lock); 648 trace_xhci_urb_giveback(urb); 649 usb_hcd_giveback_urb(hcd, urb, status); 650 spin_lock(&xhci->lock); 651 } 652 653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 654 struct xhci_ring *ring, struct xhci_td *td) 655 { 656 struct device *dev = xhci_to_hcd(xhci)->self.controller; 657 struct xhci_segment *seg = td->bounce_seg; 658 struct urb *urb = td->urb; 659 660 if (!ring || !seg || !urb) 661 return; 662 663 if (usb_urb_dir_out(urb)) { 664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 665 DMA_TO_DEVICE); 666 return; 667 } 668 669 /* for in tranfers we need to copy the data from bounce to sg */ 670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 671 seg->bounce_len, seg->bounce_offs); 672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 673 DMA_FROM_DEVICE); 674 seg->bounce_len = 0; 675 seg->bounce_offs = 0; 676 } 677 678 /* 679 * When we get a command completion for a Stop Endpoint Command, we need to 680 * unlink any cancelled TDs from the ring. There are two ways to do that: 681 * 682 * 1. If the HW was in the middle of processing the TD that needs to be 683 * cancelled, then we must move the ring's dequeue pointer past the last TRB 684 * in the TD with a Set Dequeue Pointer Command. 685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 686 * bit cleared) so that the HW will skip over them. 687 */ 688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 689 union xhci_trb *trb, struct xhci_event_cmd *event) 690 { 691 unsigned int ep_index; 692 struct xhci_ring *ep_ring; 693 struct xhci_virt_ep *ep; 694 struct xhci_td *cur_td = NULL; 695 struct xhci_td *last_unlinked_td; 696 struct xhci_ep_ctx *ep_ctx; 697 struct xhci_virt_device *vdev; 698 u64 hw_deq; 699 struct xhci_dequeue_state deq_state; 700 701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 702 if (!xhci->devs[slot_id]) 703 xhci_warn(xhci, "Stop endpoint command " 704 "completion for disabled slot %u\n", 705 slot_id); 706 return; 707 } 708 709 memset(&deq_state, 0, sizeof(deq_state)); 710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 711 712 vdev = xhci->devs[slot_id]; 713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 714 trace_xhci_handle_cmd_stop_ep(ep_ctx); 715 716 ep = &xhci->devs[slot_id]->eps[ep_index]; 717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 718 struct xhci_td, cancelled_td_list); 719 720 if (list_empty(&ep->cancelled_td_list)) { 721 xhci_stop_watchdog_timer_in_irq(xhci, ep); 722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 723 return; 724 } 725 726 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 727 * We have the xHCI lock, so nothing can modify this list until we drop 728 * it. We're also in the event handler, so we can't get re-interrupted 729 * if another Stop Endpoint command completes 730 */ 731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 733 "Removing canceled TD starting at 0x%llx (dma).", 734 (unsigned long long)xhci_trb_virt_to_dma( 735 cur_td->start_seg, cur_td->first_trb)); 736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 737 if (!ep_ring) { 738 /* This shouldn't happen unless a driver is mucking 739 * with the stream ID after submission. This will 740 * leave the TD on the hardware ring, and the hardware 741 * will try to execute it, and may access a buffer 742 * that has already been freed. In the best case, the 743 * hardware will execute it, and the event handler will 744 * ignore the completion event for that TD, since it was 745 * removed from the td_list for that endpoint. In 746 * short, don't muck with the stream ID after 747 * submission. 748 */ 749 xhci_warn(xhci, "WARN Cancelled URB %p " 750 "has invalid stream ID %u.\n", 751 cur_td->urb, 752 cur_td->urb->stream_id); 753 goto remove_finished_td; 754 } 755 /* 756 * If we stopped on the TD we need to cancel, then we have to 757 * move the xHC endpoint ring dequeue pointer past this TD. 758 */ 759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 760 cur_td->urb->stream_id); 761 hw_deq &= ~0xf; 762 763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 764 cur_td->last_trb, hw_deq, false)) { 765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 766 cur_td->urb->stream_id, 767 cur_td, &deq_state); 768 } else { 769 td_to_noop(xhci, ep_ring, cur_td, false); 770 } 771 772 remove_finished_td: 773 /* 774 * The event handler won't see a completion for this TD anymore, 775 * so remove it from the endpoint ring's TD list. Keep it in 776 * the cancelled TD list for URB completion later. 777 */ 778 list_del_init(&cur_td->td_list); 779 } 780 781 xhci_stop_watchdog_timer_in_irq(xhci, ep); 782 783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 786 &deq_state); 787 xhci_ring_cmd_db(xhci); 788 } else { 789 /* Otherwise ring the doorbell(s) to restart queued transfers */ 790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 791 } 792 793 /* 794 * Drop the lock and complete the URBs in the cancelled TD list. 795 * New TDs to be cancelled might be added to the end of the list before 796 * we can complete all the URBs for the TDs we already unlinked. 797 * So stop when we've completed the URB for the last TD we unlinked. 798 */ 799 do { 800 cur_td = list_first_entry(&ep->cancelled_td_list, 801 struct xhci_td, cancelled_td_list); 802 list_del_init(&cur_td->cancelled_td_list); 803 804 /* Clean up the cancelled URB */ 805 /* Doesn't matter what we pass for status, since the core will 806 * just overwrite it (because the URB has been unlinked). 807 */ 808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 810 inc_td_cnt(cur_td->urb); 811 if (last_td_in_urb(cur_td)) 812 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 813 814 /* Stop processing the cancelled list if the watchdog timer is 815 * running. 816 */ 817 if (xhci->xhc_state & XHCI_STATE_DYING) 818 return; 819 } while (cur_td != last_unlinked_td); 820 821 /* Return to the event handler with xhci->lock re-acquired */ 822 } 823 824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 825 { 826 struct xhci_td *cur_td; 827 struct xhci_td *tmp; 828 829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 830 list_del_init(&cur_td->td_list); 831 832 if (!list_empty(&cur_td->cancelled_td_list)) 833 list_del_init(&cur_td->cancelled_td_list); 834 835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 836 837 inc_td_cnt(cur_td->urb); 838 if (last_td_in_urb(cur_td)) 839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 840 } 841 } 842 843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 844 int slot_id, int ep_index) 845 { 846 struct xhci_td *cur_td; 847 struct xhci_td *tmp; 848 struct xhci_virt_ep *ep; 849 struct xhci_ring *ring; 850 851 ep = &xhci->devs[slot_id]->eps[ep_index]; 852 if ((ep->ep_state & EP_HAS_STREAMS) || 853 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 854 int stream_id; 855 856 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 857 stream_id++) { 858 ring = ep->stream_info->stream_rings[stream_id]; 859 if (!ring) 860 continue; 861 862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 863 "Killing URBs for slot ID %u, ep index %u, stream %u", 864 slot_id, ep_index, stream_id); 865 xhci_kill_ring_urbs(xhci, ring); 866 } 867 } else { 868 ring = ep->ring; 869 if (!ring) 870 return; 871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 872 "Killing URBs for slot ID %u, ep index %u", 873 slot_id, ep_index); 874 xhci_kill_ring_urbs(xhci, ring); 875 } 876 877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 878 cancelled_td_list) { 879 list_del_init(&cur_td->cancelled_td_list); 880 inc_td_cnt(cur_td->urb); 881 882 if (last_td_in_urb(cur_td)) 883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 884 } 885 } 886 887 /* 888 * host controller died, register read returns 0xffffffff 889 * Complete pending commands, mark them ABORTED. 890 * URBs need to be given back as usb core might be waiting with device locks 891 * held for the URBs to finish during device disconnect, blocking host remove. 892 * 893 * Call with xhci->lock held. 894 * lock is relased and re-acquired while giving back urb. 895 */ 896 void xhci_hc_died(struct xhci_hcd *xhci) 897 { 898 int i, j; 899 900 if (xhci->xhc_state & XHCI_STATE_DYING) 901 return; 902 903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 904 xhci->xhc_state |= XHCI_STATE_DYING; 905 906 xhci_cleanup_command_queue(xhci); 907 908 /* return any pending urbs, remove may be waiting for them */ 909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 910 if (!xhci->devs[i]) 911 continue; 912 for (j = 0; j < 31; j++) 913 xhci_kill_endpoint_urbs(xhci, i, j); 914 } 915 916 /* inform usb core hc died if PCI remove isn't already handling it */ 917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 918 usb_hc_died(xhci_to_hcd(xhci)); 919 } 920 921 /* Watchdog timer function for when a stop endpoint command fails to complete. 922 * In this case, we assume the host controller is broken or dying or dead. The 923 * host may still be completing some other events, so we have to be careful to 924 * let the event ring handler and the URB dequeueing/enqueueing functions know 925 * through xhci->state. 926 * 927 * The timer may also fire if the host takes a very long time to respond to the 928 * command, and the stop endpoint command completion handler cannot delete the 929 * timer before the timer function is called. Another endpoint cancellation may 930 * sneak in before the timer function can grab the lock, and that may queue 931 * another stop endpoint command and add the timer back. So we cannot use a 932 * simple flag to say whether there is a pending stop endpoint command for a 933 * particular endpoint. 934 * 935 * Instead we use a combination of that flag and checking if a new timer is 936 * pending. 937 */ 938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 939 { 940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 941 struct xhci_hcd *xhci = ep->xhci; 942 unsigned long flags; 943 944 spin_lock_irqsave(&xhci->lock, flags); 945 946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 948 timer_pending(&ep->stop_cmd_timer)) { 949 spin_unlock_irqrestore(&xhci->lock, flags); 950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 951 return; 952 } 953 954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 955 ep->ep_state &= ~EP_STOP_CMD_PENDING; 956 957 xhci_halt(xhci); 958 959 /* 960 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 962 * and try to recover a -ETIMEDOUT with a host controller reset 963 */ 964 xhci_hc_died(xhci); 965 966 spin_unlock_irqrestore(&xhci->lock, flags); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 968 "xHCI host controller is dead."); 969 } 970 971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 972 struct xhci_virt_device *dev, 973 struct xhci_ring *ep_ring, 974 unsigned int ep_index) 975 { 976 union xhci_trb *dequeue_temp; 977 int num_trbs_free_temp; 978 bool revert = false; 979 980 num_trbs_free_temp = ep_ring->num_trbs_free; 981 dequeue_temp = ep_ring->dequeue; 982 983 /* If we get two back-to-back stalls, and the first stalled transfer 984 * ends just before a link TRB, the dequeue pointer will be left on 985 * the link TRB by the code in the while loop. So we have to update 986 * the dequeue pointer one segment further, or we'll jump off 987 * the segment into la-la-land. 988 */ 989 if (trb_is_link(ep_ring->dequeue)) { 990 ep_ring->deq_seg = ep_ring->deq_seg->next; 991 ep_ring->dequeue = ep_ring->deq_seg->trbs; 992 } 993 994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 995 /* We have more usable TRBs */ 996 ep_ring->num_trbs_free++; 997 ep_ring->dequeue++; 998 if (trb_is_link(ep_ring->dequeue)) { 999 if (ep_ring->dequeue == 1000 dev->eps[ep_index].queued_deq_ptr) 1001 break; 1002 ep_ring->deq_seg = ep_ring->deq_seg->next; 1003 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1004 } 1005 if (ep_ring->dequeue == dequeue_temp) { 1006 revert = true; 1007 break; 1008 } 1009 } 1010 1011 if (revert) { 1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1013 ep_ring->num_trbs_free = num_trbs_free_temp; 1014 } 1015 } 1016 1017 /* 1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1019 * we need to clear the set deq pending flag in the endpoint ring state, so that 1020 * the TD queueing code can ring the doorbell again. We also need to ring the 1021 * endpoint doorbell to restart the ring, but only if there aren't more 1022 * cancellations pending. 1023 */ 1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1025 union xhci_trb *trb, u32 cmd_comp_code) 1026 { 1027 unsigned int ep_index; 1028 unsigned int stream_id; 1029 struct xhci_ring *ep_ring; 1030 struct xhci_virt_device *dev; 1031 struct xhci_virt_ep *ep; 1032 struct xhci_ep_ctx *ep_ctx; 1033 struct xhci_slot_ctx *slot_ctx; 1034 1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1037 dev = xhci->devs[slot_id]; 1038 ep = &dev->eps[ep_index]; 1039 1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1041 if (!ep_ring) { 1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1043 stream_id); 1044 /* XXX: Harmless??? */ 1045 goto cleanup; 1046 } 1047 1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1050 trace_xhci_handle_cmd_set_deq(slot_ctx); 1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1052 1053 if (cmd_comp_code != COMP_SUCCESS) { 1054 unsigned int ep_state; 1055 unsigned int slot_state; 1056 1057 switch (cmd_comp_code) { 1058 case COMP_TRB_ERROR: 1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1060 break; 1061 case COMP_CONTEXT_STATE_ERROR: 1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1063 ep_state = GET_EP_CTX_STATE(ep_ctx); 1064 slot_state = le32_to_cpu(slot_ctx->dev_state); 1065 slot_state = GET_SLOT_STATE(slot_state); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1067 "Slot state = %u, EP state = %u", 1068 slot_state, ep_state); 1069 break; 1070 case COMP_SLOT_NOT_ENABLED_ERROR: 1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1072 slot_id); 1073 break; 1074 default: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1076 cmd_comp_code); 1077 break; 1078 } 1079 /* OK what do we do now? The endpoint state is hosed, and we 1080 * should never get to this point if the synchronization between 1081 * queueing, and endpoint state are correct. This might happen 1082 * if the device gets disconnected after we've finished 1083 * cancelling URBs, which might not be an error... 1084 */ 1085 } else { 1086 u64 deq; 1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1088 if (ep->ep_state & EP_HAS_STREAMS) { 1089 struct xhci_stream_ctx *ctx = 1090 &ep->stream_info->stream_ctx_array[stream_id]; 1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1092 } else { 1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1094 } 1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1098 ep->queued_deq_ptr) == deq) { 1099 /* Update the ring's dequeue segment and dequeue pointer 1100 * to reflect the new position. 1101 */ 1102 update_ring_for_set_deq_completion(xhci, dev, 1103 ep_ring, ep_index); 1104 } else { 1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1107 ep->queued_deq_seg, ep->queued_deq_ptr); 1108 } 1109 } 1110 1111 cleanup: 1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1113 dev->eps[ep_index].queued_deq_seg = NULL; 1114 dev->eps[ep_index].queued_deq_ptr = NULL; 1115 /* Restart any rings with pending URBs */ 1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1117 } 1118 1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1120 union xhci_trb *trb, u32 cmd_comp_code) 1121 { 1122 struct xhci_virt_device *vdev; 1123 struct xhci_ep_ctx *ep_ctx; 1124 unsigned int ep_index; 1125 1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1127 vdev = xhci->devs[slot_id]; 1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1129 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1130 1131 /* This command will only fail if the endpoint wasn't halted, 1132 * but we don't care. 1133 */ 1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1135 "Ignoring reset ep completion code of %u", cmd_comp_code); 1136 1137 /* HW with the reset endpoint quirk needs to have a configure endpoint 1138 * command complete before the endpoint can be used. Queue that here 1139 * because the HW can't handle two commands being queued in a row. 1140 */ 1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1142 struct xhci_command *command; 1143 1144 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1145 if (!command) 1146 return; 1147 1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1149 "Queueing configure endpoint command"); 1150 xhci_queue_configure_endpoint(xhci, command, 1151 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1152 false); 1153 xhci_ring_cmd_db(xhci); 1154 } else { 1155 /* Clear our internal halted state */ 1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1157 } 1158 1159 /* if this was a soft reset, then restart */ 1160 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1161 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1162 } 1163 1164 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1165 struct xhci_command *command, u32 cmd_comp_code) 1166 { 1167 if (cmd_comp_code == COMP_SUCCESS) 1168 command->slot_id = slot_id; 1169 else 1170 command->slot_id = 0; 1171 } 1172 1173 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1174 { 1175 struct xhci_virt_device *virt_dev; 1176 struct xhci_slot_ctx *slot_ctx; 1177 1178 virt_dev = xhci->devs[slot_id]; 1179 if (!virt_dev) 1180 return; 1181 1182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1183 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1184 1185 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1186 /* Delete default control endpoint resources */ 1187 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1188 xhci_free_virt_device(xhci, slot_id); 1189 } 1190 1191 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1192 struct xhci_event_cmd *event, u32 cmd_comp_code) 1193 { 1194 struct xhci_virt_device *virt_dev; 1195 struct xhci_input_control_ctx *ctrl_ctx; 1196 struct xhci_ep_ctx *ep_ctx; 1197 unsigned int ep_index; 1198 unsigned int ep_state; 1199 u32 add_flags, drop_flags; 1200 1201 /* 1202 * Configure endpoint commands can come from the USB core 1203 * configuration or alt setting changes, or because the HW 1204 * needed an extra configure endpoint command after a reset 1205 * endpoint command or streams were being configured. 1206 * If the command was for a halted endpoint, the xHCI driver 1207 * is not waiting on the configure endpoint command. 1208 */ 1209 virt_dev = xhci->devs[slot_id]; 1210 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1211 if (!ctrl_ctx) { 1212 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1213 return; 1214 } 1215 1216 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1217 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1218 /* Input ctx add_flags are the endpoint index plus one */ 1219 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1220 1221 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1222 trace_xhci_handle_cmd_config_ep(ep_ctx); 1223 1224 /* A usb_set_interface() call directly after clearing a halted 1225 * condition may race on this quirky hardware. Not worth 1226 * worrying about, since this is prototype hardware. Not sure 1227 * if this will work for streams, but streams support was 1228 * untested on this prototype. 1229 */ 1230 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1231 ep_index != (unsigned int) -1 && 1232 add_flags - SLOT_FLAG == drop_flags) { 1233 ep_state = virt_dev->eps[ep_index].ep_state; 1234 if (!(ep_state & EP_HALTED)) 1235 return; 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1237 "Completed config ep cmd - " 1238 "last ep index = %d, state = %d", 1239 ep_index, ep_state); 1240 /* Clear internal halted state and restart ring(s) */ 1241 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1242 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1243 return; 1244 } 1245 return; 1246 } 1247 1248 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1249 { 1250 struct xhci_virt_device *vdev; 1251 struct xhci_slot_ctx *slot_ctx; 1252 1253 vdev = xhci->devs[slot_id]; 1254 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1255 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1256 } 1257 1258 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1259 struct xhci_event_cmd *event) 1260 { 1261 struct xhci_virt_device *vdev; 1262 struct xhci_slot_ctx *slot_ctx; 1263 1264 vdev = xhci->devs[slot_id]; 1265 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1266 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1267 1268 xhci_dbg(xhci, "Completed reset device command.\n"); 1269 if (!xhci->devs[slot_id]) 1270 xhci_warn(xhci, "Reset device command completion " 1271 "for disabled slot %u\n", slot_id); 1272 } 1273 1274 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1275 struct xhci_event_cmd *event) 1276 { 1277 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1278 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1279 return; 1280 } 1281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1282 "NEC firmware version %2x.%02x", 1283 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1284 NEC_FW_MINOR(le32_to_cpu(event->status))); 1285 } 1286 1287 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1288 { 1289 list_del(&cmd->cmd_list); 1290 1291 if (cmd->completion) { 1292 cmd->status = status; 1293 complete(cmd->completion); 1294 } else { 1295 kfree(cmd); 1296 } 1297 } 1298 1299 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1300 { 1301 struct xhci_command *cur_cmd, *tmp_cmd; 1302 xhci->current_cmd = NULL; 1303 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1304 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1305 } 1306 1307 void xhci_handle_command_timeout(struct work_struct *work) 1308 { 1309 struct xhci_hcd *xhci; 1310 unsigned long flags; 1311 u64 hw_ring_state; 1312 1313 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1314 1315 spin_lock_irqsave(&xhci->lock, flags); 1316 1317 /* 1318 * If timeout work is pending, or current_cmd is NULL, it means we 1319 * raced with command completion. Command is handled so just return. 1320 */ 1321 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1322 spin_unlock_irqrestore(&xhci->lock, flags); 1323 return; 1324 } 1325 /* mark this command to be cancelled */ 1326 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1327 1328 /* Make sure command ring is running before aborting it */ 1329 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1330 if (hw_ring_state == ~(u64)0) { 1331 xhci_hc_died(xhci); 1332 goto time_out_completed; 1333 } 1334 1335 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1336 (hw_ring_state & CMD_RING_RUNNING)) { 1337 /* Prevent new doorbell, and start command abort */ 1338 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1339 xhci_dbg(xhci, "Command timeout\n"); 1340 xhci_abort_cmd_ring(xhci, flags); 1341 goto time_out_completed; 1342 } 1343 1344 /* host removed. Bail out */ 1345 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1346 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1347 xhci_cleanup_command_queue(xhci); 1348 1349 goto time_out_completed; 1350 } 1351 1352 /* command timeout on stopped ring, ring can't be aborted */ 1353 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1354 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1355 1356 time_out_completed: 1357 spin_unlock_irqrestore(&xhci->lock, flags); 1358 return; 1359 } 1360 1361 static void handle_cmd_completion(struct xhci_hcd *xhci, 1362 struct xhci_event_cmd *event) 1363 { 1364 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1365 u64 cmd_dma; 1366 dma_addr_t cmd_dequeue_dma; 1367 u32 cmd_comp_code; 1368 union xhci_trb *cmd_trb; 1369 struct xhci_command *cmd; 1370 u32 cmd_type; 1371 1372 cmd_dma = le64_to_cpu(event->cmd_trb); 1373 cmd_trb = xhci->cmd_ring->dequeue; 1374 1375 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1376 1377 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1378 cmd_trb); 1379 /* 1380 * Check whether the completion event is for our internal kept 1381 * command. 1382 */ 1383 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1384 xhci_warn(xhci, 1385 "ERROR mismatched command completion event\n"); 1386 return; 1387 } 1388 1389 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1390 1391 cancel_delayed_work(&xhci->cmd_timer); 1392 1393 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1394 1395 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1396 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1397 complete_all(&xhci->cmd_ring_stop_completion); 1398 return; 1399 } 1400 1401 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1402 xhci_err(xhci, 1403 "Command completion event does not match command\n"); 1404 return; 1405 } 1406 1407 /* 1408 * Host aborted the command ring, check if the current command was 1409 * supposed to be aborted, otherwise continue normally. 1410 * The command ring is stopped now, but the xHC will issue a Command 1411 * Ring Stopped event which will cause us to restart it. 1412 */ 1413 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1414 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1415 if (cmd->status == COMP_COMMAND_ABORTED) { 1416 if (xhci->current_cmd == cmd) 1417 xhci->current_cmd = NULL; 1418 goto event_handled; 1419 } 1420 } 1421 1422 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1423 switch (cmd_type) { 1424 case TRB_ENABLE_SLOT: 1425 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1426 break; 1427 case TRB_DISABLE_SLOT: 1428 xhci_handle_cmd_disable_slot(xhci, slot_id); 1429 break; 1430 case TRB_CONFIG_EP: 1431 if (!cmd->completion) 1432 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1433 cmd_comp_code); 1434 break; 1435 case TRB_EVAL_CONTEXT: 1436 break; 1437 case TRB_ADDR_DEV: 1438 xhci_handle_cmd_addr_dev(xhci, slot_id); 1439 break; 1440 case TRB_STOP_RING: 1441 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1442 le32_to_cpu(cmd_trb->generic.field[3]))); 1443 if (!cmd->completion) 1444 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1445 break; 1446 case TRB_SET_DEQ: 1447 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1448 le32_to_cpu(cmd_trb->generic.field[3]))); 1449 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1450 break; 1451 case TRB_CMD_NOOP: 1452 /* Is this an aborted command turned to NO-OP? */ 1453 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1454 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1455 break; 1456 case TRB_RESET_EP: 1457 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1458 le32_to_cpu(cmd_trb->generic.field[3]))); 1459 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1460 break; 1461 case TRB_RESET_DEV: 1462 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1463 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1464 */ 1465 slot_id = TRB_TO_SLOT_ID( 1466 le32_to_cpu(cmd_trb->generic.field[3])); 1467 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1468 break; 1469 case TRB_NEC_GET_FW: 1470 xhci_handle_cmd_nec_get_fw(xhci, event); 1471 break; 1472 default: 1473 /* Skip over unknown commands on the event ring */ 1474 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1475 break; 1476 } 1477 1478 /* restart timer if this wasn't the last command */ 1479 if (!list_is_singular(&xhci->cmd_list)) { 1480 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1481 struct xhci_command, cmd_list); 1482 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1483 } else if (xhci->current_cmd == cmd) { 1484 xhci->current_cmd = NULL; 1485 } 1486 1487 event_handled: 1488 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1489 1490 inc_deq(xhci, xhci->cmd_ring); 1491 } 1492 1493 static void handle_vendor_event(struct xhci_hcd *xhci, 1494 union xhci_trb *event) 1495 { 1496 u32 trb_type; 1497 1498 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1499 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1500 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1501 handle_cmd_completion(xhci, &event->event_cmd); 1502 } 1503 1504 static void handle_device_notification(struct xhci_hcd *xhci, 1505 union xhci_trb *event) 1506 { 1507 u32 slot_id; 1508 struct usb_device *udev; 1509 1510 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1511 if (!xhci->devs[slot_id]) { 1512 xhci_warn(xhci, "Device Notification event for " 1513 "unused slot %u\n", slot_id); 1514 return; 1515 } 1516 1517 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1518 slot_id); 1519 udev = xhci->devs[slot_id]->udev; 1520 if (udev && udev->parent) 1521 usb_wakeup_notification(udev->parent, udev->portnum); 1522 } 1523 1524 static void handle_port_status(struct xhci_hcd *xhci, 1525 union xhci_trb *event) 1526 { 1527 struct usb_hcd *hcd; 1528 u32 port_id; 1529 u32 portsc, cmd_reg; 1530 int max_ports; 1531 int slot_id; 1532 unsigned int hcd_portnum; 1533 struct xhci_bus_state *bus_state; 1534 bool bogus_port_status = false; 1535 struct xhci_port *port; 1536 1537 /* Port status change events always have a successful completion code */ 1538 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1539 xhci_warn(xhci, 1540 "WARN: xHC returned failed port status event\n"); 1541 1542 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1543 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1544 1545 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1546 if ((port_id <= 0) || (port_id > max_ports)) { 1547 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1548 inc_deq(xhci, xhci->event_ring); 1549 return; 1550 } 1551 1552 port = &xhci->hw_ports[port_id - 1]; 1553 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1554 xhci_warn(xhci, "Event for invalid port %u\n", port_id); 1555 bogus_port_status = true; 1556 goto cleanup; 1557 } 1558 1559 hcd = port->rhub->hcd; 1560 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1561 hcd_portnum = port->hcd_portnum; 1562 portsc = readl(port->addr); 1563 1564 trace_xhci_handle_port_status(hcd_portnum, portsc); 1565 1566 if (hcd->state == HC_STATE_SUSPENDED) { 1567 xhci_dbg(xhci, "resume root hub\n"); 1568 usb_hcd_resume_root_hub(hcd); 1569 } 1570 1571 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1572 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1573 1574 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1575 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1576 1577 cmd_reg = readl(&xhci->op_regs->command); 1578 if (!(cmd_reg & CMD_RUN)) { 1579 xhci_warn(xhci, "xHC is not running.\n"); 1580 goto cleanup; 1581 } 1582 1583 if (DEV_SUPERSPEED_ANY(portsc)) { 1584 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1585 /* Set a flag to say the port signaled remote wakeup, 1586 * so we can tell the difference between the end of 1587 * device and host initiated resume. 1588 */ 1589 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1590 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1591 xhci_set_link_state(xhci, port, XDEV_U0); 1592 /* Need to wait until the next link state change 1593 * indicates the device is actually in U0. 1594 */ 1595 bogus_port_status = true; 1596 goto cleanup; 1597 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1598 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1599 bus_state->resume_done[hcd_portnum] = jiffies + 1600 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1601 set_bit(hcd_portnum, &bus_state->resuming_ports); 1602 /* Do the rest in GetPortStatus after resume time delay. 1603 * Avoid polling roothub status before that so that a 1604 * usb device auto-resume latency around ~40ms. 1605 */ 1606 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1607 mod_timer(&hcd->rh_timer, 1608 bus_state->resume_done[hcd_portnum]); 1609 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1610 bogus_port_status = true; 1611 } 1612 } 1613 1614 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 && 1615 DEV_SUPERSPEED_ANY(portsc)) { 1616 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1617 /* We've just brought the device into U0 through either the 1618 * Resume state after a device remote wakeup, or through the 1619 * U3Exit state after a host-initiated resume. If it's a device 1620 * initiated remote wake, don't pass up the link state change, 1621 * so the roothub behavior is consistent with external 1622 * USB 3.0 hub behavior. 1623 */ 1624 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1625 if (slot_id && xhci->devs[slot_id]) 1626 xhci_ring_device(xhci, slot_id); 1627 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1628 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1629 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1630 usb_wakeup_notification(hcd->self.root_hub, 1631 hcd_portnum + 1); 1632 bogus_port_status = true; 1633 goto cleanup; 1634 } 1635 } 1636 1637 /* 1638 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1639 * RExit to a disconnect state). If so, let the the driver know it's 1640 * out of the RExit state. 1641 */ 1642 if (!DEV_SUPERSPEED_ANY(portsc) && 1643 test_and_clear_bit(hcd_portnum, 1644 &bus_state->rexit_ports)) { 1645 complete(&bus_state->rexit_done[hcd_portnum]); 1646 bogus_port_status = true; 1647 goto cleanup; 1648 } 1649 1650 if (hcd->speed < HCD_USB3) 1651 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1652 1653 cleanup: 1654 /* Update event ring dequeue pointer before dropping the lock */ 1655 inc_deq(xhci, xhci->event_ring); 1656 1657 /* Don't make the USB core poll the roothub if we got a bad port status 1658 * change event. Besides, at that point we can't tell which roothub 1659 * (USB 2.0 or USB 3.0) to kick. 1660 */ 1661 if (bogus_port_status) 1662 return; 1663 1664 /* 1665 * xHCI port-status-change events occur when the "or" of all the 1666 * status-change bits in the portsc register changes from 0 to 1. 1667 * New status changes won't cause an event if any other change 1668 * bits are still set. When an event occurs, switch over to 1669 * polling to avoid losing status changes. 1670 */ 1671 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1672 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1673 spin_unlock(&xhci->lock); 1674 /* Pass this up to the core */ 1675 usb_hcd_poll_rh_status(hcd); 1676 spin_lock(&xhci->lock); 1677 } 1678 1679 /* 1680 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1681 * at end_trb, which may be in another segment. If the suspect DMA address is a 1682 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1683 * returns 0. 1684 */ 1685 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1686 struct xhci_segment *start_seg, 1687 union xhci_trb *start_trb, 1688 union xhci_trb *end_trb, 1689 dma_addr_t suspect_dma, 1690 bool debug) 1691 { 1692 dma_addr_t start_dma; 1693 dma_addr_t end_seg_dma; 1694 dma_addr_t end_trb_dma; 1695 struct xhci_segment *cur_seg; 1696 1697 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1698 cur_seg = start_seg; 1699 1700 do { 1701 if (start_dma == 0) 1702 return NULL; 1703 /* We may get an event for a Link TRB in the middle of a TD */ 1704 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1705 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1706 /* If the end TRB isn't in this segment, this is set to 0 */ 1707 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1708 1709 if (debug) 1710 xhci_warn(xhci, 1711 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1712 (unsigned long long)suspect_dma, 1713 (unsigned long long)start_dma, 1714 (unsigned long long)end_trb_dma, 1715 (unsigned long long)cur_seg->dma, 1716 (unsigned long long)end_seg_dma); 1717 1718 if (end_trb_dma > 0) { 1719 /* The end TRB is in this segment, so suspect should be here */ 1720 if (start_dma <= end_trb_dma) { 1721 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1722 return cur_seg; 1723 } else { 1724 /* Case for one segment with 1725 * a TD wrapped around to the top 1726 */ 1727 if ((suspect_dma >= start_dma && 1728 suspect_dma <= end_seg_dma) || 1729 (suspect_dma >= cur_seg->dma && 1730 suspect_dma <= end_trb_dma)) 1731 return cur_seg; 1732 } 1733 return NULL; 1734 } else { 1735 /* Might still be somewhere in this segment */ 1736 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1737 return cur_seg; 1738 } 1739 cur_seg = cur_seg->next; 1740 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1741 } while (cur_seg != start_seg); 1742 1743 return NULL; 1744 } 1745 1746 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1747 unsigned int slot_id, unsigned int ep_index, 1748 unsigned int stream_id, struct xhci_td *td, 1749 enum xhci_ep_reset_type reset_type) 1750 { 1751 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1752 struct xhci_command *command; 1753 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1754 if (!command) 1755 return; 1756 1757 ep->ep_state |= EP_HALTED; 1758 1759 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1760 1761 if (reset_type == EP_HARD_RESET) { 1762 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1763 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1764 } 1765 xhci_ring_cmd_db(xhci); 1766 } 1767 1768 /* Check if an error has halted the endpoint ring. The class driver will 1769 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1770 * However, a babble and other errors also halt the endpoint ring, and the class 1771 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1772 * Ring Dequeue Pointer command manually. 1773 */ 1774 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1775 struct xhci_ep_ctx *ep_ctx, 1776 unsigned int trb_comp_code) 1777 { 1778 /* TRB completion codes that may require a manual halt cleanup */ 1779 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1780 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1781 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1782 /* The 0.95 spec says a babbling control endpoint 1783 * is not halted. The 0.96 spec says it is. Some HW 1784 * claims to be 0.95 compliant, but it halts the control 1785 * endpoint anyway. Check if a babble halted the 1786 * endpoint. 1787 */ 1788 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1789 return 1; 1790 1791 return 0; 1792 } 1793 1794 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1795 { 1796 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1797 /* Vendor defined "informational" completion code, 1798 * treat as not-an-error. 1799 */ 1800 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1801 trb_comp_code); 1802 xhci_dbg(xhci, "Treating code as success.\n"); 1803 return 1; 1804 } 1805 return 0; 1806 } 1807 1808 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1809 struct xhci_ring *ep_ring, int *status) 1810 { 1811 struct urb *urb = NULL; 1812 1813 /* Clean up the endpoint's TD list */ 1814 urb = td->urb; 1815 1816 /* if a bounce buffer was used to align this td then unmap it */ 1817 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1818 1819 /* Do one last check of the actual transfer length. 1820 * If the host controller said we transferred more data than the buffer 1821 * length, urb->actual_length will be a very big number (since it's 1822 * unsigned). Play it safe and say we didn't transfer anything. 1823 */ 1824 if (urb->actual_length > urb->transfer_buffer_length) { 1825 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1826 urb->transfer_buffer_length, urb->actual_length); 1827 urb->actual_length = 0; 1828 *status = 0; 1829 } 1830 list_del_init(&td->td_list); 1831 /* Was this TD slated to be cancelled but completed anyway? */ 1832 if (!list_empty(&td->cancelled_td_list)) 1833 list_del_init(&td->cancelled_td_list); 1834 1835 inc_td_cnt(urb); 1836 /* Giveback the urb when all the tds are completed */ 1837 if (last_td_in_urb(td)) { 1838 if ((urb->actual_length != urb->transfer_buffer_length && 1839 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1840 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1841 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1842 urb, urb->actual_length, 1843 urb->transfer_buffer_length, *status); 1844 1845 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1846 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1847 *status = 0; 1848 xhci_giveback_urb_in_irq(xhci, td, *status); 1849 } 1850 1851 return 0; 1852 } 1853 1854 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1855 struct xhci_transfer_event *event, 1856 struct xhci_virt_ep *ep, int *status) 1857 { 1858 struct xhci_virt_device *xdev; 1859 struct xhci_ep_ctx *ep_ctx; 1860 struct xhci_ring *ep_ring; 1861 unsigned int slot_id; 1862 u32 trb_comp_code; 1863 int ep_index; 1864 1865 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1866 xdev = xhci->devs[slot_id]; 1867 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1868 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1869 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1870 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1871 1872 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1873 trb_comp_code == COMP_STOPPED || 1874 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1875 /* The Endpoint Stop Command completion will take care of any 1876 * stopped TDs. A stopped TD may be restarted, so don't update 1877 * the ring dequeue pointer or take this TD off any lists yet. 1878 */ 1879 return 0; 1880 } 1881 if (trb_comp_code == COMP_STALL_ERROR || 1882 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1883 trb_comp_code)) { 1884 /* Issue a reset endpoint command to clear the host side 1885 * halt, followed by a set dequeue command to move the 1886 * dequeue pointer past the TD. 1887 * The class driver clears the device side halt later. 1888 */ 1889 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1890 ep_ring->stream_id, td, EP_HARD_RESET); 1891 } else { 1892 /* Update ring dequeue pointer */ 1893 while (ep_ring->dequeue != td->last_trb) 1894 inc_deq(xhci, ep_ring); 1895 inc_deq(xhci, ep_ring); 1896 } 1897 1898 return xhci_td_cleanup(xhci, td, ep_ring, status); 1899 } 1900 1901 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1902 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1903 union xhci_trb *stop_trb) 1904 { 1905 u32 sum; 1906 union xhci_trb *trb = ring->dequeue; 1907 struct xhci_segment *seg = ring->deq_seg; 1908 1909 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1910 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1911 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1912 } 1913 return sum; 1914 } 1915 1916 /* 1917 * Process control tds, update urb status and actual_length. 1918 */ 1919 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1920 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1921 struct xhci_virt_ep *ep, int *status) 1922 { 1923 struct xhci_virt_device *xdev; 1924 unsigned int slot_id; 1925 int ep_index; 1926 struct xhci_ep_ctx *ep_ctx; 1927 u32 trb_comp_code; 1928 u32 remaining, requested; 1929 u32 trb_type; 1930 1931 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1932 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1933 xdev = xhci->devs[slot_id]; 1934 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1935 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1936 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1937 requested = td->urb->transfer_buffer_length; 1938 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1939 1940 switch (trb_comp_code) { 1941 case COMP_SUCCESS: 1942 if (trb_type != TRB_STATUS) { 1943 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 1944 (trb_type == TRB_DATA) ? "data" : "setup"); 1945 *status = -ESHUTDOWN; 1946 break; 1947 } 1948 *status = 0; 1949 break; 1950 case COMP_SHORT_PACKET: 1951 *status = 0; 1952 break; 1953 case COMP_STOPPED_SHORT_PACKET: 1954 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 1955 td->urb->actual_length = remaining; 1956 else 1957 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1958 goto finish_td; 1959 case COMP_STOPPED: 1960 switch (trb_type) { 1961 case TRB_SETUP: 1962 td->urb->actual_length = 0; 1963 goto finish_td; 1964 case TRB_DATA: 1965 case TRB_NORMAL: 1966 td->urb->actual_length = requested - remaining; 1967 goto finish_td; 1968 case TRB_STATUS: 1969 td->urb->actual_length = requested; 1970 goto finish_td; 1971 default: 1972 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 1973 trb_type); 1974 goto finish_td; 1975 } 1976 case COMP_STOPPED_LENGTH_INVALID: 1977 goto finish_td; 1978 default: 1979 if (!xhci_requires_manual_halt_cleanup(xhci, 1980 ep_ctx, trb_comp_code)) 1981 break; 1982 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 1983 trb_comp_code, ep_index); 1984 /* else fall through */ 1985 case COMP_STALL_ERROR: 1986 /* Did we transfer part of the data (middle) phase? */ 1987 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 1988 td->urb->actual_length = requested - remaining; 1989 else if (!td->urb_length_set) 1990 td->urb->actual_length = 0; 1991 goto finish_td; 1992 } 1993 1994 /* stopped at setup stage, no data transferred */ 1995 if (trb_type == TRB_SETUP) 1996 goto finish_td; 1997 1998 /* 1999 * if on data stage then update the actual_length of the URB and flag it 2000 * as set, so it won't be overwritten in the event for the last TRB. 2001 */ 2002 if (trb_type == TRB_DATA || 2003 trb_type == TRB_NORMAL) { 2004 td->urb_length_set = true; 2005 td->urb->actual_length = requested - remaining; 2006 xhci_dbg(xhci, "Waiting for status stage event\n"); 2007 return 0; 2008 } 2009 2010 /* at status stage */ 2011 if (!td->urb_length_set) 2012 td->urb->actual_length = requested; 2013 2014 finish_td: 2015 return finish_td(xhci, td, event, ep, status); 2016 } 2017 2018 /* 2019 * Process isochronous tds, update urb packet status and actual_length. 2020 */ 2021 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2022 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2023 struct xhci_virt_ep *ep, int *status) 2024 { 2025 struct xhci_ring *ep_ring; 2026 struct urb_priv *urb_priv; 2027 int idx; 2028 struct usb_iso_packet_descriptor *frame; 2029 u32 trb_comp_code; 2030 bool sum_trbs_for_length = false; 2031 u32 remaining, requested, ep_trb_len; 2032 int short_framestatus; 2033 2034 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2035 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2036 urb_priv = td->urb->hcpriv; 2037 idx = urb_priv->num_tds_done; 2038 frame = &td->urb->iso_frame_desc[idx]; 2039 requested = frame->length; 2040 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2041 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2042 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2043 -EREMOTEIO : 0; 2044 2045 /* handle completion code */ 2046 switch (trb_comp_code) { 2047 case COMP_SUCCESS: 2048 if (remaining) { 2049 frame->status = short_framestatus; 2050 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2051 sum_trbs_for_length = true; 2052 break; 2053 } 2054 frame->status = 0; 2055 break; 2056 case COMP_SHORT_PACKET: 2057 frame->status = short_framestatus; 2058 sum_trbs_for_length = true; 2059 break; 2060 case COMP_BANDWIDTH_OVERRUN_ERROR: 2061 frame->status = -ECOMM; 2062 break; 2063 case COMP_ISOCH_BUFFER_OVERRUN: 2064 case COMP_BABBLE_DETECTED_ERROR: 2065 frame->status = -EOVERFLOW; 2066 break; 2067 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2068 case COMP_STALL_ERROR: 2069 frame->status = -EPROTO; 2070 break; 2071 case COMP_USB_TRANSACTION_ERROR: 2072 frame->status = -EPROTO; 2073 if (ep_trb != td->last_trb) 2074 return 0; 2075 break; 2076 case COMP_STOPPED: 2077 sum_trbs_for_length = true; 2078 break; 2079 case COMP_STOPPED_SHORT_PACKET: 2080 /* field normally containing residue now contains tranferred */ 2081 frame->status = short_framestatus; 2082 requested = remaining; 2083 break; 2084 case COMP_STOPPED_LENGTH_INVALID: 2085 requested = 0; 2086 remaining = 0; 2087 break; 2088 default: 2089 sum_trbs_for_length = true; 2090 frame->status = -1; 2091 break; 2092 } 2093 2094 if (sum_trbs_for_length) 2095 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2096 ep_trb_len - remaining; 2097 else 2098 frame->actual_length = requested; 2099 2100 td->urb->actual_length += frame->actual_length; 2101 2102 return finish_td(xhci, td, event, ep, status); 2103 } 2104 2105 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2106 struct xhci_transfer_event *event, 2107 struct xhci_virt_ep *ep, int *status) 2108 { 2109 struct xhci_ring *ep_ring; 2110 struct urb_priv *urb_priv; 2111 struct usb_iso_packet_descriptor *frame; 2112 int idx; 2113 2114 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2115 urb_priv = td->urb->hcpriv; 2116 idx = urb_priv->num_tds_done; 2117 frame = &td->urb->iso_frame_desc[idx]; 2118 2119 /* The transfer is partly done. */ 2120 frame->status = -EXDEV; 2121 2122 /* calc actual length */ 2123 frame->actual_length = 0; 2124 2125 /* Update ring dequeue pointer */ 2126 while (ep_ring->dequeue != td->last_trb) 2127 inc_deq(xhci, ep_ring); 2128 inc_deq(xhci, ep_ring); 2129 2130 return xhci_td_cleanup(xhci, td, ep_ring, status); 2131 } 2132 2133 /* 2134 * Process bulk and interrupt tds, update urb status and actual_length. 2135 */ 2136 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2137 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2138 struct xhci_virt_ep *ep, int *status) 2139 { 2140 struct xhci_slot_ctx *slot_ctx; 2141 struct xhci_ring *ep_ring; 2142 u32 trb_comp_code; 2143 u32 remaining, requested, ep_trb_len; 2144 unsigned int slot_id; 2145 int ep_index; 2146 2147 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2148 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2149 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2150 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2151 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2152 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2153 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2154 requested = td->urb->transfer_buffer_length; 2155 2156 switch (trb_comp_code) { 2157 case COMP_SUCCESS: 2158 ep_ring->err_count = 0; 2159 /* handle success with untransferred data as short packet */ 2160 if (ep_trb != td->last_trb || remaining) { 2161 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2162 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2163 td->urb->ep->desc.bEndpointAddress, 2164 requested, remaining); 2165 } 2166 *status = 0; 2167 break; 2168 case COMP_SHORT_PACKET: 2169 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2170 td->urb->ep->desc.bEndpointAddress, 2171 requested, remaining); 2172 *status = 0; 2173 break; 2174 case COMP_STOPPED_SHORT_PACKET: 2175 td->urb->actual_length = remaining; 2176 goto finish_td; 2177 case COMP_STOPPED_LENGTH_INVALID: 2178 /* stopped on ep trb with invalid length, exclude it */ 2179 ep_trb_len = 0; 2180 remaining = 0; 2181 break; 2182 case COMP_USB_TRANSACTION_ERROR: 2183 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2184 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2185 break; 2186 *status = 0; 2187 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2188 ep_ring->stream_id, td, EP_SOFT_RESET); 2189 return 0; 2190 default: 2191 /* do nothing */ 2192 break; 2193 } 2194 2195 if (ep_trb == td->last_trb) 2196 td->urb->actual_length = requested - remaining; 2197 else 2198 td->urb->actual_length = 2199 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2200 ep_trb_len - remaining; 2201 finish_td: 2202 if (remaining > requested) { 2203 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2204 remaining); 2205 td->urb->actual_length = 0; 2206 } 2207 return finish_td(xhci, td, event, ep, status); 2208 } 2209 2210 /* 2211 * If this function returns an error condition, it means it got a Transfer 2212 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2213 * At this point, the host controller is probably hosed and should be reset. 2214 */ 2215 static int handle_tx_event(struct xhci_hcd *xhci, 2216 struct xhci_transfer_event *event) 2217 { 2218 struct xhci_virt_device *xdev; 2219 struct xhci_virt_ep *ep; 2220 struct xhci_ring *ep_ring; 2221 unsigned int slot_id; 2222 int ep_index; 2223 struct xhci_td *td = NULL; 2224 dma_addr_t ep_trb_dma; 2225 struct xhci_segment *ep_seg; 2226 union xhci_trb *ep_trb; 2227 int status = -EINPROGRESS; 2228 struct xhci_ep_ctx *ep_ctx; 2229 struct list_head *tmp; 2230 u32 trb_comp_code; 2231 int td_num = 0; 2232 bool handling_skipped_tds = false; 2233 2234 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2235 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2236 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2237 ep_trb_dma = le64_to_cpu(event->buffer); 2238 2239 xdev = xhci->devs[slot_id]; 2240 if (!xdev) { 2241 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2242 slot_id); 2243 goto err_out; 2244 } 2245 2246 ep = &xdev->eps[ep_index]; 2247 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2248 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2249 2250 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2251 xhci_err(xhci, 2252 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2253 slot_id, ep_index); 2254 goto err_out; 2255 } 2256 2257 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2258 if (!ep_ring) { 2259 switch (trb_comp_code) { 2260 case COMP_STALL_ERROR: 2261 case COMP_USB_TRANSACTION_ERROR: 2262 case COMP_INVALID_STREAM_TYPE_ERROR: 2263 case COMP_INVALID_STREAM_ID_ERROR: 2264 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2265 NULL, EP_SOFT_RESET); 2266 goto cleanup; 2267 case COMP_RING_UNDERRUN: 2268 case COMP_RING_OVERRUN: 2269 goto cleanup; 2270 default: 2271 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2272 slot_id, ep_index); 2273 goto err_out; 2274 } 2275 } 2276 2277 /* Count current td numbers if ep->skip is set */ 2278 if (ep->skip) { 2279 list_for_each(tmp, &ep_ring->td_list) 2280 td_num++; 2281 } 2282 2283 /* Look for common error cases */ 2284 switch (trb_comp_code) { 2285 /* Skip codes that require special handling depending on 2286 * transfer type 2287 */ 2288 case COMP_SUCCESS: 2289 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2290 break; 2291 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2292 trb_comp_code = COMP_SHORT_PACKET; 2293 else 2294 xhci_warn_ratelimited(xhci, 2295 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2296 slot_id, ep_index); 2297 case COMP_SHORT_PACKET: 2298 break; 2299 /* Completion codes for endpoint stopped state */ 2300 case COMP_STOPPED: 2301 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2302 slot_id, ep_index); 2303 break; 2304 case COMP_STOPPED_LENGTH_INVALID: 2305 xhci_dbg(xhci, 2306 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2307 slot_id, ep_index); 2308 break; 2309 case COMP_STOPPED_SHORT_PACKET: 2310 xhci_dbg(xhci, 2311 "Stopped with short packet transfer detected for slot %u ep %u\n", 2312 slot_id, ep_index); 2313 break; 2314 /* Completion codes for endpoint halted state */ 2315 case COMP_STALL_ERROR: 2316 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2317 ep_index); 2318 ep->ep_state |= EP_HALTED; 2319 status = -EPIPE; 2320 break; 2321 case COMP_SPLIT_TRANSACTION_ERROR: 2322 case COMP_USB_TRANSACTION_ERROR: 2323 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2324 slot_id, ep_index); 2325 status = -EPROTO; 2326 break; 2327 case COMP_BABBLE_DETECTED_ERROR: 2328 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2329 slot_id, ep_index); 2330 status = -EOVERFLOW; 2331 break; 2332 /* Completion codes for endpoint error state */ 2333 case COMP_TRB_ERROR: 2334 xhci_warn(xhci, 2335 "WARN: TRB error for slot %u ep %u on endpoint\n", 2336 slot_id, ep_index); 2337 status = -EILSEQ; 2338 break; 2339 /* completion codes not indicating endpoint state change */ 2340 case COMP_DATA_BUFFER_ERROR: 2341 xhci_warn(xhci, 2342 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2343 slot_id, ep_index); 2344 status = -ENOSR; 2345 break; 2346 case COMP_BANDWIDTH_OVERRUN_ERROR: 2347 xhci_warn(xhci, 2348 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2349 slot_id, ep_index); 2350 break; 2351 case COMP_ISOCH_BUFFER_OVERRUN: 2352 xhci_warn(xhci, 2353 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2354 slot_id, ep_index); 2355 break; 2356 case COMP_RING_UNDERRUN: 2357 /* 2358 * When the Isoch ring is empty, the xHC will generate 2359 * a Ring Overrun Event for IN Isoch endpoint or Ring 2360 * Underrun Event for OUT Isoch endpoint. 2361 */ 2362 xhci_dbg(xhci, "underrun event on endpoint\n"); 2363 if (!list_empty(&ep_ring->td_list)) 2364 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2365 "still with TDs queued?\n", 2366 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2367 ep_index); 2368 goto cleanup; 2369 case COMP_RING_OVERRUN: 2370 xhci_dbg(xhci, "overrun event on endpoint\n"); 2371 if (!list_empty(&ep_ring->td_list)) 2372 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2373 "still with TDs queued?\n", 2374 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2375 ep_index); 2376 goto cleanup; 2377 case COMP_MISSED_SERVICE_ERROR: 2378 /* 2379 * When encounter missed service error, one or more isoc tds 2380 * may be missed by xHC. 2381 * Set skip flag of the ep_ring; Complete the missed tds as 2382 * short transfer when process the ep_ring next time. 2383 */ 2384 ep->skip = true; 2385 xhci_dbg(xhci, 2386 "Miss service interval error for slot %u ep %u, set skip flag\n", 2387 slot_id, ep_index); 2388 goto cleanup; 2389 case COMP_NO_PING_RESPONSE_ERROR: 2390 ep->skip = true; 2391 xhci_dbg(xhci, 2392 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2393 slot_id, ep_index); 2394 goto cleanup; 2395 2396 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2397 /* needs disable slot command to recover */ 2398 xhci_warn(xhci, 2399 "WARN: detect an incompatible device for slot %u ep %u", 2400 slot_id, ep_index); 2401 status = -EPROTO; 2402 break; 2403 default: 2404 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2405 status = 0; 2406 break; 2407 } 2408 xhci_warn(xhci, 2409 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2410 trb_comp_code, slot_id, ep_index); 2411 goto cleanup; 2412 } 2413 2414 do { 2415 /* This TRB should be in the TD at the head of this ring's 2416 * TD list. 2417 */ 2418 if (list_empty(&ep_ring->td_list)) { 2419 /* 2420 * Don't print wanings if it's due to a stopped endpoint 2421 * generating an extra completion event if the device 2422 * was suspended. Or, a event for the last TRB of a 2423 * short TD we already got a short event for. 2424 * The short TD is already removed from the TD list. 2425 */ 2426 2427 if (!(trb_comp_code == COMP_STOPPED || 2428 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2429 ep_ring->last_td_was_short)) { 2430 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2431 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2432 ep_index); 2433 } 2434 if (ep->skip) { 2435 ep->skip = false; 2436 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2437 slot_id, ep_index); 2438 } 2439 goto cleanup; 2440 } 2441 2442 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2443 if (ep->skip && td_num == 0) { 2444 ep->skip = false; 2445 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2446 slot_id, ep_index); 2447 goto cleanup; 2448 } 2449 2450 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2451 td_list); 2452 if (ep->skip) 2453 td_num--; 2454 2455 /* Is this a TRB in the currently executing TD? */ 2456 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2457 td->last_trb, ep_trb_dma, false); 2458 2459 /* 2460 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2461 * is not in the current TD pointed by ep_ring->dequeue because 2462 * that the hardware dequeue pointer still at the previous TRB 2463 * of the current TD. The previous TRB maybe a Link TD or the 2464 * last TRB of the previous TD. The command completion handle 2465 * will take care the rest. 2466 */ 2467 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2468 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2469 goto cleanup; 2470 } 2471 2472 if (!ep_seg) { 2473 if (!ep->skip || 2474 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2475 /* Some host controllers give a spurious 2476 * successful event after a short transfer. 2477 * Ignore it. 2478 */ 2479 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2480 ep_ring->last_td_was_short) { 2481 ep_ring->last_td_was_short = false; 2482 goto cleanup; 2483 } 2484 /* HC is busted, give up! */ 2485 xhci_err(xhci, 2486 "ERROR Transfer event TRB DMA ptr not " 2487 "part of current TD ep_index %d " 2488 "comp_code %u\n", ep_index, 2489 trb_comp_code); 2490 trb_in_td(xhci, ep_ring->deq_seg, 2491 ep_ring->dequeue, td->last_trb, 2492 ep_trb_dma, true); 2493 return -ESHUTDOWN; 2494 } 2495 2496 skip_isoc_td(xhci, td, event, ep, &status); 2497 goto cleanup; 2498 } 2499 if (trb_comp_code == COMP_SHORT_PACKET) 2500 ep_ring->last_td_was_short = true; 2501 else 2502 ep_ring->last_td_was_short = false; 2503 2504 if (ep->skip) { 2505 xhci_dbg(xhci, 2506 "Found td. Clear skip flag for slot %u ep %u.\n", 2507 slot_id, ep_index); 2508 ep->skip = false; 2509 } 2510 2511 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2512 sizeof(*ep_trb)]; 2513 2514 trace_xhci_handle_transfer(ep_ring, 2515 (struct xhci_generic_trb *) ep_trb); 2516 2517 /* 2518 * No-op TRB could trigger interrupts in a case where 2519 * a URB was killed and a STALL_ERROR happens right 2520 * after the endpoint ring stopped. Reset the halted 2521 * endpoint. Otherwise, the endpoint remains stalled 2522 * indefinitely. 2523 */ 2524 if (trb_is_noop(ep_trb)) { 2525 if (trb_comp_code == COMP_STALL_ERROR || 2526 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2527 trb_comp_code)) 2528 xhci_cleanup_halted_endpoint(xhci, slot_id, 2529 ep_index, 2530 ep_ring->stream_id, 2531 td, EP_HARD_RESET); 2532 goto cleanup; 2533 } 2534 2535 /* update the urb's actual_length and give back to the core */ 2536 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2537 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2538 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2539 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2540 else 2541 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2542 &status); 2543 cleanup: 2544 handling_skipped_tds = ep->skip && 2545 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2546 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2547 2548 /* 2549 * Do not update event ring dequeue pointer if we're in a loop 2550 * processing missed tds. 2551 */ 2552 if (!handling_skipped_tds) 2553 inc_deq(xhci, xhci->event_ring); 2554 2555 /* 2556 * If ep->skip is set, it means there are missed tds on the 2557 * endpoint ring need to take care of. 2558 * Process them as short transfer until reach the td pointed by 2559 * the event. 2560 */ 2561 } while (handling_skipped_tds); 2562 2563 return 0; 2564 2565 err_out: 2566 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2567 (unsigned long long) xhci_trb_virt_to_dma( 2568 xhci->event_ring->deq_seg, 2569 xhci->event_ring->dequeue), 2570 lower_32_bits(le64_to_cpu(event->buffer)), 2571 upper_32_bits(le64_to_cpu(event->buffer)), 2572 le32_to_cpu(event->transfer_len), 2573 le32_to_cpu(event->flags)); 2574 return -ENODEV; 2575 } 2576 2577 /* 2578 * This function handles all OS-owned events on the event ring. It may drop 2579 * xhci->lock between event processing (e.g. to pass up port status changes). 2580 * Returns >0 for "possibly more events to process" (caller should call again), 2581 * otherwise 0 if done. In future, <0 returns should indicate error code. 2582 */ 2583 static int xhci_handle_event(struct xhci_hcd *xhci) 2584 { 2585 union xhci_trb *event; 2586 int update_ptrs = 1; 2587 int ret; 2588 2589 /* Event ring hasn't been allocated yet. */ 2590 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2591 xhci_err(xhci, "ERROR event ring not ready\n"); 2592 return -ENOMEM; 2593 } 2594 2595 event = xhci->event_ring->dequeue; 2596 /* Does the HC or OS own the TRB? */ 2597 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2598 xhci->event_ring->cycle_state) 2599 return 0; 2600 2601 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2602 2603 /* 2604 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2605 * speculative reads of the event's flags/data below. 2606 */ 2607 rmb(); 2608 /* FIXME: Handle more event types. */ 2609 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2610 case TRB_TYPE(TRB_COMPLETION): 2611 handle_cmd_completion(xhci, &event->event_cmd); 2612 break; 2613 case TRB_TYPE(TRB_PORT_STATUS): 2614 handle_port_status(xhci, event); 2615 update_ptrs = 0; 2616 break; 2617 case TRB_TYPE(TRB_TRANSFER): 2618 ret = handle_tx_event(xhci, &event->trans_event); 2619 if (ret >= 0) 2620 update_ptrs = 0; 2621 break; 2622 case TRB_TYPE(TRB_DEV_NOTE): 2623 handle_device_notification(xhci, event); 2624 break; 2625 default: 2626 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2627 TRB_TYPE(48)) 2628 handle_vendor_event(xhci, event); 2629 else 2630 xhci_warn(xhci, "ERROR unknown event type %d\n", 2631 TRB_FIELD_TO_TYPE( 2632 le32_to_cpu(event->event_cmd.flags))); 2633 } 2634 /* Any of the above functions may drop and re-acquire the lock, so check 2635 * to make sure a watchdog timer didn't mark the host as non-responsive. 2636 */ 2637 if (xhci->xhc_state & XHCI_STATE_DYING) { 2638 xhci_dbg(xhci, "xHCI host dying, returning from " 2639 "event handler.\n"); 2640 return 0; 2641 } 2642 2643 if (update_ptrs) 2644 /* Update SW event ring dequeue pointer */ 2645 inc_deq(xhci, xhci->event_ring); 2646 2647 /* Are there more items on the event ring? Caller will call us again to 2648 * check. 2649 */ 2650 return 1; 2651 } 2652 2653 /* 2654 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2655 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2656 * indicators of an event TRB error, but we check the status *first* to be safe. 2657 */ 2658 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2659 { 2660 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2661 union xhci_trb *event_ring_deq; 2662 irqreturn_t ret = IRQ_NONE; 2663 unsigned long flags; 2664 dma_addr_t deq; 2665 u64 temp_64; 2666 u32 status; 2667 2668 spin_lock_irqsave(&xhci->lock, flags); 2669 /* Check if the xHC generated the interrupt, or the irq is shared */ 2670 status = readl(&xhci->op_regs->status); 2671 if (status == ~(u32)0) { 2672 xhci_hc_died(xhci); 2673 ret = IRQ_HANDLED; 2674 goto out; 2675 } 2676 2677 if (!(status & STS_EINT)) 2678 goto out; 2679 2680 if (status & STS_FATAL) { 2681 xhci_warn(xhci, "WARNING: Host System Error\n"); 2682 xhci_halt(xhci); 2683 ret = IRQ_HANDLED; 2684 goto out; 2685 } 2686 2687 /* 2688 * Clear the op reg interrupt status first, 2689 * so we can receive interrupts from other MSI-X interrupters. 2690 * Write 1 to clear the interrupt status. 2691 */ 2692 status |= STS_EINT; 2693 writel(status, &xhci->op_regs->status); 2694 2695 if (!hcd->msi_enabled) { 2696 u32 irq_pending; 2697 irq_pending = readl(&xhci->ir_set->irq_pending); 2698 irq_pending |= IMAN_IP; 2699 writel(irq_pending, &xhci->ir_set->irq_pending); 2700 } 2701 2702 if (xhci->xhc_state & XHCI_STATE_DYING || 2703 xhci->xhc_state & XHCI_STATE_HALTED) { 2704 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2705 "Shouldn't IRQs be disabled?\n"); 2706 /* Clear the event handler busy flag (RW1C); 2707 * the event ring should be empty. 2708 */ 2709 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2710 xhci_write_64(xhci, temp_64 | ERST_EHB, 2711 &xhci->ir_set->erst_dequeue); 2712 ret = IRQ_HANDLED; 2713 goto out; 2714 } 2715 2716 event_ring_deq = xhci->event_ring->dequeue; 2717 /* FIXME this should be a delayed service routine 2718 * that clears the EHB. 2719 */ 2720 while (xhci_handle_event(xhci) > 0) {} 2721 2722 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2723 /* If necessary, update the HW's version of the event ring deq ptr. */ 2724 if (event_ring_deq != xhci->event_ring->dequeue) { 2725 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2726 xhci->event_ring->dequeue); 2727 if (deq == 0) 2728 xhci_warn(xhci, "WARN something wrong with SW event " 2729 "ring dequeue ptr.\n"); 2730 /* Update HC event ring dequeue pointer */ 2731 temp_64 &= ERST_PTR_MASK; 2732 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2733 } 2734 2735 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2736 temp_64 |= ERST_EHB; 2737 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2738 ret = IRQ_HANDLED; 2739 2740 out: 2741 spin_unlock_irqrestore(&xhci->lock, flags); 2742 2743 return ret; 2744 } 2745 2746 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2747 { 2748 return xhci_irq(hcd); 2749 } 2750 2751 /**** Endpoint Ring Operations ****/ 2752 2753 /* 2754 * Generic function for queueing a TRB on a ring. 2755 * The caller must have checked to make sure there's room on the ring. 2756 * 2757 * @more_trbs_coming: Will you enqueue more TRBs before calling 2758 * prepare_transfer()? 2759 */ 2760 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2761 bool more_trbs_coming, 2762 u32 field1, u32 field2, u32 field3, u32 field4) 2763 { 2764 struct xhci_generic_trb *trb; 2765 2766 trb = &ring->enqueue->generic; 2767 trb->field[0] = cpu_to_le32(field1); 2768 trb->field[1] = cpu_to_le32(field2); 2769 trb->field[2] = cpu_to_le32(field3); 2770 trb->field[3] = cpu_to_le32(field4); 2771 2772 trace_xhci_queue_trb(ring, trb); 2773 2774 inc_enq(xhci, ring, more_trbs_coming); 2775 } 2776 2777 /* 2778 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2779 * FIXME allocate segments if the ring is full. 2780 */ 2781 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2782 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2783 { 2784 unsigned int num_trbs_needed; 2785 2786 /* Make sure the endpoint has been added to xHC schedule */ 2787 switch (ep_state) { 2788 case EP_STATE_DISABLED: 2789 /* 2790 * USB core changed config/interfaces without notifying us, 2791 * or hardware is reporting the wrong state. 2792 */ 2793 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2794 return -ENOENT; 2795 case EP_STATE_ERROR: 2796 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2797 /* FIXME event handling code for error needs to clear it */ 2798 /* XXX not sure if this should be -ENOENT or not */ 2799 return -EINVAL; 2800 case EP_STATE_HALTED: 2801 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2802 case EP_STATE_STOPPED: 2803 case EP_STATE_RUNNING: 2804 break; 2805 default: 2806 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2807 /* 2808 * FIXME issue Configure Endpoint command to try to get the HC 2809 * back into a known state. 2810 */ 2811 return -EINVAL; 2812 } 2813 2814 while (1) { 2815 if (room_on_ring(xhci, ep_ring, num_trbs)) 2816 break; 2817 2818 if (ep_ring == xhci->cmd_ring) { 2819 xhci_err(xhci, "Do not support expand command ring\n"); 2820 return -ENOMEM; 2821 } 2822 2823 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2824 "ERROR no room on ep ring, try ring expansion"); 2825 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2826 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2827 mem_flags)) { 2828 xhci_err(xhci, "Ring expansion failed\n"); 2829 return -ENOMEM; 2830 } 2831 } 2832 2833 while (trb_is_link(ep_ring->enqueue)) { 2834 /* If we're not dealing with 0.95 hardware or isoc rings 2835 * on AMD 0.96 host, clear the chain bit. 2836 */ 2837 if (!xhci_link_trb_quirk(xhci) && 2838 !(ep_ring->type == TYPE_ISOC && 2839 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2840 ep_ring->enqueue->link.control &= 2841 cpu_to_le32(~TRB_CHAIN); 2842 else 2843 ep_ring->enqueue->link.control |= 2844 cpu_to_le32(TRB_CHAIN); 2845 2846 wmb(); 2847 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2848 2849 /* Toggle the cycle bit after the last ring segment. */ 2850 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2851 ep_ring->cycle_state ^= 1; 2852 2853 ep_ring->enq_seg = ep_ring->enq_seg->next; 2854 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2855 } 2856 return 0; 2857 } 2858 2859 static int prepare_transfer(struct xhci_hcd *xhci, 2860 struct xhci_virt_device *xdev, 2861 unsigned int ep_index, 2862 unsigned int stream_id, 2863 unsigned int num_trbs, 2864 struct urb *urb, 2865 unsigned int td_index, 2866 gfp_t mem_flags) 2867 { 2868 int ret; 2869 struct urb_priv *urb_priv; 2870 struct xhci_td *td; 2871 struct xhci_ring *ep_ring; 2872 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2873 2874 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2875 if (!ep_ring) { 2876 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2877 stream_id); 2878 return -EINVAL; 2879 } 2880 2881 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2882 num_trbs, mem_flags); 2883 if (ret) 2884 return ret; 2885 2886 urb_priv = urb->hcpriv; 2887 td = &urb_priv->td[td_index]; 2888 2889 INIT_LIST_HEAD(&td->td_list); 2890 INIT_LIST_HEAD(&td->cancelled_td_list); 2891 2892 if (td_index == 0) { 2893 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2894 if (unlikely(ret)) 2895 return ret; 2896 } 2897 2898 td->urb = urb; 2899 /* Add this TD to the tail of the endpoint ring's TD list */ 2900 list_add_tail(&td->td_list, &ep_ring->td_list); 2901 td->start_seg = ep_ring->enq_seg; 2902 td->first_trb = ep_ring->enqueue; 2903 2904 return 0; 2905 } 2906 2907 unsigned int count_trbs(u64 addr, u64 len) 2908 { 2909 unsigned int num_trbs; 2910 2911 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2912 TRB_MAX_BUFF_SIZE); 2913 if (num_trbs == 0) 2914 num_trbs++; 2915 2916 return num_trbs; 2917 } 2918 2919 static inline unsigned int count_trbs_needed(struct urb *urb) 2920 { 2921 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2922 } 2923 2924 static unsigned int count_sg_trbs_needed(struct urb *urb) 2925 { 2926 struct scatterlist *sg; 2927 unsigned int i, len, full_len, num_trbs = 0; 2928 2929 full_len = urb->transfer_buffer_length; 2930 2931 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2932 len = sg_dma_len(sg); 2933 num_trbs += count_trbs(sg_dma_address(sg), len); 2934 len = min_t(unsigned int, len, full_len); 2935 full_len -= len; 2936 if (full_len == 0) 2937 break; 2938 } 2939 2940 return num_trbs; 2941 } 2942 2943 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2944 { 2945 u64 addr, len; 2946 2947 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2948 len = urb->iso_frame_desc[i].length; 2949 2950 return count_trbs(addr, len); 2951 } 2952 2953 static void check_trb_math(struct urb *urb, int running_total) 2954 { 2955 if (unlikely(running_total != urb->transfer_buffer_length)) 2956 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2957 "queued %#x (%d), asked for %#x (%d)\n", 2958 __func__, 2959 urb->ep->desc.bEndpointAddress, 2960 running_total, running_total, 2961 urb->transfer_buffer_length, 2962 urb->transfer_buffer_length); 2963 } 2964 2965 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2966 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2967 struct xhci_generic_trb *start_trb) 2968 { 2969 /* 2970 * Pass all the TRBs to the hardware at once and make sure this write 2971 * isn't reordered. 2972 */ 2973 wmb(); 2974 if (start_cycle) 2975 start_trb->field[3] |= cpu_to_le32(start_cycle); 2976 else 2977 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2978 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2979 } 2980 2981 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 2982 struct xhci_ep_ctx *ep_ctx) 2983 { 2984 int xhci_interval; 2985 int ep_interval; 2986 2987 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2988 ep_interval = urb->interval; 2989 2990 /* Convert to microframes */ 2991 if (urb->dev->speed == USB_SPEED_LOW || 2992 urb->dev->speed == USB_SPEED_FULL) 2993 ep_interval *= 8; 2994 2995 /* FIXME change this to a warning and a suggestion to use the new API 2996 * to set the polling interval (once the API is added). 2997 */ 2998 if (xhci_interval != ep_interval) { 2999 dev_dbg_ratelimited(&urb->dev->dev, 3000 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3001 ep_interval, ep_interval == 1 ? "" : "s", 3002 xhci_interval, xhci_interval == 1 ? "" : "s"); 3003 urb->interval = xhci_interval; 3004 /* Convert back to frames for LS/FS devices */ 3005 if (urb->dev->speed == USB_SPEED_LOW || 3006 urb->dev->speed == USB_SPEED_FULL) 3007 urb->interval /= 8; 3008 } 3009 } 3010 3011 /* 3012 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3013 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3014 * (comprised of sg list entries) can take several service intervals to 3015 * transmit. 3016 */ 3017 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3018 struct urb *urb, int slot_id, unsigned int ep_index) 3019 { 3020 struct xhci_ep_ctx *ep_ctx; 3021 3022 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3023 check_interval(xhci, urb, ep_ctx); 3024 3025 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3026 } 3027 3028 /* 3029 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3030 * packets remaining in the TD (*not* including this TRB). 3031 * 3032 * Total TD packet count = total_packet_count = 3033 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3034 * 3035 * Packets transferred up to and including this TRB = packets_transferred = 3036 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3037 * 3038 * TD size = total_packet_count - packets_transferred 3039 * 3040 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3041 * including this TRB, right shifted by 10 3042 * 3043 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3044 * This is taken care of in the TRB_TD_SIZE() macro 3045 * 3046 * The last TRB in a TD must have the TD size set to zero. 3047 */ 3048 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3049 int trb_buff_len, unsigned int td_total_len, 3050 struct urb *urb, bool more_trbs_coming) 3051 { 3052 u32 maxp, total_packet_count; 3053 3054 /* MTK xHCI 0.96 contains some features from 1.0 */ 3055 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3056 return ((td_total_len - transferred) >> 10); 3057 3058 /* One TRB with a zero-length data packet. */ 3059 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3060 trb_buff_len == td_total_len) 3061 return 0; 3062 3063 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3064 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3065 trb_buff_len = 0; 3066 3067 maxp = usb_endpoint_maxp(&urb->ep->desc); 3068 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3069 3070 /* Queueing functions don't count the current TRB into transferred */ 3071 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3072 } 3073 3074 3075 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3076 u32 *trb_buff_len, struct xhci_segment *seg) 3077 { 3078 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3079 unsigned int unalign; 3080 unsigned int max_pkt; 3081 u32 new_buff_len; 3082 3083 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3084 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3085 3086 /* we got lucky, last normal TRB data on segment is packet aligned */ 3087 if (unalign == 0) 3088 return 0; 3089 3090 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3091 unalign, *trb_buff_len); 3092 3093 /* is the last nornal TRB alignable by splitting it */ 3094 if (*trb_buff_len > unalign) { 3095 *trb_buff_len -= unalign; 3096 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3097 return 0; 3098 } 3099 3100 /* 3101 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3102 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3103 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3104 */ 3105 new_buff_len = max_pkt - (enqd_len % max_pkt); 3106 3107 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3108 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3109 3110 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3111 if (usb_urb_dir_out(urb)) { 3112 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3113 seg->bounce_buf, new_buff_len, enqd_len); 3114 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3115 max_pkt, DMA_TO_DEVICE); 3116 } else { 3117 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3118 max_pkt, DMA_FROM_DEVICE); 3119 } 3120 3121 if (dma_mapping_error(dev, seg->bounce_dma)) { 3122 /* try without aligning. Some host controllers survive */ 3123 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3124 return 0; 3125 } 3126 *trb_buff_len = new_buff_len; 3127 seg->bounce_len = new_buff_len; 3128 seg->bounce_offs = enqd_len; 3129 3130 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3131 3132 return 1; 3133 } 3134 3135 /* This is very similar to what ehci-q.c qtd_fill() does */ 3136 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3137 struct urb *urb, int slot_id, unsigned int ep_index) 3138 { 3139 struct xhci_ring *ring; 3140 struct urb_priv *urb_priv; 3141 struct xhci_td *td; 3142 struct xhci_generic_trb *start_trb; 3143 struct scatterlist *sg = NULL; 3144 bool more_trbs_coming = true; 3145 bool need_zero_pkt = false; 3146 bool first_trb = true; 3147 unsigned int num_trbs; 3148 unsigned int start_cycle, num_sgs = 0; 3149 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3150 int sent_len, ret; 3151 u32 field, length_field, remainder; 3152 u64 addr, send_addr; 3153 3154 ring = xhci_urb_to_transfer_ring(xhci, urb); 3155 if (!ring) 3156 return -EINVAL; 3157 3158 full_len = urb->transfer_buffer_length; 3159 /* If we have scatter/gather list, we use it. */ 3160 if (urb->num_sgs) { 3161 num_sgs = urb->num_mapped_sgs; 3162 sg = urb->sg; 3163 addr = (u64) sg_dma_address(sg); 3164 block_len = sg_dma_len(sg); 3165 num_trbs = count_sg_trbs_needed(urb); 3166 } else { 3167 num_trbs = count_trbs_needed(urb); 3168 addr = (u64) urb->transfer_dma; 3169 block_len = full_len; 3170 } 3171 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3172 ep_index, urb->stream_id, 3173 num_trbs, urb, 0, mem_flags); 3174 if (unlikely(ret < 0)) 3175 return ret; 3176 3177 urb_priv = urb->hcpriv; 3178 3179 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3180 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3181 need_zero_pkt = true; 3182 3183 td = &urb_priv->td[0]; 3184 3185 /* 3186 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3187 * until we've finished creating all the other TRBs. The ring's cycle 3188 * state may change as we enqueue the other TRBs, so save it too. 3189 */ 3190 start_trb = &ring->enqueue->generic; 3191 start_cycle = ring->cycle_state; 3192 send_addr = addr; 3193 3194 /* Queue the TRBs, even if they are zero-length */ 3195 for (enqd_len = 0; first_trb || enqd_len < full_len; 3196 enqd_len += trb_buff_len) { 3197 field = TRB_TYPE(TRB_NORMAL); 3198 3199 /* TRB buffer should not cross 64KB boundaries */ 3200 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3201 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3202 3203 if (enqd_len + trb_buff_len > full_len) 3204 trb_buff_len = full_len - enqd_len; 3205 3206 /* Don't change the cycle bit of the first TRB until later */ 3207 if (first_trb) { 3208 first_trb = false; 3209 if (start_cycle == 0) 3210 field |= TRB_CYCLE; 3211 } else 3212 field |= ring->cycle_state; 3213 3214 /* Chain all the TRBs together; clear the chain bit in the last 3215 * TRB to indicate it's the last TRB in the chain. 3216 */ 3217 if (enqd_len + trb_buff_len < full_len) { 3218 field |= TRB_CHAIN; 3219 if (trb_is_link(ring->enqueue + 1)) { 3220 if (xhci_align_td(xhci, urb, enqd_len, 3221 &trb_buff_len, 3222 ring->enq_seg)) { 3223 send_addr = ring->enq_seg->bounce_dma; 3224 /* assuming TD won't span 2 segs */ 3225 td->bounce_seg = ring->enq_seg; 3226 } 3227 } 3228 } 3229 if (enqd_len + trb_buff_len >= full_len) { 3230 field &= ~TRB_CHAIN; 3231 field |= TRB_IOC; 3232 more_trbs_coming = false; 3233 td->last_trb = ring->enqueue; 3234 } 3235 3236 /* Only set interrupt on short packet for IN endpoints */ 3237 if (usb_urb_dir_in(urb)) 3238 field |= TRB_ISP; 3239 3240 /* Set the TRB length, TD size, and interrupter fields. */ 3241 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3242 full_len, urb, more_trbs_coming); 3243 3244 length_field = TRB_LEN(trb_buff_len) | 3245 TRB_TD_SIZE(remainder) | 3246 TRB_INTR_TARGET(0); 3247 3248 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3249 lower_32_bits(send_addr), 3250 upper_32_bits(send_addr), 3251 length_field, 3252 field); 3253 3254 addr += trb_buff_len; 3255 sent_len = trb_buff_len; 3256 3257 while (sg && sent_len >= block_len) { 3258 /* New sg entry */ 3259 --num_sgs; 3260 sent_len -= block_len; 3261 if (num_sgs != 0) { 3262 sg = sg_next(sg); 3263 block_len = sg_dma_len(sg); 3264 addr = (u64) sg_dma_address(sg); 3265 addr += sent_len; 3266 } 3267 } 3268 block_len -= sent_len; 3269 send_addr = addr; 3270 } 3271 3272 if (need_zero_pkt) { 3273 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3274 ep_index, urb->stream_id, 3275 1, urb, 1, mem_flags); 3276 urb_priv->td[1].last_trb = ring->enqueue; 3277 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3278 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3279 } 3280 3281 check_trb_math(urb, enqd_len); 3282 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3283 start_cycle, start_trb); 3284 return 0; 3285 } 3286 3287 /* Caller must have locked xhci->lock */ 3288 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3289 struct urb *urb, int slot_id, unsigned int ep_index) 3290 { 3291 struct xhci_ring *ep_ring; 3292 int num_trbs; 3293 int ret; 3294 struct usb_ctrlrequest *setup; 3295 struct xhci_generic_trb *start_trb; 3296 int start_cycle; 3297 u32 field; 3298 struct urb_priv *urb_priv; 3299 struct xhci_td *td; 3300 3301 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3302 if (!ep_ring) 3303 return -EINVAL; 3304 3305 /* 3306 * Need to copy setup packet into setup TRB, so we can't use the setup 3307 * DMA address. 3308 */ 3309 if (!urb->setup_packet) 3310 return -EINVAL; 3311 3312 /* 1 TRB for setup, 1 for status */ 3313 num_trbs = 2; 3314 /* 3315 * Don't need to check if we need additional event data and normal TRBs, 3316 * since data in control transfers will never get bigger than 16MB 3317 * XXX: can we get a buffer that crosses 64KB boundaries? 3318 */ 3319 if (urb->transfer_buffer_length > 0) 3320 num_trbs++; 3321 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3322 ep_index, urb->stream_id, 3323 num_trbs, urb, 0, mem_flags); 3324 if (ret < 0) 3325 return ret; 3326 3327 urb_priv = urb->hcpriv; 3328 td = &urb_priv->td[0]; 3329 3330 /* 3331 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3332 * until we've finished creating all the other TRBs. The ring's cycle 3333 * state may change as we enqueue the other TRBs, so save it too. 3334 */ 3335 start_trb = &ep_ring->enqueue->generic; 3336 start_cycle = ep_ring->cycle_state; 3337 3338 /* Queue setup TRB - see section 6.4.1.2.1 */ 3339 /* FIXME better way to translate setup_packet into two u32 fields? */ 3340 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3341 field = 0; 3342 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3343 if (start_cycle == 0) 3344 field |= 0x1; 3345 3346 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3347 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3348 if (urb->transfer_buffer_length > 0) { 3349 if (setup->bRequestType & USB_DIR_IN) 3350 field |= TRB_TX_TYPE(TRB_DATA_IN); 3351 else 3352 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3353 } 3354 } 3355 3356 queue_trb(xhci, ep_ring, true, 3357 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3358 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3359 TRB_LEN(8) | TRB_INTR_TARGET(0), 3360 /* Immediate data in pointer */ 3361 field); 3362 3363 /* If there's data, queue data TRBs */ 3364 /* Only set interrupt on short packet for IN endpoints */ 3365 if (usb_urb_dir_in(urb)) 3366 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3367 else 3368 field = TRB_TYPE(TRB_DATA); 3369 3370 if (urb->transfer_buffer_length > 0) { 3371 u32 length_field, remainder; 3372 3373 remainder = xhci_td_remainder(xhci, 0, 3374 urb->transfer_buffer_length, 3375 urb->transfer_buffer_length, 3376 urb, 1); 3377 length_field = TRB_LEN(urb->transfer_buffer_length) | 3378 TRB_TD_SIZE(remainder) | 3379 TRB_INTR_TARGET(0); 3380 if (setup->bRequestType & USB_DIR_IN) 3381 field |= TRB_DIR_IN; 3382 queue_trb(xhci, ep_ring, true, 3383 lower_32_bits(urb->transfer_dma), 3384 upper_32_bits(urb->transfer_dma), 3385 length_field, 3386 field | ep_ring->cycle_state); 3387 } 3388 3389 /* Save the DMA address of the last TRB in the TD */ 3390 td->last_trb = ep_ring->enqueue; 3391 3392 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3393 /* If the device sent data, the status stage is an OUT transfer */ 3394 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3395 field = 0; 3396 else 3397 field = TRB_DIR_IN; 3398 queue_trb(xhci, ep_ring, false, 3399 0, 3400 0, 3401 TRB_INTR_TARGET(0), 3402 /* Event on completion */ 3403 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3404 3405 giveback_first_trb(xhci, slot_id, ep_index, 0, 3406 start_cycle, start_trb); 3407 return 0; 3408 } 3409 3410 /* 3411 * The transfer burst count field of the isochronous TRB defines the number of 3412 * bursts that are required to move all packets in this TD. Only SuperSpeed 3413 * devices can burst up to bMaxBurst number of packets per service interval. 3414 * This field is zero based, meaning a value of zero in the field means one 3415 * burst. Basically, for everything but SuperSpeed devices, this field will be 3416 * zero. Only xHCI 1.0 host controllers support this field. 3417 */ 3418 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3419 struct urb *urb, unsigned int total_packet_count) 3420 { 3421 unsigned int max_burst; 3422 3423 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3424 return 0; 3425 3426 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3427 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3428 } 3429 3430 /* 3431 * Returns the number of packets in the last "burst" of packets. This field is 3432 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3433 * the last burst packet count is equal to the total number of packets in the 3434 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3435 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3436 * contain 1 to (bMaxBurst + 1) packets. 3437 */ 3438 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3439 struct urb *urb, unsigned int total_packet_count) 3440 { 3441 unsigned int max_burst; 3442 unsigned int residue; 3443 3444 if (xhci->hci_version < 0x100) 3445 return 0; 3446 3447 if (urb->dev->speed >= USB_SPEED_SUPER) { 3448 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3449 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3450 residue = total_packet_count % (max_burst + 1); 3451 /* If residue is zero, the last burst contains (max_burst + 1) 3452 * number of packets, but the TLBPC field is zero-based. 3453 */ 3454 if (residue == 0) 3455 return max_burst; 3456 return residue - 1; 3457 } 3458 if (total_packet_count == 0) 3459 return 0; 3460 return total_packet_count - 1; 3461 } 3462 3463 /* 3464 * Calculates Frame ID field of the isochronous TRB identifies the 3465 * target frame that the Interval associated with this Isochronous 3466 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3467 * 3468 * Returns actual frame id on success, negative value on error. 3469 */ 3470 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3471 struct urb *urb, int index) 3472 { 3473 int start_frame, ist, ret = 0; 3474 int start_frame_id, end_frame_id, current_frame_id; 3475 3476 if (urb->dev->speed == USB_SPEED_LOW || 3477 urb->dev->speed == USB_SPEED_FULL) 3478 start_frame = urb->start_frame + index * urb->interval; 3479 else 3480 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3481 3482 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3483 * 3484 * If bit [3] of IST is cleared to '0', software can add a TRB no 3485 * later than IST[2:0] Microframes before that TRB is scheduled to 3486 * be executed. 3487 * If bit [3] of IST is set to '1', software can add a TRB no later 3488 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3489 */ 3490 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3491 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3492 ist <<= 3; 3493 3494 /* Software shall not schedule an Isoch TD with a Frame ID value that 3495 * is less than the Start Frame ID or greater than the End Frame ID, 3496 * where: 3497 * 3498 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3499 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3500 * 3501 * Both the End Frame ID and Start Frame ID values are calculated 3502 * in microframes. When software determines the valid Frame ID value; 3503 * The End Frame ID value should be rounded down to the nearest Frame 3504 * boundary, and the Start Frame ID value should be rounded up to the 3505 * nearest Frame boundary. 3506 */ 3507 current_frame_id = readl(&xhci->run_regs->microframe_index); 3508 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3509 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3510 3511 start_frame &= 0x7ff; 3512 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3513 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3514 3515 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3516 __func__, index, readl(&xhci->run_regs->microframe_index), 3517 start_frame_id, end_frame_id, start_frame); 3518 3519 if (start_frame_id < end_frame_id) { 3520 if (start_frame > end_frame_id || 3521 start_frame < start_frame_id) 3522 ret = -EINVAL; 3523 } else if (start_frame_id > end_frame_id) { 3524 if ((start_frame > end_frame_id && 3525 start_frame < start_frame_id)) 3526 ret = -EINVAL; 3527 } else { 3528 ret = -EINVAL; 3529 } 3530 3531 if (index == 0) { 3532 if (ret == -EINVAL || start_frame == start_frame_id) { 3533 start_frame = start_frame_id + 1; 3534 if (urb->dev->speed == USB_SPEED_LOW || 3535 urb->dev->speed == USB_SPEED_FULL) 3536 urb->start_frame = start_frame; 3537 else 3538 urb->start_frame = start_frame << 3; 3539 ret = 0; 3540 } 3541 } 3542 3543 if (ret) { 3544 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3545 start_frame, current_frame_id, index, 3546 start_frame_id, end_frame_id); 3547 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3548 return ret; 3549 } 3550 3551 return start_frame; 3552 } 3553 3554 /* This is for isoc transfer */ 3555 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3556 struct urb *urb, int slot_id, unsigned int ep_index) 3557 { 3558 struct xhci_ring *ep_ring; 3559 struct urb_priv *urb_priv; 3560 struct xhci_td *td; 3561 int num_tds, trbs_per_td; 3562 struct xhci_generic_trb *start_trb; 3563 bool first_trb; 3564 int start_cycle; 3565 u32 field, length_field; 3566 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3567 u64 start_addr, addr; 3568 int i, j; 3569 bool more_trbs_coming; 3570 struct xhci_virt_ep *xep; 3571 int frame_id; 3572 3573 xep = &xhci->devs[slot_id]->eps[ep_index]; 3574 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3575 3576 num_tds = urb->number_of_packets; 3577 if (num_tds < 1) { 3578 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3579 return -EINVAL; 3580 } 3581 start_addr = (u64) urb->transfer_dma; 3582 start_trb = &ep_ring->enqueue->generic; 3583 start_cycle = ep_ring->cycle_state; 3584 3585 urb_priv = urb->hcpriv; 3586 /* Queue the TRBs for each TD, even if they are zero-length */ 3587 for (i = 0; i < num_tds; i++) { 3588 unsigned int total_pkt_count, max_pkt; 3589 unsigned int burst_count, last_burst_pkt_count; 3590 u32 sia_frame_id; 3591 3592 first_trb = true; 3593 running_total = 0; 3594 addr = start_addr + urb->iso_frame_desc[i].offset; 3595 td_len = urb->iso_frame_desc[i].length; 3596 td_remain_len = td_len; 3597 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3598 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3599 3600 /* A zero-length transfer still involves at least one packet. */ 3601 if (total_pkt_count == 0) 3602 total_pkt_count++; 3603 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3604 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3605 urb, total_pkt_count); 3606 3607 trbs_per_td = count_isoc_trbs_needed(urb, i); 3608 3609 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3610 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3611 if (ret < 0) { 3612 if (i == 0) 3613 return ret; 3614 goto cleanup; 3615 } 3616 td = &urb_priv->td[i]; 3617 3618 /* use SIA as default, if frame id is used overwrite it */ 3619 sia_frame_id = TRB_SIA; 3620 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3621 HCC_CFC(xhci->hcc_params)) { 3622 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3623 if (frame_id >= 0) 3624 sia_frame_id = TRB_FRAME_ID(frame_id); 3625 } 3626 /* 3627 * Set isoc specific data for the first TRB in a TD. 3628 * Prevent HW from getting the TRBs by keeping the cycle state 3629 * inverted in the first TDs isoc TRB. 3630 */ 3631 field = TRB_TYPE(TRB_ISOC) | 3632 TRB_TLBPC(last_burst_pkt_count) | 3633 sia_frame_id | 3634 (i ? ep_ring->cycle_state : !start_cycle); 3635 3636 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3637 if (!xep->use_extended_tbc) 3638 field |= TRB_TBC(burst_count); 3639 3640 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3641 for (j = 0; j < trbs_per_td; j++) { 3642 u32 remainder = 0; 3643 3644 /* only first TRB is isoc, overwrite otherwise */ 3645 if (!first_trb) 3646 field = TRB_TYPE(TRB_NORMAL) | 3647 ep_ring->cycle_state; 3648 3649 /* Only set interrupt on short packet for IN EPs */ 3650 if (usb_urb_dir_in(urb)) 3651 field |= TRB_ISP; 3652 3653 /* Set the chain bit for all except the last TRB */ 3654 if (j < trbs_per_td - 1) { 3655 more_trbs_coming = true; 3656 field |= TRB_CHAIN; 3657 } else { 3658 more_trbs_coming = false; 3659 td->last_trb = ep_ring->enqueue; 3660 field |= TRB_IOC; 3661 /* set BEI, except for the last TD */ 3662 if (xhci->hci_version >= 0x100 && 3663 !(xhci->quirks & XHCI_AVOID_BEI) && 3664 i < num_tds - 1) 3665 field |= TRB_BEI; 3666 } 3667 /* Calculate TRB length */ 3668 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3669 if (trb_buff_len > td_remain_len) 3670 trb_buff_len = td_remain_len; 3671 3672 /* Set the TRB length, TD size, & interrupter fields. */ 3673 remainder = xhci_td_remainder(xhci, running_total, 3674 trb_buff_len, td_len, 3675 urb, more_trbs_coming); 3676 3677 length_field = TRB_LEN(trb_buff_len) | 3678 TRB_INTR_TARGET(0); 3679 3680 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3681 if (first_trb && xep->use_extended_tbc) 3682 length_field |= TRB_TD_SIZE_TBC(burst_count); 3683 else 3684 length_field |= TRB_TD_SIZE(remainder); 3685 first_trb = false; 3686 3687 queue_trb(xhci, ep_ring, more_trbs_coming, 3688 lower_32_bits(addr), 3689 upper_32_bits(addr), 3690 length_field, 3691 field); 3692 running_total += trb_buff_len; 3693 3694 addr += trb_buff_len; 3695 td_remain_len -= trb_buff_len; 3696 } 3697 3698 /* Check TD length */ 3699 if (running_total != td_len) { 3700 xhci_err(xhci, "ISOC TD length unmatch\n"); 3701 ret = -EINVAL; 3702 goto cleanup; 3703 } 3704 } 3705 3706 /* store the next frame id */ 3707 if (HCC_CFC(xhci->hcc_params)) 3708 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3709 3710 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3711 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3712 usb_amd_quirk_pll_disable(); 3713 } 3714 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3715 3716 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3717 start_cycle, start_trb); 3718 return 0; 3719 cleanup: 3720 /* Clean up a partially enqueued isoc transfer. */ 3721 3722 for (i--; i >= 0; i--) 3723 list_del_init(&urb_priv->td[i].td_list); 3724 3725 /* Use the first TD as a temporary variable to turn the TDs we've queued 3726 * into No-ops with a software-owned cycle bit. That way the hardware 3727 * won't accidentally start executing bogus TDs when we partially 3728 * overwrite them. td->first_trb and td->start_seg are already set. 3729 */ 3730 urb_priv->td[0].last_trb = ep_ring->enqueue; 3731 /* Every TRB except the first & last will have its cycle bit flipped. */ 3732 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3733 3734 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3735 ep_ring->enqueue = urb_priv->td[0].first_trb; 3736 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3737 ep_ring->cycle_state = start_cycle; 3738 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3739 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3740 return ret; 3741 } 3742 3743 /* 3744 * Check transfer ring to guarantee there is enough room for the urb. 3745 * Update ISO URB start_frame and interval. 3746 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3747 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3748 * Contiguous Frame ID is not supported by HC. 3749 */ 3750 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3751 struct urb *urb, int slot_id, unsigned int ep_index) 3752 { 3753 struct xhci_virt_device *xdev; 3754 struct xhci_ring *ep_ring; 3755 struct xhci_ep_ctx *ep_ctx; 3756 int start_frame; 3757 int num_tds, num_trbs, i; 3758 int ret; 3759 struct xhci_virt_ep *xep; 3760 int ist; 3761 3762 xdev = xhci->devs[slot_id]; 3763 xep = &xhci->devs[slot_id]->eps[ep_index]; 3764 ep_ring = xdev->eps[ep_index].ring; 3765 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3766 3767 num_trbs = 0; 3768 num_tds = urb->number_of_packets; 3769 for (i = 0; i < num_tds; i++) 3770 num_trbs += count_isoc_trbs_needed(urb, i); 3771 3772 /* Check the ring to guarantee there is enough room for the whole urb. 3773 * Do not insert any td of the urb to the ring if the check failed. 3774 */ 3775 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3776 num_trbs, mem_flags); 3777 if (ret) 3778 return ret; 3779 3780 /* 3781 * Check interval value. This should be done before we start to 3782 * calculate the start frame value. 3783 */ 3784 check_interval(xhci, urb, ep_ctx); 3785 3786 /* Calculate the start frame and put it in urb->start_frame. */ 3787 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3788 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3789 urb->start_frame = xep->next_frame_id; 3790 goto skip_start_over; 3791 } 3792 } 3793 3794 start_frame = readl(&xhci->run_regs->microframe_index); 3795 start_frame &= 0x3fff; 3796 /* 3797 * Round up to the next frame and consider the time before trb really 3798 * gets scheduled by hardare. 3799 */ 3800 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3801 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3802 ist <<= 3; 3803 start_frame += ist + XHCI_CFC_DELAY; 3804 start_frame = roundup(start_frame, 8); 3805 3806 /* 3807 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3808 * is greate than 8 microframes. 3809 */ 3810 if (urb->dev->speed == USB_SPEED_LOW || 3811 urb->dev->speed == USB_SPEED_FULL) { 3812 start_frame = roundup(start_frame, urb->interval << 3); 3813 urb->start_frame = start_frame >> 3; 3814 } else { 3815 start_frame = roundup(start_frame, urb->interval); 3816 urb->start_frame = start_frame; 3817 } 3818 3819 skip_start_over: 3820 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3821 3822 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3823 } 3824 3825 /**** Command Ring Operations ****/ 3826 3827 /* Generic function for queueing a command TRB on the command ring. 3828 * Check to make sure there's room on the command ring for one command TRB. 3829 * Also check that there's room reserved for commands that must not fail. 3830 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3831 * then only check for the number of reserved spots. 3832 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3833 * because the command event handler may want to resubmit a failed command. 3834 */ 3835 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3836 u32 field1, u32 field2, 3837 u32 field3, u32 field4, bool command_must_succeed) 3838 { 3839 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3840 int ret; 3841 3842 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3843 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3844 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3845 return -ESHUTDOWN; 3846 } 3847 3848 if (!command_must_succeed) 3849 reserved_trbs++; 3850 3851 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3852 reserved_trbs, GFP_ATOMIC); 3853 if (ret < 0) { 3854 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3855 if (command_must_succeed) 3856 xhci_err(xhci, "ERR: Reserved TRB counting for " 3857 "unfailable commands failed.\n"); 3858 return ret; 3859 } 3860 3861 cmd->command_trb = xhci->cmd_ring->enqueue; 3862 3863 /* if there are no other commands queued we start the timeout timer */ 3864 if (list_empty(&xhci->cmd_list)) { 3865 xhci->current_cmd = cmd; 3866 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3867 } 3868 3869 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3870 3871 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3872 field4 | xhci->cmd_ring->cycle_state); 3873 return 0; 3874 } 3875 3876 /* Queue a slot enable or disable request on the command ring */ 3877 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3878 u32 trb_type, u32 slot_id) 3879 { 3880 return queue_command(xhci, cmd, 0, 0, 0, 3881 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3882 } 3883 3884 /* Queue an address device command TRB */ 3885 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3886 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3887 { 3888 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3889 upper_32_bits(in_ctx_ptr), 0, 3890 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3891 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3892 } 3893 3894 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3895 u32 field1, u32 field2, u32 field3, u32 field4) 3896 { 3897 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3898 } 3899 3900 /* Queue a reset device command TRB */ 3901 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3902 u32 slot_id) 3903 { 3904 return queue_command(xhci, cmd, 0, 0, 0, 3905 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3906 false); 3907 } 3908 3909 /* Queue a configure endpoint command TRB */ 3910 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3911 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3912 u32 slot_id, bool command_must_succeed) 3913 { 3914 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3915 upper_32_bits(in_ctx_ptr), 0, 3916 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3917 command_must_succeed); 3918 } 3919 3920 /* Queue an evaluate context command TRB */ 3921 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3922 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3923 { 3924 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3925 upper_32_bits(in_ctx_ptr), 0, 3926 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3927 command_must_succeed); 3928 } 3929 3930 /* 3931 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3932 * activity on an endpoint that is about to be suspended. 3933 */ 3934 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3935 int slot_id, unsigned int ep_index, int suspend) 3936 { 3937 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3938 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3939 u32 type = TRB_TYPE(TRB_STOP_RING); 3940 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3941 3942 return queue_command(xhci, cmd, 0, 0, 0, 3943 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3944 } 3945 3946 /* Set Transfer Ring Dequeue Pointer command */ 3947 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3948 unsigned int slot_id, unsigned int ep_index, 3949 struct xhci_dequeue_state *deq_state) 3950 { 3951 dma_addr_t addr; 3952 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3953 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3954 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 3955 u32 trb_sct = 0; 3956 u32 type = TRB_TYPE(TRB_SET_DEQ); 3957 struct xhci_virt_ep *ep; 3958 struct xhci_command *cmd; 3959 int ret; 3960 3961 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3962 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3963 deq_state->new_deq_seg, 3964 (unsigned long long)deq_state->new_deq_seg->dma, 3965 deq_state->new_deq_ptr, 3966 (unsigned long long)xhci_trb_virt_to_dma( 3967 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3968 deq_state->new_cycle_state); 3969 3970 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3971 deq_state->new_deq_ptr); 3972 if (addr == 0) { 3973 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3974 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3975 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3976 return; 3977 } 3978 ep = &xhci->devs[slot_id]->eps[ep_index]; 3979 if ((ep->ep_state & SET_DEQ_PENDING)) { 3980 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3981 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3982 return; 3983 } 3984 3985 /* This function gets called from contexts where it cannot sleep */ 3986 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 3987 if (!cmd) 3988 return; 3989 3990 ep->queued_deq_seg = deq_state->new_deq_seg; 3991 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3992 if (deq_state->stream_id) 3993 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3994 ret = queue_command(xhci, cmd, 3995 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3996 upper_32_bits(addr), trb_stream_id, 3997 trb_slot_id | trb_ep_index | type, false); 3998 if (ret < 0) { 3999 xhci_free_command(xhci, cmd); 4000 return; 4001 } 4002 4003 /* Stop the TD queueing code from ringing the doorbell until 4004 * this command completes. The HC won't set the dequeue pointer 4005 * if the ring is running, and ringing the doorbell starts the 4006 * ring running. 4007 */ 4008 ep->ep_state |= SET_DEQ_PENDING; 4009 } 4010 4011 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4012 int slot_id, unsigned int ep_index, 4013 enum xhci_ep_reset_type reset_type) 4014 { 4015 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4016 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4017 u32 type = TRB_TYPE(TRB_RESET_EP); 4018 4019 if (reset_type == EP_SOFT_RESET) 4020 type |= TRB_TSP; 4021 4022 return queue_command(xhci, cmd, 0, 0, 0, 4023 trb_slot_id | trb_ep_index | type, false); 4024 } 4025