1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 127 * TRB is in a new segment. This does not skip over link TRBs, and it does not 128 * effect the ring dequeue or enqueue pointers. 129 */ 130 static void next_trb(struct xhci_hcd *xhci, 131 struct xhci_ring *ring, 132 struct xhci_segment **seg, 133 union xhci_trb **trb) 134 { 135 if (last_trb(xhci, ring, *seg, *trb)) { 136 *seg = (*seg)->next; 137 *trb = ((*seg)->trbs); 138 } else { 139 (*trb)++; 140 } 141 } 142 143 /* 144 * See Cycle bit rules. SW is the consumer for the event ring only. 145 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 146 */ 147 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 148 { 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 153 /* 154 * If this is not event ring, and the dequeue pointer 155 * is not on a link TRB, there is one more usable TRB 156 */ 157 if (ring->type != TYPE_EVENT && 158 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 159 ring->num_trbs_free++; 160 161 do { 162 /* 163 * Update the dequeue pointer further if that was a link TRB or 164 * we're at the end of an event ring segment (which doesn't have 165 * link TRBS) 166 */ 167 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 168 if (ring->type == TYPE_EVENT && 169 last_trb_on_last_seg(xhci, ring, 170 ring->deq_seg, ring->dequeue)) { 171 ring->cycle_state = (ring->cycle_state ? 0 : 1); 172 } 173 ring->deq_seg = ring->deq_seg->next; 174 ring->dequeue = ring->deq_seg->trbs; 175 } else { 176 ring->dequeue++; 177 } 178 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 179 180 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 181 } 182 183 /* 184 * See Cycle bit rules. SW is the consumer for the event ring only. 185 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 186 * 187 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 188 * chain bit is set), then set the chain bit in all the following link TRBs. 189 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 190 * have their chain bit cleared (so that each Link TRB is a separate TD). 191 * 192 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 193 * set, but other sections talk about dealing with the chain bit set. This was 194 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 195 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 196 * 197 * @more_trbs_coming: Will you enqueue more TRBs before calling 198 * prepare_transfer()? 199 */ 200 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 201 bool more_trbs_coming) 202 { 203 u32 chain; 204 union xhci_trb *next; 205 unsigned long long addr; 206 207 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 208 /* If this is not event ring, there is one less usable TRB */ 209 if (ring->type != TYPE_EVENT && 210 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 211 ring->num_trbs_free--; 212 next = ++(ring->enqueue); 213 214 ring->enq_updates++; 215 /* Update the dequeue pointer further if that was a link TRB or we're at 216 * the end of an event ring segment (which doesn't have link TRBS) 217 */ 218 while (last_trb(xhci, ring, ring->enq_seg, next)) { 219 if (ring->type != TYPE_EVENT) { 220 /* 221 * If the caller doesn't plan on enqueueing more 222 * TDs before ringing the doorbell, then we 223 * don't want to give the link TRB to the 224 * hardware just yet. We'll give the link TRB 225 * back in prepare_ring() just before we enqueue 226 * the TD at the top of the ring. 227 */ 228 if (!chain && !more_trbs_coming) 229 break; 230 231 /* If we're not dealing with 0.95 hardware or 232 * isoc rings on AMD 0.96 host, 233 * carry over the chain bit of the previous TRB 234 * (which may mean the chain bit is cleared). 235 */ 236 if (!(ring->type == TYPE_ISOC && 237 (xhci->quirks & XHCI_AMD_0x96_HOST)) 238 && !xhci_link_trb_quirk(xhci)) { 239 next->link.control &= 240 cpu_to_le32(~TRB_CHAIN); 241 next->link.control |= 242 cpu_to_le32(chain); 243 } 244 /* Give this link TRB to the hardware */ 245 wmb(); 246 next->link.control ^= cpu_to_le32(TRB_CYCLE); 247 248 /* Toggle the cycle bit after the last ring segment. */ 249 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 250 ring->cycle_state = (ring->cycle_state ? 0 : 1); 251 } 252 } 253 ring->enq_seg = ring->enq_seg->next; 254 ring->enqueue = ring->enq_seg->trbs; 255 next = ring->enqueue; 256 } 257 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 258 } 259 260 /* 261 * Check to see if there's room to enqueue num_trbs on the ring and make sure 262 * enqueue pointer will not advance into dequeue segment. See rules above. 263 */ 264 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 265 unsigned int num_trbs) 266 { 267 int num_trbs_in_deq_seg; 268 269 if (ring->num_trbs_free < num_trbs) 270 return 0; 271 272 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 273 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 274 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 275 return 0; 276 } 277 278 return 1; 279 } 280 281 /* Ring the host controller doorbell after placing a command on the ring */ 282 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 283 { 284 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 285 return; 286 287 xhci_dbg(xhci, "// Ding dong!\n"); 288 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 289 /* Flush PCI posted writes */ 290 xhci_readl(xhci, &xhci->dba->doorbell[0]); 291 } 292 293 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 294 { 295 u64 temp_64; 296 int ret; 297 298 xhci_dbg(xhci, "Abort command ring\n"); 299 300 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 301 xhci_dbg(xhci, "The command ring isn't running, " 302 "Have the command ring been stopped?\n"); 303 return 0; 304 } 305 306 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 307 if (!(temp_64 & CMD_RING_RUNNING)) { 308 xhci_dbg(xhci, "Command ring had been stopped\n"); 309 return 0; 310 } 311 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 312 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 313 &xhci->op_regs->cmd_ring); 314 315 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 316 * time the completion od all xHCI commands, including 317 * the Command Abort operation. If software doesn't see 318 * CRR negated in a timely manner (e.g. longer than 5 319 * seconds), then it should assume that the there are 320 * larger problems with the xHC and assert HCRST. 321 */ 322 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 323 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 324 if (ret < 0) { 325 xhci_err(xhci, "Stopped the command ring failed, " 326 "maybe the host is dead\n"); 327 xhci->xhc_state |= XHCI_STATE_DYING; 328 xhci_quiesce(xhci); 329 xhci_halt(xhci); 330 return -ESHUTDOWN; 331 } 332 333 return 0; 334 } 335 336 static int xhci_queue_cd(struct xhci_hcd *xhci, 337 struct xhci_command *command, 338 union xhci_trb *cmd_trb) 339 { 340 struct xhci_cd *cd; 341 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 342 if (!cd) 343 return -ENOMEM; 344 INIT_LIST_HEAD(&cd->cancel_cmd_list); 345 346 cd->command = command; 347 cd->cmd_trb = cmd_trb; 348 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 349 350 return 0; 351 } 352 353 /* 354 * Cancel the command which has issue. 355 * 356 * Some commands may hang due to waiting for acknowledgement from 357 * usb device. It is outside of the xHC's ability to control and 358 * will cause the command ring is blocked. When it occurs software 359 * should intervene to recover the command ring. 360 * See Section 4.6.1.1 and 4.6.1.2 361 */ 362 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 363 union xhci_trb *cmd_trb) 364 { 365 int retval = 0; 366 unsigned long flags; 367 368 spin_lock_irqsave(&xhci->lock, flags); 369 370 if (xhci->xhc_state & XHCI_STATE_DYING) { 371 xhci_warn(xhci, "Abort the command ring," 372 " but the xHCI is dead.\n"); 373 retval = -ESHUTDOWN; 374 goto fail; 375 } 376 377 /* queue the cmd desriptor to cancel_cmd_list */ 378 retval = xhci_queue_cd(xhci, command, cmd_trb); 379 if (retval) { 380 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 381 goto fail; 382 } 383 384 /* abort command ring */ 385 retval = xhci_abort_cmd_ring(xhci); 386 if (retval) { 387 xhci_err(xhci, "Abort command ring failed\n"); 388 if (unlikely(retval == -ESHUTDOWN)) { 389 spin_unlock_irqrestore(&xhci->lock, flags); 390 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 391 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 392 return retval; 393 } 394 } 395 396 fail: 397 spin_unlock_irqrestore(&xhci->lock, flags); 398 return retval; 399 } 400 401 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 402 unsigned int slot_id, 403 unsigned int ep_index, 404 unsigned int stream_id) 405 { 406 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 407 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 408 unsigned int ep_state = ep->ep_state; 409 410 /* Don't ring the doorbell for this endpoint if there are pending 411 * cancellations because we don't want to interrupt processing. 412 * We don't want to restart any stream rings if there's a set dequeue 413 * pointer command pending because the device can choose to start any 414 * stream once the endpoint is on the HW schedule. 415 * FIXME - check all the stream rings for pending cancellations. 416 */ 417 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 418 (ep_state & EP_HALTED)) 419 return; 420 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 421 /* The CPU has better things to do at this point than wait for a 422 * write-posting flush. It'll get there soon enough. 423 */ 424 } 425 426 /* Ring the doorbell for any rings with pending URBs */ 427 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 428 unsigned int slot_id, 429 unsigned int ep_index) 430 { 431 unsigned int stream_id; 432 struct xhci_virt_ep *ep; 433 434 ep = &xhci->devs[slot_id]->eps[ep_index]; 435 436 /* A ring has pending URBs if its TD list is not empty */ 437 if (!(ep->ep_state & EP_HAS_STREAMS)) { 438 if (ep->ring && !(list_empty(&ep->ring->td_list))) 439 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 440 return; 441 } 442 443 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 444 stream_id++) { 445 struct xhci_stream_info *stream_info = ep->stream_info; 446 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 447 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 448 stream_id); 449 } 450 } 451 452 /* 453 * Find the segment that trb is in. Start searching in start_seg. 454 * If we must move past a segment that has a link TRB with a toggle cycle state 455 * bit set, then we will toggle the value pointed at by cycle_state. 456 */ 457 static struct xhci_segment *find_trb_seg( 458 struct xhci_segment *start_seg, 459 union xhci_trb *trb, int *cycle_state) 460 { 461 struct xhci_segment *cur_seg = start_seg; 462 struct xhci_generic_trb *generic_trb; 463 464 while (cur_seg->trbs > trb || 465 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 466 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 467 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 468 *cycle_state ^= 0x1; 469 cur_seg = cur_seg->next; 470 if (cur_seg == start_seg) 471 /* Looped over the entire list. Oops! */ 472 return NULL; 473 } 474 return cur_seg; 475 } 476 477 478 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 479 unsigned int slot_id, unsigned int ep_index, 480 unsigned int stream_id) 481 { 482 struct xhci_virt_ep *ep; 483 484 ep = &xhci->devs[slot_id]->eps[ep_index]; 485 /* Common case: no streams */ 486 if (!(ep->ep_state & EP_HAS_STREAMS)) 487 return ep->ring; 488 489 if (stream_id == 0) { 490 xhci_warn(xhci, 491 "WARN: Slot ID %u, ep index %u has streams, " 492 "but URB has no stream ID.\n", 493 slot_id, ep_index); 494 return NULL; 495 } 496 497 if (stream_id < ep->stream_info->num_streams) 498 return ep->stream_info->stream_rings[stream_id]; 499 500 xhci_warn(xhci, 501 "WARN: Slot ID %u, ep index %u has " 502 "stream IDs 1 to %u allocated, " 503 "but stream ID %u is requested.\n", 504 slot_id, ep_index, 505 ep->stream_info->num_streams - 1, 506 stream_id); 507 return NULL; 508 } 509 510 /* Get the right ring for the given URB. 511 * If the endpoint supports streams, boundary check the URB's stream ID. 512 * If the endpoint doesn't support streams, return the singular endpoint ring. 513 */ 514 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 515 struct urb *urb) 516 { 517 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 518 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 519 } 520 521 /* 522 * Move the xHC's endpoint ring dequeue pointer past cur_td. 523 * Record the new state of the xHC's endpoint ring dequeue segment, 524 * dequeue pointer, and new consumer cycle state in state. 525 * Update our internal representation of the ring's dequeue pointer. 526 * 527 * We do this in three jumps: 528 * - First we update our new ring state to be the same as when the xHC stopped. 529 * - Then we traverse the ring to find the segment that contains 530 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 531 * any link TRBs with the toggle cycle bit set. 532 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 533 * if we've moved it past a link TRB with the toggle cycle bit set. 534 * 535 * Some of the uses of xhci_generic_trb are grotty, but if they're done 536 * with correct __le32 accesses they should work fine. Only users of this are 537 * in here. 538 */ 539 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 540 unsigned int slot_id, unsigned int ep_index, 541 unsigned int stream_id, struct xhci_td *cur_td, 542 struct xhci_dequeue_state *state) 543 { 544 struct xhci_virt_device *dev = xhci->devs[slot_id]; 545 struct xhci_ring *ep_ring; 546 struct xhci_generic_trb *trb; 547 struct xhci_ep_ctx *ep_ctx; 548 dma_addr_t addr; 549 550 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 551 ep_index, stream_id); 552 if (!ep_ring) { 553 xhci_warn(xhci, "WARN can't find new dequeue state " 554 "for invalid stream ID %u.\n", 555 stream_id); 556 return; 557 } 558 state->new_cycle_state = 0; 559 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 560 "Finding segment containing stopped TRB."); 561 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 562 dev->eps[ep_index].stopped_trb, 563 &state->new_cycle_state); 564 if (!state->new_deq_seg) { 565 WARN_ON(1); 566 return; 567 } 568 569 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 570 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 571 "Finding endpoint context"); 572 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 573 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 574 575 state->new_deq_ptr = cur_td->last_trb; 576 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 577 "Finding segment containing last TRB in TD."); 578 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 579 state->new_deq_ptr, 580 &state->new_cycle_state); 581 if (!state->new_deq_seg) { 582 WARN_ON(1); 583 return; 584 } 585 586 trb = &state->new_deq_ptr->generic; 587 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 588 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 589 state->new_cycle_state ^= 0x1; 590 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 591 592 /* 593 * If there is only one segment in a ring, find_trb_seg()'s while loop 594 * will not run, and it will return before it has a chance to see if it 595 * needs to toggle the cycle bit. It can't tell if the stalled transfer 596 * ended just before the link TRB on a one-segment ring, or if the TD 597 * wrapped around the top of the ring, because it doesn't have the TD in 598 * question. Look for the one-segment case where stalled TRB's address 599 * is greater than the new dequeue pointer address. 600 */ 601 if (ep_ring->first_seg == ep_ring->first_seg->next && 602 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 603 state->new_cycle_state ^= 0x1; 604 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 605 "Cycle state = 0x%x", state->new_cycle_state); 606 607 /* Don't update the ring cycle state for the producer (us). */ 608 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 609 "New dequeue segment = %p (virtual)", 610 state->new_deq_seg); 611 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 612 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 613 "New dequeue pointer = 0x%llx (DMA)", 614 (unsigned long long) addr); 615 } 616 617 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 618 * (The last TRB actually points to the ring enqueue pointer, which is not part 619 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 620 */ 621 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 622 struct xhci_td *cur_td, bool flip_cycle) 623 { 624 struct xhci_segment *cur_seg; 625 union xhci_trb *cur_trb; 626 627 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 628 true; 629 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 630 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 631 /* Unchain any chained Link TRBs, but 632 * leave the pointers intact. 633 */ 634 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 635 /* Flip the cycle bit (link TRBs can't be the first 636 * or last TRB). 637 */ 638 if (flip_cycle) 639 cur_trb->generic.field[3] ^= 640 cpu_to_le32(TRB_CYCLE); 641 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 642 "Cancel (unchain) link TRB"); 643 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 644 "Address = %p (0x%llx dma); " 645 "in seg %p (0x%llx dma)", 646 cur_trb, 647 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 648 cur_seg, 649 (unsigned long long)cur_seg->dma); 650 } else { 651 cur_trb->generic.field[0] = 0; 652 cur_trb->generic.field[1] = 0; 653 cur_trb->generic.field[2] = 0; 654 /* Preserve only the cycle bit of this TRB */ 655 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 656 /* Flip the cycle bit except on the first or last TRB */ 657 if (flip_cycle && cur_trb != cur_td->first_trb && 658 cur_trb != cur_td->last_trb) 659 cur_trb->generic.field[3] ^= 660 cpu_to_le32(TRB_CYCLE); 661 cur_trb->generic.field[3] |= cpu_to_le32( 662 TRB_TYPE(TRB_TR_NOOP)); 663 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 664 "TRB to noop at offset 0x%llx", 665 (unsigned long long) 666 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 667 } 668 if (cur_trb == cur_td->last_trb) 669 break; 670 } 671 } 672 673 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 674 unsigned int ep_index, unsigned int stream_id, 675 struct xhci_segment *deq_seg, 676 union xhci_trb *deq_ptr, u32 cycle_state); 677 678 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 679 unsigned int slot_id, unsigned int ep_index, 680 unsigned int stream_id, 681 struct xhci_dequeue_state *deq_state) 682 { 683 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 684 685 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 686 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 687 "new deq ptr = %p (0x%llx dma), new cycle = %u", 688 deq_state->new_deq_seg, 689 (unsigned long long)deq_state->new_deq_seg->dma, 690 deq_state->new_deq_ptr, 691 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 692 deq_state->new_cycle_state); 693 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 694 deq_state->new_deq_seg, 695 deq_state->new_deq_ptr, 696 (u32) deq_state->new_cycle_state); 697 /* Stop the TD queueing code from ringing the doorbell until 698 * this command completes. The HC won't set the dequeue pointer 699 * if the ring is running, and ringing the doorbell starts the 700 * ring running. 701 */ 702 ep->ep_state |= SET_DEQ_PENDING; 703 } 704 705 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 706 struct xhci_virt_ep *ep) 707 { 708 ep->ep_state &= ~EP_HALT_PENDING; 709 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 710 * timer is running on another CPU, we don't decrement stop_cmds_pending 711 * (since we didn't successfully stop the watchdog timer). 712 */ 713 if (del_timer(&ep->stop_cmd_timer)) 714 ep->stop_cmds_pending--; 715 } 716 717 /* Must be called with xhci->lock held in interrupt context */ 718 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 719 struct xhci_td *cur_td, int status, char *adjective) 720 { 721 struct usb_hcd *hcd; 722 struct urb *urb; 723 struct urb_priv *urb_priv; 724 725 urb = cur_td->urb; 726 urb_priv = urb->hcpriv; 727 urb_priv->td_cnt++; 728 hcd = bus_to_hcd(urb->dev->bus); 729 730 /* Only giveback urb when this is the last td in urb */ 731 if (urb_priv->td_cnt == urb_priv->length) { 732 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 733 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 734 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 735 if (xhci->quirks & XHCI_AMD_PLL_FIX) 736 usb_amd_quirk_pll_enable(); 737 } 738 } 739 usb_hcd_unlink_urb_from_ep(hcd, urb); 740 741 spin_unlock(&xhci->lock); 742 usb_hcd_giveback_urb(hcd, urb, status); 743 xhci_urb_free_priv(xhci, urb_priv); 744 spin_lock(&xhci->lock); 745 } 746 } 747 748 /* 749 * When we get a command completion for a Stop Endpoint Command, we need to 750 * unlink any cancelled TDs from the ring. There are two ways to do that: 751 * 752 * 1. If the HW was in the middle of processing the TD that needs to be 753 * cancelled, then we must move the ring's dequeue pointer past the last TRB 754 * in the TD with a Set Dequeue Pointer Command. 755 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 756 * bit cleared) so that the HW will skip over them. 757 */ 758 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 759 union xhci_trb *trb, struct xhci_event_cmd *event) 760 { 761 unsigned int slot_id; 762 unsigned int ep_index; 763 struct xhci_virt_device *virt_dev; 764 struct xhci_ring *ep_ring; 765 struct xhci_virt_ep *ep; 766 struct list_head *entry; 767 struct xhci_td *cur_td = NULL; 768 struct xhci_td *last_unlinked_td; 769 770 struct xhci_dequeue_state deq_state; 771 772 if (unlikely(TRB_TO_SUSPEND_PORT( 773 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 774 slot_id = TRB_TO_SLOT_ID( 775 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 776 virt_dev = xhci->devs[slot_id]; 777 if (virt_dev) 778 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 779 event); 780 else 781 xhci_warn(xhci, "Stop endpoint command " 782 "completion for disabled slot %u\n", 783 slot_id); 784 return; 785 } 786 787 memset(&deq_state, 0, sizeof(deq_state)); 788 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 789 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 790 ep = &xhci->devs[slot_id]->eps[ep_index]; 791 792 if (list_empty(&ep->cancelled_td_list)) { 793 xhci_stop_watchdog_timer_in_irq(xhci, ep); 794 ep->stopped_td = NULL; 795 ep->stopped_trb = NULL; 796 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 797 return; 798 } 799 800 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 801 * We have the xHCI lock, so nothing can modify this list until we drop 802 * it. We're also in the event handler, so we can't get re-interrupted 803 * if another Stop Endpoint command completes 804 */ 805 list_for_each(entry, &ep->cancelled_td_list) { 806 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 807 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 808 "Removing canceled TD starting at 0x%llx (dma).", 809 (unsigned long long)xhci_trb_virt_to_dma( 810 cur_td->start_seg, cur_td->first_trb)); 811 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 812 if (!ep_ring) { 813 /* This shouldn't happen unless a driver is mucking 814 * with the stream ID after submission. This will 815 * leave the TD on the hardware ring, and the hardware 816 * will try to execute it, and may access a buffer 817 * that has already been freed. In the best case, the 818 * hardware will execute it, and the event handler will 819 * ignore the completion event for that TD, since it was 820 * removed from the td_list for that endpoint. In 821 * short, don't muck with the stream ID after 822 * submission. 823 */ 824 xhci_warn(xhci, "WARN Cancelled URB %p " 825 "has invalid stream ID %u.\n", 826 cur_td->urb, 827 cur_td->urb->stream_id); 828 goto remove_finished_td; 829 } 830 /* 831 * If we stopped on the TD we need to cancel, then we have to 832 * move the xHC endpoint ring dequeue pointer past this TD. 833 */ 834 if (cur_td == ep->stopped_td) 835 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 836 cur_td->urb->stream_id, 837 cur_td, &deq_state); 838 else 839 td_to_noop(xhci, ep_ring, cur_td, false); 840 remove_finished_td: 841 /* 842 * The event handler won't see a completion for this TD anymore, 843 * so remove it from the endpoint ring's TD list. Keep it in 844 * the cancelled TD list for URB completion later. 845 */ 846 list_del_init(&cur_td->td_list); 847 } 848 last_unlinked_td = cur_td; 849 xhci_stop_watchdog_timer_in_irq(xhci, ep); 850 851 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 852 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 853 xhci_queue_new_dequeue_state(xhci, 854 slot_id, ep_index, 855 ep->stopped_td->urb->stream_id, 856 &deq_state); 857 xhci_ring_cmd_db(xhci); 858 } else { 859 /* Otherwise ring the doorbell(s) to restart queued transfers */ 860 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 861 } 862 ep->stopped_td = NULL; 863 ep->stopped_trb = NULL; 864 865 /* 866 * Drop the lock and complete the URBs in the cancelled TD list. 867 * New TDs to be cancelled might be added to the end of the list before 868 * we can complete all the URBs for the TDs we already unlinked. 869 * So stop when we've completed the URB for the last TD we unlinked. 870 */ 871 do { 872 cur_td = list_entry(ep->cancelled_td_list.next, 873 struct xhci_td, cancelled_td_list); 874 list_del_init(&cur_td->cancelled_td_list); 875 876 /* Clean up the cancelled URB */ 877 /* Doesn't matter what we pass for status, since the core will 878 * just overwrite it (because the URB has been unlinked). 879 */ 880 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 881 882 /* Stop processing the cancelled list if the watchdog timer is 883 * running. 884 */ 885 if (xhci->xhc_state & XHCI_STATE_DYING) 886 return; 887 } while (cur_td != last_unlinked_td); 888 889 /* Return to the event handler with xhci->lock re-acquired */ 890 } 891 892 /* Watchdog timer function for when a stop endpoint command fails to complete. 893 * In this case, we assume the host controller is broken or dying or dead. The 894 * host may still be completing some other events, so we have to be careful to 895 * let the event ring handler and the URB dequeueing/enqueueing functions know 896 * through xhci->state. 897 * 898 * The timer may also fire if the host takes a very long time to respond to the 899 * command, and the stop endpoint command completion handler cannot delete the 900 * timer before the timer function is called. Another endpoint cancellation may 901 * sneak in before the timer function can grab the lock, and that may queue 902 * another stop endpoint command and add the timer back. So we cannot use a 903 * simple flag to say whether there is a pending stop endpoint command for a 904 * particular endpoint. 905 * 906 * Instead we use a combination of that flag and a counter for the number of 907 * pending stop endpoint commands. If the timer is the tail end of the last 908 * stop endpoint command, and the endpoint's command is still pending, we assume 909 * the host is dying. 910 */ 911 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 912 { 913 struct xhci_hcd *xhci; 914 struct xhci_virt_ep *ep; 915 struct xhci_virt_ep *temp_ep; 916 struct xhci_ring *ring; 917 struct xhci_td *cur_td; 918 int ret, i, j; 919 unsigned long flags; 920 921 ep = (struct xhci_virt_ep *) arg; 922 xhci = ep->xhci; 923 924 spin_lock_irqsave(&xhci->lock, flags); 925 926 ep->stop_cmds_pending--; 927 if (xhci->xhc_state & XHCI_STATE_DYING) { 928 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 929 "Stop EP timer ran, but another timer marked " 930 "xHCI as DYING, exiting."); 931 spin_unlock_irqrestore(&xhci->lock, flags); 932 return; 933 } 934 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 935 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 936 "Stop EP timer ran, but no command pending, " 937 "exiting."); 938 spin_unlock_irqrestore(&xhci->lock, flags); 939 return; 940 } 941 942 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 943 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 944 /* Oops, HC is dead or dying or at least not responding to the stop 945 * endpoint command. 946 */ 947 xhci->xhc_state |= XHCI_STATE_DYING; 948 /* Disable interrupts from the host controller and start halting it */ 949 xhci_quiesce(xhci); 950 spin_unlock_irqrestore(&xhci->lock, flags); 951 952 ret = xhci_halt(xhci); 953 954 spin_lock_irqsave(&xhci->lock, flags); 955 if (ret < 0) { 956 /* This is bad; the host is not responding to commands and it's 957 * not allowing itself to be halted. At least interrupts are 958 * disabled. If we call usb_hc_died(), it will attempt to 959 * disconnect all device drivers under this host. Those 960 * disconnect() methods will wait for all URBs to be unlinked, 961 * so we must complete them. 962 */ 963 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 964 xhci_warn(xhci, "Completing active URBs anyway.\n"); 965 /* We could turn all TDs on the rings to no-ops. This won't 966 * help if the host has cached part of the ring, and is slow if 967 * we want to preserve the cycle bit. Skip it and hope the host 968 * doesn't touch the memory. 969 */ 970 } 971 for (i = 0; i < MAX_HC_SLOTS; i++) { 972 if (!xhci->devs[i]) 973 continue; 974 for (j = 0; j < 31; j++) { 975 temp_ep = &xhci->devs[i]->eps[j]; 976 ring = temp_ep->ring; 977 if (!ring) 978 continue; 979 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 980 "Killing URBs for slot ID %u, " 981 "ep index %u", i, j); 982 while (!list_empty(&ring->td_list)) { 983 cur_td = list_first_entry(&ring->td_list, 984 struct xhci_td, 985 td_list); 986 list_del_init(&cur_td->td_list); 987 if (!list_empty(&cur_td->cancelled_td_list)) 988 list_del_init(&cur_td->cancelled_td_list); 989 xhci_giveback_urb_in_irq(xhci, cur_td, 990 -ESHUTDOWN, "killed"); 991 } 992 while (!list_empty(&temp_ep->cancelled_td_list)) { 993 cur_td = list_first_entry( 994 &temp_ep->cancelled_td_list, 995 struct xhci_td, 996 cancelled_td_list); 997 list_del_init(&cur_td->cancelled_td_list); 998 xhci_giveback_urb_in_irq(xhci, cur_td, 999 -ESHUTDOWN, "killed"); 1000 } 1001 } 1002 } 1003 spin_unlock_irqrestore(&xhci->lock, flags); 1004 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1005 "Calling usb_hc_died()"); 1006 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1008 "xHCI host controller is dead."); 1009 } 1010 1011 1012 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1013 struct xhci_virt_device *dev, 1014 struct xhci_ring *ep_ring, 1015 unsigned int ep_index) 1016 { 1017 union xhci_trb *dequeue_temp; 1018 int num_trbs_free_temp; 1019 bool revert = false; 1020 1021 num_trbs_free_temp = ep_ring->num_trbs_free; 1022 dequeue_temp = ep_ring->dequeue; 1023 1024 /* If we get two back-to-back stalls, and the first stalled transfer 1025 * ends just before a link TRB, the dequeue pointer will be left on 1026 * the link TRB by the code in the while loop. So we have to update 1027 * the dequeue pointer one segment further, or we'll jump off 1028 * the segment into la-la-land. 1029 */ 1030 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1031 ep_ring->deq_seg = ep_ring->deq_seg->next; 1032 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1033 } 1034 1035 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1036 /* We have more usable TRBs */ 1037 ep_ring->num_trbs_free++; 1038 ep_ring->dequeue++; 1039 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1040 ep_ring->dequeue)) { 1041 if (ep_ring->dequeue == 1042 dev->eps[ep_index].queued_deq_ptr) 1043 break; 1044 ep_ring->deq_seg = ep_ring->deq_seg->next; 1045 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1046 } 1047 if (ep_ring->dequeue == dequeue_temp) { 1048 revert = true; 1049 break; 1050 } 1051 } 1052 1053 if (revert) { 1054 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1055 ep_ring->num_trbs_free = num_trbs_free_temp; 1056 } 1057 } 1058 1059 /* 1060 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1061 * we need to clear the set deq pending flag in the endpoint ring state, so that 1062 * the TD queueing code can ring the doorbell again. We also need to ring the 1063 * endpoint doorbell to restart the ring, but only if there aren't more 1064 * cancellations pending. 1065 */ 1066 static void handle_set_deq_completion(struct xhci_hcd *xhci, 1067 struct xhci_event_cmd *event, 1068 union xhci_trb *trb) 1069 { 1070 unsigned int slot_id; 1071 unsigned int ep_index; 1072 unsigned int stream_id; 1073 struct xhci_ring *ep_ring; 1074 struct xhci_virt_device *dev; 1075 struct xhci_ep_ctx *ep_ctx; 1076 struct xhci_slot_ctx *slot_ctx; 1077 1078 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1079 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1080 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1081 dev = xhci->devs[slot_id]; 1082 1083 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1084 if (!ep_ring) { 1085 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1086 "freed stream ID %u\n", 1087 stream_id); 1088 /* XXX: Harmless??? */ 1089 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1090 return; 1091 } 1092 1093 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1094 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1095 1096 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 1097 unsigned int ep_state; 1098 unsigned int slot_state; 1099 1100 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 1101 case COMP_TRB_ERR: 1102 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1103 "of stream ID configuration\n"); 1104 break; 1105 case COMP_CTX_STATE: 1106 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1107 "to incorrect slot or ep state.\n"); 1108 ep_state = le32_to_cpu(ep_ctx->ep_info); 1109 ep_state &= EP_STATE_MASK; 1110 slot_state = le32_to_cpu(slot_ctx->dev_state); 1111 slot_state = GET_SLOT_STATE(slot_state); 1112 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1113 "Slot state = %u, EP state = %u", 1114 slot_state, ep_state); 1115 break; 1116 case COMP_EBADSLT: 1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1118 "slot %u was not enabled.\n", slot_id); 1119 break; 1120 default: 1121 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1122 "completion code of %u.\n", 1123 GET_COMP_CODE(le32_to_cpu(event->status))); 1124 break; 1125 } 1126 /* OK what do we do now? The endpoint state is hosed, and we 1127 * should never get to this point if the synchronization between 1128 * queueing, and endpoint state are correct. This might happen 1129 * if the device gets disconnected after we've finished 1130 * cancelling URBs, which might not be an error... 1131 */ 1132 } else { 1133 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1134 "Successful Set TR Deq Ptr cmd, deq = @%08llx", 1135 le64_to_cpu(ep_ctx->deq)); 1136 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1137 dev->eps[ep_index].queued_deq_ptr) == 1138 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1139 /* Update the ring's dequeue segment and dequeue pointer 1140 * to reflect the new position. 1141 */ 1142 update_ring_for_set_deq_completion(xhci, dev, 1143 ep_ring, ep_index); 1144 } else { 1145 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1146 "Ptr command & xHCI internal state.\n"); 1147 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1148 dev->eps[ep_index].queued_deq_seg, 1149 dev->eps[ep_index].queued_deq_ptr); 1150 } 1151 } 1152 1153 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1154 dev->eps[ep_index].queued_deq_seg = NULL; 1155 dev->eps[ep_index].queued_deq_ptr = NULL; 1156 /* Restart any rings with pending URBs */ 1157 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1158 } 1159 1160 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1161 struct xhci_event_cmd *event, 1162 union xhci_trb *trb) 1163 { 1164 int slot_id; 1165 unsigned int ep_index; 1166 1167 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1168 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1169 /* This command will only fail if the endpoint wasn't halted, 1170 * but we don't care. 1171 */ 1172 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1173 "Ignoring reset ep completion code of %u", 1174 GET_COMP_CODE(le32_to_cpu(event->status))); 1175 1176 /* HW with the reset endpoint quirk needs to have a configure endpoint 1177 * command complete before the endpoint can be used. Queue that here 1178 * because the HW can't handle two commands being queued in a row. 1179 */ 1180 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1181 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1182 "Queueing configure endpoint command"); 1183 xhci_queue_configure_endpoint(xhci, 1184 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1185 false); 1186 xhci_ring_cmd_db(xhci); 1187 } else { 1188 /* Clear our internal halted state and restart the ring(s) */ 1189 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1190 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1191 } 1192 } 1193 1194 /* Complete the command and detele it from the devcie's command queue. 1195 */ 1196 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1197 struct xhci_command *command, u32 status) 1198 { 1199 command->status = status; 1200 list_del(&command->cmd_list); 1201 if (command->completion) 1202 complete(command->completion); 1203 else 1204 xhci_free_command(xhci, command); 1205 } 1206 1207 1208 /* Check to see if a command in the device's command queue matches this one. 1209 * Signal the completion or free the command, and return 1. Return 0 if the 1210 * completed command isn't at the head of the command list. 1211 */ 1212 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1213 struct xhci_virt_device *virt_dev, 1214 struct xhci_event_cmd *event) 1215 { 1216 struct xhci_command *command; 1217 1218 if (list_empty(&virt_dev->cmd_list)) 1219 return 0; 1220 1221 command = list_entry(virt_dev->cmd_list.next, 1222 struct xhci_command, cmd_list); 1223 if (xhci->cmd_ring->dequeue != command->command_trb) 1224 return 0; 1225 1226 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1227 GET_COMP_CODE(le32_to_cpu(event->status))); 1228 return 1; 1229 } 1230 1231 /* 1232 * Finding the command trb need to be cancelled and modifying it to 1233 * NO OP command. And if the command is in device's command wait 1234 * list, finishing and freeing it. 1235 * 1236 * If we can't find the command trb, we think it had already been 1237 * executed. 1238 */ 1239 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1240 { 1241 struct xhci_segment *cur_seg; 1242 union xhci_trb *cmd_trb; 1243 u32 cycle_state; 1244 1245 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1246 return; 1247 1248 /* find the current segment of command ring */ 1249 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1250 xhci->cmd_ring->dequeue, &cycle_state); 1251 1252 if (!cur_seg) { 1253 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1254 xhci->cmd_ring->dequeue, 1255 (unsigned long long) 1256 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1257 xhci->cmd_ring->dequeue)); 1258 xhci_debug_ring(xhci, xhci->cmd_ring); 1259 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1260 return; 1261 } 1262 1263 /* find the command trb matched by cd from command ring */ 1264 for (cmd_trb = xhci->cmd_ring->dequeue; 1265 cmd_trb != xhci->cmd_ring->enqueue; 1266 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1267 /* If the trb is link trb, continue */ 1268 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1269 continue; 1270 1271 if (cur_cd->cmd_trb == cmd_trb) { 1272 1273 /* If the command in device's command list, we should 1274 * finish it and free the command structure. 1275 */ 1276 if (cur_cd->command) 1277 xhci_complete_cmd_in_cmd_wait_list(xhci, 1278 cur_cd->command, COMP_CMD_STOP); 1279 1280 /* get cycle state from the origin command trb */ 1281 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1282 & TRB_CYCLE; 1283 1284 /* modify the command trb to NO OP command */ 1285 cmd_trb->generic.field[0] = 0; 1286 cmd_trb->generic.field[1] = 0; 1287 cmd_trb->generic.field[2] = 0; 1288 cmd_trb->generic.field[3] = cpu_to_le32( 1289 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1290 break; 1291 } 1292 } 1293 } 1294 1295 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1296 { 1297 struct xhci_cd *cur_cd, *next_cd; 1298 1299 if (list_empty(&xhci->cancel_cmd_list)) 1300 return; 1301 1302 list_for_each_entry_safe(cur_cd, next_cd, 1303 &xhci->cancel_cmd_list, cancel_cmd_list) { 1304 xhci_cmd_to_noop(xhci, cur_cd); 1305 list_del(&cur_cd->cancel_cmd_list); 1306 kfree(cur_cd); 1307 } 1308 } 1309 1310 /* 1311 * traversing the cancel_cmd_list. If the command descriptor according 1312 * to cmd_trb is found, the function free it and return 1, otherwise 1313 * return 0. 1314 */ 1315 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1316 union xhci_trb *cmd_trb) 1317 { 1318 struct xhci_cd *cur_cd, *next_cd; 1319 1320 if (list_empty(&xhci->cancel_cmd_list)) 1321 return 0; 1322 1323 list_for_each_entry_safe(cur_cd, next_cd, 1324 &xhci->cancel_cmd_list, cancel_cmd_list) { 1325 if (cur_cd->cmd_trb == cmd_trb) { 1326 if (cur_cd->command) 1327 xhci_complete_cmd_in_cmd_wait_list(xhci, 1328 cur_cd->command, COMP_CMD_STOP); 1329 list_del(&cur_cd->cancel_cmd_list); 1330 kfree(cur_cd); 1331 return 1; 1332 } 1333 } 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1340 * trb pointed by the command ring dequeue pointer is the trb we want to 1341 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1342 * traverse the cancel_cmd_list to trun the all of the commands according 1343 * to command descriptor to NO-OP trb. 1344 */ 1345 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1346 int cmd_trb_comp_code) 1347 { 1348 int cur_trb_is_good = 0; 1349 1350 /* Searching the cmd trb pointed by the command ring dequeue 1351 * pointer in command descriptor list. If it is found, free it. 1352 */ 1353 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1354 xhci->cmd_ring->dequeue); 1355 1356 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1357 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1358 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1359 /* traversing the cancel_cmd_list and canceling 1360 * the command according to command descriptor 1361 */ 1362 xhci_cancel_cmd_in_cd_list(xhci); 1363 1364 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1365 /* 1366 * ring command ring doorbell again to restart the 1367 * command ring 1368 */ 1369 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1370 xhci_ring_cmd_db(xhci); 1371 } 1372 return cur_trb_is_good; 1373 } 1374 1375 static void handle_cmd_completion(struct xhci_hcd *xhci, 1376 struct xhci_event_cmd *event) 1377 { 1378 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1379 u64 cmd_dma; 1380 dma_addr_t cmd_dequeue_dma; 1381 struct xhci_input_control_ctx *ctrl_ctx; 1382 struct xhci_virt_device *virt_dev; 1383 unsigned int ep_index; 1384 struct xhci_ring *ep_ring; 1385 unsigned int ep_state; 1386 1387 cmd_dma = le64_to_cpu(event->cmd_trb); 1388 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1389 xhci->cmd_ring->dequeue); 1390 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1391 if (cmd_dequeue_dma == 0) { 1392 xhci->error_bitmask |= 1 << 4; 1393 return; 1394 } 1395 /* Does the DMA address match our internal dequeue pointer address? */ 1396 if (cmd_dma != (u64) cmd_dequeue_dma) { 1397 xhci->error_bitmask |= 1 << 5; 1398 return; 1399 } 1400 1401 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic, 1402 (struct xhci_generic_trb *) event); 1403 1404 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) || 1405 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) { 1406 /* If the return value is 0, we think the trb pointed by 1407 * command ring dequeue pointer is a good trb. The good 1408 * trb means we don't want to cancel the trb, but it have 1409 * been stopped by host. So we should handle it normally. 1410 * Otherwise, driver should invoke inc_deq() and return. 1411 */ 1412 if (handle_stopped_cmd_ring(xhci, 1413 GET_COMP_CODE(le32_to_cpu(event->status)))) { 1414 inc_deq(xhci, xhci->cmd_ring); 1415 return; 1416 } 1417 } 1418 1419 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1420 & TRB_TYPE_BITMASK) { 1421 case TRB_TYPE(TRB_ENABLE_SLOT): 1422 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1423 xhci->slot_id = slot_id; 1424 else 1425 xhci->slot_id = 0; 1426 complete(&xhci->addr_dev); 1427 break; 1428 case TRB_TYPE(TRB_DISABLE_SLOT): 1429 if (xhci->devs[slot_id]) { 1430 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1431 /* Delete default control endpoint resources */ 1432 xhci_free_device_endpoint_resources(xhci, 1433 xhci->devs[slot_id], true); 1434 xhci_free_virt_device(xhci, slot_id); 1435 } 1436 break; 1437 case TRB_TYPE(TRB_CONFIG_EP): 1438 virt_dev = xhci->devs[slot_id]; 1439 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1440 break; 1441 /* 1442 * Configure endpoint commands can come from the USB core 1443 * configuration or alt setting changes, or because the HW 1444 * needed an extra configure endpoint command after a reset 1445 * endpoint command or streams were being configured. 1446 * If the command was for a halted endpoint, the xHCI driver 1447 * is not waiting on the configure endpoint command. 1448 */ 1449 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1450 virt_dev->in_ctx); 1451 if (!ctrl_ctx) { 1452 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1453 break; 1454 } 1455 /* Input ctx add_flags are the endpoint index plus one */ 1456 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1457 /* A usb_set_interface() call directly after clearing a halted 1458 * condition may race on this quirky hardware. Not worth 1459 * worrying about, since this is prototype hardware. Not sure 1460 * if this will work for streams, but streams support was 1461 * untested on this prototype. 1462 */ 1463 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1464 ep_index != (unsigned int) -1 && 1465 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1466 le32_to_cpu(ctrl_ctx->drop_flags)) { 1467 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1468 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1469 if (!(ep_state & EP_HALTED)) 1470 goto bandwidth_change; 1471 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1472 "Completed config ep cmd - " 1473 "last ep index = %d, state = %d", 1474 ep_index, ep_state); 1475 /* Clear internal halted state and restart ring(s) */ 1476 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1477 ~EP_HALTED; 1478 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1479 break; 1480 } 1481 bandwidth_change: 1482 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1483 "Completed config ep cmd"); 1484 xhci->devs[slot_id]->cmd_status = 1485 GET_COMP_CODE(le32_to_cpu(event->status)); 1486 complete(&xhci->devs[slot_id]->cmd_completion); 1487 break; 1488 case TRB_TYPE(TRB_EVAL_CONTEXT): 1489 virt_dev = xhci->devs[slot_id]; 1490 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1491 break; 1492 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1493 complete(&xhci->devs[slot_id]->cmd_completion); 1494 break; 1495 case TRB_TYPE(TRB_ADDR_DEV): 1496 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1497 complete(&xhci->addr_dev); 1498 break; 1499 case TRB_TYPE(TRB_STOP_RING): 1500 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1501 break; 1502 case TRB_TYPE(TRB_SET_DEQ): 1503 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1504 break; 1505 case TRB_TYPE(TRB_CMD_NOOP): 1506 break; 1507 case TRB_TYPE(TRB_RESET_EP): 1508 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1509 break; 1510 case TRB_TYPE(TRB_RESET_DEV): 1511 xhci_dbg(xhci, "Completed reset device command.\n"); 1512 slot_id = TRB_TO_SLOT_ID( 1513 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1514 virt_dev = xhci->devs[slot_id]; 1515 if (virt_dev) 1516 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1517 else 1518 xhci_warn(xhci, "Reset device command completion " 1519 "for disabled slot %u\n", slot_id); 1520 break; 1521 case TRB_TYPE(TRB_NEC_GET_FW): 1522 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1523 xhci->error_bitmask |= 1 << 6; 1524 break; 1525 } 1526 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1527 "NEC firmware version %2x.%02x", 1528 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1529 NEC_FW_MINOR(le32_to_cpu(event->status))); 1530 break; 1531 default: 1532 /* Skip over unknown commands on the event ring */ 1533 xhci->error_bitmask |= 1 << 6; 1534 break; 1535 } 1536 inc_deq(xhci, xhci->cmd_ring); 1537 } 1538 1539 static void handle_vendor_event(struct xhci_hcd *xhci, 1540 union xhci_trb *event) 1541 { 1542 u32 trb_type; 1543 1544 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1545 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1546 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1547 handle_cmd_completion(xhci, &event->event_cmd); 1548 } 1549 1550 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1551 * port registers -- USB 3.0 and USB 2.0). 1552 * 1553 * Returns a zero-based port number, which is suitable for indexing into each of 1554 * the split roothubs' port arrays and bus state arrays. 1555 * Add one to it in order to call xhci_find_slot_id_by_port. 1556 */ 1557 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1558 struct xhci_hcd *xhci, u32 port_id) 1559 { 1560 unsigned int i; 1561 unsigned int num_similar_speed_ports = 0; 1562 1563 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1564 * and usb2_ports are 0-based indexes. Count the number of similar 1565 * speed ports, up to 1 port before this port. 1566 */ 1567 for (i = 0; i < (port_id - 1); i++) { 1568 u8 port_speed = xhci->port_array[i]; 1569 1570 /* 1571 * Skip ports that don't have known speeds, or have duplicate 1572 * Extended Capabilities port speed entries. 1573 */ 1574 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1575 continue; 1576 1577 /* 1578 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1579 * 1.1 ports are under the USB 2.0 hub. If the port speed 1580 * matches the device speed, it's a similar speed port. 1581 */ 1582 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1583 num_similar_speed_ports++; 1584 } 1585 return num_similar_speed_ports; 1586 } 1587 1588 static void handle_device_notification(struct xhci_hcd *xhci, 1589 union xhci_trb *event) 1590 { 1591 u32 slot_id; 1592 struct usb_device *udev; 1593 1594 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1595 if (!xhci->devs[slot_id]) { 1596 xhci_warn(xhci, "Device Notification event for " 1597 "unused slot %u\n", slot_id); 1598 return; 1599 } 1600 1601 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1602 slot_id); 1603 udev = xhci->devs[slot_id]->udev; 1604 if (udev && udev->parent) 1605 usb_wakeup_notification(udev->parent, udev->portnum); 1606 } 1607 1608 static void handle_port_status(struct xhci_hcd *xhci, 1609 union xhci_trb *event) 1610 { 1611 struct usb_hcd *hcd; 1612 u32 port_id; 1613 u32 temp, temp1; 1614 int max_ports; 1615 int slot_id; 1616 unsigned int faked_port_index; 1617 u8 major_revision; 1618 struct xhci_bus_state *bus_state; 1619 __le32 __iomem **port_array; 1620 bool bogus_port_status = false; 1621 1622 /* Port status change events always have a successful completion code */ 1623 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1624 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1625 xhci->error_bitmask |= 1 << 8; 1626 } 1627 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1628 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1629 1630 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1631 if ((port_id <= 0) || (port_id > max_ports)) { 1632 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1633 inc_deq(xhci, xhci->event_ring); 1634 return; 1635 } 1636 1637 /* Figure out which usb_hcd this port is attached to: 1638 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1639 */ 1640 major_revision = xhci->port_array[port_id - 1]; 1641 1642 /* Find the right roothub. */ 1643 hcd = xhci_to_hcd(xhci); 1644 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1645 hcd = xhci->shared_hcd; 1646 1647 if (major_revision == 0) { 1648 xhci_warn(xhci, "Event for port %u not in " 1649 "Extended Capabilities, ignoring.\n", 1650 port_id); 1651 bogus_port_status = true; 1652 goto cleanup; 1653 } 1654 if (major_revision == DUPLICATE_ENTRY) { 1655 xhci_warn(xhci, "Event for port %u duplicated in" 1656 "Extended Capabilities, ignoring.\n", 1657 port_id); 1658 bogus_port_status = true; 1659 goto cleanup; 1660 } 1661 1662 /* 1663 * Hardware port IDs reported by a Port Status Change Event include USB 1664 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1665 * resume event, but we first need to translate the hardware port ID 1666 * into the index into the ports on the correct split roothub, and the 1667 * correct bus_state structure. 1668 */ 1669 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1670 if (hcd->speed == HCD_USB3) 1671 port_array = xhci->usb3_ports; 1672 else 1673 port_array = xhci->usb2_ports; 1674 /* Find the faked port hub number */ 1675 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1676 port_id); 1677 1678 temp = xhci_readl(xhci, port_array[faked_port_index]); 1679 if (hcd->state == HC_STATE_SUSPENDED) { 1680 xhci_dbg(xhci, "resume root hub\n"); 1681 usb_hcd_resume_root_hub(hcd); 1682 } 1683 1684 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1685 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1686 1687 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1688 if (!(temp1 & CMD_RUN)) { 1689 xhci_warn(xhci, "xHC is not running.\n"); 1690 goto cleanup; 1691 } 1692 1693 if (DEV_SUPERSPEED(temp)) { 1694 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1695 /* Set a flag to say the port signaled remote wakeup, 1696 * so we can tell the difference between the end of 1697 * device and host initiated resume. 1698 */ 1699 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1700 xhci_test_and_clear_bit(xhci, port_array, 1701 faked_port_index, PORT_PLC); 1702 xhci_set_link_state(xhci, port_array, faked_port_index, 1703 XDEV_U0); 1704 /* Need to wait until the next link state change 1705 * indicates the device is actually in U0. 1706 */ 1707 bogus_port_status = true; 1708 goto cleanup; 1709 } else { 1710 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1711 bus_state->resume_done[faked_port_index] = jiffies + 1712 msecs_to_jiffies(20); 1713 set_bit(faked_port_index, &bus_state->resuming_ports); 1714 mod_timer(&hcd->rh_timer, 1715 bus_state->resume_done[faked_port_index]); 1716 /* Do the rest in GetPortStatus */ 1717 } 1718 } 1719 1720 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1721 DEV_SUPERSPEED(temp)) { 1722 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1723 /* We've just brought the device into U0 through either the 1724 * Resume state after a device remote wakeup, or through the 1725 * U3Exit state after a host-initiated resume. If it's a device 1726 * initiated remote wake, don't pass up the link state change, 1727 * so the roothub behavior is consistent with external 1728 * USB 3.0 hub behavior. 1729 */ 1730 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1731 faked_port_index + 1); 1732 if (slot_id && xhci->devs[slot_id]) 1733 xhci_ring_device(xhci, slot_id); 1734 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1735 bus_state->port_remote_wakeup &= 1736 ~(1 << faked_port_index); 1737 xhci_test_and_clear_bit(xhci, port_array, 1738 faked_port_index, PORT_PLC); 1739 usb_wakeup_notification(hcd->self.root_hub, 1740 faked_port_index + 1); 1741 bogus_port_status = true; 1742 goto cleanup; 1743 } 1744 } 1745 1746 if (hcd->speed != HCD_USB3) 1747 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1748 PORT_PLC); 1749 1750 cleanup: 1751 /* Update event ring dequeue pointer before dropping the lock */ 1752 inc_deq(xhci, xhci->event_ring); 1753 1754 /* Don't make the USB core poll the roothub if we got a bad port status 1755 * change event. Besides, at that point we can't tell which roothub 1756 * (USB 2.0 or USB 3.0) to kick. 1757 */ 1758 if (bogus_port_status) 1759 return; 1760 1761 /* 1762 * xHCI port-status-change events occur when the "or" of all the 1763 * status-change bits in the portsc register changes from 0 to 1. 1764 * New status changes won't cause an event if any other change 1765 * bits are still set. When an event occurs, switch over to 1766 * polling to avoid losing status changes. 1767 */ 1768 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1769 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1770 spin_unlock(&xhci->lock); 1771 /* Pass this up to the core */ 1772 usb_hcd_poll_rh_status(hcd); 1773 spin_lock(&xhci->lock); 1774 } 1775 1776 /* 1777 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1778 * at end_trb, which may be in another segment. If the suspect DMA address is a 1779 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1780 * returns 0. 1781 */ 1782 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1783 union xhci_trb *start_trb, 1784 union xhci_trb *end_trb, 1785 dma_addr_t suspect_dma) 1786 { 1787 dma_addr_t start_dma; 1788 dma_addr_t end_seg_dma; 1789 dma_addr_t end_trb_dma; 1790 struct xhci_segment *cur_seg; 1791 1792 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1793 cur_seg = start_seg; 1794 1795 do { 1796 if (start_dma == 0) 1797 return NULL; 1798 /* We may get an event for a Link TRB in the middle of a TD */ 1799 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1800 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1801 /* If the end TRB isn't in this segment, this is set to 0 */ 1802 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1803 1804 if (end_trb_dma > 0) { 1805 /* The end TRB is in this segment, so suspect should be here */ 1806 if (start_dma <= end_trb_dma) { 1807 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1808 return cur_seg; 1809 } else { 1810 /* Case for one segment with 1811 * a TD wrapped around to the top 1812 */ 1813 if ((suspect_dma >= start_dma && 1814 suspect_dma <= end_seg_dma) || 1815 (suspect_dma >= cur_seg->dma && 1816 suspect_dma <= end_trb_dma)) 1817 return cur_seg; 1818 } 1819 return NULL; 1820 } else { 1821 /* Might still be somewhere in this segment */ 1822 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1823 return cur_seg; 1824 } 1825 cur_seg = cur_seg->next; 1826 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1827 } while (cur_seg != start_seg); 1828 1829 return NULL; 1830 } 1831 1832 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1833 unsigned int slot_id, unsigned int ep_index, 1834 unsigned int stream_id, 1835 struct xhci_td *td, union xhci_trb *event_trb) 1836 { 1837 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1838 ep->ep_state |= EP_HALTED; 1839 ep->stopped_td = td; 1840 ep->stopped_trb = event_trb; 1841 ep->stopped_stream = stream_id; 1842 1843 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1844 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1845 1846 ep->stopped_td = NULL; 1847 ep->stopped_trb = NULL; 1848 ep->stopped_stream = 0; 1849 1850 xhci_ring_cmd_db(xhci); 1851 } 1852 1853 /* Check if an error has halted the endpoint ring. The class driver will 1854 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1855 * However, a babble and other errors also halt the endpoint ring, and the class 1856 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1857 * Ring Dequeue Pointer command manually. 1858 */ 1859 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1860 struct xhci_ep_ctx *ep_ctx, 1861 unsigned int trb_comp_code) 1862 { 1863 /* TRB completion codes that may require a manual halt cleanup */ 1864 if (trb_comp_code == COMP_TX_ERR || 1865 trb_comp_code == COMP_BABBLE || 1866 trb_comp_code == COMP_SPLIT_ERR) 1867 /* The 0.96 spec says a babbling control endpoint 1868 * is not halted. The 0.96 spec says it is. Some HW 1869 * claims to be 0.95 compliant, but it halts the control 1870 * endpoint anyway. Check if a babble halted the 1871 * endpoint. 1872 */ 1873 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1874 cpu_to_le32(EP_STATE_HALTED)) 1875 return 1; 1876 1877 return 0; 1878 } 1879 1880 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1881 { 1882 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1883 /* Vendor defined "informational" completion code, 1884 * treat as not-an-error. 1885 */ 1886 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1887 trb_comp_code); 1888 xhci_dbg(xhci, "Treating code as success.\n"); 1889 return 1; 1890 } 1891 return 0; 1892 } 1893 1894 /* 1895 * Finish the td processing, remove the td from td list; 1896 * Return 1 if the urb can be given back. 1897 */ 1898 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1899 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1900 struct xhci_virt_ep *ep, int *status, bool skip) 1901 { 1902 struct xhci_virt_device *xdev; 1903 struct xhci_ring *ep_ring; 1904 unsigned int slot_id; 1905 int ep_index; 1906 struct urb *urb = NULL; 1907 struct xhci_ep_ctx *ep_ctx; 1908 int ret = 0; 1909 struct urb_priv *urb_priv; 1910 u32 trb_comp_code; 1911 1912 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1913 xdev = xhci->devs[slot_id]; 1914 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1915 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1916 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1917 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1918 1919 if (skip) 1920 goto td_cleanup; 1921 1922 if (trb_comp_code == COMP_STOP_INVAL || 1923 trb_comp_code == COMP_STOP) { 1924 /* The Endpoint Stop Command completion will take care of any 1925 * stopped TDs. A stopped TD may be restarted, so don't update 1926 * the ring dequeue pointer or take this TD off any lists yet. 1927 */ 1928 ep->stopped_td = td; 1929 ep->stopped_trb = event_trb; 1930 return 0; 1931 } else { 1932 if (trb_comp_code == COMP_STALL) { 1933 /* The transfer is completed from the driver's 1934 * perspective, but we need to issue a set dequeue 1935 * command for this stalled endpoint to move the dequeue 1936 * pointer past the TD. We can't do that here because 1937 * the halt condition must be cleared first. Let the 1938 * USB class driver clear the stall later. 1939 */ 1940 ep->stopped_td = td; 1941 ep->stopped_trb = event_trb; 1942 ep->stopped_stream = ep_ring->stream_id; 1943 } else if (xhci_requires_manual_halt_cleanup(xhci, 1944 ep_ctx, trb_comp_code)) { 1945 /* Other types of errors halt the endpoint, but the 1946 * class driver doesn't call usb_reset_endpoint() unless 1947 * the error is -EPIPE. Clear the halted status in the 1948 * xHCI hardware manually. 1949 */ 1950 xhci_cleanup_halted_endpoint(xhci, 1951 slot_id, ep_index, ep_ring->stream_id, 1952 td, event_trb); 1953 } else { 1954 /* Update ring dequeue pointer */ 1955 while (ep_ring->dequeue != td->last_trb) 1956 inc_deq(xhci, ep_ring); 1957 inc_deq(xhci, ep_ring); 1958 } 1959 1960 td_cleanup: 1961 /* Clean up the endpoint's TD list */ 1962 urb = td->urb; 1963 urb_priv = urb->hcpriv; 1964 1965 /* Do one last check of the actual transfer length. 1966 * If the host controller said we transferred more data than 1967 * the buffer length, urb->actual_length will be a very big 1968 * number (since it's unsigned). Play it safe and say we didn't 1969 * transfer anything. 1970 */ 1971 if (urb->actual_length > urb->transfer_buffer_length) { 1972 xhci_warn(xhci, "URB transfer length is wrong, " 1973 "xHC issue? req. len = %u, " 1974 "act. len = %u\n", 1975 urb->transfer_buffer_length, 1976 urb->actual_length); 1977 urb->actual_length = 0; 1978 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1979 *status = -EREMOTEIO; 1980 else 1981 *status = 0; 1982 } 1983 list_del_init(&td->td_list); 1984 /* Was this TD slated to be cancelled but completed anyway? */ 1985 if (!list_empty(&td->cancelled_td_list)) 1986 list_del_init(&td->cancelled_td_list); 1987 1988 urb_priv->td_cnt++; 1989 /* Giveback the urb when all the tds are completed */ 1990 if (urb_priv->td_cnt == urb_priv->length) { 1991 ret = 1; 1992 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1993 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1994 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1995 == 0) { 1996 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1997 usb_amd_quirk_pll_enable(); 1998 } 1999 } 2000 } 2001 } 2002 2003 return ret; 2004 } 2005 2006 /* 2007 * Process control tds, update urb status and actual_length. 2008 */ 2009 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2010 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2011 struct xhci_virt_ep *ep, int *status) 2012 { 2013 struct xhci_virt_device *xdev; 2014 struct xhci_ring *ep_ring; 2015 unsigned int slot_id; 2016 int ep_index; 2017 struct xhci_ep_ctx *ep_ctx; 2018 u32 trb_comp_code; 2019 2020 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2021 xdev = xhci->devs[slot_id]; 2022 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2023 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2024 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2025 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2026 2027 switch (trb_comp_code) { 2028 case COMP_SUCCESS: 2029 if (event_trb == ep_ring->dequeue) { 2030 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2031 "without IOC set??\n"); 2032 *status = -ESHUTDOWN; 2033 } else if (event_trb != td->last_trb) { 2034 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2035 "without IOC set??\n"); 2036 *status = -ESHUTDOWN; 2037 } else { 2038 *status = 0; 2039 } 2040 break; 2041 case COMP_SHORT_TX: 2042 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2043 *status = -EREMOTEIO; 2044 else 2045 *status = 0; 2046 break; 2047 case COMP_STOP_INVAL: 2048 case COMP_STOP: 2049 return finish_td(xhci, td, event_trb, event, ep, status, false); 2050 default: 2051 if (!xhci_requires_manual_halt_cleanup(xhci, 2052 ep_ctx, trb_comp_code)) 2053 break; 2054 xhci_dbg(xhci, "TRB error code %u, " 2055 "halted endpoint index = %u\n", 2056 trb_comp_code, ep_index); 2057 /* else fall through */ 2058 case COMP_STALL: 2059 /* Did we transfer part of the data (middle) phase? */ 2060 if (event_trb != ep_ring->dequeue && 2061 event_trb != td->last_trb) 2062 td->urb->actual_length = 2063 td->urb->transfer_buffer_length - 2064 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2065 else 2066 td->urb->actual_length = 0; 2067 2068 xhci_cleanup_halted_endpoint(xhci, 2069 slot_id, ep_index, 0, td, event_trb); 2070 return finish_td(xhci, td, event_trb, event, ep, status, true); 2071 } 2072 /* 2073 * Did we transfer any data, despite the errors that might have 2074 * happened? I.e. did we get past the setup stage? 2075 */ 2076 if (event_trb != ep_ring->dequeue) { 2077 /* The event was for the status stage */ 2078 if (event_trb == td->last_trb) { 2079 if (td->urb->actual_length != 0) { 2080 /* Don't overwrite a previously set error code 2081 */ 2082 if ((*status == -EINPROGRESS || *status == 0) && 2083 (td->urb->transfer_flags 2084 & URB_SHORT_NOT_OK)) 2085 /* Did we already see a short data 2086 * stage? */ 2087 *status = -EREMOTEIO; 2088 } else { 2089 td->urb->actual_length = 2090 td->urb->transfer_buffer_length; 2091 } 2092 } else { 2093 /* Maybe the event was for the data stage? */ 2094 td->urb->actual_length = 2095 td->urb->transfer_buffer_length - 2096 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2097 xhci_dbg(xhci, "Waiting for status " 2098 "stage event\n"); 2099 return 0; 2100 } 2101 } 2102 2103 return finish_td(xhci, td, event_trb, event, ep, status, false); 2104 } 2105 2106 /* 2107 * Process isochronous tds, update urb packet status and actual_length. 2108 */ 2109 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2110 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2111 struct xhci_virt_ep *ep, int *status) 2112 { 2113 struct xhci_ring *ep_ring; 2114 struct urb_priv *urb_priv; 2115 int idx; 2116 int len = 0; 2117 union xhci_trb *cur_trb; 2118 struct xhci_segment *cur_seg; 2119 struct usb_iso_packet_descriptor *frame; 2120 u32 trb_comp_code; 2121 bool skip_td = false; 2122 2123 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2124 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2125 urb_priv = td->urb->hcpriv; 2126 idx = urb_priv->td_cnt; 2127 frame = &td->urb->iso_frame_desc[idx]; 2128 2129 /* handle completion code */ 2130 switch (trb_comp_code) { 2131 case COMP_SUCCESS: 2132 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2133 frame->status = 0; 2134 break; 2135 } 2136 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2137 trb_comp_code = COMP_SHORT_TX; 2138 case COMP_SHORT_TX: 2139 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2140 -EREMOTEIO : 0; 2141 break; 2142 case COMP_BW_OVER: 2143 frame->status = -ECOMM; 2144 skip_td = true; 2145 break; 2146 case COMP_BUFF_OVER: 2147 case COMP_BABBLE: 2148 frame->status = -EOVERFLOW; 2149 skip_td = true; 2150 break; 2151 case COMP_DEV_ERR: 2152 case COMP_STALL: 2153 case COMP_TX_ERR: 2154 frame->status = -EPROTO; 2155 skip_td = true; 2156 break; 2157 case COMP_STOP: 2158 case COMP_STOP_INVAL: 2159 break; 2160 default: 2161 frame->status = -1; 2162 break; 2163 } 2164 2165 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2166 frame->actual_length = frame->length; 2167 td->urb->actual_length += frame->length; 2168 } else { 2169 for (cur_trb = ep_ring->dequeue, 2170 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2171 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2172 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2173 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2174 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2175 } 2176 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2177 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2178 2179 if (trb_comp_code != COMP_STOP_INVAL) { 2180 frame->actual_length = len; 2181 td->urb->actual_length += len; 2182 } 2183 } 2184 2185 return finish_td(xhci, td, event_trb, event, ep, status, false); 2186 } 2187 2188 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2189 struct xhci_transfer_event *event, 2190 struct xhci_virt_ep *ep, int *status) 2191 { 2192 struct xhci_ring *ep_ring; 2193 struct urb_priv *urb_priv; 2194 struct usb_iso_packet_descriptor *frame; 2195 int idx; 2196 2197 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2198 urb_priv = td->urb->hcpriv; 2199 idx = urb_priv->td_cnt; 2200 frame = &td->urb->iso_frame_desc[idx]; 2201 2202 /* The transfer is partly done. */ 2203 frame->status = -EXDEV; 2204 2205 /* calc actual length */ 2206 frame->actual_length = 0; 2207 2208 /* Update ring dequeue pointer */ 2209 while (ep_ring->dequeue != td->last_trb) 2210 inc_deq(xhci, ep_ring); 2211 inc_deq(xhci, ep_ring); 2212 2213 return finish_td(xhci, td, NULL, event, ep, status, true); 2214 } 2215 2216 /* 2217 * Process bulk and interrupt tds, update urb status and actual_length. 2218 */ 2219 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2220 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2221 struct xhci_virt_ep *ep, int *status) 2222 { 2223 struct xhci_ring *ep_ring; 2224 union xhci_trb *cur_trb; 2225 struct xhci_segment *cur_seg; 2226 u32 trb_comp_code; 2227 2228 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2229 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2230 2231 switch (trb_comp_code) { 2232 case COMP_SUCCESS: 2233 /* Double check that the HW transferred everything. */ 2234 if (event_trb != td->last_trb || 2235 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2236 xhci_warn(xhci, "WARN Successful completion " 2237 "on short TX\n"); 2238 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2239 *status = -EREMOTEIO; 2240 else 2241 *status = 0; 2242 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2243 trb_comp_code = COMP_SHORT_TX; 2244 } else { 2245 *status = 0; 2246 } 2247 break; 2248 case COMP_SHORT_TX: 2249 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2250 *status = -EREMOTEIO; 2251 else 2252 *status = 0; 2253 break; 2254 default: 2255 /* Others already handled above */ 2256 break; 2257 } 2258 if (trb_comp_code == COMP_SHORT_TX) 2259 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2260 "%d bytes untransferred\n", 2261 td->urb->ep->desc.bEndpointAddress, 2262 td->urb->transfer_buffer_length, 2263 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2264 /* Fast path - was this the last TRB in the TD for this URB? */ 2265 if (event_trb == td->last_trb) { 2266 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2267 td->urb->actual_length = 2268 td->urb->transfer_buffer_length - 2269 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2270 if (td->urb->transfer_buffer_length < 2271 td->urb->actual_length) { 2272 xhci_warn(xhci, "HC gave bad length " 2273 "of %d bytes left\n", 2274 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2275 td->urb->actual_length = 0; 2276 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2277 *status = -EREMOTEIO; 2278 else 2279 *status = 0; 2280 } 2281 /* Don't overwrite a previously set error code */ 2282 if (*status == -EINPROGRESS) { 2283 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2284 *status = -EREMOTEIO; 2285 else 2286 *status = 0; 2287 } 2288 } else { 2289 td->urb->actual_length = 2290 td->urb->transfer_buffer_length; 2291 /* Ignore a short packet completion if the 2292 * untransferred length was zero. 2293 */ 2294 if (*status == -EREMOTEIO) 2295 *status = 0; 2296 } 2297 } else { 2298 /* Slow path - walk the list, starting from the dequeue 2299 * pointer, to get the actual length transferred. 2300 */ 2301 td->urb->actual_length = 0; 2302 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2303 cur_trb != event_trb; 2304 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2305 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2306 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2307 td->urb->actual_length += 2308 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2309 } 2310 /* If the ring didn't stop on a Link or No-op TRB, add 2311 * in the actual bytes transferred from the Normal TRB 2312 */ 2313 if (trb_comp_code != COMP_STOP_INVAL) 2314 td->urb->actual_length += 2315 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2316 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2317 } 2318 2319 return finish_td(xhci, td, event_trb, event, ep, status, false); 2320 } 2321 2322 /* 2323 * If this function returns an error condition, it means it got a Transfer 2324 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2325 * At this point, the host controller is probably hosed and should be reset. 2326 */ 2327 static int handle_tx_event(struct xhci_hcd *xhci, 2328 struct xhci_transfer_event *event) 2329 __releases(&xhci->lock) 2330 __acquires(&xhci->lock) 2331 { 2332 struct xhci_virt_device *xdev; 2333 struct xhci_virt_ep *ep; 2334 struct xhci_ring *ep_ring; 2335 unsigned int slot_id; 2336 int ep_index; 2337 struct xhci_td *td = NULL; 2338 dma_addr_t event_dma; 2339 struct xhci_segment *event_seg; 2340 union xhci_trb *event_trb; 2341 struct urb *urb = NULL; 2342 int status = -EINPROGRESS; 2343 struct urb_priv *urb_priv; 2344 struct xhci_ep_ctx *ep_ctx; 2345 struct list_head *tmp; 2346 u32 trb_comp_code; 2347 int ret = 0; 2348 int td_num = 0; 2349 2350 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2351 xdev = xhci->devs[slot_id]; 2352 if (!xdev) { 2353 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2354 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2355 (unsigned long long) xhci_trb_virt_to_dma( 2356 xhci->event_ring->deq_seg, 2357 xhci->event_ring->dequeue), 2358 lower_32_bits(le64_to_cpu(event->buffer)), 2359 upper_32_bits(le64_to_cpu(event->buffer)), 2360 le32_to_cpu(event->transfer_len), 2361 le32_to_cpu(event->flags)); 2362 xhci_dbg(xhci, "Event ring:\n"); 2363 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2364 return -ENODEV; 2365 } 2366 2367 /* Endpoint ID is 1 based, our index is zero based */ 2368 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2369 ep = &xdev->eps[ep_index]; 2370 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2371 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2372 if (!ep_ring || 2373 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2374 EP_STATE_DISABLED) { 2375 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2376 "or incorrect stream ring\n"); 2377 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2378 (unsigned long long) xhci_trb_virt_to_dma( 2379 xhci->event_ring->deq_seg, 2380 xhci->event_ring->dequeue), 2381 lower_32_bits(le64_to_cpu(event->buffer)), 2382 upper_32_bits(le64_to_cpu(event->buffer)), 2383 le32_to_cpu(event->transfer_len), 2384 le32_to_cpu(event->flags)); 2385 xhci_dbg(xhci, "Event ring:\n"); 2386 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2387 return -ENODEV; 2388 } 2389 2390 /* Count current td numbers if ep->skip is set */ 2391 if (ep->skip) { 2392 list_for_each(tmp, &ep_ring->td_list) 2393 td_num++; 2394 } 2395 2396 event_dma = le64_to_cpu(event->buffer); 2397 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2398 /* Look for common error cases */ 2399 switch (trb_comp_code) { 2400 /* Skip codes that require special handling depending on 2401 * transfer type 2402 */ 2403 case COMP_SUCCESS: 2404 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2405 break; 2406 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2407 trb_comp_code = COMP_SHORT_TX; 2408 else 2409 xhci_warn_ratelimited(xhci, 2410 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2411 case COMP_SHORT_TX: 2412 break; 2413 case COMP_STOP: 2414 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2415 break; 2416 case COMP_STOP_INVAL: 2417 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2418 break; 2419 case COMP_STALL: 2420 xhci_dbg(xhci, "Stalled endpoint\n"); 2421 ep->ep_state |= EP_HALTED; 2422 status = -EPIPE; 2423 break; 2424 case COMP_TRB_ERR: 2425 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2426 status = -EILSEQ; 2427 break; 2428 case COMP_SPLIT_ERR: 2429 case COMP_TX_ERR: 2430 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2431 status = -EPROTO; 2432 break; 2433 case COMP_BABBLE: 2434 xhci_dbg(xhci, "Babble error on endpoint\n"); 2435 status = -EOVERFLOW; 2436 break; 2437 case COMP_DB_ERR: 2438 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2439 status = -ENOSR; 2440 break; 2441 case COMP_BW_OVER: 2442 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2443 break; 2444 case COMP_BUFF_OVER: 2445 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2446 break; 2447 case COMP_UNDERRUN: 2448 /* 2449 * When the Isoch ring is empty, the xHC will generate 2450 * a Ring Overrun Event for IN Isoch endpoint or Ring 2451 * Underrun Event for OUT Isoch endpoint. 2452 */ 2453 xhci_dbg(xhci, "underrun event on endpoint\n"); 2454 if (!list_empty(&ep_ring->td_list)) 2455 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2456 "still with TDs queued?\n", 2457 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2458 ep_index); 2459 goto cleanup; 2460 case COMP_OVERRUN: 2461 xhci_dbg(xhci, "overrun event on endpoint\n"); 2462 if (!list_empty(&ep_ring->td_list)) 2463 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2464 "still with TDs queued?\n", 2465 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2466 ep_index); 2467 goto cleanup; 2468 case COMP_DEV_ERR: 2469 xhci_warn(xhci, "WARN: detect an incompatible device"); 2470 status = -EPROTO; 2471 break; 2472 case COMP_MISSED_INT: 2473 /* 2474 * When encounter missed service error, one or more isoc tds 2475 * may be missed by xHC. 2476 * Set skip flag of the ep_ring; Complete the missed tds as 2477 * short transfer when process the ep_ring next time. 2478 */ 2479 ep->skip = true; 2480 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2481 goto cleanup; 2482 default: 2483 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2484 status = 0; 2485 break; 2486 } 2487 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2488 "busted\n"); 2489 goto cleanup; 2490 } 2491 2492 do { 2493 /* This TRB should be in the TD at the head of this ring's 2494 * TD list. 2495 */ 2496 if (list_empty(&ep_ring->td_list)) { 2497 /* 2498 * A stopped endpoint may generate an extra completion 2499 * event if the device was suspended. Don't print 2500 * warnings. 2501 */ 2502 if (!(trb_comp_code == COMP_STOP || 2503 trb_comp_code == COMP_STOP_INVAL)) { 2504 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2505 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2506 ep_index); 2507 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2508 (le32_to_cpu(event->flags) & 2509 TRB_TYPE_BITMASK)>>10); 2510 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2511 } 2512 if (ep->skip) { 2513 ep->skip = false; 2514 xhci_dbg(xhci, "td_list is empty while skip " 2515 "flag set. Clear skip flag.\n"); 2516 } 2517 ret = 0; 2518 goto cleanup; 2519 } 2520 2521 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2522 if (ep->skip && td_num == 0) { 2523 ep->skip = false; 2524 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2525 "Clear skip flag.\n"); 2526 ret = 0; 2527 goto cleanup; 2528 } 2529 2530 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2531 if (ep->skip) 2532 td_num--; 2533 2534 /* Is this a TRB in the currently executing TD? */ 2535 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2536 td->last_trb, event_dma); 2537 2538 /* 2539 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2540 * is not in the current TD pointed by ep_ring->dequeue because 2541 * that the hardware dequeue pointer still at the previous TRB 2542 * of the current TD. The previous TRB maybe a Link TD or the 2543 * last TRB of the previous TD. The command completion handle 2544 * will take care the rest. 2545 */ 2546 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2547 ret = 0; 2548 goto cleanup; 2549 } 2550 2551 if (!event_seg) { 2552 if (!ep->skip || 2553 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2554 /* Some host controllers give a spurious 2555 * successful event after a short transfer. 2556 * Ignore it. 2557 */ 2558 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2559 ep_ring->last_td_was_short) { 2560 ep_ring->last_td_was_short = false; 2561 ret = 0; 2562 goto cleanup; 2563 } 2564 /* HC is busted, give up! */ 2565 xhci_err(xhci, 2566 "ERROR Transfer event TRB DMA ptr not " 2567 "part of current TD\n"); 2568 return -ESHUTDOWN; 2569 } 2570 2571 ret = skip_isoc_td(xhci, td, event, ep, &status); 2572 goto cleanup; 2573 } 2574 if (trb_comp_code == COMP_SHORT_TX) 2575 ep_ring->last_td_was_short = true; 2576 else 2577 ep_ring->last_td_was_short = false; 2578 2579 if (ep->skip) { 2580 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2581 ep->skip = false; 2582 } 2583 2584 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2585 sizeof(*event_trb)]; 2586 /* 2587 * No-op TRB should not trigger interrupts. 2588 * If event_trb is a no-op TRB, it means the 2589 * corresponding TD has been cancelled. Just ignore 2590 * the TD. 2591 */ 2592 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2593 xhci_dbg(xhci, 2594 "event_trb is a no-op TRB. Skip it\n"); 2595 goto cleanup; 2596 } 2597 2598 /* Now update the urb's actual_length and give back to 2599 * the core 2600 */ 2601 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2602 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2603 &status); 2604 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2605 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2606 &status); 2607 else 2608 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2609 ep, &status); 2610 2611 cleanup: 2612 /* 2613 * Do not update event ring dequeue pointer if ep->skip is set. 2614 * Will roll back to continue process missed tds. 2615 */ 2616 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2617 inc_deq(xhci, xhci->event_ring); 2618 } 2619 2620 if (ret) { 2621 urb = td->urb; 2622 urb_priv = urb->hcpriv; 2623 /* Leave the TD around for the reset endpoint function 2624 * to use(but only if it's not a control endpoint, 2625 * since we already queued the Set TR dequeue pointer 2626 * command for stalled control endpoints). 2627 */ 2628 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2629 (trb_comp_code != COMP_STALL && 2630 trb_comp_code != COMP_BABBLE)) 2631 xhci_urb_free_priv(xhci, urb_priv); 2632 else 2633 kfree(urb_priv); 2634 2635 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2636 if ((urb->actual_length != urb->transfer_buffer_length && 2637 (urb->transfer_flags & 2638 URB_SHORT_NOT_OK)) || 2639 (status != 0 && 2640 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2641 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2642 "expected = %d, status = %d\n", 2643 urb, urb->actual_length, 2644 urb->transfer_buffer_length, 2645 status); 2646 spin_unlock(&xhci->lock); 2647 /* EHCI, UHCI, and OHCI always unconditionally set the 2648 * urb->status of an isochronous endpoint to 0. 2649 */ 2650 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2651 status = 0; 2652 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2653 spin_lock(&xhci->lock); 2654 } 2655 2656 /* 2657 * If ep->skip is set, it means there are missed tds on the 2658 * endpoint ring need to take care of. 2659 * Process them as short transfer until reach the td pointed by 2660 * the event. 2661 */ 2662 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2663 2664 return 0; 2665 } 2666 2667 /* 2668 * This function handles all OS-owned events on the event ring. It may drop 2669 * xhci->lock between event processing (e.g. to pass up port status changes). 2670 * Returns >0 for "possibly more events to process" (caller should call again), 2671 * otherwise 0 if done. In future, <0 returns should indicate error code. 2672 */ 2673 static int xhci_handle_event(struct xhci_hcd *xhci) 2674 { 2675 union xhci_trb *event; 2676 int update_ptrs = 1; 2677 int ret; 2678 2679 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2680 xhci->error_bitmask |= 1 << 1; 2681 return 0; 2682 } 2683 2684 event = xhci->event_ring->dequeue; 2685 /* Does the HC or OS own the TRB? */ 2686 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2687 xhci->event_ring->cycle_state) { 2688 xhci->error_bitmask |= 1 << 2; 2689 return 0; 2690 } 2691 2692 /* 2693 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2694 * speculative reads of the event's flags/data below. 2695 */ 2696 rmb(); 2697 /* FIXME: Handle more event types. */ 2698 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2699 case TRB_TYPE(TRB_COMPLETION): 2700 handle_cmd_completion(xhci, &event->event_cmd); 2701 break; 2702 case TRB_TYPE(TRB_PORT_STATUS): 2703 handle_port_status(xhci, event); 2704 update_ptrs = 0; 2705 break; 2706 case TRB_TYPE(TRB_TRANSFER): 2707 ret = handle_tx_event(xhci, &event->trans_event); 2708 if (ret < 0) 2709 xhci->error_bitmask |= 1 << 9; 2710 else 2711 update_ptrs = 0; 2712 break; 2713 case TRB_TYPE(TRB_DEV_NOTE): 2714 handle_device_notification(xhci, event); 2715 break; 2716 default: 2717 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2718 TRB_TYPE(48)) 2719 handle_vendor_event(xhci, event); 2720 else 2721 xhci->error_bitmask |= 1 << 3; 2722 } 2723 /* Any of the above functions may drop and re-acquire the lock, so check 2724 * to make sure a watchdog timer didn't mark the host as non-responsive. 2725 */ 2726 if (xhci->xhc_state & XHCI_STATE_DYING) { 2727 xhci_dbg(xhci, "xHCI host dying, returning from " 2728 "event handler.\n"); 2729 return 0; 2730 } 2731 2732 if (update_ptrs) 2733 /* Update SW event ring dequeue pointer */ 2734 inc_deq(xhci, xhci->event_ring); 2735 2736 /* Are there more items on the event ring? Caller will call us again to 2737 * check. 2738 */ 2739 return 1; 2740 } 2741 2742 /* 2743 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2744 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2745 * indicators of an event TRB error, but we check the status *first* to be safe. 2746 */ 2747 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2748 { 2749 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2750 u32 status; 2751 u64 temp_64; 2752 union xhci_trb *event_ring_deq; 2753 dma_addr_t deq; 2754 2755 spin_lock(&xhci->lock); 2756 /* Check if the xHC generated the interrupt, or the irq is shared */ 2757 status = xhci_readl(xhci, &xhci->op_regs->status); 2758 if (status == 0xffffffff) 2759 goto hw_died; 2760 2761 if (!(status & STS_EINT)) { 2762 spin_unlock(&xhci->lock); 2763 return IRQ_NONE; 2764 } 2765 if (status & STS_FATAL) { 2766 xhci_warn(xhci, "WARNING: Host System Error\n"); 2767 xhci_halt(xhci); 2768 hw_died: 2769 spin_unlock(&xhci->lock); 2770 return -ESHUTDOWN; 2771 } 2772 2773 /* 2774 * Clear the op reg interrupt status first, 2775 * so we can receive interrupts from other MSI-X interrupters. 2776 * Write 1 to clear the interrupt status. 2777 */ 2778 status |= STS_EINT; 2779 xhci_writel(xhci, status, &xhci->op_regs->status); 2780 /* FIXME when MSI-X is supported and there are multiple vectors */ 2781 /* Clear the MSI-X event interrupt status */ 2782 2783 if (hcd->irq) { 2784 u32 irq_pending; 2785 /* Acknowledge the PCI interrupt */ 2786 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2787 irq_pending |= IMAN_IP; 2788 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2789 } 2790 2791 if (xhci->xhc_state & XHCI_STATE_DYING) { 2792 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2793 "Shouldn't IRQs be disabled?\n"); 2794 /* Clear the event handler busy flag (RW1C); 2795 * the event ring should be empty. 2796 */ 2797 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2798 xhci_write_64(xhci, temp_64 | ERST_EHB, 2799 &xhci->ir_set->erst_dequeue); 2800 spin_unlock(&xhci->lock); 2801 2802 return IRQ_HANDLED; 2803 } 2804 2805 event_ring_deq = xhci->event_ring->dequeue; 2806 /* FIXME this should be a delayed service routine 2807 * that clears the EHB. 2808 */ 2809 while (xhci_handle_event(xhci) > 0) {} 2810 2811 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2812 /* If necessary, update the HW's version of the event ring deq ptr. */ 2813 if (event_ring_deq != xhci->event_ring->dequeue) { 2814 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2815 xhci->event_ring->dequeue); 2816 if (deq == 0) 2817 xhci_warn(xhci, "WARN something wrong with SW event " 2818 "ring dequeue ptr.\n"); 2819 /* Update HC event ring dequeue pointer */ 2820 temp_64 &= ERST_PTR_MASK; 2821 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2822 } 2823 2824 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2825 temp_64 |= ERST_EHB; 2826 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2827 2828 spin_unlock(&xhci->lock); 2829 2830 return IRQ_HANDLED; 2831 } 2832 2833 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2834 { 2835 return xhci_irq(hcd); 2836 } 2837 2838 /**** Endpoint Ring Operations ****/ 2839 2840 /* 2841 * Generic function for queueing a TRB on a ring. 2842 * The caller must have checked to make sure there's room on the ring. 2843 * 2844 * @more_trbs_coming: Will you enqueue more TRBs before calling 2845 * prepare_transfer()? 2846 */ 2847 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2848 bool more_trbs_coming, 2849 u32 field1, u32 field2, u32 field3, u32 field4) 2850 { 2851 struct xhci_generic_trb *trb; 2852 2853 trb = &ring->enqueue->generic; 2854 trb->field[0] = cpu_to_le32(field1); 2855 trb->field[1] = cpu_to_le32(field2); 2856 trb->field[2] = cpu_to_le32(field3); 2857 trb->field[3] = cpu_to_le32(field4); 2858 inc_enq(xhci, ring, more_trbs_coming); 2859 } 2860 2861 /* 2862 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2863 * FIXME allocate segments if the ring is full. 2864 */ 2865 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2866 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2867 { 2868 unsigned int num_trbs_needed; 2869 2870 /* Make sure the endpoint has been added to xHC schedule */ 2871 switch (ep_state) { 2872 case EP_STATE_DISABLED: 2873 /* 2874 * USB core changed config/interfaces without notifying us, 2875 * or hardware is reporting the wrong state. 2876 */ 2877 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2878 return -ENOENT; 2879 case EP_STATE_ERROR: 2880 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2881 /* FIXME event handling code for error needs to clear it */ 2882 /* XXX not sure if this should be -ENOENT or not */ 2883 return -EINVAL; 2884 case EP_STATE_HALTED: 2885 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2886 case EP_STATE_STOPPED: 2887 case EP_STATE_RUNNING: 2888 break; 2889 default: 2890 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2891 /* 2892 * FIXME issue Configure Endpoint command to try to get the HC 2893 * back into a known state. 2894 */ 2895 return -EINVAL; 2896 } 2897 2898 while (1) { 2899 if (room_on_ring(xhci, ep_ring, num_trbs)) 2900 break; 2901 2902 if (ep_ring == xhci->cmd_ring) { 2903 xhci_err(xhci, "Do not support expand command ring\n"); 2904 return -ENOMEM; 2905 } 2906 2907 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2908 "ERROR no room on ep ring, try ring expansion"); 2909 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2910 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2911 mem_flags)) { 2912 xhci_err(xhci, "Ring expansion failed\n"); 2913 return -ENOMEM; 2914 } 2915 } 2916 2917 if (enqueue_is_link_trb(ep_ring)) { 2918 struct xhci_ring *ring = ep_ring; 2919 union xhci_trb *next; 2920 2921 next = ring->enqueue; 2922 2923 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2924 /* If we're not dealing with 0.95 hardware or isoc rings 2925 * on AMD 0.96 host, clear the chain bit. 2926 */ 2927 if (!xhci_link_trb_quirk(xhci) && 2928 !(ring->type == TYPE_ISOC && 2929 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2930 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2931 else 2932 next->link.control |= cpu_to_le32(TRB_CHAIN); 2933 2934 wmb(); 2935 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2936 2937 /* Toggle the cycle bit after the last ring segment. */ 2938 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2939 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2940 } 2941 ring->enq_seg = ring->enq_seg->next; 2942 ring->enqueue = ring->enq_seg->trbs; 2943 next = ring->enqueue; 2944 } 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int prepare_transfer(struct xhci_hcd *xhci, 2951 struct xhci_virt_device *xdev, 2952 unsigned int ep_index, 2953 unsigned int stream_id, 2954 unsigned int num_trbs, 2955 struct urb *urb, 2956 unsigned int td_index, 2957 gfp_t mem_flags) 2958 { 2959 int ret; 2960 struct urb_priv *urb_priv; 2961 struct xhci_td *td; 2962 struct xhci_ring *ep_ring; 2963 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2964 2965 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2966 if (!ep_ring) { 2967 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2968 stream_id); 2969 return -EINVAL; 2970 } 2971 2972 ret = prepare_ring(xhci, ep_ring, 2973 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2974 num_trbs, mem_flags); 2975 if (ret) 2976 return ret; 2977 2978 urb_priv = urb->hcpriv; 2979 td = urb_priv->td[td_index]; 2980 2981 INIT_LIST_HEAD(&td->td_list); 2982 INIT_LIST_HEAD(&td->cancelled_td_list); 2983 2984 if (td_index == 0) { 2985 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2986 if (unlikely(ret)) 2987 return ret; 2988 } 2989 2990 td->urb = urb; 2991 /* Add this TD to the tail of the endpoint ring's TD list */ 2992 list_add_tail(&td->td_list, &ep_ring->td_list); 2993 td->start_seg = ep_ring->enq_seg; 2994 td->first_trb = ep_ring->enqueue; 2995 2996 urb_priv->td[td_index] = td; 2997 2998 return 0; 2999 } 3000 3001 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3002 { 3003 int num_sgs, num_trbs, running_total, temp, i; 3004 struct scatterlist *sg; 3005 3006 sg = NULL; 3007 num_sgs = urb->num_mapped_sgs; 3008 temp = urb->transfer_buffer_length; 3009 3010 num_trbs = 0; 3011 for_each_sg(urb->sg, sg, num_sgs, i) { 3012 unsigned int len = sg_dma_len(sg); 3013 3014 /* Scatter gather list entries may cross 64KB boundaries */ 3015 running_total = TRB_MAX_BUFF_SIZE - 3016 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3017 running_total &= TRB_MAX_BUFF_SIZE - 1; 3018 if (running_total != 0) 3019 num_trbs++; 3020 3021 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3022 while (running_total < sg_dma_len(sg) && running_total < temp) { 3023 num_trbs++; 3024 running_total += TRB_MAX_BUFF_SIZE; 3025 } 3026 len = min_t(int, len, temp); 3027 temp -= len; 3028 if (temp == 0) 3029 break; 3030 } 3031 return num_trbs; 3032 } 3033 3034 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3035 { 3036 if (num_trbs != 0) 3037 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3038 "TRBs, %d left\n", __func__, 3039 urb->ep->desc.bEndpointAddress, num_trbs); 3040 if (running_total != urb->transfer_buffer_length) 3041 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3042 "queued %#x (%d), asked for %#x (%d)\n", 3043 __func__, 3044 urb->ep->desc.bEndpointAddress, 3045 running_total, running_total, 3046 urb->transfer_buffer_length, 3047 urb->transfer_buffer_length); 3048 } 3049 3050 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3051 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3052 struct xhci_generic_trb *start_trb) 3053 { 3054 /* 3055 * Pass all the TRBs to the hardware at once and make sure this write 3056 * isn't reordered. 3057 */ 3058 wmb(); 3059 if (start_cycle) 3060 start_trb->field[3] |= cpu_to_le32(start_cycle); 3061 else 3062 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3063 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3064 } 3065 3066 /* 3067 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3068 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3069 * (comprised of sg list entries) can take several service intervals to 3070 * transmit. 3071 */ 3072 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3073 struct urb *urb, int slot_id, unsigned int ep_index) 3074 { 3075 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3076 xhci->devs[slot_id]->out_ctx, ep_index); 3077 int xhci_interval; 3078 int ep_interval; 3079 3080 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3081 ep_interval = urb->interval; 3082 /* Convert to microframes */ 3083 if (urb->dev->speed == USB_SPEED_LOW || 3084 urb->dev->speed == USB_SPEED_FULL) 3085 ep_interval *= 8; 3086 /* FIXME change this to a warning and a suggestion to use the new API 3087 * to set the polling interval (once the API is added). 3088 */ 3089 if (xhci_interval != ep_interval) { 3090 dev_dbg_ratelimited(&urb->dev->dev, 3091 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3092 ep_interval, ep_interval == 1 ? "" : "s", 3093 xhci_interval, xhci_interval == 1 ? "" : "s"); 3094 urb->interval = xhci_interval; 3095 /* Convert back to frames for LS/FS devices */ 3096 if (urb->dev->speed == USB_SPEED_LOW || 3097 urb->dev->speed == USB_SPEED_FULL) 3098 urb->interval /= 8; 3099 } 3100 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3101 } 3102 3103 /* 3104 * The TD size is the number of bytes remaining in the TD (including this TRB), 3105 * right shifted by 10. 3106 * It must fit in bits 21:17, so it can't be bigger than 31. 3107 */ 3108 static u32 xhci_td_remainder(unsigned int remainder) 3109 { 3110 u32 max = (1 << (21 - 17 + 1)) - 1; 3111 3112 if ((remainder >> 10) >= max) 3113 return max << 17; 3114 else 3115 return (remainder >> 10) << 17; 3116 } 3117 3118 /* 3119 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3120 * packets remaining in the TD (*not* including this TRB). 3121 * 3122 * Total TD packet count = total_packet_count = 3123 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3124 * 3125 * Packets transferred up to and including this TRB = packets_transferred = 3126 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3127 * 3128 * TD size = total_packet_count - packets_transferred 3129 * 3130 * It must fit in bits 21:17, so it can't be bigger than 31. 3131 * The last TRB in a TD must have the TD size set to zero. 3132 */ 3133 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3134 unsigned int total_packet_count, struct urb *urb, 3135 unsigned int num_trbs_left) 3136 { 3137 int packets_transferred; 3138 3139 /* One TRB with a zero-length data packet. */ 3140 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3141 return 0; 3142 3143 /* All the TRB queueing functions don't count the current TRB in 3144 * running_total. 3145 */ 3146 packets_transferred = (running_total + trb_buff_len) / 3147 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3148 3149 if ((total_packet_count - packets_transferred) > 31) 3150 return 31 << 17; 3151 return (total_packet_count - packets_transferred) << 17; 3152 } 3153 3154 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3155 struct urb *urb, int slot_id, unsigned int ep_index) 3156 { 3157 struct xhci_ring *ep_ring; 3158 unsigned int num_trbs; 3159 struct urb_priv *urb_priv; 3160 struct xhci_td *td; 3161 struct scatterlist *sg; 3162 int num_sgs; 3163 int trb_buff_len, this_sg_len, running_total; 3164 unsigned int total_packet_count; 3165 bool first_trb; 3166 u64 addr; 3167 bool more_trbs_coming; 3168 3169 struct xhci_generic_trb *start_trb; 3170 int start_cycle; 3171 3172 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3173 if (!ep_ring) 3174 return -EINVAL; 3175 3176 num_trbs = count_sg_trbs_needed(xhci, urb); 3177 num_sgs = urb->num_mapped_sgs; 3178 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3179 usb_endpoint_maxp(&urb->ep->desc)); 3180 3181 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3182 ep_index, urb->stream_id, 3183 num_trbs, urb, 0, mem_flags); 3184 if (trb_buff_len < 0) 3185 return trb_buff_len; 3186 3187 urb_priv = urb->hcpriv; 3188 td = urb_priv->td[0]; 3189 3190 /* 3191 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3192 * until we've finished creating all the other TRBs. The ring's cycle 3193 * state may change as we enqueue the other TRBs, so save it too. 3194 */ 3195 start_trb = &ep_ring->enqueue->generic; 3196 start_cycle = ep_ring->cycle_state; 3197 3198 running_total = 0; 3199 /* 3200 * How much data is in the first TRB? 3201 * 3202 * There are three forces at work for TRB buffer pointers and lengths: 3203 * 1. We don't want to walk off the end of this sg-list entry buffer. 3204 * 2. The transfer length that the driver requested may be smaller than 3205 * the amount of memory allocated for this scatter-gather list. 3206 * 3. TRBs buffers can't cross 64KB boundaries. 3207 */ 3208 sg = urb->sg; 3209 addr = (u64) sg_dma_address(sg); 3210 this_sg_len = sg_dma_len(sg); 3211 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3212 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3213 if (trb_buff_len > urb->transfer_buffer_length) 3214 trb_buff_len = urb->transfer_buffer_length; 3215 3216 first_trb = true; 3217 /* Queue the first TRB, even if it's zero-length */ 3218 do { 3219 u32 field = 0; 3220 u32 length_field = 0; 3221 u32 remainder = 0; 3222 3223 /* Don't change the cycle bit of the first TRB until later */ 3224 if (first_trb) { 3225 first_trb = false; 3226 if (start_cycle == 0) 3227 field |= 0x1; 3228 } else 3229 field |= ep_ring->cycle_state; 3230 3231 /* Chain all the TRBs together; clear the chain bit in the last 3232 * TRB to indicate it's the last TRB in the chain. 3233 */ 3234 if (num_trbs > 1) { 3235 field |= TRB_CHAIN; 3236 } else { 3237 /* FIXME - add check for ZERO_PACKET flag before this */ 3238 td->last_trb = ep_ring->enqueue; 3239 field |= TRB_IOC; 3240 } 3241 3242 /* Only set interrupt on short packet for IN endpoints */ 3243 if (usb_urb_dir_in(urb)) 3244 field |= TRB_ISP; 3245 3246 if (TRB_MAX_BUFF_SIZE - 3247 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3248 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3249 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3250 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3251 (unsigned int) addr + trb_buff_len); 3252 } 3253 3254 /* Set the TRB length, TD size, and interrupter fields. */ 3255 if (xhci->hci_version < 0x100) { 3256 remainder = xhci_td_remainder( 3257 urb->transfer_buffer_length - 3258 running_total); 3259 } else { 3260 remainder = xhci_v1_0_td_remainder(running_total, 3261 trb_buff_len, total_packet_count, urb, 3262 num_trbs - 1); 3263 } 3264 length_field = TRB_LEN(trb_buff_len) | 3265 remainder | 3266 TRB_INTR_TARGET(0); 3267 3268 if (num_trbs > 1) 3269 more_trbs_coming = true; 3270 else 3271 more_trbs_coming = false; 3272 queue_trb(xhci, ep_ring, more_trbs_coming, 3273 lower_32_bits(addr), 3274 upper_32_bits(addr), 3275 length_field, 3276 field | TRB_TYPE(TRB_NORMAL)); 3277 --num_trbs; 3278 running_total += trb_buff_len; 3279 3280 /* Calculate length for next transfer -- 3281 * Are we done queueing all the TRBs for this sg entry? 3282 */ 3283 this_sg_len -= trb_buff_len; 3284 if (this_sg_len == 0) { 3285 --num_sgs; 3286 if (num_sgs == 0) 3287 break; 3288 sg = sg_next(sg); 3289 addr = (u64) sg_dma_address(sg); 3290 this_sg_len = sg_dma_len(sg); 3291 } else { 3292 addr += trb_buff_len; 3293 } 3294 3295 trb_buff_len = TRB_MAX_BUFF_SIZE - 3296 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3297 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3298 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3299 trb_buff_len = 3300 urb->transfer_buffer_length - running_total; 3301 } while (running_total < urb->transfer_buffer_length); 3302 3303 check_trb_math(urb, num_trbs, running_total); 3304 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3305 start_cycle, start_trb); 3306 return 0; 3307 } 3308 3309 /* This is very similar to what ehci-q.c qtd_fill() does */ 3310 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3311 struct urb *urb, int slot_id, unsigned int ep_index) 3312 { 3313 struct xhci_ring *ep_ring; 3314 struct urb_priv *urb_priv; 3315 struct xhci_td *td; 3316 int num_trbs; 3317 struct xhci_generic_trb *start_trb; 3318 bool first_trb; 3319 bool more_trbs_coming; 3320 int start_cycle; 3321 u32 field, length_field; 3322 3323 int running_total, trb_buff_len, ret; 3324 unsigned int total_packet_count; 3325 u64 addr; 3326 3327 if (urb->num_sgs) 3328 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3329 3330 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3331 if (!ep_ring) 3332 return -EINVAL; 3333 3334 num_trbs = 0; 3335 /* How much data is (potentially) left before the 64KB boundary? */ 3336 running_total = TRB_MAX_BUFF_SIZE - 3337 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3338 running_total &= TRB_MAX_BUFF_SIZE - 1; 3339 3340 /* If there's some data on this 64KB chunk, or we have to send a 3341 * zero-length transfer, we need at least one TRB 3342 */ 3343 if (running_total != 0 || urb->transfer_buffer_length == 0) 3344 num_trbs++; 3345 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3346 while (running_total < urb->transfer_buffer_length) { 3347 num_trbs++; 3348 running_total += TRB_MAX_BUFF_SIZE; 3349 } 3350 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3351 3352 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3353 ep_index, urb->stream_id, 3354 num_trbs, urb, 0, mem_flags); 3355 if (ret < 0) 3356 return ret; 3357 3358 urb_priv = urb->hcpriv; 3359 td = urb_priv->td[0]; 3360 3361 /* 3362 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3363 * until we've finished creating all the other TRBs. The ring's cycle 3364 * state may change as we enqueue the other TRBs, so save it too. 3365 */ 3366 start_trb = &ep_ring->enqueue->generic; 3367 start_cycle = ep_ring->cycle_state; 3368 3369 running_total = 0; 3370 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3371 usb_endpoint_maxp(&urb->ep->desc)); 3372 /* How much data is in the first TRB? */ 3373 addr = (u64) urb->transfer_dma; 3374 trb_buff_len = TRB_MAX_BUFF_SIZE - 3375 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3376 if (trb_buff_len > urb->transfer_buffer_length) 3377 trb_buff_len = urb->transfer_buffer_length; 3378 3379 first_trb = true; 3380 3381 /* Queue the first TRB, even if it's zero-length */ 3382 do { 3383 u32 remainder = 0; 3384 field = 0; 3385 3386 /* Don't change the cycle bit of the first TRB until later */ 3387 if (first_trb) { 3388 first_trb = false; 3389 if (start_cycle == 0) 3390 field |= 0x1; 3391 } else 3392 field |= ep_ring->cycle_state; 3393 3394 /* Chain all the TRBs together; clear the chain bit in the last 3395 * TRB to indicate it's the last TRB in the chain. 3396 */ 3397 if (num_trbs > 1) { 3398 field |= TRB_CHAIN; 3399 } else { 3400 /* FIXME - add check for ZERO_PACKET flag before this */ 3401 td->last_trb = ep_ring->enqueue; 3402 field |= TRB_IOC; 3403 } 3404 3405 /* Only set interrupt on short packet for IN endpoints */ 3406 if (usb_urb_dir_in(urb)) 3407 field |= TRB_ISP; 3408 3409 /* Set the TRB length, TD size, and interrupter fields. */ 3410 if (xhci->hci_version < 0x100) { 3411 remainder = xhci_td_remainder( 3412 urb->transfer_buffer_length - 3413 running_total); 3414 } else { 3415 remainder = xhci_v1_0_td_remainder(running_total, 3416 trb_buff_len, total_packet_count, urb, 3417 num_trbs - 1); 3418 } 3419 length_field = TRB_LEN(trb_buff_len) | 3420 remainder | 3421 TRB_INTR_TARGET(0); 3422 3423 if (num_trbs > 1) 3424 more_trbs_coming = true; 3425 else 3426 more_trbs_coming = false; 3427 queue_trb(xhci, ep_ring, more_trbs_coming, 3428 lower_32_bits(addr), 3429 upper_32_bits(addr), 3430 length_field, 3431 field | TRB_TYPE(TRB_NORMAL)); 3432 --num_trbs; 3433 running_total += trb_buff_len; 3434 3435 /* Calculate length for next transfer */ 3436 addr += trb_buff_len; 3437 trb_buff_len = urb->transfer_buffer_length - running_total; 3438 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3439 trb_buff_len = TRB_MAX_BUFF_SIZE; 3440 } while (running_total < urb->transfer_buffer_length); 3441 3442 check_trb_math(urb, num_trbs, running_total); 3443 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3444 start_cycle, start_trb); 3445 return 0; 3446 } 3447 3448 /* Caller must have locked xhci->lock */ 3449 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3450 struct urb *urb, int slot_id, unsigned int ep_index) 3451 { 3452 struct xhci_ring *ep_ring; 3453 int num_trbs; 3454 int ret; 3455 struct usb_ctrlrequest *setup; 3456 struct xhci_generic_trb *start_trb; 3457 int start_cycle; 3458 u32 field, length_field; 3459 struct urb_priv *urb_priv; 3460 struct xhci_td *td; 3461 3462 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3463 if (!ep_ring) 3464 return -EINVAL; 3465 3466 /* 3467 * Need to copy setup packet into setup TRB, so we can't use the setup 3468 * DMA address. 3469 */ 3470 if (!urb->setup_packet) 3471 return -EINVAL; 3472 3473 /* 1 TRB for setup, 1 for status */ 3474 num_trbs = 2; 3475 /* 3476 * Don't need to check if we need additional event data and normal TRBs, 3477 * since data in control transfers will never get bigger than 16MB 3478 * XXX: can we get a buffer that crosses 64KB boundaries? 3479 */ 3480 if (urb->transfer_buffer_length > 0) 3481 num_trbs++; 3482 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3483 ep_index, urb->stream_id, 3484 num_trbs, urb, 0, mem_flags); 3485 if (ret < 0) 3486 return ret; 3487 3488 urb_priv = urb->hcpriv; 3489 td = urb_priv->td[0]; 3490 3491 /* 3492 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3493 * until we've finished creating all the other TRBs. The ring's cycle 3494 * state may change as we enqueue the other TRBs, so save it too. 3495 */ 3496 start_trb = &ep_ring->enqueue->generic; 3497 start_cycle = ep_ring->cycle_state; 3498 3499 /* Queue setup TRB - see section 6.4.1.2.1 */ 3500 /* FIXME better way to translate setup_packet into two u32 fields? */ 3501 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3502 field = 0; 3503 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3504 if (start_cycle == 0) 3505 field |= 0x1; 3506 3507 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3508 if (xhci->hci_version == 0x100) { 3509 if (urb->transfer_buffer_length > 0) { 3510 if (setup->bRequestType & USB_DIR_IN) 3511 field |= TRB_TX_TYPE(TRB_DATA_IN); 3512 else 3513 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3514 } 3515 } 3516 3517 queue_trb(xhci, ep_ring, true, 3518 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3519 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3520 TRB_LEN(8) | TRB_INTR_TARGET(0), 3521 /* Immediate data in pointer */ 3522 field); 3523 3524 /* If there's data, queue data TRBs */ 3525 /* Only set interrupt on short packet for IN endpoints */ 3526 if (usb_urb_dir_in(urb)) 3527 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3528 else 3529 field = TRB_TYPE(TRB_DATA); 3530 3531 length_field = TRB_LEN(urb->transfer_buffer_length) | 3532 xhci_td_remainder(urb->transfer_buffer_length) | 3533 TRB_INTR_TARGET(0); 3534 if (urb->transfer_buffer_length > 0) { 3535 if (setup->bRequestType & USB_DIR_IN) 3536 field |= TRB_DIR_IN; 3537 queue_trb(xhci, ep_ring, true, 3538 lower_32_bits(urb->transfer_dma), 3539 upper_32_bits(urb->transfer_dma), 3540 length_field, 3541 field | ep_ring->cycle_state); 3542 } 3543 3544 /* Save the DMA address of the last TRB in the TD */ 3545 td->last_trb = ep_ring->enqueue; 3546 3547 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3548 /* If the device sent data, the status stage is an OUT transfer */ 3549 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3550 field = 0; 3551 else 3552 field = TRB_DIR_IN; 3553 queue_trb(xhci, ep_ring, false, 3554 0, 3555 0, 3556 TRB_INTR_TARGET(0), 3557 /* Event on completion */ 3558 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3559 3560 giveback_first_trb(xhci, slot_id, ep_index, 0, 3561 start_cycle, start_trb); 3562 return 0; 3563 } 3564 3565 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3566 struct urb *urb, int i) 3567 { 3568 int num_trbs = 0; 3569 u64 addr, td_len; 3570 3571 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3572 td_len = urb->iso_frame_desc[i].length; 3573 3574 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3575 TRB_MAX_BUFF_SIZE); 3576 if (num_trbs == 0) 3577 num_trbs++; 3578 3579 return num_trbs; 3580 } 3581 3582 /* 3583 * The transfer burst count field of the isochronous TRB defines the number of 3584 * bursts that are required to move all packets in this TD. Only SuperSpeed 3585 * devices can burst up to bMaxBurst number of packets per service interval. 3586 * This field is zero based, meaning a value of zero in the field means one 3587 * burst. Basically, for everything but SuperSpeed devices, this field will be 3588 * zero. Only xHCI 1.0 host controllers support this field. 3589 */ 3590 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3591 struct usb_device *udev, 3592 struct urb *urb, unsigned int total_packet_count) 3593 { 3594 unsigned int max_burst; 3595 3596 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3597 return 0; 3598 3599 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3600 return roundup(total_packet_count, max_burst + 1) - 1; 3601 } 3602 3603 /* 3604 * Returns the number of packets in the last "burst" of packets. This field is 3605 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3606 * the last burst packet count is equal to the total number of packets in the 3607 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3608 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3609 * contain 1 to (bMaxBurst + 1) packets. 3610 */ 3611 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3612 struct usb_device *udev, 3613 struct urb *urb, unsigned int total_packet_count) 3614 { 3615 unsigned int max_burst; 3616 unsigned int residue; 3617 3618 if (xhci->hci_version < 0x100) 3619 return 0; 3620 3621 switch (udev->speed) { 3622 case USB_SPEED_SUPER: 3623 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3624 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3625 residue = total_packet_count % (max_burst + 1); 3626 /* If residue is zero, the last burst contains (max_burst + 1) 3627 * number of packets, but the TLBPC field is zero-based. 3628 */ 3629 if (residue == 0) 3630 return max_burst; 3631 return residue - 1; 3632 default: 3633 if (total_packet_count == 0) 3634 return 0; 3635 return total_packet_count - 1; 3636 } 3637 } 3638 3639 /* This is for isoc transfer */ 3640 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3641 struct urb *urb, int slot_id, unsigned int ep_index) 3642 { 3643 struct xhci_ring *ep_ring; 3644 struct urb_priv *urb_priv; 3645 struct xhci_td *td; 3646 int num_tds, trbs_per_td; 3647 struct xhci_generic_trb *start_trb; 3648 bool first_trb; 3649 int start_cycle; 3650 u32 field, length_field; 3651 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3652 u64 start_addr, addr; 3653 int i, j; 3654 bool more_trbs_coming; 3655 3656 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3657 3658 num_tds = urb->number_of_packets; 3659 if (num_tds < 1) { 3660 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3661 return -EINVAL; 3662 } 3663 3664 start_addr = (u64) urb->transfer_dma; 3665 start_trb = &ep_ring->enqueue->generic; 3666 start_cycle = ep_ring->cycle_state; 3667 3668 urb_priv = urb->hcpriv; 3669 /* Queue the first TRB, even if it's zero-length */ 3670 for (i = 0; i < num_tds; i++) { 3671 unsigned int total_packet_count; 3672 unsigned int burst_count; 3673 unsigned int residue; 3674 3675 first_trb = true; 3676 running_total = 0; 3677 addr = start_addr + urb->iso_frame_desc[i].offset; 3678 td_len = urb->iso_frame_desc[i].length; 3679 td_remain_len = td_len; 3680 total_packet_count = DIV_ROUND_UP(td_len, 3681 GET_MAX_PACKET( 3682 usb_endpoint_maxp(&urb->ep->desc))); 3683 /* A zero-length transfer still involves at least one packet. */ 3684 if (total_packet_count == 0) 3685 total_packet_count++; 3686 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3687 total_packet_count); 3688 residue = xhci_get_last_burst_packet_count(xhci, 3689 urb->dev, urb, total_packet_count); 3690 3691 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3692 3693 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3694 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3695 if (ret < 0) { 3696 if (i == 0) 3697 return ret; 3698 goto cleanup; 3699 } 3700 3701 td = urb_priv->td[i]; 3702 for (j = 0; j < trbs_per_td; j++) { 3703 u32 remainder = 0; 3704 field = 0; 3705 3706 if (first_trb) { 3707 field = TRB_TBC(burst_count) | 3708 TRB_TLBPC(residue); 3709 /* Queue the isoc TRB */ 3710 field |= TRB_TYPE(TRB_ISOC); 3711 /* Assume URB_ISO_ASAP is set */ 3712 field |= TRB_SIA; 3713 if (i == 0) { 3714 if (start_cycle == 0) 3715 field |= 0x1; 3716 } else 3717 field |= ep_ring->cycle_state; 3718 first_trb = false; 3719 } else { 3720 /* Queue other normal TRBs */ 3721 field |= TRB_TYPE(TRB_NORMAL); 3722 field |= ep_ring->cycle_state; 3723 } 3724 3725 /* Only set interrupt on short packet for IN EPs */ 3726 if (usb_urb_dir_in(urb)) 3727 field |= TRB_ISP; 3728 3729 /* Chain all the TRBs together; clear the chain bit in 3730 * the last TRB to indicate it's the last TRB in the 3731 * chain. 3732 */ 3733 if (j < trbs_per_td - 1) { 3734 field |= TRB_CHAIN; 3735 more_trbs_coming = true; 3736 } else { 3737 td->last_trb = ep_ring->enqueue; 3738 field |= TRB_IOC; 3739 if (xhci->hci_version == 0x100 && 3740 !(xhci->quirks & 3741 XHCI_AVOID_BEI)) { 3742 /* Set BEI bit except for the last td */ 3743 if (i < num_tds - 1) 3744 field |= TRB_BEI; 3745 } 3746 more_trbs_coming = false; 3747 } 3748 3749 /* Calculate TRB length */ 3750 trb_buff_len = TRB_MAX_BUFF_SIZE - 3751 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3752 if (trb_buff_len > td_remain_len) 3753 trb_buff_len = td_remain_len; 3754 3755 /* Set the TRB length, TD size, & interrupter fields. */ 3756 if (xhci->hci_version < 0x100) { 3757 remainder = xhci_td_remainder( 3758 td_len - running_total); 3759 } else { 3760 remainder = xhci_v1_0_td_remainder( 3761 running_total, trb_buff_len, 3762 total_packet_count, urb, 3763 (trbs_per_td - j - 1)); 3764 } 3765 length_field = TRB_LEN(trb_buff_len) | 3766 remainder | 3767 TRB_INTR_TARGET(0); 3768 3769 queue_trb(xhci, ep_ring, more_trbs_coming, 3770 lower_32_bits(addr), 3771 upper_32_bits(addr), 3772 length_field, 3773 field); 3774 running_total += trb_buff_len; 3775 3776 addr += trb_buff_len; 3777 td_remain_len -= trb_buff_len; 3778 } 3779 3780 /* Check TD length */ 3781 if (running_total != td_len) { 3782 xhci_err(xhci, "ISOC TD length unmatch\n"); 3783 ret = -EINVAL; 3784 goto cleanup; 3785 } 3786 } 3787 3788 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3789 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3790 usb_amd_quirk_pll_disable(); 3791 } 3792 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3793 3794 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3795 start_cycle, start_trb); 3796 return 0; 3797 cleanup: 3798 /* Clean up a partially enqueued isoc transfer. */ 3799 3800 for (i--; i >= 0; i--) 3801 list_del_init(&urb_priv->td[i]->td_list); 3802 3803 /* Use the first TD as a temporary variable to turn the TDs we've queued 3804 * into No-ops with a software-owned cycle bit. That way the hardware 3805 * won't accidentally start executing bogus TDs when we partially 3806 * overwrite them. td->first_trb and td->start_seg are already set. 3807 */ 3808 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3809 /* Every TRB except the first & last will have its cycle bit flipped. */ 3810 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3811 3812 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3813 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3814 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3815 ep_ring->cycle_state = start_cycle; 3816 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3817 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3818 return ret; 3819 } 3820 3821 /* 3822 * Check transfer ring to guarantee there is enough room for the urb. 3823 * Update ISO URB start_frame and interval. 3824 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3825 * update the urb->start_frame by now. 3826 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3827 */ 3828 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3829 struct urb *urb, int slot_id, unsigned int ep_index) 3830 { 3831 struct xhci_virt_device *xdev; 3832 struct xhci_ring *ep_ring; 3833 struct xhci_ep_ctx *ep_ctx; 3834 int start_frame; 3835 int xhci_interval; 3836 int ep_interval; 3837 int num_tds, num_trbs, i; 3838 int ret; 3839 3840 xdev = xhci->devs[slot_id]; 3841 ep_ring = xdev->eps[ep_index].ring; 3842 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3843 3844 num_trbs = 0; 3845 num_tds = urb->number_of_packets; 3846 for (i = 0; i < num_tds; i++) 3847 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3848 3849 /* Check the ring to guarantee there is enough room for the whole urb. 3850 * Do not insert any td of the urb to the ring if the check failed. 3851 */ 3852 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3853 num_trbs, mem_flags); 3854 if (ret) 3855 return ret; 3856 3857 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3858 start_frame &= 0x3fff; 3859 3860 urb->start_frame = start_frame; 3861 if (urb->dev->speed == USB_SPEED_LOW || 3862 urb->dev->speed == USB_SPEED_FULL) 3863 urb->start_frame >>= 3; 3864 3865 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3866 ep_interval = urb->interval; 3867 /* Convert to microframes */ 3868 if (urb->dev->speed == USB_SPEED_LOW || 3869 urb->dev->speed == USB_SPEED_FULL) 3870 ep_interval *= 8; 3871 /* FIXME change this to a warning and a suggestion to use the new API 3872 * to set the polling interval (once the API is added). 3873 */ 3874 if (xhci_interval != ep_interval) { 3875 dev_dbg_ratelimited(&urb->dev->dev, 3876 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3877 ep_interval, ep_interval == 1 ? "" : "s", 3878 xhci_interval, xhci_interval == 1 ? "" : "s"); 3879 urb->interval = xhci_interval; 3880 /* Convert back to frames for LS/FS devices */ 3881 if (urb->dev->speed == USB_SPEED_LOW || 3882 urb->dev->speed == USB_SPEED_FULL) 3883 urb->interval /= 8; 3884 } 3885 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3886 3887 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3888 } 3889 3890 /**** Command Ring Operations ****/ 3891 3892 /* Generic function for queueing a command TRB on the command ring. 3893 * Check to make sure there's room on the command ring for one command TRB. 3894 * Also check that there's room reserved for commands that must not fail. 3895 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3896 * then only check for the number of reserved spots. 3897 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3898 * because the command event handler may want to resubmit a failed command. 3899 */ 3900 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3901 u32 field3, u32 field4, bool command_must_succeed) 3902 { 3903 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3904 int ret; 3905 3906 if (!command_must_succeed) 3907 reserved_trbs++; 3908 3909 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3910 reserved_trbs, GFP_ATOMIC); 3911 if (ret < 0) { 3912 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3913 if (command_must_succeed) 3914 xhci_err(xhci, "ERR: Reserved TRB counting for " 3915 "unfailable commands failed.\n"); 3916 return ret; 3917 } 3918 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3919 field4 | xhci->cmd_ring->cycle_state); 3920 return 0; 3921 } 3922 3923 /* Queue a slot enable or disable request on the command ring */ 3924 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3925 { 3926 return queue_command(xhci, 0, 0, 0, 3927 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3928 } 3929 3930 /* Queue an address device command TRB */ 3931 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3932 u32 slot_id) 3933 { 3934 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3935 upper_32_bits(in_ctx_ptr), 0, 3936 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3937 false); 3938 } 3939 3940 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3941 u32 field1, u32 field2, u32 field3, u32 field4) 3942 { 3943 return queue_command(xhci, field1, field2, field3, field4, false); 3944 } 3945 3946 /* Queue a reset device command TRB */ 3947 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3948 { 3949 return queue_command(xhci, 0, 0, 0, 3950 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3951 false); 3952 } 3953 3954 /* Queue a configure endpoint command TRB */ 3955 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3956 u32 slot_id, bool command_must_succeed) 3957 { 3958 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3959 upper_32_bits(in_ctx_ptr), 0, 3960 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3961 command_must_succeed); 3962 } 3963 3964 /* Queue an evaluate context command TRB */ 3965 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3966 u32 slot_id, bool command_must_succeed) 3967 { 3968 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3969 upper_32_bits(in_ctx_ptr), 0, 3970 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3971 command_must_succeed); 3972 } 3973 3974 /* 3975 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3976 * activity on an endpoint that is about to be suspended. 3977 */ 3978 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3979 unsigned int ep_index, int suspend) 3980 { 3981 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3982 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3983 u32 type = TRB_TYPE(TRB_STOP_RING); 3984 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3985 3986 return queue_command(xhci, 0, 0, 0, 3987 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3988 } 3989 3990 /* Set Transfer Ring Dequeue Pointer command. 3991 * This should not be used for endpoints that have streams enabled. 3992 */ 3993 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3994 unsigned int ep_index, unsigned int stream_id, 3995 struct xhci_segment *deq_seg, 3996 union xhci_trb *deq_ptr, u32 cycle_state) 3997 { 3998 dma_addr_t addr; 3999 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4000 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4001 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4002 u32 type = TRB_TYPE(TRB_SET_DEQ); 4003 struct xhci_virt_ep *ep; 4004 4005 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4006 if (addr == 0) { 4007 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4008 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4009 deq_seg, deq_ptr); 4010 return 0; 4011 } 4012 ep = &xhci->devs[slot_id]->eps[ep_index]; 4013 if ((ep->ep_state & SET_DEQ_PENDING)) { 4014 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4015 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4016 return 0; 4017 } 4018 ep->queued_deq_seg = deq_seg; 4019 ep->queued_deq_ptr = deq_ptr; 4020 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 4021 upper_32_bits(addr), trb_stream_id, 4022 trb_slot_id | trb_ep_index | type, false); 4023 } 4024 4025 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4026 unsigned int ep_index) 4027 { 4028 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4029 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4030 u32 type = TRB_TYPE(TRB_RESET_EP); 4031 4032 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4033 false); 4034 } 4035