xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 5bd8e16d)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 		struct xhci_virt_device *virt_dev,
74 		struct xhci_event_cmd *event);
75 
76 /*
77  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78  * address of the TRB.
79  */
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 		union xhci_trb *trb)
82 {
83 	unsigned long segment_offset;
84 
85 	if (!seg || !trb || trb < seg->trbs)
86 		return 0;
87 	/* offset in TRBs */
88 	segment_offset = trb - seg->trbs;
89 	if (segment_offset > TRBS_PER_SEGMENT)
90 		return 0;
91 	return seg->dma + (segment_offset * sizeof(*trb));
92 }
93 
94 /* Does this link TRB point to the first segment in a ring,
95  * or was the previous TRB the last TRB on the last segment in the ERST?
96  */
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 		struct xhci_segment *seg, union xhci_trb *trb)
99 {
100 	if (ring == xhci->event_ring)
101 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 			(seg->next == xhci->event_ring->first_seg);
103 	else
104 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
105 }
106 
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108  * segment?  I.e. would the updated event TRB pointer step off the end of the
109  * event seg?
110  */
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 		struct xhci_segment *seg, union xhci_trb *trb)
113 {
114 	if (ring == xhci->event_ring)
115 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 	else
117 		return TRB_TYPE_LINK_LE32(trb->link.control);
118 }
119 
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 {
122 	struct xhci_link_trb *link = &ring->enqueue->link;
123 	return TRB_TYPE_LINK_LE32(link->control);
124 }
125 
126 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
127  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
128  * effect the ring dequeue or enqueue pointers.
129  */
130 static void next_trb(struct xhci_hcd *xhci,
131 		struct xhci_ring *ring,
132 		struct xhci_segment **seg,
133 		union xhci_trb **trb)
134 {
135 	if (last_trb(xhci, ring, *seg, *trb)) {
136 		*seg = (*seg)->next;
137 		*trb = ((*seg)->trbs);
138 	} else {
139 		(*trb)++;
140 	}
141 }
142 
143 /*
144  * See Cycle bit rules. SW is the consumer for the event ring only.
145  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
146  */
147 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
148 {
149 	unsigned long long addr;
150 
151 	ring->deq_updates++;
152 
153 	/*
154 	 * If this is not event ring, and the dequeue pointer
155 	 * is not on a link TRB, there is one more usable TRB
156 	 */
157 	if (ring->type != TYPE_EVENT &&
158 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
159 		ring->num_trbs_free++;
160 
161 	do {
162 		/*
163 		 * Update the dequeue pointer further if that was a link TRB or
164 		 * we're at the end of an event ring segment (which doesn't have
165 		 * link TRBS)
166 		 */
167 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
168 			if (ring->type == TYPE_EVENT &&
169 					last_trb_on_last_seg(xhci, ring,
170 						ring->deq_seg, ring->dequeue)) {
171 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
172 			}
173 			ring->deq_seg = ring->deq_seg->next;
174 			ring->dequeue = ring->deq_seg->trbs;
175 		} else {
176 			ring->dequeue++;
177 		}
178 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
179 
180 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
181 }
182 
183 /*
184  * See Cycle bit rules. SW is the consumer for the event ring only.
185  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
186  *
187  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
188  * chain bit is set), then set the chain bit in all the following link TRBs.
189  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
190  * have their chain bit cleared (so that each Link TRB is a separate TD).
191  *
192  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
193  * set, but other sections talk about dealing with the chain bit set.  This was
194  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
195  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
196  *
197  * @more_trbs_coming:	Will you enqueue more TRBs before calling
198  *			prepare_transfer()?
199  */
200 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
201 			bool more_trbs_coming)
202 {
203 	u32 chain;
204 	union xhci_trb *next;
205 	unsigned long long addr;
206 
207 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
208 	/* If this is not event ring, there is one less usable TRB */
209 	if (ring->type != TYPE_EVENT &&
210 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
211 		ring->num_trbs_free--;
212 	next = ++(ring->enqueue);
213 
214 	ring->enq_updates++;
215 	/* Update the dequeue pointer further if that was a link TRB or we're at
216 	 * the end of an event ring segment (which doesn't have link TRBS)
217 	 */
218 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
219 		if (ring->type != TYPE_EVENT) {
220 			/*
221 			 * If the caller doesn't plan on enqueueing more
222 			 * TDs before ringing the doorbell, then we
223 			 * don't want to give the link TRB to the
224 			 * hardware just yet.  We'll give the link TRB
225 			 * back in prepare_ring() just before we enqueue
226 			 * the TD at the top of the ring.
227 			 */
228 			if (!chain && !more_trbs_coming)
229 				break;
230 
231 			/* If we're not dealing with 0.95 hardware or
232 			 * isoc rings on AMD 0.96 host,
233 			 * carry over the chain bit of the previous TRB
234 			 * (which may mean the chain bit is cleared).
235 			 */
236 			if (!(ring->type == TYPE_ISOC &&
237 					(xhci->quirks & XHCI_AMD_0x96_HOST))
238 						&& !xhci_link_trb_quirk(xhci)) {
239 				next->link.control &=
240 					cpu_to_le32(~TRB_CHAIN);
241 				next->link.control |=
242 					cpu_to_le32(chain);
243 			}
244 			/* Give this link TRB to the hardware */
245 			wmb();
246 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
247 
248 			/* Toggle the cycle bit after the last ring segment. */
249 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
250 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
251 			}
252 		}
253 		ring->enq_seg = ring->enq_seg->next;
254 		ring->enqueue = ring->enq_seg->trbs;
255 		next = ring->enqueue;
256 	}
257 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
258 }
259 
260 /*
261  * Check to see if there's room to enqueue num_trbs on the ring and make sure
262  * enqueue pointer will not advance into dequeue segment. See rules above.
263  */
264 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
265 		unsigned int num_trbs)
266 {
267 	int num_trbs_in_deq_seg;
268 
269 	if (ring->num_trbs_free < num_trbs)
270 		return 0;
271 
272 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
273 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
274 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
275 			return 0;
276 	}
277 
278 	return 1;
279 }
280 
281 /* Ring the host controller doorbell after placing a command on the ring */
282 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
283 {
284 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
285 		return;
286 
287 	xhci_dbg(xhci, "// Ding dong!\n");
288 	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
289 	/* Flush PCI posted writes */
290 	xhci_readl(xhci, &xhci->dba->doorbell[0]);
291 }
292 
293 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
294 {
295 	u64 temp_64;
296 	int ret;
297 
298 	xhci_dbg(xhci, "Abort command ring\n");
299 
300 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
301 		xhci_dbg(xhci, "The command ring isn't running, "
302 				"Have the command ring been stopped?\n");
303 		return 0;
304 	}
305 
306 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
307 	if (!(temp_64 & CMD_RING_RUNNING)) {
308 		xhci_dbg(xhci, "Command ring had been stopped\n");
309 		return 0;
310 	}
311 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
312 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
313 			&xhci->op_regs->cmd_ring);
314 
315 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
316 	 * time the completion od all xHCI commands, including
317 	 * the Command Abort operation. If software doesn't see
318 	 * CRR negated in a timely manner (e.g. longer than 5
319 	 * seconds), then it should assume that the there are
320 	 * larger problems with the xHC and assert HCRST.
321 	 */
322 	ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
323 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
324 	if (ret < 0) {
325 		xhci_err(xhci, "Stopped the command ring failed, "
326 				"maybe the host is dead\n");
327 		xhci->xhc_state |= XHCI_STATE_DYING;
328 		xhci_quiesce(xhci);
329 		xhci_halt(xhci);
330 		return -ESHUTDOWN;
331 	}
332 
333 	return 0;
334 }
335 
336 static int xhci_queue_cd(struct xhci_hcd *xhci,
337 		struct xhci_command *command,
338 		union xhci_trb *cmd_trb)
339 {
340 	struct xhci_cd *cd;
341 	cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
342 	if (!cd)
343 		return -ENOMEM;
344 	INIT_LIST_HEAD(&cd->cancel_cmd_list);
345 
346 	cd->command = command;
347 	cd->cmd_trb = cmd_trb;
348 	list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
349 
350 	return 0;
351 }
352 
353 /*
354  * Cancel the command which has issue.
355  *
356  * Some commands may hang due to waiting for acknowledgement from
357  * usb device. It is outside of the xHC's ability to control and
358  * will cause the command ring is blocked. When it occurs software
359  * should intervene to recover the command ring.
360  * See Section 4.6.1.1 and 4.6.1.2
361  */
362 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
363 		union xhci_trb *cmd_trb)
364 {
365 	int retval = 0;
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&xhci->lock, flags);
369 
370 	if (xhci->xhc_state & XHCI_STATE_DYING) {
371 		xhci_warn(xhci, "Abort the command ring,"
372 				" but the xHCI is dead.\n");
373 		retval = -ESHUTDOWN;
374 		goto fail;
375 	}
376 
377 	/* queue the cmd desriptor to cancel_cmd_list */
378 	retval = xhci_queue_cd(xhci, command, cmd_trb);
379 	if (retval) {
380 		xhci_warn(xhci, "Queuing command descriptor failed.\n");
381 		goto fail;
382 	}
383 
384 	/* abort command ring */
385 	retval = xhci_abort_cmd_ring(xhci);
386 	if (retval) {
387 		xhci_err(xhci, "Abort command ring failed\n");
388 		if (unlikely(retval == -ESHUTDOWN)) {
389 			spin_unlock_irqrestore(&xhci->lock, flags);
390 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
391 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
392 			return retval;
393 		}
394 	}
395 
396 fail:
397 	spin_unlock_irqrestore(&xhci->lock, flags);
398 	return retval;
399 }
400 
401 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
402 		unsigned int slot_id,
403 		unsigned int ep_index,
404 		unsigned int stream_id)
405 {
406 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
407 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
408 	unsigned int ep_state = ep->ep_state;
409 
410 	/* Don't ring the doorbell for this endpoint if there are pending
411 	 * cancellations because we don't want to interrupt processing.
412 	 * We don't want to restart any stream rings if there's a set dequeue
413 	 * pointer command pending because the device can choose to start any
414 	 * stream once the endpoint is on the HW schedule.
415 	 * FIXME - check all the stream rings for pending cancellations.
416 	 */
417 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
418 	    (ep_state & EP_HALTED))
419 		return;
420 	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
421 	/* The CPU has better things to do at this point than wait for a
422 	 * write-posting flush.  It'll get there soon enough.
423 	 */
424 }
425 
426 /* Ring the doorbell for any rings with pending URBs */
427 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
428 		unsigned int slot_id,
429 		unsigned int ep_index)
430 {
431 	unsigned int stream_id;
432 	struct xhci_virt_ep *ep;
433 
434 	ep = &xhci->devs[slot_id]->eps[ep_index];
435 
436 	/* A ring has pending URBs if its TD list is not empty */
437 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
438 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
439 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
440 		return;
441 	}
442 
443 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
444 			stream_id++) {
445 		struct xhci_stream_info *stream_info = ep->stream_info;
446 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
447 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
448 						stream_id);
449 	}
450 }
451 
452 /*
453  * Find the segment that trb is in.  Start searching in start_seg.
454  * If we must move past a segment that has a link TRB with a toggle cycle state
455  * bit set, then we will toggle the value pointed at by cycle_state.
456  */
457 static struct xhci_segment *find_trb_seg(
458 		struct xhci_segment *start_seg,
459 		union xhci_trb	*trb, int *cycle_state)
460 {
461 	struct xhci_segment *cur_seg = start_seg;
462 	struct xhci_generic_trb *generic_trb;
463 
464 	while (cur_seg->trbs > trb ||
465 			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
466 		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
467 		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
468 			*cycle_state ^= 0x1;
469 		cur_seg = cur_seg->next;
470 		if (cur_seg == start_seg)
471 			/* Looped over the entire list.  Oops! */
472 			return NULL;
473 	}
474 	return cur_seg;
475 }
476 
477 
478 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
479 		unsigned int slot_id, unsigned int ep_index,
480 		unsigned int stream_id)
481 {
482 	struct xhci_virt_ep *ep;
483 
484 	ep = &xhci->devs[slot_id]->eps[ep_index];
485 	/* Common case: no streams */
486 	if (!(ep->ep_state & EP_HAS_STREAMS))
487 		return ep->ring;
488 
489 	if (stream_id == 0) {
490 		xhci_warn(xhci,
491 				"WARN: Slot ID %u, ep index %u has streams, "
492 				"but URB has no stream ID.\n",
493 				slot_id, ep_index);
494 		return NULL;
495 	}
496 
497 	if (stream_id < ep->stream_info->num_streams)
498 		return ep->stream_info->stream_rings[stream_id];
499 
500 	xhci_warn(xhci,
501 			"WARN: Slot ID %u, ep index %u has "
502 			"stream IDs 1 to %u allocated, "
503 			"but stream ID %u is requested.\n",
504 			slot_id, ep_index,
505 			ep->stream_info->num_streams - 1,
506 			stream_id);
507 	return NULL;
508 }
509 
510 /* Get the right ring for the given URB.
511  * If the endpoint supports streams, boundary check the URB's stream ID.
512  * If the endpoint doesn't support streams, return the singular endpoint ring.
513  */
514 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
515 		struct urb *urb)
516 {
517 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
518 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
519 }
520 
521 /*
522  * Move the xHC's endpoint ring dequeue pointer past cur_td.
523  * Record the new state of the xHC's endpoint ring dequeue segment,
524  * dequeue pointer, and new consumer cycle state in state.
525  * Update our internal representation of the ring's dequeue pointer.
526  *
527  * We do this in three jumps:
528  *  - First we update our new ring state to be the same as when the xHC stopped.
529  *  - Then we traverse the ring to find the segment that contains
530  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
531  *    any link TRBs with the toggle cycle bit set.
532  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
533  *    if we've moved it past a link TRB with the toggle cycle bit set.
534  *
535  * Some of the uses of xhci_generic_trb are grotty, but if they're done
536  * with correct __le32 accesses they should work fine.  Only users of this are
537  * in here.
538  */
539 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
540 		unsigned int slot_id, unsigned int ep_index,
541 		unsigned int stream_id, struct xhci_td *cur_td,
542 		struct xhci_dequeue_state *state)
543 {
544 	struct xhci_virt_device *dev = xhci->devs[slot_id];
545 	struct xhci_ring *ep_ring;
546 	struct xhci_generic_trb *trb;
547 	struct xhci_ep_ctx *ep_ctx;
548 	dma_addr_t addr;
549 
550 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
551 			ep_index, stream_id);
552 	if (!ep_ring) {
553 		xhci_warn(xhci, "WARN can't find new dequeue state "
554 				"for invalid stream ID %u.\n",
555 				stream_id);
556 		return;
557 	}
558 	state->new_cycle_state = 0;
559 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
560 			"Finding segment containing stopped TRB.");
561 	state->new_deq_seg = find_trb_seg(cur_td->start_seg,
562 			dev->eps[ep_index].stopped_trb,
563 			&state->new_cycle_state);
564 	if (!state->new_deq_seg) {
565 		WARN_ON(1);
566 		return;
567 	}
568 
569 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
571 			"Finding endpoint context");
572 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
573 	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
574 
575 	state->new_deq_ptr = cur_td->last_trb;
576 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
577 			"Finding segment containing last TRB in TD.");
578 	state->new_deq_seg = find_trb_seg(state->new_deq_seg,
579 			state->new_deq_ptr,
580 			&state->new_cycle_state);
581 	if (!state->new_deq_seg) {
582 		WARN_ON(1);
583 		return;
584 	}
585 
586 	trb = &state->new_deq_ptr->generic;
587 	if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
588 	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
589 		state->new_cycle_state ^= 0x1;
590 	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
591 
592 	/*
593 	 * If there is only one segment in a ring, find_trb_seg()'s while loop
594 	 * will not run, and it will return before it has a chance to see if it
595 	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer
596 	 * ended just before the link TRB on a one-segment ring, or if the TD
597 	 * wrapped around the top of the ring, because it doesn't have the TD in
598 	 * question.  Look for the one-segment case where stalled TRB's address
599 	 * is greater than the new dequeue pointer address.
600 	 */
601 	if (ep_ring->first_seg == ep_ring->first_seg->next &&
602 			state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
603 		state->new_cycle_state ^= 0x1;
604 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
605 			"Cycle state = 0x%x", state->new_cycle_state);
606 
607 	/* Don't update the ring cycle state for the producer (us). */
608 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
609 			"New dequeue segment = %p (virtual)",
610 			state->new_deq_seg);
611 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
613 			"New dequeue pointer = 0x%llx (DMA)",
614 			(unsigned long long) addr);
615 }
616 
617 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
618  * (The last TRB actually points to the ring enqueue pointer, which is not part
619  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
620  */
621 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
622 		struct xhci_td *cur_td, bool flip_cycle)
623 {
624 	struct xhci_segment *cur_seg;
625 	union xhci_trb *cur_trb;
626 
627 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
628 			true;
629 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
630 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
631 			/* Unchain any chained Link TRBs, but
632 			 * leave the pointers intact.
633 			 */
634 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
635 			/* Flip the cycle bit (link TRBs can't be the first
636 			 * or last TRB).
637 			 */
638 			if (flip_cycle)
639 				cur_trb->generic.field[3] ^=
640 					cpu_to_le32(TRB_CYCLE);
641 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
642 					"Cancel (unchain) link TRB");
643 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
644 					"Address = %p (0x%llx dma); "
645 					"in seg %p (0x%llx dma)",
646 					cur_trb,
647 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
648 					cur_seg,
649 					(unsigned long long)cur_seg->dma);
650 		} else {
651 			cur_trb->generic.field[0] = 0;
652 			cur_trb->generic.field[1] = 0;
653 			cur_trb->generic.field[2] = 0;
654 			/* Preserve only the cycle bit of this TRB */
655 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
656 			/* Flip the cycle bit except on the first or last TRB */
657 			if (flip_cycle && cur_trb != cur_td->first_trb &&
658 					cur_trb != cur_td->last_trb)
659 				cur_trb->generic.field[3] ^=
660 					cpu_to_le32(TRB_CYCLE);
661 			cur_trb->generic.field[3] |= cpu_to_le32(
662 				TRB_TYPE(TRB_TR_NOOP));
663 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
664 					"TRB to noop at offset 0x%llx",
665 					(unsigned long long)
666 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
667 		}
668 		if (cur_trb == cur_td->last_trb)
669 			break;
670 	}
671 }
672 
673 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
674 		unsigned int ep_index, unsigned int stream_id,
675 		struct xhci_segment *deq_seg,
676 		union xhci_trb *deq_ptr, u32 cycle_state);
677 
678 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
679 		unsigned int slot_id, unsigned int ep_index,
680 		unsigned int stream_id,
681 		struct xhci_dequeue_state *deq_state)
682 {
683 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
684 
685 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
686 			"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
687 			"new deq ptr = %p (0x%llx dma), new cycle = %u",
688 			deq_state->new_deq_seg,
689 			(unsigned long long)deq_state->new_deq_seg->dma,
690 			deq_state->new_deq_ptr,
691 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
692 			deq_state->new_cycle_state);
693 	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
694 			deq_state->new_deq_seg,
695 			deq_state->new_deq_ptr,
696 			(u32) deq_state->new_cycle_state);
697 	/* Stop the TD queueing code from ringing the doorbell until
698 	 * this command completes.  The HC won't set the dequeue pointer
699 	 * if the ring is running, and ringing the doorbell starts the
700 	 * ring running.
701 	 */
702 	ep->ep_state |= SET_DEQ_PENDING;
703 }
704 
705 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
706 		struct xhci_virt_ep *ep)
707 {
708 	ep->ep_state &= ~EP_HALT_PENDING;
709 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
710 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
711 	 * (since we didn't successfully stop the watchdog timer).
712 	 */
713 	if (del_timer(&ep->stop_cmd_timer))
714 		ep->stop_cmds_pending--;
715 }
716 
717 /* Must be called with xhci->lock held in interrupt context */
718 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
719 		struct xhci_td *cur_td, int status, char *adjective)
720 {
721 	struct usb_hcd *hcd;
722 	struct urb	*urb;
723 	struct urb_priv	*urb_priv;
724 
725 	urb = cur_td->urb;
726 	urb_priv = urb->hcpriv;
727 	urb_priv->td_cnt++;
728 	hcd = bus_to_hcd(urb->dev->bus);
729 
730 	/* Only giveback urb when this is the last td in urb */
731 	if (urb_priv->td_cnt == urb_priv->length) {
732 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
733 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
734 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
735 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
736 					usb_amd_quirk_pll_enable();
737 			}
738 		}
739 		usb_hcd_unlink_urb_from_ep(hcd, urb);
740 
741 		spin_unlock(&xhci->lock);
742 		usb_hcd_giveback_urb(hcd, urb, status);
743 		xhci_urb_free_priv(xhci, urb_priv);
744 		spin_lock(&xhci->lock);
745 	}
746 }
747 
748 /*
749  * When we get a command completion for a Stop Endpoint Command, we need to
750  * unlink any cancelled TDs from the ring.  There are two ways to do that:
751  *
752  *  1. If the HW was in the middle of processing the TD that needs to be
753  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
754  *     in the TD with a Set Dequeue Pointer Command.
755  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
756  *     bit cleared) so that the HW will skip over them.
757  */
758 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
759 		union xhci_trb *trb, struct xhci_event_cmd *event)
760 {
761 	unsigned int slot_id;
762 	unsigned int ep_index;
763 	struct xhci_virt_device *virt_dev;
764 	struct xhci_ring *ep_ring;
765 	struct xhci_virt_ep *ep;
766 	struct list_head *entry;
767 	struct xhci_td *cur_td = NULL;
768 	struct xhci_td *last_unlinked_td;
769 
770 	struct xhci_dequeue_state deq_state;
771 
772 	if (unlikely(TRB_TO_SUSPEND_PORT(
773 			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
774 		slot_id = TRB_TO_SLOT_ID(
775 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
776 		virt_dev = xhci->devs[slot_id];
777 		if (virt_dev)
778 			handle_cmd_in_cmd_wait_list(xhci, virt_dev,
779 				event);
780 		else
781 			xhci_warn(xhci, "Stop endpoint command "
782 				"completion for disabled slot %u\n",
783 				slot_id);
784 		return;
785 	}
786 
787 	memset(&deq_state, 0, sizeof(deq_state));
788 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
789 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
790 	ep = &xhci->devs[slot_id]->eps[ep_index];
791 
792 	if (list_empty(&ep->cancelled_td_list)) {
793 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
794 		ep->stopped_td = NULL;
795 		ep->stopped_trb = NULL;
796 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
797 		return;
798 	}
799 
800 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
801 	 * We have the xHCI lock, so nothing can modify this list until we drop
802 	 * it.  We're also in the event handler, so we can't get re-interrupted
803 	 * if another Stop Endpoint command completes
804 	 */
805 	list_for_each(entry, &ep->cancelled_td_list) {
806 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
807 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
808 				"Removing canceled TD starting at 0x%llx (dma).",
809 				(unsigned long long)xhci_trb_virt_to_dma(
810 					cur_td->start_seg, cur_td->first_trb));
811 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
812 		if (!ep_ring) {
813 			/* This shouldn't happen unless a driver is mucking
814 			 * with the stream ID after submission.  This will
815 			 * leave the TD on the hardware ring, and the hardware
816 			 * will try to execute it, and may access a buffer
817 			 * that has already been freed.  In the best case, the
818 			 * hardware will execute it, and the event handler will
819 			 * ignore the completion event for that TD, since it was
820 			 * removed from the td_list for that endpoint.  In
821 			 * short, don't muck with the stream ID after
822 			 * submission.
823 			 */
824 			xhci_warn(xhci, "WARN Cancelled URB %p "
825 					"has invalid stream ID %u.\n",
826 					cur_td->urb,
827 					cur_td->urb->stream_id);
828 			goto remove_finished_td;
829 		}
830 		/*
831 		 * If we stopped on the TD we need to cancel, then we have to
832 		 * move the xHC endpoint ring dequeue pointer past this TD.
833 		 */
834 		if (cur_td == ep->stopped_td)
835 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
836 					cur_td->urb->stream_id,
837 					cur_td, &deq_state);
838 		else
839 			td_to_noop(xhci, ep_ring, cur_td, false);
840 remove_finished_td:
841 		/*
842 		 * The event handler won't see a completion for this TD anymore,
843 		 * so remove it from the endpoint ring's TD list.  Keep it in
844 		 * the cancelled TD list for URB completion later.
845 		 */
846 		list_del_init(&cur_td->td_list);
847 	}
848 	last_unlinked_td = cur_td;
849 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
850 
851 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
852 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
853 		xhci_queue_new_dequeue_state(xhci,
854 				slot_id, ep_index,
855 				ep->stopped_td->urb->stream_id,
856 				&deq_state);
857 		xhci_ring_cmd_db(xhci);
858 	} else {
859 		/* Otherwise ring the doorbell(s) to restart queued transfers */
860 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
861 	}
862 	ep->stopped_td = NULL;
863 	ep->stopped_trb = NULL;
864 
865 	/*
866 	 * Drop the lock and complete the URBs in the cancelled TD list.
867 	 * New TDs to be cancelled might be added to the end of the list before
868 	 * we can complete all the URBs for the TDs we already unlinked.
869 	 * So stop when we've completed the URB for the last TD we unlinked.
870 	 */
871 	do {
872 		cur_td = list_entry(ep->cancelled_td_list.next,
873 				struct xhci_td, cancelled_td_list);
874 		list_del_init(&cur_td->cancelled_td_list);
875 
876 		/* Clean up the cancelled URB */
877 		/* Doesn't matter what we pass for status, since the core will
878 		 * just overwrite it (because the URB has been unlinked).
879 		 */
880 		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
881 
882 		/* Stop processing the cancelled list if the watchdog timer is
883 		 * running.
884 		 */
885 		if (xhci->xhc_state & XHCI_STATE_DYING)
886 			return;
887 	} while (cur_td != last_unlinked_td);
888 
889 	/* Return to the event handler with xhci->lock re-acquired */
890 }
891 
892 /* Watchdog timer function for when a stop endpoint command fails to complete.
893  * In this case, we assume the host controller is broken or dying or dead.  The
894  * host may still be completing some other events, so we have to be careful to
895  * let the event ring handler and the URB dequeueing/enqueueing functions know
896  * through xhci->state.
897  *
898  * The timer may also fire if the host takes a very long time to respond to the
899  * command, and the stop endpoint command completion handler cannot delete the
900  * timer before the timer function is called.  Another endpoint cancellation may
901  * sneak in before the timer function can grab the lock, and that may queue
902  * another stop endpoint command and add the timer back.  So we cannot use a
903  * simple flag to say whether there is a pending stop endpoint command for a
904  * particular endpoint.
905  *
906  * Instead we use a combination of that flag and a counter for the number of
907  * pending stop endpoint commands.  If the timer is the tail end of the last
908  * stop endpoint command, and the endpoint's command is still pending, we assume
909  * the host is dying.
910  */
911 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
912 {
913 	struct xhci_hcd *xhci;
914 	struct xhci_virt_ep *ep;
915 	struct xhci_virt_ep *temp_ep;
916 	struct xhci_ring *ring;
917 	struct xhci_td *cur_td;
918 	int ret, i, j;
919 	unsigned long flags;
920 
921 	ep = (struct xhci_virt_ep *) arg;
922 	xhci = ep->xhci;
923 
924 	spin_lock_irqsave(&xhci->lock, flags);
925 
926 	ep->stop_cmds_pending--;
927 	if (xhci->xhc_state & XHCI_STATE_DYING) {
928 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
929 				"Stop EP timer ran, but another timer marked "
930 				"xHCI as DYING, exiting.");
931 		spin_unlock_irqrestore(&xhci->lock, flags);
932 		return;
933 	}
934 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
935 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
936 				"Stop EP timer ran, but no command pending, "
937 				"exiting.");
938 		spin_unlock_irqrestore(&xhci->lock, flags);
939 		return;
940 	}
941 
942 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
943 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
944 	/* Oops, HC is dead or dying or at least not responding to the stop
945 	 * endpoint command.
946 	 */
947 	xhci->xhc_state |= XHCI_STATE_DYING;
948 	/* Disable interrupts from the host controller and start halting it */
949 	xhci_quiesce(xhci);
950 	spin_unlock_irqrestore(&xhci->lock, flags);
951 
952 	ret = xhci_halt(xhci);
953 
954 	spin_lock_irqsave(&xhci->lock, flags);
955 	if (ret < 0) {
956 		/* This is bad; the host is not responding to commands and it's
957 		 * not allowing itself to be halted.  At least interrupts are
958 		 * disabled. If we call usb_hc_died(), it will attempt to
959 		 * disconnect all device drivers under this host.  Those
960 		 * disconnect() methods will wait for all URBs to be unlinked,
961 		 * so we must complete them.
962 		 */
963 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
964 		xhci_warn(xhci, "Completing active URBs anyway.\n");
965 		/* We could turn all TDs on the rings to no-ops.  This won't
966 		 * help if the host has cached part of the ring, and is slow if
967 		 * we want to preserve the cycle bit.  Skip it and hope the host
968 		 * doesn't touch the memory.
969 		 */
970 	}
971 	for (i = 0; i < MAX_HC_SLOTS; i++) {
972 		if (!xhci->devs[i])
973 			continue;
974 		for (j = 0; j < 31; j++) {
975 			temp_ep = &xhci->devs[i]->eps[j];
976 			ring = temp_ep->ring;
977 			if (!ring)
978 				continue;
979 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
980 					"Killing URBs for slot ID %u, "
981 					"ep index %u", i, j);
982 			while (!list_empty(&ring->td_list)) {
983 				cur_td = list_first_entry(&ring->td_list,
984 						struct xhci_td,
985 						td_list);
986 				list_del_init(&cur_td->td_list);
987 				if (!list_empty(&cur_td->cancelled_td_list))
988 					list_del_init(&cur_td->cancelled_td_list);
989 				xhci_giveback_urb_in_irq(xhci, cur_td,
990 						-ESHUTDOWN, "killed");
991 			}
992 			while (!list_empty(&temp_ep->cancelled_td_list)) {
993 				cur_td = list_first_entry(
994 						&temp_ep->cancelled_td_list,
995 						struct xhci_td,
996 						cancelled_td_list);
997 				list_del_init(&cur_td->cancelled_td_list);
998 				xhci_giveback_urb_in_irq(xhci, cur_td,
999 						-ESHUTDOWN, "killed");
1000 			}
1001 		}
1002 	}
1003 	spin_unlock_irqrestore(&xhci->lock, flags);
1004 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1005 			"Calling usb_hc_died()");
1006 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1007 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1008 			"xHCI host controller is dead.");
1009 }
1010 
1011 
1012 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1013 		struct xhci_virt_device *dev,
1014 		struct xhci_ring *ep_ring,
1015 		unsigned int ep_index)
1016 {
1017 	union xhci_trb *dequeue_temp;
1018 	int num_trbs_free_temp;
1019 	bool revert = false;
1020 
1021 	num_trbs_free_temp = ep_ring->num_trbs_free;
1022 	dequeue_temp = ep_ring->dequeue;
1023 
1024 	/* If we get two back-to-back stalls, and the first stalled transfer
1025 	 * ends just before a link TRB, the dequeue pointer will be left on
1026 	 * the link TRB by the code in the while loop.  So we have to update
1027 	 * the dequeue pointer one segment further, or we'll jump off
1028 	 * the segment into la-la-land.
1029 	 */
1030 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1031 		ep_ring->deq_seg = ep_ring->deq_seg->next;
1032 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
1033 	}
1034 
1035 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1036 		/* We have more usable TRBs */
1037 		ep_ring->num_trbs_free++;
1038 		ep_ring->dequeue++;
1039 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1040 				ep_ring->dequeue)) {
1041 			if (ep_ring->dequeue ==
1042 					dev->eps[ep_index].queued_deq_ptr)
1043 				break;
1044 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1045 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1046 		}
1047 		if (ep_ring->dequeue == dequeue_temp) {
1048 			revert = true;
1049 			break;
1050 		}
1051 	}
1052 
1053 	if (revert) {
1054 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1055 		ep_ring->num_trbs_free = num_trbs_free_temp;
1056 	}
1057 }
1058 
1059 /*
1060  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1061  * we need to clear the set deq pending flag in the endpoint ring state, so that
1062  * the TD queueing code can ring the doorbell again.  We also need to ring the
1063  * endpoint doorbell to restart the ring, but only if there aren't more
1064  * cancellations pending.
1065  */
1066 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1067 		struct xhci_event_cmd *event,
1068 		union xhci_trb *trb)
1069 {
1070 	unsigned int slot_id;
1071 	unsigned int ep_index;
1072 	unsigned int stream_id;
1073 	struct xhci_ring *ep_ring;
1074 	struct xhci_virt_device *dev;
1075 	struct xhci_ep_ctx *ep_ctx;
1076 	struct xhci_slot_ctx *slot_ctx;
1077 
1078 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1079 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1080 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1081 	dev = xhci->devs[slot_id];
1082 
1083 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1084 	if (!ep_ring) {
1085 		xhci_warn(xhci, "WARN Set TR deq ptr command for "
1086 				"freed stream ID %u\n",
1087 				stream_id);
1088 		/* XXX: Harmless??? */
1089 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1090 		return;
1091 	}
1092 
1093 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1094 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1095 
1096 	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1097 		unsigned int ep_state;
1098 		unsigned int slot_state;
1099 
1100 		switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1101 		case COMP_TRB_ERR:
1102 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1103 					"of stream ID configuration\n");
1104 			break;
1105 		case COMP_CTX_STATE:
1106 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1107 					"to incorrect slot or ep state.\n");
1108 			ep_state = le32_to_cpu(ep_ctx->ep_info);
1109 			ep_state &= EP_STATE_MASK;
1110 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1111 			slot_state = GET_SLOT_STATE(slot_state);
1112 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1113 					"Slot state = %u, EP state = %u",
1114 					slot_state, ep_state);
1115 			break;
1116 		case COMP_EBADSLT:
1117 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1118 					"slot %u was not enabled.\n", slot_id);
1119 			break;
1120 		default:
1121 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1122 					"completion code of %u.\n",
1123 				  GET_COMP_CODE(le32_to_cpu(event->status)));
1124 			break;
1125 		}
1126 		/* OK what do we do now?  The endpoint state is hosed, and we
1127 		 * should never get to this point if the synchronization between
1128 		 * queueing, and endpoint state are correct.  This might happen
1129 		 * if the device gets disconnected after we've finished
1130 		 * cancelling URBs, which might not be an error...
1131 		 */
1132 	} else {
1133 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1134 			"Successful Set TR Deq Ptr cmd, deq = @%08llx",
1135 			 le64_to_cpu(ep_ctx->deq));
1136 		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1137 					 dev->eps[ep_index].queued_deq_ptr) ==
1138 		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1139 			/* Update the ring's dequeue segment and dequeue pointer
1140 			 * to reflect the new position.
1141 			 */
1142 			update_ring_for_set_deq_completion(xhci, dev,
1143 				ep_ring, ep_index);
1144 		} else {
1145 			xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1146 					"Ptr command & xHCI internal state.\n");
1147 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1148 					dev->eps[ep_index].queued_deq_seg,
1149 					dev->eps[ep_index].queued_deq_ptr);
1150 		}
1151 	}
1152 
1153 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1154 	dev->eps[ep_index].queued_deq_seg = NULL;
1155 	dev->eps[ep_index].queued_deq_ptr = NULL;
1156 	/* Restart any rings with pending URBs */
1157 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1158 }
1159 
1160 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1161 		struct xhci_event_cmd *event,
1162 		union xhci_trb *trb)
1163 {
1164 	int slot_id;
1165 	unsigned int ep_index;
1166 
1167 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1168 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1169 	/* This command will only fail if the endpoint wasn't halted,
1170 	 * but we don't care.
1171 	 */
1172 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1173 		"Ignoring reset ep completion code of %u",
1174 		 GET_COMP_CODE(le32_to_cpu(event->status)));
1175 
1176 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1177 	 * command complete before the endpoint can be used.  Queue that here
1178 	 * because the HW can't handle two commands being queued in a row.
1179 	 */
1180 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1181 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1182 				"Queueing configure endpoint command");
1183 		xhci_queue_configure_endpoint(xhci,
1184 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1185 				false);
1186 		xhci_ring_cmd_db(xhci);
1187 	} else {
1188 		/* Clear our internal halted state and restart the ring(s) */
1189 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1190 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1191 	}
1192 }
1193 
1194 /* Complete the command and detele it from the devcie's command queue.
1195  */
1196 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1197 		struct xhci_command *command, u32 status)
1198 {
1199 	command->status = status;
1200 	list_del(&command->cmd_list);
1201 	if (command->completion)
1202 		complete(command->completion);
1203 	else
1204 		xhci_free_command(xhci, command);
1205 }
1206 
1207 
1208 /* Check to see if a command in the device's command queue matches this one.
1209  * Signal the completion or free the command, and return 1.  Return 0 if the
1210  * completed command isn't at the head of the command list.
1211  */
1212 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1213 		struct xhci_virt_device *virt_dev,
1214 		struct xhci_event_cmd *event)
1215 {
1216 	struct xhci_command *command;
1217 
1218 	if (list_empty(&virt_dev->cmd_list))
1219 		return 0;
1220 
1221 	command = list_entry(virt_dev->cmd_list.next,
1222 			struct xhci_command, cmd_list);
1223 	if (xhci->cmd_ring->dequeue != command->command_trb)
1224 		return 0;
1225 
1226 	xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1227 			GET_COMP_CODE(le32_to_cpu(event->status)));
1228 	return 1;
1229 }
1230 
1231 /*
1232  * Finding the command trb need to be cancelled and modifying it to
1233  * NO OP command. And if the command is in device's command wait
1234  * list, finishing and freeing it.
1235  *
1236  * If we can't find the command trb, we think it had already been
1237  * executed.
1238  */
1239 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1240 {
1241 	struct xhci_segment *cur_seg;
1242 	union xhci_trb *cmd_trb;
1243 	u32 cycle_state;
1244 
1245 	if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1246 		return;
1247 
1248 	/* find the current segment of command ring */
1249 	cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1250 			xhci->cmd_ring->dequeue, &cycle_state);
1251 
1252 	if (!cur_seg) {
1253 		xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1254 				xhci->cmd_ring->dequeue,
1255 				(unsigned long long)
1256 				xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1257 					xhci->cmd_ring->dequeue));
1258 		xhci_debug_ring(xhci, xhci->cmd_ring);
1259 		xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1260 		return;
1261 	}
1262 
1263 	/* find the command trb matched by cd from command ring */
1264 	for (cmd_trb = xhci->cmd_ring->dequeue;
1265 			cmd_trb != xhci->cmd_ring->enqueue;
1266 			next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1267 		/* If the trb is link trb, continue */
1268 		if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1269 			continue;
1270 
1271 		if (cur_cd->cmd_trb == cmd_trb) {
1272 
1273 			/* If the command in device's command list, we should
1274 			 * finish it and free the command structure.
1275 			 */
1276 			if (cur_cd->command)
1277 				xhci_complete_cmd_in_cmd_wait_list(xhci,
1278 					cur_cd->command, COMP_CMD_STOP);
1279 
1280 			/* get cycle state from the origin command trb */
1281 			cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1282 				& TRB_CYCLE;
1283 
1284 			/* modify the command trb to NO OP command */
1285 			cmd_trb->generic.field[0] = 0;
1286 			cmd_trb->generic.field[1] = 0;
1287 			cmd_trb->generic.field[2] = 0;
1288 			cmd_trb->generic.field[3] = cpu_to_le32(
1289 					TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1290 			break;
1291 		}
1292 	}
1293 }
1294 
1295 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1296 {
1297 	struct xhci_cd *cur_cd, *next_cd;
1298 
1299 	if (list_empty(&xhci->cancel_cmd_list))
1300 		return;
1301 
1302 	list_for_each_entry_safe(cur_cd, next_cd,
1303 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1304 		xhci_cmd_to_noop(xhci, cur_cd);
1305 		list_del(&cur_cd->cancel_cmd_list);
1306 		kfree(cur_cd);
1307 	}
1308 }
1309 
1310 /*
1311  * traversing the cancel_cmd_list. If the command descriptor according
1312  * to cmd_trb is found, the function free it and return 1, otherwise
1313  * return 0.
1314  */
1315 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1316 		union xhci_trb *cmd_trb)
1317 {
1318 	struct xhci_cd *cur_cd, *next_cd;
1319 
1320 	if (list_empty(&xhci->cancel_cmd_list))
1321 		return 0;
1322 
1323 	list_for_each_entry_safe(cur_cd, next_cd,
1324 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1325 		if (cur_cd->cmd_trb == cmd_trb) {
1326 			if (cur_cd->command)
1327 				xhci_complete_cmd_in_cmd_wait_list(xhci,
1328 					cur_cd->command, COMP_CMD_STOP);
1329 			list_del(&cur_cd->cancel_cmd_list);
1330 			kfree(cur_cd);
1331 			return 1;
1332 		}
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /*
1339  * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1340  * trb pointed by the command ring dequeue pointer is the trb we want to
1341  * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1342  * traverse the cancel_cmd_list to trun the all of the commands according
1343  * to command descriptor to NO-OP trb.
1344  */
1345 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1346 		int cmd_trb_comp_code)
1347 {
1348 	int cur_trb_is_good = 0;
1349 
1350 	/* Searching the cmd trb pointed by the command ring dequeue
1351 	 * pointer in command descriptor list. If it is found, free it.
1352 	 */
1353 	cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1354 			xhci->cmd_ring->dequeue);
1355 
1356 	if (cmd_trb_comp_code == COMP_CMD_ABORT)
1357 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1358 	else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1359 		/* traversing the cancel_cmd_list and canceling
1360 		 * the command according to command descriptor
1361 		 */
1362 		xhci_cancel_cmd_in_cd_list(xhci);
1363 
1364 		xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1365 		/*
1366 		 * ring command ring doorbell again to restart the
1367 		 * command ring
1368 		 */
1369 		if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1370 			xhci_ring_cmd_db(xhci);
1371 	}
1372 	return cur_trb_is_good;
1373 }
1374 
1375 static void handle_cmd_completion(struct xhci_hcd *xhci,
1376 		struct xhci_event_cmd *event)
1377 {
1378 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1379 	u64 cmd_dma;
1380 	dma_addr_t cmd_dequeue_dma;
1381 	struct xhci_input_control_ctx *ctrl_ctx;
1382 	struct xhci_virt_device *virt_dev;
1383 	unsigned int ep_index;
1384 	struct xhci_ring *ep_ring;
1385 	unsigned int ep_state;
1386 
1387 	cmd_dma = le64_to_cpu(event->cmd_trb);
1388 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1389 			xhci->cmd_ring->dequeue);
1390 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1391 	if (cmd_dequeue_dma == 0) {
1392 		xhci->error_bitmask |= 1 << 4;
1393 		return;
1394 	}
1395 	/* Does the DMA address match our internal dequeue pointer address? */
1396 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1397 		xhci->error_bitmask |= 1 << 5;
1398 		return;
1399 	}
1400 
1401 	trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic,
1402 					(struct xhci_generic_trb *) event);
1403 
1404 	if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1405 		(GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1406 		/* If the return value is 0, we think the trb pointed by
1407 		 * command ring dequeue pointer is a good trb. The good
1408 		 * trb means we don't want to cancel the trb, but it have
1409 		 * been stopped by host. So we should handle it normally.
1410 		 * Otherwise, driver should invoke inc_deq() and return.
1411 		 */
1412 		if (handle_stopped_cmd_ring(xhci,
1413 				GET_COMP_CODE(le32_to_cpu(event->status)))) {
1414 			inc_deq(xhci, xhci->cmd_ring);
1415 			return;
1416 		}
1417 	}
1418 
1419 	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1420 		& TRB_TYPE_BITMASK) {
1421 	case TRB_TYPE(TRB_ENABLE_SLOT):
1422 		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1423 			xhci->slot_id = slot_id;
1424 		else
1425 			xhci->slot_id = 0;
1426 		complete(&xhci->addr_dev);
1427 		break;
1428 	case TRB_TYPE(TRB_DISABLE_SLOT):
1429 		if (xhci->devs[slot_id]) {
1430 			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1431 				/* Delete default control endpoint resources */
1432 				xhci_free_device_endpoint_resources(xhci,
1433 						xhci->devs[slot_id], true);
1434 			xhci_free_virt_device(xhci, slot_id);
1435 		}
1436 		break;
1437 	case TRB_TYPE(TRB_CONFIG_EP):
1438 		virt_dev = xhci->devs[slot_id];
1439 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1440 			break;
1441 		/*
1442 		 * Configure endpoint commands can come from the USB core
1443 		 * configuration or alt setting changes, or because the HW
1444 		 * needed an extra configure endpoint command after a reset
1445 		 * endpoint command or streams were being configured.
1446 		 * If the command was for a halted endpoint, the xHCI driver
1447 		 * is not waiting on the configure endpoint command.
1448 		 */
1449 		ctrl_ctx = xhci_get_input_control_ctx(xhci,
1450 				virt_dev->in_ctx);
1451 		if (!ctrl_ctx) {
1452 			xhci_warn(xhci, "Could not get input context, bad type.\n");
1453 			break;
1454 		}
1455 		/* Input ctx add_flags are the endpoint index plus one */
1456 		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1457 		/* A usb_set_interface() call directly after clearing a halted
1458 		 * condition may race on this quirky hardware.  Not worth
1459 		 * worrying about, since this is prototype hardware.  Not sure
1460 		 * if this will work for streams, but streams support was
1461 		 * untested on this prototype.
1462 		 */
1463 		if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1464 				ep_index != (unsigned int) -1 &&
1465 		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1466 		    le32_to_cpu(ctrl_ctx->drop_flags)) {
1467 			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1468 			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1469 			if (!(ep_state & EP_HALTED))
1470 				goto bandwidth_change;
1471 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1472 					"Completed config ep cmd - "
1473 					"last ep index = %d, state = %d",
1474 					ep_index, ep_state);
1475 			/* Clear internal halted state and restart ring(s) */
1476 			xhci->devs[slot_id]->eps[ep_index].ep_state &=
1477 				~EP_HALTED;
1478 			ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1479 			break;
1480 		}
1481 bandwidth_change:
1482 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1483 				"Completed config ep cmd");
1484 		xhci->devs[slot_id]->cmd_status =
1485 			GET_COMP_CODE(le32_to_cpu(event->status));
1486 		complete(&xhci->devs[slot_id]->cmd_completion);
1487 		break;
1488 	case TRB_TYPE(TRB_EVAL_CONTEXT):
1489 		virt_dev = xhci->devs[slot_id];
1490 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1491 			break;
1492 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1493 		complete(&xhci->devs[slot_id]->cmd_completion);
1494 		break;
1495 	case TRB_TYPE(TRB_ADDR_DEV):
1496 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1497 		complete(&xhci->addr_dev);
1498 		break;
1499 	case TRB_TYPE(TRB_STOP_RING):
1500 		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1501 		break;
1502 	case TRB_TYPE(TRB_SET_DEQ):
1503 		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1504 		break;
1505 	case TRB_TYPE(TRB_CMD_NOOP):
1506 		break;
1507 	case TRB_TYPE(TRB_RESET_EP):
1508 		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1509 		break;
1510 	case TRB_TYPE(TRB_RESET_DEV):
1511 		xhci_dbg(xhci, "Completed reset device command.\n");
1512 		slot_id = TRB_TO_SLOT_ID(
1513 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1514 		virt_dev = xhci->devs[slot_id];
1515 		if (virt_dev)
1516 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1517 		else
1518 			xhci_warn(xhci, "Reset device command completion "
1519 					"for disabled slot %u\n", slot_id);
1520 		break;
1521 	case TRB_TYPE(TRB_NEC_GET_FW):
1522 		if (!(xhci->quirks & XHCI_NEC_HOST)) {
1523 			xhci->error_bitmask |= 1 << 6;
1524 			break;
1525 		}
1526 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1527 			"NEC firmware version %2x.%02x",
1528 			 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1529 			 NEC_FW_MINOR(le32_to_cpu(event->status)));
1530 		break;
1531 	default:
1532 		/* Skip over unknown commands on the event ring */
1533 		xhci->error_bitmask |= 1 << 6;
1534 		break;
1535 	}
1536 	inc_deq(xhci, xhci->cmd_ring);
1537 }
1538 
1539 static void handle_vendor_event(struct xhci_hcd *xhci,
1540 		union xhci_trb *event)
1541 {
1542 	u32 trb_type;
1543 
1544 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1545 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1546 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1547 		handle_cmd_completion(xhci, &event->event_cmd);
1548 }
1549 
1550 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1551  * port registers -- USB 3.0 and USB 2.0).
1552  *
1553  * Returns a zero-based port number, which is suitable for indexing into each of
1554  * the split roothubs' port arrays and bus state arrays.
1555  * Add one to it in order to call xhci_find_slot_id_by_port.
1556  */
1557 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1558 		struct xhci_hcd *xhci, u32 port_id)
1559 {
1560 	unsigned int i;
1561 	unsigned int num_similar_speed_ports = 0;
1562 
1563 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1564 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1565 	 * speed ports, up to 1 port before this port.
1566 	 */
1567 	for (i = 0; i < (port_id - 1); i++) {
1568 		u8 port_speed = xhci->port_array[i];
1569 
1570 		/*
1571 		 * Skip ports that don't have known speeds, or have duplicate
1572 		 * Extended Capabilities port speed entries.
1573 		 */
1574 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1575 			continue;
1576 
1577 		/*
1578 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1579 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1580 		 * matches the device speed, it's a similar speed port.
1581 		 */
1582 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1583 			num_similar_speed_ports++;
1584 	}
1585 	return num_similar_speed_ports;
1586 }
1587 
1588 static void handle_device_notification(struct xhci_hcd *xhci,
1589 		union xhci_trb *event)
1590 {
1591 	u32 slot_id;
1592 	struct usb_device *udev;
1593 
1594 	slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1595 	if (!xhci->devs[slot_id]) {
1596 		xhci_warn(xhci, "Device Notification event for "
1597 				"unused slot %u\n", slot_id);
1598 		return;
1599 	}
1600 
1601 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1602 			slot_id);
1603 	udev = xhci->devs[slot_id]->udev;
1604 	if (udev && udev->parent)
1605 		usb_wakeup_notification(udev->parent, udev->portnum);
1606 }
1607 
1608 static void handle_port_status(struct xhci_hcd *xhci,
1609 		union xhci_trb *event)
1610 {
1611 	struct usb_hcd *hcd;
1612 	u32 port_id;
1613 	u32 temp, temp1;
1614 	int max_ports;
1615 	int slot_id;
1616 	unsigned int faked_port_index;
1617 	u8 major_revision;
1618 	struct xhci_bus_state *bus_state;
1619 	__le32 __iomem **port_array;
1620 	bool bogus_port_status = false;
1621 
1622 	/* Port status change events always have a successful completion code */
1623 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1624 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1625 		xhci->error_bitmask |= 1 << 8;
1626 	}
1627 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1628 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1629 
1630 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1631 	if ((port_id <= 0) || (port_id > max_ports)) {
1632 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1633 		inc_deq(xhci, xhci->event_ring);
1634 		return;
1635 	}
1636 
1637 	/* Figure out which usb_hcd this port is attached to:
1638 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1639 	 */
1640 	major_revision = xhci->port_array[port_id - 1];
1641 
1642 	/* Find the right roothub. */
1643 	hcd = xhci_to_hcd(xhci);
1644 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1645 		hcd = xhci->shared_hcd;
1646 
1647 	if (major_revision == 0) {
1648 		xhci_warn(xhci, "Event for port %u not in "
1649 				"Extended Capabilities, ignoring.\n",
1650 				port_id);
1651 		bogus_port_status = true;
1652 		goto cleanup;
1653 	}
1654 	if (major_revision == DUPLICATE_ENTRY) {
1655 		xhci_warn(xhci, "Event for port %u duplicated in"
1656 				"Extended Capabilities, ignoring.\n",
1657 				port_id);
1658 		bogus_port_status = true;
1659 		goto cleanup;
1660 	}
1661 
1662 	/*
1663 	 * Hardware port IDs reported by a Port Status Change Event include USB
1664 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1665 	 * resume event, but we first need to translate the hardware port ID
1666 	 * into the index into the ports on the correct split roothub, and the
1667 	 * correct bus_state structure.
1668 	 */
1669 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1670 	if (hcd->speed == HCD_USB3)
1671 		port_array = xhci->usb3_ports;
1672 	else
1673 		port_array = xhci->usb2_ports;
1674 	/* Find the faked port hub number */
1675 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1676 			port_id);
1677 
1678 	temp = xhci_readl(xhci, port_array[faked_port_index]);
1679 	if (hcd->state == HC_STATE_SUSPENDED) {
1680 		xhci_dbg(xhci, "resume root hub\n");
1681 		usb_hcd_resume_root_hub(hcd);
1682 	}
1683 
1684 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1685 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1686 
1687 		temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1688 		if (!(temp1 & CMD_RUN)) {
1689 			xhci_warn(xhci, "xHC is not running.\n");
1690 			goto cleanup;
1691 		}
1692 
1693 		if (DEV_SUPERSPEED(temp)) {
1694 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1695 			/* Set a flag to say the port signaled remote wakeup,
1696 			 * so we can tell the difference between the end of
1697 			 * device and host initiated resume.
1698 			 */
1699 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1700 			xhci_test_and_clear_bit(xhci, port_array,
1701 					faked_port_index, PORT_PLC);
1702 			xhci_set_link_state(xhci, port_array, faked_port_index,
1703 						XDEV_U0);
1704 			/* Need to wait until the next link state change
1705 			 * indicates the device is actually in U0.
1706 			 */
1707 			bogus_port_status = true;
1708 			goto cleanup;
1709 		} else {
1710 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1711 			bus_state->resume_done[faked_port_index] = jiffies +
1712 				msecs_to_jiffies(20);
1713 			set_bit(faked_port_index, &bus_state->resuming_ports);
1714 			mod_timer(&hcd->rh_timer,
1715 				  bus_state->resume_done[faked_port_index]);
1716 			/* Do the rest in GetPortStatus */
1717 		}
1718 	}
1719 
1720 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1721 			DEV_SUPERSPEED(temp)) {
1722 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1723 		/* We've just brought the device into U0 through either the
1724 		 * Resume state after a device remote wakeup, or through the
1725 		 * U3Exit state after a host-initiated resume.  If it's a device
1726 		 * initiated remote wake, don't pass up the link state change,
1727 		 * so the roothub behavior is consistent with external
1728 		 * USB 3.0 hub behavior.
1729 		 */
1730 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1731 				faked_port_index + 1);
1732 		if (slot_id && xhci->devs[slot_id])
1733 			xhci_ring_device(xhci, slot_id);
1734 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1735 			bus_state->port_remote_wakeup &=
1736 				~(1 << faked_port_index);
1737 			xhci_test_and_clear_bit(xhci, port_array,
1738 					faked_port_index, PORT_PLC);
1739 			usb_wakeup_notification(hcd->self.root_hub,
1740 					faked_port_index + 1);
1741 			bogus_port_status = true;
1742 			goto cleanup;
1743 		}
1744 	}
1745 
1746 	if (hcd->speed != HCD_USB3)
1747 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1748 					PORT_PLC);
1749 
1750 cleanup:
1751 	/* Update event ring dequeue pointer before dropping the lock */
1752 	inc_deq(xhci, xhci->event_ring);
1753 
1754 	/* Don't make the USB core poll the roothub if we got a bad port status
1755 	 * change event.  Besides, at that point we can't tell which roothub
1756 	 * (USB 2.0 or USB 3.0) to kick.
1757 	 */
1758 	if (bogus_port_status)
1759 		return;
1760 
1761 	/*
1762 	 * xHCI port-status-change events occur when the "or" of all the
1763 	 * status-change bits in the portsc register changes from 0 to 1.
1764 	 * New status changes won't cause an event if any other change
1765 	 * bits are still set.  When an event occurs, switch over to
1766 	 * polling to avoid losing status changes.
1767 	 */
1768 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1769 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1770 	spin_unlock(&xhci->lock);
1771 	/* Pass this up to the core */
1772 	usb_hcd_poll_rh_status(hcd);
1773 	spin_lock(&xhci->lock);
1774 }
1775 
1776 /*
1777  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1778  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1779  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1780  * returns 0.
1781  */
1782 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1783 		union xhci_trb	*start_trb,
1784 		union xhci_trb	*end_trb,
1785 		dma_addr_t	suspect_dma)
1786 {
1787 	dma_addr_t start_dma;
1788 	dma_addr_t end_seg_dma;
1789 	dma_addr_t end_trb_dma;
1790 	struct xhci_segment *cur_seg;
1791 
1792 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1793 	cur_seg = start_seg;
1794 
1795 	do {
1796 		if (start_dma == 0)
1797 			return NULL;
1798 		/* We may get an event for a Link TRB in the middle of a TD */
1799 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1800 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1801 		/* If the end TRB isn't in this segment, this is set to 0 */
1802 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1803 
1804 		if (end_trb_dma > 0) {
1805 			/* The end TRB is in this segment, so suspect should be here */
1806 			if (start_dma <= end_trb_dma) {
1807 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1808 					return cur_seg;
1809 			} else {
1810 				/* Case for one segment with
1811 				 * a TD wrapped around to the top
1812 				 */
1813 				if ((suspect_dma >= start_dma &&
1814 							suspect_dma <= end_seg_dma) ||
1815 						(suspect_dma >= cur_seg->dma &&
1816 						 suspect_dma <= end_trb_dma))
1817 					return cur_seg;
1818 			}
1819 			return NULL;
1820 		} else {
1821 			/* Might still be somewhere in this segment */
1822 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1823 				return cur_seg;
1824 		}
1825 		cur_seg = cur_seg->next;
1826 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1827 	} while (cur_seg != start_seg);
1828 
1829 	return NULL;
1830 }
1831 
1832 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1833 		unsigned int slot_id, unsigned int ep_index,
1834 		unsigned int stream_id,
1835 		struct xhci_td *td, union xhci_trb *event_trb)
1836 {
1837 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1838 	ep->ep_state |= EP_HALTED;
1839 	ep->stopped_td = td;
1840 	ep->stopped_trb = event_trb;
1841 	ep->stopped_stream = stream_id;
1842 
1843 	xhci_queue_reset_ep(xhci, slot_id, ep_index);
1844 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1845 
1846 	ep->stopped_td = NULL;
1847 	ep->stopped_trb = NULL;
1848 	ep->stopped_stream = 0;
1849 
1850 	xhci_ring_cmd_db(xhci);
1851 }
1852 
1853 /* Check if an error has halted the endpoint ring.  The class driver will
1854  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1855  * However, a babble and other errors also halt the endpoint ring, and the class
1856  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1857  * Ring Dequeue Pointer command manually.
1858  */
1859 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1860 		struct xhci_ep_ctx *ep_ctx,
1861 		unsigned int trb_comp_code)
1862 {
1863 	/* TRB completion codes that may require a manual halt cleanup */
1864 	if (trb_comp_code == COMP_TX_ERR ||
1865 			trb_comp_code == COMP_BABBLE ||
1866 			trb_comp_code == COMP_SPLIT_ERR)
1867 		/* The 0.96 spec says a babbling control endpoint
1868 		 * is not halted. The 0.96 spec says it is.  Some HW
1869 		 * claims to be 0.95 compliant, but it halts the control
1870 		 * endpoint anyway.  Check if a babble halted the
1871 		 * endpoint.
1872 		 */
1873 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1874 		    cpu_to_le32(EP_STATE_HALTED))
1875 			return 1;
1876 
1877 	return 0;
1878 }
1879 
1880 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1881 {
1882 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1883 		/* Vendor defined "informational" completion code,
1884 		 * treat as not-an-error.
1885 		 */
1886 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1887 				trb_comp_code);
1888 		xhci_dbg(xhci, "Treating code as success.\n");
1889 		return 1;
1890 	}
1891 	return 0;
1892 }
1893 
1894 /*
1895  * Finish the td processing, remove the td from td list;
1896  * Return 1 if the urb can be given back.
1897  */
1898 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1899 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1900 	struct xhci_virt_ep *ep, int *status, bool skip)
1901 {
1902 	struct xhci_virt_device *xdev;
1903 	struct xhci_ring *ep_ring;
1904 	unsigned int slot_id;
1905 	int ep_index;
1906 	struct urb *urb = NULL;
1907 	struct xhci_ep_ctx *ep_ctx;
1908 	int ret = 0;
1909 	struct urb_priv	*urb_priv;
1910 	u32 trb_comp_code;
1911 
1912 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1913 	xdev = xhci->devs[slot_id];
1914 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1915 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1916 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1917 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1918 
1919 	if (skip)
1920 		goto td_cleanup;
1921 
1922 	if (trb_comp_code == COMP_STOP_INVAL ||
1923 			trb_comp_code == COMP_STOP) {
1924 		/* The Endpoint Stop Command completion will take care of any
1925 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1926 		 * the ring dequeue pointer or take this TD off any lists yet.
1927 		 */
1928 		ep->stopped_td = td;
1929 		ep->stopped_trb = event_trb;
1930 		return 0;
1931 	} else {
1932 		if (trb_comp_code == COMP_STALL) {
1933 			/* The transfer is completed from the driver's
1934 			 * perspective, but we need to issue a set dequeue
1935 			 * command for this stalled endpoint to move the dequeue
1936 			 * pointer past the TD.  We can't do that here because
1937 			 * the halt condition must be cleared first.  Let the
1938 			 * USB class driver clear the stall later.
1939 			 */
1940 			ep->stopped_td = td;
1941 			ep->stopped_trb = event_trb;
1942 			ep->stopped_stream = ep_ring->stream_id;
1943 		} else if (xhci_requires_manual_halt_cleanup(xhci,
1944 					ep_ctx, trb_comp_code)) {
1945 			/* Other types of errors halt the endpoint, but the
1946 			 * class driver doesn't call usb_reset_endpoint() unless
1947 			 * the error is -EPIPE.  Clear the halted status in the
1948 			 * xHCI hardware manually.
1949 			 */
1950 			xhci_cleanup_halted_endpoint(xhci,
1951 					slot_id, ep_index, ep_ring->stream_id,
1952 					td, event_trb);
1953 		} else {
1954 			/* Update ring dequeue pointer */
1955 			while (ep_ring->dequeue != td->last_trb)
1956 				inc_deq(xhci, ep_ring);
1957 			inc_deq(xhci, ep_ring);
1958 		}
1959 
1960 td_cleanup:
1961 		/* Clean up the endpoint's TD list */
1962 		urb = td->urb;
1963 		urb_priv = urb->hcpriv;
1964 
1965 		/* Do one last check of the actual transfer length.
1966 		 * If the host controller said we transferred more data than
1967 		 * the buffer length, urb->actual_length will be a very big
1968 		 * number (since it's unsigned).  Play it safe and say we didn't
1969 		 * transfer anything.
1970 		 */
1971 		if (urb->actual_length > urb->transfer_buffer_length) {
1972 			xhci_warn(xhci, "URB transfer length is wrong, "
1973 					"xHC issue? req. len = %u, "
1974 					"act. len = %u\n",
1975 					urb->transfer_buffer_length,
1976 					urb->actual_length);
1977 			urb->actual_length = 0;
1978 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1979 				*status = -EREMOTEIO;
1980 			else
1981 				*status = 0;
1982 		}
1983 		list_del_init(&td->td_list);
1984 		/* Was this TD slated to be cancelled but completed anyway? */
1985 		if (!list_empty(&td->cancelled_td_list))
1986 			list_del_init(&td->cancelled_td_list);
1987 
1988 		urb_priv->td_cnt++;
1989 		/* Giveback the urb when all the tds are completed */
1990 		if (urb_priv->td_cnt == urb_priv->length) {
1991 			ret = 1;
1992 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1993 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1994 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1995 					== 0) {
1996 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1997 						usb_amd_quirk_pll_enable();
1998 				}
1999 			}
2000 		}
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Process control tds, update urb status and actual_length.
2008  */
2009 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2010 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2011 	struct xhci_virt_ep *ep, int *status)
2012 {
2013 	struct xhci_virt_device *xdev;
2014 	struct xhci_ring *ep_ring;
2015 	unsigned int slot_id;
2016 	int ep_index;
2017 	struct xhci_ep_ctx *ep_ctx;
2018 	u32 trb_comp_code;
2019 
2020 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2021 	xdev = xhci->devs[slot_id];
2022 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2023 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2024 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2025 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2026 
2027 	switch (trb_comp_code) {
2028 	case COMP_SUCCESS:
2029 		if (event_trb == ep_ring->dequeue) {
2030 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2031 					"without IOC set??\n");
2032 			*status = -ESHUTDOWN;
2033 		} else if (event_trb != td->last_trb) {
2034 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2035 					"without IOC set??\n");
2036 			*status = -ESHUTDOWN;
2037 		} else {
2038 			*status = 0;
2039 		}
2040 		break;
2041 	case COMP_SHORT_TX:
2042 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2043 			*status = -EREMOTEIO;
2044 		else
2045 			*status = 0;
2046 		break;
2047 	case COMP_STOP_INVAL:
2048 	case COMP_STOP:
2049 		return finish_td(xhci, td, event_trb, event, ep, status, false);
2050 	default:
2051 		if (!xhci_requires_manual_halt_cleanup(xhci,
2052 					ep_ctx, trb_comp_code))
2053 			break;
2054 		xhci_dbg(xhci, "TRB error code %u, "
2055 				"halted endpoint index = %u\n",
2056 				trb_comp_code, ep_index);
2057 		/* else fall through */
2058 	case COMP_STALL:
2059 		/* Did we transfer part of the data (middle) phase? */
2060 		if (event_trb != ep_ring->dequeue &&
2061 				event_trb != td->last_trb)
2062 			td->urb->actual_length =
2063 				td->urb->transfer_buffer_length -
2064 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2065 		else
2066 			td->urb->actual_length = 0;
2067 
2068 		xhci_cleanup_halted_endpoint(xhci,
2069 			slot_id, ep_index, 0, td, event_trb);
2070 		return finish_td(xhci, td, event_trb, event, ep, status, true);
2071 	}
2072 	/*
2073 	 * Did we transfer any data, despite the errors that might have
2074 	 * happened?  I.e. did we get past the setup stage?
2075 	 */
2076 	if (event_trb != ep_ring->dequeue) {
2077 		/* The event was for the status stage */
2078 		if (event_trb == td->last_trb) {
2079 			if (td->urb->actual_length != 0) {
2080 				/* Don't overwrite a previously set error code
2081 				 */
2082 				if ((*status == -EINPROGRESS || *status == 0) &&
2083 						(td->urb->transfer_flags
2084 						 & URB_SHORT_NOT_OK))
2085 					/* Did we already see a short data
2086 					 * stage? */
2087 					*status = -EREMOTEIO;
2088 			} else {
2089 				td->urb->actual_length =
2090 					td->urb->transfer_buffer_length;
2091 			}
2092 		} else {
2093 		/* Maybe the event was for the data stage? */
2094 			td->urb->actual_length =
2095 				td->urb->transfer_buffer_length -
2096 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2097 			xhci_dbg(xhci, "Waiting for status "
2098 					"stage event\n");
2099 			return 0;
2100 		}
2101 	}
2102 
2103 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2104 }
2105 
2106 /*
2107  * Process isochronous tds, update urb packet status and actual_length.
2108  */
2109 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2110 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2111 	struct xhci_virt_ep *ep, int *status)
2112 {
2113 	struct xhci_ring *ep_ring;
2114 	struct urb_priv *urb_priv;
2115 	int idx;
2116 	int len = 0;
2117 	union xhci_trb *cur_trb;
2118 	struct xhci_segment *cur_seg;
2119 	struct usb_iso_packet_descriptor *frame;
2120 	u32 trb_comp_code;
2121 	bool skip_td = false;
2122 
2123 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2124 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2125 	urb_priv = td->urb->hcpriv;
2126 	idx = urb_priv->td_cnt;
2127 	frame = &td->urb->iso_frame_desc[idx];
2128 
2129 	/* handle completion code */
2130 	switch (trb_comp_code) {
2131 	case COMP_SUCCESS:
2132 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2133 			frame->status = 0;
2134 			break;
2135 		}
2136 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2137 			trb_comp_code = COMP_SHORT_TX;
2138 	case COMP_SHORT_TX:
2139 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2140 				-EREMOTEIO : 0;
2141 		break;
2142 	case COMP_BW_OVER:
2143 		frame->status = -ECOMM;
2144 		skip_td = true;
2145 		break;
2146 	case COMP_BUFF_OVER:
2147 	case COMP_BABBLE:
2148 		frame->status = -EOVERFLOW;
2149 		skip_td = true;
2150 		break;
2151 	case COMP_DEV_ERR:
2152 	case COMP_STALL:
2153 	case COMP_TX_ERR:
2154 		frame->status = -EPROTO;
2155 		skip_td = true;
2156 		break;
2157 	case COMP_STOP:
2158 	case COMP_STOP_INVAL:
2159 		break;
2160 	default:
2161 		frame->status = -1;
2162 		break;
2163 	}
2164 
2165 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2166 		frame->actual_length = frame->length;
2167 		td->urb->actual_length += frame->length;
2168 	} else {
2169 		for (cur_trb = ep_ring->dequeue,
2170 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2171 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2172 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2173 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2174 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2175 		}
2176 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2177 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2178 
2179 		if (trb_comp_code != COMP_STOP_INVAL) {
2180 			frame->actual_length = len;
2181 			td->urb->actual_length += len;
2182 		}
2183 	}
2184 
2185 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2186 }
2187 
2188 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2189 			struct xhci_transfer_event *event,
2190 			struct xhci_virt_ep *ep, int *status)
2191 {
2192 	struct xhci_ring *ep_ring;
2193 	struct urb_priv *urb_priv;
2194 	struct usb_iso_packet_descriptor *frame;
2195 	int idx;
2196 
2197 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2198 	urb_priv = td->urb->hcpriv;
2199 	idx = urb_priv->td_cnt;
2200 	frame = &td->urb->iso_frame_desc[idx];
2201 
2202 	/* The transfer is partly done. */
2203 	frame->status = -EXDEV;
2204 
2205 	/* calc actual length */
2206 	frame->actual_length = 0;
2207 
2208 	/* Update ring dequeue pointer */
2209 	while (ep_ring->dequeue != td->last_trb)
2210 		inc_deq(xhci, ep_ring);
2211 	inc_deq(xhci, ep_ring);
2212 
2213 	return finish_td(xhci, td, NULL, event, ep, status, true);
2214 }
2215 
2216 /*
2217  * Process bulk and interrupt tds, update urb status and actual_length.
2218  */
2219 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2220 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2221 	struct xhci_virt_ep *ep, int *status)
2222 {
2223 	struct xhci_ring *ep_ring;
2224 	union xhci_trb *cur_trb;
2225 	struct xhci_segment *cur_seg;
2226 	u32 trb_comp_code;
2227 
2228 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2229 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2230 
2231 	switch (trb_comp_code) {
2232 	case COMP_SUCCESS:
2233 		/* Double check that the HW transferred everything. */
2234 		if (event_trb != td->last_trb ||
2235 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2236 			xhci_warn(xhci, "WARN Successful completion "
2237 					"on short TX\n");
2238 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2239 				*status = -EREMOTEIO;
2240 			else
2241 				*status = 0;
2242 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2243 				trb_comp_code = COMP_SHORT_TX;
2244 		} else {
2245 			*status = 0;
2246 		}
2247 		break;
2248 	case COMP_SHORT_TX:
2249 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2250 			*status = -EREMOTEIO;
2251 		else
2252 			*status = 0;
2253 		break;
2254 	default:
2255 		/* Others already handled above */
2256 		break;
2257 	}
2258 	if (trb_comp_code == COMP_SHORT_TX)
2259 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2260 				"%d bytes untransferred\n",
2261 				td->urb->ep->desc.bEndpointAddress,
2262 				td->urb->transfer_buffer_length,
2263 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2264 	/* Fast path - was this the last TRB in the TD for this URB? */
2265 	if (event_trb == td->last_trb) {
2266 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2267 			td->urb->actual_length =
2268 				td->urb->transfer_buffer_length -
2269 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2270 			if (td->urb->transfer_buffer_length <
2271 					td->urb->actual_length) {
2272 				xhci_warn(xhci, "HC gave bad length "
2273 						"of %d bytes left\n",
2274 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2275 				td->urb->actual_length = 0;
2276 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2277 					*status = -EREMOTEIO;
2278 				else
2279 					*status = 0;
2280 			}
2281 			/* Don't overwrite a previously set error code */
2282 			if (*status == -EINPROGRESS) {
2283 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2284 					*status = -EREMOTEIO;
2285 				else
2286 					*status = 0;
2287 			}
2288 		} else {
2289 			td->urb->actual_length =
2290 				td->urb->transfer_buffer_length;
2291 			/* Ignore a short packet completion if the
2292 			 * untransferred length was zero.
2293 			 */
2294 			if (*status == -EREMOTEIO)
2295 				*status = 0;
2296 		}
2297 	} else {
2298 		/* Slow path - walk the list, starting from the dequeue
2299 		 * pointer, to get the actual length transferred.
2300 		 */
2301 		td->urb->actual_length = 0;
2302 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2303 				cur_trb != event_trb;
2304 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2305 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2306 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2307 				td->urb->actual_length +=
2308 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2309 		}
2310 		/* If the ring didn't stop on a Link or No-op TRB, add
2311 		 * in the actual bytes transferred from the Normal TRB
2312 		 */
2313 		if (trb_comp_code != COMP_STOP_INVAL)
2314 			td->urb->actual_length +=
2315 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2316 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2317 	}
2318 
2319 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2320 }
2321 
2322 /*
2323  * If this function returns an error condition, it means it got a Transfer
2324  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2325  * At this point, the host controller is probably hosed and should be reset.
2326  */
2327 static int handle_tx_event(struct xhci_hcd *xhci,
2328 		struct xhci_transfer_event *event)
2329 	__releases(&xhci->lock)
2330 	__acquires(&xhci->lock)
2331 {
2332 	struct xhci_virt_device *xdev;
2333 	struct xhci_virt_ep *ep;
2334 	struct xhci_ring *ep_ring;
2335 	unsigned int slot_id;
2336 	int ep_index;
2337 	struct xhci_td *td = NULL;
2338 	dma_addr_t event_dma;
2339 	struct xhci_segment *event_seg;
2340 	union xhci_trb *event_trb;
2341 	struct urb *urb = NULL;
2342 	int status = -EINPROGRESS;
2343 	struct urb_priv *urb_priv;
2344 	struct xhci_ep_ctx *ep_ctx;
2345 	struct list_head *tmp;
2346 	u32 trb_comp_code;
2347 	int ret = 0;
2348 	int td_num = 0;
2349 
2350 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2351 	xdev = xhci->devs[slot_id];
2352 	if (!xdev) {
2353 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2354 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2355 			 (unsigned long long) xhci_trb_virt_to_dma(
2356 				 xhci->event_ring->deq_seg,
2357 				 xhci->event_ring->dequeue),
2358 			 lower_32_bits(le64_to_cpu(event->buffer)),
2359 			 upper_32_bits(le64_to_cpu(event->buffer)),
2360 			 le32_to_cpu(event->transfer_len),
2361 			 le32_to_cpu(event->flags));
2362 		xhci_dbg(xhci, "Event ring:\n");
2363 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2364 		return -ENODEV;
2365 	}
2366 
2367 	/* Endpoint ID is 1 based, our index is zero based */
2368 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2369 	ep = &xdev->eps[ep_index];
2370 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2371 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2372 	if (!ep_ring ||
2373 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2374 	    EP_STATE_DISABLED) {
2375 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2376 				"or incorrect stream ring\n");
2377 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2378 			 (unsigned long long) xhci_trb_virt_to_dma(
2379 				 xhci->event_ring->deq_seg,
2380 				 xhci->event_ring->dequeue),
2381 			 lower_32_bits(le64_to_cpu(event->buffer)),
2382 			 upper_32_bits(le64_to_cpu(event->buffer)),
2383 			 le32_to_cpu(event->transfer_len),
2384 			 le32_to_cpu(event->flags));
2385 		xhci_dbg(xhci, "Event ring:\n");
2386 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2387 		return -ENODEV;
2388 	}
2389 
2390 	/* Count current td numbers if ep->skip is set */
2391 	if (ep->skip) {
2392 		list_for_each(tmp, &ep_ring->td_list)
2393 			td_num++;
2394 	}
2395 
2396 	event_dma = le64_to_cpu(event->buffer);
2397 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2398 	/* Look for common error cases */
2399 	switch (trb_comp_code) {
2400 	/* Skip codes that require special handling depending on
2401 	 * transfer type
2402 	 */
2403 	case COMP_SUCCESS:
2404 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2405 			break;
2406 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2407 			trb_comp_code = COMP_SHORT_TX;
2408 		else
2409 			xhci_warn_ratelimited(xhci,
2410 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2411 	case COMP_SHORT_TX:
2412 		break;
2413 	case COMP_STOP:
2414 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2415 		break;
2416 	case COMP_STOP_INVAL:
2417 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2418 		break;
2419 	case COMP_STALL:
2420 		xhci_dbg(xhci, "Stalled endpoint\n");
2421 		ep->ep_state |= EP_HALTED;
2422 		status = -EPIPE;
2423 		break;
2424 	case COMP_TRB_ERR:
2425 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2426 		status = -EILSEQ;
2427 		break;
2428 	case COMP_SPLIT_ERR:
2429 	case COMP_TX_ERR:
2430 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2431 		status = -EPROTO;
2432 		break;
2433 	case COMP_BABBLE:
2434 		xhci_dbg(xhci, "Babble error on endpoint\n");
2435 		status = -EOVERFLOW;
2436 		break;
2437 	case COMP_DB_ERR:
2438 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2439 		status = -ENOSR;
2440 		break;
2441 	case COMP_BW_OVER:
2442 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2443 		break;
2444 	case COMP_BUFF_OVER:
2445 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2446 		break;
2447 	case COMP_UNDERRUN:
2448 		/*
2449 		 * When the Isoch ring is empty, the xHC will generate
2450 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2451 		 * Underrun Event for OUT Isoch endpoint.
2452 		 */
2453 		xhci_dbg(xhci, "underrun event on endpoint\n");
2454 		if (!list_empty(&ep_ring->td_list))
2455 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2456 					"still with TDs queued?\n",
2457 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2458 				 ep_index);
2459 		goto cleanup;
2460 	case COMP_OVERRUN:
2461 		xhci_dbg(xhci, "overrun event on endpoint\n");
2462 		if (!list_empty(&ep_ring->td_list))
2463 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2464 					"still with TDs queued?\n",
2465 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2466 				 ep_index);
2467 		goto cleanup;
2468 	case COMP_DEV_ERR:
2469 		xhci_warn(xhci, "WARN: detect an incompatible device");
2470 		status = -EPROTO;
2471 		break;
2472 	case COMP_MISSED_INT:
2473 		/*
2474 		 * When encounter missed service error, one or more isoc tds
2475 		 * may be missed by xHC.
2476 		 * Set skip flag of the ep_ring; Complete the missed tds as
2477 		 * short transfer when process the ep_ring next time.
2478 		 */
2479 		ep->skip = true;
2480 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2481 		goto cleanup;
2482 	default:
2483 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2484 			status = 0;
2485 			break;
2486 		}
2487 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2488 				"busted\n");
2489 		goto cleanup;
2490 	}
2491 
2492 	do {
2493 		/* This TRB should be in the TD at the head of this ring's
2494 		 * TD list.
2495 		 */
2496 		if (list_empty(&ep_ring->td_list)) {
2497 			/*
2498 			 * A stopped endpoint may generate an extra completion
2499 			 * event if the device was suspended.  Don't print
2500 			 * warnings.
2501 			 */
2502 			if (!(trb_comp_code == COMP_STOP ||
2503 						trb_comp_code == COMP_STOP_INVAL)) {
2504 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2505 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2506 						ep_index);
2507 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2508 						(le32_to_cpu(event->flags) &
2509 						 TRB_TYPE_BITMASK)>>10);
2510 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2511 			}
2512 			if (ep->skip) {
2513 				ep->skip = false;
2514 				xhci_dbg(xhci, "td_list is empty while skip "
2515 						"flag set. Clear skip flag.\n");
2516 			}
2517 			ret = 0;
2518 			goto cleanup;
2519 		}
2520 
2521 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2522 		if (ep->skip && td_num == 0) {
2523 			ep->skip = false;
2524 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2525 						"Clear skip flag.\n");
2526 			ret = 0;
2527 			goto cleanup;
2528 		}
2529 
2530 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2531 		if (ep->skip)
2532 			td_num--;
2533 
2534 		/* Is this a TRB in the currently executing TD? */
2535 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2536 				td->last_trb, event_dma);
2537 
2538 		/*
2539 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2540 		 * is not in the current TD pointed by ep_ring->dequeue because
2541 		 * that the hardware dequeue pointer still at the previous TRB
2542 		 * of the current TD. The previous TRB maybe a Link TD or the
2543 		 * last TRB of the previous TD. The command completion handle
2544 		 * will take care the rest.
2545 		 */
2546 		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2547 			ret = 0;
2548 			goto cleanup;
2549 		}
2550 
2551 		if (!event_seg) {
2552 			if (!ep->skip ||
2553 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2554 				/* Some host controllers give a spurious
2555 				 * successful event after a short transfer.
2556 				 * Ignore it.
2557 				 */
2558 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2559 						ep_ring->last_td_was_short) {
2560 					ep_ring->last_td_was_short = false;
2561 					ret = 0;
2562 					goto cleanup;
2563 				}
2564 				/* HC is busted, give up! */
2565 				xhci_err(xhci,
2566 					"ERROR Transfer event TRB DMA ptr not "
2567 					"part of current TD\n");
2568 				return -ESHUTDOWN;
2569 			}
2570 
2571 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2572 			goto cleanup;
2573 		}
2574 		if (trb_comp_code == COMP_SHORT_TX)
2575 			ep_ring->last_td_was_short = true;
2576 		else
2577 			ep_ring->last_td_was_short = false;
2578 
2579 		if (ep->skip) {
2580 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2581 			ep->skip = false;
2582 		}
2583 
2584 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2585 						sizeof(*event_trb)];
2586 		/*
2587 		 * No-op TRB should not trigger interrupts.
2588 		 * If event_trb is a no-op TRB, it means the
2589 		 * corresponding TD has been cancelled. Just ignore
2590 		 * the TD.
2591 		 */
2592 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2593 			xhci_dbg(xhci,
2594 				 "event_trb is a no-op TRB. Skip it\n");
2595 			goto cleanup;
2596 		}
2597 
2598 		/* Now update the urb's actual_length and give back to
2599 		 * the core
2600 		 */
2601 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2602 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2603 						 &status);
2604 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2605 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2606 						 &status);
2607 		else
2608 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2609 						 ep, &status);
2610 
2611 cleanup:
2612 		/*
2613 		 * Do not update event ring dequeue pointer if ep->skip is set.
2614 		 * Will roll back to continue process missed tds.
2615 		 */
2616 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2617 			inc_deq(xhci, xhci->event_ring);
2618 		}
2619 
2620 		if (ret) {
2621 			urb = td->urb;
2622 			urb_priv = urb->hcpriv;
2623 			/* Leave the TD around for the reset endpoint function
2624 			 * to use(but only if it's not a control endpoint,
2625 			 * since we already queued the Set TR dequeue pointer
2626 			 * command for stalled control endpoints).
2627 			 */
2628 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2629 				(trb_comp_code != COMP_STALL &&
2630 					trb_comp_code != COMP_BABBLE))
2631 				xhci_urb_free_priv(xhci, urb_priv);
2632 			else
2633 				kfree(urb_priv);
2634 
2635 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2636 			if ((urb->actual_length != urb->transfer_buffer_length &&
2637 						(urb->transfer_flags &
2638 						 URB_SHORT_NOT_OK)) ||
2639 					(status != 0 &&
2640 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2641 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2642 						"expected = %d, status = %d\n",
2643 						urb, urb->actual_length,
2644 						urb->transfer_buffer_length,
2645 						status);
2646 			spin_unlock(&xhci->lock);
2647 			/* EHCI, UHCI, and OHCI always unconditionally set the
2648 			 * urb->status of an isochronous endpoint to 0.
2649 			 */
2650 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2651 				status = 0;
2652 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2653 			spin_lock(&xhci->lock);
2654 		}
2655 
2656 	/*
2657 	 * If ep->skip is set, it means there are missed tds on the
2658 	 * endpoint ring need to take care of.
2659 	 * Process them as short transfer until reach the td pointed by
2660 	 * the event.
2661 	 */
2662 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2663 
2664 	return 0;
2665 }
2666 
2667 /*
2668  * This function handles all OS-owned events on the event ring.  It may drop
2669  * xhci->lock between event processing (e.g. to pass up port status changes).
2670  * Returns >0 for "possibly more events to process" (caller should call again),
2671  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2672  */
2673 static int xhci_handle_event(struct xhci_hcd *xhci)
2674 {
2675 	union xhci_trb *event;
2676 	int update_ptrs = 1;
2677 	int ret;
2678 
2679 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2680 		xhci->error_bitmask |= 1 << 1;
2681 		return 0;
2682 	}
2683 
2684 	event = xhci->event_ring->dequeue;
2685 	/* Does the HC or OS own the TRB? */
2686 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2687 	    xhci->event_ring->cycle_state) {
2688 		xhci->error_bitmask |= 1 << 2;
2689 		return 0;
2690 	}
2691 
2692 	/*
2693 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2694 	 * speculative reads of the event's flags/data below.
2695 	 */
2696 	rmb();
2697 	/* FIXME: Handle more event types. */
2698 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2699 	case TRB_TYPE(TRB_COMPLETION):
2700 		handle_cmd_completion(xhci, &event->event_cmd);
2701 		break;
2702 	case TRB_TYPE(TRB_PORT_STATUS):
2703 		handle_port_status(xhci, event);
2704 		update_ptrs = 0;
2705 		break;
2706 	case TRB_TYPE(TRB_TRANSFER):
2707 		ret = handle_tx_event(xhci, &event->trans_event);
2708 		if (ret < 0)
2709 			xhci->error_bitmask |= 1 << 9;
2710 		else
2711 			update_ptrs = 0;
2712 		break;
2713 	case TRB_TYPE(TRB_DEV_NOTE):
2714 		handle_device_notification(xhci, event);
2715 		break;
2716 	default:
2717 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2718 		    TRB_TYPE(48))
2719 			handle_vendor_event(xhci, event);
2720 		else
2721 			xhci->error_bitmask |= 1 << 3;
2722 	}
2723 	/* Any of the above functions may drop and re-acquire the lock, so check
2724 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2725 	 */
2726 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2727 		xhci_dbg(xhci, "xHCI host dying, returning from "
2728 				"event handler.\n");
2729 		return 0;
2730 	}
2731 
2732 	if (update_ptrs)
2733 		/* Update SW event ring dequeue pointer */
2734 		inc_deq(xhci, xhci->event_ring);
2735 
2736 	/* Are there more items on the event ring?  Caller will call us again to
2737 	 * check.
2738 	 */
2739 	return 1;
2740 }
2741 
2742 /*
2743  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2744  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2745  * indicators of an event TRB error, but we check the status *first* to be safe.
2746  */
2747 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2748 {
2749 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2750 	u32 status;
2751 	u64 temp_64;
2752 	union xhci_trb *event_ring_deq;
2753 	dma_addr_t deq;
2754 
2755 	spin_lock(&xhci->lock);
2756 	/* Check if the xHC generated the interrupt, or the irq is shared */
2757 	status = xhci_readl(xhci, &xhci->op_regs->status);
2758 	if (status == 0xffffffff)
2759 		goto hw_died;
2760 
2761 	if (!(status & STS_EINT)) {
2762 		spin_unlock(&xhci->lock);
2763 		return IRQ_NONE;
2764 	}
2765 	if (status & STS_FATAL) {
2766 		xhci_warn(xhci, "WARNING: Host System Error\n");
2767 		xhci_halt(xhci);
2768 hw_died:
2769 		spin_unlock(&xhci->lock);
2770 		return -ESHUTDOWN;
2771 	}
2772 
2773 	/*
2774 	 * Clear the op reg interrupt status first,
2775 	 * so we can receive interrupts from other MSI-X interrupters.
2776 	 * Write 1 to clear the interrupt status.
2777 	 */
2778 	status |= STS_EINT;
2779 	xhci_writel(xhci, status, &xhci->op_regs->status);
2780 	/* FIXME when MSI-X is supported and there are multiple vectors */
2781 	/* Clear the MSI-X event interrupt status */
2782 
2783 	if (hcd->irq) {
2784 		u32 irq_pending;
2785 		/* Acknowledge the PCI interrupt */
2786 		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2787 		irq_pending |= IMAN_IP;
2788 		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2789 	}
2790 
2791 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2792 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2793 				"Shouldn't IRQs be disabled?\n");
2794 		/* Clear the event handler busy flag (RW1C);
2795 		 * the event ring should be empty.
2796 		 */
2797 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2798 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2799 				&xhci->ir_set->erst_dequeue);
2800 		spin_unlock(&xhci->lock);
2801 
2802 		return IRQ_HANDLED;
2803 	}
2804 
2805 	event_ring_deq = xhci->event_ring->dequeue;
2806 	/* FIXME this should be a delayed service routine
2807 	 * that clears the EHB.
2808 	 */
2809 	while (xhci_handle_event(xhci) > 0) {}
2810 
2811 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2812 	/* If necessary, update the HW's version of the event ring deq ptr. */
2813 	if (event_ring_deq != xhci->event_ring->dequeue) {
2814 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2815 				xhci->event_ring->dequeue);
2816 		if (deq == 0)
2817 			xhci_warn(xhci, "WARN something wrong with SW event "
2818 					"ring dequeue ptr.\n");
2819 		/* Update HC event ring dequeue pointer */
2820 		temp_64 &= ERST_PTR_MASK;
2821 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2822 	}
2823 
2824 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2825 	temp_64 |= ERST_EHB;
2826 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2827 
2828 	spin_unlock(&xhci->lock);
2829 
2830 	return IRQ_HANDLED;
2831 }
2832 
2833 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2834 {
2835 	return xhci_irq(hcd);
2836 }
2837 
2838 /****		Endpoint Ring Operations	****/
2839 
2840 /*
2841  * Generic function for queueing a TRB on a ring.
2842  * The caller must have checked to make sure there's room on the ring.
2843  *
2844  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2845  *			prepare_transfer()?
2846  */
2847 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2848 		bool more_trbs_coming,
2849 		u32 field1, u32 field2, u32 field3, u32 field4)
2850 {
2851 	struct xhci_generic_trb *trb;
2852 
2853 	trb = &ring->enqueue->generic;
2854 	trb->field[0] = cpu_to_le32(field1);
2855 	trb->field[1] = cpu_to_le32(field2);
2856 	trb->field[2] = cpu_to_le32(field3);
2857 	trb->field[3] = cpu_to_le32(field4);
2858 	inc_enq(xhci, ring, more_trbs_coming);
2859 }
2860 
2861 /*
2862  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2863  * FIXME allocate segments if the ring is full.
2864  */
2865 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2866 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2867 {
2868 	unsigned int num_trbs_needed;
2869 
2870 	/* Make sure the endpoint has been added to xHC schedule */
2871 	switch (ep_state) {
2872 	case EP_STATE_DISABLED:
2873 		/*
2874 		 * USB core changed config/interfaces without notifying us,
2875 		 * or hardware is reporting the wrong state.
2876 		 */
2877 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2878 		return -ENOENT;
2879 	case EP_STATE_ERROR:
2880 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2881 		/* FIXME event handling code for error needs to clear it */
2882 		/* XXX not sure if this should be -ENOENT or not */
2883 		return -EINVAL;
2884 	case EP_STATE_HALTED:
2885 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2886 	case EP_STATE_STOPPED:
2887 	case EP_STATE_RUNNING:
2888 		break;
2889 	default:
2890 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2891 		/*
2892 		 * FIXME issue Configure Endpoint command to try to get the HC
2893 		 * back into a known state.
2894 		 */
2895 		return -EINVAL;
2896 	}
2897 
2898 	while (1) {
2899 		if (room_on_ring(xhci, ep_ring, num_trbs))
2900 			break;
2901 
2902 		if (ep_ring == xhci->cmd_ring) {
2903 			xhci_err(xhci, "Do not support expand command ring\n");
2904 			return -ENOMEM;
2905 		}
2906 
2907 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2908 				"ERROR no room on ep ring, try ring expansion");
2909 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2910 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2911 					mem_flags)) {
2912 			xhci_err(xhci, "Ring expansion failed\n");
2913 			return -ENOMEM;
2914 		}
2915 	}
2916 
2917 	if (enqueue_is_link_trb(ep_ring)) {
2918 		struct xhci_ring *ring = ep_ring;
2919 		union xhci_trb *next;
2920 
2921 		next = ring->enqueue;
2922 
2923 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2924 			/* If we're not dealing with 0.95 hardware or isoc rings
2925 			 * on AMD 0.96 host, clear the chain bit.
2926 			 */
2927 			if (!xhci_link_trb_quirk(xhci) &&
2928 					!(ring->type == TYPE_ISOC &&
2929 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2930 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2931 			else
2932 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2933 
2934 			wmb();
2935 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2936 
2937 			/* Toggle the cycle bit after the last ring segment. */
2938 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2939 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2940 			}
2941 			ring->enq_seg = ring->enq_seg->next;
2942 			ring->enqueue = ring->enq_seg->trbs;
2943 			next = ring->enqueue;
2944 		}
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 static int prepare_transfer(struct xhci_hcd *xhci,
2951 		struct xhci_virt_device *xdev,
2952 		unsigned int ep_index,
2953 		unsigned int stream_id,
2954 		unsigned int num_trbs,
2955 		struct urb *urb,
2956 		unsigned int td_index,
2957 		gfp_t mem_flags)
2958 {
2959 	int ret;
2960 	struct urb_priv *urb_priv;
2961 	struct xhci_td	*td;
2962 	struct xhci_ring *ep_ring;
2963 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2964 
2965 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2966 	if (!ep_ring) {
2967 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2968 				stream_id);
2969 		return -EINVAL;
2970 	}
2971 
2972 	ret = prepare_ring(xhci, ep_ring,
2973 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2974 			   num_trbs, mem_flags);
2975 	if (ret)
2976 		return ret;
2977 
2978 	urb_priv = urb->hcpriv;
2979 	td = urb_priv->td[td_index];
2980 
2981 	INIT_LIST_HEAD(&td->td_list);
2982 	INIT_LIST_HEAD(&td->cancelled_td_list);
2983 
2984 	if (td_index == 0) {
2985 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2986 		if (unlikely(ret))
2987 			return ret;
2988 	}
2989 
2990 	td->urb = urb;
2991 	/* Add this TD to the tail of the endpoint ring's TD list */
2992 	list_add_tail(&td->td_list, &ep_ring->td_list);
2993 	td->start_seg = ep_ring->enq_seg;
2994 	td->first_trb = ep_ring->enqueue;
2995 
2996 	urb_priv->td[td_index] = td;
2997 
2998 	return 0;
2999 }
3000 
3001 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3002 {
3003 	int num_sgs, num_trbs, running_total, temp, i;
3004 	struct scatterlist *sg;
3005 
3006 	sg = NULL;
3007 	num_sgs = urb->num_mapped_sgs;
3008 	temp = urb->transfer_buffer_length;
3009 
3010 	num_trbs = 0;
3011 	for_each_sg(urb->sg, sg, num_sgs, i) {
3012 		unsigned int len = sg_dma_len(sg);
3013 
3014 		/* Scatter gather list entries may cross 64KB boundaries */
3015 		running_total = TRB_MAX_BUFF_SIZE -
3016 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3017 		running_total &= TRB_MAX_BUFF_SIZE - 1;
3018 		if (running_total != 0)
3019 			num_trbs++;
3020 
3021 		/* How many more 64KB chunks to transfer, how many more TRBs? */
3022 		while (running_total < sg_dma_len(sg) && running_total < temp) {
3023 			num_trbs++;
3024 			running_total += TRB_MAX_BUFF_SIZE;
3025 		}
3026 		len = min_t(int, len, temp);
3027 		temp -= len;
3028 		if (temp == 0)
3029 			break;
3030 	}
3031 	return num_trbs;
3032 }
3033 
3034 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3035 {
3036 	if (num_trbs != 0)
3037 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3038 				"TRBs, %d left\n", __func__,
3039 				urb->ep->desc.bEndpointAddress, num_trbs);
3040 	if (running_total != urb->transfer_buffer_length)
3041 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3042 				"queued %#x (%d), asked for %#x (%d)\n",
3043 				__func__,
3044 				urb->ep->desc.bEndpointAddress,
3045 				running_total, running_total,
3046 				urb->transfer_buffer_length,
3047 				urb->transfer_buffer_length);
3048 }
3049 
3050 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3051 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3052 		struct xhci_generic_trb *start_trb)
3053 {
3054 	/*
3055 	 * Pass all the TRBs to the hardware at once and make sure this write
3056 	 * isn't reordered.
3057 	 */
3058 	wmb();
3059 	if (start_cycle)
3060 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3061 	else
3062 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3063 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3064 }
3065 
3066 /*
3067  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3068  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3069  * (comprised of sg list entries) can take several service intervals to
3070  * transmit.
3071  */
3072 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3073 		struct urb *urb, int slot_id, unsigned int ep_index)
3074 {
3075 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3076 			xhci->devs[slot_id]->out_ctx, ep_index);
3077 	int xhci_interval;
3078 	int ep_interval;
3079 
3080 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3081 	ep_interval = urb->interval;
3082 	/* Convert to microframes */
3083 	if (urb->dev->speed == USB_SPEED_LOW ||
3084 			urb->dev->speed == USB_SPEED_FULL)
3085 		ep_interval *= 8;
3086 	/* FIXME change this to a warning and a suggestion to use the new API
3087 	 * to set the polling interval (once the API is added).
3088 	 */
3089 	if (xhci_interval != ep_interval) {
3090 		dev_dbg_ratelimited(&urb->dev->dev,
3091 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3092 				ep_interval, ep_interval == 1 ? "" : "s",
3093 				xhci_interval, xhci_interval == 1 ? "" : "s");
3094 		urb->interval = xhci_interval;
3095 		/* Convert back to frames for LS/FS devices */
3096 		if (urb->dev->speed == USB_SPEED_LOW ||
3097 				urb->dev->speed == USB_SPEED_FULL)
3098 			urb->interval /= 8;
3099 	}
3100 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3101 }
3102 
3103 /*
3104  * The TD size is the number of bytes remaining in the TD (including this TRB),
3105  * right shifted by 10.
3106  * It must fit in bits 21:17, so it can't be bigger than 31.
3107  */
3108 static u32 xhci_td_remainder(unsigned int remainder)
3109 {
3110 	u32 max = (1 << (21 - 17 + 1)) - 1;
3111 
3112 	if ((remainder >> 10) >= max)
3113 		return max << 17;
3114 	else
3115 		return (remainder >> 10) << 17;
3116 }
3117 
3118 /*
3119  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3120  * packets remaining in the TD (*not* including this TRB).
3121  *
3122  * Total TD packet count = total_packet_count =
3123  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3124  *
3125  * Packets transferred up to and including this TRB = packets_transferred =
3126  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3127  *
3128  * TD size = total_packet_count - packets_transferred
3129  *
3130  * It must fit in bits 21:17, so it can't be bigger than 31.
3131  * The last TRB in a TD must have the TD size set to zero.
3132  */
3133 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3134 		unsigned int total_packet_count, struct urb *urb,
3135 		unsigned int num_trbs_left)
3136 {
3137 	int packets_transferred;
3138 
3139 	/* One TRB with a zero-length data packet. */
3140 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3141 		return 0;
3142 
3143 	/* All the TRB queueing functions don't count the current TRB in
3144 	 * running_total.
3145 	 */
3146 	packets_transferred = (running_total + trb_buff_len) /
3147 		GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3148 
3149 	if ((total_packet_count - packets_transferred) > 31)
3150 		return 31 << 17;
3151 	return (total_packet_count - packets_transferred) << 17;
3152 }
3153 
3154 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3155 		struct urb *urb, int slot_id, unsigned int ep_index)
3156 {
3157 	struct xhci_ring *ep_ring;
3158 	unsigned int num_trbs;
3159 	struct urb_priv *urb_priv;
3160 	struct xhci_td *td;
3161 	struct scatterlist *sg;
3162 	int num_sgs;
3163 	int trb_buff_len, this_sg_len, running_total;
3164 	unsigned int total_packet_count;
3165 	bool first_trb;
3166 	u64 addr;
3167 	bool more_trbs_coming;
3168 
3169 	struct xhci_generic_trb *start_trb;
3170 	int start_cycle;
3171 
3172 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3173 	if (!ep_ring)
3174 		return -EINVAL;
3175 
3176 	num_trbs = count_sg_trbs_needed(xhci, urb);
3177 	num_sgs = urb->num_mapped_sgs;
3178 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3179 			usb_endpoint_maxp(&urb->ep->desc));
3180 
3181 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3182 			ep_index, urb->stream_id,
3183 			num_trbs, urb, 0, mem_flags);
3184 	if (trb_buff_len < 0)
3185 		return trb_buff_len;
3186 
3187 	urb_priv = urb->hcpriv;
3188 	td = urb_priv->td[0];
3189 
3190 	/*
3191 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3192 	 * until we've finished creating all the other TRBs.  The ring's cycle
3193 	 * state may change as we enqueue the other TRBs, so save it too.
3194 	 */
3195 	start_trb = &ep_ring->enqueue->generic;
3196 	start_cycle = ep_ring->cycle_state;
3197 
3198 	running_total = 0;
3199 	/*
3200 	 * How much data is in the first TRB?
3201 	 *
3202 	 * There are three forces at work for TRB buffer pointers and lengths:
3203 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3204 	 * 2. The transfer length that the driver requested may be smaller than
3205 	 *    the amount of memory allocated for this scatter-gather list.
3206 	 * 3. TRBs buffers can't cross 64KB boundaries.
3207 	 */
3208 	sg = urb->sg;
3209 	addr = (u64) sg_dma_address(sg);
3210 	this_sg_len = sg_dma_len(sg);
3211 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3212 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3213 	if (trb_buff_len > urb->transfer_buffer_length)
3214 		trb_buff_len = urb->transfer_buffer_length;
3215 
3216 	first_trb = true;
3217 	/* Queue the first TRB, even if it's zero-length */
3218 	do {
3219 		u32 field = 0;
3220 		u32 length_field = 0;
3221 		u32 remainder = 0;
3222 
3223 		/* Don't change the cycle bit of the first TRB until later */
3224 		if (first_trb) {
3225 			first_trb = false;
3226 			if (start_cycle == 0)
3227 				field |= 0x1;
3228 		} else
3229 			field |= ep_ring->cycle_state;
3230 
3231 		/* Chain all the TRBs together; clear the chain bit in the last
3232 		 * TRB to indicate it's the last TRB in the chain.
3233 		 */
3234 		if (num_trbs > 1) {
3235 			field |= TRB_CHAIN;
3236 		} else {
3237 			/* FIXME - add check for ZERO_PACKET flag before this */
3238 			td->last_trb = ep_ring->enqueue;
3239 			field |= TRB_IOC;
3240 		}
3241 
3242 		/* Only set interrupt on short packet for IN endpoints */
3243 		if (usb_urb_dir_in(urb))
3244 			field |= TRB_ISP;
3245 
3246 		if (TRB_MAX_BUFF_SIZE -
3247 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3248 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3249 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3250 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3251 					(unsigned int) addr + trb_buff_len);
3252 		}
3253 
3254 		/* Set the TRB length, TD size, and interrupter fields. */
3255 		if (xhci->hci_version < 0x100) {
3256 			remainder = xhci_td_remainder(
3257 					urb->transfer_buffer_length -
3258 					running_total);
3259 		} else {
3260 			remainder = xhci_v1_0_td_remainder(running_total,
3261 					trb_buff_len, total_packet_count, urb,
3262 					num_trbs - 1);
3263 		}
3264 		length_field = TRB_LEN(trb_buff_len) |
3265 			remainder |
3266 			TRB_INTR_TARGET(0);
3267 
3268 		if (num_trbs > 1)
3269 			more_trbs_coming = true;
3270 		else
3271 			more_trbs_coming = false;
3272 		queue_trb(xhci, ep_ring, more_trbs_coming,
3273 				lower_32_bits(addr),
3274 				upper_32_bits(addr),
3275 				length_field,
3276 				field | TRB_TYPE(TRB_NORMAL));
3277 		--num_trbs;
3278 		running_total += trb_buff_len;
3279 
3280 		/* Calculate length for next transfer --
3281 		 * Are we done queueing all the TRBs for this sg entry?
3282 		 */
3283 		this_sg_len -= trb_buff_len;
3284 		if (this_sg_len == 0) {
3285 			--num_sgs;
3286 			if (num_sgs == 0)
3287 				break;
3288 			sg = sg_next(sg);
3289 			addr = (u64) sg_dma_address(sg);
3290 			this_sg_len = sg_dma_len(sg);
3291 		} else {
3292 			addr += trb_buff_len;
3293 		}
3294 
3295 		trb_buff_len = TRB_MAX_BUFF_SIZE -
3296 			(addr & (TRB_MAX_BUFF_SIZE - 1));
3297 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3298 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3299 			trb_buff_len =
3300 				urb->transfer_buffer_length - running_total;
3301 	} while (running_total < urb->transfer_buffer_length);
3302 
3303 	check_trb_math(urb, num_trbs, running_total);
3304 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3305 			start_cycle, start_trb);
3306 	return 0;
3307 }
3308 
3309 /* This is very similar to what ehci-q.c qtd_fill() does */
3310 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3311 		struct urb *urb, int slot_id, unsigned int ep_index)
3312 {
3313 	struct xhci_ring *ep_ring;
3314 	struct urb_priv *urb_priv;
3315 	struct xhci_td *td;
3316 	int num_trbs;
3317 	struct xhci_generic_trb *start_trb;
3318 	bool first_trb;
3319 	bool more_trbs_coming;
3320 	int start_cycle;
3321 	u32 field, length_field;
3322 
3323 	int running_total, trb_buff_len, ret;
3324 	unsigned int total_packet_count;
3325 	u64 addr;
3326 
3327 	if (urb->num_sgs)
3328 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3329 
3330 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3331 	if (!ep_ring)
3332 		return -EINVAL;
3333 
3334 	num_trbs = 0;
3335 	/* How much data is (potentially) left before the 64KB boundary? */
3336 	running_total = TRB_MAX_BUFF_SIZE -
3337 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3338 	running_total &= TRB_MAX_BUFF_SIZE - 1;
3339 
3340 	/* If there's some data on this 64KB chunk, or we have to send a
3341 	 * zero-length transfer, we need at least one TRB
3342 	 */
3343 	if (running_total != 0 || urb->transfer_buffer_length == 0)
3344 		num_trbs++;
3345 	/* How many more 64KB chunks to transfer, how many more TRBs? */
3346 	while (running_total < urb->transfer_buffer_length) {
3347 		num_trbs++;
3348 		running_total += TRB_MAX_BUFF_SIZE;
3349 	}
3350 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3351 
3352 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3353 			ep_index, urb->stream_id,
3354 			num_trbs, urb, 0, mem_flags);
3355 	if (ret < 0)
3356 		return ret;
3357 
3358 	urb_priv = urb->hcpriv;
3359 	td = urb_priv->td[0];
3360 
3361 	/*
3362 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3363 	 * until we've finished creating all the other TRBs.  The ring's cycle
3364 	 * state may change as we enqueue the other TRBs, so save it too.
3365 	 */
3366 	start_trb = &ep_ring->enqueue->generic;
3367 	start_cycle = ep_ring->cycle_state;
3368 
3369 	running_total = 0;
3370 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3371 			usb_endpoint_maxp(&urb->ep->desc));
3372 	/* How much data is in the first TRB? */
3373 	addr = (u64) urb->transfer_dma;
3374 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3375 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3376 	if (trb_buff_len > urb->transfer_buffer_length)
3377 		trb_buff_len = urb->transfer_buffer_length;
3378 
3379 	first_trb = true;
3380 
3381 	/* Queue the first TRB, even if it's zero-length */
3382 	do {
3383 		u32 remainder = 0;
3384 		field = 0;
3385 
3386 		/* Don't change the cycle bit of the first TRB until later */
3387 		if (first_trb) {
3388 			first_trb = false;
3389 			if (start_cycle == 0)
3390 				field |= 0x1;
3391 		} else
3392 			field |= ep_ring->cycle_state;
3393 
3394 		/* Chain all the TRBs together; clear the chain bit in the last
3395 		 * TRB to indicate it's the last TRB in the chain.
3396 		 */
3397 		if (num_trbs > 1) {
3398 			field |= TRB_CHAIN;
3399 		} else {
3400 			/* FIXME - add check for ZERO_PACKET flag before this */
3401 			td->last_trb = ep_ring->enqueue;
3402 			field |= TRB_IOC;
3403 		}
3404 
3405 		/* Only set interrupt on short packet for IN endpoints */
3406 		if (usb_urb_dir_in(urb))
3407 			field |= TRB_ISP;
3408 
3409 		/* Set the TRB length, TD size, and interrupter fields. */
3410 		if (xhci->hci_version < 0x100) {
3411 			remainder = xhci_td_remainder(
3412 					urb->transfer_buffer_length -
3413 					running_total);
3414 		} else {
3415 			remainder = xhci_v1_0_td_remainder(running_total,
3416 					trb_buff_len, total_packet_count, urb,
3417 					num_trbs - 1);
3418 		}
3419 		length_field = TRB_LEN(trb_buff_len) |
3420 			remainder |
3421 			TRB_INTR_TARGET(0);
3422 
3423 		if (num_trbs > 1)
3424 			more_trbs_coming = true;
3425 		else
3426 			more_trbs_coming = false;
3427 		queue_trb(xhci, ep_ring, more_trbs_coming,
3428 				lower_32_bits(addr),
3429 				upper_32_bits(addr),
3430 				length_field,
3431 				field | TRB_TYPE(TRB_NORMAL));
3432 		--num_trbs;
3433 		running_total += trb_buff_len;
3434 
3435 		/* Calculate length for next transfer */
3436 		addr += trb_buff_len;
3437 		trb_buff_len = urb->transfer_buffer_length - running_total;
3438 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3439 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3440 	} while (running_total < urb->transfer_buffer_length);
3441 
3442 	check_trb_math(urb, num_trbs, running_total);
3443 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3444 			start_cycle, start_trb);
3445 	return 0;
3446 }
3447 
3448 /* Caller must have locked xhci->lock */
3449 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3450 		struct urb *urb, int slot_id, unsigned int ep_index)
3451 {
3452 	struct xhci_ring *ep_ring;
3453 	int num_trbs;
3454 	int ret;
3455 	struct usb_ctrlrequest *setup;
3456 	struct xhci_generic_trb *start_trb;
3457 	int start_cycle;
3458 	u32 field, length_field;
3459 	struct urb_priv *urb_priv;
3460 	struct xhci_td *td;
3461 
3462 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3463 	if (!ep_ring)
3464 		return -EINVAL;
3465 
3466 	/*
3467 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3468 	 * DMA address.
3469 	 */
3470 	if (!urb->setup_packet)
3471 		return -EINVAL;
3472 
3473 	/* 1 TRB for setup, 1 for status */
3474 	num_trbs = 2;
3475 	/*
3476 	 * Don't need to check if we need additional event data and normal TRBs,
3477 	 * since data in control transfers will never get bigger than 16MB
3478 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3479 	 */
3480 	if (urb->transfer_buffer_length > 0)
3481 		num_trbs++;
3482 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3483 			ep_index, urb->stream_id,
3484 			num_trbs, urb, 0, mem_flags);
3485 	if (ret < 0)
3486 		return ret;
3487 
3488 	urb_priv = urb->hcpriv;
3489 	td = urb_priv->td[0];
3490 
3491 	/*
3492 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3493 	 * until we've finished creating all the other TRBs.  The ring's cycle
3494 	 * state may change as we enqueue the other TRBs, so save it too.
3495 	 */
3496 	start_trb = &ep_ring->enqueue->generic;
3497 	start_cycle = ep_ring->cycle_state;
3498 
3499 	/* Queue setup TRB - see section 6.4.1.2.1 */
3500 	/* FIXME better way to translate setup_packet into two u32 fields? */
3501 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3502 	field = 0;
3503 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3504 	if (start_cycle == 0)
3505 		field |= 0x1;
3506 
3507 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3508 	if (xhci->hci_version == 0x100) {
3509 		if (urb->transfer_buffer_length > 0) {
3510 			if (setup->bRequestType & USB_DIR_IN)
3511 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3512 			else
3513 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3514 		}
3515 	}
3516 
3517 	queue_trb(xhci, ep_ring, true,
3518 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3519 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3520 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3521 		  /* Immediate data in pointer */
3522 		  field);
3523 
3524 	/* If there's data, queue data TRBs */
3525 	/* Only set interrupt on short packet for IN endpoints */
3526 	if (usb_urb_dir_in(urb))
3527 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3528 	else
3529 		field = TRB_TYPE(TRB_DATA);
3530 
3531 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3532 		xhci_td_remainder(urb->transfer_buffer_length) |
3533 		TRB_INTR_TARGET(0);
3534 	if (urb->transfer_buffer_length > 0) {
3535 		if (setup->bRequestType & USB_DIR_IN)
3536 			field |= TRB_DIR_IN;
3537 		queue_trb(xhci, ep_ring, true,
3538 				lower_32_bits(urb->transfer_dma),
3539 				upper_32_bits(urb->transfer_dma),
3540 				length_field,
3541 				field | ep_ring->cycle_state);
3542 	}
3543 
3544 	/* Save the DMA address of the last TRB in the TD */
3545 	td->last_trb = ep_ring->enqueue;
3546 
3547 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3548 	/* If the device sent data, the status stage is an OUT transfer */
3549 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3550 		field = 0;
3551 	else
3552 		field = TRB_DIR_IN;
3553 	queue_trb(xhci, ep_ring, false,
3554 			0,
3555 			0,
3556 			TRB_INTR_TARGET(0),
3557 			/* Event on completion */
3558 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3559 
3560 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3561 			start_cycle, start_trb);
3562 	return 0;
3563 }
3564 
3565 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3566 		struct urb *urb, int i)
3567 {
3568 	int num_trbs = 0;
3569 	u64 addr, td_len;
3570 
3571 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3572 	td_len = urb->iso_frame_desc[i].length;
3573 
3574 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3575 			TRB_MAX_BUFF_SIZE);
3576 	if (num_trbs == 0)
3577 		num_trbs++;
3578 
3579 	return num_trbs;
3580 }
3581 
3582 /*
3583  * The transfer burst count field of the isochronous TRB defines the number of
3584  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3585  * devices can burst up to bMaxBurst number of packets per service interval.
3586  * This field is zero based, meaning a value of zero in the field means one
3587  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3588  * zero.  Only xHCI 1.0 host controllers support this field.
3589  */
3590 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3591 		struct usb_device *udev,
3592 		struct urb *urb, unsigned int total_packet_count)
3593 {
3594 	unsigned int max_burst;
3595 
3596 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3597 		return 0;
3598 
3599 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3600 	return roundup(total_packet_count, max_burst + 1) - 1;
3601 }
3602 
3603 /*
3604  * Returns the number of packets in the last "burst" of packets.  This field is
3605  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3606  * the last burst packet count is equal to the total number of packets in the
3607  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3608  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3609  * contain 1 to (bMaxBurst + 1) packets.
3610  */
3611 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3612 		struct usb_device *udev,
3613 		struct urb *urb, unsigned int total_packet_count)
3614 {
3615 	unsigned int max_burst;
3616 	unsigned int residue;
3617 
3618 	if (xhci->hci_version < 0x100)
3619 		return 0;
3620 
3621 	switch (udev->speed) {
3622 	case USB_SPEED_SUPER:
3623 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3624 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3625 		residue = total_packet_count % (max_burst + 1);
3626 		/* If residue is zero, the last burst contains (max_burst + 1)
3627 		 * number of packets, but the TLBPC field is zero-based.
3628 		 */
3629 		if (residue == 0)
3630 			return max_burst;
3631 		return residue - 1;
3632 	default:
3633 		if (total_packet_count == 0)
3634 			return 0;
3635 		return total_packet_count - 1;
3636 	}
3637 }
3638 
3639 /* This is for isoc transfer */
3640 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3641 		struct urb *urb, int slot_id, unsigned int ep_index)
3642 {
3643 	struct xhci_ring *ep_ring;
3644 	struct urb_priv *urb_priv;
3645 	struct xhci_td *td;
3646 	int num_tds, trbs_per_td;
3647 	struct xhci_generic_trb *start_trb;
3648 	bool first_trb;
3649 	int start_cycle;
3650 	u32 field, length_field;
3651 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3652 	u64 start_addr, addr;
3653 	int i, j;
3654 	bool more_trbs_coming;
3655 
3656 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3657 
3658 	num_tds = urb->number_of_packets;
3659 	if (num_tds < 1) {
3660 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3661 		return -EINVAL;
3662 	}
3663 
3664 	start_addr = (u64) urb->transfer_dma;
3665 	start_trb = &ep_ring->enqueue->generic;
3666 	start_cycle = ep_ring->cycle_state;
3667 
3668 	urb_priv = urb->hcpriv;
3669 	/* Queue the first TRB, even if it's zero-length */
3670 	for (i = 0; i < num_tds; i++) {
3671 		unsigned int total_packet_count;
3672 		unsigned int burst_count;
3673 		unsigned int residue;
3674 
3675 		first_trb = true;
3676 		running_total = 0;
3677 		addr = start_addr + urb->iso_frame_desc[i].offset;
3678 		td_len = urb->iso_frame_desc[i].length;
3679 		td_remain_len = td_len;
3680 		total_packet_count = DIV_ROUND_UP(td_len,
3681 				GET_MAX_PACKET(
3682 					usb_endpoint_maxp(&urb->ep->desc)));
3683 		/* A zero-length transfer still involves at least one packet. */
3684 		if (total_packet_count == 0)
3685 			total_packet_count++;
3686 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3687 				total_packet_count);
3688 		residue = xhci_get_last_burst_packet_count(xhci,
3689 				urb->dev, urb, total_packet_count);
3690 
3691 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3692 
3693 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3694 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3695 		if (ret < 0) {
3696 			if (i == 0)
3697 				return ret;
3698 			goto cleanup;
3699 		}
3700 
3701 		td = urb_priv->td[i];
3702 		for (j = 0; j < trbs_per_td; j++) {
3703 			u32 remainder = 0;
3704 			field = 0;
3705 
3706 			if (first_trb) {
3707 				field = TRB_TBC(burst_count) |
3708 					TRB_TLBPC(residue);
3709 				/* Queue the isoc TRB */
3710 				field |= TRB_TYPE(TRB_ISOC);
3711 				/* Assume URB_ISO_ASAP is set */
3712 				field |= TRB_SIA;
3713 				if (i == 0) {
3714 					if (start_cycle == 0)
3715 						field |= 0x1;
3716 				} else
3717 					field |= ep_ring->cycle_state;
3718 				first_trb = false;
3719 			} else {
3720 				/* Queue other normal TRBs */
3721 				field |= TRB_TYPE(TRB_NORMAL);
3722 				field |= ep_ring->cycle_state;
3723 			}
3724 
3725 			/* Only set interrupt on short packet for IN EPs */
3726 			if (usb_urb_dir_in(urb))
3727 				field |= TRB_ISP;
3728 
3729 			/* Chain all the TRBs together; clear the chain bit in
3730 			 * the last TRB to indicate it's the last TRB in the
3731 			 * chain.
3732 			 */
3733 			if (j < trbs_per_td - 1) {
3734 				field |= TRB_CHAIN;
3735 				more_trbs_coming = true;
3736 			} else {
3737 				td->last_trb = ep_ring->enqueue;
3738 				field |= TRB_IOC;
3739 				if (xhci->hci_version == 0x100 &&
3740 						!(xhci->quirks &
3741 							XHCI_AVOID_BEI)) {
3742 					/* Set BEI bit except for the last td */
3743 					if (i < num_tds - 1)
3744 						field |= TRB_BEI;
3745 				}
3746 				more_trbs_coming = false;
3747 			}
3748 
3749 			/* Calculate TRB length */
3750 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3751 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3752 			if (trb_buff_len > td_remain_len)
3753 				trb_buff_len = td_remain_len;
3754 
3755 			/* Set the TRB length, TD size, & interrupter fields. */
3756 			if (xhci->hci_version < 0x100) {
3757 				remainder = xhci_td_remainder(
3758 						td_len - running_total);
3759 			} else {
3760 				remainder = xhci_v1_0_td_remainder(
3761 						running_total, trb_buff_len,
3762 						total_packet_count, urb,
3763 						(trbs_per_td - j - 1));
3764 			}
3765 			length_field = TRB_LEN(trb_buff_len) |
3766 				remainder |
3767 				TRB_INTR_TARGET(0);
3768 
3769 			queue_trb(xhci, ep_ring, more_trbs_coming,
3770 				lower_32_bits(addr),
3771 				upper_32_bits(addr),
3772 				length_field,
3773 				field);
3774 			running_total += trb_buff_len;
3775 
3776 			addr += trb_buff_len;
3777 			td_remain_len -= trb_buff_len;
3778 		}
3779 
3780 		/* Check TD length */
3781 		if (running_total != td_len) {
3782 			xhci_err(xhci, "ISOC TD length unmatch\n");
3783 			ret = -EINVAL;
3784 			goto cleanup;
3785 		}
3786 	}
3787 
3788 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3789 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3790 			usb_amd_quirk_pll_disable();
3791 	}
3792 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3793 
3794 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3795 			start_cycle, start_trb);
3796 	return 0;
3797 cleanup:
3798 	/* Clean up a partially enqueued isoc transfer. */
3799 
3800 	for (i--; i >= 0; i--)
3801 		list_del_init(&urb_priv->td[i]->td_list);
3802 
3803 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3804 	 * into No-ops with a software-owned cycle bit. That way the hardware
3805 	 * won't accidentally start executing bogus TDs when we partially
3806 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3807 	 */
3808 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3809 	/* Every TRB except the first & last will have its cycle bit flipped. */
3810 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3811 
3812 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3813 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3814 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3815 	ep_ring->cycle_state = start_cycle;
3816 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3817 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3818 	return ret;
3819 }
3820 
3821 /*
3822  * Check transfer ring to guarantee there is enough room for the urb.
3823  * Update ISO URB start_frame and interval.
3824  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3825  * update the urb->start_frame by now.
3826  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3827  */
3828 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3829 		struct urb *urb, int slot_id, unsigned int ep_index)
3830 {
3831 	struct xhci_virt_device *xdev;
3832 	struct xhci_ring *ep_ring;
3833 	struct xhci_ep_ctx *ep_ctx;
3834 	int start_frame;
3835 	int xhci_interval;
3836 	int ep_interval;
3837 	int num_tds, num_trbs, i;
3838 	int ret;
3839 
3840 	xdev = xhci->devs[slot_id];
3841 	ep_ring = xdev->eps[ep_index].ring;
3842 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3843 
3844 	num_trbs = 0;
3845 	num_tds = urb->number_of_packets;
3846 	for (i = 0; i < num_tds; i++)
3847 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3848 
3849 	/* Check the ring to guarantee there is enough room for the whole urb.
3850 	 * Do not insert any td of the urb to the ring if the check failed.
3851 	 */
3852 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3853 			   num_trbs, mem_flags);
3854 	if (ret)
3855 		return ret;
3856 
3857 	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3858 	start_frame &= 0x3fff;
3859 
3860 	urb->start_frame = start_frame;
3861 	if (urb->dev->speed == USB_SPEED_LOW ||
3862 			urb->dev->speed == USB_SPEED_FULL)
3863 		urb->start_frame >>= 3;
3864 
3865 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3866 	ep_interval = urb->interval;
3867 	/* Convert to microframes */
3868 	if (urb->dev->speed == USB_SPEED_LOW ||
3869 			urb->dev->speed == USB_SPEED_FULL)
3870 		ep_interval *= 8;
3871 	/* FIXME change this to a warning and a suggestion to use the new API
3872 	 * to set the polling interval (once the API is added).
3873 	 */
3874 	if (xhci_interval != ep_interval) {
3875 		dev_dbg_ratelimited(&urb->dev->dev,
3876 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3877 				ep_interval, ep_interval == 1 ? "" : "s",
3878 				xhci_interval, xhci_interval == 1 ? "" : "s");
3879 		urb->interval = xhci_interval;
3880 		/* Convert back to frames for LS/FS devices */
3881 		if (urb->dev->speed == USB_SPEED_LOW ||
3882 				urb->dev->speed == USB_SPEED_FULL)
3883 			urb->interval /= 8;
3884 	}
3885 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3886 
3887 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3888 }
3889 
3890 /****		Command Ring Operations		****/
3891 
3892 /* Generic function for queueing a command TRB on the command ring.
3893  * Check to make sure there's room on the command ring for one command TRB.
3894  * Also check that there's room reserved for commands that must not fail.
3895  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3896  * then only check for the number of reserved spots.
3897  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3898  * because the command event handler may want to resubmit a failed command.
3899  */
3900 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3901 		u32 field3, u32 field4, bool command_must_succeed)
3902 {
3903 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3904 	int ret;
3905 
3906 	if (!command_must_succeed)
3907 		reserved_trbs++;
3908 
3909 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3910 			reserved_trbs, GFP_ATOMIC);
3911 	if (ret < 0) {
3912 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3913 		if (command_must_succeed)
3914 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3915 					"unfailable commands failed.\n");
3916 		return ret;
3917 	}
3918 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3919 			field4 | xhci->cmd_ring->cycle_state);
3920 	return 0;
3921 }
3922 
3923 /* Queue a slot enable or disable request on the command ring */
3924 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3925 {
3926 	return queue_command(xhci, 0, 0, 0,
3927 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3928 }
3929 
3930 /* Queue an address device command TRB */
3931 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3932 		u32 slot_id)
3933 {
3934 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3935 			upper_32_bits(in_ctx_ptr), 0,
3936 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3937 			false);
3938 }
3939 
3940 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3941 		u32 field1, u32 field2, u32 field3, u32 field4)
3942 {
3943 	return queue_command(xhci, field1, field2, field3, field4, false);
3944 }
3945 
3946 /* Queue a reset device command TRB */
3947 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3948 {
3949 	return queue_command(xhci, 0, 0, 0,
3950 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3951 			false);
3952 }
3953 
3954 /* Queue a configure endpoint command TRB */
3955 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3956 		u32 slot_id, bool command_must_succeed)
3957 {
3958 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3959 			upper_32_bits(in_ctx_ptr), 0,
3960 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3961 			command_must_succeed);
3962 }
3963 
3964 /* Queue an evaluate context command TRB */
3965 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3966 		u32 slot_id, bool command_must_succeed)
3967 {
3968 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3969 			upper_32_bits(in_ctx_ptr), 0,
3970 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3971 			command_must_succeed);
3972 }
3973 
3974 /*
3975  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3976  * activity on an endpoint that is about to be suspended.
3977  */
3978 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3979 		unsigned int ep_index, int suspend)
3980 {
3981 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3982 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3983 	u32 type = TRB_TYPE(TRB_STOP_RING);
3984 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3985 
3986 	return queue_command(xhci, 0, 0, 0,
3987 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3988 }
3989 
3990 /* Set Transfer Ring Dequeue Pointer command.
3991  * This should not be used for endpoints that have streams enabled.
3992  */
3993 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3994 		unsigned int ep_index, unsigned int stream_id,
3995 		struct xhci_segment *deq_seg,
3996 		union xhci_trb *deq_ptr, u32 cycle_state)
3997 {
3998 	dma_addr_t addr;
3999 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4000 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4001 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4002 	u32 type = TRB_TYPE(TRB_SET_DEQ);
4003 	struct xhci_virt_ep *ep;
4004 
4005 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4006 	if (addr == 0) {
4007 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4008 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4009 				deq_seg, deq_ptr);
4010 		return 0;
4011 	}
4012 	ep = &xhci->devs[slot_id]->eps[ep_index];
4013 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4014 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4015 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4016 		return 0;
4017 	}
4018 	ep->queued_deq_seg = deq_seg;
4019 	ep->queued_deq_ptr = deq_ptr;
4020 	return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4021 			upper_32_bits(addr), trb_stream_id,
4022 			trb_slot_id | trb_ep_index | type, false);
4023 }
4024 
4025 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4026 		unsigned int ep_index)
4027 {
4028 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4029 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4030 	u32 type = TRB_TYPE(TRB_RESET_EP);
4031 
4032 	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4033 			false);
4034 }
4035