1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return trb->link.control & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK); 117 } 118 119 static inline int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return ((link->control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) 147 { 148 union xhci_trb *next = ++(ring->dequeue); 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 /* Update the dequeue pointer further if that was a link TRB or we're at 153 * the end of an event ring segment (which doesn't have link TRBS) 154 */ 155 while (last_trb(xhci, ring, ring->deq_seg, next)) { 156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { 157 ring->cycle_state = (ring->cycle_state ? 0 : 1); 158 if (!in_interrupt()) 159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 160 ring, 161 (unsigned int) ring->cycle_state); 162 } 163 ring->deq_seg = ring->deq_seg->next; 164 ring->dequeue = ring->deq_seg->trbs; 165 next = ring->dequeue; 166 } 167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 168 if (ring == xhci->event_ring) 169 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr); 170 else if (ring == xhci->cmd_ring) 171 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr); 172 else 173 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr); 174 } 175 176 /* 177 * See Cycle bit rules. SW is the consumer for the event ring only. 178 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 179 * 180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 181 * chain bit is set), then set the chain bit in all the following link TRBs. 182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 183 * have their chain bit cleared (so that each Link TRB is a separate TD). 184 * 185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 186 * set, but other sections talk about dealing with the chain bit set. This was 187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 188 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 189 * 190 * @more_trbs_coming: Will you enqueue more TRBs before calling 191 * prepare_transfer()? 192 */ 193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 194 bool consumer, bool more_trbs_coming) 195 { 196 u32 chain; 197 union xhci_trb *next; 198 unsigned long long addr; 199 200 chain = ring->enqueue->generic.field[3] & TRB_CHAIN; 201 next = ++(ring->enqueue); 202 203 ring->enq_updates++; 204 /* Update the dequeue pointer further if that was a link TRB or we're at 205 * the end of an event ring segment (which doesn't have link TRBS) 206 */ 207 while (last_trb(xhci, ring, ring->enq_seg, next)) { 208 if (!consumer) { 209 if (ring != xhci->event_ring) { 210 /* 211 * If the caller doesn't plan on enqueueing more 212 * TDs before ringing the doorbell, then we 213 * don't want to give the link TRB to the 214 * hardware just yet. We'll give the link TRB 215 * back in prepare_ring() just before we enqueue 216 * the TD at the top of the ring. 217 */ 218 if (!chain && !more_trbs_coming) 219 break; 220 221 /* If we're not dealing with 0.95 hardware, 222 * carry over the chain bit of the previous TRB 223 * (which may mean the chain bit is cleared). 224 */ 225 if (!xhci_link_trb_quirk(xhci)) { 226 next->link.control &= ~TRB_CHAIN; 227 next->link.control |= chain; 228 } 229 /* Give this link TRB to the hardware */ 230 wmb(); 231 next->link.control ^= TRB_CYCLE; 232 } 233 /* Toggle the cycle bit after the last ring segment. */ 234 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 235 ring->cycle_state = (ring->cycle_state ? 0 : 1); 236 if (!in_interrupt()) 237 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 238 ring, 239 (unsigned int) ring->cycle_state); 240 } 241 } 242 ring->enq_seg = ring->enq_seg->next; 243 ring->enqueue = ring->enq_seg->trbs; 244 next = ring->enqueue; 245 } 246 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 247 if (ring == xhci->event_ring) 248 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr); 249 else if (ring == xhci->cmd_ring) 250 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr); 251 else 252 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring. See rules 257 * above. 258 * FIXME: this would be simpler and faster if we just kept track of the number 259 * of free TRBs in a ring. 260 */ 261 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 unsigned int num_trbs) 263 { 264 int i; 265 union xhci_trb *enq = ring->enqueue; 266 struct xhci_segment *enq_seg = ring->enq_seg; 267 struct xhci_segment *cur_seg; 268 unsigned int left_on_ring; 269 270 /* If we are currently pointing to a link TRB, advance the 271 * enqueue pointer before checking for space */ 272 while (last_trb(xhci, ring, enq_seg, enq)) { 273 enq_seg = enq_seg->next; 274 enq = enq_seg->trbs; 275 } 276 277 /* Check if ring is empty */ 278 if (enq == ring->dequeue) { 279 /* Can't use link trbs */ 280 left_on_ring = TRBS_PER_SEGMENT - 1; 281 for (cur_seg = enq_seg->next; cur_seg != enq_seg; 282 cur_seg = cur_seg->next) 283 left_on_ring += TRBS_PER_SEGMENT - 1; 284 285 /* Always need one TRB free in the ring. */ 286 left_on_ring -= 1; 287 if (num_trbs > left_on_ring) { 288 xhci_warn(xhci, "Not enough room on ring; " 289 "need %u TRBs, %u TRBs left\n", 290 num_trbs, left_on_ring); 291 return 0; 292 } 293 return 1; 294 } 295 /* Make sure there's an extra empty TRB available */ 296 for (i = 0; i <= num_trbs; ++i) { 297 if (enq == ring->dequeue) 298 return 0; 299 enq++; 300 while (last_trb(xhci, ring, enq_seg, enq)) { 301 enq_seg = enq_seg->next; 302 enq = enq_seg->trbs; 303 } 304 } 305 return 1; 306 } 307 308 /* Ring the host controller doorbell after placing a command on the ring */ 309 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 310 { 311 xhci_dbg(xhci, "// Ding dong!\n"); 312 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 313 /* Flush PCI posted writes */ 314 xhci_readl(xhci, &xhci->dba->doorbell[0]); 315 } 316 317 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 318 unsigned int slot_id, 319 unsigned int ep_index, 320 unsigned int stream_id) 321 { 322 __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 323 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 324 unsigned int ep_state = ep->ep_state; 325 326 /* Don't ring the doorbell for this endpoint if there are pending 327 * cancellations because we don't want to interrupt processing. 328 * We don't want to restart any stream rings if there's a set dequeue 329 * pointer command pending because the device can choose to start any 330 * stream once the endpoint is on the HW schedule. 331 * FIXME - check all the stream rings for pending cancellations. 332 */ 333 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 334 (ep_state & EP_HALTED)) 335 return; 336 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 337 /* The CPU has better things to do at this point than wait for a 338 * write-posting flush. It'll get there soon enough. 339 */ 340 } 341 342 /* Ring the doorbell for any rings with pending URBs */ 343 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 344 unsigned int slot_id, 345 unsigned int ep_index) 346 { 347 unsigned int stream_id; 348 struct xhci_virt_ep *ep; 349 350 ep = &xhci->devs[slot_id]->eps[ep_index]; 351 352 /* A ring has pending URBs if its TD list is not empty */ 353 if (!(ep->ep_state & EP_HAS_STREAMS)) { 354 if (!(list_empty(&ep->ring->td_list))) 355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 356 return; 357 } 358 359 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 360 stream_id++) { 361 struct xhci_stream_info *stream_info = ep->stream_info; 362 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 364 stream_id); 365 } 366 } 367 368 /* 369 * Find the segment that trb is in. Start searching in start_seg. 370 * If we must move past a segment that has a link TRB with a toggle cycle state 371 * bit set, then we will toggle the value pointed at by cycle_state. 372 */ 373 static struct xhci_segment *find_trb_seg( 374 struct xhci_segment *start_seg, 375 union xhci_trb *trb, int *cycle_state) 376 { 377 struct xhci_segment *cur_seg = start_seg; 378 struct xhci_generic_trb *generic_trb; 379 380 while (cur_seg->trbs > trb || 381 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 382 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 383 if (generic_trb->field[3] & LINK_TOGGLE) 384 *cycle_state ^= 0x1; 385 cur_seg = cur_seg->next; 386 if (cur_seg == start_seg) 387 /* Looped over the entire list. Oops! */ 388 return NULL; 389 } 390 return cur_seg; 391 } 392 393 394 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 395 unsigned int slot_id, unsigned int ep_index, 396 unsigned int stream_id) 397 { 398 struct xhci_virt_ep *ep; 399 400 ep = &xhci->devs[slot_id]->eps[ep_index]; 401 /* Common case: no streams */ 402 if (!(ep->ep_state & EP_HAS_STREAMS)) 403 return ep->ring; 404 405 if (stream_id == 0) { 406 xhci_warn(xhci, 407 "WARN: Slot ID %u, ep index %u has streams, " 408 "but URB has no stream ID.\n", 409 slot_id, ep_index); 410 return NULL; 411 } 412 413 if (stream_id < ep->stream_info->num_streams) 414 return ep->stream_info->stream_rings[stream_id]; 415 416 xhci_warn(xhci, 417 "WARN: Slot ID %u, ep index %u has " 418 "stream IDs 1 to %u allocated, " 419 "but stream ID %u is requested.\n", 420 slot_id, ep_index, 421 ep->stream_info->num_streams - 1, 422 stream_id); 423 return NULL; 424 } 425 426 /* Get the right ring for the given URB. 427 * If the endpoint supports streams, boundary check the URB's stream ID. 428 * If the endpoint doesn't support streams, return the singular endpoint ring. 429 */ 430 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 431 struct urb *urb) 432 { 433 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 434 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 435 } 436 437 /* 438 * Move the xHC's endpoint ring dequeue pointer past cur_td. 439 * Record the new state of the xHC's endpoint ring dequeue segment, 440 * dequeue pointer, and new consumer cycle state in state. 441 * Update our internal representation of the ring's dequeue pointer. 442 * 443 * We do this in three jumps: 444 * - First we update our new ring state to be the same as when the xHC stopped. 445 * - Then we traverse the ring to find the segment that contains 446 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 447 * any link TRBs with the toggle cycle bit set. 448 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 449 * if we've moved it past a link TRB with the toggle cycle bit set. 450 */ 451 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 452 unsigned int slot_id, unsigned int ep_index, 453 unsigned int stream_id, struct xhci_td *cur_td, 454 struct xhci_dequeue_state *state) 455 { 456 struct xhci_virt_device *dev = xhci->devs[slot_id]; 457 struct xhci_ring *ep_ring; 458 struct xhci_generic_trb *trb; 459 struct xhci_ep_ctx *ep_ctx; 460 dma_addr_t addr; 461 462 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 463 ep_index, stream_id); 464 if (!ep_ring) { 465 xhci_warn(xhci, "WARN can't find new dequeue state " 466 "for invalid stream ID %u.\n", 467 stream_id); 468 return; 469 } 470 state->new_cycle_state = 0; 471 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 472 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 473 dev->eps[ep_index].stopped_trb, 474 &state->new_cycle_state); 475 if (!state->new_deq_seg) { 476 WARN_ON(1); 477 return; 478 } 479 480 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 481 xhci_dbg(xhci, "Finding endpoint context\n"); 482 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 483 state->new_cycle_state = 0x1 & ep_ctx->deq; 484 485 state->new_deq_ptr = cur_td->last_trb; 486 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 487 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 488 state->new_deq_ptr, 489 &state->new_cycle_state); 490 if (!state->new_deq_seg) { 491 WARN_ON(1); 492 return; 493 } 494 495 trb = &state->new_deq_ptr->generic; 496 if ((trb->field[3] & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK) && 497 (trb->field[3] & LINK_TOGGLE)) 498 state->new_cycle_state ^= 0x1; 499 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 500 501 /* 502 * If there is only one segment in a ring, find_trb_seg()'s while loop 503 * will not run, and it will return before it has a chance to see if it 504 * needs to toggle the cycle bit. It can't tell if the stalled transfer 505 * ended just before the link TRB on a one-segment ring, or if the TD 506 * wrapped around the top of the ring, because it doesn't have the TD in 507 * question. Look for the one-segment case where stalled TRB's address 508 * is greater than the new dequeue pointer address. 509 */ 510 if (ep_ring->first_seg == ep_ring->first_seg->next && 511 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 512 state->new_cycle_state ^= 0x1; 513 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 514 515 /* Don't update the ring cycle state for the producer (us). */ 516 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 517 state->new_deq_seg); 518 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 519 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 520 (unsigned long long) addr); 521 } 522 523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 524 struct xhci_td *cur_td) 525 { 526 struct xhci_segment *cur_seg; 527 union xhci_trb *cur_trb; 528 529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 530 true; 531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 532 if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) == 533 TRB_TYPE(TRB_LINK)) { 534 /* Unchain any chained Link TRBs, but 535 * leave the pointers intact. 536 */ 537 cur_trb->generic.field[3] &= ~TRB_CHAIN; 538 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 539 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 540 "in seg %p (0x%llx dma)\n", 541 cur_trb, 542 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 543 cur_seg, 544 (unsigned long long)cur_seg->dma); 545 } else { 546 cur_trb->generic.field[0] = 0; 547 cur_trb->generic.field[1] = 0; 548 cur_trb->generic.field[2] = 0; 549 /* Preserve only the cycle bit of this TRB */ 550 cur_trb->generic.field[3] &= TRB_CYCLE; 551 cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP); 552 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " 553 "in seg %p (0x%llx dma)\n", 554 cur_trb, 555 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 556 cur_seg, 557 (unsigned long long)cur_seg->dma); 558 } 559 if (cur_trb == cur_td->last_trb) 560 break; 561 } 562 } 563 564 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 565 unsigned int ep_index, unsigned int stream_id, 566 struct xhci_segment *deq_seg, 567 union xhci_trb *deq_ptr, u32 cycle_state); 568 569 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 570 unsigned int slot_id, unsigned int ep_index, 571 unsigned int stream_id, 572 struct xhci_dequeue_state *deq_state) 573 { 574 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 575 576 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 577 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 578 deq_state->new_deq_seg, 579 (unsigned long long)deq_state->new_deq_seg->dma, 580 deq_state->new_deq_ptr, 581 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 582 deq_state->new_cycle_state); 583 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 584 deq_state->new_deq_seg, 585 deq_state->new_deq_ptr, 586 (u32) deq_state->new_cycle_state); 587 /* Stop the TD queueing code from ringing the doorbell until 588 * this command completes. The HC won't set the dequeue pointer 589 * if the ring is running, and ringing the doorbell starts the 590 * ring running. 591 */ 592 ep->ep_state |= SET_DEQ_PENDING; 593 } 594 595 static inline void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 596 struct xhci_virt_ep *ep) 597 { 598 ep->ep_state &= ~EP_HALT_PENDING; 599 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 600 * timer is running on another CPU, we don't decrement stop_cmds_pending 601 * (since we didn't successfully stop the watchdog timer). 602 */ 603 if (del_timer(&ep->stop_cmd_timer)) 604 ep->stop_cmds_pending--; 605 } 606 607 /* Must be called with xhci->lock held in interrupt context */ 608 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 609 struct xhci_td *cur_td, int status, char *adjective) 610 { 611 struct usb_hcd *hcd; 612 struct urb *urb; 613 struct urb_priv *urb_priv; 614 615 urb = cur_td->urb; 616 urb_priv = urb->hcpriv; 617 urb_priv->td_cnt++; 618 hcd = bus_to_hcd(urb->dev->bus); 619 620 /* Only giveback urb when this is the last td in urb */ 621 if (urb_priv->td_cnt == urb_priv->length) { 622 usb_hcd_unlink_urb_from_ep(hcd, urb); 623 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, urb); 624 625 spin_unlock(&xhci->lock); 626 usb_hcd_giveback_urb(hcd, urb, status); 627 xhci_urb_free_priv(xhci, urb_priv); 628 spin_lock(&xhci->lock); 629 xhci_dbg(xhci, "%s URB given back\n", adjective); 630 } 631 } 632 633 /* 634 * When we get a command completion for a Stop Endpoint Command, we need to 635 * unlink any cancelled TDs from the ring. There are two ways to do that: 636 * 637 * 1. If the HW was in the middle of processing the TD that needs to be 638 * cancelled, then we must move the ring's dequeue pointer past the last TRB 639 * in the TD with a Set Dequeue Pointer Command. 640 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 641 * bit cleared) so that the HW will skip over them. 642 */ 643 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 644 union xhci_trb *trb, struct xhci_event_cmd *event) 645 { 646 unsigned int slot_id; 647 unsigned int ep_index; 648 struct xhci_virt_device *virt_dev; 649 struct xhci_ring *ep_ring; 650 struct xhci_virt_ep *ep; 651 struct list_head *entry; 652 struct xhci_td *cur_td = NULL; 653 struct xhci_td *last_unlinked_td; 654 655 struct xhci_dequeue_state deq_state; 656 657 if (unlikely(TRB_TO_SUSPEND_PORT( 658 xhci->cmd_ring->dequeue->generic.field[3]))) { 659 slot_id = TRB_TO_SLOT_ID( 660 xhci->cmd_ring->dequeue->generic.field[3]); 661 virt_dev = xhci->devs[slot_id]; 662 if (virt_dev) 663 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 664 event); 665 else 666 xhci_warn(xhci, "Stop endpoint command " 667 "completion for disabled slot %u\n", 668 slot_id); 669 return; 670 } 671 672 memset(&deq_state, 0, sizeof(deq_state)); 673 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); 674 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); 675 ep = &xhci->devs[slot_id]->eps[ep_index]; 676 677 if (list_empty(&ep->cancelled_td_list)) { 678 xhci_stop_watchdog_timer_in_irq(xhci, ep); 679 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 680 return; 681 } 682 683 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 684 * We have the xHCI lock, so nothing can modify this list until we drop 685 * it. We're also in the event handler, so we can't get re-interrupted 686 * if another Stop Endpoint command completes 687 */ 688 list_for_each(entry, &ep->cancelled_td_list) { 689 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 690 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", 691 cur_td->first_trb, 692 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); 693 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 694 if (!ep_ring) { 695 /* This shouldn't happen unless a driver is mucking 696 * with the stream ID after submission. This will 697 * leave the TD on the hardware ring, and the hardware 698 * will try to execute it, and may access a buffer 699 * that has already been freed. In the best case, the 700 * hardware will execute it, and the event handler will 701 * ignore the completion event for that TD, since it was 702 * removed from the td_list for that endpoint. In 703 * short, don't muck with the stream ID after 704 * submission. 705 */ 706 xhci_warn(xhci, "WARN Cancelled URB %p " 707 "has invalid stream ID %u.\n", 708 cur_td->urb, 709 cur_td->urb->stream_id); 710 goto remove_finished_td; 711 } 712 /* 713 * If we stopped on the TD we need to cancel, then we have to 714 * move the xHC endpoint ring dequeue pointer past this TD. 715 */ 716 if (cur_td == ep->stopped_td) 717 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 718 cur_td->urb->stream_id, 719 cur_td, &deq_state); 720 else 721 td_to_noop(xhci, ep_ring, cur_td); 722 remove_finished_td: 723 /* 724 * The event handler won't see a completion for this TD anymore, 725 * so remove it from the endpoint ring's TD list. Keep it in 726 * the cancelled TD list for URB completion later. 727 */ 728 list_del(&cur_td->td_list); 729 } 730 last_unlinked_td = cur_td; 731 xhci_stop_watchdog_timer_in_irq(xhci, ep); 732 733 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 734 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 735 xhci_queue_new_dequeue_state(xhci, 736 slot_id, ep_index, 737 ep->stopped_td->urb->stream_id, 738 &deq_state); 739 xhci_ring_cmd_db(xhci); 740 } else { 741 /* Otherwise ring the doorbell(s) to restart queued transfers */ 742 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 743 } 744 ep->stopped_td = NULL; 745 ep->stopped_trb = NULL; 746 747 /* 748 * Drop the lock and complete the URBs in the cancelled TD list. 749 * New TDs to be cancelled might be added to the end of the list before 750 * we can complete all the URBs for the TDs we already unlinked. 751 * So stop when we've completed the URB for the last TD we unlinked. 752 */ 753 do { 754 cur_td = list_entry(ep->cancelled_td_list.next, 755 struct xhci_td, cancelled_td_list); 756 list_del(&cur_td->cancelled_td_list); 757 758 /* Clean up the cancelled URB */ 759 /* Doesn't matter what we pass for status, since the core will 760 * just overwrite it (because the URB has been unlinked). 761 */ 762 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 763 764 /* Stop processing the cancelled list if the watchdog timer is 765 * running. 766 */ 767 if (xhci->xhc_state & XHCI_STATE_DYING) 768 return; 769 } while (cur_td != last_unlinked_td); 770 771 /* Return to the event handler with xhci->lock re-acquired */ 772 } 773 774 /* Watchdog timer function for when a stop endpoint command fails to complete. 775 * In this case, we assume the host controller is broken or dying or dead. The 776 * host may still be completing some other events, so we have to be careful to 777 * let the event ring handler and the URB dequeueing/enqueueing functions know 778 * through xhci->state. 779 * 780 * The timer may also fire if the host takes a very long time to respond to the 781 * command, and the stop endpoint command completion handler cannot delete the 782 * timer before the timer function is called. Another endpoint cancellation may 783 * sneak in before the timer function can grab the lock, and that may queue 784 * another stop endpoint command and add the timer back. So we cannot use a 785 * simple flag to say whether there is a pending stop endpoint command for a 786 * particular endpoint. 787 * 788 * Instead we use a combination of that flag and a counter for the number of 789 * pending stop endpoint commands. If the timer is the tail end of the last 790 * stop endpoint command, and the endpoint's command is still pending, we assume 791 * the host is dying. 792 */ 793 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 794 { 795 struct xhci_hcd *xhci; 796 struct xhci_virt_ep *ep; 797 struct xhci_virt_ep *temp_ep; 798 struct xhci_ring *ring; 799 struct xhci_td *cur_td; 800 int ret, i, j; 801 802 ep = (struct xhci_virt_ep *) arg; 803 xhci = ep->xhci; 804 805 spin_lock(&xhci->lock); 806 807 ep->stop_cmds_pending--; 808 if (xhci->xhc_state & XHCI_STATE_DYING) { 809 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 810 "xHCI as DYING, exiting.\n"); 811 spin_unlock(&xhci->lock); 812 return; 813 } 814 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 815 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 816 "exiting.\n"); 817 spin_unlock(&xhci->lock); 818 return; 819 } 820 821 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 822 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 823 /* Oops, HC is dead or dying or at least not responding to the stop 824 * endpoint command. 825 */ 826 xhci->xhc_state |= XHCI_STATE_DYING; 827 /* Disable interrupts from the host controller and start halting it */ 828 xhci_quiesce(xhci); 829 spin_unlock(&xhci->lock); 830 831 ret = xhci_halt(xhci); 832 833 spin_lock(&xhci->lock); 834 if (ret < 0) { 835 /* This is bad; the host is not responding to commands and it's 836 * not allowing itself to be halted. At least interrupts are 837 * disabled. If we call usb_hc_died(), it will attempt to 838 * disconnect all device drivers under this host. Those 839 * disconnect() methods will wait for all URBs to be unlinked, 840 * so we must complete them. 841 */ 842 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 843 xhci_warn(xhci, "Completing active URBs anyway.\n"); 844 /* We could turn all TDs on the rings to no-ops. This won't 845 * help if the host has cached part of the ring, and is slow if 846 * we want to preserve the cycle bit. Skip it and hope the host 847 * doesn't touch the memory. 848 */ 849 } 850 for (i = 0; i < MAX_HC_SLOTS; i++) { 851 if (!xhci->devs[i]) 852 continue; 853 for (j = 0; j < 31; j++) { 854 temp_ep = &xhci->devs[i]->eps[j]; 855 ring = temp_ep->ring; 856 if (!ring) 857 continue; 858 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 859 "ep index %u\n", i, j); 860 while (!list_empty(&ring->td_list)) { 861 cur_td = list_first_entry(&ring->td_list, 862 struct xhci_td, 863 td_list); 864 list_del(&cur_td->td_list); 865 if (!list_empty(&cur_td->cancelled_td_list)) 866 list_del(&cur_td->cancelled_td_list); 867 xhci_giveback_urb_in_irq(xhci, cur_td, 868 -ESHUTDOWN, "killed"); 869 } 870 while (!list_empty(&temp_ep->cancelled_td_list)) { 871 cur_td = list_first_entry( 872 &temp_ep->cancelled_td_list, 873 struct xhci_td, 874 cancelled_td_list); 875 list_del(&cur_td->cancelled_td_list); 876 xhci_giveback_urb_in_irq(xhci, cur_td, 877 -ESHUTDOWN, "killed"); 878 } 879 } 880 } 881 spin_unlock(&xhci->lock); 882 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 883 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 884 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 885 } 886 887 /* 888 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 889 * we need to clear the set deq pending flag in the endpoint ring state, so that 890 * the TD queueing code can ring the doorbell again. We also need to ring the 891 * endpoint doorbell to restart the ring, but only if there aren't more 892 * cancellations pending. 893 */ 894 static void handle_set_deq_completion(struct xhci_hcd *xhci, 895 struct xhci_event_cmd *event, 896 union xhci_trb *trb) 897 { 898 unsigned int slot_id; 899 unsigned int ep_index; 900 unsigned int stream_id; 901 struct xhci_ring *ep_ring; 902 struct xhci_virt_device *dev; 903 struct xhci_ep_ctx *ep_ctx; 904 struct xhci_slot_ctx *slot_ctx; 905 906 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); 907 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); 908 stream_id = TRB_TO_STREAM_ID(trb->generic.field[2]); 909 dev = xhci->devs[slot_id]; 910 911 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 912 if (!ep_ring) { 913 xhci_warn(xhci, "WARN Set TR deq ptr command for " 914 "freed stream ID %u\n", 915 stream_id); 916 /* XXX: Harmless??? */ 917 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 918 return; 919 } 920 921 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 922 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 923 924 if (GET_COMP_CODE(event->status) != COMP_SUCCESS) { 925 unsigned int ep_state; 926 unsigned int slot_state; 927 928 switch (GET_COMP_CODE(event->status)) { 929 case COMP_TRB_ERR: 930 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 931 "of stream ID configuration\n"); 932 break; 933 case COMP_CTX_STATE: 934 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 935 "to incorrect slot or ep state.\n"); 936 ep_state = ep_ctx->ep_info; 937 ep_state &= EP_STATE_MASK; 938 slot_state = slot_ctx->dev_state; 939 slot_state = GET_SLOT_STATE(slot_state); 940 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 941 slot_state, ep_state); 942 break; 943 case COMP_EBADSLT: 944 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 945 "slot %u was not enabled.\n", slot_id); 946 break; 947 default: 948 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 949 "completion code of %u.\n", 950 GET_COMP_CODE(event->status)); 951 break; 952 } 953 /* OK what do we do now? The endpoint state is hosed, and we 954 * should never get to this point if the synchronization between 955 * queueing, and endpoint state are correct. This might happen 956 * if the device gets disconnected after we've finished 957 * cancelling URBs, which might not be an error... 958 */ 959 } else { 960 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 961 ep_ctx->deq); 962 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 963 dev->eps[ep_index].queued_deq_ptr) == 964 (ep_ctx->deq & ~(EP_CTX_CYCLE_MASK))) { 965 /* Update the ring's dequeue segment and dequeue pointer 966 * to reflect the new position. 967 */ 968 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; 969 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; 970 } else { 971 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 972 "Ptr command & xHCI internal state.\n"); 973 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 974 dev->eps[ep_index].queued_deq_seg, 975 dev->eps[ep_index].queued_deq_ptr); 976 } 977 } 978 979 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 980 dev->eps[ep_index].queued_deq_seg = NULL; 981 dev->eps[ep_index].queued_deq_ptr = NULL; 982 /* Restart any rings with pending URBs */ 983 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 984 } 985 986 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 987 struct xhci_event_cmd *event, 988 union xhci_trb *trb) 989 { 990 int slot_id; 991 unsigned int ep_index; 992 993 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); 994 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); 995 /* This command will only fail if the endpoint wasn't halted, 996 * but we don't care. 997 */ 998 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 999 (unsigned int) GET_COMP_CODE(event->status)); 1000 1001 /* HW with the reset endpoint quirk needs to have a configure endpoint 1002 * command complete before the endpoint can be used. Queue that here 1003 * because the HW can't handle two commands being queued in a row. 1004 */ 1005 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1006 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1007 xhci_queue_configure_endpoint(xhci, 1008 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1009 false); 1010 xhci_ring_cmd_db(xhci); 1011 } else { 1012 /* Clear our internal halted state and restart the ring(s) */ 1013 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1014 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1015 } 1016 } 1017 1018 /* Check to see if a command in the device's command queue matches this one. 1019 * Signal the completion or free the command, and return 1. Return 0 if the 1020 * completed command isn't at the head of the command list. 1021 */ 1022 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1023 struct xhci_virt_device *virt_dev, 1024 struct xhci_event_cmd *event) 1025 { 1026 struct xhci_command *command; 1027 1028 if (list_empty(&virt_dev->cmd_list)) 1029 return 0; 1030 1031 command = list_entry(virt_dev->cmd_list.next, 1032 struct xhci_command, cmd_list); 1033 if (xhci->cmd_ring->dequeue != command->command_trb) 1034 return 0; 1035 1036 command->status = 1037 GET_COMP_CODE(event->status); 1038 list_del(&command->cmd_list); 1039 if (command->completion) 1040 complete(command->completion); 1041 else 1042 xhci_free_command(xhci, command); 1043 return 1; 1044 } 1045 1046 static void handle_cmd_completion(struct xhci_hcd *xhci, 1047 struct xhci_event_cmd *event) 1048 { 1049 int slot_id = TRB_TO_SLOT_ID(event->flags); 1050 u64 cmd_dma; 1051 dma_addr_t cmd_dequeue_dma; 1052 struct xhci_input_control_ctx *ctrl_ctx; 1053 struct xhci_virt_device *virt_dev; 1054 unsigned int ep_index; 1055 struct xhci_ring *ep_ring; 1056 unsigned int ep_state; 1057 1058 cmd_dma = event->cmd_trb; 1059 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1060 xhci->cmd_ring->dequeue); 1061 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1062 if (cmd_dequeue_dma == 0) { 1063 xhci->error_bitmask |= 1 << 4; 1064 return; 1065 } 1066 /* Does the DMA address match our internal dequeue pointer address? */ 1067 if (cmd_dma != (u64) cmd_dequeue_dma) { 1068 xhci->error_bitmask |= 1 << 5; 1069 return; 1070 } 1071 switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) { 1072 case TRB_TYPE(TRB_ENABLE_SLOT): 1073 if (GET_COMP_CODE(event->status) == COMP_SUCCESS) 1074 xhci->slot_id = slot_id; 1075 else 1076 xhci->slot_id = 0; 1077 complete(&xhci->addr_dev); 1078 break; 1079 case TRB_TYPE(TRB_DISABLE_SLOT): 1080 if (xhci->devs[slot_id]) 1081 xhci_free_virt_device(xhci, slot_id); 1082 break; 1083 case TRB_TYPE(TRB_CONFIG_EP): 1084 virt_dev = xhci->devs[slot_id]; 1085 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1086 break; 1087 /* 1088 * Configure endpoint commands can come from the USB core 1089 * configuration or alt setting changes, or because the HW 1090 * needed an extra configure endpoint command after a reset 1091 * endpoint command or streams were being configured. 1092 * If the command was for a halted endpoint, the xHCI driver 1093 * is not waiting on the configure endpoint command. 1094 */ 1095 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1096 virt_dev->in_ctx); 1097 /* Input ctx add_flags are the endpoint index plus one */ 1098 ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1; 1099 /* A usb_set_interface() call directly after clearing a halted 1100 * condition may race on this quirky hardware. Not worth 1101 * worrying about, since this is prototype hardware. Not sure 1102 * if this will work for streams, but streams support was 1103 * untested on this prototype. 1104 */ 1105 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1106 ep_index != (unsigned int) -1 && 1107 ctrl_ctx->add_flags - SLOT_FLAG == 1108 ctrl_ctx->drop_flags) { 1109 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1110 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1111 if (!(ep_state & EP_HALTED)) 1112 goto bandwidth_change; 1113 xhci_dbg(xhci, "Completed config ep cmd - " 1114 "last ep index = %d, state = %d\n", 1115 ep_index, ep_state); 1116 /* Clear internal halted state and restart ring(s) */ 1117 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1118 ~EP_HALTED; 1119 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1120 break; 1121 } 1122 bandwidth_change: 1123 xhci_dbg(xhci, "Completed config ep cmd\n"); 1124 xhci->devs[slot_id]->cmd_status = 1125 GET_COMP_CODE(event->status); 1126 complete(&xhci->devs[slot_id]->cmd_completion); 1127 break; 1128 case TRB_TYPE(TRB_EVAL_CONTEXT): 1129 virt_dev = xhci->devs[slot_id]; 1130 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1131 break; 1132 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); 1133 complete(&xhci->devs[slot_id]->cmd_completion); 1134 break; 1135 case TRB_TYPE(TRB_ADDR_DEV): 1136 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); 1137 complete(&xhci->addr_dev); 1138 break; 1139 case TRB_TYPE(TRB_STOP_RING): 1140 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1141 break; 1142 case TRB_TYPE(TRB_SET_DEQ): 1143 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1144 break; 1145 case TRB_TYPE(TRB_CMD_NOOP): 1146 break; 1147 case TRB_TYPE(TRB_RESET_EP): 1148 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1149 break; 1150 case TRB_TYPE(TRB_RESET_DEV): 1151 xhci_dbg(xhci, "Completed reset device command.\n"); 1152 slot_id = TRB_TO_SLOT_ID( 1153 xhci->cmd_ring->dequeue->generic.field[3]); 1154 virt_dev = xhci->devs[slot_id]; 1155 if (virt_dev) 1156 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1157 else 1158 xhci_warn(xhci, "Reset device command completion " 1159 "for disabled slot %u\n", slot_id); 1160 break; 1161 case TRB_TYPE(TRB_NEC_GET_FW): 1162 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1163 xhci->error_bitmask |= 1 << 6; 1164 break; 1165 } 1166 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1167 NEC_FW_MAJOR(event->status), 1168 NEC_FW_MINOR(event->status)); 1169 break; 1170 default: 1171 /* Skip over unknown commands on the event ring */ 1172 xhci->error_bitmask |= 1 << 6; 1173 break; 1174 } 1175 inc_deq(xhci, xhci->cmd_ring, false); 1176 } 1177 1178 static void handle_vendor_event(struct xhci_hcd *xhci, 1179 union xhci_trb *event) 1180 { 1181 u32 trb_type; 1182 1183 trb_type = TRB_FIELD_TO_TYPE(event->generic.field[3]); 1184 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1185 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1186 handle_cmd_completion(xhci, &event->event_cmd); 1187 } 1188 1189 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1190 * port registers -- USB 3.0 and USB 2.0). 1191 * 1192 * Returns a zero-based port number, which is suitable for indexing into each of 1193 * the split roothubs' port arrays and bus state arrays. 1194 */ 1195 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1196 struct xhci_hcd *xhci, u32 port_id) 1197 { 1198 unsigned int i; 1199 unsigned int num_similar_speed_ports = 0; 1200 1201 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1202 * and usb2_ports are 0-based indexes. Count the number of similar 1203 * speed ports, up to 1 port before this port. 1204 */ 1205 for (i = 0; i < (port_id - 1); i++) { 1206 u8 port_speed = xhci->port_array[i]; 1207 1208 /* 1209 * Skip ports that don't have known speeds, or have duplicate 1210 * Extended Capabilities port speed entries. 1211 */ 1212 if (port_speed == 0 || port_speed == -1) 1213 continue; 1214 1215 /* 1216 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1217 * 1.1 ports are under the USB 2.0 hub. If the port speed 1218 * matches the device speed, it's a similar speed port. 1219 */ 1220 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1221 num_similar_speed_ports++; 1222 } 1223 return num_similar_speed_ports; 1224 } 1225 1226 static void handle_port_status(struct xhci_hcd *xhci, 1227 union xhci_trb *event) 1228 { 1229 struct usb_hcd *hcd; 1230 u32 port_id; 1231 u32 temp, temp1; 1232 int max_ports; 1233 int slot_id; 1234 unsigned int faked_port_index; 1235 u8 major_revision; 1236 struct xhci_bus_state *bus_state; 1237 u32 __iomem **port_array; 1238 1239 /* Port status change events always have a successful completion code */ 1240 if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) { 1241 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1242 xhci->error_bitmask |= 1 << 8; 1243 } 1244 port_id = GET_PORT_ID(event->generic.field[0]); 1245 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1246 1247 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1248 if ((port_id <= 0) || (port_id > max_ports)) { 1249 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1250 goto cleanup; 1251 } 1252 1253 /* Figure out which usb_hcd this port is attached to: 1254 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1255 */ 1256 major_revision = xhci->port_array[port_id - 1]; 1257 if (major_revision == 0) { 1258 xhci_warn(xhci, "Event for port %u not in " 1259 "Extended Capabilities, ignoring.\n", 1260 port_id); 1261 goto cleanup; 1262 } 1263 if (major_revision == (u8) -1) { 1264 xhci_warn(xhci, "Event for port %u duplicated in" 1265 "Extended Capabilities, ignoring.\n", 1266 port_id); 1267 goto cleanup; 1268 } 1269 1270 /* 1271 * Hardware port IDs reported by a Port Status Change Event include USB 1272 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1273 * resume event, but we first need to translate the hardware port ID 1274 * into the index into the ports on the correct split roothub, and the 1275 * correct bus_state structure. 1276 */ 1277 /* Find the right roothub. */ 1278 hcd = xhci_to_hcd(xhci); 1279 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1280 hcd = xhci->shared_hcd; 1281 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1282 if (hcd->speed == HCD_USB3) 1283 port_array = xhci->usb3_ports; 1284 else 1285 port_array = xhci->usb2_ports; 1286 /* Find the faked port hub number */ 1287 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1288 port_id); 1289 1290 temp = xhci_readl(xhci, port_array[faked_port_index]); 1291 if (hcd->state == HC_STATE_SUSPENDED) { 1292 xhci_dbg(xhci, "resume root hub\n"); 1293 usb_hcd_resume_root_hub(hcd); 1294 } 1295 1296 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1297 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1298 1299 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1300 if (!(temp1 & CMD_RUN)) { 1301 xhci_warn(xhci, "xHC is not running.\n"); 1302 goto cleanup; 1303 } 1304 1305 if (DEV_SUPERSPEED(temp)) { 1306 xhci_dbg(xhci, "resume SS port %d\n", port_id); 1307 temp = xhci_port_state_to_neutral(temp); 1308 temp &= ~PORT_PLS_MASK; 1309 temp |= PORT_LINK_STROBE | XDEV_U0; 1310 xhci_writel(xhci, temp, port_array[faked_port_index]); 1311 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1312 faked_port_index); 1313 if (!slot_id) { 1314 xhci_dbg(xhci, "slot_id is zero\n"); 1315 goto cleanup; 1316 } 1317 xhci_ring_device(xhci, slot_id); 1318 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1319 /* Clear PORT_PLC */ 1320 temp = xhci_readl(xhci, port_array[faked_port_index]); 1321 temp = xhci_port_state_to_neutral(temp); 1322 temp |= PORT_PLC; 1323 xhci_writel(xhci, temp, port_array[faked_port_index]); 1324 } else { 1325 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1326 bus_state->resume_done[faked_port_index] = jiffies + 1327 msecs_to_jiffies(20); 1328 mod_timer(&hcd->rh_timer, 1329 bus_state->resume_done[faked_port_index]); 1330 /* Do the rest in GetPortStatus */ 1331 } 1332 } 1333 1334 cleanup: 1335 /* Update event ring dequeue pointer before dropping the lock */ 1336 inc_deq(xhci, xhci->event_ring, true); 1337 1338 spin_unlock(&xhci->lock); 1339 /* Pass this up to the core */ 1340 usb_hcd_poll_rh_status(hcd); 1341 spin_lock(&xhci->lock); 1342 } 1343 1344 /* 1345 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1346 * at end_trb, which may be in another segment. If the suspect DMA address is a 1347 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1348 * returns 0. 1349 */ 1350 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1351 union xhci_trb *start_trb, 1352 union xhci_trb *end_trb, 1353 dma_addr_t suspect_dma) 1354 { 1355 dma_addr_t start_dma; 1356 dma_addr_t end_seg_dma; 1357 dma_addr_t end_trb_dma; 1358 struct xhci_segment *cur_seg; 1359 1360 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1361 cur_seg = start_seg; 1362 1363 do { 1364 if (start_dma == 0) 1365 return NULL; 1366 /* We may get an event for a Link TRB in the middle of a TD */ 1367 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1368 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1369 /* If the end TRB isn't in this segment, this is set to 0 */ 1370 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1371 1372 if (end_trb_dma > 0) { 1373 /* The end TRB is in this segment, so suspect should be here */ 1374 if (start_dma <= end_trb_dma) { 1375 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1376 return cur_seg; 1377 } else { 1378 /* Case for one segment with 1379 * a TD wrapped around to the top 1380 */ 1381 if ((suspect_dma >= start_dma && 1382 suspect_dma <= end_seg_dma) || 1383 (suspect_dma >= cur_seg->dma && 1384 suspect_dma <= end_trb_dma)) 1385 return cur_seg; 1386 } 1387 return NULL; 1388 } else { 1389 /* Might still be somewhere in this segment */ 1390 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1391 return cur_seg; 1392 } 1393 cur_seg = cur_seg->next; 1394 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1395 } while (cur_seg != start_seg); 1396 1397 return NULL; 1398 } 1399 1400 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1401 unsigned int slot_id, unsigned int ep_index, 1402 unsigned int stream_id, 1403 struct xhci_td *td, union xhci_trb *event_trb) 1404 { 1405 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1406 ep->ep_state |= EP_HALTED; 1407 ep->stopped_td = td; 1408 ep->stopped_trb = event_trb; 1409 ep->stopped_stream = stream_id; 1410 1411 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1412 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1413 1414 ep->stopped_td = NULL; 1415 ep->stopped_trb = NULL; 1416 ep->stopped_stream = 0; 1417 1418 xhci_ring_cmd_db(xhci); 1419 } 1420 1421 /* Check if an error has halted the endpoint ring. The class driver will 1422 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1423 * However, a babble and other errors also halt the endpoint ring, and the class 1424 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1425 * Ring Dequeue Pointer command manually. 1426 */ 1427 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1428 struct xhci_ep_ctx *ep_ctx, 1429 unsigned int trb_comp_code) 1430 { 1431 /* TRB completion codes that may require a manual halt cleanup */ 1432 if (trb_comp_code == COMP_TX_ERR || 1433 trb_comp_code == COMP_BABBLE || 1434 trb_comp_code == COMP_SPLIT_ERR) 1435 /* The 0.96 spec says a babbling control endpoint 1436 * is not halted. The 0.96 spec says it is. Some HW 1437 * claims to be 0.95 compliant, but it halts the control 1438 * endpoint anyway. Check if a babble halted the 1439 * endpoint. 1440 */ 1441 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED) 1442 return 1; 1443 1444 return 0; 1445 } 1446 1447 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1448 { 1449 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1450 /* Vendor defined "informational" completion code, 1451 * treat as not-an-error. 1452 */ 1453 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1454 trb_comp_code); 1455 xhci_dbg(xhci, "Treating code as success.\n"); 1456 return 1; 1457 } 1458 return 0; 1459 } 1460 1461 /* 1462 * Finish the td processing, remove the td from td list; 1463 * Return 1 if the urb can be given back. 1464 */ 1465 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1466 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1467 struct xhci_virt_ep *ep, int *status, bool skip) 1468 { 1469 struct xhci_virt_device *xdev; 1470 struct xhci_ring *ep_ring; 1471 unsigned int slot_id; 1472 int ep_index; 1473 struct urb *urb = NULL; 1474 struct xhci_ep_ctx *ep_ctx; 1475 int ret = 0; 1476 struct urb_priv *urb_priv; 1477 u32 trb_comp_code; 1478 1479 slot_id = TRB_TO_SLOT_ID(event->flags); 1480 xdev = xhci->devs[slot_id]; 1481 ep_index = TRB_TO_EP_ID(event->flags) - 1; 1482 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1483 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1484 trb_comp_code = GET_COMP_CODE(event->transfer_len); 1485 1486 if (skip) 1487 goto td_cleanup; 1488 1489 if (trb_comp_code == COMP_STOP_INVAL || 1490 trb_comp_code == COMP_STOP) { 1491 /* The Endpoint Stop Command completion will take care of any 1492 * stopped TDs. A stopped TD may be restarted, so don't update 1493 * the ring dequeue pointer or take this TD off any lists yet. 1494 */ 1495 ep->stopped_td = td; 1496 ep->stopped_trb = event_trb; 1497 return 0; 1498 } else { 1499 if (trb_comp_code == COMP_STALL) { 1500 /* The transfer is completed from the driver's 1501 * perspective, but we need to issue a set dequeue 1502 * command for this stalled endpoint to move the dequeue 1503 * pointer past the TD. We can't do that here because 1504 * the halt condition must be cleared first. Let the 1505 * USB class driver clear the stall later. 1506 */ 1507 ep->stopped_td = td; 1508 ep->stopped_trb = event_trb; 1509 ep->stopped_stream = ep_ring->stream_id; 1510 } else if (xhci_requires_manual_halt_cleanup(xhci, 1511 ep_ctx, trb_comp_code)) { 1512 /* Other types of errors halt the endpoint, but the 1513 * class driver doesn't call usb_reset_endpoint() unless 1514 * the error is -EPIPE. Clear the halted status in the 1515 * xHCI hardware manually. 1516 */ 1517 xhci_cleanup_halted_endpoint(xhci, 1518 slot_id, ep_index, ep_ring->stream_id, 1519 td, event_trb); 1520 } else { 1521 /* Update ring dequeue pointer */ 1522 while (ep_ring->dequeue != td->last_trb) 1523 inc_deq(xhci, ep_ring, false); 1524 inc_deq(xhci, ep_ring, false); 1525 } 1526 1527 td_cleanup: 1528 /* Clean up the endpoint's TD list */ 1529 urb = td->urb; 1530 urb_priv = urb->hcpriv; 1531 1532 /* Do one last check of the actual transfer length. 1533 * If the host controller said we transferred more data than 1534 * the buffer length, urb->actual_length will be a very big 1535 * number (since it's unsigned). Play it safe and say we didn't 1536 * transfer anything. 1537 */ 1538 if (urb->actual_length > urb->transfer_buffer_length) { 1539 xhci_warn(xhci, "URB transfer length is wrong, " 1540 "xHC issue? req. len = %u, " 1541 "act. len = %u\n", 1542 urb->transfer_buffer_length, 1543 urb->actual_length); 1544 urb->actual_length = 0; 1545 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1546 *status = -EREMOTEIO; 1547 else 1548 *status = 0; 1549 } 1550 list_del(&td->td_list); 1551 /* Was this TD slated to be cancelled but completed anyway? */ 1552 if (!list_empty(&td->cancelled_td_list)) 1553 list_del(&td->cancelled_td_list); 1554 1555 urb_priv->td_cnt++; 1556 /* Giveback the urb when all the tds are completed */ 1557 if (urb_priv->td_cnt == urb_priv->length) 1558 ret = 1; 1559 } 1560 1561 return ret; 1562 } 1563 1564 /* 1565 * Process control tds, update urb status and actual_length. 1566 */ 1567 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1568 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1569 struct xhci_virt_ep *ep, int *status) 1570 { 1571 struct xhci_virt_device *xdev; 1572 struct xhci_ring *ep_ring; 1573 unsigned int slot_id; 1574 int ep_index; 1575 struct xhci_ep_ctx *ep_ctx; 1576 u32 trb_comp_code; 1577 1578 slot_id = TRB_TO_SLOT_ID(event->flags); 1579 xdev = xhci->devs[slot_id]; 1580 ep_index = TRB_TO_EP_ID(event->flags) - 1; 1581 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1582 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1583 trb_comp_code = GET_COMP_CODE(event->transfer_len); 1584 1585 xhci_debug_trb(xhci, xhci->event_ring->dequeue); 1586 switch (trb_comp_code) { 1587 case COMP_SUCCESS: 1588 if (event_trb == ep_ring->dequeue) { 1589 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1590 "without IOC set??\n"); 1591 *status = -ESHUTDOWN; 1592 } else if (event_trb != td->last_trb) { 1593 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1594 "without IOC set??\n"); 1595 *status = -ESHUTDOWN; 1596 } else { 1597 xhci_dbg(xhci, "Successful control transfer!\n"); 1598 *status = 0; 1599 } 1600 break; 1601 case COMP_SHORT_TX: 1602 xhci_warn(xhci, "WARN: short transfer on control ep\n"); 1603 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1604 *status = -EREMOTEIO; 1605 else 1606 *status = 0; 1607 break; 1608 default: 1609 if (!xhci_requires_manual_halt_cleanup(xhci, 1610 ep_ctx, trb_comp_code)) 1611 break; 1612 xhci_dbg(xhci, "TRB error code %u, " 1613 "halted endpoint index = %u\n", 1614 trb_comp_code, ep_index); 1615 /* else fall through */ 1616 case COMP_STALL: 1617 /* Did we transfer part of the data (middle) phase? */ 1618 if (event_trb != ep_ring->dequeue && 1619 event_trb != td->last_trb) 1620 td->urb->actual_length = 1621 td->urb->transfer_buffer_length 1622 - TRB_LEN(event->transfer_len); 1623 else 1624 td->urb->actual_length = 0; 1625 1626 xhci_cleanup_halted_endpoint(xhci, 1627 slot_id, ep_index, 0, td, event_trb); 1628 return finish_td(xhci, td, event_trb, event, ep, status, true); 1629 } 1630 /* 1631 * Did we transfer any data, despite the errors that might have 1632 * happened? I.e. did we get past the setup stage? 1633 */ 1634 if (event_trb != ep_ring->dequeue) { 1635 /* The event was for the status stage */ 1636 if (event_trb == td->last_trb) { 1637 if (td->urb->actual_length != 0) { 1638 /* Don't overwrite a previously set error code 1639 */ 1640 if ((*status == -EINPROGRESS || *status == 0) && 1641 (td->urb->transfer_flags 1642 & URB_SHORT_NOT_OK)) 1643 /* Did we already see a short data 1644 * stage? */ 1645 *status = -EREMOTEIO; 1646 } else { 1647 td->urb->actual_length = 1648 td->urb->transfer_buffer_length; 1649 } 1650 } else { 1651 /* Maybe the event was for the data stage? */ 1652 if (trb_comp_code != COMP_STOP_INVAL) { 1653 /* We didn't stop on a link TRB in the middle */ 1654 td->urb->actual_length = 1655 td->urb->transfer_buffer_length - 1656 TRB_LEN(event->transfer_len); 1657 xhci_dbg(xhci, "Waiting for status " 1658 "stage event\n"); 1659 return 0; 1660 } 1661 } 1662 } 1663 1664 return finish_td(xhci, td, event_trb, event, ep, status, false); 1665 } 1666 1667 /* 1668 * Process isochronous tds, update urb packet status and actual_length. 1669 */ 1670 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1671 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1672 struct xhci_virt_ep *ep, int *status) 1673 { 1674 struct xhci_ring *ep_ring; 1675 struct urb_priv *urb_priv; 1676 int idx; 1677 int len = 0; 1678 int skip_td = 0; 1679 union xhci_trb *cur_trb; 1680 struct xhci_segment *cur_seg; 1681 u32 trb_comp_code; 1682 1683 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1684 trb_comp_code = GET_COMP_CODE(event->transfer_len); 1685 urb_priv = td->urb->hcpriv; 1686 idx = urb_priv->td_cnt; 1687 1688 if (ep->skip) { 1689 /* The transfer is partly done */ 1690 *status = -EXDEV; 1691 td->urb->iso_frame_desc[idx].status = -EXDEV; 1692 } else { 1693 /* handle completion code */ 1694 switch (trb_comp_code) { 1695 case COMP_SUCCESS: 1696 td->urb->iso_frame_desc[idx].status = 0; 1697 xhci_dbg(xhci, "Successful isoc transfer!\n"); 1698 break; 1699 case COMP_SHORT_TX: 1700 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1701 td->urb->iso_frame_desc[idx].status = 1702 -EREMOTEIO; 1703 else 1704 td->urb->iso_frame_desc[idx].status = 0; 1705 break; 1706 case COMP_BW_OVER: 1707 td->urb->iso_frame_desc[idx].status = -ECOMM; 1708 skip_td = 1; 1709 break; 1710 case COMP_BUFF_OVER: 1711 case COMP_BABBLE: 1712 td->urb->iso_frame_desc[idx].status = -EOVERFLOW; 1713 skip_td = 1; 1714 break; 1715 case COMP_STALL: 1716 td->urb->iso_frame_desc[idx].status = -EPROTO; 1717 skip_td = 1; 1718 break; 1719 case COMP_STOP: 1720 case COMP_STOP_INVAL: 1721 break; 1722 default: 1723 td->urb->iso_frame_desc[idx].status = -1; 1724 break; 1725 } 1726 } 1727 1728 /* calc actual length */ 1729 if (ep->skip) { 1730 td->urb->iso_frame_desc[idx].actual_length = 0; 1731 /* Update ring dequeue pointer */ 1732 while (ep_ring->dequeue != td->last_trb) 1733 inc_deq(xhci, ep_ring, false); 1734 inc_deq(xhci, ep_ring, false); 1735 return finish_td(xhci, td, event_trb, event, ep, status, true); 1736 } 1737 1738 if (trb_comp_code == COMP_SUCCESS || skip_td == 1) { 1739 td->urb->iso_frame_desc[idx].actual_length = 1740 td->urb->iso_frame_desc[idx].length; 1741 td->urb->actual_length += 1742 td->urb->iso_frame_desc[idx].length; 1743 } else { 1744 for (cur_trb = ep_ring->dequeue, 1745 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1746 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1747 if ((cur_trb->generic.field[3] & 1748 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && 1749 (cur_trb->generic.field[3] & 1750 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) 1751 len += 1752 TRB_LEN(cur_trb->generic.field[2]); 1753 } 1754 len += TRB_LEN(cur_trb->generic.field[2]) - 1755 TRB_LEN(event->transfer_len); 1756 1757 if (trb_comp_code != COMP_STOP_INVAL) { 1758 td->urb->iso_frame_desc[idx].actual_length = len; 1759 td->urb->actual_length += len; 1760 } 1761 } 1762 1763 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS) 1764 *status = 0; 1765 1766 return finish_td(xhci, td, event_trb, event, ep, status, false); 1767 } 1768 1769 /* 1770 * Process bulk and interrupt tds, update urb status and actual_length. 1771 */ 1772 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1773 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1774 struct xhci_virt_ep *ep, int *status) 1775 { 1776 struct xhci_ring *ep_ring; 1777 union xhci_trb *cur_trb; 1778 struct xhci_segment *cur_seg; 1779 u32 trb_comp_code; 1780 1781 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1782 trb_comp_code = GET_COMP_CODE(event->transfer_len); 1783 1784 switch (trb_comp_code) { 1785 case COMP_SUCCESS: 1786 /* Double check that the HW transferred everything. */ 1787 if (event_trb != td->last_trb) { 1788 xhci_warn(xhci, "WARN Successful completion " 1789 "on short TX\n"); 1790 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1791 *status = -EREMOTEIO; 1792 else 1793 *status = 0; 1794 } else { 1795 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc)) 1796 xhci_dbg(xhci, "Successful bulk " 1797 "transfer!\n"); 1798 else 1799 xhci_dbg(xhci, "Successful interrupt " 1800 "transfer!\n"); 1801 *status = 0; 1802 } 1803 break; 1804 case COMP_SHORT_TX: 1805 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1806 *status = -EREMOTEIO; 1807 else 1808 *status = 0; 1809 break; 1810 default: 1811 /* Others already handled above */ 1812 break; 1813 } 1814 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1815 "%d bytes untransferred\n", 1816 td->urb->ep->desc.bEndpointAddress, 1817 td->urb->transfer_buffer_length, 1818 TRB_LEN(event->transfer_len)); 1819 /* Fast path - was this the last TRB in the TD for this URB? */ 1820 if (event_trb == td->last_trb) { 1821 if (TRB_LEN(event->transfer_len) != 0) { 1822 td->urb->actual_length = 1823 td->urb->transfer_buffer_length - 1824 TRB_LEN(event->transfer_len); 1825 if (td->urb->transfer_buffer_length < 1826 td->urb->actual_length) { 1827 xhci_warn(xhci, "HC gave bad length " 1828 "of %d bytes left\n", 1829 TRB_LEN(event->transfer_len)); 1830 td->urb->actual_length = 0; 1831 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1832 *status = -EREMOTEIO; 1833 else 1834 *status = 0; 1835 } 1836 /* Don't overwrite a previously set error code */ 1837 if (*status == -EINPROGRESS) { 1838 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1839 *status = -EREMOTEIO; 1840 else 1841 *status = 0; 1842 } 1843 } else { 1844 td->urb->actual_length = 1845 td->urb->transfer_buffer_length; 1846 /* Ignore a short packet completion if the 1847 * untransferred length was zero. 1848 */ 1849 if (*status == -EREMOTEIO) 1850 *status = 0; 1851 } 1852 } else { 1853 /* Slow path - walk the list, starting from the dequeue 1854 * pointer, to get the actual length transferred. 1855 */ 1856 td->urb->actual_length = 0; 1857 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1858 cur_trb != event_trb; 1859 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1860 if ((cur_trb->generic.field[3] & 1861 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && 1862 (cur_trb->generic.field[3] & 1863 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) 1864 td->urb->actual_length += 1865 TRB_LEN(cur_trb->generic.field[2]); 1866 } 1867 /* If the ring didn't stop on a Link or No-op TRB, add 1868 * in the actual bytes transferred from the Normal TRB 1869 */ 1870 if (trb_comp_code != COMP_STOP_INVAL) 1871 td->urb->actual_length += 1872 TRB_LEN(cur_trb->generic.field[2]) - 1873 TRB_LEN(event->transfer_len); 1874 } 1875 1876 return finish_td(xhci, td, event_trb, event, ep, status, false); 1877 } 1878 1879 /* 1880 * If this function returns an error condition, it means it got a Transfer 1881 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1882 * At this point, the host controller is probably hosed and should be reset. 1883 */ 1884 static int handle_tx_event(struct xhci_hcd *xhci, 1885 struct xhci_transfer_event *event) 1886 { 1887 struct xhci_virt_device *xdev; 1888 struct xhci_virt_ep *ep; 1889 struct xhci_ring *ep_ring; 1890 unsigned int slot_id; 1891 int ep_index; 1892 struct xhci_td *td = NULL; 1893 dma_addr_t event_dma; 1894 struct xhci_segment *event_seg; 1895 union xhci_trb *event_trb; 1896 struct urb *urb = NULL; 1897 int status = -EINPROGRESS; 1898 struct urb_priv *urb_priv; 1899 struct xhci_ep_ctx *ep_ctx; 1900 u32 trb_comp_code; 1901 int ret = 0; 1902 1903 slot_id = TRB_TO_SLOT_ID(event->flags); 1904 xdev = xhci->devs[slot_id]; 1905 if (!xdev) { 1906 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 1907 return -ENODEV; 1908 } 1909 1910 /* Endpoint ID is 1 based, our index is zero based */ 1911 ep_index = TRB_TO_EP_ID(event->flags) - 1; 1912 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index); 1913 ep = &xdev->eps[ep_index]; 1914 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1915 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1916 if (!ep_ring || 1917 (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) { 1918 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 1919 "or incorrect stream ring\n"); 1920 return -ENODEV; 1921 } 1922 1923 event_dma = event->buffer; 1924 trb_comp_code = GET_COMP_CODE(event->transfer_len); 1925 /* Look for common error cases */ 1926 switch (trb_comp_code) { 1927 /* Skip codes that require special handling depending on 1928 * transfer type 1929 */ 1930 case COMP_SUCCESS: 1931 case COMP_SHORT_TX: 1932 break; 1933 case COMP_STOP: 1934 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 1935 break; 1936 case COMP_STOP_INVAL: 1937 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 1938 break; 1939 case COMP_STALL: 1940 xhci_warn(xhci, "WARN: Stalled endpoint\n"); 1941 ep->ep_state |= EP_HALTED; 1942 status = -EPIPE; 1943 break; 1944 case COMP_TRB_ERR: 1945 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 1946 status = -EILSEQ; 1947 break; 1948 case COMP_SPLIT_ERR: 1949 case COMP_TX_ERR: 1950 xhci_warn(xhci, "WARN: transfer error on endpoint\n"); 1951 status = -EPROTO; 1952 break; 1953 case COMP_BABBLE: 1954 xhci_warn(xhci, "WARN: babble error on endpoint\n"); 1955 status = -EOVERFLOW; 1956 break; 1957 case COMP_DB_ERR: 1958 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 1959 status = -ENOSR; 1960 break; 1961 case COMP_BW_OVER: 1962 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 1963 break; 1964 case COMP_BUFF_OVER: 1965 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 1966 break; 1967 case COMP_UNDERRUN: 1968 /* 1969 * When the Isoch ring is empty, the xHC will generate 1970 * a Ring Overrun Event for IN Isoch endpoint or Ring 1971 * Underrun Event for OUT Isoch endpoint. 1972 */ 1973 xhci_dbg(xhci, "underrun event on endpoint\n"); 1974 if (!list_empty(&ep_ring->td_list)) 1975 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 1976 "still with TDs queued?\n", 1977 TRB_TO_SLOT_ID(event->flags), ep_index); 1978 goto cleanup; 1979 case COMP_OVERRUN: 1980 xhci_dbg(xhci, "overrun event on endpoint\n"); 1981 if (!list_empty(&ep_ring->td_list)) 1982 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 1983 "still with TDs queued?\n", 1984 TRB_TO_SLOT_ID(event->flags), ep_index); 1985 goto cleanup; 1986 case COMP_MISSED_INT: 1987 /* 1988 * When encounter missed service error, one or more isoc tds 1989 * may be missed by xHC. 1990 * Set skip flag of the ep_ring; Complete the missed tds as 1991 * short transfer when process the ep_ring next time. 1992 */ 1993 ep->skip = true; 1994 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 1995 goto cleanup; 1996 default: 1997 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 1998 status = 0; 1999 break; 2000 } 2001 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2002 "busted\n"); 2003 goto cleanup; 2004 } 2005 2006 do { 2007 /* This TRB should be in the TD at the head of this ring's 2008 * TD list. 2009 */ 2010 if (list_empty(&ep_ring->td_list)) { 2011 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2012 "with no TDs queued?\n", 2013 TRB_TO_SLOT_ID(event->flags), ep_index); 2014 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2015 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); 2016 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2017 if (ep->skip) { 2018 ep->skip = false; 2019 xhci_dbg(xhci, "td_list is empty while skip " 2020 "flag set. Clear skip flag.\n"); 2021 } 2022 ret = 0; 2023 goto cleanup; 2024 } 2025 2026 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2027 /* Is this a TRB in the currently executing TD? */ 2028 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2029 td->last_trb, event_dma); 2030 if (event_seg && ep->skip) { 2031 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2032 ep->skip = false; 2033 } 2034 if (!event_seg && 2035 (!ep->skip || !usb_endpoint_xfer_isoc(&td->urb->ep->desc))) { 2036 /* HC is busted, give up! */ 2037 xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not " 2038 "part of current TD\n"); 2039 return -ESHUTDOWN; 2040 } 2041 2042 if (event_seg) { 2043 event_trb = &event_seg->trbs[(event_dma - 2044 event_seg->dma) / sizeof(*event_trb)]; 2045 /* 2046 * No-op TRB should not trigger interrupts. 2047 * If event_trb is a no-op TRB, it means the 2048 * corresponding TD has been cancelled. Just ignore 2049 * the TD. 2050 */ 2051 if ((event_trb->generic.field[3] & TRB_TYPE_BITMASK) 2052 == TRB_TYPE(TRB_TR_NOOP)) { 2053 xhci_dbg(xhci, "event_trb is a no-op TRB. " 2054 "Skip it\n"); 2055 goto cleanup; 2056 } 2057 } 2058 2059 /* Now update the urb's actual_length and give back to 2060 * the core 2061 */ 2062 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2063 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2064 &status); 2065 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2066 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2067 &status); 2068 else 2069 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2070 ep, &status); 2071 2072 cleanup: 2073 /* 2074 * Do not update event ring dequeue pointer if ep->skip is set. 2075 * Will roll back to continue process missed tds. 2076 */ 2077 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2078 inc_deq(xhci, xhci->event_ring, true); 2079 } 2080 2081 if (ret) { 2082 urb = td->urb; 2083 urb_priv = urb->hcpriv; 2084 /* Leave the TD around for the reset endpoint function 2085 * to use(but only if it's not a control endpoint, 2086 * since we already queued the Set TR dequeue pointer 2087 * command for stalled control endpoints). 2088 */ 2089 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2090 (trb_comp_code != COMP_STALL && 2091 trb_comp_code != COMP_BABBLE)) 2092 xhci_urb_free_priv(xhci, urb_priv); 2093 2094 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2095 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2096 "status = %d\n", 2097 urb, urb->actual_length, status); 2098 spin_unlock(&xhci->lock); 2099 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2100 spin_lock(&xhci->lock); 2101 } 2102 2103 /* 2104 * If ep->skip is set, it means there are missed tds on the 2105 * endpoint ring need to take care of. 2106 * Process them as short transfer until reach the td pointed by 2107 * the event. 2108 */ 2109 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2110 2111 return 0; 2112 } 2113 2114 /* 2115 * This function handles all OS-owned events on the event ring. It may drop 2116 * xhci->lock between event processing (e.g. to pass up port status changes). 2117 */ 2118 static void xhci_handle_event(struct xhci_hcd *xhci) 2119 { 2120 union xhci_trb *event; 2121 int update_ptrs = 1; 2122 int ret; 2123 2124 xhci_dbg(xhci, "In %s\n", __func__); 2125 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2126 xhci->error_bitmask |= 1 << 1; 2127 return; 2128 } 2129 2130 event = xhci->event_ring->dequeue; 2131 /* Does the HC or OS own the TRB? */ 2132 if ((event->event_cmd.flags & TRB_CYCLE) != 2133 xhci->event_ring->cycle_state) { 2134 xhci->error_bitmask |= 1 << 2; 2135 return; 2136 } 2137 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__); 2138 2139 /* FIXME: Handle more event types. */ 2140 switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) { 2141 case TRB_TYPE(TRB_COMPLETION): 2142 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__); 2143 handle_cmd_completion(xhci, &event->event_cmd); 2144 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__); 2145 break; 2146 case TRB_TYPE(TRB_PORT_STATUS): 2147 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__); 2148 handle_port_status(xhci, event); 2149 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__); 2150 update_ptrs = 0; 2151 break; 2152 case TRB_TYPE(TRB_TRANSFER): 2153 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__); 2154 ret = handle_tx_event(xhci, &event->trans_event); 2155 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__); 2156 if (ret < 0) 2157 xhci->error_bitmask |= 1 << 9; 2158 else 2159 update_ptrs = 0; 2160 break; 2161 default: 2162 if ((event->event_cmd.flags & TRB_TYPE_BITMASK) >= TRB_TYPE(48)) 2163 handle_vendor_event(xhci, event); 2164 else 2165 xhci->error_bitmask |= 1 << 3; 2166 } 2167 /* Any of the above functions may drop and re-acquire the lock, so check 2168 * to make sure a watchdog timer didn't mark the host as non-responsive. 2169 */ 2170 if (xhci->xhc_state & XHCI_STATE_DYING) { 2171 xhci_dbg(xhci, "xHCI host dying, returning from " 2172 "event handler.\n"); 2173 return; 2174 } 2175 2176 if (update_ptrs) 2177 /* Update SW event ring dequeue pointer */ 2178 inc_deq(xhci, xhci->event_ring, true); 2179 2180 /* Are there more items on the event ring? */ 2181 xhci_handle_event(xhci); 2182 } 2183 2184 /* 2185 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2186 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2187 * indicators of an event TRB error, but we check the status *first* to be safe. 2188 */ 2189 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2190 { 2191 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2192 u32 status; 2193 union xhci_trb *trb; 2194 u64 temp_64; 2195 union xhci_trb *event_ring_deq; 2196 dma_addr_t deq; 2197 2198 spin_lock(&xhci->lock); 2199 trb = xhci->event_ring->dequeue; 2200 /* Check if the xHC generated the interrupt, or the irq is shared */ 2201 status = xhci_readl(xhci, &xhci->op_regs->status); 2202 if (status == 0xffffffff) 2203 goto hw_died; 2204 2205 if (!(status & STS_EINT)) { 2206 spin_unlock(&xhci->lock); 2207 return IRQ_NONE; 2208 } 2209 xhci_dbg(xhci, "op reg status = %08x\n", status); 2210 xhci_dbg(xhci, "Event ring dequeue ptr:\n"); 2211 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n", 2212 (unsigned long long) 2213 xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb), 2214 lower_32_bits(trb->link.segment_ptr), 2215 upper_32_bits(trb->link.segment_ptr), 2216 (unsigned int) trb->link.intr_target, 2217 (unsigned int) trb->link.control); 2218 2219 if (status & STS_FATAL) { 2220 xhci_warn(xhci, "WARNING: Host System Error\n"); 2221 xhci_halt(xhci); 2222 hw_died: 2223 spin_unlock(&xhci->lock); 2224 return -ESHUTDOWN; 2225 } 2226 2227 /* 2228 * Clear the op reg interrupt status first, 2229 * so we can receive interrupts from other MSI-X interrupters. 2230 * Write 1 to clear the interrupt status. 2231 */ 2232 status |= STS_EINT; 2233 xhci_writel(xhci, status, &xhci->op_regs->status); 2234 /* FIXME when MSI-X is supported and there are multiple vectors */ 2235 /* Clear the MSI-X event interrupt status */ 2236 2237 if (hcd->irq != -1) { 2238 u32 irq_pending; 2239 /* Acknowledge the PCI interrupt */ 2240 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2241 irq_pending |= 0x3; 2242 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2243 } 2244 2245 if (xhci->xhc_state & XHCI_STATE_DYING) { 2246 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2247 "Shouldn't IRQs be disabled?\n"); 2248 /* Clear the event handler busy flag (RW1C); 2249 * the event ring should be empty. 2250 */ 2251 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2252 xhci_write_64(xhci, temp_64 | ERST_EHB, 2253 &xhci->ir_set->erst_dequeue); 2254 spin_unlock(&xhci->lock); 2255 2256 return IRQ_HANDLED; 2257 } 2258 2259 event_ring_deq = xhci->event_ring->dequeue; 2260 /* FIXME this should be a delayed service routine 2261 * that clears the EHB. 2262 */ 2263 xhci_handle_event(xhci); 2264 2265 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2266 /* If necessary, update the HW's version of the event ring deq ptr. */ 2267 if (event_ring_deq != xhci->event_ring->dequeue) { 2268 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2269 xhci->event_ring->dequeue); 2270 if (deq == 0) 2271 xhci_warn(xhci, "WARN something wrong with SW event " 2272 "ring dequeue ptr.\n"); 2273 /* Update HC event ring dequeue pointer */ 2274 temp_64 &= ERST_PTR_MASK; 2275 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2276 } 2277 2278 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2279 temp_64 |= ERST_EHB; 2280 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2281 2282 spin_unlock(&xhci->lock); 2283 2284 return IRQ_HANDLED; 2285 } 2286 2287 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2288 { 2289 irqreturn_t ret; 2290 struct xhci_hcd *xhci; 2291 2292 xhci = hcd_to_xhci(hcd); 2293 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2294 if (xhci->shared_hcd) 2295 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags); 2296 2297 ret = xhci_irq(hcd); 2298 2299 return ret; 2300 } 2301 2302 /**** Endpoint Ring Operations ****/ 2303 2304 /* 2305 * Generic function for queueing a TRB on a ring. 2306 * The caller must have checked to make sure there's room on the ring. 2307 * 2308 * @more_trbs_coming: Will you enqueue more TRBs before calling 2309 * prepare_transfer()? 2310 */ 2311 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2312 bool consumer, bool more_trbs_coming, 2313 u32 field1, u32 field2, u32 field3, u32 field4) 2314 { 2315 struct xhci_generic_trb *trb; 2316 2317 trb = &ring->enqueue->generic; 2318 trb->field[0] = field1; 2319 trb->field[1] = field2; 2320 trb->field[2] = field3; 2321 trb->field[3] = field4; 2322 inc_enq(xhci, ring, consumer, more_trbs_coming); 2323 } 2324 2325 /* 2326 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2327 * FIXME allocate segments if the ring is full. 2328 */ 2329 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2330 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2331 { 2332 /* Make sure the endpoint has been added to xHC schedule */ 2333 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state); 2334 switch (ep_state) { 2335 case EP_STATE_DISABLED: 2336 /* 2337 * USB core changed config/interfaces without notifying us, 2338 * or hardware is reporting the wrong state. 2339 */ 2340 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2341 return -ENOENT; 2342 case EP_STATE_ERROR: 2343 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2344 /* FIXME event handling code for error needs to clear it */ 2345 /* XXX not sure if this should be -ENOENT or not */ 2346 return -EINVAL; 2347 case EP_STATE_HALTED: 2348 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2349 case EP_STATE_STOPPED: 2350 case EP_STATE_RUNNING: 2351 break; 2352 default: 2353 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2354 /* 2355 * FIXME issue Configure Endpoint command to try to get the HC 2356 * back into a known state. 2357 */ 2358 return -EINVAL; 2359 } 2360 if (!room_on_ring(xhci, ep_ring, num_trbs)) { 2361 /* FIXME allocate more room */ 2362 xhci_err(xhci, "ERROR no room on ep ring\n"); 2363 return -ENOMEM; 2364 } 2365 2366 if (enqueue_is_link_trb(ep_ring)) { 2367 struct xhci_ring *ring = ep_ring; 2368 union xhci_trb *next; 2369 2370 xhci_dbg(xhci, "prepare_ring: pointing to link trb\n"); 2371 next = ring->enqueue; 2372 2373 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2374 2375 /* If we're not dealing with 0.95 hardware, 2376 * clear the chain bit. 2377 */ 2378 if (!xhci_link_trb_quirk(xhci)) 2379 next->link.control &= ~TRB_CHAIN; 2380 else 2381 next->link.control |= TRB_CHAIN; 2382 2383 wmb(); 2384 next->link.control ^= (u32) TRB_CYCLE; 2385 2386 /* Toggle the cycle bit after the last ring segment. */ 2387 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2388 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2389 if (!in_interrupt()) { 2390 xhci_dbg(xhci, "queue_trb: Toggle cycle " 2391 "state for ring %p = %i\n", 2392 ring, (unsigned int)ring->cycle_state); 2393 } 2394 } 2395 ring->enq_seg = ring->enq_seg->next; 2396 ring->enqueue = ring->enq_seg->trbs; 2397 next = ring->enqueue; 2398 } 2399 } 2400 2401 return 0; 2402 } 2403 2404 static int prepare_transfer(struct xhci_hcd *xhci, 2405 struct xhci_virt_device *xdev, 2406 unsigned int ep_index, 2407 unsigned int stream_id, 2408 unsigned int num_trbs, 2409 struct urb *urb, 2410 unsigned int td_index, 2411 gfp_t mem_flags) 2412 { 2413 int ret; 2414 struct urb_priv *urb_priv; 2415 struct xhci_td *td; 2416 struct xhci_ring *ep_ring; 2417 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2418 2419 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2420 if (!ep_ring) { 2421 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2422 stream_id); 2423 return -EINVAL; 2424 } 2425 2426 ret = prepare_ring(xhci, ep_ring, 2427 ep_ctx->ep_info & EP_STATE_MASK, 2428 num_trbs, mem_flags); 2429 if (ret) 2430 return ret; 2431 2432 urb_priv = urb->hcpriv; 2433 td = urb_priv->td[td_index]; 2434 2435 INIT_LIST_HEAD(&td->td_list); 2436 INIT_LIST_HEAD(&td->cancelled_td_list); 2437 2438 if (td_index == 0) { 2439 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2440 if (unlikely(ret)) { 2441 xhci_urb_free_priv(xhci, urb_priv); 2442 urb->hcpriv = NULL; 2443 return ret; 2444 } 2445 } 2446 2447 td->urb = urb; 2448 /* Add this TD to the tail of the endpoint ring's TD list */ 2449 list_add_tail(&td->td_list, &ep_ring->td_list); 2450 td->start_seg = ep_ring->enq_seg; 2451 td->first_trb = ep_ring->enqueue; 2452 2453 urb_priv->td[td_index] = td; 2454 2455 return 0; 2456 } 2457 2458 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2459 { 2460 int num_sgs, num_trbs, running_total, temp, i; 2461 struct scatterlist *sg; 2462 2463 sg = NULL; 2464 num_sgs = urb->num_sgs; 2465 temp = urb->transfer_buffer_length; 2466 2467 xhci_dbg(xhci, "count sg list trbs: \n"); 2468 num_trbs = 0; 2469 for_each_sg(urb->sg, sg, num_sgs, i) { 2470 unsigned int previous_total_trbs = num_trbs; 2471 unsigned int len = sg_dma_len(sg); 2472 2473 /* Scatter gather list entries may cross 64KB boundaries */ 2474 running_total = TRB_MAX_BUFF_SIZE - 2475 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2476 running_total &= TRB_MAX_BUFF_SIZE - 1; 2477 if (running_total != 0) 2478 num_trbs++; 2479 2480 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2481 while (running_total < sg_dma_len(sg) && running_total < temp) { 2482 num_trbs++; 2483 running_total += TRB_MAX_BUFF_SIZE; 2484 } 2485 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", 2486 i, (unsigned long long)sg_dma_address(sg), 2487 len, len, num_trbs - previous_total_trbs); 2488 2489 len = min_t(int, len, temp); 2490 temp -= len; 2491 if (temp == 0) 2492 break; 2493 } 2494 xhci_dbg(xhci, "\n"); 2495 if (!in_interrupt()) 2496 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, " 2497 "num_trbs = %d\n", 2498 urb->ep->desc.bEndpointAddress, 2499 urb->transfer_buffer_length, 2500 num_trbs); 2501 return num_trbs; 2502 } 2503 2504 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2505 { 2506 if (num_trbs != 0) 2507 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2508 "TRBs, %d left\n", __func__, 2509 urb->ep->desc.bEndpointAddress, num_trbs); 2510 if (running_total != urb->transfer_buffer_length) 2511 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2512 "queued %#x (%d), asked for %#x (%d)\n", 2513 __func__, 2514 urb->ep->desc.bEndpointAddress, 2515 running_total, running_total, 2516 urb->transfer_buffer_length, 2517 urb->transfer_buffer_length); 2518 } 2519 2520 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2521 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2522 struct xhci_generic_trb *start_trb) 2523 { 2524 /* 2525 * Pass all the TRBs to the hardware at once and make sure this write 2526 * isn't reordered. 2527 */ 2528 wmb(); 2529 if (start_cycle) 2530 start_trb->field[3] |= start_cycle; 2531 else 2532 start_trb->field[3] &= ~0x1; 2533 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2534 } 2535 2536 /* 2537 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2538 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2539 * (comprised of sg list entries) can take several service intervals to 2540 * transmit. 2541 */ 2542 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2543 struct urb *urb, int slot_id, unsigned int ep_index) 2544 { 2545 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2546 xhci->devs[slot_id]->out_ctx, ep_index); 2547 int xhci_interval; 2548 int ep_interval; 2549 2550 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info); 2551 ep_interval = urb->interval; 2552 /* Convert to microframes */ 2553 if (urb->dev->speed == USB_SPEED_LOW || 2554 urb->dev->speed == USB_SPEED_FULL) 2555 ep_interval *= 8; 2556 /* FIXME change this to a warning and a suggestion to use the new API 2557 * to set the polling interval (once the API is added). 2558 */ 2559 if (xhci_interval != ep_interval) { 2560 if (printk_ratelimit()) 2561 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2562 " (%d microframe%s) than xHCI " 2563 "(%d microframe%s)\n", 2564 ep_interval, 2565 ep_interval == 1 ? "" : "s", 2566 xhci_interval, 2567 xhci_interval == 1 ? "" : "s"); 2568 urb->interval = xhci_interval; 2569 /* Convert back to frames for LS/FS devices */ 2570 if (urb->dev->speed == USB_SPEED_LOW || 2571 urb->dev->speed == USB_SPEED_FULL) 2572 urb->interval /= 8; 2573 } 2574 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 2575 } 2576 2577 /* 2578 * The TD size is the number of bytes remaining in the TD (including this TRB), 2579 * right shifted by 10. 2580 * It must fit in bits 21:17, so it can't be bigger than 31. 2581 */ 2582 static u32 xhci_td_remainder(unsigned int remainder) 2583 { 2584 u32 max = (1 << (21 - 17 + 1)) - 1; 2585 2586 if ((remainder >> 10) >= max) 2587 return max << 17; 2588 else 2589 return (remainder >> 10) << 17; 2590 } 2591 2592 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2593 struct urb *urb, int slot_id, unsigned int ep_index) 2594 { 2595 struct xhci_ring *ep_ring; 2596 unsigned int num_trbs; 2597 struct urb_priv *urb_priv; 2598 struct xhci_td *td; 2599 struct scatterlist *sg; 2600 int num_sgs; 2601 int trb_buff_len, this_sg_len, running_total; 2602 bool first_trb; 2603 u64 addr; 2604 bool more_trbs_coming; 2605 2606 struct xhci_generic_trb *start_trb; 2607 int start_cycle; 2608 2609 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2610 if (!ep_ring) 2611 return -EINVAL; 2612 2613 num_trbs = count_sg_trbs_needed(xhci, urb); 2614 num_sgs = urb->num_sgs; 2615 2616 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2617 ep_index, urb->stream_id, 2618 num_trbs, urb, 0, mem_flags); 2619 if (trb_buff_len < 0) 2620 return trb_buff_len; 2621 2622 urb_priv = urb->hcpriv; 2623 td = urb_priv->td[0]; 2624 2625 /* 2626 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2627 * until we've finished creating all the other TRBs. The ring's cycle 2628 * state may change as we enqueue the other TRBs, so save it too. 2629 */ 2630 start_trb = &ep_ring->enqueue->generic; 2631 start_cycle = ep_ring->cycle_state; 2632 2633 running_total = 0; 2634 /* 2635 * How much data is in the first TRB? 2636 * 2637 * There are three forces at work for TRB buffer pointers and lengths: 2638 * 1. We don't want to walk off the end of this sg-list entry buffer. 2639 * 2. The transfer length that the driver requested may be smaller than 2640 * the amount of memory allocated for this scatter-gather list. 2641 * 3. TRBs buffers can't cross 64KB boundaries. 2642 */ 2643 sg = urb->sg; 2644 addr = (u64) sg_dma_address(sg); 2645 this_sg_len = sg_dma_len(sg); 2646 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2647 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2648 if (trb_buff_len > urb->transfer_buffer_length) 2649 trb_buff_len = urb->transfer_buffer_length; 2650 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", 2651 trb_buff_len); 2652 2653 first_trb = true; 2654 /* Queue the first TRB, even if it's zero-length */ 2655 do { 2656 u32 field = 0; 2657 u32 length_field = 0; 2658 u32 remainder = 0; 2659 2660 /* Don't change the cycle bit of the first TRB until later */ 2661 if (first_trb) { 2662 first_trb = false; 2663 if (start_cycle == 0) 2664 field |= 0x1; 2665 } else 2666 field |= ep_ring->cycle_state; 2667 2668 /* Chain all the TRBs together; clear the chain bit in the last 2669 * TRB to indicate it's the last TRB in the chain. 2670 */ 2671 if (num_trbs > 1) { 2672 field |= TRB_CHAIN; 2673 } else { 2674 /* FIXME - add check for ZERO_PACKET flag before this */ 2675 td->last_trb = ep_ring->enqueue; 2676 field |= TRB_IOC; 2677 } 2678 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " 2679 "64KB boundary at %#x, end dma = %#x\n", 2680 (unsigned int) addr, trb_buff_len, trb_buff_len, 2681 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2682 (unsigned int) addr + trb_buff_len); 2683 if (TRB_MAX_BUFF_SIZE - 2684 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2685 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2686 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2687 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2688 (unsigned int) addr + trb_buff_len); 2689 } 2690 remainder = xhci_td_remainder(urb->transfer_buffer_length - 2691 running_total) ; 2692 length_field = TRB_LEN(trb_buff_len) | 2693 remainder | 2694 TRB_INTR_TARGET(0); 2695 if (num_trbs > 1) 2696 more_trbs_coming = true; 2697 else 2698 more_trbs_coming = false; 2699 queue_trb(xhci, ep_ring, false, more_trbs_coming, 2700 lower_32_bits(addr), 2701 upper_32_bits(addr), 2702 length_field, 2703 /* We always want to know if the TRB was short, 2704 * or we won't get an event when it completes. 2705 * (Unless we use event data TRBs, which are a 2706 * waste of space and HC resources.) 2707 */ 2708 field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); 2709 --num_trbs; 2710 running_total += trb_buff_len; 2711 2712 /* Calculate length for next transfer -- 2713 * Are we done queueing all the TRBs for this sg entry? 2714 */ 2715 this_sg_len -= trb_buff_len; 2716 if (this_sg_len == 0) { 2717 --num_sgs; 2718 if (num_sgs == 0) 2719 break; 2720 sg = sg_next(sg); 2721 addr = (u64) sg_dma_address(sg); 2722 this_sg_len = sg_dma_len(sg); 2723 } else { 2724 addr += trb_buff_len; 2725 } 2726 2727 trb_buff_len = TRB_MAX_BUFF_SIZE - 2728 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2729 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2730 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2731 trb_buff_len = 2732 urb->transfer_buffer_length - running_total; 2733 } while (running_total < urb->transfer_buffer_length); 2734 2735 check_trb_math(urb, num_trbs, running_total); 2736 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2737 start_cycle, start_trb); 2738 return 0; 2739 } 2740 2741 /* This is very similar to what ehci-q.c qtd_fill() does */ 2742 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2743 struct urb *urb, int slot_id, unsigned int ep_index) 2744 { 2745 struct xhci_ring *ep_ring; 2746 struct urb_priv *urb_priv; 2747 struct xhci_td *td; 2748 int num_trbs; 2749 struct xhci_generic_trb *start_trb; 2750 bool first_trb; 2751 bool more_trbs_coming; 2752 int start_cycle; 2753 u32 field, length_field; 2754 2755 int running_total, trb_buff_len, ret; 2756 u64 addr; 2757 2758 if (urb->num_sgs) 2759 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2760 2761 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2762 if (!ep_ring) 2763 return -EINVAL; 2764 2765 num_trbs = 0; 2766 /* How much data is (potentially) left before the 64KB boundary? */ 2767 running_total = TRB_MAX_BUFF_SIZE - 2768 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2769 running_total &= TRB_MAX_BUFF_SIZE - 1; 2770 2771 /* If there's some data on this 64KB chunk, or we have to send a 2772 * zero-length transfer, we need at least one TRB 2773 */ 2774 if (running_total != 0 || urb->transfer_buffer_length == 0) 2775 num_trbs++; 2776 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2777 while (running_total < urb->transfer_buffer_length) { 2778 num_trbs++; 2779 running_total += TRB_MAX_BUFF_SIZE; 2780 } 2781 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2782 2783 if (!in_interrupt()) 2784 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), " 2785 "addr = %#llx, num_trbs = %d\n", 2786 urb->ep->desc.bEndpointAddress, 2787 urb->transfer_buffer_length, 2788 urb->transfer_buffer_length, 2789 (unsigned long long)urb->transfer_dma, 2790 num_trbs); 2791 2792 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2793 ep_index, urb->stream_id, 2794 num_trbs, urb, 0, mem_flags); 2795 if (ret < 0) 2796 return ret; 2797 2798 urb_priv = urb->hcpriv; 2799 td = urb_priv->td[0]; 2800 2801 /* 2802 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2803 * until we've finished creating all the other TRBs. The ring's cycle 2804 * state may change as we enqueue the other TRBs, so save it too. 2805 */ 2806 start_trb = &ep_ring->enqueue->generic; 2807 start_cycle = ep_ring->cycle_state; 2808 2809 running_total = 0; 2810 /* How much data is in the first TRB? */ 2811 addr = (u64) urb->transfer_dma; 2812 trb_buff_len = TRB_MAX_BUFF_SIZE - 2813 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2814 if (trb_buff_len > urb->transfer_buffer_length) 2815 trb_buff_len = urb->transfer_buffer_length; 2816 2817 first_trb = true; 2818 2819 /* Queue the first TRB, even if it's zero-length */ 2820 do { 2821 u32 remainder = 0; 2822 field = 0; 2823 2824 /* Don't change the cycle bit of the first TRB until later */ 2825 if (first_trb) { 2826 first_trb = false; 2827 if (start_cycle == 0) 2828 field |= 0x1; 2829 } else 2830 field |= ep_ring->cycle_state; 2831 2832 /* Chain all the TRBs together; clear the chain bit in the last 2833 * TRB to indicate it's the last TRB in the chain. 2834 */ 2835 if (num_trbs > 1) { 2836 field |= TRB_CHAIN; 2837 } else { 2838 /* FIXME - add check for ZERO_PACKET flag before this */ 2839 td->last_trb = ep_ring->enqueue; 2840 field |= TRB_IOC; 2841 } 2842 remainder = xhci_td_remainder(urb->transfer_buffer_length - 2843 running_total); 2844 length_field = TRB_LEN(trb_buff_len) | 2845 remainder | 2846 TRB_INTR_TARGET(0); 2847 if (num_trbs > 1) 2848 more_trbs_coming = true; 2849 else 2850 more_trbs_coming = false; 2851 queue_trb(xhci, ep_ring, false, more_trbs_coming, 2852 lower_32_bits(addr), 2853 upper_32_bits(addr), 2854 length_field, 2855 /* We always want to know if the TRB was short, 2856 * or we won't get an event when it completes. 2857 * (Unless we use event data TRBs, which are a 2858 * waste of space and HC resources.) 2859 */ 2860 field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); 2861 --num_trbs; 2862 running_total += trb_buff_len; 2863 2864 /* Calculate length for next transfer */ 2865 addr += trb_buff_len; 2866 trb_buff_len = urb->transfer_buffer_length - running_total; 2867 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 2868 trb_buff_len = TRB_MAX_BUFF_SIZE; 2869 } while (running_total < urb->transfer_buffer_length); 2870 2871 check_trb_math(urb, num_trbs, running_total); 2872 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2873 start_cycle, start_trb); 2874 return 0; 2875 } 2876 2877 /* Caller must have locked xhci->lock */ 2878 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2879 struct urb *urb, int slot_id, unsigned int ep_index) 2880 { 2881 struct xhci_ring *ep_ring; 2882 int num_trbs; 2883 int ret; 2884 struct usb_ctrlrequest *setup; 2885 struct xhci_generic_trb *start_trb; 2886 int start_cycle; 2887 u32 field, length_field; 2888 struct urb_priv *urb_priv; 2889 struct xhci_td *td; 2890 2891 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2892 if (!ep_ring) 2893 return -EINVAL; 2894 2895 /* 2896 * Need to copy setup packet into setup TRB, so we can't use the setup 2897 * DMA address. 2898 */ 2899 if (!urb->setup_packet) 2900 return -EINVAL; 2901 2902 if (!in_interrupt()) 2903 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", 2904 slot_id, ep_index); 2905 /* 1 TRB for setup, 1 for status */ 2906 num_trbs = 2; 2907 /* 2908 * Don't need to check if we need additional event data and normal TRBs, 2909 * since data in control transfers will never get bigger than 16MB 2910 * XXX: can we get a buffer that crosses 64KB boundaries? 2911 */ 2912 if (urb->transfer_buffer_length > 0) 2913 num_trbs++; 2914 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2915 ep_index, urb->stream_id, 2916 num_trbs, urb, 0, mem_flags); 2917 if (ret < 0) 2918 return ret; 2919 2920 urb_priv = urb->hcpriv; 2921 td = urb_priv->td[0]; 2922 2923 /* 2924 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2925 * until we've finished creating all the other TRBs. The ring's cycle 2926 * state may change as we enqueue the other TRBs, so save it too. 2927 */ 2928 start_trb = &ep_ring->enqueue->generic; 2929 start_cycle = ep_ring->cycle_state; 2930 2931 /* Queue setup TRB - see section 6.4.1.2.1 */ 2932 /* FIXME better way to translate setup_packet into two u32 fields? */ 2933 setup = (struct usb_ctrlrequest *) urb->setup_packet; 2934 field = 0; 2935 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 2936 if (start_cycle == 0) 2937 field |= 0x1; 2938 queue_trb(xhci, ep_ring, false, true, 2939 /* FIXME endianness is probably going to bite my ass here. */ 2940 setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16, 2941 setup->wIndex | setup->wLength << 16, 2942 TRB_LEN(8) | TRB_INTR_TARGET(0), 2943 /* Immediate data in pointer */ 2944 field); 2945 2946 /* If there's data, queue data TRBs */ 2947 field = 0; 2948 length_field = TRB_LEN(urb->transfer_buffer_length) | 2949 xhci_td_remainder(urb->transfer_buffer_length) | 2950 TRB_INTR_TARGET(0); 2951 if (urb->transfer_buffer_length > 0) { 2952 if (setup->bRequestType & USB_DIR_IN) 2953 field |= TRB_DIR_IN; 2954 queue_trb(xhci, ep_ring, false, true, 2955 lower_32_bits(urb->transfer_dma), 2956 upper_32_bits(urb->transfer_dma), 2957 length_field, 2958 /* Event on short tx */ 2959 field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state); 2960 } 2961 2962 /* Save the DMA address of the last TRB in the TD */ 2963 td->last_trb = ep_ring->enqueue; 2964 2965 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 2966 /* If the device sent data, the status stage is an OUT transfer */ 2967 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 2968 field = 0; 2969 else 2970 field = TRB_DIR_IN; 2971 queue_trb(xhci, ep_ring, false, false, 2972 0, 2973 0, 2974 TRB_INTR_TARGET(0), 2975 /* Event on completion */ 2976 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 2977 2978 giveback_first_trb(xhci, slot_id, ep_index, 0, 2979 start_cycle, start_trb); 2980 return 0; 2981 } 2982 2983 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 2984 struct urb *urb, int i) 2985 { 2986 int num_trbs = 0; 2987 u64 addr, td_len, running_total; 2988 2989 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2990 td_len = urb->iso_frame_desc[i].length; 2991 2992 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2993 running_total &= TRB_MAX_BUFF_SIZE - 1; 2994 if (running_total != 0) 2995 num_trbs++; 2996 2997 while (running_total < td_len) { 2998 num_trbs++; 2999 running_total += TRB_MAX_BUFF_SIZE; 3000 } 3001 3002 return num_trbs; 3003 } 3004 3005 /* This is for isoc transfer */ 3006 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3007 struct urb *urb, int slot_id, unsigned int ep_index) 3008 { 3009 struct xhci_ring *ep_ring; 3010 struct urb_priv *urb_priv; 3011 struct xhci_td *td; 3012 int num_tds, trbs_per_td; 3013 struct xhci_generic_trb *start_trb; 3014 bool first_trb; 3015 int start_cycle; 3016 u32 field, length_field; 3017 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3018 u64 start_addr, addr; 3019 int i, j; 3020 bool more_trbs_coming; 3021 3022 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3023 3024 num_tds = urb->number_of_packets; 3025 if (num_tds < 1) { 3026 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3027 return -EINVAL; 3028 } 3029 3030 if (!in_interrupt()) 3031 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d)," 3032 " addr = %#llx, num_tds = %d\n", 3033 urb->ep->desc.bEndpointAddress, 3034 urb->transfer_buffer_length, 3035 urb->transfer_buffer_length, 3036 (unsigned long long)urb->transfer_dma, 3037 num_tds); 3038 3039 start_addr = (u64) urb->transfer_dma; 3040 start_trb = &ep_ring->enqueue->generic; 3041 start_cycle = ep_ring->cycle_state; 3042 3043 /* Queue the first TRB, even if it's zero-length */ 3044 for (i = 0; i < num_tds; i++) { 3045 first_trb = true; 3046 3047 running_total = 0; 3048 addr = start_addr + urb->iso_frame_desc[i].offset; 3049 td_len = urb->iso_frame_desc[i].length; 3050 td_remain_len = td_len; 3051 3052 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3053 3054 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3055 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3056 if (ret < 0) 3057 return ret; 3058 3059 urb_priv = urb->hcpriv; 3060 td = urb_priv->td[i]; 3061 3062 for (j = 0; j < trbs_per_td; j++) { 3063 u32 remainder = 0; 3064 field = 0; 3065 3066 if (first_trb) { 3067 /* Queue the isoc TRB */ 3068 field |= TRB_TYPE(TRB_ISOC); 3069 /* Assume URB_ISO_ASAP is set */ 3070 field |= TRB_SIA; 3071 if (i == 0) { 3072 if (start_cycle == 0) 3073 field |= 0x1; 3074 } else 3075 field |= ep_ring->cycle_state; 3076 first_trb = false; 3077 } else { 3078 /* Queue other normal TRBs */ 3079 field |= TRB_TYPE(TRB_NORMAL); 3080 field |= ep_ring->cycle_state; 3081 } 3082 3083 /* Chain all the TRBs together; clear the chain bit in 3084 * the last TRB to indicate it's the last TRB in the 3085 * chain. 3086 */ 3087 if (j < trbs_per_td - 1) { 3088 field |= TRB_CHAIN; 3089 more_trbs_coming = true; 3090 } else { 3091 td->last_trb = ep_ring->enqueue; 3092 field |= TRB_IOC; 3093 more_trbs_coming = false; 3094 } 3095 3096 /* Calculate TRB length */ 3097 trb_buff_len = TRB_MAX_BUFF_SIZE - 3098 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3099 if (trb_buff_len > td_remain_len) 3100 trb_buff_len = td_remain_len; 3101 3102 remainder = xhci_td_remainder(td_len - running_total); 3103 length_field = TRB_LEN(trb_buff_len) | 3104 remainder | 3105 TRB_INTR_TARGET(0); 3106 queue_trb(xhci, ep_ring, false, more_trbs_coming, 3107 lower_32_bits(addr), 3108 upper_32_bits(addr), 3109 length_field, 3110 /* We always want to know if the TRB was short, 3111 * or we won't get an event when it completes. 3112 * (Unless we use event data TRBs, which are a 3113 * waste of space and HC resources.) 3114 */ 3115 field | TRB_ISP); 3116 running_total += trb_buff_len; 3117 3118 addr += trb_buff_len; 3119 td_remain_len -= trb_buff_len; 3120 } 3121 3122 /* Check TD length */ 3123 if (running_total != td_len) { 3124 xhci_err(xhci, "ISOC TD length unmatch\n"); 3125 return -EINVAL; 3126 } 3127 } 3128 3129 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3130 start_cycle, start_trb); 3131 return 0; 3132 } 3133 3134 /* 3135 * Check transfer ring to guarantee there is enough room for the urb. 3136 * Update ISO URB start_frame and interval. 3137 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3138 * update the urb->start_frame by now. 3139 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3140 */ 3141 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3142 struct urb *urb, int slot_id, unsigned int ep_index) 3143 { 3144 struct xhci_virt_device *xdev; 3145 struct xhci_ring *ep_ring; 3146 struct xhci_ep_ctx *ep_ctx; 3147 int start_frame; 3148 int xhci_interval; 3149 int ep_interval; 3150 int num_tds, num_trbs, i; 3151 int ret; 3152 3153 xdev = xhci->devs[slot_id]; 3154 ep_ring = xdev->eps[ep_index].ring; 3155 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3156 3157 num_trbs = 0; 3158 num_tds = urb->number_of_packets; 3159 for (i = 0; i < num_tds; i++) 3160 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3161 3162 /* Check the ring to guarantee there is enough room for the whole urb. 3163 * Do not insert any td of the urb to the ring if the check failed. 3164 */ 3165 ret = prepare_ring(xhci, ep_ring, ep_ctx->ep_info & EP_STATE_MASK, 3166 num_trbs, mem_flags); 3167 if (ret) 3168 return ret; 3169 3170 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3171 start_frame &= 0x3fff; 3172 3173 urb->start_frame = start_frame; 3174 if (urb->dev->speed == USB_SPEED_LOW || 3175 urb->dev->speed == USB_SPEED_FULL) 3176 urb->start_frame >>= 3; 3177 3178 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info); 3179 ep_interval = urb->interval; 3180 /* Convert to microframes */ 3181 if (urb->dev->speed == USB_SPEED_LOW || 3182 urb->dev->speed == USB_SPEED_FULL) 3183 ep_interval *= 8; 3184 /* FIXME change this to a warning and a suggestion to use the new API 3185 * to set the polling interval (once the API is added). 3186 */ 3187 if (xhci_interval != ep_interval) { 3188 if (printk_ratelimit()) 3189 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3190 " (%d microframe%s) than xHCI " 3191 "(%d microframe%s)\n", 3192 ep_interval, 3193 ep_interval == 1 ? "" : "s", 3194 xhci_interval, 3195 xhci_interval == 1 ? "" : "s"); 3196 urb->interval = xhci_interval; 3197 /* Convert back to frames for LS/FS devices */ 3198 if (urb->dev->speed == USB_SPEED_LOW || 3199 urb->dev->speed == USB_SPEED_FULL) 3200 urb->interval /= 8; 3201 } 3202 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 3203 } 3204 3205 /**** Command Ring Operations ****/ 3206 3207 /* Generic function for queueing a command TRB on the command ring. 3208 * Check to make sure there's room on the command ring for one command TRB. 3209 * Also check that there's room reserved for commands that must not fail. 3210 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3211 * then only check for the number of reserved spots. 3212 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3213 * because the command event handler may want to resubmit a failed command. 3214 */ 3215 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3216 u32 field3, u32 field4, bool command_must_succeed) 3217 { 3218 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3219 int ret; 3220 3221 if (!command_must_succeed) 3222 reserved_trbs++; 3223 3224 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3225 reserved_trbs, GFP_ATOMIC); 3226 if (ret < 0) { 3227 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3228 if (command_must_succeed) 3229 xhci_err(xhci, "ERR: Reserved TRB counting for " 3230 "unfailable commands failed.\n"); 3231 return ret; 3232 } 3233 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3, 3234 field4 | xhci->cmd_ring->cycle_state); 3235 return 0; 3236 } 3237 3238 /* Queue a slot enable or disable request on the command ring */ 3239 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3240 { 3241 return queue_command(xhci, 0, 0, 0, 3242 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3243 } 3244 3245 /* Queue an address device command TRB */ 3246 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3247 u32 slot_id) 3248 { 3249 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3250 upper_32_bits(in_ctx_ptr), 0, 3251 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3252 false); 3253 } 3254 3255 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3256 u32 field1, u32 field2, u32 field3, u32 field4) 3257 { 3258 return queue_command(xhci, field1, field2, field3, field4, false); 3259 } 3260 3261 /* Queue a reset device command TRB */ 3262 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3263 { 3264 return queue_command(xhci, 0, 0, 0, 3265 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3266 false); 3267 } 3268 3269 /* Queue a configure endpoint command TRB */ 3270 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3271 u32 slot_id, bool command_must_succeed) 3272 { 3273 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3274 upper_32_bits(in_ctx_ptr), 0, 3275 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3276 command_must_succeed); 3277 } 3278 3279 /* Queue an evaluate context command TRB */ 3280 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3281 u32 slot_id) 3282 { 3283 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3284 upper_32_bits(in_ctx_ptr), 0, 3285 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3286 false); 3287 } 3288 3289 /* 3290 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3291 * activity on an endpoint that is about to be suspended. 3292 */ 3293 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3294 unsigned int ep_index, int suspend) 3295 { 3296 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3297 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3298 u32 type = TRB_TYPE(TRB_STOP_RING); 3299 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3300 3301 return queue_command(xhci, 0, 0, 0, 3302 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3303 } 3304 3305 /* Set Transfer Ring Dequeue Pointer command. 3306 * This should not be used for endpoints that have streams enabled. 3307 */ 3308 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3309 unsigned int ep_index, unsigned int stream_id, 3310 struct xhci_segment *deq_seg, 3311 union xhci_trb *deq_ptr, u32 cycle_state) 3312 { 3313 dma_addr_t addr; 3314 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3315 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3316 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3317 u32 type = TRB_TYPE(TRB_SET_DEQ); 3318 struct xhci_virt_ep *ep; 3319 3320 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3321 if (addr == 0) { 3322 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3323 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3324 deq_seg, deq_ptr); 3325 return 0; 3326 } 3327 ep = &xhci->devs[slot_id]->eps[ep_index]; 3328 if ((ep->ep_state & SET_DEQ_PENDING)) { 3329 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3330 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3331 return 0; 3332 } 3333 ep->queued_deq_seg = deq_seg; 3334 ep->queued_deq_ptr = deq_ptr; 3335 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3336 upper_32_bits(addr), trb_stream_id, 3337 trb_slot_id | trb_ep_index | type, false); 3338 } 3339 3340 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3341 unsigned int ep_index) 3342 { 3343 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3344 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3345 u32 type = TRB_TYPE(TRB_RESET_EP); 3346 3347 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3348 false); 3349 } 3350