1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 284 /* Flush PCI posted writes */ 285 readl(&xhci->dba->doorbell[0]); 286 } 287 288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 289 { 290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 291 } 292 293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 294 { 295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 296 cmd_list); 297 } 298 299 /* 300 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 301 * If there are other commands waiting then restart the ring and kick the timer. 302 * This must be called with command ring stopped and xhci->lock held. 303 */ 304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 305 struct xhci_command *cur_cmd) 306 { 307 struct xhci_command *i_cmd; 308 309 /* Turn all aborted commands in list to no-ops, then restart */ 310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 311 312 if (i_cmd->status != COMP_COMMAND_ABORTED) 313 continue; 314 315 i_cmd->status = COMP_COMMAND_RING_STOPPED; 316 317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 318 i_cmd->command_trb); 319 320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 321 322 /* 323 * caller waiting for completion is called when command 324 * completion event is received for these no-op commands 325 */ 326 } 327 328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 329 330 /* ring command ring doorbell to restart the command ring */ 331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 332 !(xhci->xhc_state & XHCI_STATE_DYING)) { 333 xhci->current_cmd = cur_cmd; 334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 335 xhci_ring_cmd_db(xhci); 336 } 337 } 338 339 /* Must be called with xhci->lock held, releases and aquires lock back */ 340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 341 { 342 u64 temp_64; 343 int ret; 344 345 xhci_dbg(xhci, "Abort command ring\n"); 346 347 reinit_completion(&xhci->cmd_ring_stop_completion); 348 349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 351 &xhci->op_regs->cmd_ring); 352 353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 354 * completion of the Command Abort operation. If CRR is not negated in 5 355 * seconds then driver handles it as if host died (-ENODEV). 356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 357 * and try to recover a -ETIMEDOUT with a host controller reset. 358 */ 359 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 361 if (ret < 0) { 362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 363 xhci_halt(xhci); 364 xhci_hc_died(xhci); 365 return ret; 366 } 367 /* 368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 370 * but the completion event in never sent. Wait 2 secs (arbitrary 371 * number) to handle those cases after negation of CMD_RING_RUNNING. 372 */ 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 375 msecs_to_jiffies(2000)); 376 spin_lock_irqsave(&xhci->lock, flags); 377 if (!ret) { 378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 379 xhci_cleanup_command_queue(xhci); 380 } else { 381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 382 } 383 return 0; 384 } 385 386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 387 unsigned int slot_id, 388 unsigned int ep_index, 389 unsigned int stream_id) 390 { 391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 393 unsigned int ep_state = ep->ep_state; 394 395 /* Don't ring the doorbell for this endpoint if there are pending 396 * cancellations because we don't want to interrupt processing. 397 * We don't want to restart any stream rings if there's a set dequeue 398 * pointer command pending because the device can choose to start any 399 * stream once the endpoint is on the HW schedule. 400 */ 401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 402 (ep_state & EP_HALTED)) 403 return; 404 writel(DB_VALUE(ep_index, stream_id), db_addr); 405 /* The CPU has better things to do at this point than wait for a 406 * write-posting flush. It'll get there soon enough. 407 */ 408 } 409 410 /* Ring the doorbell for any rings with pending URBs */ 411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 412 unsigned int slot_id, 413 unsigned int ep_index) 414 { 415 unsigned int stream_id; 416 struct xhci_virt_ep *ep; 417 418 ep = &xhci->devs[slot_id]->eps[ep_index]; 419 420 /* A ring has pending URBs if its TD list is not empty */ 421 if (!(ep->ep_state & EP_HAS_STREAMS)) { 422 if (ep->ring && !(list_empty(&ep->ring->td_list))) 423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 424 return; 425 } 426 427 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 428 stream_id++) { 429 struct xhci_stream_info *stream_info = ep->stream_info; 430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 432 stream_id); 433 } 434 } 435 436 /* Get the right ring for the given slot_id, ep_index and stream_id. 437 * If the endpoint supports streams, boundary check the URB's stream ID. 438 * If the endpoint doesn't support streams, return the singular endpoint ring. 439 */ 440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 441 unsigned int slot_id, unsigned int ep_index, 442 unsigned int stream_id) 443 { 444 struct xhci_virt_ep *ep; 445 446 ep = &xhci->devs[slot_id]->eps[ep_index]; 447 /* Common case: no streams */ 448 if (!(ep->ep_state & EP_HAS_STREAMS)) 449 return ep->ring; 450 451 if (stream_id == 0) { 452 xhci_warn(xhci, 453 "WARN: Slot ID %u, ep index %u has streams, " 454 "but URB has no stream ID.\n", 455 slot_id, ep_index); 456 return NULL; 457 } 458 459 if (stream_id < ep->stream_info->num_streams) 460 return ep->stream_info->stream_rings[stream_id]; 461 462 xhci_warn(xhci, 463 "WARN: Slot ID %u, ep index %u has " 464 "stream IDs 1 to %u allocated, " 465 "but stream ID %u is requested.\n", 466 slot_id, ep_index, 467 ep->stream_info->num_streams - 1, 468 stream_id); 469 return NULL; 470 } 471 472 473 /* 474 * Get the hw dequeue pointer xHC stopped on, either directly from the 475 * endpoint context, or if streams are in use from the stream context. 476 * The returned hw_dequeue contains the lowest four bits with cycle state 477 * and possbile stream context type. 478 */ 479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 480 unsigned int ep_index, unsigned int stream_id) 481 { 482 struct xhci_ep_ctx *ep_ctx; 483 struct xhci_stream_ctx *st_ctx; 484 struct xhci_virt_ep *ep; 485 486 ep = &vdev->eps[ep_index]; 487 488 if (ep->ep_state & EP_HAS_STREAMS) { 489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 490 return le64_to_cpu(st_ctx->stream_ring); 491 } 492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 493 return le64_to_cpu(ep_ctx->deq); 494 } 495 496 /* 497 * Move the xHC's endpoint ring dequeue pointer past cur_td. 498 * Record the new state of the xHC's endpoint ring dequeue segment, 499 * dequeue pointer, stream id, and new consumer cycle state in state. 500 * Update our internal representation of the ring's dequeue pointer. 501 * 502 * We do this in three jumps: 503 * - First we update our new ring state to be the same as when the xHC stopped. 504 * - Then we traverse the ring to find the segment that contains 505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 506 * any link TRBs with the toggle cycle bit set. 507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 508 * if we've moved it past a link TRB with the toggle cycle bit set. 509 * 510 * Some of the uses of xhci_generic_trb are grotty, but if they're done 511 * with correct __le32 accesses they should work fine. Only users of this are 512 * in here. 513 */ 514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 515 unsigned int slot_id, unsigned int ep_index, 516 unsigned int stream_id, struct xhci_td *cur_td, 517 struct xhci_dequeue_state *state) 518 { 519 struct xhci_virt_device *dev = xhci->devs[slot_id]; 520 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 521 struct xhci_ring *ep_ring; 522 struct xhci_segment *new_seg; 523 union xhci_trb *new_deq; 524 dma_addr_t addr; 525 u64 hw_dequeue; 526 bool cycle_found = false; 527 bool td_last_trb_found = false; 528 529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 530 ep_index, stream_id); 531 if (!ep_ring) { 532 xhci_warn(xhci, "WARN can't find new dequeue state " 533 "for invalid stream ID %u.\n", 534 stream_id); 535 return; 536 } 537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 539 "Finding endpoint context"); 540 541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 542 new_seg = ep_ring->deq_seg; 543 new_deq = ep_ring->dequeue; 544 state->new_cycle_state = hw_dequeue & 0x1; 545 state->stream_id = stream_id; 546 547 /* 548 * We want to find the pointer, segment and cycle state of the new trb 549 * (the one after current TD's last_trb). We know the cycle state at 550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 551 * found. 552 */ 553 do { 554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 555 == (dma_addr_t)(hw_dequeue & ~0xf)) { 556 cycle_found = true; 557 if (td_last_trb_found) 558 break; 559 } 560 if (new_deq == cur_td->last_trb) 561 td_last_trb_found = true; 562 563 if (cycle_found && trb_is_link(new_deq) && 564 link_trb_toggles_cycle(new_deq)) 565 state->new_cycle_state ^= 0x1; 566 567 next_trb(xhci, ep_ring, &new_seg, &new_deq); 568 569 /* Search wrapped around, bail out */ 570 if (new_deq == ep->ring->dequeue) { 571 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 572 state->new_deq_seg = NULL; 573 state->new_deq_ptr = NULL; 574 return; 575 } 576 577 } while (!cycle_found || !td_last_trb_found); 578 579 state->new_deq_seg = new_seg; 580 state->new_deq_ptr = new_deq; 581 582 /* Don't update the ring cycle state for the producer (us). */ 583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 584 "Cycle state = 0x%x", state->new_cycle_state); 585 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue segment = %p (virtual)", 588 state->new_deq_seg); 589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 591 "New dequeue pointer = 0x%llx (DMA)", 592 (unsigned long long) addr); 593 } 594 595 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 596 * (The last TRB actually points to the ring enqueue pointer, which is not part 597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 598 */ 599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 600 struct xhci_td *td, bool flip_cycle) 601 { 602 struct xhci_segment *seg = td->start_seg; 603 union xhci_trb *trb = td->first_trb; 604 605 while (1) { 606 trb_to_noop(trb, TRB_TR_NOOP); 607 608 /* flip cycle if asked to */ 609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 611 612 if (trb == td->last_trb) 613 break; 614 615 next_trb(xhci, ep_ring, &seg, &trb); 616 } 617 } 618 619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 620 struct xhci_virt_ep *ep) 621 { 622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 623 /* Can't del_timer_sync in interrupt */ 624 del_timer(&ep->stop_cmd_timer); 625 } 626 627 /* 628 * Must be called with xhci->lock held in interrupt context, 629 * releases and re-acquires xhci->lock 630 */ 631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 632 struct xhci_td *cur_td, int status) 633 { 634 struct urb *urb = cur_td->urb; 635 struct urb_priv *urb_priv = urb->hcpriv; 636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 637 638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_quirk_pll_enable(); 643 } 644 } 645 xhci_urb_free_priv(urb_priv); 646 usb_hcd_unlink_urb_from_ep(hcd, urb); 647 spin_unlock(&xhci->lock); 648 trace_xhci_urb_giveback(urb); 649 usb_hcd_giveback_urb(hcd, urb, status); 650 spin_lock(&xhci->lock); 651 } 652 653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 654 struct xhci_ring *ring, struct xhci_td *td) 655 { 656 struct device *dev = xhci_to_hcd(xhci)->self.controller; 657 struct xhci_segment *seg = td->bounce_seg; 658 struct urb *urb = td->urb; 659 size_t len; 660 661 if (!ring || !seg || !urb) 662 return; 663 664 if (usb_urb_dir_out(urb)) { 665 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 666 DMA_TO_DEVICE); 667 return; 668 } 669 670 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 671 DMA_FROM_DEVICE); 672 /* for in tranfers we need to copy the data from bounce to sg */ 673 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 674 seg->bounce_len, seg->bounce_offs); 675 if (len != seg->bounce_len) 676 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 677 len, seg->bounce_len); 678 seg->bounce_len = 0; 679 seg->bounce_offs = 0; 680 } 681 682 /* 683 * When we get a command completion for a Stop Endpoint Command, we need to 684 * unlink any cancelled TDs from the ring. There are two ways to do that: 685 * 686 * 1. If the HW was in the middle of processing the TD that needs to be 687 * cancelled, then we must move the ring's dequeue pointer past the last TRB 688 * in the TD with a Set Dequeue Pointer Command. 689 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 690 * bit cleared) so that the HW will skip over them. 691 */ 692 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 693 union xhci_trb *trb, struct xhci_event_cmd *event) 694 { 695 unsigned int ep_index; 696 struct xhci_ring *ep_ring; 697 struct xhci_virt_ep *ep; 698 struct xhci_td *cur_td = NULL; 699 struct xhci_td *last_unlinked_td; 700 struct xhci_ep_ctx *ep_ctx; 701 struct xhci_virt_device *vdev; 702 u64 hw_deq; 703 struct xhci_dequeue_state deq_state; 704 705 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 706 if (!xhci->devs[slot_id]) 707 xhci_warn(xhci, "Stop endpoint command " 708 "completion for disabled slot %u\n", 709 slot_id); 710 return; 711 } 712 713 memset(&deq_state, 0, sizeof(deq_state)); 714 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 715 716 vdev = xhci->devs[slot_id]; 717 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 718 trace_xhci_handle_cmd_stop_ep(ep_ctx); 719 720 ep = &xhci->devs[slot_id]->eps[ep_index]; 721 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 722 struct xhci_td, cancelled_td_list); 723 724 if (list_empty(&ep->cancelled_td_list)) { 725 xhci_stop_watchdog_timer_in_irq(xhci, ep); 726 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 727 return; 728 } 729 730 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 731 * We have the xHCI lock, so nothing can modify this list until we drop 732 * it. We're also in the event handler, so we can't get re-interrupted 733 * if another Stop Endpoint command completes 734 */ 735 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 736 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 737 "Removing canceled TD starting at 0x%llx (dma).", 738 (unsigned long long)xhci_trb_virt_to_dma( 739 cur_td->start_seg, cur_td->first_trb)); 740 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 741 if (!ep_ring) { 742 /* This shouldn't happen unless a driver is mucking 743 * with the stream ID after submission. This will 744 * leave the TD on the hardware ring, and the hardware 745 * will try to execute it, and may access a buffer 746 * that has already been freed. In the best case, the 747 * hardware will execute it, and the event handler will 748 * ignore the completion event for that TD, since it was 749 * removed from the td_list for that endpoint. In 750 * short, don't muck with the stream ID after 751 * submission. 752 */ 753 xhci_warn(xhci, "WARN Cancelled URB %p " 754 "has invalid stream ID %u.\n", 755 cur_td->urb, 756 cur_td->urb->stream_id); 757 goto remove_finished_td; 758 } 759 /* 760 * If we stopped on the TD we need to cancel, then we have to 761 * move the xHC endpoint ring dequeue pointer past this TD. 762 */ 763 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 764 cur_td->urb->stream_id); 765 hw_deq &= ~0xf; 766 767 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 768 cur_td->last_trb, hw_deq, false)) { 769 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 770 cur_td->urb->stream_id, 771 cur_td, &deq_state); 772 } else { 773 td_to_noop(xhci, ep_ring, cur_td, false); 774 } 775 776 remove_finished_td: 777 /* 778 * The event handler won't see a completion for this TD anymore, 779 * so remove it from the endpoint ring's TD list. Keep it in 780 * the cancelled TD list for URB completion later. 781 */ 782 list_del_init(&cur_td->td_list); 783 } 784 785 xhci_stop_watchdog_timer_in_irq(xhci, ep); 786 787 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 788 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 789 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 790 &deq_state); 791 xhci_ring_cmd_db(xhci); 792 } else { 793 /* Otherwise ring the doorbell(s) to restart queued transfers */ 794 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 795 } 796 797 /* 798 * Drop the lock and complete the URBs in the cancelled TD list. 799 * New TDs to be cancelled might be added to the end of the list before 800 * we can complete all the URBs for the TDs we already unlinked. 801 * So stop when we've completed the URB for the last TD we unlinked. 802 */ 803 do { 804 cur_td = list_first_entry(&ep->cancelled_td_list, 805 struct xhci_td, cancelled_td_list); 806 list_del_init(&cur_td->cancelled_td_list); 807 808 /* Clean up the cancelled URB */ 809 /* Doesn't matter what we pass for status, since the core will 810 * just overwrite it (because the URB has been unlinked). 811 */ 812 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 813 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 814 inc_td_cnt(cur_td->urb); 815 if (last_td_in_urb(cur_td)) 816 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 817 818 /* Stop processing the cancelled list if the watchdog timer is 819 * running. 820 */ 821 if (xhci->xhc_state & XHCI_STATE_DYING) 822 return; 823 } while (cur_td != last_unlinked_td); 824 825 /* Return to the event handler with xhci->lock re-acquired */ 826 } 827 828 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 829 { 830 struct xhci_td *cur_td; 831 struct xhci_td *tmp; 832 833 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 834 list_del_init(&cur_td->td_list); 835 836 if (!list_empty(&cur_td->cancelled_td_list)) 837 list_del_init(&cur_td->cancelled_td_list); 838 839 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 840 841 inc_td_cnt(cur_td->urb); 842 if (last_td_in_urb(cur_td)) 843 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 844 } 845 } 846 847 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 848 int slot_id, int ep_index) 849 { 850 struct xhci_td *cur_td; 851 struct xhci_td *tmp; 852 struct xhci_virt_ep *ep; 853 struct xhci_ring *ring; 854 855 ep = &xhci->devs[slot_id]->eps[ep_index]; 856 if ((ep->ep_state & EP_HAS_STREAMS) || 857 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 858 int stream_id; 859 860 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 861 stream_id++) { 862 ring = ep->stream_info->stream_rings[stream_id]; 863 if (!ring) 864 continue; 865 866 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 867 "Killing URBs for slot ID %u, ep index %u, stream %u", 868 slot_id, ep_index, stream_id); 869 xhci_kill_ring_urbs(xhci, ring); 870 } 871 } else { 872 ring = ep->ring; 873 if (!ring) 874 return; 875 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 876 "Killing URBs for slot ID %u, ep index %u", 877 slot_id, ep_index); 878 xhci_kill_ring_urbs(xhci, ring); 879 } 880 881 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 882 cancelled_td_list) { 883 list_del_init(&cur_td->cancelled_td_list); 884 inc_td_cnt(cur_td->urb); 885 886 if (last_td_in_urb(cur_td)) 887 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 888 } 889 } 890 891 /* 892 * host controller died, register read returns 0xffffffff 893 * Complete pending commands, mark them ABORTED. 894 * URBs need to be given back as usb core might be waiting with device locks 895 * held for the URBs to finish during device disconnect, blocking host remove. 896 * 897 * Call with xhci->lock held. 898 * lock is relased and re-acquired while giving back urb. 899 */ 900 void xhci_hc_died(struct xhci_hcd *xhci) 901 { 902 int i, j; 903 904 if (xhci->xhc_state & XHCI_STATE_DYING) 905 return; 906 907 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 908 xhci->xhc_state |= XHCI_STATE_DYING; 909 910 xhci_cleanup_command_queue(xhci); 911 912 /* return any pending urbs, remove may be waiting for them */ 913 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 914 if (!xhci->devs[i]) 915 continue; 916 for (j = 0; j < 31; j++) 917 xhci_kill_endpoint_urbs(xhci, i, j); 918 } 919 920 /* inform usb core hc died if PCI remove isn't already handling it */ 921 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 922 usb_hc_died(xhci_to_hcd(xhci)); 923 } 924 925 /* Watchdog timer function for when a stop endpoint command fails to complete. 926 * In this case, we assume the host controller is broken or dying or dead. The 927 * host may still be completing some other events, so we have to be careful to 928 * let the event ring handler and the URB dequeueing/enqueueing functions know 929 * through xhci->state. 930 * 931 * The timer may also fire if the host takes a very long time to respond to the 932 * command, and the stop endpoint command completion handler cannot delete the 933 * timer before the timer function is called. Another endpoint cancellation may 934 * sneak in before the timer function can grab the lock, and that may queue 935 * another stop endpoint command and add the timer back. So we cannot use a 936 * simple flag to say whether there is a pending stop endpoint command for a 937 * particular endpoint. 938 * 939 * Instead we use a combination of that flag and checking if a new timer is 940 * pending. 941 */ 942 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 943 { 944 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 945 struct xhci_hcd *xhci = ep->xhci; 946 unsigned long flags; 947 948 spin_lock_irqsave(&xhci->lock, flags); 949 950 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 951 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 952 timer_pending(&ep->stop_cmd_timer)) { 953 spin_unlock_irqrestore(&xhci->lock, flags); 954 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 955 return; 956 } 957 958 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 959 ep->ep_state &= ~EP_STOP_CMD_PENDING; 960 961 xhci_halt(xhci); 962 963 /* 964 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 965 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 966 * and try to recover a -ETIMEDOUT with a host controller reset 967 */ 968 xhci_hc_died(xhci); 969 970 spin_unlock_irqrestore(&xhci->lock, flags); 971 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 972 "xHCI host controller is dead."); 973 } 974 975 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 976 struct xhci_virt_device *dev, 977 struct xhci_ring *ep_ring, 978 unsigned int ep_index) 979 { 980 union xhci_trb *dequeue_temp; 981 int num_trbs_free_temp; 982 bool revert = false; 983 984 num_trbs_free_temp = ep_ring->num_trbs_free; 985 dequeue_temp = ep_ring->dequeue; 986 987 /* If we get two back-to-back stalls, and the first stalled transfer 988 * ends just before a link TRB, the dequeue pointer will be left on 989 * the link TRB by the code in the while loop. So we have to update 990 * the dequeue pointer one segment further, or we'll jump off 991 * the segment into la-la-land. 992 */ 993 if (trb_is_link(ep_ring->dequeue)) { 994 ep_ring->deq_seg = ep_ring->deq_seg->next; 995 ep_ring->dequeue = ep_ring->deq_seg->trbs; 996 } 997 998 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 999 /* We have more usable TRBs */ 1000 ep_ring->num_trbs_free++; 1001 ep_ring->dequeue++; 1002 if (trb_is_link(ep_ring->dequeue)) { 1003 if (ep_ring->dequeue == 1004 dev->eps[ep_index].queued_deq_ptr) 1005 break; 1006 ep_ring->deq_seg = ep_ring->deq_seg->next; 1007 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1008 } 1009 if (ep_ring->dequeue == dequeue_temp) { 1010 revert = true; 1011 break; 1012 } 1013 } 1014 1015 if (revert) { 1016 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1017 ep_ring->num_trbs_free = num_trbs_free_temp; 1018 } 1019 } 1020 1021 /* 1022 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1023 * we need to clear the set deq pending flag in the endpoint ring state, so that 1024 * the TD queueing code can ring the doorbell again. We also need to ring the 1025 * endpoint doorbell to restart the ring, but only if there aren't more 1026 * cancellations pending. 1027 */ 1028 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1029 union xhci_trb *trb, u32 cmd_comp_code) 1030 { 1031 unsigned int ep_index; 1032 unsigned int stream_id; 1033 struct xhci_ring *ep_ring; 1034 struct xhci_virt_device *dev; 1035 struct xhci_virt_ep *ep; 1036 struct xhci_ep_ctx *ep_ctx; 1037 struct xhci_slot_ctx *slot_ctx; 1038 1039 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1040 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1041 dev = xhci->devs[slot_id]; 1042 ep = &dev->eps[ep_index]; 1043 1044 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1045 if (!ep_ring) { 1046 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1047 stream_id); 1048 /* XXX: Harmless??? */ 1049 goto cleanup; 1050 } 1051 1052 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1053 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1054 trace_xhci_handle_cmd_set_deq(slot_ctx); 1055 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1056 1057 if (cmd_comp_code != COMP_SUCCESS) { 1058 unsigned int ep_state; 1059 unsigned int slot_state; 1060 1061 switch (cmd_comp_code) { 1062 case COMP_TRB_ERROR: 1063 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1064 break; 1065 case COMP_CONTEXT_STATE_ERROR: 1066 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1067 ep_state = GET_EP_CTX_STATE(ep_ctx); 1068 slot_state = le32_to_cpu(slot_ctx->dev_state); 1069 slot_state = GET_SLOT_STATE(slot_state); 1070 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1071 "Slot state = %u, EP state = %u", 1072 slot_state, ep_state); 1073 break; 1074 case COMP_SLOT_NOT_ENABLED_ERROR: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1076 slot_id); 1077 break; 1078 default: 1079 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1080 cmd_comp_code); 1081 break; 1082 } 1083 /* OK what do we do now? The endpoint state is hosed, and we 1084 * should never get to this point if the synchronization between 1085 * queueing, and endpoint state are correct. This might happen 1086 * if the device gets disconnected after we've finished 1087 * cancelling URBs, which might not be an error... 1088 */ 1089 } else { 1090 u64 deq; 1091 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1092 if (ep->ep_state & EP_HAS_STREAMS) { 1093 struct xhci_stream_ctx *ctx = 1094 &ep->stream_info->stream_ctx_array[stream_id]; 1095 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1096 } else { 1097 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1098 } 1099 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1100 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1101 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1102 ep->queued_deq_ptr) == deq) { 1103 /* Update the ring's dequeue segment and dequeue pointer 1104 * to reflect the new position. 1105 */ 1106 update_ring_for_set_deq_completion(xhci, dev, 1107 ep_ring, ep_index); 1108 } else { 1109 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1110 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1111 ep->queued_deq_seg, ep->queued_deq_ptr); 1112 } 1113 } 1114 1115 cleanup: 1116 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1117 dev->eps[ep_index].queued_deq_seg = NULL; 1118 dev->eps[ep_index].queued_deq_ptr = NULL; 1119 /* Restart any rings with pending URBs */ 1120 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1121 } 1122 1123 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1124 union xhci_trb *trb, u32 cmd_comp_code) 1125 { 1126 struct xhci_virt_device *vdev; 1127 struct xhci_ep_ctx *ep_ctx; 1128 unsigned int ep_index; 1129 1130 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1131 vdev = xhci->devs[slot_id]; 1132 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1133 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1134 1135 /* This command will only fail if the endpoint wasn't halted, 1136 * but we don't care. 1137 */ 1138 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1139 "Ignoring reset ep completion code of %u", cmd_comp_code); 1140 1141 /* HW with the reset endpoint quirk needs to have a configure endpoint 1142 * command complete before the endpoint can be used. Queue that here 1143 * because the HW can't handle two commands being queued in a row. 1144 */ 1145 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1146 struct xhci_command *command; 1147 1148 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1149 if (!command) 1150 return; 1151 1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1153 "Queueing configure endpoint command"); 1154 xhci_queue_configure_endpoint(xhci, command, 1155 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1156 false); 1157 xhci_ring_cmd_db(xhci); 1158 } else { 1159 /* Clear our internal halted state */ 1160 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1161 } 1162 1163 /* if this was a soft reset, then restart */ 1164 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1165 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1166 } 1167 1168 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1169 struct xhci_command *command, u32 cmd_comp_code) 1170 { 1171 if (cmd_comp_code == COMP_SUCCESS) 1172 command->slot_id = slot_id; 1173 else 1174 command->slot_id = 0; 1175 } 1176 1177 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1178 { 1179 struct xhci_virt_device *virt_dev; 1180 struct xhci_slot_ctx *slot_ctx; 1181 1182 virt_dev = xhci->devs[slot_id]; 1183 if (!virt_dev) 1184 return; 1185 1186 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1187 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1188 1189 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1190 /* Delete default control endpoint resources */ 1191 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1192 xhci_free_virt_device(xhci, slot_id); 1193 } 1194 1195 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1196 struct xhci_event_cmd *event, u32 cmd_comp_code) 1197 { 1198 struct xhci_virt_device *virt_dev; 1199 struct xhci_input_control_ctx *ctrl_ctx; 1200 struct xhci_ep_ctx *ep_ctx; 1201 unsigned int ep_index; 1202 unsigned int ep_state; 1203 u32 add_flags, drop_flags; 1204 1205 /* 1206 * Configure endpoint commands can come from the USB core 1207 * configuration or alt setting changes, or because the HW 1208 * needed an extra configure endpoint command after a reset 1209 * endpoint command or streams were being configured. 1210 * If the command was for a halted endpoint, the xHCI driver 1211 * is not waiting on the configure endpoint command. 1212 */ 1213 virt_dev = xhci->devs[slot_id]; 1214 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1215 if (!ctrl_ctx) { 1216 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1217 return; 1218 } 1219 1220 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1221 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1222 /* Input ctx add_flags are the endpoint index plus one */ 1223 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1224 1225 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1226 trace_xhci_handle_cmd_config_ep(ep_ctx); 1227 1228 /* A usb_set_interface() call directly after clearing a halted 1229 * condition may race on this quirky hardware. Not worth 1230 * worrying about, since this is prototype hardware. Not sure 1231 * if this will work for streams, but streams support was 1232 * untested on this prototype. 1233 */ 1234 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1235 ep_index != (unsigned int) -1 && 1236 add_flags - SLOT_FLAG == drop_flags) { 1237 ep_state = virt_dev->eps[ep_index].ep_state; 1238 if (!(ep_state & EP_HALTED)) 1239 return; 1240 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1241 "Completed config ep cmd - " 1242 "last ep index = %d, state = %d", 1243 ep_index, ep_state); 1244 /* Clear internal halted state and restart ring(s) */ 1245 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1246 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1247 return; 1248 } 1249 return; 1250 } 1251 1252 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1253 { 1254 struct xhci_virt_device *vdev; 1255 struct xhci_slot_ctx *slot_ctx; 1256 1257 vdev = xhci->devs[slot_id]; 1258 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1259 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1260 } 1261 1262 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1263 struct xhci_event_cmd *event) 1264 { 1265 struct xhci_virt_device *vdev; 1266 struct xhci_slot_ctx *slot_ctx; 1267 1268 vdev = xhci->devs[slot_id]; 1269 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1270 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1271 1272 xhci_dbg(xhci, "Completed reset device command.\n"); 1273 if (!xhci->devs[slot_id]) 1274 xhci_warn(xhci, "Reset device command completion " 1275 "for disabled slot %u\n", slot_id); 1276 } 1277 1278 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1279 struct xhci_event_cmd *event) 1280 { 1281 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1282 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1283 return; 1284 } 1285 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1286 "NEC firmware version %2x.%02x", 1287 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1288 NEC_FW_MINOR(le32_to_cpu(event->status))); 1289 } 1290 1291 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1292 { 1293 list_del(&cmd->cmd_list); 1294 1295 if (cmd->completion) { 1296 cmd->status = status; 1297 complete(cmd->completion); 1298 } else { 1299 kfree(cmd); 1300 } 1301 } 1302 1303 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1304 { 1305 struct xhci_command *cur_cmd, *tmp_cmd; 1306 xhci->current_cmd = NULL; 1307 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1308 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1309 } 1310 1311 void xhci_handle_command_timeout(struct work_struct *work) 1312 { 1313 struct xhci_hcd *xhci; 1314 unsigned long flags; 1315 u64 hw_ring_state; 1316 1317 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1318 1319 spin_lock_irqsave(&xhci->lock, flags); 1320 1321 /* 1322 * If timeout work is pending, or current_cmd is NULL, it means we 1323 * raced with command completion. Command is handled so just return. 1324 */ 1325 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1326 spin_unlock_irqrestore(&xhci->lock, flags); 1327 return; 1328 } 1329 /* mark this command to be cancelled */ 1330 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1331 1332 /* Make sure command ring is running before aborting it */ 1333 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1334 if (hw_ring_state == ~(u64)0) { 1335 xhci_hc_died(xhci); 1336 goto time_out_completed; 1337 } 1338 1339 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1340 (hw_ring_state & CMD_RING_RUNNING)) { 1341 /* Prevent new doorbell, and start command abort */ 1342 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1343 xhci_dbg(xhci, "Command timeout\n"); 1344 xhci_abort_cmd_ring(xhci, flags); 1345 goto time_out_completed; 1346 } 1347 1348 /* host removed. Bail out */ 1349 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1350 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1351 xhci_cleanup_command_queue(xhci); 1352 1353 goto time_out_completed; 1354 } 1355 1356 /* command timeout on stopped ring, ring can't be aborted */ 1357 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1358 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1359 1360 time_out_completed: 1361 spin_unlock_irqrestore(&xhci->lock, flags); 1362 return; 1363 } 1364 1365 static void handle_cmd_completion(struct xhci_hcd *xhci, 1366 struct xhci_event_cmd *event) 1367 { 1368 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1369 u64 cmd_dma; 1370 dma_addr_t cmd_dequeue_dma; 1371 u32 cmd_comp_code; 1372 union xhci_trb *cmd_trb; 1373 struct xhci_command *cmd; 1374 u32 cmd_type; 1375 1376 cmd_dma = le64_to_cpu(event->cmd_trb); 1377 cmd_trb = xhci->cmd_ring->dequeue; 1378 1379 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1380 1381 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1382 cmd_trb); 1383 /* 1384 * Check whether the completion event is for our internal kept 1385 * command. 1386 */ 1387 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1388 xhci_warn(xhci, 1389 "ERROR mismatched command completion event\n"); 1390 return; 1391 } 1392 1393 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1394 1395 cancel_delayed_work(&xhci->cmd_timer); 1396 1397 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1398 1399 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1400 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1401 complete_all(&xhci->cmd_ring_stop_completion); 1402 return; 1403 } 1404 1405 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1406 xhci_err(xhci, 1407 "Command completion event does not match command\n"); 1408 return; 1409 } 1410 1411 /* 1412 * Host aborted the command ring, check if the current command was 1413 * supposed to be aborted, otherwise continue normally. 1414 * The command ring is stopped now, but the xHC will issue a Command 1415 * Ring Stopped event which will cause us to restart it. 1416 */ 1417 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1418 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1419 if (cmd->status == COMP_COMMAND_ABORTED) { 1420 if (xhci->current_cmd == cmd) 1421 xhci->current_cmd = NULL; 1422 goto event_handled; 1423 } 1424 } 1425 1426 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1427 switch (cmd_type) { 1428 case TRB_ENABLE_SLOT: 1429 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1430 break; 1431 case TRB_DISABLE_SLOT: 1432 xhci_handle_cmd_disable_slot(xhci, slot_id); 1433 break; 1434 case TRB_CONFIG_EP: 1435 if (!cmd->completion) 1436 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1437 cmd_comp_code); 1438 break; 1439 case TRB_EVAL_CONTEXT: 1440 break; 1441 case TRB_ADDR_DEV: 1442 xhci_handle_cmd_addr_dev(xhci, slot_id); 1443 break; 1444 case TRB_STOP_RING: 1445 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1446 le32_to_cpu(cmd_trb->generic.field[3]))); 1447 if (!cmd->completion) 1448 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1449 break; 1450 case TRB_SET_DEQ: 1451 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1452 le32_to_cpu(cmd_trb->generic.field[3]))); 1453 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1454 break; 1455 case TRB_CMD_NOOP: 1456 /* Is this an aborted command turned to NO-OP? */ 1457 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1458 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1459 break; 1460 case TRB_RESET_EP: 1461 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1462 le32_to_cpu(cmd_trb->generic.field[3]))); 1463 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1464 break; 1465 case TRB_RESET_DEV: 1466 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1467 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1468 */ 1469 slot_id = TRB_TO_SLOT_ID( 1470 le32_to_cpu(cmd_trb->generic.field[3])); 1471 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1472 break; 1473 case TRB_NEC_GET_FW: 1474 xhci_handle_cmd_nec_get_fw(xhci, event); 1475 break; 1476 default: 1477 /* Skip over unknown commands on the event ring */ 1478 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1479 break; 1480 } 1481 1482 /* restart timer if this wasn't the last command */ 1483 if (!list_is_singular(&xhci->cmd_list)) { 1484 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1485 struct xhci_command, cmd_list); 1486 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1487 } else if (xhci->current_cmd == cmd) { 1488 xhci->current_cmd = NULL; 1489 } 1490 1491 event_handled: 1492 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1493 1494 inc_deq(xhci, xhci->cmd_ring); 1495 } 1496 1497 static void handle_vendor_event(struct xhci_hcd *xhci, 1498 union xhci_trb *event) 1499 { 1500 u32 trb_type; 1501 1502 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1503 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1504 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1505 handle_cmd_completion(xhci, &event->event_cmd); 1506 } 1507 1508 static void handle_device_notification(struct xhci_hcd *xhci, 1509 union xhci_trb *event) 1510 { 1511 u32 slot_id; 1512 struct usb_device *udev; 1513 1514 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1515 if (!xhci->devs[slot_id]) { 1516 xhci_warn(xhci, "Device Notification event for " 1517 "unused slot %u\n", slot_id); 1518 return; 1519 } 1520 1521 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1522 slot_id); 1523 udev = xhci->devs[slot_id]->udev; 1524 if (udev && udev->parent) 1525 usb_wakeup_notification(udev->parent, udev->portnum); 1526 } 1527 1528 /* 1529 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1530 * Controller. 1531 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1532 * If a connection to a USB 1 device is followed by another connection 1533 * to a USB 2 device. 1534 * 1535 * Reset the PHY after the USB device is disconnected if device speed 1536 * is less than HCD_USB3. 1537 * Retry the reset sequence max of 4 times checking the PLL lock status. 1538 * 1539 */ 1540 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1541 { 1542 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1543 u32 pll_lock_check; 1544 u32 retry_count = 4; 1545 1546 do { 1547 /* Assert PHY reset */ 1548 writel(0x6F, hcd->regs + 0x1048); 1549 udelay(10); 1550 /* De-assert the PHY reset */ 1551 writel(0x7F, hcd->regs + 0x1048); 1552 udelay(200); 1553 pll_lock_check = readl(hcd->regs + 0x1070); 1554 } while (!(pll_lock_check & 0x1) && --retry_count); 1555 } 1556 1557 static void handle_port_status(struct xhci_hcd *xhci, 1558 union xhci_trb *event) 1559 { 1560 struct usb_hcd *hcd; 1561 u32 port_id; 1562 u32 portsc, cmd_reg; 1563 int max_ports; 1564 int slot_id; 1565 unsigned int hcd_portnum; 1566 struct xhci_bus_state *bus_state; 1567 bool bogus_port_status = false; 1568 struct xhci_port *port; 1569 1570 /* Port status change events always have a successful completion code */ 1571 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1572 xhci_warn(xhci, 1573 "WARN: xHC returned failed port status event\n"); 1574 1575 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1576 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1577 1578 if ((port_id <= 0) || (port_id > max_ports)) { 1579 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1580 port_id); 1581 inc_deq(xhci, xhci->event_ring); 1582 return; 1583 } 1584 1585 port = &xhci->hw_ports[port_id - 1]; 1586 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1587 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1588 port_id); 1589 bogus_port_status = true; 1590 goto cleanup; 1591 } 1592 1593 /* We might get interrupts after shared_hcd is removed */ 1594 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1595 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1596 bogus_port_status = true; 1597 goto cleanup; 1598 } 1599 1600 hcd = port->rhub->hcd; 1601 bus_state = &port->rhub->bus_state; 1602 hcd_portnum = port->hcd_portnum; 1603 portsc = readl(port->addr); 1604 1605 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1606 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1607 1608 trace_xhci_handle_port_status(hcd_portnum, portsc); 1609 1610 if (hcd->state == HC_STATE_SUSPENDED) { 1611 xhci_dbg(xhci, "resume root hub\n"); 1612 usb_hcd_resume_root_hub(hcd); 1613 } 1614 1615 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1616 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1617 1618 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1619 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1620 1621 cmd_reg = readl(&xhci->op_regs->command); 1622 if (!(cmd_reg & CMD_RUN)) { 1623 xhci_warn(xhci, "xHC is not running.\n"); 1624 goto cleanup; 1625 } 1626 1627 if (DEV_SUPERSPEED_ANY(portsc)) { 1628 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1629 /* Set a flag to say the port signaled remote wakeup, 1630 * so we can tell the difference between the end of 1631 * device and host initiated resume. 1632 */ 1633 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1634 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1635 xhci_set_link_state(xhci, port, XDEV_U0); 1636 /* Need to wait until the next link state change 1637 * indicates the device is actually in U0. 1638 */ 1639 bogus_port_status = true; 1640 goto cleanup; 1641 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1642 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1643 bus_state->resume_done[hcd_portnum] = jiffies + 1644 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1645 set_bit(hcd_portnum, &bus_state->resuming_ports); 1646 /* Do the rest in GetPortStatus after resume time delay. 1647 * Avoid polling roothub status before that so that a 1648 * usb device auto-resume latency around ~40ms. 1649 */ 1650 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1651 mod_timer(&hcd->rh_timer, 1652 bus_state->resume_done[hcd_portnum]); 1653 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1654 bogus_port_status = true; 1655 } 1656 } 1657 1658 if ((portsc & PORT_PLC) && 1659 DEV_SUPERSPEED_ANY(portsc) && 1660 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1661 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1662 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1663 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1664 /* We've just brought the device into U0/1/2 through either the 1665 * Resume state after a device remote wakeup, or through the 1666 * U3Exit state after a host-initiated resume. If it's a device 1667 * initiated remote wake, don't pass up the link state change, 1668 * so the roothub behavior is consistent with external 1669 * USB 3.0 hub behavior. 1670 */ 1671 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1672 if (slot_id && xhci->devs[slot_id]) 1673 xhci_ring_device(xhci, slot_id); 1674 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1675 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); 1676 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1677 usb_wakeup_notification(hcd->self.root_hub, 1678 hcd_portnum + 1); 1679 bogus_port_status = true; 1680 goto cleanup; 1681 } 1682 } 1683 1684 /* 1685 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1686 * RExit to a disconnect state). If so, let the the driver know it's 1687 * out of the RExit state. 1688 */ 1689 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1690 test_and_clear_bit(hcd_portnum, 1691 &bus_state->rexit_ports)) { 1692 complete(&bus_state->rexit_done[hcd_portnum]); 1693 bogus_port_status = true; 1694 goto cleanup; 1695 } 1696 1697 if (hcd->speed < HCD_USB3) { 1698 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1699 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1700 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1701 xhci_cavium_reset_phy_quirk(xhci); 1702 } 1703 1704 cleanup: 1705 /* Update event ring dequeue pointer before dropping the lock */ 1706 inc_deq(xhci, xhci->event_ring); 1707 1708 /* Don't make the USB core poll the roothub if we got a bad port status 1709 * change event. Besides, at that point we can't tell which roothub 1710 * (USB 2.0 or USB 3.0) to kick. 1711 */ 1712 if (bogus_port_status) 1713 return; 1714 1715 /* 1716 * xHCI port-status-change events occur when the "or" of all the 1717 * status-change bits in the portsc register changes from 0 to 1. 1718 * New status changes won't cause an event if any other change 1719 * bits are still set. When an event occurs, switch over to 1720 * polling to avoid losing status changes. 1721 */ 1722 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1723 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1724 spin_unlock(&xhci->lock); 1725 /* Pass this up to the core */ 1726 usb_hcd_poll_rh_status(hcd); 1727 spin_lock(&xhci->lock); 1728 } 1729 1730 /* 1731 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1732 * at end_trb, which may be in another segment. If the suspect DMA address is a 1733 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1734 * returns 0. 1735 */ 1736 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1737 struct xhci_segment *start_seg, 1738 union xhci_trb *start_trb, 1739 union xhci_trb *end_trb, 1740 dma_addr_t suspect_dma, 1741 bool debug) 1742 { 1743 dma_addr_t start_dma; 1744 dma_addr_t end_seg_dma; 1745 dma_addr_t end_trb_dma; 1746 struct xhci_segment *cur_seg; 1747 1748 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1749 cur_seg = start_seg; 1750 1751 do { 1752 if (start_dma == 0) 1753 return NULL; 1754 /* We may get an event for a Link TRB in the middle of a TD */ 1755 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1756 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1757 /* If the end TRB isn't in this segment, this is set to 0 */ 1758 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1759 1760 if (debug) 1761 xhci_warn(xhci, 1762 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1763 (unsigned long long)suspect_dma, 1764 (unsigned long long)start_dma, 1765 (unsigned long long)end_trb_dma, 1766 (unsigned long long)cur_seg->dma, 1767 (unsigned long long)end_seg_dma); 1768 1769 if (end_trb_dma > 0) { 1770 /* The end TRB is in this segment, so suspect should be here */ 1771 if (start_dma <= end_trb_dma) { 1772 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1773 return cur_seg; 1774 } else { 1775 /* Case for one segment with 1776 * a TD wrapped around to the top 1777 */ 1778 if ((suspect_dma >= start_dma && 1779 suspect_dma <= end_seg_dma) || 1780 (suspect_dma >= cur_seg->dma && 1781 suspect_dma <= end_trb_dma)) 1782 return cur_seg; 1783 } 1784 return NULL; 1785 } else { 1786 /* Might still be somewhere in this segment */ 1787 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1788 return cur_seg; 1789 } 1790 cur_seg = cur_seg->next; 1791 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1792 } while (cur_seg != start_seg); 1793 1794 return NULL; 1795 } 1796 1797 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1798 unsigned int slot_id, unsigned int ep_index, 1799 unsigned int stream_id, struct xhci_td *td, 1800 enum xhci_ep_reset_type reset_type) 1801 { 1802 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1803 struct xhci_command *command; 1804 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1805 if (!command) 1806 return; 1807 1808 ep->ep_state |= EP_HALTED; 1809 1810 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1811 1812 if (reset_type == EP_HARD_RESET) { 1813 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1814 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1815 } 1816 xhci_ring_cmd_db(xhci); 1817 } 1818 1819 /* Check if an error has halted the endpoint ring. The class driver will 1820 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1821 * However, a babble and other errors also halt the endpoint ring, and the class 1822 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1823 * Ring Dequeue Pointer command manually. 1824 */ 1825 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1826 struct xhci_ep_ctx *ep_ctx, 1827 unsigned int trb_comp_code) 1828 { 1829 /* TRB completion codes that may require a manual halt cleanup */ 1830 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1831 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1832 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1833 /* The 0.95 spec says a babbling control endpoint 1834 * is not halted. The 0.96 spec says it is. Some HW 1835 * claims to be 0.95 compliant, but it halts the control 1836 * endpoint anyway. Check if a babble halted the 1837 * endpoint. 1838 */ 1839 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1840 return 1; 1841 1842 return 0; 1843 } 1844 1845 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1846 { 1847 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1848 /* Vendor defined "informational" completion code, 1849 * treat as not-an-error. 1850 */ 1851 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1852 trb_comp_code); 1853 xhci_dbg(xhci, "Treating code as success.\n"); 1854 return 1; 1855 } 1856 return 0; 1857 } 1858 1859 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1860 struct xhci_ring *ep_ring, int *status) 1861 { 1862 struct urb *urb = NULL; 1863 1864 /* Clean up the endpoint's TD list */ 1865 urb = td->urb; 1866 1867 /* if a bounce buffer was used to align this td then unmap it */ 1868 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1869 1870 /* Do one last check of the actual transfer length. 1871 * If the host controller said we transferred more data than the buffer 1872 * length, urb->actual_length will be a very big number (since it's 1873 * unsigned). Play it safe and say we didn't transfer anything. 1874 */ 1875 if (urb->actual_length > urb->transfer_buffer_length) { 1876 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1877 urb->transfer_buffer_length, urb->actual_length); 1878 urb->actual_length = 0; 1879 *status = 0; 1880 } 1881 list_del_init(&td->td_list); 1882 /* Was this TD slated to be cancelled but completed anyway? */ 1883 if (!list_empty(&td->cancelled_td_list)) 1884 list_del_init(&td->cancelled_td_list); 1885 1886 inc_td_cnt(urb); 1887 /* Giveback the urb when all the tds are completed */ 1888 if (last_td_in_urb(td)) { 1889 if ((urb->actual_length != urb->transfer_buffer_length && 1890 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1891 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1892 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1893 urb, urb->actual_length, 1894 urb->transfer_buffer_length, *status); 1895 1896 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1897 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1898 *status = 0; 1899 xhci_giveback_urb_in_irq(xhci, td, *status); 1900 } 1901 1902 return 0; 1903 } 1904 1905 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1906 struct xhci_transfer_event *event, 1907 struct xhci_virt_ep *ep, int *status) 1908 { 1909 struct xhci_virt_device *xdev; 1910 struct xhci_ep_ctx *ep_ctx; 1911 struct xhci_ring *ep_ring; 1912 unsigned int slot_id; 1913 u32 trb_comp_code; 1914 int ep_index; 1915 1916 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1917 xdev = xhci->devs[slot_id]; 1918 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1919 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1920 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1921 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1922 1923 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1924 trb_comp_code == COMP_STOPPED || 1925 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1926 /* The Endpoint Stop Command completion will take care of any 1927 * stopped TDs. A stopped TD may be restarted, so don't update 1928 * the ring dequeue pointer or take this TD off any lists yet. 1929 */ 1930 return 0; 1931 } 1932 if (trb_comp_code == COMP_STALL_ERROR || 1933 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1934 trb_comp_code)) { 1935 /* Issue a reset endpoint command to clear the host side 1936 * halt, followed by a set dequeue command to move the 1937 * dequeue pointer past the TD. 1938 * The class driver clears the device side halt later. 1939 */ 1940 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1941 ep_ring->stream_id, td, EP_HARD_RESET); 1942 } else { 1943 /* Update ring dequeue pointer */ 1944 while (ep_ring->dequeue != td->last_trb) 1945 inc_deq(xhci, ep_ring); 1946 inc_deq(xhci, ep_ring); 1947 } 1948 1949 return xhci_td_cleanup(xhci, td, ep_ring, status); 1950 } 1951 1952 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1953 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1954 union xhci_trb *stop_trb) 1955 { 1956 u32 sum; 1957 union xhci_trb *trb = ring->dequeue; 1958 struct xhci_segment *seg = ring->deq_seg; 1959 1960 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1961 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1962 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1963 } 1964 return sum; 1965 } 1966 1967 /* 1968 * Process control tds, update urb status and actual_length. 1969 */ 1970 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1971 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1972 struct xhci_virt_ep *ep, int *status) 1973 { 1974 struct xhci_virt_device *xdev; 1975 unsigned int slot_id; 1976 int ep_index; 1977 struct xhci_ep_ctx *ep_ctx; 1978 u32 trb_comp_code; 1979 u32 remaining, requested; 1980 u32 trb_type; 1981 1982 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1983 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1984 xdev = xhci->devs[slot_id]; 1985 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1986 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1987 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1988 requested = td->urb->transfer_buffer_length; 1989 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1990 1991 switch (trb_comp_code) { 1992 case COMP_SUCCESS: 1993 if (trb_type != TRB_STATUS) { 1994 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 1995 (trb_type == TRB_DATA) ? "data" : "setup"); 1996 *status = -ESHUTDOWN; 1997 break; 1998 } 1999 *status = 0; 2000 break; 2001 case COMP_SHORT_PACKET: 2002 *status = 0; 2003 break; 2004 case COMP_STOPPED_SHORT_PACKET: 2005 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2006 td->urb->actual_length = remaining; 2007 else 2008 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2009 goto finish_td; 2010 case COMP_STOPPED: 2011 switch (trb_type) { 2012 case TRB_SETUP: 2013 td->urb->actual_length = 0; 2014 goto finish_td; 2015 case TRB_DATA: 2016 case TRB_NORMAL: 2017 td->urb->actual_length = requested - remaining; 2018 goto finish_td; 2019 case TRB_STATUS: 2020 td->urb->actual_length = requested; 2021 goto finish_td; 2022 default: 2023 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2024 trb_type); 2025 goto finish_td; 2026 } 2027 case COMP_STOPPED_LENGTH_INVALID: 2028 goto finish_td; 2029 default: 2030 if (!xhci_requires_manual_halt_cleanup(xhci, 2031 ep_ctx, trb_comp_code)) 2032 break; 2033 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2034 trb_comp_code, ep_index); 2035 /* else fall through */ 2036 case COMP_STALL_ERROR: 2037 /* Did we transfer part of the data (middle) phase? */ 2038 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2039 td->urb->actual_length = requested - remaining; 2040 else if (!td->urb_length_set) 2041 td->urb->actual_length = 0; 2042 goto finish_td; 2043 } 2044 2045 /* stopped at setup stage, no data transferred */ 2046 if (trb_type == TRB_SETUP) 2047 goto finish_td; 2048 2049 /* 2050 * if on data stage then update the actual_length of the URB and flag it 2051 * as set, so it won't be overwritten in the event for the last TRB. 2052 */ 2053 if (trb_type == TRB_DATA || 2054 trb_type == TRB_NORMAL) { 2055 td->urb_length_set = true; 2056 td->urb->actual_length = requested - remaining; 2057 xhci_dbg(xhci, "Waiting for status stage event\n"); 2058 return 0; 2059 } 2060 2061 /* at status stage */ 2062 if (!td->urb_length_set) 2063 td->urb->actual_length = requested; 2064 2065 finish_td: 2066 return finish_td(xhci, td, event, ep, status); 2067 } 2068 2069 /* 2070 * Process isochronous tds, update urb packet status and actual_length. 2071 */ 2072 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2073 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2074 struct xhci_virt_ep *ep, int *status) 2075 { 2076 struct xhci_ring *ep_ring; 2077 struct urb_priv *urb_priv; 2078 int idx; 2079 struct usb_iso_packet_descriptor *frame; 2080 u32 trb_comp_code; 2081 bool sum_trbs_for_length = false; 2082 u32 remaining, requested, ep_trb_len; 2083 int short_framestatus; 2084 2085 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2086 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2087 urb_priv = td->urb->hcpriv; 2088 idx = urb_priv->num_tds_done; 2089 frame = &td->urb->iso_frame_desc[idx]; 2090 requested = frame->length; 2091 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2092 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2093 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2094 -EREMOTEIO : 0; 2095 2096 /* handle completion code */ 2097 switch (trb_comp_code) { 2098 case COMP_SUCCESS: 2099 if (remaining) { 2100 frame->status = short_framestatus; 2101 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2102 sum_trbs_for_length = true; 2103 break; 2104 } 2105 frame->status = 0; 2106 break; 2107 case COMP_SHORT_PACKET: 2108 frame->status = short_framestatus; 2109 sum_trbs_for_length = true; 2110 break; 2111 case COMP_BANDWIDTH_OVERRUN_ERROR: 2112 frame->status = -ECOMM; 2113 break; 2114 case COMP_ISOCH_BUFFER_OVERRUN: 2115 case COMP_BABBLE_DETECTED_ERROR: 2116 frame->status = -EOVERFLOW; 2117 break; 2118 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2119 case COMP_STALL_ERROR: 2120 frame->status = -EPROTO; 2121 break; 2122 case COMP_USB_TRANSACTION_ERROR: 2123 frame->status = -EPROTO; 2124 if (ep_trb != td->last_trb) 2125 return 0; 2126 break; 2127 case COMP_STOPPED: 2128 sum_trbs_for_length = true; 2129 break; 2130 case COMP_STOPPED_SHORT_PACKET: 2131 /* field normally containing residue now contains tranferred */ 2132 frame->status = short_framestatus; 2133 requested = remaining; 2134 break; 2135 case COMP_STOPPED_LENGTH_INVALID: 2136 requested = 0; 2137 remaining = 0; 2138 break; 2139 default: 2140 sum_trbs_for_length = true; 2141 frame->status = -1; 2142 break; 2143 } 2144 2145 if (sum_trbs_for_length) 2146 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2147 ep_trb_len - remaining; 2148 else 2149 frame->actual_length = requested; 2150 2151 td->urb->actual_length += frame->actual_length; 2152 2153 return finish_td(xhci, td, event, ep, status); 2154 } 2155 2156 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2157 struct xhci_transfer_event *event, 2158 struct xhci_virt_ep *ep, int *status) 2159 { 2160 struct xhci_ring *ep_ring; 2161 struct urb_priv *urb_priv; 2162 struct usb_iso_packet_descriptor *frame; 2163 int idx; 2164 2165 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2166 urb_priv = td->urb->hcpriv; 2167 idx = urb_priv->num_tds_done; 2168 frame = &td->urb->iso_frame_desc[idx]; 2169 2170 /* The transfer is partly done. */ 2171 frame->status = -EXDEV; 2172 2173 /* calc actual length */ 2174 frame->actual_length = 0; 2175 2176 /* Update ring dequeue pointer */ 2177 while (ep_ring->dequeue != td->last_trb) 2178 inc_deq(xhci, ep_ring); 2179 inc_deq(xhci, ep_ring); 2180 2181 return xhci_td_cleanup(xhci, td, ep_ring, status); 2182 } 2183 2184 /* 2185 * Process bulk and interrupt tds, update urb status and actual_length. 2186 */ 2187 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2188 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2189 struct xhci_virt_ep *ep, int *status) 2190 { 2191 struct xhci_slot_ctx *slot_ctx; 2192 struct xhci_ring *ep_ring; 2193 u32 trb_comp_code; 2194 u32 remaining, requested, ep_trb_len; 2195 unsigned int slot_id; 2196 int ep_index; 2197 2198 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2199 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2200 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2201 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2202 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2203 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2204 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2205 requested = td->urb->transfer_buffer_length; 2206 2207 switch (trb_comp_code) { 2208 case COMP_SUCCESS: 2209 ep_ring->err_count = 0; 2210 /* handle success with untransferred data as short packet */ 2211 if (ep_trb != td->last_trb || remaining) { 2212 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2213 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2214 td->urb->ep->desc.bEndpointAddress, 2215 requested, remaining); 2216 } 2217 *status = 0; 2218 break; 2219 case COMP_SHORT_PACKET: 2220 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2221 td->urb->ep->desc.bEndpointAddress, 2222 requested, remaining); 2223 *status = 0; 2224 break; 2225 case COMP_STOPPED_SHORT_PACKET: 2226 td->urb->actual_length = remaining; 2227 goto finish_td; 2228 case COMP_STOPPED_LENGTH_INVALID: 2229 /* stopped on ep trb with invalid length, exclude it */ 2230 ep_trb_len = 0; 2231 remaining = 0; 2232 break; 2233 case COMP_USB_TRANSACTION_ERROR: 2234 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2235 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2236 break; 2237 *status = 0; 2238 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2239 ep_ring->stream_id, td, EP_SOFT_RESET); 2240 return 0; 2241 default: 2242 /* do nothing */ 2243 break; 2244 } 2245 2246 if (ep_trb == td->last_trb) 2247 td->urb->actual_length = requested - remaining; 2248 else 2249 td->urb->actual_length = 2250 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2251 ep_trb_len - remaining; 2252 finish_td: 2253 if (remaining > requested) { 2254 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2255 remaining); 2256 td->urb->actual_length = 0; 2257 } 2258 return finish_td(xhci, td, event, ep, status); 2259 } 2260 2261 /* 2262 * If this function returns an error condition, it means it got a Transfer 2263 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2264 * At this point, the host controller is probably hosed and should be reset. 2265 */ 2266 static int handle_tx_event(struct xhci_hcd *xhci, 2267 struct xhci_transfer_event *event) 2268 { 2269 struct xhci_virt_device *xdev; 2270 struct xhci_virt_ep *ep; 2271 struct xhci_ring *ep_ring; 2272 unsigned int slot_id; 2273 int ep_index; 2274 struct xhci_td *td = NULL; 2275 dma_addr_t ep_trb_dma; 2276 struct xhci_segment *ep_seg; 2277 union xhci_trb *ep_trb; 2278 int status = -EINPROGRESS; 2279 struct xhci_ep_ctx *ep_ctx; 2280 struct list_head *tmp; 2281 u32 trb_comp_code; 2282 int td_num = 0; 2283 bool handling_skipped_tds = false; 2284 2285 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2286 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2287 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2288 ep_trb_dma = le64_to_cpu(event->buffer); 2289 2290 xdev = xhci->devs[slot_id]; 2291 if (!xdev) { 2292 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2293 slot_id); 2294 goto err_out; 2295 } 2296 2297 ep = &xdev->eps[ep_index]; 2298 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2299 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2300 2301 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2302 xhci_err(xhci, 2303 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2304 slot_id, ep_index); 2305 goto err_out; 2306 } 2307 2308 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2309 if (!ep_ring) { 2310 switch (trb_comp_code) { 2311 case COMP_STALL_ERROR: 2312 case COMP_USB_TRANSACTION_ERROR: 2313 case COMP_INVALID_STREAM_TYPE_ERROR: 2314 case COMP_INVALID_STREAM_ID_ERROR: 2315 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2316 NULL, EP_SOFT_RESET); 2317 goto cleanup; 2318 case COMP_RING_UNDERRUN: 2319 case COMP_RING_OVERRUN: 2320 case COMP_STOPPED_LENGTH_INVALID: 2321 goto cleanup; 2322 default: 2323 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2324 slot_id, ep_index); 2325 goto err_out; 2326 } 2327 } 2328 2329 /* Count current td numbers if ep->skip is set */ 2330 if (ep->skip) { 2331 list_for_each(tmp, &ep_ring->td_list) 2332 td_num++; 2333 } 2334 2335 /* Look for common error cases */ 2336 switch (trb_comp_code) { 2337 /* Skip codes that require special handling depending on 2338 * transfer type 2339 */ 2340 case COMP_SUCCESS: 2341 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2342 break; 2343 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2344 trb_comp_code = COMP_SHORT_PACKET; 2345 else 2346 xhci_warn_ratelimited(xhci, 2347 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2348 slot_id, ep_index); 2349 case COMP_SHORT_PACKET: 2350 break; 2351 /* Completion codes for endpoint stopped state */ 2352 case COMP_STOPPED: 2353 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2354 slot_id, ep_index); 2355 break; 2356 case COMP_STOPPED_LENGTH_INVALID: 2357 xhci_dbg(xhci, 2358 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2359 slot_id, ep_index); 2360 break; 2361 case COMP_STOPPED_SHORT_PACKET: 2362 xhci_dbg(xhci, 2363 "Stopped with short packet transfer detected for slot %u ep %u\n", 2364 slot_id, ep_index); 2365 break; 2366 /* Completion codes for endpoint halted state */ 2367 case COMP_STALL_ERROR: 2368 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2369 ep_index); 2370 ep->ep_state |= EP_HALTED; 2371 status = -EPIPE; 2372 break; 2373 case COMP_SPLIT_TRANSACTION_ERROR: 2374 case COMP_USB_TRANSACTION_ERROR: 2375 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2376 slot_id, ep_index); 2377 status = -EPROTO; 2378 break; 2379 case COMP_BABBLE_DETECTED_ERROR: 2380 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2381 slot_id, ep_index); 2382 status = -EOVERFLOW; 2383 break; 2384 /* Completion codes for endpoint error state */ 2385 case COMP_TRB_ERROR: 2386 xhci_warn(xhci, 2387 "WARN: TRB error for slot %u ep %u on endpoint\n", 2388 slot_id, ep_index); 2389 status = -EILSEQ; 2390 break; 2391 /* completion codes not indicating endpoint state change */ 2392 case COMP_DATA_BUFFER_ERROR: 2393 xhci_warn(xhci, 2394 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2395 slot_id, ep_index); 2396 status = -ENOSR; 2397 break; 2398 case COMP_BANDWIDTH_OVERRUN_ERROR: 2399 xhci_warn(xhci, 2400 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2401 slot_id, ep_index); 2402 break; 2403 case COMP_ISOCH_BUFFER_OVERRUN: 2404 xhci_warn(xhci, 2405 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2406 slot_id, ep_index); 2407 break; 2408 case COMP_RING_UNDERRUN: 2409 /* 2410 * When the Isoch ring is empty, the xHC will generate 2411 * a Ring Overrun Event for IN Isoch endpoint or Ring 2412 * Underrun Event for OUT Isoch endpoint. 2413 */ 2414 xhci_dbg(xhci, "underrun event on endpoint\n"); 2415 if (!list_empty(&ep_ring->td_list)) 2416 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2417 "still with TDs queued?\n", 2418 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2419 ep_index); 2420 goto cleanup; 2421 case COMP_RING_OVERRUN: 2422 xhci_dbg(xhci, "overrun event on endpoint\n"); 2423 if (!list_empty(&ep_ring->td_list)) 2424 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2425 "still with TDs queued?\n", 2426 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2427 ep_index); 2428 goto cleanup; 2429 case COMP_MISSED_SERVICE_ERROR: 2430 /* 2431 * When encounter missed service error, one or more isoc tds 2432 * may be missed by xHC. 2433 * Set skip flag of the ep_ring; Complete the missed tds as 2434 * short transfer when process the ep_ring next time. 2435 */ 2436 ep->skip = true; 2437 xhci_dbg(xhci, 2438 "Miss service interval error for slot %u ep %u, set skip flag\n", 2439 slot_id, ep_index); 2440 goto cleanup; 2441 case COMP_NO_PING_RESPONSE_ERROR: 2442 ep->skip = true; 2443 xhci_dbg(xhci, 2444 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2445 slot_id, ep_index); 2446 goto cleanup; 2447 2448 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2449 /* needs disable slot command to recover */ 2450 xhci_warn(xhci, 2451 "WARN: detect an incompatible device for slot %u ep %u", 2452 slot_id, ep_index); 2453 status = -EPROTO; 2454 break; 2455 default: 2456 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2457 status = 0; 2458 break; 2459 } 2460 xhci_warn(xhci, 2461 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2462 trb_comp_code, slot_id, ep_index); 2463 goto cleanup; 2464 } 2465 2466 do { 2467 /* This TRB should be in the TD at the head of this ring's 2468 * TD list. 2469 */ 2470 if (list_empty(&ep_ring->td_list)) { 2471 /* 2472 * Don't print wanings if it's due to a stopped endpoint 2473 * generating an extra completion event if the device 2474 * was suspended. Or, a event for the last TRB of a 2475 * short TD we already got a short event for. 2476 * The short TD is already removed from the TD list. 2477 */ 2478 2479 if (!(trb_comp_code == COMP_STOPPED || 2480 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2481 ep_ring->last_td_was_short)) { 2482 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2483 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2484 ep_index); 2485 } 2486 if (ep->skip) { 2487 ep->skip = false; 2488 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2489 slot_id, ep_index); 2490 } 2491 goto cleanup; 2492 } 2493 2494 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2495 if (ep->skip && td_num == 0) { 2496 ep->skip = false; 2497 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2498 slot_id, ep_index); 2499 goto cleanup; 2500 } 2501 2502 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2503 td_list); 2504 if (ep->skip) 2505 td_num--; 2506 2507 /* Is this a TRB in the currently executing TD? */ 2508 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2509 td->last_trb, ep_trb_dma, false); 2510 2511 /* 2512 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2513 * is not in the current TD pointed by ep_ring->dequeue because 2514 * that the hardware dequeue pointer still at the previous TRB 2515 * of the current TD. The previous TRB maybe a Link TD or the 2516 * last TRB of the previous TD. The command completion handle 2517 * will take care the rest. 2518 */ 2519 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2520 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2521 goto cleanup; 2522 } 2523 2524 if (!ep_seg) { 2525 if (!ep->skip || 2526 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2527 /* Some host controllers give a spurious 2528 * successful event after a short transfer. 2529 * Ignore it. 2530 */ 2531 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2532 ep_ring->last_td_was_short) { 2533 ep_ring->last_td_was_short = false; 2534 goto cleanup; 2535 } 2536 /* HC is busted, give up! */ 2537 xhci_err(xhci, 2538 "ERROR Transfer event TRB DMA ptr not " 2539 "part of current TD ep_index %d " 2540 "comp_code %u\n", ep_index, 2541 trb_comp_code); 2542 trb_in_td(xhci, ep_ring->deq_seg, 2543 ep_ring->dequeue, td->last_trb, 2544 ep_trb_dma, true); 2545 return -ESHUTDOWN; 2546 } 2547 2548 skip_isoc_td(xhci, td, event, ep, &status); 2549 goto cleanup; 2550 } 2551 if (trb_comp_code == COMP_SHORT_PACKET) 2552 ep_ring->last_td_was_short = true; 2553 else 2554 ep_ring->last_td_was_short = false; 2555 2556 if (ep->skip) { 2557 xhci_dbg(xhci, 2558 "Found td. Clear skip flag for slot %u ep %u.\n", 2559 slot_id, ep_index); 2560 ep->skip = false; 2561 } 2562 2563 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2564 sizeof(*ep_trb)]; 2565 2566 trace_xhci_handle_transfer(ep_ring, 2567 (struct xhci_generic_trb *) ep_trb); 2568 2569 /* 2570 * No-op TRB could trigger interrupts in a case where 2571 * a URB was killed and a STALL_ERROR happens right 2572 * after the endpoint ring stopped. Reset the halted 2573 * endpoint. Otherwise, the endpoint remains stalled 2574 * indefinitely. 2575 */ 2576 if (trb_is_noop(ep_trb)) { 2577 if (trb_comp_code == COMP_STALL_ERROR || 2578 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2579 trb_comp_code)) 2580 xhci_cleanup_halted_endpoint(xhci, slot_id, 2581 ep_index, 2582 ep_ring->stream_id, 2583 td, EP_HARD_RESET); 2584 goto cleanup; 2585 } 2586 2587 /* update the urb's actual_length and give back to the core */ 2588 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2589 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2590 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2591 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2592 else 2593 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2594 &status); 2595 cleanup: 2596 handling_skipped_tds = ep->skip && 2597 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2598 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2599 2600 /* 2601 * Do not update event ring dequeue pointer if we're in a loop 2602 * processing missed tds. 2603 */ 2604 if (!handling_skipped_tds) 2605 inc_deq(xhci, xhci->event_ring); 2606 2607 /* 2608 * If ep->skip is set, it means there are missed tds on the 2609 * endpoint ring need to take care of. 2610 * Process them as short transfer until reach the td pointed by 2611 * the event. 2612 */ 2613 } while (handling_skipped_tds); 2614 2615 return 0; 2616 2617 err_out: 2618 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2619 (unsigned long long) xhci_trb_virt_to_dma( 2620 xhci->event_ring->deq_seg, 2621 xhci->event_ring->dequeue), 2622 lower_32_bits(le64_to_cpu(event->buffer)), 2623 upper_32_bits(le64_to_cpu(event->buffer)), 2624 le32_to_cpu(event->transfer_len), 2625 le32_to_cpu(event->flags)); 2626 return -ENODEV; 2627 } 2628 2629 /* 2630 * This function handles all OS-owned events on the event ring. It may drop 2631 * xhci->lock between event processing (e.g. to pass up port status changes). 2632 * Returns >0 for "possibly more events to process" (caller should call again), 2633 * otherwise 0 if done. In future, <0 returns should indicate error code. 2634 */ 2635 static int xhci_handle_event(struct xhci_hcd *xhci) 2636 { 2637 union xhci_trb *event; 2638 int update_ptrs = 1; 2639 int ret; 2640 2641 /* Event ring hasn't been allocated yet. */ 2642 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2643 xhci_err(xhci, "ERROR event ring not ready\n"); 2644 return -ENOMEM; 2645 } 2646 2647 event = xhci->event_ring->dequeue; 2648 /* Does the HC or OS own the TRB? */ 2649 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2650 xhci->event_ring->cycle_state) 2651 return 0; 2652 2653 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2654 2655 /* 2656 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2657 * speculative reads of the event's flags/data below. 2658 */ 2659 rmb(); 2660 /* FIXME: Handle more event types. */ 2661 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2662 case TRB_TYPE(TRB_COMPLETION): 2663 handle_cmd_completion(xhci, &event->event_cmd); 2664 break; 2665 case TRB_TYPE(TRB_PORT_STATUS): 2666 handle_port_status(xhci, event); 2667 update_ptrs = 0; 2668 break; 2669 case TRB_TYPE(TRB_TRANSFER): 2670 ret = handle_tx_event(xhci, &event->trans_event); 2671 if (ret >= 0) 2672 update_ptrs = 0; 2673 break; 2674 case TRB_TYPE(TRB_DEV_NOTE): 2675 handle_device_notification(xhci, event); 2676 break; 2677 default: 2678 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2679 TRB_TYPE(48)) 2680 handle_vendor_event(xhci, event); 2681 else 2682 xhci_warn(xhci, "ERROR unknown event type %d\n", 2683 TRB_FIELD_TO_TYPE( 2684 le32_to_cpu(event->event_cmd.flags))); 2685 } 2686 /* Any of the above functions may drop and re-acquire the lock, so check 2687 * to make sure a watchdog timer didn't mark the host as non-responsive. 2688 */ 2689 if (xhci->xhc_state & XHCI_STATE_DYING) { 2690 xhci_dbg(xhci, "xHCI host dying, returning from " 2691 "event handler.\n"); 2692 return 0; 2693 } 2694 2695 if (update_ptrs) 2696 /* Update SW event ring dequeue pointer */ 2697 inc_deq(xhci, xhci->event_ring); 2698 2699 /* Are there more items on the event ring? Caller will call us again to 2700 * check. 2701 */ 2702 return 1; 2703 } 2704 2705 /* 2706 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2707 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2708 * indicators of an event TRB error, but we check the status *first* to be safe. 2709 */ 2710 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2711 { 2712 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2713 union xhci_trb *event_ring_deq; 2714 irqreturn_t ret = IRQ_NONE; 2715 unsigned long flags; 2716 dma_addr_t deq; 2717 u64 temp_64; 2718 u32 status; 2719 2720 spin_lock_irqsave(&xhci->lock, flags); 2721 /* Check if the xHC generated the interrupt, or the irq is shared */ 2722 status = readl(&xhci->op_regs->status); 2723 if (status == ~(u32)0) { 2724 xhci_hc_died(xhci); 2725 ret = IRQ_HANDLED; 2726 goto out; 2727 } 2728 2729 if (!(status & STS_EINT)) 2730 goto out; 2731 2732 if (status & STS_FATAL) { 2733 xhci_warn(xhci, "WARNING: Host System Error\n"); 2734 xhci_halt(xhci); 2735 ret = IRQ_HANDLED; 2736 goto out; 2737 } 2738 2739 /* 2740 * Clear the op reg interrupt status first, 2741 * so we can receive interrupts from other MSI-X interrupters. 2742 * Write 1 to clear the interrupt status. 2743 */ 2744 status |= STS_EINT; 2745 writel(status, &xhci->op_regs->status); 2746 2747 if (!hcd->msi_enabled) { 2748 u32 irq_pending; 2749 irq_pending = readl(&xhci->ir_set->irq_pending); 2750 irq_pending |= IMAN_IP; 2751 writel(irq_pending, &xhci->ir_set->irq_pending); 2752 } 2753 2754 if (xhci->xhc_state & XHCI_STATE_DYING || 2755 xhci->xhc_state & XHCI_STATE_HALTED) { 2756 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2757 "Shouldn't IRQs be disabled?\n"); 2758 /* Clear the event handler busy flag (RW1C); 2759 * the event ring should be empty. 2760 */ 2761 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2762 xhci_write_64(xhci, temp_64 | ERST_EHB, 2763 &xhci->ir_set->erst_dequeue); 2764 ret = IRQ_HANDLED; 2765 goto out; 2766 } 2767 2768 event_ring_deq = xhci->event_ring->dequeue; 2769 /* FIXME this should be a delayed service routine 2770 * that clears the EHB. 2771 */ 2772 while (xhci_handle_event(xhci) > 0) {} 2773 2774 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2775 /* If necessary, update the HW's version of the event ring deq ptr. */ 2776 if (event_ring_deq != xhci->event_ring->dequeue) { 2777 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2778 xhci->event_ring->dequeue); 2779 if (deq == 0) 2780 xhci_warn(xhci, "WARN something wrong with SW event " 2781 "ring dequeue ptr.\n"); 2782 /* Update HC event ring dequeue pointer */ 2783 temp_64 &= ERST_PTR_MASK; 2784 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2785 } 2786 2787 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2788 temp_64 |= ERST_EHB; 2789 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2790 ret = IRQ_HANDLED; 2791 2792 out: 2793 spin_unlock_irqrestore(&xhci->lock, flags); 2794 2795 return ret; 2796 } 2797 2798 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2799 { 2800 return xhci_irq(hcd); 2801 } 2802 2803 /**** Endpoint Ring Operations ****/ 2804 2805 /* 2806 * Generic function for queueing a TRB on a ring. 2807 * The caller must have checked to make sure there's room on the ring. 2808 * 2809 * @more_trbs_coming: Will you enqueue more TRBs before calling 2810 * prepare_transfer()? 2811 */ 2812 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2813 bool more_trbs_coming, 2814 u32 field1, u32 field2, u32 field3, u32 field4) 2815 { 2816 struct xhci_generic_trb *trb; 2817 2818 trb = &ring->enqueue->generic; 2819 trb->field[0] = cpu_to_le32(field1); 2820 trb->field[1] = cpu_to_le32(field2); 2821 trb->field[2] = cpu_to_le32(field3); 2822 trb->field[3] = cpu_to_le32(field4); 2823 2824 trace_xhci_queue_trb(ring, trb); 2825 2826 inc_enq(xhci, ring, more_trbs_coming); 2827 } 2828 2829 /* 2830 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2831 * FIXME allocate segments if the ring is full. 2832 */ 2833 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2834 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2835 { 2836 unsigned int num_trbs_needed; 2837 2838 /* Make sure the endpoint has been added to xHC schedule */ 2839 switch (ep_state) { 2840 case EP_STATE_DISABLED: 2841 /* 2842 * USB core changed config/interfaces without notifying us, 2843 * or hardware is reporting the wrong state. 2844 */ 2845 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2846 return -ENOENT; 2847 case EP_STATE_ERROR: 2848 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2849 /* FIXME event handling code for error needs to clear it */ 2850 /* XXX not sure if this should be -ENOENT or not */ 2851 return -EINVAL; 2852 case EP_STATE_HALTED: 2853 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2854 case EP_STATE_STOPPED: 2855 case EP_STATE_RUNNING: 2856 break; 2857 default: 2858 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2859 /* 2860 * FIXME issue Configure Endpoint command to try to get the HC 2861 * back into a known state. 2862 */ 2863 return -EINVAL; 2864 } 2865 2866 while (1) { 2867 if (room_on_ring(xhci, ep_ring, num_trbs)) 2868 break; 2869 2870 if (ep_ring == xhci->cmd_ring) { 2871 xhci_err(xhci, "Do not support expand command ring\n"); 2872 return -ENOMEM; 2873 } 2874 2875 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2876 "ERROR no room on ep ring, try ring expansion"); 2877 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2878 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2879 mem_flags)) { 2880 xhci_err(xhci, "Ring expansion failed\n"); 2881 return -ENOMEM; 2882 } 2883 } 2884 2885 while (trb_is_link(ep_ring->enqueue)) { 2886 /* If we're not dealing with 0.95 hardware or isoc rings 2887 * on AMD 0.96 host, clear the chain bit. 2888 */ 2889 if (!xhci_link_trb_quirk(xhci) && 2890 !(ep_ring->type == TYPE_ISOC && 2891 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2892 ep_ring->enqueue->link.control &= 2893 cpu_to_le32(~TRB_CHAIN); 2894 else 2895 ep_ring->enqueue->link.control |= 2896 cpu_to_le32(TRB_CHAIN); 2897 2898 wmb(); 2899 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2900 2901 /* Toggle the cycle bit after the last ring segment. */ 2902 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2903 ep_ring->cycle_state ^= 1; 2904 2905 ep_ring->enq_seg = ep_ring->enq_seg->next; 2906 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2907 } 2908 return 0; 2909 } 2910 2911 static int prepare_transfer(struct xhci_hcd *xhci, 2912 struct xhci_virt_device *xdev, 2913 unsigned int ep_index, 2914 unsigned int stream_id, 2915 unsigned int num_trbs, 2916 struct urb *urb, 2917 unsigned int td_index, 2918 gfp_t mem_flags) 2919 { 2920 int ret; 2921 struct urb_priv *urb_priv; 2922 struct xhci_td *td; 2923 struct xhci_ring *ep_ring; 2924 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2925 2926 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2927 if (!ep_ring) { 2928 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2929 stream_id); 2930 return -EINVAL; 2931 } 2932 2933 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2934 num_trbs, mem_flags); 2935 if (ret) 2936 return ret; 2937 2938 urb_priv = urb->hcpriv; 2939 td = &urb_priv->td[td_index]; 2940 2941 INIT_LIST_HEAD(&td->td_list); 2942 INIT_LIST_HEAD(&td->cancelled_td_list); 2943 2944 if (td_index == 0) { 2945 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2946 if (unlikely(ret)) 2947 return ret; 2948 } 2949 2950 td->urb = urb; 2951 /* Add this TD to the tail of the endpoint ring's TD list */ 2952 list_add_tail(&td->td_list, &ep_ring->td_list); 2953 td->start_seg = ep_ring->enq_seg; 2954 td->first_trb = ep_ring->enqueue; 2955 2956 return 0; 2957 } 2958 2959 unsigned int count_trbs(u64 addr, u64 len) 2960 { 2961 unsigned int num_trbs; 2962 2963 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2964 TRB_MAX_BUFF_SIZE); 2965 if (num_trbs == 0) 2966 num_trbs++; 2967 2968 return num_trbs; 2969 } 2970 2971 static inline unsigned int count_trbs_needed(struct urb *urb) 2972 { 2973 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2974 } 2975 2976 static unsigned int count_sg_trbs_needed(struct urb *urb) 2977 { 2978 struct scatterlist *sg; 2979 unsigned int i, len, full_len, num_trbs = 0; 2980 2981 full_len = urb->transfer_buffer_length; 2982 2983 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2984 len = sg_dma_len(sg); 2985 num_trbs += count_trbs(sg_dma_address(sg), len); 2986 len = min_t(unsigned int, len, full_len); 2987 full_len -= len; 2988 if (full_len == 0) 2989 break; 2990 } 2991 2992 return num_trbs; 2993 } 2994 2995 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2996 { 2997 u64 addr, len; 2998 2999 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3000 len = urb->iso_frame_desc[i].length; 3001 3002 return count_trbs(addr, len); 3003 } 3004 3005 static void check_trb_math(struct urb *urb, int running_total) 3006 { 3007 if (unlikely(running_total != urb->transfer_buffer_length)) 3008 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3009 "queued %#x (%d), asked for %#x (%d)\n", 3010 __func__, 3011 urb->ep->desc.bEndpointAddress, 3012 running_total, running_total, 3013 urb->transfer_buffer_length, 3014 urb->transfer_buffer_length); 3015 } 3016 3017 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3018 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3019 struct xhci_generic_trb *start_trb) 3020 { 3021 /* 3022 * Pass all the TRBs to the hardware at once and make sure this write 3023 * isn't reordered. 3024 */ 3025 wmb(); 3026 if (start_cycle) 3027 start_trb->field[3] |= cpu_to_le32(start_cycle); 3028 else 3029 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3030 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3031 } 3032 3033 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3034 struct xhci_ep_ctx *ep_ctx) 3035 { 3036 int xhci_interval; 3037 int ep_interval; 3038 3039 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3040 ep_interval = urb->interval; 3041 3042 /* Convert to microframes */ 3043 if (urb->dev->speed == USB_SPEED_LOW || 3044 urb->dev->speed == USB_SPEED_FULL) 3045 ep_interval *= 8; 3046 3047 /* FIXME change this to a warning and a suggestion to use the new API 3048 * to set the polling interval (once the API is added). 3049 */ 3050 if (xhci_interval != ep_interval) { 3051 dev_dbg_ratelimited(&urb->dev->dev, 3052 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3053 ep_interval, ep_interval == 1 ? "" : "s", 3054 xhci_interval, xhci_interval == 1 ? "" : "s"); 3055 urb->interval = xhci_interval; 3056 /* Convert back to frames for LS/FS devices */ 3057 if (urb->dev->speed == USB_SPEED_LOW || 3058 urb->dev->speed == USB_SPEED_FULL) 3059 urb->interval /= 8; 3060 } 3061 } 3062 3063 /* 3064 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3065 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3066 * (comprised of sg list entries) can take several service intervals to 3067 * transmit. 3068 */ 3069 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3070 struct urb *urb, int slot_id, unsigned int ep_index) 3071 { 3072 struct xhci_ep_ctx *ep_ctx; 3073 3074 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3075 check_interval(xhci, urb, ep_ctx); 3076 3077 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3078 } 3079 3080 /* 3081 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3082 * packets remaining in the TD (*not* including this TRB). 3083 * 3084 * Total TD packet count = total_packet_count = 3085 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3086 * 3087 * Packets transferred up to and including this TRB = packets_transferred = 3088 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3089 * 3090 * TD size = total_packet_count - packets_transferred 3091 * 3092 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3093 * including this TRB, right shifted by 10 3094 * 3095 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3096 * This is taken care of in the TRB_TD_SIZE() macro 3097 * 3098 * The last TRB in a TD must have the TD size set to zero. 3099 */ 3100 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3101 int trb_buff_len, unsigned int td_total_len, 3102 struct urb *urb, bool more_trbs_coming) 3103 { 3104 u32 maxp, total_packet_count; 3105 3106 /* MTK xHCI 0.96 contains some features from 1.0 */ 3107 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3108 return ((td_total_len - transferred) >> 10); 3109 3110 /* One TRB with a zero-length data packet. */ 3111 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3112 trb_buff_len == td_total_len) 3113 return 0; 3114 3115 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3116 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3117 trb_buff_len = 0; 3118 3119 maxp = usb_endpoint_maxp(&urb->ep->desc); 3120 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3121 3122 /* Queueing functions don't count the current TRB into transferred */ 3123 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3124 } 3125 3126 3127 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3128 u32 *trb_buff_len, struct xhci_segment *seg) 3129 { 3130 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3131 unsigned int unalign; 3132 unsigned int max_pkt; 3133 u32 new_buff_len; 3134 size_t len; 3135 3136 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3137 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3138 3139 /* we got lucky, last normal TRB data on segment is packet aligned */ 3140 if (unalign == 0) 3141 return 0; 3142 3143 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3144 unalign, *trb_buff_len); 3145 3146 /* is the last nornal TRB alignable by splitting it */ 3147 if (*trb_buff_len > unalign) { 3148 *trb_buff_len -= unalign; 3149 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3150 return 0; 3151 } 3152 3153 /* 3154 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3155 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3156 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3157 */ 3158 new_buff_len = max_pkt - (enqd_len % max_pkt); 3159 3160 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3161 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3162 3163 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3164 if (usb_urb_dir_out(urb)) { 3165 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3166 seg->bounce_buf, new_buff_len, enqd_len); 3167 if (len != seg->bounce_len) 3168 xhci_warn(xhci, 3169 "WARN Wrong bounce buffer write length: %zu != %d\n", 3170 len, seg->bounce_len); 3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3172 max_pkt, DMA_TO_DEVICE); 3173 } else { 3174 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3175 max_pkt, DMA_FROM_DEVICE); 3176 } 3177 3178 if (dma_mapping_error(dev, seg->bounce_dma)) { 3179 /* try without aligning. Some host controllers survive */ 3180 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3181 return 0; 3182 } 3183 *trb_buff_len = new_buff_len; 3184 seg->bounce_len = new_buff_len; 3185 seg->bounce_offs = enqd_len; 3186 3187 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3188 3189 return 1; 3190 } 3191 3192 /* This is very similar to what ehci-q.c qtd_fill() does */ 3193 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3194 struct urb *urb, int slot_id, unsigned int ep_index) 3195 { 3196 struct xhci_ring *ring; 3197 struct urb_priv *urb_priv; 3198 struct xhci_td *td; 3199 struct xhci_generic_trb *start_trb; 3200 struct scatterlist *sg = NULL; 3201 bool more_trbs_coming = true; 3202 bool need_zero_pkt = false; 3203 bool first_trb = true; 3204 unsigned int num_trbs; 3205 unsigned int start_cycle, num_sgs = 0; 3206 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3207 int sent_len, ret; 3208 u32 field, length_field, remainder; 3209 u64 addr, send_addr; 3210 3211 ring = xhci_urb_to_transfer_ring(xhci, urb); 3212 if (!ring) 3213 return -EINVAL; 3214 3215 full_len = urb->transfer_buffer_length; 3216 /* If we have scatter/gather list, we use it. */ 3217 if (urb->num_sgs) { 3218 num_sgs = urb->num_mapped_sgs; 3219 sg = urb->sg; 3220 addr = (u64) sg_dma_address(sg); 3221 block_len = sg_dma_len(sg); 3222 num_trbs = count_sg_trbs_needed(urb); 3223 } else { 3224 num_trbs = count_trbs_needed(urb); 3225 addr = (u64) urb->transfer_dma; 3226 block_len = full_len; 3227 } 3228 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3229 ep_index, urb->stream_id, 3230 num_trbs, urb, 0, mem_flags); 3231 if (unlikely(ret < 0)) 3232 return ret; 3233 3234 urb_priv = urb->hcpriv; 3235 3236 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3237 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3238 need_zero_pkt = true; 3239 3240 td = &urb_priv->td[0]; 3241 3242 /* 3243 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3244 * until we've finished creating all the other TRBs. The ring's cycle 3245 * state may change as we enqueue the other TRBs, so save it too. 3246 */ 3247 start_trb = &ring->enqueue->generic; 3248 start_cycle = ring->cycle_state; 3249 send_addr = addr; 3250 3251 /* Queue the TRBs, even if they are zero-length */ 3252 for (enqd_len = 0; first_trb || enqd_len < full_len; 3253 enqd_len += trb_buff_len) { 3254 field = TRB_TYPE(TRB_NORMAL); 3255 3256 /* TRB buffer should not cross 64KB boundaries */ 3257 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3258 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3259 3260 if (enqd_len + trb_buff_len > full_len) 3261 trb_buff_len = full_len - enqd_len; 3262 3263 /* Don't change the cycle bit of the first TRB until later */ 3264 if (first_trb) { 3265 first_trb = false; 3266 if (start_cycle == 0) 3267 field |= TRB_CYCLE; 3268 } else 3269 field |= ring->cycle_state; 3270 3271 /* Chain all the TRBs together; clear the chain bit in the last 3272 * TRB to indicate it's the last TRB in the chain. 3273 */ 3274 if (enqd_len + trb_buff_len < full_len) { 3275 field |= TRB_CHAIN; 3276 if (trb_is_link(ring->enqueue + 1)) { 3277 if (xhci_align_td(xhci, urb, enqd_len, 3278 &trb_buff_len, 3279 ring->enq_seg)) { 3280 send_addr = ring->enq_seg->bounce_dma; 3281 /* assuming TD won't span 2 segs */ 3282 td->bounce_seg = ring->enq_seg; 3283 } 3284 } 3285 } 3286 if (enqd_len + trb_buff_len >= full_len) { 3287 field &= ~TRB_CHAIN; 3288 field |= TRB_IOC; 3289 more_trbs_coming = false; 3290 td->last_trb = ring->enqueue; 3291 3292 if (xhci_urb_suitable_for_idt(urb)) { 3293 memcpy(&send_addr, urb->transfer_buffer, 3294 trb_buff_len); 3295 field |= TRB_IDT; 3296 } 3297 } 3298 3299 /* Only set interrupt on short packet for IN endpoints */ 3300 if (usb_urb_dir_in(urb)) 3301 field |= TRB_ISP; 3302 3303 /* Set the TRB length, TD size, and interrupter fields. */ 3304 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3305 full_len, urb, more_trbs_coming); 3306 3307 length_field = TRB_LEN(trb_buff_len) | 3308 TRB_TD_SIZE(remainder) | 3309 TRB_INTR_TARGET(0); 3310 3311 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3312 lower_32_bits(send_addr), 3313 upper_32_bits(send_addr), 3314 length_field, 3315 field); 3316 3317 addr += trb_buff_len; 3318 sent_len = trb_buff_len; 3319 3320 while (sg && sent_len >= block_len) { 3321 /* New sg entry */ 3322 --num_sgs; 3323 sent_len -= block_len; 3324 if (num_sgs != 0) { 3325 sg = sg_next(sg); 3326 block_len = sg_dma_len(sg); 3327 addr = (u64) sg_dma_address(sg); 3328 addr += sent_len; 3329 } 3330 } 3331 block_len -= sent_len; 3332 send_addr = addr; 3333 } 3334 3335 if (need_zero_pkt) { 3336 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3337 ep_index, urb->stream_id, 3338 1, urb, 1, mem_flags); 3339 urb_priv->td[1].last_trb = ring->enqueue; 3340 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3341 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3342 } 3343 3344 check_trb_math(urb, enqd_len); 3345 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3346 start_cycle, start_trb); 3347 return 0; 3348 } 3349 3350 /* Caller must have locked xhci->lock */ 3351 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3352 struct urb *urb, int slot_id, unsigned int ep_index) 3353 { 3354 struct xhci_ring *ep_ring; 3355 int num_trbs; 3356 int ret; 3357 struct usb_ctrlrequest *setup; 3358 struct xhci_generic_trb *start_trb; 3359 int start_cycle; 3360 u32 field; 3361 struct urb_priv *urb_priv; 3362 struct xhci_td *td; 3363 3364 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3365 if (!ep_ring) 3366 return -EINVAL; 3367 3368 /* 3369 * Need to copy setup packet into setup TRB, so we can't use the setup 3370 * DMA address. 3371 */ 3372 if (!urb->setup_packet) 3373 return -EINVAL; 3374 3375 /* 1 TRB for setup, 1 for status */ 3376 num_trbs = 2; 3377 /* 3378 * Don't need to check if we need additional event data and normal TRBs, 3379 * since data in control transfers will never get bigger than 16MB 3380 * XXX: can we get a buffer that crosses 64KB boundaries? 3381 */ 3382 if (urb->transfer_buffer_length > 0) 3383 num_trbs++; 3384 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3385 ep_index, urb->stream_id, 3386 num_trbs, urb, 0, mem_flags); 3387 if (ret < 0) 3388 return ret; 3389 3390 urb_priv = urb->hcpriv; 3391 td = &urb_priv->td[0]; 3392 3393 /* 3394 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3395 * until we've finished creating all the other TRBs. The ring's cycle 3396 * state may change as we enqueue the other TRBs, so save it too. 3397 */ 3398 start_trb = &ep_ring->enqueue->generic; 3399 start_cycle = ep_ring->cycle_state; 3400 3401 /* Queue setup TRB - see section 6.4.1.2.1 */ 3402 /* FIXME better way to translate setup_packet into two u32 fields? */ 3403 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3404 field = 0; 3405 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3406 if (start_cycle == 0) 3407 field |= 0x1; 3408 3409 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3410 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3411 if (urb->transfer_buffer_length > 0) { 3412 if (setup->bRequestType & USB_DIR_IN) 3413 field |= TRB_TX_TYPE(TRB_DATA_IN); 3414 else 3415 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3416 } 3417 } 3418 3419 queue_trb(xhci, ep_ring, true, 3420 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3421 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3422 TRB_LEN(8) | TRB_INTR_TARGET(0), 3423 /* Immediate data in pointer */ 3424 field); 3425 3426 /* If there's data, queue data TRBs */ 3427 /* Only set interrupt on short packet for IN endpoints */ 3428 if (usb_urb_dir_in(urb)) 3429 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3430 else 3431 field = TRB_TYPE(TRB_DATA); 3432 3433 if (urb->transfer_buffer_length > 0) { 3434 u32 length_field, remainder; 3435 u64 addr; 3436 3437 if (xhci_urb_suitable_for_idt(urb)) { 3438 memcpy(&addr, urb->transfer_buffer, 3439 urb->transfer_buffer_length); 3440 field |= TRB_IDT; 3441 } else { 3442 addr = (u64) urb->transfer_dma; 3443 } 3444 3445 remainder = xhci_td_remainder(xhci, 0, 3446 urb->transfer_buffer_length, 3447 urb->transfer_buffer_length, 3448 urb, 1); 3449 length_field = TRB_LEN(urb->transfer_buffer_length) | 3450 TRB_TD_SIZE(remainder) | 3451 TRB_INTR_TARGET(0); 3452 if (setup->bRequestType & USB_DIR_IN) 3453 field |= TRB_DIR_IN; 3454 queue_trb(xhci, ep_ring, true, 3455 lower_32_bits(addr), 3456 upper_32_bits(addr), 3457 length_field, 3458 field | ep_ring->cycle_state); 3459 } 3460 3461 /* Save the DMA address of the last TRB in the TD */ 3462 td->last_trb = ep_ring->enqueue; 3463 3464 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3465 /* If the device sent data, the status stage is an OUT transfer */ 3466 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3467 field = 0; 3468 else 3469 field = TRB_DIR_IN; 3470 queue_trb(xhci, ep_ring, false, 3471 0, 3472 0, 3473 TRB_INTR_TARGET(0), 3474 /* Event on completion */ 3475 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3476 3477 giveback_first_trb(xhci, slot_id, ep_index, 0, 3478 start_cycle, start_trb); 3479 return 0; 3480 } 3481 3482 /* 3483 * The transfer burst count field of the isochronous TRB defines the number of 3484 * bursts that are required to move all packets in this TD. Only SuperSpeed 3485 * devices can burst up to bMaxBurst number of packets per service interval. 3486 * This field is zero based, meaning a value of zero in the field means one 3487 * burst. Basically, for everything but SuperSpeed devices, this field will be 3488 * zero. Only xHCI 1.0 host controllers support this field. 3489 */ 3490 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3491 struct urb *urb, unsigned int total_packet_count) 3492 { 3493 unsigned int max_burst; 3494 3495 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3496 return 0; 3497 3498 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3499 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3500 } 3501 3502 /* 3503 * Returns the number of packets in the last "burst" of packets. This field is 3504 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3505 * the last burst packet count is equal to the total number of packets in the 3506 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3507 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3508 * contain 1 to (bMaxBurst + 1) packets. 3509 */ 3510 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3511 struct urb *urb, unsigned int total_packet_count) 3512 { 3513 unsigned int max_burst; 3514 unsigned int residue; 3515 3516 if (xhci->hci_version < 0x100) 3517 return 0; 3518 3519 if (urb->dev->speed >= USB_SPEED_SUPER) { 3520 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3521 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3522 residue = total_packet_count % (max_burst + 1); 3523 /* If residue is zero, the last burst contains (max_burst + 1) 3524 * number of packets, but the TLBPC field is zero-based. 3525 */ 3526 if (residue == 0) 3527 return max_burst; 3528 return residue - 1; 3529 } 3530 if (total_packet_count == 0) 3531 return 0; 3532 return total_packet_count - 1; 3533 } 3534 3535 /* 3536 * Calculates Frame ID field of the isochronous TRB identifies the 3537 * target frame that the Interval associated with this Isochronous 3538 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3539 * 3540 * Returns actual frame id on success, negative value on error. 3541 */ 3542 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3543 struct urb *urb, int index) 3544 { 3545 int start_frame, ist, ret = 0; 3546 int start_frame_id, end_frame_id, current_frame_id; 3547 3548 if (urb->dev->speed == USB_SPEED_LOW || 3549 urb->dev->speed == USB_SPEED_FULL) 3550 start_frame = urb->start_frame + index * urb->interval; 3551 else 3552 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3553 3554 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3555 * 3556 * If bit [3] of IST is cleared to '0', software can add a TRB no 3557 * later than IST[2:0] Microframes before that TRB is scheduled to 3558 * be executed. 3559 * If bit [3] of IST is set to '1', software can add a TRB no later 3560 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3561 */ 3562 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3563 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3564 ist <<= 3; 3565 3566 /* Software shall not schedule an Isoch TD with a Frame ID value that 3567 * is less than the Start Frame ID or greater than the End Frame ID, 3568 * where: 3569 * 3570 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3571 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3572 * 3573 * Both the End Frame ID and Start Frame ID values are calculated 3574 * in microframes. When software determines the valid Frame ID value; 3575 * The End Frame ID value should be rounded down to the nearest Frame 3576 * boundary, and the Start Frame ID value should be rounded up to the 3577 * nearest Frame boundary. 3578 */ 3579 current_frame_id = readl(&xhci->run_regs->microframe_index); 3580 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3581 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3582 3583 start_frame &= 0x7ff; 3584 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3585 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3586 3587 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3588 __func__, index, readl(&xhci->run_regs->microframe_index), 3589 start_frame_id, end_frame_id, start_frame); 3590 3591 if (start_frame_id < end_frame_id) { 3592 if (start_frame > end_frame_id || 3593 start_frame < start_frame_id) 3594 ret = -EINVAL; 3595 } else if (start_frame_id > end_frame_id) { 3596 if ((start_frame > end_frame_id && 3597 start_frame < start_frame_id)) 3598 ret = -EINVAL; 3599 } else { 3600 ret = -EINVAL; 3601 } 3602 3603 if (index == 0) { 3604 if (ret == -EINVAL || start_frame == start_frame_id) { 3605 start_frame = start_frame_id + 1; 3606 if (urb->dev->speed == USB_SPEED_LOW || 3607 urb->dev->speed == USB_SPEED_FULL) 3608 urb->start_frame = start_frame; 3609 else 3610 urb->start_frame = start_frame << 3; 3611 ret = 0; 3612 } 3613 } 3614 3615 if (ret) { 3616 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3617 start_frame, current_frame_id, index, 3618 start_frame_id, end_frame_id); 3619 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3620 return ret; 3621 } 3622 3623 return start_frame; 3624 } 3625 3626 /* This is for isoc transfer */ 3627 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3628 struct urb *urb, int slot_id, unsigned int ep_index) 3629 { 3630 struct xhci_ring *ep_ring; 3631 struct urb_priv *urb_priv; 3632 struct xhci_td *td; 3633 int num_tds, trbs_per_td; 3634 struct xhci_generic_trb *start_trb; 3635 bool first_trb; 3636 int start_cycle; 3637 u32 field, length_field; 3638 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3639 u64 start_addr, addr; 3640 int i, j; 3641 bool more_trbs_coming; 3642 struct xhci_virt_ep *xep; 3643 int frame_id; 3644 3645 xep = &xhci->devs[slot_id]->eps[ep_index]; 3646 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3647 3648 num_tds = urb->number_of_packets; 3649 if (num_tds < 1) { 3650 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3651 return -EINVAL; 3652 } 3653 start_addr = (u64) urb->transfer_dma; 3654 start_trb = &ep_ring->enqueue->generic; 3655 start_cycle = ep_ring->cycle_state; 3656 3657 urb_priv = urb->hcpriv; 3658 /* Queue the TRBs for each TD, even if they are zero-length */ 3659 for (i = 0; i < num_tds; i++) { 3660 unsigned int total_pkt_count, max_pkt; 3661 unsigned int burst_count, last_burst_pkt_count; 3662 u32 sia_frame_id; 3663 3664 first_trb = true; 3665 running_total = 0; 3666 addr = start_addr + urb->iso_frame_desc[i].offset; 3667 td_len = urb->iso_frame_desc[i].length; 3668 td_remain_len = td_len; 3669 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3670 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3671 3672 /* A zero-length transfer still involves at least one packet. */ 3673 if (total_pkt_count == 0) 3674 total_pkt_count++; 3675 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3676 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3677 urb, total_pkt_count); 3678 3679 trbs_per_td = count_isoc_trbs_needed(urb, i); 3680 3681 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3682 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3683 if (ret < 0) { 3684 if (i == 0) 3685 return ret; 3686 goto cleanup; 3687 } 3688 td = &urb_priv->td[i]; 3689 3690 /* use SIA as default, if frame id is used overwrite it */ 3691 sia_frame_id = TRB_SIA; 3692 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3693 HCC_CFC(xhci->hcc_params)) { 3694 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3695 if (frame_id >= 0) 3696 sia_frame_id = TRB_FRAME_ID(frame_id); 3697 } 3698 /* 3699 * Set isoc specific data for the first TRB in a TD. 3700 * Prevent HW from getting the TRBs by keeping the cycle state 3701 * inverted in the first TDs isoc TRB. 3702 */ 3703 field = TRB_TYPE(TRB_ISOC) | 3704 TRB_TLBPC(last_burst_pkt_count) | 3705 sia_frame_id | 3706 (i ? ep_ring->cycle_state : !start_cycle); 3707 3708 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3709 if (!xep->use_extended_tbc) 3710 field |= TRB_TBC(burst_count); 3711 3712 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3713 for (j = 0; j < trbs_per_td; j++) { 3714 u32 remainder = 0; 3715 3716 /* only first TRB is isoc, overwrite otherwise */ 3717 if (!first_trb) 3718 field = TRB_TYPE(TRB_NORMAL) | 3719 ep_ring->cycle_state; 3720 3721 /* Only set interrupt on short packet for IN EPs */ 3722 if (usb_urb_dir_in(urb)) 3723 field |= TRB_ISP; 3724 3725 /* Set the chain bit for all except the last TRB */ 3726 if (j < trbs_per_td - 1) { 3727 more_trbs_coming = true; 3728 field |= TRB_CHAIN; 3729 } else { 3730 more_trbs_coming = false; 3731 td->last_trb = ep_ring->enqueue; 3732 field |= TRB_IOC; 3733 /* set BEI, except for the last TD */ 3734 if (xhci->hci_version >= 0x100 && 3735 !(xhci->quirks & XHCI_AVOID_BEI) && 3736 i < num_tds - 1) 3737 field |= TRB_BEI; 3738 } 3739 /* Calculate TRB length */ 3740 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3741 if (trb_buff_len > td_remain_len) 3742 trb_buff_len = td_remain_len; 3743 3744 /* Set the TRB length, TD size, & interrupter fields. */ 3745 remainder = xhci_td_remainder(xhci, running_total, 3746 trb_buff_len, td_len, 3747 urb, more_trbs_coming); 3748 3749 length_field = TRB_LEN(trb_buff_len) | 3750 TRB_INTR_TARGET(0); 3751 3752 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3753 if (first_trb && xep->use_extended_tbc) 3754 length_field |= TRB_TD_SIZE_TBC(burst_count); 3755 else 3756 length_field |= TRB_TD_SIZE(remainder); 3757 first_trb = false; 3758 3759 queue_trb(xhci, ep_ring, more_trbs_coming, 3760 lower_32_bits(addr), 3761 upper_32_bits(addr), 3762 length_field, 3763 field); 3764 running_total += trb_buff_len; 3765 3766 addr += trb_buff_len; 3767 td_remain_len -= trb_buff_len; 3768 } 3769 3770 /* Check TD length */ 3771 if (running_total != td_len) { 3772 xhci_err(xhci, "ISOC TD length unmatch\n"); 3773 ret = -EINVAL; 3774 goto cleanup; 3775 } 3776 } 3777 3778 /* store the next frame id */ 3779 if (HCC_CFC(xhci->hcc_params)) 3780 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3781 3782 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3783 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3784 usb_amd_quirk_pll_disable(); 3785 } 3786 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3787 3788 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3789 start_cycle, start_trb); 3790 return 0; 3791 cleanup: 3792 /* Clean up a partially enqueued isoc transfer. */ 3793 3794 for (i--; i >= 0; i--) 3795 list_del_init(&urb_priv->td[i].td_list); 3796 3797 /* Use the first TD as a temporary variable to turn the TDs we've queued 3798 * into No-ops with a software-owned cycle bit. That way the hardware 3799 * won't accidentally start executing bogus TDs when we partially 3800 * overwrite them. td->first_trb and td->start_seg are already set. 3801 */ 3802 urb_priv->td[0].last_trb = ep_ring->enqueue; 3803 /* Every TRB except the first & last will have its cycle bit flipped. */ 3804 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3805 3806 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3807 ep_ring->enqueue = urb_priv->td[0].first_trb; 3808 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3809 ep_ring->cycle_state = start_cycle; 3810 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3811 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3812 return ret; 3813 } 3814 3815 /* 3816 * Check transfer ring to guarantee there is enough room for the urb. 3817 * Update ISO URB start_frame and interval. 3818 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3819 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3820 * Contiguous Frame ID is not supported by HC. 3821 */ 3822 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3823 struct urb *urb, int slot_id, unsigned int ep_index) 3824 { 3825 struct xhci_virt_device *xdev; 3826 struct xhci_ring *ep_ring; 3827 struct xhci_ep_ctx *ep_ctx; 3828 int start_frame; 3829 int num_tds, num_trbs, i; 3830 int ret; 3831 struct xhci_virt_ep *xep; 3832 int ist; 3833 3834 xdev = xhci->devs[slot_id]; 3835 xep = &xhci->devs[slot_id]->eps[ep_index]; 3836 ep_ring = xdev->eps[ep_index].ring; 3837 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3838 3839 num_trbs = 0; 3840 num_tds = urb->number_of_packets; 3841 for (i = 0; i < num_tds; i++) 3842 num_trbs += count_isoc_trbs_needed(urb, i); 3843 3844 /* Check the ring to guarantee there is enough room for the whole urb. 3845 * Do not insert any td of the urb to the ring if the check failed. 3846 */ 3847 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3848 num_trbs, mem_flags); 3849 if (ret) 3850 return ret; 3851 3852 /* 3853 * Check interval value. This should be done before we start to 3854 * calculate the start frame value. 3855 */ 3856 check_interval(xhci, urb, ep_ctx); 3857 3858 /* Calculate the start frame and put it in urb->start_frame. */ 3859 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3860 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3861 urb->start_frame = xep->next_frame_id; 3862 goto skip_start_over; 3863 } 3864 } 3865 3866 start_frame = readl(&xhci->run_regs->microframe_index); 3867 start_frame &= 0x3fff; 3868 /* 3869 * Round up to the next frame and consider the time before trb really 3870 * gets scheduled by hardare. 3871 */ 3872 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3873 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3874 ist <<= 3; 3875 start_frame += ist + XHCI_CFC_DELAY; 3876 start_frame = roundup(start_frame, 8); 3877 3878 /* 3879 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3880 * is greate than 8 microframes. 3881 */ 3882 if (urb->dev->speed == USB_SPEED_LOW || 3883 urb->dev->speed == USB_SPEED_FULL) { 3884 start_frame = roundup(start_frame, urb->interval << 3); 3885 urb->start_frame = start_frame >> 3; 3886 } else { 3887 start_frame = roundup(start_frame, urb->interval); 3888 urb->start_frame = start_frame; 3889 } 3890 3891 skip_start_over: 3892 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3893 3894 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3895 } 3896 3897 /**** Command Ring Operations ****/ 3898 3899 /* Generic function for queueing a command TRB on the command ring. 3900 * Check to make sure there's room on the command ring for one command TRB. 3901 * Also check that there's room reserved for commands that must not fail. 3902 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3903 * then only check for the number of reserved spots. 3904 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3905 * because the command event handler may want to resubmit a failed command. 3906 */ 3907 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3908 u32 field1, u32 field2, 3909 u32 field3, u32 field4, bool command_must_succeed) 3910 { 3911 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3912 int ret; 3913 3914 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3915 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3916 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3917 return -ESHUTDOWN; 3918 } 3919 3920 if (!command_must_succeed) 3921 reserved_trbs++; 3922 3923 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3924 reserved_trbs, GFP_ATOMIC); 3925 if (ret < 0) { 3926 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3927 if (command_must_succeed) 3928 xhci_err(xhci, "ERR: Reserved TRB counting for " 3929 "unfailable commands failed.\n"); 3930 return ret; 3931 } 3932 3933 cmd->command_trb = xhci->cmd_ring->enqueue; 3934 3935 /* if there are no other commands queued we start the timeout timer */ 3936 if (list_empty(&xhci->cmd_list)) { 3937 xhci->current_cmd = cmd; 3938 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3939 } 3940 3941 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3942 3943 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3944 field4 | xhci->cmd_ring->cycle_state); 3945 return 0; 3946 } 3947 3948 /* Queue a slot enable or disable request on the command ring */ 3949 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3950 u32 trb_type, u32 slot_id) 3951 { 3952 return queue_command(xhci, cmd, 0, 0, 0, 3953 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3954 } 3955 3956 /* Queue an address device command TRB */ 3957 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3958 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3959 { 3960 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3961 upper_32_bits(in_ctx_ptr), 0, 3962 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3963 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3964 } 3965 3966 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3967 u32 field1, u32 field2, u32 field3, u32 field4) 3968 { 3969 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3970 } 3971 3972 /* Queue a reset device command TRB */ 3973 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3974 u32 slot_id) 3975 { 3976 return queue_command(xhci, cmd, 0, 0, 0, 3977 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3978 false); 3979 } 3980 3981 /* Queue a configure endpoint command TRB */ 3982 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3983 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3984 u32 slot_id, bool command_must_succeed) 3985 { 3986 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3987 upper_32_bits(in_ctx_ptr), 0, 3988 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3989 command_must_succeed); 3990 } 3991 3992 /* Queue an evaluate context command TRB */ 3993 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3994 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3995 { 3996 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3997 upper_32_bits(in_ctx_ptr), 0, 3998 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3999 command_must_succeed); 4000 } 4001 4002 /* 4003 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4004 * activity on an endpoint that is about to be suspended. 4005 */ 4006 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4007 int slot_id, unsigned int ep_index, int suspend) 4008 { 4009 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4010 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4011 u32 type = TRB_TYPE(TRB_STOP_RING); 4012 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4013 4014 return queue_command(xhci, cmd, 0, 0, 0, 4015 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4016 } 4017 4018 /* Set Transfer Ring Dequeue Pointer command */ 4019 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4020 unsigned int slot_id, unsigned int ep_index, 4021 struct xhci_dequeue_state *deq_state) 4022 { 4023 dma_addr_t addr; 4024 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4025 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4026 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4027 u32 trb_sct = 0; 4028 u32 type = TRB_TYPE(TRB_SET_DEQ); 4029 struct xhci_virt_ep *ep; 4030 struct xhci_command *cmd; 4031 int ret; 4032 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4034 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4035 deq_state->new_deq_seg, 4036 (unsigned long long)deq_state->new_deq_seg->dma, 4037 deq_state->new_deq_ptr, 4038 (unsigned long long)xhci_trb_virt_to_dma( 4039 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4040 deq_state->new_cycle_state); 4041 4042 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4043 deq_state->new_deq_ptr); 4044 if (addr == 0) { 4045 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4046 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4047 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4048 return; 4049 } 4050 ep = &xhci->devs[slot_id]->eps[ep_index]; 4051 if ((ep->ep_state & SET_DEQ_PENDING)) { 4052 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4053 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4054 return; 4055 } 4056 4057 /* This function gets called from contexts where it cannot sleep */ 4058 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4059 if (!cmd) 4060 return; 4061 4062 ep->queued_deq_seg = deq_state->new_deq_seg; 4063 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4064 if (deq_state->stream_id) 4065 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4066 ret = queue_command(xhci, cmd, 4067 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4068 upper_32_bits(addr), trb_stream_id, 4069 trb_slot_id | trb_ep_index | type, false); 4070 if (ret < 0) { 4071 xhci_free_command(xhci, cmd); 4072 return; 4073 } 4074 4075 /* Stop the TD queueing code from ringing the doorbell until 4076 * this command completes. The HC won't set the dequeue pointer 4077 * if the ring is running, and ringing the doorbell starts the 4078 * ring running. 4079 */ 4080 ep->ep_state |= SET_DEQ_PENDING; 4081 } 4082 4083 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4084 int slot_id, unsigned int ep_index, 4085 enum xhci_ep_reset_type reset_type) 4086 { 4087 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4088 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4089 u32 type = TRB_TYPE(TRB_RESET_EP); 4090 4091 if (reset_type == EP_SOFT_RESET) 4092 type |= TRB_TSP; 4093 4094 return queue_command(xhci, cmd, 0, 0, 0, 4095 trb_slot_id | trb_ep_index | type, false); 4096 } 4097