1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset > TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state ^= 1; 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 xhci_err(xhci, "Stopped the command ring failed, " 306 "maybe the host is dead\n"); 307 xhci->xhc_state |= XHCI_STATE_DYING; 308 xhci_quiesce(xhci); 309 xhci_halt(xhci); 310 return -ESHUTDOWN; 311 } 312 313 return 0; 314 } 315 316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 317 unsigned int slot_id, 318 unsigned int ep_index, 319 unsigned int stream_id) 320 { 321 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 322 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 323 unsigned int ep_state = ep->ep_state; 324 325 /* Don't ring the doorbell for this endpoint if there are pending 326 * cancellations because we don't want to interrupt processing. 327 * We don't want to restart any stream rings if there's a set dequeue 328 * pointer command pending because the device can choose to start any 329 * stream once the endpoint is on the HW schedule. 330 */ 331 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 332 (ep_state & EP_HALTED)) 333 return; 334 writel(DB_VALUE(ep_index, stream_id), db_addr); 335 /* The CPU has better things to do at this point than wait for a 336 * write-posting flush. It'll get there soon enough. 337 */ 338 } 339 340 /* Ring the doorbell for any rings with pending URBs */ 341 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 342 unsigned int slot_id, 343 unsigned int ep_index) 344 { 345 unsigned int stream_id; 346 struct xhci_virt_ep *ep; 347 348 ep = &xhci->devs[slot_id]->eps[ep_index]; 349 350 /* A ring has pending URBs if its TD list is not empty */ 351 if (!(ep->ep_state & EP_HAS_STREAMS)) { 352 if (ep->ring && !(list_empty(&ep->ring->td_list))) 353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 354 return; 355 } 356 357 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 358 stream_id++) { 359 struct xhci_stream_info *stream_info = ep->stream_info; 360 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 361 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 362 stream_id); 363 } 364 } 365 366 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 367 unsigned int slot_id, unsigned int ep_index, 368 unsigned int stream_id) 369 { 370 struct xhci_virt_ep *ep; 371 372 ep = &xhci->devs[slot_id]->eps[ep_index]; 373 /* Common case: no streams */ 374 if (!(ep->ep_state & EP_HAS_STREAMS)) 375 return ep->ring; 376 377 if (stream_id == 0) { 378 xhci_warn(xhci, 379 "WARN: Slot ID %u, ep index %u has streams, " 380 "but URB has no stream ID.\n", 381 slot_id, ep_index); 382 return NULL; 383 } 384 385 if (stream_id < ep->stream_info->num_streams) 386 return ep->stream_info->stream_rings[stream_id]; 387 388 xhci_warn(xhci, 389 "WARN: Slot ID %u, ep index %u has " 390 "stream IDs 1 to %u allocated, " 391 "but stream ID %u is requested.\n", 392 slot_id, ep_index, 393 ep->stream_info->num_streams - 1, 394 stream_id); 395 return NULL; 396 } 397 398 /* Get the right ring for the given URB. 399 * If the endpoint supports streams, boundary check the URB's stream ID. 400 * If the endpoint doesn't support streams, return the singular endpoint ring. 401 */ 402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 403 struct urb *urb) 404 { 405 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 406 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 407 } 408 409 /* 410 * Move the xHC's endpoint ring dequeue pointer past cur_td. 411 * Record the new state of the xHC's endpoint ring dequeue segment, 412 * dequeue pointer, and new consumer cycle state in state. 413 * Update our internal representation of the ring's dequeue pointer. 414 * 415 * We do this in three jumps: 416 * - First we update our new ring state to be the same as when the xHC stopped. 417 * - Then we traverse the ring to find the segment that contains 418 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 419 * any link TRBs with the toggle cycle bit set. 420 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 421 * if we've moved it past a link TRB with the toggle cycle bit set. 422 * 423 * Some of the uses of xhci_generic_trb are grotty, but if they're done 424 * with correct __le32 accesses they should work fine. Only users of this are 425 * in here. 426 */ 427 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 428 unsigned int slot_id, unsigned int ep_index, 429 unsigned int stream_id, struct xhci_td *cur_td, 430 struct xhci_dequeue_state *state) 431 { 432 struct xhci_virt_device *dev = xhci->devs[slot_id]; 433 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 434 struct xhci_ring *ep_ring; 435 struct xhci_segment *new_seg; 436 union xhci_trb *new_deq; 437 dma_addr_t addr; 438 u64 hw_dequeue; 439 bool cycle_found = false; 440 bool td_last_trb_found = false; 441 442 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 443 ep_index, stream_id); 444 if (!ep_ring) { 445 xhci_warn(xhci, "WARN can't find new dequeue state " 446 "for invalid stream ID %u.\n", 447 stream_id); 448 return; 449 } 450 451 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 452 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 453 "Finding endpoint context"); 454 /* 4.6.9 the css flag is written to the stream context for streams */ 455 if (ep->ep_state & EP_HAS_STREAMS) { 456 struct xhci_stream_ctx *ctx = 457 &ep->stream_info->stream_ctx_array[stream_id]; 458 hw_dequeue = le64_to_cpu(ctx->stream_ring); 459 } else { 460 struct xhci_ep_ctx *ep_ctx 461 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 462 hw_dequeue = le64_to_cpu(ep_ctx->deq); 463 } 464 465 new_seg = ep_ring->deq_seg; 466 new_deq = ep_ring->dequeue; 467 state->new_cycle_state = hw_dequeue & 0x1; 468 469 /* 470 * We want to find the pointer, segment and cycle state of the new trb 471 * (the one after current TD's last_trb). We know the cycle state at 472 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 473 * found. 474 */ 475 do { 476 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 477 == (dma_addr_t)(hw_dequeue & ~0xf)) { 478 cycle_found = true; 479 if (td_last_trb_found) 480 break; 481 } 482 if (new_deq == cur_td->last_trb) 483 td_last_trb_found = true; 484 485 if (cycle_found && 486 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 487 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 488 state->new_cycle_state ^= 0x1; 489 490 next_trb(xhci, ep_ring, &new_seg, &new_deq); 491 492 /* Search wrapped around, bail out */ 493 if (new_deq == ep->ring->dequeue) { 494 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 495 state->new_deq_seg = NULL; 496 state->new_deq_ptr = NULL; 497 return; 498 } 499 500 } while (!cycle_found || !td_last_trb_found); 501 502 state->new_deq_seg = new_seg; 503 state->new_deq_ptr = new_deq; 504 505 /* Don't update the ring cycle state for the producer (us). */ 506 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 507 "Cycle state = 0x%x", state->new_cycle_state); 508 509 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 510 "New dequeue segment = %p (virtual)", 511 state->new_deq_seg); 512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 514 "New dequeue pointer = 0x%llx (DMA)", 515 (unsigned long long) addr); 516 } 517 518 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 519 * (The last TRB actually points to the ring enqueue pointer, which is not part 520 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 521 */ 522 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 523 struct xhci_td *cur_td, bool flip_cycle) 524 { 525 struct xhci_segment *cur_seg; 526 union xhci_trb *cur_trb; 527 528 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 529 true; 530 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 531 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 532 /* Unchain any chained Link TRBs, but 533 * leave the pointers intact. 534 */ 535 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 536 /* Flip the cycle bit (link TRBs can't be the first 537 * or last TRB). 538 */ 539 if (flip_cycle) 540 cur_trb->generic.field[3] ^= 541 cpu_to_le32(TRB_CYCLE); 542 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 543 "Cancel (unchain) link TRB"); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 545 "Address = %p (0x%llx dma); " 546 "in seg %p (0x%llx dma)", 547 cur_trb, 548 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 549 cur_seg, 550 (unsigned long long)cur_seg->dma); 551 } else { 552 cur_trb->generic.field[0] = 0; 553 cur_trb->generic.field[1] = 0; 554 cur_trb->generic.field[2] = 0; 555 /* Preserve only the cycle bit of this TRB */ 556 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 557 /* Flip the cycle bit except on the first or last TRB */ 558 if (flip_cycle && cur_trb != cur_td->first_trb && 559 cur_trb != cur_td->last_trb) 560 cur_trb->generic.field[3] ^= 561 cpu_to_le32(TRB_CYCLE); 562 cur_trb->generic.field[3] |= cpu_to_le32( 563 TRB_TYPE(TRB_TR_NOOP)); 564 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 565 "TRB to noop at offset 0x%llx", 566 (unsigned long long) 567 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 568 } 569 if (cur_trb == cur_td->last_trb) 570 break; 571 } 572 } 573 574 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 575 struct xhci_virt_ep *ep) 576 { 577 ep->ep_state &= ~EP_HALT_PENDING; 578 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 579 * timer is running on another CPU, we don't decrement stop_cmds_pending 580 * (since we didn't successfully stop the watchdog timer). 581 */ 582 if (del_timer(&ep->stop_cmd_timer)) 583 ep->stop_cmds_pending--; 584 } 585 586 /* Must be called with xhci->lock held in interrupt context */ 587 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 588 struct xhci_td *cur_td, int status) 589 { 590 struct usb_hcd *hcd; 591 struct urb *urb; 592 struct urb_priv *urb_priv; 593 594 urb = cur_td->urb; 595 urb_priv = urb->hcpriv; 596 urb_priv->td_cnt++; 597 hcd = bus_to_hcd(urb->dev->bus); 598 599 /* Only giveback urb when this is the last td in urb */ 600 if (urb_priv->td_cnt == urb_priv->length) { 601 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 602 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 603 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 604 if (xhci->quirks & XHCI_AMD_PLL_FIX) 605 usb_amd_quirk_pll_enable(); 606 } 607 } 608 usb_hcd_unlink_urb_from_ep(hcd, urb); 609 610 spin_unlock(&xhci->lock); 611 usb_hcd_giveback_urb(hcd, urb, status); 612 xhci_urb_free_priv(urb_priv); 613 spin_lock(&xhci->lock); 614 } 615 } 616 617 /* 618 * When we get a command completion for a Stop Endpoint Command, we need to 619 * unlink any cancelled TDs from the ring. There are two ways to do that: 620 * 621 * 1. If the HW was in the middle of processing the TD that needs to be 622 * cancelled, then we must move the ring's dequeue pointer past the last TRB 623 * in the TD with a Set Dequeue Pointer Command. 624 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 625 * bit cleared) so that the HW will skip over them. 626 */ 627 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 628 union xhci_trb *trb, struct xhci_event_cmd *event) 629 { 630 unsigned int ep_index; 631 struct xhci_ring *ep_ring; 632 struct xhci_virt_ep *ep; 633 struct list_head *entry; 634 struct xhci_td *cur_td = NULL; 635 struct xhci_td *last_unlinked_td; 636 637 struct xhci_dequeue_state deq_state; 638 639 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 640 if (!xhci->devs[slot_id]) 641 xhci_warn(xhci, "Stop endpoint command " 642 "completion for disabled slot %u\n", 643 slot_id); 644 return; 645 } 646 647 memset(&deq_state, 0, sizeof(deq_state)); 648 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 649 ep = &xhci->devs[slot_id]->eps[ep_index]; 650 651 if (list_empty(&ep->cancelled_td_list)) { 652 xhci_stop_watchdog_timer_in_irq(xhci, ep); 653 ep->stopped_td = NULL; 654 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 655 return; 656 } 657 658 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 659 * We have the xHCI lock, so nothing can modify this list until we drop 660 * it. We're also in the event handler, so we can't get re-interrupted 661 * if another Stop Endpoint command completes 662 */ 663 list_for_each(entry, &ep->cancelled_td_list) { 664 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 665 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 666 "Removing canceled TD starting at 0x%llx (dma).", 667 (unsigned long long)xhci_trb_virt_to_dma( 668 cur_td->start_seg, cur_td->first_trb)); 669 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 670 if (!ep_ring) { 671 /* This shouldn't happen unless a driver is mucking 672 * with the stream ID after submission. This will 673 * leave the TD on the hardware ring, and the hardware 674 * will try to execute it, and may access a buffer 675 * that has already been freed. In the best case, the 676 * hardware will execute it, and the event handler will 677 * ignore the completion event for that TD, since it was 678 * removed from the td_list for that endpoint. In 679 * short, don't muck with the stream ID after 680 * submission. 681 */ 682 xhci_warn(xhci, "WARN Cancelled URB %p " 683 "has invalid stream ID %u.\n", 684 cur_td->urb, 685 cur_td->urb->stream_id); 686 goto remove_finished_td; 687 } 688 /* 689 * If we stopped on the TD we need to cancel, then we have to 690 * move the xHC endpoint ring dequeue pointer past this TD. 691 */ 692 if (cur_td == ep->stopped_td) 693 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 694 cur_td->urb->stream_id, 695 cur_td, &deq_state); 696 else 697 td_to_noop(xhci, ep_ring, cur_td, false); 698 remove_finished_td: 699 /* 700 * The event handler won't see a completion for this TD anymore, 701 * so remove it from the endpoint ring's TD list. Keep it in 702 * the cancelled TD list for URB completion later. 703 */ 704 list_del_init(&cur_td->td_list); 705 } 706 last_unlinked_td = cur_td; 707 xhci_stop_watchdog_timer_in_irq(xhci, ep); 708 709 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 710 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 711 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 712 ep->stopped_td->urb->stream_id, &deq_state); 713 xhci_ring_cmd_db(xhci); 714 } else { 715 /* Otherwise ring the doorbell(s) to restart queued transfers */ 716 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 717 } 718 719 ep->stopped_td = NULL; 720 721 /* 722 * Drop the lock and complete the URBs in the cancelled TD list. 723 * New TDs to be cancelled might be added to the end of the list before 724 * we can complete all the URBs for the TDs we already unlinked. 725 * So stop when we've completed the URB for the last TD we unlinked. 726 */ 727 do { 728 cur_td = list_entry(ep->cancelled_td_list.next, 729 struct xhci_td, cancelled_td_list); 730 list_del_init(&cur_td->cancelled_td_list); 731 732 /* Clean up the cancelled URB */ 733 /* Doesn't matter what we pass for status, since the core will 734 * just overwrite it (because the URB has been unlinked). 735 */ 736 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 737 738 /* Stop processing the cancelled list if the watchdog timer is 739 * running. 740 */ 741 if (xhci->xhc_state & XHCI_STATE_DYING) 742 return; 743 } while (cur_td != last_unlinked_td); 744 745 /* Return to the event handler with xhci->lock re-acquired */ 746 } 747 748 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 749 { 750 struct xhci_td *cur_td; 751 752 while (!list_empty(&ring->td_list)) { 753 cur_td = list_first_entry(&ring->td_list, 754 struct xhci_td, td_list); 755 list_del_init(&cur_td->td_list); 756 if (!list_empty(&cur_td->cancelled_td_list)) 757 list_del_init(&cur_td->cancelled_td_list); 758 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 759 } 760 } 761 762 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 763 int slot_id, int ep_index) 764 { 765 struct xhci_td *cur_td; 766 struct xhci_virt_ep *ep; 767 struct xhci_ring *ring; 768 769 ep = &xhci->devs[slot_id]->eps[ep_index]; 770 if ((ep->ep_state & EP_HAS_STREAMS) || 771 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 772 int stream_id; 773 774 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 775 stream_id++) { 776 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 777 "Killing URBs for slot ID %u, ep index %u, stream %u", 778 slot_id, ep_index, stream_id + 1); 779 xhci_kill_ring_urbs(xhci, 780 ep->stream_info->stream_rings[stream_id]); 781 } 782 } else { 783 ring = ep->ring; 784 if (!ring) 785 return; 786 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 787 "Killing URBs for slot ID %u, ep index %u", 788 slot_id, ep_index); 789 xhci_kill_ring_urbs(xhci, ring); 790 } 791 while (!list_empty(&ep->cancelled_td_list)) { 792 cur_td = list_first_entry(&ep->cancelled_td_list, 793 struct xhci_td, cancelled_td_list); 794 list_del_init(&cur_td->cancelled_td_list); 795 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 796 } 797 } 798 799 /* Watchdog timer function for when a stop endpoint command fails to complete. 800 * In this case, we assume the host controller is broken or dying or dead. The 801 * host may still be completing some other events, so we have to be careful to 802 * let the event ring handler and the URB dequeueing/enqueueing functions know 803 * through xhci->state. 804 * 805 * The timer may also fire if the host takes a very long time to respond to the 806 * command, and the stop endpoint command completion handler cannot delete the 807 * timer before the timer function is called. Another endpoint cancellation may 808 * sneak in before the timer function can grab the lock, and that may queue 809 * another stop endpoint command and add the timer back. So we cannot use a 810 * simple flag to say whether there is a pending stop endpoint command for a 811 * particular endpoint. 812 * 813 * Instead we use a combination of that flag and a counter for the number of 814 * pending stop endpoint commands. If the timer is the tail end of the last 815 * stop endpoint command, and the endpoint's command is still pending, we assume 816 * the host is dying. 817 */ 818 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 819 { 820 struct xhci_hcd *xhci; 821 struct xhci_virt_ep *ep; 822 int ret, i, j; 823 unsigned long flags; 824 825 ep = (struct xhci_virt_ep *) arg; 826 xhci = ep->xhci; 827 828 spin_lock_irqsave(&xhci->lock, flags); 829 830 ep->stop_cmds_pending--; 831 if (xhci->xhc_state & XHCI_STATE_DYING) { 832 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 833 "Stop EP timer ran, but another timer marked " 834 "xHCI as DYING, exiting."); 835 spin_unlock_irqrestore(&xhci->lock, flags); 836 return; 837 } 838 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 839 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 840 "Stop EP timer ran, but no command pending, " 841 "exiting."); 842 spin_unlock_irqrestore(&xhci->lock, flags); 843 return; 844 } 845 846 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 847 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 848 /* Oops, HC is dead or dying or at least not responding to the stop 849 * endpoint command. 850 */ 851 xhci->xhc_state |= XHCI_STATE_DYING; 852 /* Disable interrupts from the host controller and start halting it */ 853 xhci_quiesce(xhci); 854 spin_unlock_irqrestore(&xhci->lock, flags); 855 856 ret = xhci_halt(xhci); 857 858 spin_lock_irqsave(&xhci->lock, flags); 859 if (ret < 0) { 860 /* This is bad; the host is not responding to commands and it's 861 * not allowing itself to be halted. At least interrupts are 862 * disabled. If we call usb_hc_died(), it will attempt to 863 * disconnect all device drivers under this host. Those 864 * disconnect() methods will wait for all URBs to be unlinked, 865 * so we must complete them. 866 */ 867 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 868 xhci_warn(xhci, "Completing active URBs anyway.\n"); 869 /* We could turn all TDs on the rings to no-ops. This won't 870 * help if the host has cached part of the ring, and is slow if 871 * we want to preserve the cycle bit. Skip it and hope the host 872 * doesn't touch the memory. 873 */ 874 } 875 for (i = 0; i < MAX_HC_SLOTS; i++) { 876 if (!xhci->devs[i]) 877 continue; 878 for (j = 0; j < 31; j++) 879 xhci_kill_endpoint_urbs(xhci, i, j); 880 } 881 spin_unlock_irqrestore(&xhci->lock, flags); 882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 883 "Calling usb_hc_died()"); 884 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 885 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 886 "xHCI host controller is dead."); 887 } 888 889 890 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 891 struct xhci_virt_device *dev, 892 struct xhci_ring *ep_ring, 893 unsigned int ep_index) 894 { 895 union xhci_trb *dequeue_temp; 896 int num_trbs_free_temp; 897 bool revert = false; 898 899 num_trbs_free_temp = ep_ring->num_trbs_free; 900 dequeue_temp = ep_ring->dequeue; 901 902 /* If we get two back-to-back stalls, and the first stalled transfer 903 * ends just before a link TRB, the dequeue pointer will be left on 904 * the link TRB by the code in the while loop. So we have to update 905 * the dequeue pointer one segment further, or we'll jump off 906 * the segment into la-la-land. 907 */ 908 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 909 ep_ring->deq_seg = ep_ring->deq_seg->next; 910 ep_ring->dequeue = ep_ring->deq_seg->trbs; 911 } 912 913 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 914 /* We have more usable TRBs */ 915 ep_ring->num_trbs_free++; 916 ep_ring->dequeue++; 917 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 918 ep_ring->dequeue)) { 919 if (ep_ring->dequeue == 920 dev->eps[ep_index].queued_deq_ptr) 921 break; 922 ep_ring->deq_seg = ep_ring->deq_seg->next; 923 ep_ring->dequeue = ep_ring->deq_seg->trbs; 924 } 925 if (ep_ring->dequeue == dequeue_temp) { 926 revert = true; 927 break; 928 } 929 } 930 931 if (revert) { 932 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 933 ep_ring->num_trbs_free = num_trbs_free_temp; 934 } 935 } 936 937 /* 938 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 939 * we need to clear the set deq pending flag in the endpoint ring state, so that 940 * the TD queueing code can ring the doorbell again. We also need to ring the 941 * endpoint doorbell to restart the ring, but only if there aren't more 942 * cancellations pending. 943 */ 944 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 945 union xhci_trb *trb, u32 cmd_comp_code) 946 { 947 unsigned int ep_index; 948 unsigned int stream_id; 949 struct xhci_ring *ep_ring; 950 struct xhci_virt_device *dev; 951 struct xhci_virt_ep *ep; 952 struct xhci_ep_ctx *ep_ctx; 953 struct xhci_slot_ctx *slot_ctx; 954 955 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 956 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 957 dev = xhci->devs[slot_id]; 958 ep = &dev->eps[ep_index]; 959 960 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 961 if (!ep_ring) { 962 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 963 stream_id); 964 /* XXX: Harmless??? */ 965 goto cleanup; 966 } 967 968 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 969 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 970 971 if (cmd_comp_code != COMP_SUCCESS) { 972 unsigned int ep_state; 973 unsigned int slot_state; 974 975 switch (cmd_comp_code) { 976 case COMP_TRB_ERR: 977 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 978 break; 979 case COMP_CTX_STATE: 980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 981 ep_state = le32_to_cpu(ep_ctx->ep_info); 982 ep_state &= EP_STATE_MASK; 983 slot_state = le32_to_cpu(slot_ctx->dev_state); 984 slot_state = GET_SLOT_STATE(slot_state); 985 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 986 "Slot state = %u, EP state = %u", 987 slot_state, ep_state); 988 break; 989 case COMP_EBADSLT: 990 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 991 slot_id); 992 break; 993 default: 994 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 995 cmd_comp_code); 996 break; 997 } 998 /* OK what do we do now? The endpoint state is hosed, and we 999 * should never get to this point if the synchronization between 1000 * queueing, and endpoint state are correct. This might happen 1001 * if the device gets disconnected after we've finished 1002 * cancelling URBs, which might not be an error... 1003 */ 1004 } else { 1005 u64 deq; 1006 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1007 if (ep->ep_state & EP_HAS_STREAMS) { 1008 struct xhci_stream_ctx *ctx = 1009 &ep->stream_info->stream_ctx_array[stream_id]; 1010 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1011 } else { 1012 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1013 } 1014 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1015 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1016 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1017 ep->queued_deq_ptr) == deq) { 1018 /* Update the ring's dequeue segment and dequeue pointer 1019 * to reflect the new position. 1020 */ 1021 update_ring_for_set_deq_completion(xhci, dev, 1022 ep_ring, ep_index); 1023 } else { 1024 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1025 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1026 ep->queued_deq_seg, ep->queued_deq_ptr); 1027 } 1028 } 1029 1030 cleanup: 1031 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1032 dev->eps[ep_index].queued_deq_seg = NULL; 1033 dev->eps[ep_index].queued_deq_ptr = NULL; 1034 /* Restart any rings with pending URBs */ 1035 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1036 } 1037 1038 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1039 union xhci_trb *trb, u32 cmd_comp_code) 1040 { 1041 unsigned int ep_index; 1042 1043 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1044 /* This command will only fail if the endpoint wasn't halted, 1045 * but we don't care. 1046 */ 1047 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1048 "Ignoring reset ep completion code of %u", cmd_comp_code); 1049 1050 /* HW with the reset endpoint quirk needs to have a configure endpoint 1051 * command complete before the endpoint can be used. Queue that here 1052 * because the HW can't handle two commands being queued in a row. 1053 */ 1054 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1055 struct xhci_command *command; 1056 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1057 if (!command) { 1058 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1059 return; 1060 } 1061 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1062 "Queueing configure endpoint command"); 1063 xhci_queue_configure_endpoint(xhci, command, 1064 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1065 false); 1066 xhci_ring_cmd_db(xhci); 1067 } else { 1068 /* Clear our internal halted state */ 1069 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1070 } 1071 } 1072 1073 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1074 u32 cmd_comp_code) 1075 { 1076 if (cmd_comp_code == COMP_SUCCESS) 1077 xhci->slot_id = slot_id; 1078 else 1079 xhci->slot_id = 0; 1080 } 1081 1082 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1083 { 1084 struct xhci_virt_device *virt_dev; 1085 1086 virt_dev = xhci->devs[slot_id]; 1087 if (!virt_dev) 1088 return; 1089 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1090 /* Delete default control endpoint resources */ 1091 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1092 xhci_free_virt_device(xhci, slot_id); 1093 } 1094 1095 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1096 struct xhci_event_cmd *event, u32 cmd_comp_code) 1097 { 1098 struct xhci_virt_device *virt_dev; 1099 struct xhci_input_control_ctx *ctrl_ctx; 1100 unsigned int ep_index; 1101 unsigned int ep_state; 1102 u32 add_flags, drop_flags; 1103 1104 /* 1105 * Configure endpoint commands can come from the USB core 1106 * configuration or alt setting changes, or because the HW 1107 * needed an extra configure endpoint command after a reset 1108 * endpoint command or streams were being configured. 1109 * If the command was for a halted endpoint, the xHCI driver 1110 * is not waiting on the configure endpoint command. 1111 */ 1112 virt_dev = xhci->devs[slot_id]; 1113 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1114 if (!ctrl_ctx) { 1115 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1116 return; 1117 } 1118 1119 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1120 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1121 /* Input ctx add_flags are the endpoint index plus one */ 1122 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1123 1124 /* A usb_set_interface() call directly after clearing a halted 1125 * condition may race on this quirky hardware. Not worth 1126 * worrying about, since this is prototype hardware. Not sure 1127 * if this will work for streams, but streams support was 1128 * untested on this prototype. 1129 */ 1130 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1131 ep_index != (unsigned int) -1 && 1132 add_flags - SLOT_FLAG == drop_flags) { 1133 ep_state = virt_dev->eps[ep_index].ep_state; 1134 if (!(ep_state & EP_HALTED)) 1135 return; 1136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1137 "Completed config ep cmd - " 1138 "last ep index = %d, state = %d", 1139 ep_index, ep_state); 1140 /* Clear internal halted state and restart ring(s) */ 1141 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1143 return; 1144 } 1145 return; 1146 } 1147 1148 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1149 struct xhci_event_cmd *event) 1150 { 1151 xhci_dbg(xhci, "Completed reset device command.\n"); 1152 if (!xhci->devs[slot_id]) 1153 xhci_warn(xhci, "Reset device command completion " 1154 "for disabled slot %u\n", slot_id); 1155 } 1156 1157 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1158 struct xhci_event_cmd *event) 1159 { 1160 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1161 xhci->error_bitmask |= 1 << 6; 1162 return; 1163 } 1164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1165 "NEC firmware version %2x.%02x", 1166 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1167 NEC_FW_MINOR(le32_to_cpu(event->status))); 1168 } 1169 1170 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1171 { 1172 list_del(&cmd->cmd_list); 1173 1174 if (cmd->completion) { 1175 cmd->status = status; 1176 complete(cmd->completion); 1177 } else { 1178 kfree(cmd); 1179 } 1180 } 1181 1182 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1183 { 1184 struct xhci_command *cur_cmd, *tmp_cmd; 1185 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1186 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1187 } 1188 1189 /* 1190 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1191 * If there are other commands waiting then restart the ring and kick the timer. 1192 * This must be called with command ring stopped and xhci->lock held. 1193 */ 1194 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1195 struct xhci_command *cur_cmd) 1196 { 1197 struct xhci_command *i_cmd, *tmp_cmd; 1198 u32 cycle_state; 1199 1200 /* Turn all aborted commands in list to no-ops, then restart */ 1201 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1202 cmd_list) { 1203 1204 if (i_cmd->status != COMP_CMD_ABORT) 1205 continue; 1206 1207 i_cmd->status = COMP_CMD_STOP; 1208 1209 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1210 i_cmd->command_trb); 1211 /* get cycle state from the original cmd trb */ 1212 cycle_state = le32_to_cpu( 1213 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1214 /* modify the command trb to no-op command */ 1215 i_cmd->command_trb->generic.field[0] = 0; 1216 i_cmd->command_trb->generic.field[1] = 0; 1217 i_cmd->command_trb->generic.field[2] = 0; 1218 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1219 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1220 1221 /* 1222 * caller waiting for completion is called when command 1223 * completion event is received for these no-op commands 1224 */ 1225 } 1226 1227 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1228 1229 /* ring command ring doorbell to restart the command ring */ 1230 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1231 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1232 xhci->current_cmd = cur_cmd; 1233 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1234 xhci_ring_cmd_db(xhci); 1235 } 1236 return; 1237 } 1238 1239 1240 void xhci_handle_command_timeout(unsigned long data) 1241 { 1242 struct xhci_hcd *xhci; 1243 int ret; 1244 unsigned long flags; 1245 u64 hw_ring_state; 1246 struct xhci_command *cur_cmd = NULL; 1247 xhci = (struct xhci_hcd *) data; 1248 1249 /* mark this command to be cancelled */ 1250 spin_lock_irqsave(&xhci->lock, flags); 1251 if (xhci->current_cmd) { 1252 cur_cmd = xhci->current_cmd; 1253 cur_cmd->status = COMP_CMD_ABORT; 1254 } 1255 1256 1257 /* Make sure command ring is running before aborting it */ 1258 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1259 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1260 (hw_ring_state & CMD_RING_RUNNING)) { 1261 1262 spin_unlock_irqrestore(&xhci->lock, flags); 1263 xhci_dbg(xhci, "Command timeout\n"); 1264 ret = xhci_abort_cmd_ring(xhci); 1265 if (unlikely(ret == -ESHUTDOWN)) { 1266 xhci_err(xhci, "Abort command ring failed\n"); 1267 xhci_cleanup_command_queue(xhci); 1268 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1269 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1270 } 1271 return; 1272 } 1273 /* command timeout on stopped ring, ring can't be aborted */ 1274 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1275 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1276 spin_unlock_irqrestore(&xhci->lock, flags); 1277 return; 1278 } 1279 1280 static void handle_cmd_completion(struct xhci_hcd *xhci, 1281 struct xhci_event_cmd *event) 1282 { 1283 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1284 u64 cmd_dma; 1285 dma_addr_t cmd_dequeue_dma; 1286 u32 cmd_comp_code; 1287 union xhci_trb *cmd_trb; 1288 struct xhci_command *cmd; 1289 u32 cmd_type; 1290 1291 cmd_dma = le64_to_cpu(event->cmd_trb); 1292 cmd_trb = xhci->cmd_ring->dequeue; 1293 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1294 cmd_trb); 1295 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1296 if (cmd_dequeue_dma == 0) { 1297 xhci->error_bitmask |= 1 << 4; 1298 return; 1299 } 1300 /* Does the DMA address match our internal dequeue pointer address? */ 1301 if (cmd_dma != (u64) cmd_dequeue_dma) { 1302 xhci->error_bitmask |= 1 << 5; 1303 return; 1304 } 1305 1306 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1307 1308 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1309 xhci_err(xhci, 1310 "Command completion event does not match command\n"); 1311 return; 1312 } 1313 1314 del_timer(&xhci->cmd_timer); 1315 1316 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1317 1318 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1319 1320 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1321 if (cmd_comp_code == COMP_CMD_STOP) { 1322 xhci_handle_stopped_cmd_ring(xhci, cmd); 1323 return; 1324 } 1325 /* 1326 * Host aborted the command ring, check if the current command was 1327 * supposed to be aborted, otherwise continue normally. 1328 * The command ring is stopped now, but the xHC will issue a Command 1329 * Ring Stopped event which will cause us to restart it. 1330 */ 1331 if (cmd_comp_code == COMP_CMD_ABORT) { 1332 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1333 if (cmd->status == COMP_CMD_ABORT) 1334 goto event_handled; 1335 } 1336 1337 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1338 switch (cmd_type) { 1339 case TRB_ENABLE_SLOT: 1340 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1341 break; 1342 case TRB_DISABLE_SLOT: 1343 xhci_handle_cmd_disable_slot(xhci, slot_id); 1344 break; 1345 case TRB_CONFIG_EP: 1346 if (!cmd->completion) 1347 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1348 cmd_comp_code); 1349 break; 1350 case TRB_EVAL_CONTEXT: 1351 break; 1352 case TRB_ADDR_DEV: 1353 break; 1354 case TRB_STOP_RING: 1355 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1356 le32_to_cpu(cmd_trb->generic.field[3]))); 1357 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1358 break; 1359 case TRB_SET_DEQ: 1360 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1361 le32_to_cpu(cmd_trb->generic.field[3]))); 1362 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1363 break; 1364 case TRB_CMD_NOOP: 1365 /* Is this an aborted command turned to NO-OP? */ 1366 if (cmd->status == COMP_CMD_STOP) 1367 cmd_comp_code = COMP_CMD_STOP; 1368 break; 1369 case TRB_RESET_EP: 1370 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1371 le32_to_cpu(cmd_trb->generic.field[3]))); 1372 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1373 break; 1374 case TRB_RESET_DEV: 1375 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1376 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1377 */ 1378 slot_id = TRB_TO_SLOT_ID( 1379 le32_to_cpu(cmd_trb->generic.field[3])); 1380 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1381 break; 1382 case TRB_NEC_GET_FW: 1383 xhci_handle_cmd_nec_get_fw(xhci, event); 1384 break; 1385 default: 1386 /* Skip over unknown commands on the event ring */ 1387 xhci->error_bitmask |= 1 << 6; 1388 break; 1389 } 1390 1391 /* restart timer if this wasn't the last command */ 1392 if (cmd->cmd_list.next != &xhci->cmd_list) { 1393 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1394 struct xhci_command, cmd_list); 1395 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1396 } 1397 1398 event_handled: 1399 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1400 1401 inc_deq(xhci, xhci->cmd_ring); 1402 } 1403 1404 static void handle_vendor_event(struct xhci_hcd *xhci, 1405 union xhci_trb *event) 1406 { 1407 u32 trb_type; 1408 1409 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1410 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1411 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1412 handle_cmd_completion(xhci, &event->event_cmd); 1413 } 1414 1415 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1416 * port registers -- USB 3.0 and USB 2.0). 1417 * 1418 * Returns a zero-based port number, which is suitable for indexing into each of 1419 * the split roothubs' port arrays and bus state arrays. 1420 * Add one to it in order to call xhci_find_slot_id_by_port. 1421 */ 1422 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1423 struct xhci_hcd *xhci, u32 port_id) 1424 { 1425 unsigned int i; 1426 unsigned int num_similar_speed_ports = 0; 1427 1428 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1429 * and usb2_ports are 0-based indexes. Count the number of similar 1430 * speed ports, up to 1 port before this port. 1431 */ 1432 for (i = 0; i < (port_id - 1); i++) { 1433 u8 port_speed = xhci->port_array[i]; 1434 1435 /* 1436 * Skip ports that don't have known speeds, or have duplicate 1437 * Extended Capabilities port speed entries. 1438 */ 1439 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1440 continue; 1441 1442 /* 1443 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1444 * 1.1 ports are under the USB 2.0 hub. If the port speed 1445 * matches the device speed, it's a similar speed port. 1446 */ 1447 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1448 num_similar_speed_ports++; 1449 } 1450 return num_similar_speed_ports; 1451 } 1452 1453 static void handle_device_notification(struct xhci_hcd *xhci, 1454 union xhci_trb *event) 1455 { 1456 u32 slot_id; 1457 struct usb_device *udev; 1458 1459 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1460 if (!xhci->devs[slot_id]) { 1461 xhci_warn(xhci, "Device Notification event for " 1462 "unused slot %u\n", slot_id); 1463 return; 1464 } 1465 1466 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1467 slot_id); 1468 udev = xhci->devs[slot_id]->udev; 1469 if (udev && udev->parent) 1470 usb_wakeup_notification(udev->parent, udev->portnum); 1471 } 1472 1473 static void handle_port_status(struct xhci_hcd *xhci, 1474 union xhci_trb *event) 1475 { 1476 struct usb_hcd *hcd; 1477 u32 port_id; 1478 u32 temp, temp1; 1479 int max_ports; 1480 int slot_id; 1481 unsigned int faked_port_index; 1482 u8 major_revision; 1483 struct xhci_bus_state *bus_state; 1484 __le32 __iomem **port_array; 1485 bool bogus_port_status = false; 1486 1487 /* Port status change events always have a successful completion code */ 1488 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1489 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1490 xhci->error_bitmask |= 1 << 8; 1491 } 1492 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1493 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1494 1495 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1496 if ((port_id <= 0) || (port_id > max_ports)) { 1497 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1498 inc_deq(xhci, xhci->event_ring); 1499 return; 1500 } 1501 1502 /* Figure out which usb_hcd this port is attached to: 1503 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1504 */ 1505 major_revision = xhci->port_array[port_id - 1]; 1506 1507 /* Find the right roothub. */ 1508 hcd = xhci_to_hcd(xhci); 1509 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1510 hcd = xhci->shared_hcd; 1511 1512 if (major_revision == 0) { 1513 xhci_warn(xhci, "Event for port %u not in " 1514 "Extended Capabilities, ignoring.\n", 1515 port_id); 1516 bogus_port_status = true; 1517 goto cleanup; 1518 } 1519 if (major_revision == DUPLICATE_ENTRY) { 1520 xhci_warn(xhci, "Event for port %u duplicated in" 1521 "Extended Capabilities, ignoring.\n", 1522 port_id); 1523 bogus_port_status = true; 1524 goto cleanup; 1525 } 1526 1527 /* 1528 * Hardware port IDs reported by a Port Status Change Event include USB 1529 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1530 * resume event, but we first need to translate the hardware port ID 1531 * into the index into the ports on the correct split roothub, and the 1532 * correct bus_state structure. 1533 */ 1534 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1535 if (hcd->speed == HCD_USB3) 1536 port_array = xhci->usb3_ports; 1537 else 1538 port_array = xhci->usb2_ports; 1539 /* Find the faked port hub number */ 1540 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1541 port_id); 1542 1543 temp = readl(port_array[faked_port_index]); 1544 if (hcd->state == HC_STATE_SUSPENDED) { 1545 xhci_dbg(xhci, "resume root hub\n"); 1546 usb_hcd_resume_root_hub(hcd); 1547 } 1548 1549 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1550 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1551 1552 temp1 = readl(&xhci->op_regs->command); 1553 if (!(temp1 & CMD_RUN)) { 1554 xhci_warn(xhci, "xHC is not running.\n"); 1555 goto cleanup; 1556 } 1557 1558 if (DEV_SUPERSPEED(temp)) { 1559 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1560 /* Set a flag to say the port signaled remote wakeup, 1561 * so we can tell the difference between the end of 1562 * device and host initiated resume. 1563 */ 1564 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1565 xhci_test_and_clear_bit(xhci, port_array, 1566 faked_port_index, PORT_PLC); 1567 xhci_set_link_state(xhci, port_array, faked_port_index, 1568 XDEV_U0); 1569 /* Need to wait until the next link state change 1570 * indicates the device is actually in U0. 1571 */ 1572 bogus_port_status = true; 1573 goto cleanup; 1574 } else { 1575 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1576 bus_state->resume_done[faked_port_index] = jiffies + 1577 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1578 set_bit(faked_port_index, &bus_state->resuming_ports); 1579 mod_timer(&hcd->rh_timer, 1580 bus_state->resume_done[faked_port_index]); 1581 /* Do the rest in GetPortStatus */ 1582 } 1583 } 1584 1585 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1586 DEV_SUPERSPEED(temp)) { 1587 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1588 /* We've just brought the device into U0 through either the 1589 * Resume state after a device remote wakeup, or through the 1590 * U3Exit state after a host-initiated resume. If it's a device 1591 * initiated remote wake, don't pass up the link state change, 1592 * so the roothub behavior is consistent with external 1593 * USB 3.0 hub behavior. 1594 */ 1595 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1596 faked_port_index + 1); 1597 if (slot_id && xhci->devs[slot_id]) 1598 xhci_ring_device(xhci, slot_id); 1599 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1600 bus_state->port_remote_wakeup &= 1601 ~(1 << faked_port_index); 1602 xhci_test_and_clear_bit(xhci, port_array, 1603 faked_port_index, PORT_PLC); 1604 usb_wakeup_notification(hcd->self.root_hub, 1605 faked_port_index + 1); 1606 bogus_port_status = true; 1607 goto cleanup; 1608 } 1609 } 1610 1611 /* 1612 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1613 * RExit to a disconnect state). If so, let the the driver know it's 1614 * out of the RExit state. 1615 */ 1616 if (!DEV_SUPERSPEED(temp) && 1617 test_and_clear_bit(faked_port_index, 1618 &bus_state->rexit_ports)) { 1619 complete(&bus_state->rexit_done[faked_port_index]); 1620 bogus_port_status = true; 1621 goto cleanup; 1622 } 1623 1624 if (hcd->speed != HCD_USB3) 1625 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1626 PORT_PLC); 1627 1628 cleanup: 1629 /* Update event ring dequeue pointer before dropping the lock */ 1630 inc_deq(xhci, xhci->event_ring); 1631 1632 /* Don't make the USB core poll the roothub if we got a bad port status 1633 * change event. Besides, at that point we can't tell which roothub 1634 * (USB 2.0 or USB 3.0) to kick. 1635 */ 1636 if (bogus_port_status) 1637 return; 1638 1639 /* 1640 * xHCI port-status-change events occur when the "or" of all the 1641 * status-change bits in the portsc register changes from 0 to 1. 1642 * New status changes won't cause an event if any other change 1643 * bits are still set. When an event occurs, switch over to 1644 * polling to avoid losing status changes. 1645 */ 1646 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1647 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1648 spin_unlock(&xhci->lock); 1649 /* Pass this up to the core */ 1650 usb_hcd_poll_rh_status(hcd); 1651 spin_lock(&xhci->lock); 1652 } 1653 1654 /* 1655 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1656 * at end_trb, which may be in another segment. If the suspect DMA address is a 1657 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1658 * returns 0. 1659 */ 1660 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1661 struct xhci_segment *start_seg, 1662 union xhci_trb *start_trb, 1663 union xhci_trb *end_trb, 1664 dma_addr_t suspect_dma, 1665 bool debug) 1666 { 1667 dma_addr_t start_dma; 1668 dma_addr_t end_seg_dma; 1669 dma_addr_t end_trb_dma; 1670 struct xhci_segment *cur_seg; 1671 1672 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1673 cur_seg = start_seg; 1674 1675 do { 1676 if (start_dma == 0) 1677 return NULL; 1678 /* We may get an event for a Link TRB in the middle of a TD */ 1679 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1680 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1681 /* If the end TRB isn't in this segment, this is set to 0 */ 1682 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1683 1684 if (debug) 1685 xhci_warn(xhci, 1686 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1687 (unsigned long long)suspect_dma, 1688 (unsigned long long)start_dma, 1689 (unsigned long long)end_trb_dma, 1690 (unsigned long long)cur_seg->dma, 1691 (unsigned long long)end_seg_dma); 1692 1693 if (end_trb_dma > 0) { 1694 /* The end TRB is in this segment, so suspect should be here */ 1695 if (start_dma <= end_trb_dma) { 1696 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1697 return cur_seg; 1698 } else { 1699 /* Case for one segment with 1700 * a TD wrapped around to the top 1701 */ 1702 if ((suspect_dma >= start_dma && 1703 suspect_dma <= end_seg_dma) || 1704 (suspect_dma >= cur_seg->dma && 1705 suspect_dma <= end_trb_dma)) 1706 return cur_seg; 1707 } 1708 return NULL; 1709 } else { 1710 /* Might still be somewhere in this segment */ 1711 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1712 return cur_seg; 1713 } 1714 cur_seg = cur_seg->next; 1715 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1716 } while (cur_seg != start_seg); 1717 1718 return NULL; 1719 } 1720 1721 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1722 unsigned int slot_id, unsigned int ep_index, 1723 unsigned int stream_id, 1724 struct xhci_td *td, union xhci_trb *event_trb) 1725 { 1726 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1727 struct xhci_command *command; 1728 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1729 if (!command) 1730 return; 1731 1732 ep->ep_state |= EP_HALTED; 1733 ep->stopped_stream = stream_id; 1734 1735 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1736 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1737 1738 ep->stopped_stream = 0; 1739 1740 xhci_ring_cmd_db(xhci); 1741 } 1742 1743 /* Check if an error has halted the endpoint ring. The class driver will 1744 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1745 * However, a babble and other errors also halt the endpoint ring, and the class 1746 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1747 * Ring Dequeue Pointer command manually. 1748 */ 1749 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1750 struct xhci_ep_ctx *ep_ctx, 1751 unsigned int trb_comp_code) 1752 { 1753 /* TRB completion codes that may require a manual halt cleanup */ 1754 if (trb_comp_code == COMP_TX_ERR || 1755 trb_comp_code == COMP_BABBLE || 1756 trb_comp_code == COMP_SPLIT_ERR) 1757 /* The 0.96 spec says a babbling control endpoint 1758 * is not halted. The 0.96 spec says it is. Some HW 1759 * claims to be 0.95 compliant, but it halts the control 1760 * endpoint anyway. Check if a babble halted the 1761 * endpoint. 1762 */ 1763 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1764 cpu_to_le32(EP_STATE_HALTED)) 1765 return 1; 1766 1767 return 0; 1768 } 1769 1770 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1771 { 1772 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1773 /* Vendor defined "informational" completion code, 1774 * treat as not-an-error. 1775 */ 1776 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1777 trb_comp_code); 1778 xhci_dbg(xhci, "Treating code as success.\n"); 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 1784 /* 1785 * Finish the td processing, remove the td from td list; 1786 * Return 1 if the urb can be given back. 1787 */ 1788 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1789 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1790 struct xhci_virt_ep *ep, int *status, bool skip) 1791 { 1792 struct xhci_virt_device *xdev; 1793 struct xhci_ring *ep_ring; 1794 unsigned int slot_id; 1795 int ep_index; 1796 struct urb *urb = NULL; 1797 struct xhci_ep_ctx *ep_ctx; 1798 int ret = 0; 1799 struct urb_priv *urb_priv; 1800 u32 trb_comp_code; 1801 1802 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1803 xdev = xhci->devs[slot_id]; 1804 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1805 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1806 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1807 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1808 1809 if (skip) 1810 goto td_cleanup; 1811 1812 if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) { 1813 /* The Endpoint Stop Command completion will take care of any 1814 * stopped TDs. A stopped TD may be restarted, so don't update 1815 * the ring dequeue pointer or take this TD off any lists yet. 1816 */ 1817 ep->stopped_td = td; 1818 return 0; 1819 } 1820 if (trb_comp_code == COMP_STALL || 1821 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1822 trb_comp_code)) { 1823 /* Issue a reset endpoint command to clear the host side 1824 * halt, followed by a set dequeue command to move the 1825 * dequeue pointer past the TD. 1826 * The class driver clears the device side halt later. 1827 */ 1828 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1829 ep_ring->stream_id, td, event_trb); 1830 } else { 1831 /* Update ring dequeue pointer */ 1832 while (ep_ring->dequeue != td->last_trb) 1833 inc_deq(xhci, ep_ring); 1834 inc_deq(xhci, ep_ring); 1835 } 1836 1837 td_cleanup: 1838 /* Clean up the endpoint's TD list */ 1839 urb = td->urb; 1840 urb_priv = urb->hcpriv; 1841 1842 /* Do one last check of the actual transfer length. 1843 * If the host controller said we transferred more data than the buffer 1844 * length, urb->actual_length will be a very big number (since it's 1845 * unsigned). Play it safe and say we didn't transfer anything. 1846 */ 1847 if (urb->actual_length > urb->transfer_buffer_length) { 1848 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1849 urb->transfer_buffer_length, 1850 urb->actual_length); 1851 urb->actual_length = 0; 1852 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1853 *status = -EREMOTEIO; 1854 else 1855 *status = 0; 1856 } 1857 list_del_init(&td->td_list); 1858 /* Was this TD slated to be cancelled but completed anyway? */ 1859 if (!list_empty(&td->cancelled_td_list)) 1860 list_del_init(&td->cancelled_td_list); 1861 1862 urb_priv->td_cnt++; 1863 /* Giveback the urb when all the tds are completed */ 1864 if (urb_priv->td_cnt == urb_priv->length) { 1865 ret = 1; 1866 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1867 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1868 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1869 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1870 usb_amd_quirk_pll_enable(); 1871 } 1872 } 1873 } 1874 1875 return ret; 1876 } 1877 1878 /* 1879 * Process control tds, update urb status and actual_length. 1880 */ 1881 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1882 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1883 struct xhci_virt_ep *ep, int *status) 1884 { 1885 struct xhci_virt_device *xdev; 1886 struct xhci_ring *ep_ring; 1887 unsigned int slot_id; 1888 int ep_index; 1889 struct xhci_ep_ctx *ep_ctx; 1890 u32 trb_comp_code; 1891 1892 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1893 xdev = xhci->devs[slot_id]; 1894 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1895 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1896 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1897 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1898 1899 switch (trb_comp_code) { 1900 case COMP_SUCCESS: 1901 if (event_trb == ep_ring->dequeue) { 1902 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1903 "without IOC set??\n"); 1904 *status = -ESHUTDOWN; 1905 } else if (event_trb != td->last_trb) { 1906 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1907 "without IOC set??\n"); 1908 *status = -ESHUTDOWN; 1909 } else { 1910 *status = 0; 1911 } 1912 break; 1913 case COMP_SHORT_TX: 1914 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1915 *status = -EREMOTEIO; 1916 else 1917 *status = 0; 1918 break; 1919 case COMP_STOP_INVAL: 1920 case COMP_STOP: 1921 return finish_td(xhci, td, event_trb, event, ep, status, false); 1922 default: 1923 if (!xhci_requires_manual_halt_cleanup(xhci, 1924 ep_ctx, trb_comp_code)) 1925 break; 1926 xhci_dbg(xhci, "TRB error code %u, " 1927 "halted endpoint index = %u\n", 1928 trb_comp_code, ep_index); 1929 /* else fall through */ 1930 case COMP_STALL: 1931 /* Did we transfer part of the data (middle) phase? */ 1932 if (event_trb != ep_ring->dequeue && 1933 event_trb != td->last_trb) 1934 td->urb->actual_length = 1935 td->urb->transfer_buffer_length - 1936 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1937 else 1938 td->urb->actual_length = 0; 1939 1940 return finish_td(xhci, td, event_trb, event, ep, status, false); 1941 } 1942 /* 1943 * Did we transfer any data, despite the errors that might have 1944 * happened? I.e. did we get past the setup stage? 1945 */ 1946 if (event_trb != ep_ring->dequeue) { 1947 /* The event was for the status stage */ 1948 if (event_trb == td->last_trb) { 1949 if (td->urb_length_set) { 1950 /* Don't overwrite a previously set error code 1951 */ 1952 if ((*status == -EINPROGRESS || *status == 0) && 1953 (td->urb->transfer_flags 1954 & URB_SHORT_NOT_OK)) 1955 /* Did we already see a short data 1956 * stage? */ 1957 *status = -EREMOTEIO; 1958 } else { 1959 td->urb->actual_length = 1960 td->urb->transfer_buffer_length; 1961 } 1962 } else { 1963 /* 1964 * Maybe the event was for the data stage? If so, update 1965 * already the actual_length of the URB and flag it as 1966 * set, so that it is not overwritten in the event for 1967 * the last TRB. 1968 */ 1969 td->urb_length_set = true; 1970 td->urb->actual_length = 1971 td->urb->transfer_buffer_length - 1972 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1973 xhci_dbg(xhci, "Waiting for status " 1974 "stage event\n"); 1975 return 0; 1976 } 1977 } 1978 1979 return finish_td(xhci, td, event_trb, event, ep, status, false); 1980 } 1981 1982 /* 1983 * Process isochronous tds, update urb packet status and actual_length. 1984 */ 1985 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1986 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1987 struct xhci_virt_ep *ep, int *status) 1988 { 1989 struct xhci_ring *ep_ring; 1990 struct urb_priv *urb_priv; 1991 int idx; 1992 int len = 0; 1993 union xhci_trb *cur_trb; 1994 struct xhci_segment *cur_seg; 1995 struct usb_iso_packet_descriptor *frame; 1996 u32 trb_comp_code; 1997 bool skip_td = false; 1998 1999 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2000 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2001 urb_priv = td->urb->hcpriv; 2002 idx = urb_priv->td_cnt; 2003 frame = &td->urb->iso_frame_desc[idx]; 2004 2005 /* handle completion code */ 2006 switch (trb_comp_code) { 2007 case COMP_SUCCESS: 2008 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2009 frame->status = 0; 2010 break; 2011 } 2012 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2013 trb_comp_code = COMP_SHORT_TX; 2014 case COMP_SHORT_TX: 2015 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2016 -EREMOTEIO : 0; 2017 break; 2018 case COMP_BW_OVER: 2019 frame->status = -ECOMM; 2020 skip_td = true; 2021 break; 2022 case COMP_BUFF_OVER: 2023 case COMP_BABBLE: 2024 frame->status = -EOVERFLOW; 2025 skip_td = true; 2026 break; 2027 case COMP_DEV_ERR: 2028 case COMP_STALL: 2029 case COMP_TX_ERR: 2030 frame->status = -EPROTO; 2031 skip_td = true; 2032 break; 2033 case COMP_STOP: 2034 case COMP_STOP_INVAL: 2035 break; 2036 default: 2037 frame->status = -1; 2038 break; 2039 } 2040 2041 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2042 frame->actual_length = frame->length; 2043 td->urb->actual_length += frame->length; 2044 } else { 2045 for (cur_trb = ep_ring->dequeue, 2046 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2047 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2048 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2049 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2050 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2051 } 2052 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2053 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2054 2055 if (trb_comp_code != COMP_STOP_INVAL) { 2056 frame->actual_length = len; 2057 td->urb->actual_length += len; 2058 } 2059 } 2060 2061 return finish_td(xhci, td, event_trb, event, ep, status, false); 2062 } 2063 2064 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2065 struct xhci_transfer_event *event, 2066 struct xhci_virt_ep *ep, int *status) 2067 { 2068 struct xhci_ring *ep_ring; 2069 struct urb_priv *urb_priv; 2070 struct usb_iso_packet_descriptor *frame; 2071 int idx; 2072 2073 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2074 urb_priv = td->urb->hcpriv; 2075 idx = urb_priv->td_cnt; 2076 frame = &td->urb->iso_frame_desc[idx]; 2077 2078 /* The transfer is partly done. */ 2079 frame->status = -EXDEV; 2080 2081 /* calc actual length */ 2082 frame->actual_length = 0; 2083 2084 /* Update ring dequeue pointer */ 2085 while (ep_ring->dequeue != td->last_trb) 2086 inc_deq(xhci, ep_ring); 2087 inc_deq(xhci, ep_ring); 2088 2089 return finish_td(xhci, td, NULL, event, ep, status, true); 2090 } 2091 2092 /* 2093 * Process bulk and interrupt tds, update urb status and actual_length. 2094 */ 2095 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2096 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2097 struct xhci_virt_ep *ep, int *status) 2098 { 2099 struct xhci_ring *ep_ring; 2100 union xhci_trb *cur_trb; 2101 struct xhci_segment *cur_seg; 2102 u32 trb_comp_code; 2103 2104 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2105 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2106 2107 switch (trb_comp_code) { 2108 case COMP_SUCCESS: 2109 /* Double check that the HW transferred everything. */ 2110 if (event_trb != td->last_trb || 2111 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2112 xhci_warn(xhci, "WARN Successful completion " 2113 "on short TX\n"); 2114 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2115 *status = -EREMOTEIO; 2116 else 2117 *status = 0; 2118 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2119 trb_comp_code = COMP_SHORT_TX; 2120 } else { 2121 *status = 0; 2122 } 2123 break; 2124 case COMP_SHORT_TX: 2125 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2126 *status = -EREMOTEIO; 2127 else 2128 *status = 0; 2129 break; 2130 default: 2131 /* Others already handled above */ 2132 break; 2133 } 2134 if (trb_comp_code == COMP_SHORT_TX) 2135 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2136 "%d bytes untransferred\n", 2137 td->urb->ep->desc.bEndpointAddress, 2138 td->urb->transfer_buffer_length, 2139 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2140 /* Fast path - was this the last TRB in the TD for this URB? */ 2141 if (event_trb == td->last_trb) { 2142 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2143 td->urb->actual_length = 2144 td->urb->transfer_buffer_length - 2145 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2146 if (td->urb->transfer_buffer_length < 2147 td->urb->actual_length) { 2148 xhci_warn(xhci, "HC gave bad length " 2149 "of %d bytes left\n", 2150 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2151 td->urb->actual_length = 0; 2152 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2153 *status = -EREMOTEIO; 2154 else 2155 *status = 0; 2156 } 2157 /* Don't overwrite a previously set error code */ 2158 if (*status == -EINPROGRESS) { 2159 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2160 *status = -EREMOTEIO; 2161 else 2162 *status = 0; 2163 } 2164 } else { 2165 td->urb->actual_length = 2166 td->urb->transfer_buffer_length; 2167 /* Ignore a short packet completion if the 2168 * untransferred length was zero. 2169 */ 2170 if (*status == -EREMOTEIO) 2171 *status = 0; 2172 } 2173 } else { 2174 /* Slow path - walk the list, starting from the dequeue 2175 * pointer, to get the actual length transferred. 2176 */ 2177 td->urb->actual_length = 0; 2178 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2179 cur_trb != event_trb; 2180 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2181 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2182 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2183 td->urb->actual_length += 2184 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2185 } 2186 /* If the ring didn't stop on a Link or No-op TRB, add 2187 * in the actual bytes transferred from the Normal TRB 2188 */ 2189 if (trb_comp_code != COMP_STOP_INVAL) 2190 td->urb->actual_length += 2191 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2192 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2193 } 2194 2195 return finish_td(xhci, td, event_trb, event, ep, status, false); 2196 } 2197 2198 /* 2199 * If this function returns an error condition, it means it got a Transfer 2200 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2201 * At this point, the host controller is probably hosed and should be reset. 2202 */ 2203 static int handle_tx_event(struct xhci_hcd *xhci, 2204 struct xhci_transfer_event *event) 2205 __releases(&xhci->lock) 2206 __acquires(&xhci->lock) 2207 { 2208 struct xhci_virt_device *xdev; 2209 struct xhci_virt_ep *ep; 2210 struct xhci_ring *ep_ring; 2211 unsigned int slot_id; 2212 int ep_index; 2213 struct xhci_td *td = NULL; 2214 dma_addr_t event_dma; 2215 struct xhci_segment *event_seg; 2216 union xhci_trb *event_trb; 2217 struct urb *urb = NULL; 2218 int status = -EINPROGRESS; 2219 struct urb_priv *urb_priv; 2220 struct xhci_ep_ctx *ep_ctx; 2221 struct list_head *tmp; 2222 u32 trb_comp_code; 2223 int ret = 0; 2224 int td_num = 0; 2225 2226 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2227 xdev = xhci->devs[slot_id]; 2228 if (!xdev) { 2229 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2230 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2231 (unsigned long long) xhci_trb_virt_to_dma( 2232 xhci->event_ring->deq_seg, 2233 xhci->event_ring->dequeue), 2234 lower_32_bits(le64_to_cpu(event->buffer)), 2235 upper_32_bits(le64_to_cpu(event->buffer)), 2236 le32_to_cpu(event->transfer_len), 2237 le32_to_cpu(event->flags)); 2238 xhci_dbg(xhci, "Event ring:\n"); 2239 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2240 return -ENODEV; 2241 } 2242 2243 /* Endpoint ID is 1 based, our index is zero based */ 2244 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2245 ep = &xdev->eps[ep_index]; 2246 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2247 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2248 if (!ep_ring || 2249 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2250 EP_STATE_DISABLED) { 2251 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2252 "or incorrect stream ring\n"); 2253 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2254 (unsigned long long) xhci_trb_virt_to_dma( 2255 xhci->event_ring->deq_seg, 2256 xhci->event_ring->dequeue), 2257 lower_32_bits(le64_to_cpu(event->buffer)), 2258 upper_32_bits(le64_to_cpu(event->buffer)), 2259 le32_to_cpu(event->transfer_len), 2260 le32_to_cpu(event->flags)); 2261 xhci_dbg(xhci, "Event ring:\n"); 2262 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2263 return -ENODEV; 2264 } 2265 2266 /* Count current td numbers if ep->skip is set */ 2267 if (ep->skip) { 2268 list_for_each(tmp, &ep_ring->td_list) 2269 td_num++; 2270 } 2271 2272 event_dma = le64_to_cpu(event->buffer); 2273 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2274 /* Look for common error cases */ 2275 switch (trb_comp_code) { 2276 /* Skip codes that require special handling depending on 2277 * transfer type 2278 */ 2279 case COMP_SUCCESS: 2280 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2281 break; 2282 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2283 trb_comp_code = COMP_SHORT_TX; 2284 else 2285 xhci_warn_ratelimited(xhci, 2286 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2287 case COMP_SHORT_TX: 2288 break; 2289 case COMP_STOP: 2290 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2291 break; 2292 case COMP_STOP_INVAL: 2293 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2294 break; 2295 case COMP_STALL: 2296 xhci_dbg(xhci, "Stalled endpoint\n"); 2297 ep->ep_state |= EP_HALTED; 2298 status = -EPIPE; 2299 break; 2300 case COMP_TRB_ERR: 2301 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2302 status = -EILSEQ; 2303 break; 2304 case COMP_SPLIT_ERR: 2305 case COMP_TX_ERR: 2306 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2307 status = -EPROTO; 2308 break; 2309 case COMP_BABBLE: 2310 xhci_dbg(xhci, "Babble error on endpoint\n"); 2311 status = -EOVERFLOW; 2312 break; 2313 case COMP_DB_ERR: 2314 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2315 status = -ENOSR; 2316 break; 2317 case COMP_BW_OVER: 2318 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2319 break; 2320 case COMP_BUFF_OVER: 2321 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2322 break; 2323 case COMP_UNDERRUN: 2324 /* 2325 * When the Isoch ring is empty, the xHC will generate 2326 * a Ring Overrun Event for IN Isoch endpoint or Ring 2327 * Underrun Event for OUT Isoch endpoint. 2328 */ 2329 xhci_dbg(xhci, "underrun event on endpoint\n"); 2330 if (!list_empty(&ep_ring->td_list)) 2331 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2332 "still with TDs queued?\n", 2333 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2334 ep_index); 2335 goto cleanup; 2336 case COMP_OVERRUN: 2337 xhci_dbg(xhci, "overrun event on endpoint\n"); 2338 if (!list_empty(&ep_ring->td_list)) 2339 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2340 "still with TDs queued?\n", 2341 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2342 ep_index); 2343 goto cleanup; 2344 case COMP_DEV_ERR: 2345 xhci_warn(xhci, "WARN: detect an incompatible device"); 2346 status = -EPROTO; 2347 break; 2348 case COMP_MISSED_INT: 2349 /* 2350 * When encounter missed service error, one or more isoc tds 2351 * may be missed by xHC. 2352 * Set skip flag of the ep_ring; Complete the missed tds as 2353 * short transfer when process the ep_ring next time. 2354 */ 2355 ep->skip = true; 2356 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2357 goto cleanup; 2358 default: 2359 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2360 status = 0; 2361 break; 2362 } 2363 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2364 trb_comp_code); 2365 goto cleanup; 2366 } 2367 2368 do { 2369 /* This TRB should be in the TD at the head of this ring's 2370 * TD list. 2371 */ 2372 if (list_empty(&ep_ring->td_list)) { 2373 /* 2374 * A stopped endpoint may generate an extra completion 2375 * event if the device was suspended. Don't print 2376 * warnings. 2377 */ 2378 if (!(trb_comp_code == COMP_STOP || 2379 trb_comp_code == COMP_STOP_INVAL)) { 2380 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2381 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2382 ep_index); 2383 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2384 (le32_to_cpu(event->flags) & 2385 TRB_TYPE_BITMASK)>>10); 2386 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2387 } 2388 if (ep->skip) { 2389 ep->skip = false; 2390 xhci_dbg(xhci, "td_list is empty while skip " 2391 "flag set. Clear skip flag.\n"); 2392 } 2393 ret = 0; 2394 goto cleanup; 2395 } 2396 2397 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2398 if (ep->skip && td_num == 0) { 2399 ep->skip = false; 2400 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2401 "Clear skip flag.\n"); 2402 ret = 0; 2403 goto cleanup; 2404 } 2405 2406 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2407 if (ep->skip) 2408 td_num--; 2409 2410 /* Is this a TRB in the currently executing TD? */ 2411 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2412 td->last_trb, event_dma, false); 2413 2414 /* 2415 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2416 * is not in the current TD pointed by ep_ring->dequeue because 2417 * that the hardware dequeue pointer still at the previous TRB 2418 * of the current TD. The previous TRB maybe a Link TD or the 2419 * last TRB of the previous TD. The command completion handle 2420 * will take care the rest. 2421 */ 2422 if (!event_seg && (trb_comp_code == COMP_STOP || 2423 trb_comp_code == COMP_STOP_INVAL)) { 2424 ret = 0; 2425 goto cleanup; 2426 } 2427 2428 if (!event_seg) { 2429 if (!ep->skip || 2430 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2431 /* Some host controllers give a spurious 2432 * successful event after a short transfer. 2433 * Ignore it. 2434 */ 2435 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2436 ep_ring->last_td_was_short) { 2437 ep_ring->last_td_was_short = false; 2438 ret = 0; 2439 goto cleanup; 2440 } 2441 /* HC is busted, give up! */ 2442 xhci_err(xhci, 2443 "ERROR Transfer event TRB DMA ptr not " 2444 "part of current TD ep_index %d " 2445 "comp_code %u\n", ep_index, 2446 trb_comp_code); 2447 trb_in_td(xhci, ep_ring->deq_seg, 2448 ep_ring->dequeue, td->last_trb, 2449 event_dma, true); 2450 return -ESHUTDOWN; 2451 } 2452 2453 ret = skip_isoc_td(xhci, td, event, ep, &status); 2454 goto cleanup; 2455 } 2456 if (trb_comp_code == COMP_SHORT_TX) 2457 ep_ring->last_td_was_short = true; 2458 else 2459 ep_ring->last_td_was_short = false; 2460 2461 if (ep->skip) { 2462 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2463 ep->skip = false; 2464 } 2465 2466 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2467 sizeof(*event_trb)]; 2468 /* 2469 * No-op TRB should not trigger interrupts. 2470 * If event_trb is a no-op TRB, it means the 2471 * corresponding TD has been cancelled. Just ignore 2472 * the TD. 2473 */ 2474 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2475 xhci_dbg(xhci, 2476 "event_trb is a no-op TRB. Skip it\n"); 2477 goto cleanup; 2478 } 2479 2480 /* Now update the urb's actual_length and give back to 2481 * the core 2482 */ 2483 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2484 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2485 &status); 2486 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2487 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2488 &status); 2489 else 2490 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2491 ep, &status); 2492 2493 cleanup: 2494 /* 2495 * Do not update event ring dequeue pointer if ep->skip is set. 2496 * Will roll back to continue process missed tds. 2497 */ 2498 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2499 inc_deq(xhci, xhci->event_ring); 2500 } 2501 2502 if (ret) { 2503 urb = td->urb; 2504 urb_priv = urb->hcpriv; 2505 2506 xhci_urb_free_priv(urb_priv); 2507 2508 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2509 if ((urb->actual_length != urb->transfer_buffer_length && 2510 (urb->transfer_flags & 2511 URB_SHORT_NOT_OK)) || 2512 (status != 0 && 2513 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2514 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2515 "expected = %d, status = %d\n", 2516 urb, urb->actual_length, 2517 urb->transfer_buffer_length, 2518 status); 2519 spin_unlock(&xhci->lock); 2520 /* EHCI, UHCI, and OHCI always unconditionally set the 2521 * urb->status of an isochronous endpoint to 0. 2522 */ 2523 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2524 status = 0; 2525 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2526 spin_lock(&xhci->lock); 2527 } 2528 2529 /* 2530 * If ep->skip is set, it means there are missed tds on the 2531 * endpoint ring need to take care of. 2532 * Process them as short transfer until reach the td pointed by 2533 * the event. 2534 */ 2535 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * This function handles all OS-owned events on the event ring. It may drop 2542 * xhci->lock between event processing (e.g. to pass up port status changes). 2543 * Returns >0 for "possibly more events to process" (caller should call again), 2544 * otherwise 0 if done. In future, <0 returns should indicate error code. 2545 */ 2546 static int xhci_handle_event(struct xhci_hcd *xhci) 2547 { 2548 union xhci_trb *event; 2549 int update_ptrs = 1; 2550 int ret; 2551 2552 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2553 xhci->error_bitmask |= 1 << 1; 2554 return 0; 2555 } 2556 2557 event = xhci->event_ring->dequeue; 2558 /* Does the HC or OS own the TRB? */ 2559 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2560 xhci->event_ring->cycle_state) { 2561 xhci->error_bitmask |= 1 << 2; 2562 return 0; 2563 } 2564 2565 /* 2566 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2567 * speculative reads of the event's flags/data below. 2568 */ 2569 rmb(); 2570 /* FIXME: Handle more event types. */ 2571 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2572 case TRB_TYPE(TRB_COMPLETION): 2573 handle_cmd_completion(xhci, &event->event_cmd); 2574 break; 2575 case TRB_TYPE(TRB_PORT_STATUS): 2576 handle_port_status(xhci, event); 2577 update_ptrs = 0; 2578 break; 2579 case TRB_TYPE(TRB_TRANSFER): 2580 ret = handle_tx_event(xhci, &event->trans_event); 2581 if (ret < 0) 2582 xhci->error_bitmask |= 1 << 9; 2583 else 2584 update_ptrs = 0; 2585 break; 2586 case TRB_TYPE(TRB_DEV_NOTE): 2587 handle_device_notification(xhci, event); 2588 break; 2589 default: 2590 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2591 TRB_TYPE(48)) 2592 handle_vendor_event(xhci, event); 2593 else 2594 xhci->error_bitmask |= 1 << 3; 2595 } 2596 /* Any of the above functions may drop and re-acquire the lock, so check 2597 * to make sure a watchdog timer didn't mark the host as non-responsive. 2598 */ 2599 if (xhci->xhc_state & XHCI_STATE_DYING) { 2600 xhci_dbg(xhci, "xHCI host dying, returning from " 2601 "event handler.\n"); 2602 return 0; 2603 } 2604 2605 if (update_ptrs) 2606 /* Update SW event ring dequeue pointer */ 2607 inc_deq(xhci, xhci->event_ring); 2608 2609 /* Are there more items on the event ring? Caller will call us again to 2610 * check. 2611 */ 2612 return 1; 2613 } 2614 2615 /* 2616 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2617 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2618 * indicators of an event TRB error, but we check the status *first* to be safe. 2619 */ 2620 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2621 { 2622 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2623 u32 status; 2624 u64 temp_64; 2625 union xhci_trb *event_ring_deq; 2626 dma_addr_t deq; 2627 2628 spin_lock(&xhci->lock); 2629 /* Check if the xHC generated the interrupt, or the irq is shared */ 2630 status = readl(&xhci->op_regs->status); 2631 if (status == 0xffffffff) 2632 goto hw_died; 2633 2634 if (!(status & STS_EINT)) { 2635 spin_unlock(&xhci->lock); 2636 return IRQ_NONE; 2637 } 2638 if (status & STS_FATAL) { 2639 xhci_warn(xhci, "WARNING: Host System Error\n"); 2640 xhci_halt(xhci); 2641 hw_died: 2642 spin_unlock(&xhci->lock); 2643 return -ESHUTDOWN; 2644 } 2645 2646 /* 2647 * Clear the op reg interrupt status first, 2648 * so we can receive interrupts from other MSI-X interrupters. 2649 * Write 1 to clear the interrupt status. 2650 */ 2651 status |= STS_EINT; 2652 writel(status, &xhci->op_regs->status); 2653 /* FIXME when MSI-X is supported and there are multiple vectors */ 2654 /* Clear the MSI-X event interrupt status */ 2655 2656 if (hcd->irq) { 2657 u32 irq_pending; 2658 /* Acknowledge the PCI interrupt */ 2659 irq_pending = readl(&xhci->ir_set->irq_pending); 2660 irq_pending |= IMAN_IP; 2661 writel(irq_pending, &xhci->ir_set->irq_pending); 2662 } 2663 2664 if (xhci->xhc_state & XHCI_STATE_DYING) { 2665 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2666 "Shouldn't IRQs be disabled?\n"); 2667 /* Clear the event handler busy flag (RW1C); 2668 * the event ring should be empty. 2669 */ 2670 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2671 xhci_write_64(xhci, temp_64 | ERST_EHB, 2672 &xhci->ir_set->erst_dequeue); 2673 spin_unlock(&xhci->lock); 2674 2675 return IRQ_HANDLED; 2676 } 2677 2678 event_ring_deq = xhci->event_ring->dequeue; 2679 /* FIXME this should be a delayed service routine 2680 * that clears the EHB. 2681 */ 2682 while (xhci_handle_event(xhci) > 0) {} 2683 2684 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2685 /* If necessary, update the HW's version of the event ring deq ptr. */ 2686 if (event_ring_deq != xhci->event_ring->dequeue) { 2687 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2688 xhci->event_ring->dequeue); 2689 if (deq == 0) 2690 xhci_warn(xhci, "WARN something wrong with SW event " 2691 "ring dequeue ptr.\n"); 2692 /* Update HC event ring dequeue pointer */ 2693 temp_64 &= ERST_PTR_MASK; 2694 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2695 } 2696 2697 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2698 temp_64 |= ERST_EHB; 2699 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2700 2701 spin_unlock(&xhci->lock); 2702 2703 return IRQ_HANDLED; 2704 } 2705 2706 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2707 { 2708 return xhci_irq(hcd); 2709 } 2710 2711 /**** Endpoint Ring Operations ****/ 2712 2713 /* 2714 * Generic function for queueing a TRB on a ring. 2715 * The caller must have checked to make sure there's room on the ring. 2716 * 2717 * @more_trbs_coming: Will you enqueue more TRBs before calling 2718 * prepare_transfer()? 2719 */ 2720 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2721 bool more_trbs_coming, 2722 u32 field1, u32 field2, u32 field3, u32 field4) 2723 { 2724 struct xhci_generic_trb *trb; 2725 2726 trb = &ring->enqueue->generic; 2727 trb->field[0] = cpu_to_le32(field1); 2728 trb->field[1] = cpu_to_le32(field2); 2729 trb->field[2] = cpu_to_le32(field3); 2730 trb->field[3] = cpu_to_le32(field4); 2731 inc_enq(xhci, ring, more_trbs_coming); 2732 } 2733 2734 /* 2735 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2736 * FIXME allocate segments if the ring is full. 2737 */ 2738 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2739 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2740 { 2741 unsigned int num_trbs_needed; 2742 2743 /* Make sure the endpoint has been added to xHC schedule */ 2744 switch (ep_state) { 2745 case EP_STATE_DISABLED: 2746 /* 2747 * USB core changed config/interfaces without notifying us, 2748 * or hardware is reporting the wrong state. 2749 */ 2750 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2751 return -ENOENT; 2752 case EP_STATE_ERROR: 2753 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2754 /* FIXME event handling code for error needs to clear it */ 2755 /* XXX not sure if this should be -ENOENT or not */ 2756 return -EINVAL; 2757 case EP_STATE_HALTED: 2758 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2759 case EP_STATE_STOPPED: 2760 case EP_STATE_RUNNING: 2761 break; 2762 default: 2763 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2764 /* 2765 * FIXME issue Configure Endpoint command to try to get the HC 2766 * back into a known state. 2767 */ 2768 return -EINVAL; 2769 } 2770 2771 while (1) { 2772 if (room_on_ring(xhci, ep_ring, num_trbs)) 2773 break; 2774 2775 if (ep_ring == xhci->cmd_ring) { 2776 xhci_err(xhci, "Do not support expand command ring\n"); 2777 return -ENOMEM; 2778 } 2779 2780 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2781 "ERROR no room on ep ring, try ring expansion"); 2782 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2783 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2784 mem_flags)) { 2785 xhci_err(xhci, "Ring expansion failed\n"); 2786 return -ENOMEM; 2787 } 2788 } 2789 2790 if (enqueue_is_link_trb(ep_ring)) { 2791 struct xhci_ring *ring = ep_ring; 2792 union xhci_trb *next; 2793 2794 next = ring->enqueue; 2795 2796 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2797 /* If we're not dealing with 0.95 hardware or isoc rings 2798 * on AMD 0.96 host, clear the chain bit. 2799 */ 2800 if (!xhci_link_trb_quirk(xhci) && 2801 !(ring->type == TYPE_ISOC && 2802 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2803 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2804 else 2805 next->link.control |= cpu_to_le32(TRB_CHAIN); 2806 2807 wmb(); 2808 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2809 2810 /* Toggle the cycle bit after the last ring segment. */ 2811 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2812 ring->cycle_state ^= 1; 2813 } 2814 ring->enq_seg = ring->enq_seg->next; 2815 ring->enqueue = ring->enq_seg->trbs; 2816 next = ring->enqueue; 2817 } 2818 } 2819 2820 return 0; 2821 } 2822 2823 static int prepare_transfer(struct xhci_hcd *xhci, 2824 struct xhci_virt_device *xdev, 2825 unsigned int ep_index, 2826 unsigned int stream_id, 2827 unsigned int num_trbs, 2828 struct urb *urb, 2829 unsigned int td_index, 2830 gfp_t mem_flags) 2831 { 2832 int ret; 2833 struct urb_priv *urb_priv; 2834 struct xhci_td *td; 2835 struct xhci_ring *ep_ring; 2836 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2837 2838 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2839 if (!ep_ring) { 2840 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2841 stream_id); 2842 return -EINVAL; 2843 } 2844 2845 ret = prepare_ring(xhci, ep_ring, 2846 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2847 num_trbs, mem_flags); 2848 if (ret) 2849 return ret; 2850 2851 urb_priv = urb->hcpriv; 2852 td = urb_priv->td[td_index]; 2853 2854 INIT_LIST_HEAD(&td->td_list); 2855 INIT_LIST_HEAD(&td->cancelled_td_list); 2856 2857 if (td_index == 0) { 2858 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2859 if (unlikely(ret)) 2860 return ret; 2861 } 2862 2863 td->urb = urb; 2864 /* Add this TD to the tail of the endpoint ring's TD list */ 2865 list_add_tail(&td->td_list, &ep_ring->td_list); 2866 td->start_seg = ep_ring->enq_seg; 2867 td->first_trb = ep_ring->enqueue; 2868 2869 urb_priv->td[td_index] = td; 2870 2871 return 0; 2872 } 2873 2874 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2875 { 2876 int num_sgs, num_trbs, running_total, temp, i; 2877 struct scatterlist *sg; 2878 2879 sg = NULL; 2880 num_sgs = urb->num_mapped_sgs; 2881 temp = urb->transfer_buffer_length; 2882 2883 num_trbs = 0; 2884 for_each_sg(urb->sg, sg, num_sgs, i) { 2885 unsigned int len = sg_dma_len(sg); 2886 2887 /* Scatter gather list entries may cross 64KB boundaries */ 2888 running_total = TRB_MAX_BUFF_SIZE - 2889 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2890 running_total &= TRB_MAX_BUFF_SIZE - 1; 2891 if (running_total != 0) 2892 num_trbs++; 2893 2894 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2895 while (running_total < sg_dma_len(sg) && running_total < temp) { 2896 num_trbs++; 2897 running_total += TRB_MAX_BUFF_SIZE; 2898 } 2899 len = min_t(int, len, temp); 2900 temp -= len; 2901 if (temp == 0) 2902 break; 2903 } 2904 return num_trbs; 2905 } 2906 2907 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2908 { 2909 if (num_trbs != 0) 2910 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2911 "TRBs, %d left\n", __func__, 2912 urb->ep->desc.bEndpointAddress, num_trbs); 2913 if (running_total != urb->transfer_buffer_length) 2914 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2915 "queued %#x (%d), asked for %#x (%d)\n", 2916 __func__, 2917 urb->ep->desc.bEndpointAddress, 2918 running_total, running_total, 2919 urb->transfer_buffer_length, 2920 urb->transfer_buffer_length); 2921 } 2922 2923 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2924 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2925 struct xhci_generic_trb *start_trb) 2926 { 2927 /* 2928 * Pass all the TRBs to the hardware at once and make sure this write 2929 * isn't reordered. 2930 */ 2931 wmb(); 2932 if (start_cycle) 2933 start_trb->field[3] |= cpu_to_le32(start_cycle); 2934 else 2935 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2936 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2937 } 2938 2939 /* 2940 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2941 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2942 * (comprised of sg list entries) can take several service intervals to 2943 * transmit. 2944 */ 2945 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2946 struct urb *urb, int slot_id, unsigned int ep_index) 2947 { 2948 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2949 xhci->devs[slot_id]->out_ctx, ep_index); 2950 int xhci_interval; 2951 int ep_interval; 2952 2953 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2954 ep_interval = urb->interval; 2955 /* Convert to microframes */ 2956 if (urb->dev->speed == USB_SPEED_LOW || 2957 urb->dev->speed == USB_SPEED_FULL) 2958 ep_interval *= 8; 2959 /* FIXME change this to a warning and a suggestion to use the new API 2960 * to set the polling interval (once the API is added). 2961 */ 2962 if (xhci_interval != ep_interval) { 2963 dev_dbg_ratelimited(&urb->dev->dev, 2964 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 2965 ep_interval, ep_interval == 1 ? "" : "s", 2966 xhci_interval, xhci_interval == 1 ? "" : "s"); 2967 urb->interval = xhci_interval; 2968 /* Convert back to frames for LS/FS devices */ 2969 if (urb->dev->speed == USB_SPEED_LOW || 2970 urb->dev->speed == USB_SPEED_FULL) 2971 urb->interval /= 8; 2972 } 2973 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 2974 } 2975 2976 /* 2977 * The TD size is the number of bytes remaining in the TD (including this TRB), 2978 * right shifted by 10. 2979 * It must fit in bits 21:17, so it can't be bigger than 31. 2980 */ 2981 static u32 xhci_td_remainder(unsigned int remainder) 2982 { 2983 u32 max = (1 << (21 - 17 + 1)) - 1; 2984 2985 if ((remainder >> 10) >= max) 2986 return max << 17; 2987 else 2988 return (remainder >> 10) << 17; 2989 } 2990 2991 /* 2992 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 2993 * packets remaining in the TD (*not* including this TRB). 2994 * 2995 * Total TD packet count = total_packet_count = 2996 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 2997 * 2998 * Packets transferred up to and including this TRB = packets_transferred = 2999 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3000 * 3001 * TD size = total_packet_count - packets_transferred 3002 * 3003 * It must fit in bits 21:17, so it can't be bigger than 31. 3004 * The last TRB in a TD must have the TD size set to zero. 3005 */ 3006 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3007 unsigned int total_packet_count, struct urb *urb, 3008 unsigned int num_trbs_left) 3009 { 3010 int packets_transferred; 3011 3012 /* One TRB with a zero-length data packet. */ 3013 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3014 return 0; 3015 3016 /* All the TRB queueing functions don't count the current TRB in 3017 * running_total. 3018 */ 3019 packets_transferred = (running_total + trb_buff_len) / 3020 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3021 3022 if ((total_packet_count - packets_transferred) > 31) 3023 return 31 << 17; 3024 return (total_packet_count - packets_transferred) << 17; 3025 } 3026 3027 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3028 struct urb *urb, int slot_id, unsigned int ep_index) 3029 { 3030 struct xhci_ring *ep_ring; 3031 unsigned int num_trbs; 3032 struct urb_priv *urb_priv; 3033 struct xhci_td *td; 3034 struct scatterlist *sg; 3035 int num_sgs; 3036 int trb_buff_len, this_sg_len, running_total; 3037 unsigned int total_packet_count; 3038 bool first_trb; 3039 u64 addr; 3040 bool more_trbs_coming; 3041 3042 struct xhci_generic_trb *start_trb; 3043 int start_cycle; 3044 3045 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3046 if (!ep_ring) 3047 return -EINVAL; 3048 3049 num_trbs = count_sg_trbs_needed(xhci, urb); 3050 num_sgs = urb->num_mapped_sgs; 3051 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3052 usb_endpoint_maxp(&urb->ep->desc)); 3053 3054 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3055 ep_index, urb->stream_id, 3056 num_trbs, urb, 0, mem_flags); 3057 if (trb_buff_len < 0) 3058 return trb_buff_len; 3059 3060 urb_priv = urb->hcpriv; 3061 td = urb_priv->td[0]; 3062 3063 /* 3064 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3065 * until we've finished creating all the other TRBs. The ring's cycle 3066 * state may change as we enqueue the other TRBs, so save it too. 3067 */ 3068 start_trb = &ep_ring->enqueue->generic; 3069 start_cycle = ep_ring->cycle_state; 3070 3071 running_total = 0; 3072 /* 3073 * How much data is in the first TRB? 3074 * 3075 * There are three forces at work for TRB buffer pointers and lengths: 3076 * 1. We don't want to walk off the end of this sg-list entry buffer. 3077 * 2. The transfer length that the driver requested may be smaller than 3078 * the amount of memory allocated for this scatter-gather list. 3079 * 3. TRBs buffers can't cross 64KB boundaries. 3080 */ 3081 sg = urb->sg; 3082 addr = (u64) sg_dma_address(sg); 3083 this_sg_len = sg_dma_len(sg); 3084 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3085 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3086 if (trb_buff_len > urb->transfer_buffer_length) 3087 trb_buff_len = urb->transfer_buffer_length; 3088 3089 first_trb = true; 3090 /* Queue the first TRB, even if it's zero-length */ 3091 do { 3092 u32 field = 0; 3093 u32 length_field = 0; 3094 u32 remainder = 0; 3095 3096 /* Don't change the cycle bit of the first TRB until later */ 3097 if (first_trb) { 3098 first_trb = false; 3099 if (start_cycle == 0) 3100 field |= 0x1; 3101 } else 3102 field |= ep_ring->cycle_state; 3103 3104 /* Chain all the TRBs together; clear the chain bit in the last 3105 * TRB to indicate it's the last TRB in the chain. 3106 */ 3107 if (num_trbs > 1) { 3108 field |= TRB_CHAIN; 3109 } else { 3110 /* FIXME - add check for ZERO_PACKET flag before this */ 3111 td->last_trb = ep_ring->enqueue; 3112 field |= TRB_IOC; 3113 } 3114 3115 /* Only set interrupt on short packet for IN endpoints */ 3116 if (usb_urb_dir_in(urb)) 3117 field |= TRB_ISP; 3118 3119 if (TRB_MAX_BUFF_SIZE - 3120 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3121 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3122 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3123 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3124 (unsigned int) addr + trb_buff_len); 3125 } 3126 3127 /* Set the TRB length, TD size, and interrupter fields. */ 3128 if (xhci->hci_version < 0x100) { 3129 remainder = xhci_td_remainder( 3130 urb->transfer_buffer_length - 3131 running_total); 3132 } else { 3133 remainder = xhci_v1_0_td_remainder(running_total, 3134 trb_buff_len, total_packet_count, urb, 3135 num_trbs - 1); 3136 } 3137 length_field = TRB_LEN(trb_buff_len) | 3138 remainder | 3139 TRB_INTR_TARGET(0); 3140 3141 if (num_trbs > 1) 3142 more_trbs_coming = true; 3143 else 3144 more_trbs_coming = false; 3145 queue_trb(xhci, ep_ring, more_trbs_coming, 3146 lower_32_bits(addr), 3147 upper_32_bits(addr), 3148 length_field, 3149 field | TRB_TYPE(TRB_NORMAL)); 3150 --num_trbs; 3151 running_total += trb_buff_len; 3152 3153 /* Calculate length for next transfer -- 3154 * Are we done queueing all the TRBs for this sg entry? 3155 */ 3156 this_sg_len -= trb_buff_len; 3157 if (this_sg_len == 0) { 3158 --num_sgs; 3159 if (num_sgs == 0) 3160 break; 3161 sg = sg_next(sg); 3162 addr = (u64) sg_dma_address(sg); 3163 this_sg_len = sg_dma_len(sg); 3164 } else { 3165 addr += trb_buff_len; 3166 } 3167 3168 trb_buff_len = TRB_MAX_BUFF_SIZE - 3169 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3170 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3171 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3172 trb_buff_len = 3173 urb->transfer_buffer_length - running_total; 3174 } while (running_total < urb->transfer_buffer_length); 3175 3176 check_trb_math(urb, num_trbs, running_total); 3177 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3178 start_cycle, start_trb); 3179 return 0; 3180 } 3181 3182 /* This is very similar to what ehci-q.c qtd_fill() does */ 3183 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3184 struct urb *urb, int slot_id, unsigned int ep_index) 3185 { 3186 struct xhci_ring *ep_ring; 3187 struct urb_priv *urb_priv; 3188 struct xhci_td *td; 3189 int num_trbs; 3190 struct xhci_generic_trb *start_trb; 3191 bool first_trb; 3192 bool more_trbs_coming; 3193 int start_cycle; 3194 u32 field, length_field; 3195 3196 int running_total, trb_buff_len, ret; 3197 unsigned int total_packet_count; 3198 u64 addr; 3199 3200 if (urb->num_sgs) 3201 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3202 3203 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3204 if (!ep_ring) 3205 return -EINVAL; 3206 3207 num_trbs = 0; 3208 /* How much data is (potentially) left before the 64KB boundary? */ 3209 running_total = TRB_MAX_BUFF_SIZE - 3210 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3211 running_total &= TRB_MAX_BUFF_SIZE - 1; 3212 3213 /* If there's some data on this 64KB chunk, or we have to send a 3214 * zero-length transfer, we need at least one TRB 3215 */ 3216 if (running_total != 0 || urb->transfer_buffer_length == 0) 3217 num_trbs++; 3218 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3219 while (running_total < urb->transfer_buffer_length) { 3220 num_trbs++; 3221 running_total += TRB_MAX_BUFF_SIZE; 3222 } 3223 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3224 3225 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3226 ep_index, urb->stream_id, 3227 num_trbs, urb, 0, mem_flags); 3228 if (ret < 0) 3229 return ret; 3230 3231 urb_priv = urb->hcpriv; 3232 td = urb_priv->td[0]; 3233 3234 /* 3235 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3236 * until we've finished creating all the other TRBs. The ring's cycle 3237 * state may change as we enqueue the other TRBs, so save it too. 3238 */ 3239 start_trb = &ep_ring->enqueue->generic; 3240 start_cycle = ep_ring->cycle_state; 3241 3242 running_total = 0; 3243 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3244 usb_endpoint_maxp(&urb->ep->desc)); 3245 /* How much data is in the first TRB? */ 3246 addr = (u64) urb->transfer_dma; 3247 trb_buff_len = TRB_MAX_BUFF_SIZE - 3248 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3249 if (trb_buff_len > urb->transfer_buffer_length) 3250 trb_buff_len = urb->transfer_buffer_length; 3251 3252 first_trb = true; 3253 3254 /* Queue the first TRB, even if it's zero-length */ 3255 do { 3256 u32 remainder = 0; 3257 field = 0; 3258 3259 /* Don't change the cycle bit of the first TRB until later */ 3260 if (first_trb) { 3261 first_trb = false; 3262 if (start_cycle == 0) 3263 field |= 0x1; 3264 } else 3265 field |= ep_ring->cycle_state; 3266 3267 /* Chain all the TRBs together; clear the chain bit in the last 3268 * TRB to indicate it's the last TRB in the chain. 3269 */ 3270 if (num_trbs > 1) { 3271 field |= TRB_CHAIN; 3272 } else { 3273 /* FIXME - add check for ZERO_PACKET flag before this */ 3274 td->last_trb = ep_ring->enqueue; 3275 field |= TRB_IOC; 3276 } 3277 3278 /* Only set interrupt on short packet for IN endpoints */ 3279 if (usb_urb_dir_in(urb)) 3280 field |= TRB_ISP; 3281 3282 /* Set the TRB length, TD size, and interrupter fields. */ 3283 if (xhci->hci_version < 0x100) { 3284 remainder = xhci_td_remainder( 3285 urb->transfer_buffer_length - 3286 running_total); 3287 } else { 3288 remainder = xhci_v1_0_td_remainder(running_total, 3289 trb_buff_len, total_packet_count, urb, 3290 num_trbs - 1); 3291 } 3292 length_field = TRB_LEN(trb_buff_len) | 3293 remainder | 3294 TRB_INTR_TARGET(0); 3295 3296 if (num_trbs > 1) 3297 more_trbs_coming = true; 3298 else 3299 more_trbs_coming = false; 3300 queue_trb(xhci, ep_ring, more_trbs_coming, 3301 lower_32_bits(addr), 3302 upper_32_bits(addr), 3303 length_field, 3304 field | TRB_TYPE(TRB_NORMAL)); 3305 --num_trbs; 3306 running_total += trb_buff_len; 3307 3308 /* Calculate length for next transfer */ 3309 addr += trb_buff_len; 3310 trb_buff_len = urb->transfer_buffer_length - running_total; 3311 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3312 trb_buff_len = TRB_MAX_BUFF_SIZE; 3313 } while (running_total < urb->transfer_buffer_length); 3314 3315 check_trb_math(urb, num_trbs, running_total); 3316 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3317 start_cycle, start_trb); 3318 return 0; 3319 } 3320 3321 /* Caller must have locked xhci->lock */ 3322 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3323 struct urb *urb, int slot_id, unsigned int ep_index) 3324 { 3325 struct xhci_ring *ep_ring; 3326 int num_trbs; 3327 int ret; 3328 struct usb_ctrlrequest *setup; 3329 struct xhci_generic_trb *start_trb; 3330 int start_cycle; 3331 u32 field, length_field; 3332 struct urb_priv *urb_priv; 3333 struct xhci_td *td; 3334 3335 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3336 if (!ep_ring) 3337 return -EINVAL; 3338 3339 /* 3340 * Need to copy setup packet into setup TRB, so we can't use the setup 3341 * DMA address. 3342 */ 3343 if (!urb->setup_packet) 3344 return -EINVAL; 3345 3346 /* 1 TRB for setup, 1 for status */ 3347 num_trbs = 2; 3348 /* 3349 * Don't need to check if we need additional event data and normal TRBs, 3350 * since data in control transfers will never get bigger than 16MB 3351 * XXX: can we get a buffer that crosses 64KB boundaries? 3352 */ 3353 if (urb->transfer_buffer_length > 0) 3354 num_trbs++; 3355 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3356 ep_index, urb->stream_id, 3357 num_trbs, urb, 0, mem_flags); 3358 if (ret < 0) 3359 return ret; 3360 3361 urb_priv = urb->hcpriv; 3362 td = urb_priv->td[0]; 3363 3364 /* 3365 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3366 * until we've finished creating all the other TRBs. The ring's cycle 3367 * state may change as we enqueue the other TRBs, so save it too. 3368 */ 3369 start_trb = &ep_ring->enqueue->generic; 3370 start_cycle = ep_ring->cycle_state; 3371 3372 /* Queue setup TRB - see section 6.4.1.2.1 */ 3373 /* FIXME better way to translate setup_packet into two u32 fields? */ 3374 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3375 field = 0; 3376 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3377 if (start_cycle == 0) 3378 field |= 0x1; 3379 3380 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3381 if (xhci->hci_version == 0x100) { 3382 if (urb->transfer_buffer_length > 0) { 3383 if (setup->bRequestType & USB_DIR_IN) 3384 field |= TRB_TX_TYPE(TRB_DATA_IN); 3385 else 3386 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3387 } 3388 } 3389 3390 queue_trb(xhci, ep_ring, true, 3391 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3392 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3393 TRB_LEN(8) | TRB_INTR_TARGET(0), 3394 /* Immediate data in pointer */ 3395 field); 3396 3397 /* If there's data, queue data TRBs */ 3398 /* Only set interrupt on short packet for IN endpoints */ 3399 if (usb_urb_dir_in(urb)) 3400 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3401 else 3402 field = TRB_TYPE(TRB_DATA); 3403 3404 length_field = TRB_LEN(urb->transfer_buffer_length) | 3405 xhci_td_remainder(urb->transfer_buffer_length) | 3406 TRB_INTR_TARGET(0); 3407 if (urb->transfer_buffer_length > 0) { 3408 if (setup->bRequestType & USB_DIR_IN) 3409 field |= TRB_DIR_IN; 3410 queue_trb(xhci, ep_ring, true, 3411 lower_32_bits(urb->transfer_dma), 3412 upper_32_bits(urb->transfer_dma), 3413 length_field, 3414 field | ep_ring->cycle_state); 3415 } 3416 3417 /* Save the DMA address of the last TRB in the TD */ 3418 td->last_trb = ep_ring->enqueue; 3419 3420 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3421 /* If the device sent data, the status stage is an OUT transfer */ 3422 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3423 field = 0; 3424 else 3425 field = TRB_DIR_IN; 3426 queue_trb(xhci, ep_ring, false, 3427 0, 3428 0, 3429 TRB_INTR_TARGET(0), 3430 /* Event on completion */ 3431 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3432 3433 giveback_first_trb(xhci, slot_id, ep_index, 0, 3434 start_cycle, start_trb); 3435 return 0; 3436 } 3437 3438 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3439 struct urb *urb, int i) 3440 { 3441 int num_trbs = 0; 3442 u64 addr, td_len; 3443 3444 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3445 td_len = urb->iso_frame_desc[i].length; 3446 3447 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3448 TRB_MAX_BUFF_SIZE); 3449 if (num_trbs == 0) 3450 num_trbs++; 3451 3452 return num_trbs; 3453 } 3454 3455 /* 3456 * The transfer burst count field of the isochronous TRB defines the number of 3457 * bursts that are required to move all packets in this TD. Only SuperSpeed 3458 * devices can burst up to bMaxBurst number of packets per service interval. 3459 * This field is zero based, meaning a value of zero in the field means one 3460 * burst. Basically, for everything but SuperSpeed devices, this field will be 3461 * zero. Only xHCI 1.0 host controllers support this field. 3462 */ 3463 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3464 struct usb_device *udev, 3465 struct urb *urb, unsigned int total_packet_count) 3466 { 3467 unsigned int max_burst; 3468 3469 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3470 return 0; 3471 3472 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3473 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3474 } 3475 3476 /* 3477 * Returns the number of packets in the last "burst" of packets. This field is 3478 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3479 * the last burst packet count is equal to the total number of packets in the 3480 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3481 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3482 * contain 1 to (bMaxBurst + 1) packets. 3483 */ 3484 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3485 struct usb_device *udev, 3486 struct urb *urb, unsigned int total_packet_count) 3487 { 3488 unsigned int max_burst; 3489 unsigned int residue; 3490 3491 if (xhci->hci_version < 0x100) 3492 return 0; 3493 3494 switch (udev->speed) { 3495 case USB_SPEED_SUPER: 3496 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3497 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3498 residue = total_packet_count % (max_burst + 1); 3499 /* If residue is zero, the last burst contains (max_burst + 1) 3500 * number of packets, but the TLBPC field is zero-based. 3501 */ 3502 if (residue == 0) 3503 return max_burst; 3504 return residue - 1; 3505 default: 3506 if (total_packet_count == 0) 3507 return 0; 3508 return total_packet_count - 1; 3509 } 3510 } 3511 3512 /* This is for isoc transfer */ 3513 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3514 struct urb *urb, int slot_id, unsigned int ep_index) 3515 { 3516 struct xhci_ring *ep_ring; 3517 struct urb_priv *urb_priv; 3518 struct xhci_td *td; 3519 int num_tds, trbs_per_td; 3520 struct xhci_generic_trb *start_trb; 3521 bool first_trb; 3522 int start_cycle; 3523 u32 field, length_field; 3524 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3525 u64 start_addr, addr; 3526 int i, j; 3527 bool more_trbs_coming; 3528 3529 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3530 3531 num_tds = urb->number_of_packets; 3532 if (num_tds < 1) { 3533 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3534 return -EINVAL; 3535 } 3536 3537 start_addr = (u64) urb->transfer_dma; 3538 start_trb = &ep_ring->enqueue->generic; 3539 start_cycle = ep_ring->cycle_state; 3540 3541 urb_priv = urb->hcpriv; 3542 /* Queue the first TRB, even if it's zero-length */ 3543 for (i = 0; i < num_tds; i++) { 3544 unsigned int total_packet_count; 3545 unsigned int burst_count; 3546 unsigned int residue; 3547 3548 first_trb = true; 3549 running_total = 0; 3550 addr = start_addr + urb->iso_frame_desc[i].offset; 3551 td_len = urb->iso_frame_desc[i].length; 3552 td_remain_len = td_len; 3553 total_packet_count = DIV_ROUND_UP(td_len, 3554 GET_MAX_PACKET( 3555 usb_endpoint_maxp(&urb->ep->desc))); 3556 /* A zero-length transfer still involves at least one packet. */ 3557 if (total_packet_count == 0) 3558 total_packet_count++; 3559 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3560 total_packet_count); 3561 residue = xhci_get_last_burst_packet_count(xhci, 3562 urb->dev, urb, total_packet_count); 3563 3564 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3565 3566 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3567 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3568 if (ret < 0) { 3569 if (i == 0) 3570 return ret; 3571 goto cleanup; 3572 } 3573 3574 td = urb_priv->td[i]; 3575 for (j = 0; j < trbs_per_td; j++) { 3576 u32 remainder = 0; 3577 field = 0; 3578 3579 if (first_trb) { 3580 field = TRB_TBC(burst_count) | 3581 TRB_TLBPC(residue); 3582 /* Queue the isoc TRB */ 3583 field |= TRB_TYPE(TRB_ISOC); 3584 /* Assume URB_ISO_ASAP is set */ 3585 field |= TRB_SIA; 3586 if (i == 0) { 3587 if (start_cycle == 0) 3588 field |= 0x1; 3589 } else 3590 field |= ep_ring->cycle_state; 3591 first_trb = false; 3592 } else { 3593 /* Queue other normal TRBs */ 3594 field |= TRB_TYPE(TRB_NORMAL); 3595 field |= ep_ring->cycle_state; 3596 } 3597 3598 /* Only set interrupt on short packet for IN EPs */ 3599 if (usb_urb_dir_in(urb)) 3600 field |= TRB_ISP; 3601 3602 /* Chain all the TRBs together; clear the chain bit in 3603 * the last TRB to indicate it's the last TRB in the 3604 * chain. 3605 */ 3606 if (j < trbs_per_td - 1) { 3607 field |= TRB_CHAIN; 3608 more_trbs_coming = true; 3609 } else { 3610 td->last_trb = ep_ring->enqueue; 3611 field |= TRB_IOC; 3612 if (xhci->hci_version == 0x100 && 3613 !(xhci->quirks & 3614 XHCI_AVOID_BEI)) { 3615 /* Set BEI bit except for the last td */ 3616 if (i < num_tds - 1) 3617 field |= TRB_BEI; 3618 } 3619 more_trbs_coming = false; 3620 } 3621 3622 /* Calculate TRB length */ 3623 trb_buff_len = TRB_MAX_BUFF_SIZE - 3624 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3625 if (trb_buff_len > td_remain_len) 3626 trb_buff_len = td_remain_len; 3627 3628 /* Set the TRB length, TD size, & interrupter fields. */ 3629 if (xhci->hci_version < 0x100) { 3630 remainder = xhci_td_remainder( 3631 td_len - running_total); 3632 } else { 3633 remainder = xhci_v1_0_td_remainder( 3634 running_total, trb_buff_len, 3635 total_packet_count, urb, 3636 (trbs_per_td - j - 1)); 3637 } 3638 length_field = TRB_LEN(trb_buff_len) | 3639 remainder | 3640 TRB_INTR_TARGET(0); 3641 3642 queue_trb(xhci, ep_ring, more_trbs_coming, 3643 lower_32_bits(addr), 3644 upper_32_bits(addr), 3645 length_field, 3646 field); 3647 running_total += trb_buff_len; 3648 3649 addr += trb_buff_len; 3650 td_remain_len -= trb_buff_len; 3651 } 3652 3653 /* Check TD length */ 3654 if (running_total != td_len) { 3655 xhci_err(xhci, "ISOC TD length unmatch\n"); 3656 ret = -EINVAL; 3657 goto cleanup; 3658 } 3659 } 3660 3661 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3662 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3663 usb_amd_quirk_pll_disable(); 3664 } 3665 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3666 3667 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3668 start_cycle, start_trb); 3669 return 0; 3670 cleanup: 3671 /* Clean up a partially enqueued isoc transfer. */ 3672 3673 for (i--; i >= 0; i--) 3674 list_del_init(&urb_priv->td[i]->td_list); 3675 3676 /* Use the first TD as a temporary variable to turn the TDs we've queued 3677 * into No-ops with a software-owned cycle bit. That way the hardware 3678 * won't accidentally start executing bogus TDs when we partially 3679 * overwrite them. td->first_trb and td->start_seg are already set. 3680 */ 3681 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3682 /* Every TRB except the first & last will have its cycle bit flipped. */ 3683 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3684 3685 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3686 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3687 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3688 ep_ring->cycle_state = start_cycle; 3689 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3690 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3691 return ret; 3692 } 3693 3694 /* 3695 * Check transfer ring to guarantee there is enough room for the urb. 3696 * Update ISO URB start_frame and interval. 3697 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3698 * update the urb->start_frame by now. 3699 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3700 */ 3701 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3702 struct urb *urb, int slot_id, unsigned int ep_index) 3703 { 3704 struct xhci_virt_device *xdev; 3705 struct xhci_ring *ep_ring; 3706 struct xhci_ep_ctx *ep_ctx; 3707 int start_frame; 3708 int xhci_interval; 3709 int ep_interval; 3710 int num_tds, num_trbs, i; 3711 int ret; 3712 3713 xdev = xhci->devs[slot_id]; 3714 ep_ring = xdev->eps[ep_index].ring; 3715 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3716 3717 num_trbs = 0; 3718 num_tds = urb->number_of_packets; 3719 for (i = 0; i < num_tds; i++) 3720 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3721 3722 /* Check the ring to guarantee there is enough room for the whole urb. 3723 * Do not insert any td of the urb to the ring if the check failed. 3724 */ 3725 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3726 num_trbs, mem_flags); 3727 if (ret) 3728 return ret; 3729 3730 start_frame = readl(&xhci->run_regs->microframe_index); 3731 start_frame &= 0x3fff; 3732 3733 urb->start_frame = start_frame; 3734 if (urb->dev->speed == USB_SPEED_LOW || 3735 urb->dev->speed == USB_SPEED_FULL) 3736 urb->start_frame >>= 3; 3737 3738 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3739 ep_interval = urb->interval; 3740 /* Convert to microframes */ 3741 if (urb->dev->speed == USB_SPEED_LOW || 3742 urb->dev->speed == USB_SPEED_FULL) 3743 ep_interval *= 8; 3744 /* FIXME change this to a warning and a suggestion to use the new API 3745 * to set the polling interval (once the API is added). 3746 */ 3747 if (xhci_interval != ep_interval) { 3748 dev_dbg_ratelimited(&urb->dev->dev, 3749 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3750 ep_interval, ep_interval == 1 ? "" : "s", 3751 xhci_interval, xhci_interval == 1 ? "" : "s"); 3752 urb->interval = xhci_interval; 3753 /* Convert back to frames for LS/FS devices */ 3754 if (urb->dev->speed == USB_SPEED_LOW || 3755 urb->dev->speed == USB_SPEED_FULL) 3756 urb->interval /= 8; 3757 } 3758 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3759 3760 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3761 } 3762 3763 /**** Command Ring Operations ****/ 3764 3765 /* Generic function for queueing a command TRB on the command ring. 3766 * Check to make sure there's room on the command ring for one command TRB. 3767 * Also check that there's room reserved for commands that must not fail. 3768 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3769 * then only check for the number of reserved spots. 3770 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3771 * because the command event handler may want to resubmit a failed command. 3772 */ 3773 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3774 u32 field1, u32 field2, 3775 u32 field3, u32 field4, bool command_must_succeed) 3776 { 3777 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3778 int ret; 3779 if (xhci->xhc_state & XHCI_STATE_DYING) 3780 return -ESHUTDOWN; 3781 3782 if (!command_must_succeed) 3783 reserved_trbs++; 3784 3785 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3786 reserved_trbs, GFP_ATOMIC); 3787 if (ret < 0) { 3788 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3789 if (command_must_succeed) 3790 xhci_err(xhci, "ERR: Reserved TRB counting for " 3791 "unfailable commands failed.\n"); 3792 return ret; 3793 } 3794 3795 cmd->command_trb = xhci->cmd_ring->enqueue; 3796 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3797 3798 /* if there are no other commands queued we start the timeout timer */ 3799 if (xhci->cmd_list.next == &cmd->cmd_list && 3800 !timer_pending(&xhci->cmd_timer)) { 3801 xhci->current_cmd = cmd; 3802 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3803 } 3804 3805 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3806 field4 | xhci->cmd_ring->cycle_state); 3807 return 0; 3808 } 3809 3810 /* Queue a slot enable or disable request on the command ring */ 3811 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3812 u32 trb_type, u32 slot_id) 3813 { 3814 return queue_command(xhci, cmd, 0, 0, 0, 3815 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3816 } 3817 3818 /* Queue an address device command TRB */ 3819 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3820 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3821 { 3822 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3823 upper_32_bits(in_ctx_ptr), 0, 3824 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3825 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3826 } 3827 3828 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3829 u32 field1, u32 field2, u32 field3, u32 field4) 3830 { 3831 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3832 } 3833 3834 /* Queue a reset device command TRB */ 3835 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3836 u32 slot_id) 3837 { 3838 return queue_command(xhci, cmd, 0, 0, 0, 3839 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3840 false); 3841 } 3842 3843 /* Queue a configure endpoint command TRB */ 3844 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3845 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3846 u32 slot_id, bool command_must_succeed) 3847 { 3848 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3849 upper_32_bits(in_ctx_ptr), 0, 3850 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3851 command_must_succeed); 3852 } 3853 3854 /* Queue an evaluate context command TRB */ 3855 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3856 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3857 { 3858 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3859 upper_32_bits(in_ctx_ptr), 0, 3860 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3861 command_must_succeed); 3862 } 3863 3864 /* 3865 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3866 * activity on an endpoint that is about to be suspended. 3867 */ 3868 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3869 int slot_id, unsigned int ep_index, int suspend) 3870 { 3871 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3872 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3873 u32 type = TRB_TYPE(TRB_STOP_RING); 3874 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3875 3876 return queue_command(xhci, cmd, 0, 0, 0, 3877 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3878 } 3879 3880 /* Set Transfer Ring Dequeue Pointer command */ 3881 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3882 unsigned int slot_id, unsigned int ep_index, 3883 unsigned int stream_id, 3884 struct xhci_dequeue_state *deq_state) 3885 { 3886 dma_addr_t addr; 3887 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3888 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3889 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3890 u32 trb_sct = 0; 3891 u32 type = TRB_TYPE(TRB_SET_DEQ); 3892 struct xhci_virt_ep *ep; 3893 struct xhci_command *cmd; 3894 int ret; 3895 3896 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3897 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3898 deq_state->new_deq_seg, 3899 (unsigned long long)deq_state->new_deq_seg->dma, 3900 deq_state->new_deq_ptr, 3901 (unsigned long long)xhci_trb_virt_to_dma( 3902 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3903 deq_state->new_cycle_state); 3904 3905 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3906 deq_state->new_deq_ptr); 3907 if (addr == 0) { 3908 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3909 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3910 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3911 return; 3912 } 3913 ep = &xhci->devs[slot_id]->eps[ep_index]; 3914 if ((ep->ep_state & SET_DEQ_PENDING)) { 3915 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3916 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3917 return; 3918 } 3919 3920 /* This function gets called from contexts where it cannot sleep */ 3921 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 3922 if (!cmd) { 3923 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 3924 return; 3925 } 3926 3927 ep->queued_deq_seg = deq_state->new_deq_seg; 3928 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3929 if (stream_id) 3930 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3931 ret = queue_command(xhci, cmd, 3932 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3933 upper_32_bits(addr), trb_stream_id, 3934 trb_slot_id | trb_ep_index | type, false); 3935 if (ret < 0) { 3936 xhci_free_command(xhci, cmd); 3937 return; 3938 } 3939 3940 /* Stop the TD queueing code from ringing the doorbell until 3941 * this command completes. The HC won't set the dequeue pointer 3942 * if the ring is running, and ringing the doorbell starts the 3943 * ring running. 3944 */ 3945 ep->ep_state |= SET_DEQ_PENDING; 3946 } 3947 3948 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3949 int slot_id, unsigned int ep_index) 3950 { 3951 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3952 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3953 u32 type = TRB_TYPE(TRB_RESET_EP); 3954 3955 return queue_command(xhci, cmd, 0, 0, 0, 3956 trb_slot_id | trb_ep_index | type, false); 3957 } 3958