xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 4f205687)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 #include "xhci-mtk.h"
72 
73 /*
74  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
75  * address of the TRB.
76  */
77 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
78 		union xhci_trb *trb)
79 {
80 	unsigned long segment_offset;
81 
82 	if (!seg || !trb || trb < seg->trbs)
83 		return 0;
84 	/* offset in TRBs */
85 	segment_offset = trb - seg->trbs;
86 	if (segment_offset >= TRBS_PER_SEGMENT)
87 		return 0;
88 	return seg->dma + (segment_offset * sizeof(*trb));
89 }
90 
91 /* Does this link TRB point to the first segment in a ring,
92  * or was the previous TRB the last TRB on the last segment in the ERST?
93  */
94 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
95 		struct xhci_segment *seg, union xhci_trb *trb)
96 {
97 	if (ring == xhci->event_ring)
98 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
99 			(seg->next == xhci->event_ring->first_seg);
100 	else
101 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
102 }
103 
104 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
105  * segment?  I.e. would the updated event TRB pointer step off the end of the
106  * event seg?
107  */
108 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
109 		struct xhci_segment *seg, union xhci_trb *trb)
110 {
111 	if (ring == xhci->event_ring)
112 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
113 	else
114 		return TRB_TYPE_LINK_LE32(trb->link.control);
115 }
116 
117 static int enqueue_is_link_trb(struct xhci_ring *ring)
118 {
119 	struct xhci_link_trb *link = &ring->enqueue->link;
120 	return TRB_TYPE_LINK_LE32(link->control);
121 }
122 
123 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
124  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
125  * effect the ring dequeue or enqueue pointers.
126  */
127 static void next_trb(struct xhci_hcd *xhci,
128 		struct xhci_ring *ring,
129 		struct xhci_segment **seg,
130 		union xhci_trb **trb)
131 {
132 	if (last_trb(xhci, ring, *seg, *trb)) {
133 		*seg = (*seg)->next;
134 		*trb = ((*seg)->trbs);
135 	} else {
136 		(*trb)++;
137 	}
138 }
139 
140 /*
141  * See Cycle bit rules. SW is the consumer for the event ring only.
142  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
143  */
144 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
145 {
146 	ring->deq_updates++;
147 
148 	/*
149 	 * If this is not event ring, and the dequeue pointer
150 	 * is not on a link TRB, there is one more usable TRB
151 	 */
152 	if (ring->type != TYPE_EVENT &&
153 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
154 		ring->num_trbs_free++;
155 
156 	do {
157 		/*
158 		 * Update the dequeue pointer further if that was a link TRB or
159 		 * we're at the end of an event ring segment (which doesn't have
160 		 * link TRBS)
161 		 */
162 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
163 			if (ring->type == TYPE_EVENT &&
164 					last_trb_on_last_seg(xhci, ring,
165 						ring->deq_seg, ring->dequeue)) {
166 				ring->cycle_state ^= 1;
167 			}
168 			ring->deq_seg = ring->deq_seg->next;
169 			ring->dequeue = ring->deq_seg->trbs;
170 		} else {
171 			ring->dequeue++;
172 		}
173 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
174 }
175 
176 /*
177  * See Cycle bit rules. SW is the consumer for the event ring only.
178  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
179  *
180  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181  * chain bit is set), then set the chain bit in all the following link TRBs.
182  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183  * have their chain bit cleared (so that each Link TRB is a separate TD).
184  *
185  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
186  * set, but other sections talk about dealing with the chain bit set.  This was
187  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
188  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
189  *
190  * @more_trbs_coming:	Will you enqueue more TRBs before calling
191  *			prepare_transfer()?
192  */
193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
194 			bool more_trbs_coming)
195 {
196 	u32 chain;
197 	union xhci_trb *next;
198 
199 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
200 	/* If this is not event ring, there is one less usable TRB */
201 	if (ring->type != TYPE_EVENT &&
202 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
203 		ring->num_trbs_free--;
204 	next = ++(ring->enqueue);
205 
206 	ring->enq_updates++;
207 	/* Update the dequeue pointer further if that was a link TRB or we're at
208 	 * the end of an event ring segment (which doesn't have link TRBS)
209 	 */
210 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
211 		if (ring->type != TYPE_EVENT) {
212 			/*
213 			 * If the caller doesn't plan on enqueueing more
214 			 * TDs before ringing the doorbell, then we
215 			 * don't want to give the link TRB to the
216 			 * hardware just yet.  We'll give the link TRB
217 			 * back in prepare_ring() just before we enqueue
218 			 * the TD at the top of the ring.
219 			 */
220 			if (!chain && !more_trbs_coming)
221 				break;
222 
223 			/* If we're not dealing with 0.95 hardware or
224 			 * isoc rings on AMD 0.96 host,
225 			 * carry over the chain bit of the previous TRB
226 			 * (which may mean the chain bit is cleared).
227 			 */
228 			if (!(ring->type == TYPE_ISOC &&
229 					(xhci->quirks & XHCI_AMD_0x96_HOST))
230 						&& !xhci_link_trb_quirk(xhci)) {
231 				next->link.control &=
232 					cpu_to_le32(~TRB_CHAIN);
233 				next->link.control |=
234 					cpu_to_le32(chain);
235 			}
236 			/* Give this link TRB to the hardware */
237 			wmb();
238 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
239 
240 			/* Toggle the cycle bit after the last ring segment. */
241 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
242 				ring->cycle_state ^= 1;
243 			}
244 		}
245 		ring->enq_seg = ring->enq_seg->next;
246 		ring->enqueue = ring->enq_seg->trbs;
247 		next = ring->enqueue;
248 	}
249 }
250 
251 /*
252  * Check to see if there's room to enqueue num_trbs on the ring and make sure
253  * enqueue pointer will not advance into dequeue segment. See rules above.
254  */
255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 		unsigned int num_trbs)
257 {
258 	int num_trbs_in_deq_seg;
259 
260 	if (ring->num_trbs_free < num_trbs)
261 		return 0;
262 
263 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 			return 0;
267 	}
268 
269 	return 1;
270 }
271 
272 /* Ring the host controller doorbell after placing a command on the ring */
273 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274 {
275 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
276 		return;
277 
278 	xhci_dbg(xhci, "// Ding dong!\n");
279 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
280 	/* Flush PCI posted writes */
281 	readl(&xhci->dba->doorbell[0]);
282 }
283 
284 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
285 {
286 	u64 temp_64;
287 	int ret;
288 
289 	xhci_dbg(xhci, "Abort command ring\n");
290 
291 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
292 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
293 
294 	/*
295 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
296 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
297 	 * but the completion event in never sent. Use the cmd timeout timer to
298 	 * handle those cases. Use twice the time to cover the bit polling retry
299 	 */
300 	mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
301 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
302 			&xhci->op_regs->cmd_ring);
303 
304 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
305 	 * time the completion od all xHCI commands, including
306 	 * the Command Abort operation. If software doesn't see
307 	 * CRR negated in a timely manner (e.g. longer than 5
308 	 * seconds), then it should assume that the there are
309 	 * larger problems with the xHC and assert HCRST.
310 	 */
311 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
312 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
313 	if (ret < 0) {
314 		/* we are about to kill xhci, give it one more chance */
315 		xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
316 			      &xhci->op_regs->cmd_ring);
317 		udelay(1000);
318 		ret = xhci_handshake(&xhci->op_regs->cmd_ring,
319 				     CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
320 		if (ret == 0)
321 			return 0;
322 
323 		xhci_err(xhci, "Stopped the command ring failed, "
324 				"maybe the host is dead\n");
325 		del_timer(&xhci->cmd_timer);
326 		xhci->xhc_state |= XHCI_STATE_DYING;
327 		xhci_quiesce(xhci);
328 		xhci_halt(xhci);
329 		return -ESHUTDOWN;
330 	}
331 
332 	return 0;
333 }
334 
335 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
336 		unsigned int slot_id,
337 		unsigned int ep_index,
338 		unsigned int stream_id)
339 {
340 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
341 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
342 	unsigned int ep_state = ep->ep_state;
343 
344 	/* Don't ring the doorbell for this endpoint if there are pending
345 	 * cancellations because we don't want to interrupt processing.
346 	 * We don't want to restart any stream rings if there's a set dequeue
347 	 * pointer command pending because the device can choose to start any
348 	 * stream once the endpoint is on the HW schedule.
349 	 */
350 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
351 	    (ep_state & EP_HALTED))
352 		return;
353 	writel(DB_VALUE(ep_index, stream_id), db_addr);
354 	/* The CPU has better things to do at this point than wait for a
355 	 * write-posting flush.  It'll get there soon enough.
356 	 */
357 }
358 
359 /* Ring the doorbell for any rings with pending URBs */
360 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
361 		unsigned int slot_id,
362 		unsigned int ep_index)
363 {
364 	unsigned int stream_id;
365 	struct xhci_virt_ep *ep;
366 
367 	ep = &xhci->devs[slot_id]->eps[ep_index];
368 
369 	/* A ring has pending URBs if its TD list is not empty */
370 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
371 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
372 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
373 		return;
374 	}
375 
376 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
377 			stream_id++) {
378 		struct xhci_stream_info *stream_info = ep->stream_info;
379 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
380 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
381 						stream_id);
382 	}
383 }
384 
385 /* Get the right ring for the given slot_id, ep_index and stream_id.
386  * If the endpoint supports streams, boundary check the URB's stream ID.
387  * If the endpoint doesn't support streams, return the singular endpoint ring.
388  */
389 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
390 		unsigned int slot_id, unsigned int ep_index,
391 		unsigned int stream_id)
392 {
393 	struct xhci_virt_ep *ep;
394 
395 	ep = &xhci->devs[slot_id]->eps[ep_index];
396 	/* Common case: no streams */
397 	if (!(ep->ep_state & EP_HAS_STREAMS))
398 		return ep->ring;
399 
400 	if (stream_id == 0) {
401 		xhci_warn(xhci,
402 				"WARN: Slot ID %u, ep index %u has streams, "
403 				"but URB has no stream ID.\n",
404 				slot_id, ep_index);
405 		return NULL;
406 	}
407 
408 	if (stream_id < ep->stream_info->num_streams)
409 		return ep->stream_info->stream_rings[stream_id];
410 
411 	xhci_warn(xhci,
412 			"WARN: Slot ID %u, ep index %u has "
413 			"stream IDs 1 to %u allocated, "
414 			"but stream ID %u is requested.\n",
415 			slot_id, ep_index,
416 			ep->stream_info->num_streams - 1,
417 			stream_id);
418 	return NULL;
419 }
420 
421 /*
422  * Move the xHC's endpoint ring dequeue pointer past cur_td.
423  * Record the new state of the xHC's endpoint ring dequeue segment,
424  * dequeue pointer, and new consumer cycle state in state.
425  * Update our internal representation of the ring's dequeue pointer.
426  *
427  * We do this in three jumps:
428  *  - First we update our new ring state to be the same as when the xHC stopped.
429  *  - Then we traverse the ring to find the segment that contains
430  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
431  *    any link TRBs with the toggle cycle bit set.
432  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
433  *    if we've moved it past a link TRB with the toggle cycle bit set.
434  *
435  * Some of the uses of xhci_generic_trb are grotty, but if they're done
436  * with correct __le32 accesses they should work fine.  Only users of this are
437  * in here.
438  */
439 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
440 		unsigned int slot_id, unsigned int ep_index,
441 		unsigned int stream_id, struct xhci_td *cur_td,
442 		struct xhci_dequeue_state *state)
443 {
444 	struct xhci_virt_device *dev = xhci->devs[slot_id];
445 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
446 	struct xhci_ring *ep_ring;
447 	struct xhci_segment *new_seg;
448 	union xhci_trb *new_deq;
449 	dma_addr_t addr;
450 	u64 hw_dequeue;
451 	bool cycle_found = false;
452 	bool td_last_trb_found = false;
453 
454 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
455 			ep_index, stream_id);
456 	if (!ep_ring) {
457 		xhci_warn(xhci, "WARN can't find new dequeue state "
458 				"for invalid stream ID %u.\n",
459 				stream_id);
460 		return;
461 	}
462 
463 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
464 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
465 			"Finding endpoint context");
466 	/* 4.6.9 the css flag is written to the stream context for streams */
467 	if (ep->ep_state & EP_HAS_STREAMS) {
468 		struct xhci_stream_ctx *ctx =
469 			&ep->stream_info->stream_ctx_array[stream_id];
470 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
471 	} else {
472 		struct xhci_ep_ctx *ep_ctx
473 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
474 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
475 	}
476 
477 	new_seg = ep_ring->deq_seg;
478 	new_deq = ep_ring->dequeue;
479 	state->new_cycle_state = hw_dequeue & 0x1;
480 
481 	/*
482 	 * We want to find the pointer, segment and cycle state of the new trb
483 	 * (the one after current TD's last_trb). We know the cycle state at
484 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
485 	 * found.
486 	 */
487 	do {
488 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
489 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
490 			cycle_found = true;
491 			if (td_last_trb_found)
492 				break;
493 		}
494 		if (new_deq == cur_td->last_trb)
495 			td_last_trb_found = true;
496 
497 		if (cycle_found &&
498 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
499 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
500 			state->new_cycle_state ^= 0x1;
501 
502 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
503 
504 		/* Search wrapped around, bail out */
505 		if (new_deq == ep->ring->dequeue) {
506 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
507 			state->new_deq_seg = NULL;
508 			state->new_deq_ptr = NULL;
509 			return;
510 		}
511 
512 	} while (!cycle_found || !td_last_trb_found);
513 
514 	state->new_deq_seg = new_seg;
515 	state->new_deq_ptr = new_deq;
516 
517 	/* Don't update the ring cycle state for the producer (us). */
518 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
519 			"Cycle state = 0x%x", state->new_cycle_state);
520 
521 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
522 			"New dequeue segment = %p (virtual)",
523 			state->new_deq_seg);
524 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
525 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
526 			"New dequeue pointer = 0x%llx (DMA)",
527 			(unsigned long long) addr);
528 }
529 
530 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
531  * (The last TRB actually points to the ring enqueue pointer, which is not part
532  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
533  */
534 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
535 		struct xhci_td *cur_td, bool flip_cycle)
536 {
537 	struct xhci_segment *cur_seg;
538 	union xhci_trb *cur_trb;
539 
540 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
541 			true;
542 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
543 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
544 			/* Unchain any chained Link TRBs, but
545 			 * leave the pointers intact.
546 			 */
547 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
548 			/* Flip the cycle bit (link TRBs can't be the first
549 			 * or last TRB).
550 			 */
551 			if (flip_cycle)
552 				cur_trb->generic.field[3] ^=
553 					cpu_to_le32(TRB_CYCLE);
554 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
555 					"Cancel (unchain) link TRB");
556 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
557 					"Address = %p (0x%llx dma); "
558 					"in seg %p (0x%llx dma)",
559 					cur_trb,
560 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
561 					cur_seg,
562 					(unsigned long long)cur_seg->dma);
563 		} else {
564 			cur_trb->generic.field[0] = 0;
565 			cur_trb->generic.field[1] = 0;
566 			cur_trb->generic.field[2] = 0;
567 			/* Preserve only the cycle bit of this TRB */
568 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
569 			/* Flip the cycle bit except on the first or last TRB */
570 			if (flip_cycle && cur_trb != cur_td->first_trb &&
571 					cur_trb != cur_td->last_trb)
572 				cur_trb->generic.field[3] ^=
573 					cpu_to_le32(TRB_CYCLE);
574 			cur_trb->generic.field[3] |= cpu_to_le32(
575 				TRB_TYPE(TRB_TR_NOOP));
576 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
577 					"TRB to noop at offset 0x%llx",
578 					(unsigned long long)
579 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
580 		}
581 		if (cur_trb == cur_td->last_trb)
582 			break;
583 	}
584 }
585 
586 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
587 		struct xhci_virt_ep *ep)
588 {
589 	ep->ep_state &= ~EP_HALT_PENDING;
590 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
591 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
592 	 * (since we didn't successfully stop the watchdog timer).
593 	 */
594 	if (del_timer(&ep->stop_cmd_timer))
595 		ep->stop_cmds_pending--;
596 }
597 
598 /* Must be called with xhci->lock held in interrupt context */
599 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
600 		struct xhci_td *cur_td, int status)
601 {
602 	struct usb_hcd *hcd;
603 	struct urb	*urb;
604 	struct urb_priv	*urb_priv;
605 
606 	urb = cur_td->urb;
607 	urb_priv = urb->hcpriv;
608 	urb_priv->td_cnt++;
609 	hcd = bus_to_hcd(urb->dev->bus);
610 
611 	/* Only giveback urb when this is the last td in urb */
612 	if (urb_priv->td_cnt == urb_priv->length) {
613 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
614 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
615 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
616 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
617 					usb_amd_quirk_pll_enable();
618 			}
619 		}
620 		usb_hcd_unlink_urb_from_ep(hcd, urb);
621 
622 		spin_unlock(&xhci->lock);
623 		usb_hcd_giveback_urb(hcd, urb, status);
624 		xhci_urb_free_priv(urb_priv);
625 		spin_lock(&xhci->lock);
626 	}
627 }
628 
629 /*
630  * When we get a command completion for a Stop Endpoint Command, we need to
631  * unlink any cancelled TDs from the ring.  There are two ways to do that:
632  *
633  *  1. If the HW was in the middle of processing the TD that needs to be
634  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
635  *     in the TD with a Set Dequeue Pointer Command.
636  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
637  *     bit cleared) so that the HW will skip over them.
638  */
639 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
640 		union xhci_trb *trb, struct xhci_event_cmd *event)
641 {
642 	unsigned int ep_index;
643 	struct xhci_ring *ep_ring;
644 	struct xhci_virt_ep *ep;
645 	struct list_head *entry;
646 	struct xhci_td *cur_td = NULL;
647 	struct xhci_td *last_unlinked_td;
648 
649 	struct xhci_dequeue_state deq_state;
650 
651 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
652 		if (!xhci->devs[slot_id])
653 			xhci_warn(xhci, "Stop endpoint command "
654 				"completion for disabled slot %u\n",
655 				slot_id);
656 		return;
657 	}
658 
659 	memset(&deq_state, 0, sizeof(deq_state));
660 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
661 	ep = &xhci->devs[slot_id]->eps[ep_index];
662 
663 	if (list_empty(&ep->cancelled_td_list)) {
664 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
665 		ep->stopped_td = NULL;
666 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
667 		return;
668 	}
669 
670 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
671 	 * We have the xHCI lock, so nothing can modify this list until we drop
672 	 * it.  We're also in the event handler, so we can't get re-interrupted
673 	 * if another Stop Endpoint command completes
674 	 */
675 	list_for_each(entry, &ep->cancelled_td_list) {
676 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
677 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
678 				"Removing canceled TD starting at 0x%llx (dma).",
679 				(unsigned long long)xhci_trb_virt_to_dma(
680 					cur_td->start_seg, cur_td->first_trb));
681 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
682 		if (!ep_ring) {
683 			/* This shouldn't happen unless a driver is mucking
684 			 * with the stream ID after submission.  This will
685 			 * leave the TD on the hardware ring, and the hardware
686 			 * will try to execute it, and may access a buffer
687 			 * that has already been freed.  In the best case, the
688 			 * hardware will execute it, and the event handler will
689 			 * ignore the completion event for that TD, since it was
690 			 * removed from the td_list for that endpoint.  In
691 			 * short, don't muck with the stream ID after
692 			 * submission.
693 			 */
694 			xhci_warn(xhci, "WARN Cancelled URB %p "
695 					"has invalid stream ID %u.\n",
696 					cur_td->urb,
697 					cur_td->urb->stream_id);
698 			goto remove_finished_td;
699 		}
700 		/*
701 		 * If we stopped on the TD we need to cancel, then we have to
702 		 * move the xHC endpoint ring dequeue pointer past this TD.
703 		 */
704 		if (cur_td == ep->stopped_td)
705 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
706 					cur_td->urb->stream_id,
707 					cur_td, &deq_state);
708 		else
709 			td_to_noop(xhci, ep_ring, cur_td, false);
710 remove_finished_td:
711 		/*
712 		 * The event handler won't see a completion for this TD anymore,
713 		 * so remove it from the endpoint ring's TD list.  Keep it in
714 		 * the cancelled TD list for URB completion later.
715 		 */
716 		list_del_init(&cur_td->td_list);
717 	}
718 	last_unlinked_td = cur_td;
719 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
720 
721 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
722 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
723 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
724 				ep->stopped_td->urb->stream_id, &deq_state);
725 		xhci_ring_cmd_db(xhci);
726 	} else {
727 		/* Otherwise ring the doorbell(s) to restart queued transfers */
728 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
729 	}
730 
731 	ep->stopped_td = NULL;
732 
733 	/*
734 	 * Drop the lock and complete the URBs in the cancelled TD list.
735 	 * New TDs to be cancelled might be added to the end of the list before
736 	 * we can complete all the URBs for the TDs we already unlinked.
737 	 * So stop when we've completed the URB for the last TD we unlinked.
738 	 */
739 	do {
740 		cur_td = list_entry(ep->cancelled_td_list.next,
741 				struct xhci_td, cancelled_td_list);
742 		list_del_init(&cur_td->cancelled_td_list);
743 
744 		/* Clean up the cancelled URB */
745 		/* Doesn't matter what we pass for status, since the core will
746 		 * just overwrite it (because the URB has been unlinked).
747 		 */
748 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
749 
750 		/* Stop processing the cancelled list if the watchdog timer is
751 		 * running.
752 		 */
753 		if (xhci->xhc_state & XHCI_STATE_DYING)
754 			return;
755 	} while (cur_td != last_unlinked_td);
756 
757 	/* Return to the event handler with xhci->lock re-acquired */
758 }
759 
760 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
761 {
762 	struct xhci_td *cur_td;
763 
764 	while (!list_empty(&ring->td_list)) {
765 		cur_td = list_first_entry(&ring->td_list,
766 				struct xhci_td, td_list);
767 		list_del_init(&cur_td->td_list);
768 		if (!list_empty(&cur_td->cancelled_td_list))
769 			list_del_init(&cur_td->cancelled_td_list);
770 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
771 	}
772 }
773 
774 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
775 		int slot_id, int ep_index)
776 {
777 	struct xhci_td *cur_td;
778 	struct xhci_virt_ep *ep;
779 	struct xhci_ring *ring;
780 
781 	ep = &xhci->devs[slot_id]->eps[ep_index];
782 	if ((ep->ep_state & EP_HAS_STREAMS) ||
783 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
784 		int stream_id;
785 
786 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
787 				stream_id++) {
788 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
789 					"Killing URBs for slot ID %u, ep index %u, stream %u",
790 					slot_id, ep_index, stream_id + 1);
791 			xhci_kill_ring_urbs(xhci,
792 					ep->stream_info->stream_rings[stream_id]);
793 		}
794 	} else {
795 		ring = ep->ring;
796 		if (!ring)
797 			return;
798 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
799 				"Killing URBs for slot ID %u, ep index %u",
800 				slot_id, ep_index);
801 		xhci_kill_ring_urbs(xhci, ring);
802 	}
803 	while (!list_empty(&ep->cancelled_td_list)) {
804 		cur_td = list_first_entry(&ep->cancelled_td_list,
805 				struct xhci_td, cancelled_td_list);
806 		list_del_init(&cur_td->cancelled_td_list);
807 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
808 	}
809 }
810 
811 /* Watchdog timer function for when a stop endpoint command fails to complete.
812  * In this case, we assume the host controller is broken or dying or dead.  The
813  * host may still be completing some other events, so we have to be careful to
814  * let the event ring handler and the URB dequeueing/enqueueing functions know
815  * through xhci->state.
816  *
817  * The timer may also fire if the host takes a very long time to respond to the
818  * command, and the stop endpoint command completion handler cannot delete the
819  * timer before the timer function is called.  Another endpoint cancellation may
820  * sneak in before the timer function can grab the lock, and that may queue
821  * another stop endpoint command and add the timer back.  So we cannot use a
822  * simple flag to say whether there is a pending stop endpoint command for a
823  * particular endpoint.
824  *
825  * Instead we use a combination of that flag and a counter for the number of
826  * pending stop endpoint commands.  If the timer is the tail end of the last
827  * stop endpoint command, and the endpoint's command is still pending, we assume
828  * the host is dying.
829  */
830 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
831 {
832 	struct xhci_hcd *xhci;
833 	struct xhci_virt_ep *ep;
834 	int ret, i, j;
835 	unsigned long flags;
836 
837 	ep = (struct xhci_virt_ep *) arg;
838 	xhci = ep->xhci;
839 
840 	spin_lock_irqsave(&xhci->lock, flags);
841 
842 	ep->stop_cmds_pending--;
843 	if (xhci->xhc_state & XHCI_STATE_DYING) {
844 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
845 				"Stop EP timer ran, but another timer marked "
846 				"xHCI as DYING, exiting.");
847 		spin_unlock_irqrestore(&xhci->lock, flags);
848 		return;
849 	}
850 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
851 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
852 				"Stop EP timer ran, but no command pending, "
853 				"exiting.");
854 		spin_unlock_irqrestore(&xhci->lock, flags);
855 		return;
856 	}
857 
858 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
859 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
860 	/* Oops, HC is dead or dying or at least not responding to the stop
861 	 * endpoint command.
862 	 */
863 	xhci->xhc_state |= XHCI_STATE_DYING;
864 	/* Disable interrupts from the host controller and start halting it */
865 	xhci_quiesce(xhci);
866 	spin_unlock_irqrestore(&xhci->lock, flags);
867 
868 	ret = xhci_halt(xhci);
869 
870 	spin_lock_irqsave(&xhci->lock, flags);
871 	if (ret < 0) {
872 		/* This is bad; the host is not responding to commands and it's
873 		 * not allowing itself to be halted.  At least interrupts are
874 		 * disabled. If we call usb_hc_died(), it will attempt to
875 		 * disconnect all device drivers under this host.  Those
876 		 * disconnect() methods will wait for all URBs to be unlinked,
877 		 * so we must complete them.
878 		 */
879 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
880 		xhci_warn(xhci, "Completing active URBs anyway.\n");
881 		/* We could turn all TDs on the rings to no-ops.  This won't
882 		 * help if the host has cached part of the ring, and is slow if
883 		 * we want to preserve the cycle bit.  Skip it and hope the host
884 		 * doesn't touch the memory.
885 		 */
886 	}
887 	for (i = 0; i < MAX_HC_SLOTS; i++) {
888 		if (!xhci->devs[i])
889 			continue;
890 		for (j = 0; j < 31; j++)
891 			xhci_kill_endpoint_urbs(xhci, i, j);
892 	}
893 	spin_unlock_irqrestore(&xhci->lock, flags);
894 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
895 			"Calling usb_hc_died()");
896 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
897 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
898 			"xHCI host controller is dead.");
899 }
900 
901 
902 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
903 		struct xhci_virt_device *dev,
904 		struct xhci_ring *ep_ring,
905 		unsigned int ep_index)
906 {
907 	union xhci_trb *dequeue_temp;
908 	int num_trbs_free_temp;
909 	bool revert = false;
910 
911 	num_trbs_free_temp = ep_ring->num_trbs_free;
912 	dequeue_temp = ep_ring->dequeue;
913 
914 	/* If we get two back-to-back stalls, and the first stalled transfer
915 	 * ends just before a link TRB, the dequeue pointer will be left on
916 	 * the link TRB by the code in the while loop.  So we have to update
917 	 * the dequeue pointer one segment further, or we'll jump off
918 	 * the segment into la-la-land.
919 	 */
920 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
921 		ep_ring->deq_seg = ep_ring->deq_seg->next;
922 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
923 	}
924 
925 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
926 		/* We have more usable TRBs */
927 		ep_ring->num_trbs_free++;
928 		ep_ring->dequeue++;
929 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
930 				ep_ring->dequeue)) {
931 			if (ep_ring->dequeue ==
932 					dev->eps[ep_index].queued_deq_ptr)
933 				break;
934 			ep_ring->deq_seg = ep_ring->deq_seg->next;
935 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
936 		}
937 		if (ep_ring->dequeue == dequeue_temp) {
938 			revert = true;
939 			break;
940 		}
941 	}
942 
943 	if (revert) {
944 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
945 		ep_ring->num_trbs_free = num_trbs_free_temp;
946 	}
947 }
948 
949 /*
950  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
951  * we need to clear the set deq pending flag in the endpoint ring state, so that
952  * the TD queueing code can ring the doorbell again.  We also need to ring the
953  * endpoint doorbell to restart the ring, but only if there aren't more
954  * cancellations pending.
955  */
956 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
957 		union xhci_trb *trb, u32 cmd_comp_code)
958 {
959 	unsigned int ep_index;
960 	unsigned int stream_id;
961 	struct xhci_ring *ep_ring;
962 	struct xhci_virt_device *dev;
963 	struct xhci_virt_ep *ep;
964 	struct xhci_ep_ctx *ep_ctx;
965 	struct xhci_slot_ctx *slot_ctx;
966 
967 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
968 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
969 	dev = xhci->devs[slot_id];
970 	ep = &dev->eps[ep_index];
971 
972 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
973 	if (!ep_ring) {
974 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
975 				stream_id);
976 		/* XXX: Harmless??? */
977 		goto cleanup;
978 	}
979 
980 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
981 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
982 
983 	if (cmd_comp_code != COMP_SUCCESS) {
984 		unsigned int ep_state;
985 		unsigned int slot_state;
986 
987 		switch (cmd_comp_code) {
988 		case COMP_TRB_ERR:
989 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
990 			break;
991 		case COMP_CTX_STATE:
992 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
993 			ep_state = le32_to_cpu(ep_ctx->ep_info);
994 			ep_state &= EP_STATE_MASK;
995 			slot_state = le32_to_cpu(slot_ctx->dev_state);
996 			slot_state = GET_SLOT_STATE(slot_state);
997 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
998 					"Slot state = %u, EP state = %u",
999 					slot_state, ep_state);
1000 			break;
1001 		case COMP_EBADSLT:
1002 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1003 					slot_id);
1004 			break;
1005 		default:
1006 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1007 					cmd_comp_code);
1008 			break;
1009 		}
1010 		/* OK what do we do now?  The endpoint state is hosed, and we
1011 		 * should never get to this point if the synchronization between
1012 		 * queueing, and endpoint state are correct.  This might happen
1013 		 * if the device gets disconnected after we've finished
1014 		 * cancelling URBs, which might not be an error...
1015 		 */
1016 	} else {
1017 		u64 deq;
1018 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1019 		if (ep->ep_state & EP_HAS_STREAMS) {
1020 			struct xhci_stream_ctx *ctx =
1021 				&ep->stream_info->stream_ctx_array[stream_id];
1022 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1023 		} else {
1024 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1025 		}
1026 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1027 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1028 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1029 					 ep->queued_deq_ptr) == deq) {
1030 			/* Update the ring's dequeue segment and dequeue pointer
1031 			 * to reflect the new position.
1032 			 */
1033 			update_ring_for_set_deq_completion(xhci, dev,
1034 				ep_ring, ep_index);
1035 		} else {
1036 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1037 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1038 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1039 		}
1040 	}
1041 
1042 cleanup:
1043 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1044 	dev->eps[ep_index].queued_deq_seg = NULL;
1045 	dev->eps[ep_index].queued_deq_ptr = NULL;
1046 	/* Restart any rings with pending URBs */
1047 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1048 }
1049 
1050 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1051 		union xhci_trb *trb, u32 cmd_comp_code)
1052 {
1053 	unsigned int ep_index;
1054 
1055 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1056 	/* This command will only fail if the endpoint wasn't halted,
1057 	 * but we don't care.
1058 	 */
1059 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1060 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1061 
1062 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1063 	 * command complete before the endpoint can be used.  Queue that here
1064 	 * because the HW can't handle two commands being queued in a row.
1065 	 */
1066 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1067 		struct xhci_command *command;
1068 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1069 		if (!command) {
1070 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1071 			return;
1072 		}
1073 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1074 				"Queueing configure endpoint command");
1075 		xhci_queue_configure_endpoint(xhci, command,
1076 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1077 				false);
1078 		xhci_ring_cmd_db(xhci);
1079 	} else {
1080 		/* Clear our internal halted state */
1081 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1082 	}
1083 }
1084 
1085 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1086 		u32 cmd_comp_code)
1087 {
1088 	if (cmd_comp_code == COMP_SUCCESS)
1089 		xhci->slot_id = slot_id;
1090 	else
1091 		xhci->slot_id = 0;
1092 }
1093 
1094 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1095 {
1096 	struct xhci_virt_device *virt_dev;
1097 
1098 	virt_dev = xhci->devs[slot_id];
1099 	if (!virt_dev)
1100 		return;
1101 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1102 		/* Delete default control endpoint resources */
1103 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1104 	xhci_free_virt_device(xhci, slot_id);
1105 }
1106 
1107 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1108 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1109 {
1110 	struct xhci_virt_device *virt_dev;
1111 	struct xhci_input_control_ctx *ctrl_ctx;
1112 	unsigned int ep_index;
1113 	unsigned int ep_state;
1114 	u32 add_flags, drop_flags;
1115 
1116 	/*
1117 	 * Configure endpoint commands can come from the USB core
1118 	 * configuration or alt setting changes, or because the HW
1119 	 * needed an extra configure endpoint command after a reset
1120 	 * endpoint command or streams were being configured.
1121 	 * If the command was for a halted endpoint, the xHCI driver
1122 	 * is not waiting on the configure endpoint command.
1123 	 */
1124 	virt_dev = xhci->devs[slot_id];
1125 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1126 	if (!ctrl_ctx) {
1127 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1128 		return;
1129 	}
1130 
1131 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1132 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1133 	/* Input ctx add_flags are the endpoint index plus one */
1134 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1135 
1136 	/* A usb_set_interface() call directly after clearing a halted
1137 	 * condition may race on this quirky hardware.  Not worth
1138 	 * worrying about, since this is prototype hardware.  Not sure
1139 	 * if this will work for streams, but streams support was
1140 	 * untested on this prototype.
1141 	 */
1142 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1143 			ep_index != (unsigned int) -1 &&
1144 			add_flags - SLOT_FLAG == drop_flags) {
1145 		ep_state = virt_dev->eps[ep_index].ep_state;
1146 		if (!(ep_state & EP_HALTED))
1147 			return;
1148 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 				"Completed config ep cmd - "
1150 				"last ep index = %d, state = %d",
1151 				ep_index, ep_state);
1152 		/* Clear internal halted state and restart ring(s) */
1153 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1154 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1155 		return;
1156 	}
1157 	return;
1158 }
1159 
1160 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1161 		struct xhci_event_cmd *event)
1162 {
1163 	xhci_dbg(xhci, "Completed reset device command.\n");
1164 	if (!xhci->devs[slot_id])
1165 		xhci_warn(xhci, "Reset device command completion "
1166 				"for disabled slot %u\n", slot_id);
1167 }
1168 
1169 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1170 		struct xhci_event_cmd *event)
1171 {
1172 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1173 		xhci->error_bitmask |= 1 << 6;
1174 		return;
1175 	}
1176 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1177 			"NEC firmware version %2x.%02x",
1178 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1179 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1180 }
1181 
1182 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1183 {
1184 	list_del(&cmd->cmd_list);
1185 
1186 	if (cmd->completion) {
1187 		cmd->status = status;
1188 		complete(cmd->completion);
1189 	} else {
1190 		kfree(cmd);
1191 	}
1192 }
1193 
1194 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1195 {
1196 	struct xhci_command *cur_cmd, *tmp_cmd;
1197 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1198 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1199 }
1200 
1201 /*
1202  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1203  * If there are other commands waiting then restart the ring and kick the timer.
1204  * This must be called with command ring stopped and xhci->lock held.
1205  */
1206 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1207 					 struct xhci_command *cur_cmd)
1208 {
1209 	struct xhci_command *i_cmd, *tmp_cmd;
1210 	u32 cycle_state;
1211 
1212 	/* Turn all aborted commands in list to no-ops, then restart */
1213 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1214 				 cmd_list) {
1215 
1216 		if (i_cmd->status != COMP_CMD_ABORT)
1217 			continue;
1218 
1219 		i_cmd->status = COMP_CMD_STOP;
1220 
1221 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1222 			 i_cmd->command_trb);
1223 		/* get cycle state from the original cmd trb */
1224 		cycle_state = le32_to_cpu(
1225 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1226 		/* modify the command trb to no-op command */
1227 		i_cmd->command_trb->generic.field[0] = 0;
1228 		i_cmd->command_trb->generic.field[1] = 0;
1229 		i_cmd->command_trb->generic.field[2] = 0;
1230 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1231 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1232 
1233 		/*
1234 		 * caller waiting for completion is called when command
1235 		 *  completion event is received for these no-op commands
1236 		 */
1237 	}
1238 
1239 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1240 
1241 	/* ring command ring doorbell to restart the command ring */
1242 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1243 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1244 		xhci->current_cmd = cur_cmd;
1245 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1246 		xhci_ring_cmd_db(xhci);
1247 	}
1248 	return;
1249 }
1250 
1251 
1252 void xhci_handle_command_timeout(unsigned long data)
1253 {
1254 	struct xhci_hcd *xhci;
1255 	int ret;
1256 	unsigned long flags;
1257 	u64 hw_ring_state;
1258 	bool second_timeout = false;
1259 	xhci = (struct xhci_hcd *) data;
1260 
1261 	/* mark this command to be cancelled */
1262 	spin_lock_irqsave(&xhci->lock, flags);
1263 	if (xhci->current_cmd) {
1264 		if (xhci->current_cmd->status == COMP_CMD_ABORT)
1265 			second_timeout = true;
1266 		xhci->current_cmd->status = COMP_CMD_ABORT;
1267 	}
1268 
1269 	/* Make sure command ring is running before aborting it */
1270 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1271 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1272 	    (hw_ring_state & CMD_RING_RUNNING))  {
1273 		spin_unlock_irqrestore(&xhci->lock, flags);
1274 		xhci_dbg(xhci, "Command timeout\n");
1275 		ret = xhci_abort_cmd_ring(xhci);
1276 		if (unlikely(ret == -ESHUTDOWN)) {
1277 			xhci_err(xhci, "Abort command ring failed\n");
1278 			xhci_cleanup_command_queue(xhci);
1279 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1280 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1281 		}
1282 		return;
1283 	}
1284 
1285 	/* command ring failed to restart, or host removed. Bail out */
1286 	if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
1287 		spin_unlock_irqrestore(&xhci->lock, flags);
1288 		xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
1289 		xhci_cleanup_command_queue(xhci);
1290 		return;
1291 	}
1292 
1293 	/* command timeout on stopped ring, ring can't be aborted */
1294 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1295 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1296 	spin_unlock_irqrestore(&xhci->lock, flags);
1297 	return;
1298 }
1299 
1300 static void handle_cmd_completion(struct xhci_hcd *xhci,
1301 		struct xhci_event_cmd *event)
1302 {
1303 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1304 	u64 cmd_dma;
1305 	dma_addr_t cmd_dequeue_dma;
1306 	u32 cmd_comp_code;
1307 	union xhci_trb *cmd_trb;
1308 	struct xhci_command *cmd;
1309 	u32 cmd_type;
1310 
1311 	cmd_dma = le64_to_cpu(event->cmd_trb);
1312 	cmd_trb = xhci->cmd_ring->dequeue;
1313 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1314 			cmd_trb);
1315 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1316 	if (cmd_dequeue_dma == 0) {
1317 		xhci->error_bitmask |= 1 << 4;
1318 		return;
1319 	}
1320 	/* Does the DMA address match our internal dequeue pointer address? */
1321 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1322 		xhci->error_bitmask |= 1 << 5;
1323 		return;
1324 	}
1325 
1326 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1327 
1328 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1329 		xhci_err(xhci,
1330 			 "Command completion event does not match command\n");
1331 		return;
1332 	}
1333 
1334 	del_timer(&xhci->cmd_timer);
1335 
1336 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1337 
1338 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1339 
1340 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1341 	if (cmd_comp_code == COMP_CMD_STOP) {
1342 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1343 		return;
1344 	}
1345 	/*
1346 	 * Host aborted the command ring, check if the current command was
1347 	 * supposed to be aborted, otherwise continue normally.
1348 	 * The command ring is stopped now, but the xHC will issue a Command
1349 	 * Ring Stopped event which will cause us to restart it.
1350 	 */
1351 	if (cmd_comp_code == COMP_CMD_ABORT) {
1352 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1353 		if (cmd->status == COMP_CMD_ABORT)
1354 			goto event_handled;
1355 	}
1356 
1357 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1358 	switch (cmd_type) {
1359 	case TRB_ENABLE_SLOT:
1360 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1361 		break;
1362 	case TRB_DISABLE_SLOT:
1363 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1364 		break;
1365 	case TRB_CONFIG_EP:
1366 		if (!cmd->completion)
1367 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1368 						  cmd_comp_code);
1369 		break;
1370 	case TRB_EVAL_CONTEXT:
1371 		break;
1372 	case TRB_ADDR_DEV:
1373 		break;
1374 	case TRB_STOP_RING:
1375 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1376 				le32_to_cpu(cmd_trb->generic.field[3])));
1377 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1378 		break;
1379 	case TRB_SET_DEQ:
1380 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1381 				le32_to_cpu(cmd_trb->generic.field[3])));
1382 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1383 		break;
1384 	case TRB_CMD_NOOP:
1385 		/* Is this an aborted command turned to NO-OP? */
1386 		if (cmd->status == COMP_CMD_STOP)
1387 			cmd_comp_code = COMP_CMD_STOP;
1388 		break;
1389 	case TRB_RESET_EP:
1390 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1391 				le32_to_cpu(cmd_trb->generic.field[3])));
1392 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1393 		break;
1394 	case TRB_RESET_DEV:
1395 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1396 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1397 		 */
1398 		slot_id = TRB_TO_SLOT_ID(
1399 				le32_to_cpu(cmd_trb->generic.field[3]));
1400 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1401 		break;
1402 	case TRB_NEC_GET_FW:
1403 		xhci_handle_cmd_nec_get_fw(xhci, event);
1404 		break;
1405 	default:
1406 		/* Skip over unknown commands on the event ring */
1407 		xhci->error_bitmask |= 1 << 6;
1408 		break;
1409 	}
1410 
1411 	/* restart timer if this wasn't the last command */
1412 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1413 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1414 					       struct xhci_command, cmd_list);
1415 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1416 	}
1417 
1418 event_handled:
1419 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1420 
1421 	inc_deq(xhci, xhci->cmd_ring);
1422 }
1423 
1424 static void handle_vendor_event(struct xhci_hcd *xhci,
1425 		union xhci_trb *event)
1426 {
1427 	u32 trb_type;
1428 
1429 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1430 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1431 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1432 		handle_cmd_completion(xhci, &event->event_cmd);
1433 }
1434 
1435 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1436  * port registers -- USB 3.0 and USB 2.0).
1437  *
1438  * Returns a zero-based port number, which is suitable for indexing into each of
1439  * the split roothubs' port arrays and bus state arrays.
1440  * Add one to it in order to call xhci_find_slot_id_by_port.
1441  */
1442 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1443 		struct xhci_hcd *xhci, u32 port_id)
1444 {
1445 	unsigned int i;
1446 	unsigned int num_similar_speed_ports = 0;
1447 
1448 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1449 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1450 	 * speed ports, up to 1 port before this port.
1451 	 */
1452 	for (i = 0; i < (port_id - 1); i++) {
1453 		u8 port_speed = xhci->port_array[i];
1454 
1455 		/*
1456 		 * Skip ports that don't have known speeds, or have duplicate
1457 		 * Extended Capabilities port speed entries.
1458 		 */
1459 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1460 			continue;
1461 
1462 		/*
1463 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1464 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1465 		 * matches the device speed, it's a similar speed port.
1466 		 */
1467 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1468 			num_similar_speed_ports++;
1469 	}
1470 	return num_similar_speed_ports;
1471 }
1472 
1473 static void handle_device_notification(struct xhci_hcd *xhci,
1474 		union xhci_trb *event)
1475 {
1476 	u32 slot_id;
1477 	struct usb_device *udev;
1478 
1479 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1480 	if (!xhci->devs[slot_id]) {
1481 		xhci_warn(xhci, "Device Notification event for "
1482 				"unused slot %u\n", slot_id);
1483 		return;
1484 	}
1485 
1486 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1487 			slot_id);
1488 	udev = xhci->devs[slot_id]->udev;
1489 	if (udev && udev->parent)
1490 		usb_wakeup_notification(udev->parent, udev->portnum);
1491 }
1492 
1493 static void handle_port_status(struct xhci_hcd *xhci,
1494 		union xhci_trb *event)
1495 {
1496 	struct usb_hcd *hcd;
1497 	u32 port_id;
1498 	u32 temp, temp1;
1499 	int max_ports;
1500 	int slot_id;
1501 	unsigned int faked_port_index;
1502 	u8 major_revision;
1503 	struct xhci_bus_state *bus_state;
1504 	__le32 __iomem **port_array;
1505 	bool bogus_port_status = false;
1506 
1507 	/* Port status change events always have a successful completion code */
1508 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1509 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1510 		xhci->error_bitmask |= 1 << 8;
1511 	}
1512 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1513 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1514 
1515 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1516 	if ((port_id <= 0) || (port_id > max_ports)) {
1517 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1518 		inc_deq(xhci, xhci->event_ring);
1519 		return;
1520 	}
1521 
1522 	/* Figure out which usb_hcd this port is attached to:
1523 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1524 	 */
1525 	major_revision = xhci->port_array[port_id - 1];
1526 
1527 	/* Find the right roothub. */
1528 	hcd = xhci_to_hcd(xhci);
1529 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1530 		hcd = xhci->shared_hcd;
1531 
1532 	if (major_revision == 0) {
1533 		xhci_warn(xhci, "Event for port %u not in "
1534 				"Extended Capabilities, ignoring.\n",
1535 				port_id);
1536 		bogus_port_status = true;
1537 		goto cleanup;
1538 	}
1539 	if (major_revision == DUPLICATE_ENTRY) {
1540 		xhci_warn(xhci, "Event for port %u duplicated in"
1541 				"Extended Capabilities, ignoring.\n",
1542 				port_id);
1543 		bogus_port_status = true;
1544 		goto cleanup;
1545 	}
1546 
1547 	/*
1548 	 * Hardware port IDs reported by a Port Status Change Event include USB
1549 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1550 	 * resume event, but we first need to translate the hardware port ID
1551 	 * into the index into the ports on the correct split roothub, and the
1552 	 * correct bus_state structure.
1553 	 */
1554 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1555 	if (hcd->speed >= HCD_USB3)
1556 		port_array = xhci->usb3_ports;
1557 	else
1558 		port_array = xhci->usb2_ports;
1559 	/* Find the faked port hub number */
1560 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1561 			port_id);
1562 
1563 	temp = readl(port_array[faked_port_index]);
1564 	if (hcd->state == HC_STATE_SUSPENDED) {
1565 		xhci_dbg(xhci, "resume root hub\n");
1566 		usb_hcd_resume_root_hub(hcd);
1567 	}
1568 
1569 	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1570 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1571 
1572 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1573 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1574 
1575 		temp1 = readl(&xhci->op_regs->command);
1576 		if (!(temp1 & CMD_RUN)) {
1577 			xhci_warn(xhci, "xHC is not running.\n");
1578 			goto cleanup;
1579 		}
1580 
1581 		if (DEV_SUPERSPEED_ANY(temp)) {
1582 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1583 			/* Set a flag to say the port signaled remote wakeup,
1584 			 * so we can tell the difference between the end of
1585 			 * device and host initiated resume.
1586 			 */
1587 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1588 			xhci_test_and_clear_bit(xhci, port_array,
1589 					faked_port_index, PORT_PLC);
1590 			xhci_set_link_state(xhci, port_array, faked_port_index,
1591 						XDEV_U0);
1592 			/* Need to wait until the next link state change
1593 			 * indicates the device is actually in U0.
1594 			 */
1595 			bogus_port_status = true;
1596 			goto cleanup;
1597 		} else if (!test_bit(faked_port_index,
1598 				     &bus_state->resuming_ports)) {
1599 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1600 			bus_state->resume_done[faked_port_index] = jiffies +
1601 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1602 			set_bit(faked_port_index, &bus_state->resuming_ports);
1603 			mod_timer(&hcd->rh_timer,
1604 				  bus_state->resume_done[faked_port_index]);
1605 			/* Do the rest in GetPortStatus */
1606 		}
1607 	}
1608 
1609 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1610 			DEV_SUPERSPEED_ANY(temp)) {
1611 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1612 		/* We've just brought the device into U0 through either the
1613 		 * Resume state after a device remote wakeup, or through the
1614 		 * U3Exit state after a host-initiated resume.  If it's a device
1615 		 * initiated remote wake, don't pass up the link state change,
1616 		 * so the roothub behavior is consistent with external
1617 		 * USB 3.0 hub behavior.
1618 		 */
1619 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1620 				faked_port_index + 1);
1621 		if (slot_id && xhci->devs[slot_id])
1622 			xhci_ring_device(xhci, slot_id);
1623 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1624 			bus_state->port_remote_wakeup &=
1625 				~(1 << faked_port_index);
1626 			xhci_test_and_clear_bit(xhci, port_array,
1627 					faked_port_index, PORT_PLC);
1628 			usb_wakeup_notification(hcd->self.root_hub,
1629 					faked_port_index + 1);
1630 			bogus_port_status = true;
1631 			goto cleanup;
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1637 	 * RExit to a disconnect state).  If so, let the the driver know it's
1638 	 * out of the RExit state.
1639 	 */
1640 	if (!DEV_SUPERSPEED_ANY(temp) &&
1641 			test_and_clear_bit(faked_port_index,
1642 				&bus_state->rexit_ports)) {
1643 		complete(&bus_state->rexit_done[faked_port_index]);
1644 		bogus_port_status = true;
1645 		goto cleanup;
1646 	}
1647 
1648 	if (hcd->speed < HCD_USB3)
1649 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1650 					PORT_PLC);
1651 
1652 cleanup:
1653 	/* Update event ring dequeue pointer before dropping the lock */
1654 	inc_deq(xhci, xhci->event_ring);
1655 
1656 	/* Don't make the USB core poll the roothub if we got a bad port status
1657 	 * change event.  Besides, at that point we can't tell which roothub
1658 	 * (USB 2.0 or USB 3.0) to kick.
1659 	 */
1660 	if (bogus_port_status)
1661 		return;
1662 
1663 	/*
1664 	 * xHCI port-status-change events occur when the "or" of all the
1665 	 * status-change bits in the portsc register changes from 0 to 1.
1666 	 * New status changes won't cause an event if any other change
1667 	 * bits are still set.  When an event occurs, switch over to
1668 	 * polling to avoid losing status changes.
1669 	 */
1670 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1671 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1672 	spin_unlock(&xhci->lock);
1673 	/* Pass this up to the core */
1674 	usb_hcd_poll_rh_status(hcd);
1675 	spin_lock(&xhci->lock);
1676 }
1677 
1678 /*
1679  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1680  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1681  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1682  * returns 0.
1683  */
1684 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1685 		struct xhci_segment *start_seg,
1686 		union xhci_trb	*start_trb,
1687 		union xhci_trb	*end_trb,
1688 		dma_addr_t	suspect_dma,
1689 		bool		debug)
1690 {
1691 	dma_addr_t start_dma;
1692 	dma_addr_t end_seg_dma;
1693 	dma_addr_t end_trb_dma;
1694 	struct xhci_segment *cur_seg;
1695 
1696 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1697 	cur_seg = start_seg;
1698 
1699 	do {
1700 		if (start_dma == 0)
1701 			return NULL;
1702 		/* We may get an event for a Link TRB in the middle of a TD */
1703 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1704 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1705 		/* If the end TRB isn't in this segment, this is set to 0 */
1706 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1707 
1708 		if (debug)
1709 			xhci_warn(xhci,
1710 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1711 				(unsigned long long)suspect_dma,
1712 				(unsigned long long)start_dma,
1713 				(unsigned long long)end_trb_dma,
1714 				(unsigned long long)cur_seg->dma,
1715 				(unsigned long long)end_seg_dma);
1716 
1717 		if (end_trb_dma > 0) {
1718 			/* The end TRB is in this segment, so suspect should be here */
1719 			if (start_dma <= end_trb_dma) {
1720 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1721 					return cur_seg;
1722 			} else {
1723 				/* Case for one segment with
1724 				 * a TD wrapped around to the top
1725 				 */
1726 				if ((suspect_dma >= start_dma &&
1727 							suspect_dma <= end_seg_dma) ||
1728 						(suspect_dma >= cur_seg->dma &&
1729 						 suspect_dma <= end_trb_dma))
1730 					return cur_seg;
1731 			}
1732 			return NULL;
1733 		} else {
1734 			/* Might still be somewhere in this segment */
1735 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1736 				return cur_seg;
1737 		}
1738 		cur_seg = cur_seg->next;
1739 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1740 	} while (cur_seg != start_seg);
1741 
1742 	return NULL;
1743 }
1744 
1745 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1746 		unsigned int slot_id, unsigned int ep_index,
1747 		unsigned int stream_id,
1748 		struct xhci_td *td, union xhci_trb *event_trb)
1749 {
1750 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1751 	struct xhci_command *command;
1752 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1753 	if (!command)
1754 		return;
1755 
1756 	ep->ep_state |= EP_HALTED;
1757 	ep->stopped_stream = stream_id;
1758 
1759 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1760 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1761 
1762 	ep->stopped_stream = 0;
1763 
1764 	xhci_ring_cmd_db(xhci);
1765 }
1766 
1767 /* Check if an error has halted the endpoint ring.  The class driver will
1768  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1769  * However, a babble and other errors also halt the endpoint ring, and the class
1770  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1771  * Ring Dequeue Pointer command manually.
1772  */
1773 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1774 		struct xhci_ep_ctx *ep_ctx,
1775 		unsigned int trb_comp_code)
1776 {
1777 	/* TRB completion codes that may require a manual halt cleanup */
1778 	if (trb_comp_code == COMP_TX_ERR ||
1779 			trb_comp_code == COMP_BABBLE ||
1780 			trb_comp_code == COMP_SPLIT_ERR)
1781 		/* The 0.95 spec says a babbling control endpoint
1782 		 * is not halted. The 0.96 spec says it is.  Some HW
1783 		 * claims to be 0.95 compliant, but it halts the control
1784 		 * endpoint anyway.  Check if a babble halted the
1785 		 * endpoint.
1786 		 */
1787 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1788 		    cpu_to_le32(EP_STATE_HALTED))
1789 			return 1;
1790 
1791 	return 0;
1792 }
1793 
1794 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1795 {
1796 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1797 		/* Vendor defined "informational" completion code,
1798 		 * treat as not-an-error.
1799 		 */
1800 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1801 				trb_comp_code);
1802 		xhci_dbg(xhci, "Treating code as success.\n");
1803 		return 1;
1804 	}
1805 	return 0;
1806 }
1807 
1808 /*
1809  * Finish the td processing, remove the td from td list;
1810  * Return 1 if the urb can be given back.
1811  */
1812 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1813 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1814 	struct xhci_virt_ep *ep, int *status, bool skip)
1815 {
1816 	struct xhci_virt_device *xdev;
1817 	struct xhci_ring *ep_ring;
1818 	unsigned int slot_id;
1819 	int ep_index;
1820 	struct urb *urb = NULL;
1821 	struct xhci_ep_ctx *ep_ctx;
1822 	int ret = 0;
1823 	struct urb_priv	*urb_priv;
1824 	u32 trb_comp_code;
1825 
1826 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1827 	xdev = xhci->devs[slot_id];
1828 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1829 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1830 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1831 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1832 
1833 	if (skip)
1834 		goto td_cleanup;
1835 
1836 	if (trb_comp_code == COMP_STOP_INVAL ||
1837 			trb_comp_code == COMP_STOP ||
1838 			trb_comp_code == COMP_STOP_SHORT) {
1839 		/* The Endpoint Stop Command completion will take care of any
1840 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1841 		 * the ring dequeue pointer or take this TD off any lists yet.
1842 		 */
1843 		ep->stopped_td = td;
1844 		return 0;
1845 	}
1846 	if (trb_comp_code == COMP_STALL ||
1847 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1848 						trb_comp_code)) {
1849 		/* Issue a reset endpoint command to clear the host side
1850 		 * halt, followed by a set dequeue command to move the
1851 		 * dequeue pointer past the TD.
1852 		 * The class driver clears the device side halt later.
1853 		 */
1854 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1855 					ep_ring->stream_id, td, event_trb);
1856 	} else {
1857 		/* Update ring dequeue pointer */
1858 		while (ep_ring->dequeue != td->last_trb)
1859 			inc_deq(xhci, ep_ring);
1860 		inc_deq(xhci, ep_ring);
1861 	}
1862 
1863 td_cleanup:
1864 	/* Clean up the endpoint's TD list */
1865 	urb = td->urb;
1866 	urb_priv = urb->hcpriv;
1867 
1868 	/* Do one last check of the actual transfer length.
1869 	 * If the host controller said we transferred more data than the buffer
1870 	 * length, urb->actual_length will be a very big number (since it's
1871 	 * unsigned).  Play it safe and say we didn't transfer anything.
1872 	 */
1873 	if (urb->actual_length > urb->transfer_buffer_length) {
1874 		xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1875 			urb->transfer_buffer_length,
1876 			urb->actual_length);
1877 		urb->actual_length = 0;
1878 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1879 			*status = -EREMOTEIO;
1880 		else
1881 			*status = 0;
1882 	}
1883 	list_del_init(&td->td_list);
1884 	/* Was this TD slated to be cancelled but completed anyway? */
1885 	if (!list_empty(&td->cancelled_td_list))
1886 		list_del_init(&td->cancelled_td_list);
1887 
1888 	urb_priv->td_cnt++;
1889 	/* Giveback the urb when all the tds are completed */
1890 	if (urb_priv->td_cnt == urb_priv->length) {
1891 		ret = 1;
1892 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1893 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1894 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1895 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
1896 					usb_amd_quirk_pll_enable();
1897 			}
1898 		}
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 /*
1905  * Process control tds, update urb status and actual_length.
1906  */
1907 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1908 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1909 	struct xhci_virt_ep *ep, int *status)
1910 {
1911 	struct xhci_virt_device *xdev;
1912 	struct xhci_ring *ep_ring;
1913 	unsigned int slot_id;
1914 	int ep_index;
1915 	struct xhci_ep_ctx *ep_ctx;
1916 	u32 trb_comp_code;
1917 
1918 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1919 	xdev = xhci->devs[slot_id];
1920 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1921 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1922 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1923 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1924 
1925 	switch (trb_comp_code) {
1926 	case COMP_SUCCESS:
1927 		if (event_trb == ep_ring->dequeue) {
1928 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1929 					"without IOC set??\n");
1930 			*status = -ESHUTDOWN;
1931 		} else if (event_trb != td->last_trb) {
1932 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1933 					"without IOC set??\n");
1934 			*status = -ESHUTDOWN;
1935 		} else {
1936 			*status = 0;
1937 		}
1938 		break;
1939 	case COMP_SHORT_TX:
1940 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1941 			*status = -EREMOTEIO;
1942 		else
1943 			*status = 0;
1944 		break;
1945 	case COMP_STOP_SHORT:
1946 		if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1947 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1948 		else
1949 			td->urb->actual_length =
1950 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1951 
1952 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1953 	case COMP_STOP:
1954 		/* Did we stop at data stage? */
1955 		if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1956 			td->urb->actual_length =
1957 				td->urb->transfer_buffer_length -
1958 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1959 		/* fall through */
1960 	case COMP_STOP_INVAL:
1961 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1962 	default:
1963 		if (!xhci_requires_manual_halt_cleanup(xhci,
1964 					ep_ctx, trb_comp_code))
1965 			break;
1966 		xhci_dbg(xhci, "TRB error code %u, "
1967 				"halted endpoint index = %u\n",
1968 				trb_comp_code, ep_index);
1969 		/* else fall through */
1970 	case COMP_STALL:
1971 		/* Did we transfer part of the data (middle) phase? */
1972 		if (event_trb != ep_ring->dequeue &&
1973 				event_trb != td->last_trb)
1974 			td->urb->actual_length =
1975 				td->urb->transfer_buffer_length -
1976 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1977 		else if (!td->urb_length_set)
1978 			td->urb->actual_length = 0;
1979 
1980 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1981 	}
1982 	/*
1983 	 * Did we transfer any data, despite the errors that might have
1984 	 * happened?  I.e. did we get past the setup stage?
1985 	 */
1986 	if (event_trb != ep_ring->dequeue) {
1987 		/* The event was for the status stage */
1988 		if (event_trb == td->last_trb) {
1989 			if (td->urb_length_set) {
1990 				/* Don't overwrite a previously set error code
1991 				 */
1992 				if ((*status == -EINPROGRESS || *status == 0) &&
1993 						(td->urb->transfer_flags
1994 						 & URB_SHORT_NOT_OK))
1995 					/* Did we already see a short data
1996 					 * stage? */
1997 					*status = -EREMOTEIO;
1998 			} else {
1999 				td->urb->actual_length =
2000 					td->urb->transfer_buffer_length;
2001 			}
2002 		} else {
2003 			/*
2004 			 * Maybe the event was for the data stage? If so, update
2005 			 * already the actual_length of the URB and flag it as
2006 			 * set, so that it is not overwritten in the event for
2007 			 * the last TRB.
2008 			 */
2009 			td->urb_length_set = true;
2010 			td->urb->actual_length =
2011 				td->urb->transfer_buffer_length -
2012 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2013 			xhci_dbg(xhci, "Waiting for status "
2014 					"stage event\n");
2015 			return 0;
2016 		}
2017 	}
2018 
2019 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2020 }
2021 
2022 /*
2023  * Process isochronous tds, update urb packet status and actual_length.
2024  */
2025 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2026 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2027 	struct xhci_virt_ep *ep, int *status)
2028 {
2029 	struct xhci_ring *ep_ring;
2030 	struct urb_priv *urb_priv;
2031 	int idx;
2032 	int len = 0;
2033 	union xhci_trb *cur_trb;
2034 	struct xhci_segment *cur_seg;
2035 	struct usb_iso_packet_descriptor *frame;
2036 	u32 trb_comp_code;
2037 	bool skip_td = false;
2038 
2039 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2040 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2041 	urb_priv = td->urb->hcpriv;
2042 	idx = urb_priv->td_cnt;
2043 	frame = &td->urb->iso_frame_desc[idx];
2044 
2045 	/* handle completion code */
2046 	switch (trb_comp_code) {
2047 	case COMP_SUCCESS:
2048 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2049 			frame->status = 0;
2050 			break;
2051 		}
2052 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2053 			trb_comp_code = COMP_SHORT_TX;
2054 	/* fallthrough */
2055 	case COMP_STOP_SHORT:
2056 	case COMP_SHORT_TX:
2057 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2058 				-EREMOTEIO : 0;
2059 		break;
2060 	case COMP_BW_OVER:
2061 		frame->status = -ECOMM;
2062 		skip_td = true;
2063 		break;
2064 	case COMP_BUFF_OVER:
2065 	case COMP_BABBLE:
2066 		frame->status = -EOVERFLOW;
2067 		skip_td = true;
2068 		break;
2069 	case COMP_DEV_ERR:
2070 	case COMP_STALL:
2071 		frame->status = -EPROTO;
2072 		skip_td = true;
2073 		break;
2074 	case COMP_TX_ERR:
2075 		frame->status = -EPROTO;
2076 		if (event_trb != td->last_trb)
2077 			return 0;
2078 		skip_td = true;
2079 		break;
2080 	case COMP_STOP:
2081 	case COMP_STOP_INVAL:
2082 		break;
2083 	default:
2084 		frame->status = -1;
2085 		break;
2086 	}
2087 
2088 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2089 		frame->actual_length = frame->length;
2090 		td->urb->actual_length += frame->length;
2091 	} else if (trb_comp_code == COMP_STOP_SHORT) {
2092 		frame->actual_length =
2093 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2094 		td->urb->actual_length += frame->actual_length;
2095 	} else {
2096 		for (cur_trb = ep_ring->dequeue,
2097 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2098 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2099 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2100 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2101 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2102 		}
2103 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2104 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2105 
2106 		if (trb_comp_code != COMP_STOP_INVAL) {
2107 			frame->actual_length = len;
2108 			td->urb->actual_length += len;
2109 		}
2110 	}
2111 
2112 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2113 }
2114 
2115 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2116 			struct xhci_transfer_event *event,
2117 			struct xhci_virt_ep *ep, int *status)
2118 {
2119 	struct xhci_ring *ep_ring;
2120 	struct urb_priv *urb_priv;
2121 	struct usb_iso_packet_descriptor *frame;
2122 	int idx;
2123 
2124 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2125 	urb_priv = td->urb->hcpriv;
2126 	idx = urb_priv->td_cnt;
2127 	frame = &td->urb->iso_frame_desc[idx];
2128 
2129 	/* The transfer is partly done. */
2130 	frame->status = -EXDEV;
2131 
2132 	/* calc actual length */
2133 	frame->actual_length = 0;
2134 
2135 	/* Update ring dequeue pointer */
2136 	while (ep_ring->dequeue != td->last_trb)
2137 		inc_deq(xhci, ep_ring);
2138 	inc_deq(xhci, ep_ring);
2139 
2140 	return finish_td(xhci, td, NULL, event, ep, status, true);
2141 }
2142 
2143 /*
2144  * Process bulk and interrupt tds, update urb status and actual_length.
2145  */
2146 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2147 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2148 	struct xhci_virt_ep *ep, int *status)
2149 {
2150 	struct xhci_ring *ep_ring;
2151 	union xhci_trb *cur_trb;
2152 	struct xhci_segment *cur_seg;
2153 	u32 trb_comp_code;
2154 
2155 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2156 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2157 
2158 	switch (trb_comp_code) {
2159 	case COMP_SUCCESS:
2160 		/* Double check that the HW transferred everything. */
2161 		if (event_trb != td->last_trb ||
2162 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2163 			xhci_warn(xhci, "WARN Successful completion "
2164 					"on short TX\n");
2165 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2166 				*status = -EREMOTEIO;
2167 			else
2168 				*status = 0;
2169 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2170 				trb_comp_code = COMP_SHORT_TX;
2171 		} else {
2172 			*status = 0;
2173 		}
2174 		break;
2175 	case COMP_STOP_SHORT:
2176 	case COMP_SHORT_TX:
2177 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2178 			*status = -EREMOTEIO;
2179 		else
2180 			*status = 0;
2181 		break;
2182 	default:
2183 		/* Others already handled above */
2184 		break;
2185 	}
2186 	if (trb_comp_code == COMP_SHORT_TX)
2187 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2188 				"%d bytes untransferred\n",
2189 				td->urb->ep->desc.bEndpointAddress,
2190 				td->urb->transfer_buffer_length,
2191 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2192 	/* Stopped - short packet completion */
2193 	if (trb_comp_code == COMP_STOP_SHORT) {
2194 		td->urb->actual_length =
2195 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2196 
2197 		if (td->urb->transfer_buffer_length <
2198 				td->urb->actual_length) {
2199 			xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2200 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2201 			td->urb->actual_length = 0;
2202 			 /* status will be set by usb core for canceled urbs */
2203 		}
2204 	/* Fast path - was this the last TRB in the TD for this URB? */
2205 	} else if (event_trb == td->last_trb) {
2206 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2207 			td->urb->actual_length =
2208 				td->urb->transfer_buffer_length -
2209 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2210 			if (td->urb->transfer_buffer_length <
2211 					td->urb->actual_length) {
2212 				xhci_warn(xhci, "HC gave bad length "
2213 						"of %d bytes left\n",
2214 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2215 				td->urb->actual_length = 0;
2216 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2217 					*status = -EREMOTEIO;
2218 				else
2219 					*status = 0;
2220 			}
2221 			/* Don't overwrite a previously set error code */
2222 			if (*status == -EINPROGRESS) {
2223 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2224 					*status = -EREMOTEIO;
2225 				else
2226 					*status = 0;
2227 			}
2228 		} else {
2229 			td->urb->actual_length =
2230 				td->urb->transfer_buffer_length;
2231 			/* Ignore a short packet completion if the
2232 			 * untransferred length was zero.
2233 			 */
2234 			if (*status == -EREMOTEIO)
2235 				*status = 0;
2236 		}
2237 	} else {
2238 		/* Slow path - walk the list, starting from the dequeue
2239 		 * pointer, to get the actual length transferred.
2240 		 */
2241 		td->urb->actual_length = 0;
2242 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2243 				cur_trb != event_trb;
2244 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2245 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2246 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2247 				td->urb->actual_length +=
2248 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2249 		}
2250 		/* If the ring didn't stop on a Link or No-op TRB, add
2251 		 * in the actual bytes transferred from the Normal TRB
2252 		 */
2253 		if (trb_comp_code != COMP_STOP_INVAL)
2254 			td->urb->actual_length +=
2255 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2256 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2257 	}
2258 
2259 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2260 }
2261 
2262 /*
2263  * If this function returns an error condition, it means it got a Transfer
2264  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2265  * At this point, the host controller is probably hosed and should be reset.
2266  */
2267 static int handle_tx_event(struct xhci_hcd *xhci,
2268 		struct xhci_transfer_event *event)
2269 	__releases(&xhci->lock)
2270 	__acquires(&xhci->lock)
2271 {
2272 	struct xhci_virt_device *xdev;
2273 	struct xhci_virt_ep *ep;
2274 	struct xhci_ring *ep_ring;
2275 	unsigned int slot_id;
2276 	int ep_index;
2277 	struct xhci_td *td = NULL;
2278 	dma_addr_t event_dma;
2279 	struct xhci_segment *event_seg;
2280 	union xhci_trb *event_trb;
2281 	struct urb *urb = NULL;
2282 	int status = -EINPROGRESS;
2283 	struct urb_priv *urb_priv;
2284 	struct xhci_ep_ctx *ep_ctx;
2285 	struct list_head *tmp;
2286 	u32 trb_comp_code;
2287 	int ret = 0;
2288 	int td_num = 0;
2289 	bool handling_skipped_tds = false;
2290 
2291 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2292 	xdev = xhci->devs[slot_id];
2293 	if (!xdev) {
2294 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2295 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2296 			 (unsigned long long) xhci_trb_virt_to_dma(
2297 				 xhci->event_ring->deq_seg,
2298 				 xhci->event_ring->dequeue),
2299 			 lower_32_bits(le64_to_cpu(event->buffer)),
2300 			 upper_32_bits(le64_to_cpu(event->buffer)),
2301 			 le32_to_cpu(event->transfer_len),
2302 			 le32_to_cpu(event->flags));
2303 		xhci_dbg(xhci, "Event ring:\n");
2304 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2305 		return -ENODEV;
2306 	}
2307 
2308 	/* Endpoint ID is 1 based, our index is zero based */
2309 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2310 	ep = &xdev->eps[ep_index];
2311 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2312 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2313 	if (!ep_ring ||
2314 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2315 	    EP_STATE_DISABLED) {
2316 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2317 				"or incorrect stream ring\n");
2318 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2319 			 (unsigned long long) xhci_trb_virt_to_dma(
2320 				 xhci->event_ring->deq_seg,
2321 				 xhci->event_ring->dequeue),
2322 			 lower_32_bits(le64_to_cpu(event->buffer)),
2323 			 upper_32_bits(le64_to_cpu(event->buffer)),
2324 			 le32_to_cpu(event->transfer_len),
2325 			 le32_to_cpu(event->flags));
2326 		xhci_dbg(xhci, "Event ring:\n");
2327 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2328 		return -ENODEV;
2329 	}
2330 
2331 	/* Count current td numbers if ep->skip is set */
2332 	if (ep->skip) {
2333 		list_for_each(tmp, &ep_ring->td_list)
2334 			td_num++;
2335 	}
2336 
2337 	event_dma = le64_to_cpu(event->buffer);
2338 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2339 	/* Look for common error cases */
2340 	switch (trb_comp_code) {
2341 	/* Skip codes that require special handling depending on
2342 	 * transfer type
2343 	 */
2344 	case COMP_SUCCESS:
2345 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2346 			break;
2347 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2348 			trb_comp_code = COMP_SHORT_TX;
2349 		else
2350 			xhci_warn_ratelimited(xhci,
2351 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2352 	case COMP_SHORT_TX:
2353 		break;
2354 	case COMP_STOP:
2355 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2356 		break;
2357 	case COMP_STOP_INVAL:
2358 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2359 		break;
2360 	case COMP_STOP_SHORT:
2361 		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2362 		break;
2363 	case COMP_STALL:
2364 		xhci_dbg(xhci, "Stalled endpoint\n");
2365 		ep->ep_state |= EP_HALTED;
2366 		status = -EPIPE;
2367 		break;
2368 	case COMP_TRB_ERR:
2369 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2370 		status = -EILSEQ;
2371 		break;
2372 	case COMP_SPLIT_ERR:
2373 	case COMP_TX_ERR:
2374 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2375 		status = -EPROTO;
2376 		break;
2377 	case COMP_BABBLE:
2378 		xhci_dbg(xhci, "Babble error on endpoint\n");
2379 		status = -EOVERFLOW;
2380 		break;
2381 	case COMP_DB_ERR:
2382 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2383 		status = -ENOSR;
2384 		break;
2385 	case COMP_BW_OVER:
2386 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2387 		break;
2388 	case COMP_BUFF_OVER:
2389 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2390 		break;
2391 	case COMP_UNDERRUN:
2392 		/*
2393 		 * When the Isoch ring is empty, the xHC will generate
2394 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2395 		 * Underrun Event for OUT Isoch endpoint.
2396 		 */
2397 		xhci_dbg(xhci, "underrun event on endpoint\n");
2398 		if (!list_empty(&ep_ring->td_list))
2399 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2400 					"still with TDs queued?\n",
2401 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2402 				 ep_index);
2403 		goto cleanup;
2404 	case COMP_OVERRUN:
2405 		xhci_dbg(xhci, "overrun event on endpoint\n");
2406 		if (!list_empty(&ep_ring->td_list))
2407 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2408 					"still with TDs queued?\n",
2409 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2410 				 ep_index);
2411 		goto cleanup;
2412 	case COMP_DEV_ERR:
2413 		xhci_warn(xhci, "WARN: detect an incompatible device");
2414 		status = -EPROTO;
2415 		break;
2416 	case COMP_MISSED_INT:
2417 		/*
2418 		 * When encounter missed service error, one or more isoc tds
2419 		 * may be missed by xHC.
2420 		 * Set skip flag of the ep_ring; Complete the missed tds as
2421 		 * short transfer when process the ep_ring next time.
2422 		 */
2423 		ep->skip = true;
2424 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2425 		goto cleanup;
2426 	case COMP_PING_ERR:
2427 		ep->skip = true;
2428 		xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2429 		goto cleanup;
2430 	default:
2431 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2432 			status = 0;
2433 			break;
2434 		}
2435 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2436 			  trb_comp_code);
2437 		goto cleanup;
2438 	}
2439 
2440 	do {
2441 		/* This TRB should be in the TD at the head of this ring's
2442 		 * TD list.
2443 		 */
2444 		if (list_empty(&ep_ring->td_list)) {
2445 			/*
2446 			 * A stopped endpoint may generate an extra completion
2447 			 * event if the device was suspended.  Don't print
2448 			 * warnings.
2449 			 */
2450 			if (!(trb_comp_code == COMP_STOP ||
2451 						trb_comp_code == COMP_STOP_INVAL)) {
2452 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2453 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2454 						ep_index);
2455 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2456 						(le32_to_cpu(event->flags) &
2457 						 TRB_TYPE_BITMASK)>>10);
2458 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2459 			}
2460 			if (ep->skip) {
2461 				ep->skip = false;
2462 				xhci_dbg(xhci, "td_list is empty while skip "
2463 						"flag set. Clear skip flag.\n");
2464 			}
2465 			ret = 0;
2466 			goto cleanup;
2467 		}
2468 
2469 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2470 		if (ep->skip && td_num == 0) {
2471 			ep->skip = false;
2472 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2473 						"Clear skip flag.\n");
2474 			ret = 0;
2475 			goto cleanup;
2476 		}
2477 
2478 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2479 		if (ep->skip)
2480 			td_num--;
2481 
2482 		/* Is this a TRB in the currently executing TD? */
2483 		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2484 				td->last_trb, event_dma, false);
2485 
2486 		/*
2487 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2488 		 * is not in the current TD pointed by ep_ring->dequeue because
2489 		 * that the hardware dequeue pointer still at the previous TRB
2490 		 * of the current TD. The previous TRB maybe a Link TD or the
2491 		 * last TRB of the previous TD. The command completion handle
2492 		 * will take care the rest.
2493 		 */
2494 		if (!event_seg && (trb_comp_code == COMP_STOP ||
2495 				   trb_comp_code == COMP_STOP_INVAL)) {
2496 			ret = 0;
2497 			goto cleanup;
2498 		}
2499 
2500 		if (!event_seg) {
2501 			if (!ep->skip ||
2502 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2503 				/* Some host controllers give a spurious
2504 				 * successful event after a short transfer.
2505 				 * Ignore it.
2506 				 */
2507 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2508 						ep_ring->last_td_was_short) {
2509 					ep_ring->last_td_was_short = false;
2510 					ret = 0;
2511 					goto cleanup;
2512 				}
2513 				/* HC is busted, give up! */
2514 				xhci_err(xhci,
2515 					"ERROR Transfer event TRB DMA ptr not "
2516 					"part of current TD ep_index %d "
2517 					"comp_code %u\n", ep_index,
2518 					trb_comp_code);
2519 				trb_in_td(xhci, ep_ring->deq_seg,
2520 					  ep_ring->dequeue, td->last_trb,
2521 					  event_dma, true);
2522 				return -ESHUTDOWN;
2523 			}
2524 
2525 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2526 			goto cleanup;
2527 		}
2528 		if (trb_comp_code == COMP_SHORT_TX)
2529 			ep_ring->last_td_was_short = true;
2530 		else
2531 			ep_ring->last_td_was_short = false;
2532 
2533 		if (ep->skip) {
2534 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2535 			ep->skip = false;
2536 		}
2537 
2538 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2539 						sizeof(*event_trb)];
2540 		/*
2541 		 * No-op TRB should not trigger interrupts.
2542 		 * If event_trb is a no-op TRB, it means the
2543 		 * corresponding TD has been cancelled. Just ignore
2544 		 * the TD.
2545 		 */
2546 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2547 			xhci_dbg(xhci,
2548 				 "event_trb is a no-op TRB. Skip it\n");
2549 			goto cleanup;
2550 		}
2551 
2552 		/* Now update the urb's actual_length and give back to
2553 		 * the core
2554 		 */
2555 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2556 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2557 						 &status);
2558 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2559 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2560 						 &status);
2561 		else
2562 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2563 						 ep, &status);
2564 
2565 cleanup:
2566 
2567 
2568 		handling_skipped_tds = ep->skip &&
2569 			trb_comp_code != COMP_MISSED_INT &&
2570 			trb_comp_code != COMP_PING_ERR;
2571 
2572 		/*
2573 		 * Do not update event ring dequeue pointer if we're in a loop
2574 		 * processing missed tds.
2575 		 */
2576 		if (!handling_skipped_tds)
2577 			inc_deq(xhci, xhci->event_ring);
2578 
2579 		if (ret) {
2580 			urb = td->urb;
2581 			urb_priv = urb->hcpriv;
2582 
2583 			xhci_urb_free_priv(urb_priv);
2584 
2585 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2586 			if ((urb->actual_length != urb->transfer_buffer_length &&
2587 						(urb->transfer_flags &
2588 						 URB_SHORT_NOT_OK)) ||
2589 					(status != 0 &&
2590 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2591 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2592 						"expected = %d, status = %d\n",
2593 						urb, urb->actual_length,
2594 						urb->transfer_buffer_length,
2595 						status);
2596 			spin_unlock(&xhci->lock);
2597 			/* EHCI, UHCI, and OHCI always unconditionally set the
2598 			 * urb->status of an isochronous endpoint to 0.
2599 			 */
2600 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2601 				status = 0;
2602 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2603 			spin_lock(&xhci->lock);
2604 		}
2605 
2606 	/*
2607 	 * If ep->skip is set, it means there are missed tds on the
2608 	 * endpoint ring need to take care of.
2609 	 * Process them as short transfer until reach the td pointed by
2610 	 * the event.
2611 	 */
2612 	} while (handling_skipped_tds);
2613 
2614 	return 0;
2615 }
2616 
2617 /*
2618  * This function handles all OS-owned events on the event ring.  It may drop
2619  * xhci->lock between event processing (e.g. to pass up port status changes).
2620  * Returns >0 for "possibly more events to process" (caller should call again),
2621  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2622  */
2623 static int xhci_handle_event(struct xhci_hcd *xhci)
2624 {
2625 	union xhci_trb *event;
2626 	int update_ptrs = 1;
2627 	int ret;
2628 
2629 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2630 		xhci->error_bitmask |= 1 << 1;
2631 		return 0;
2632 	}
2633 
2634 	event = xhci->event_ring->dequeue;
2635 	/* Does the HC or OS own the TRB? */
2636 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2637 	    xhci->event_ring->cycle_state) {
2638 		xhci->error_bitmask |= 1 << 2;
2639 		return 0;
2640 	}
2641 
2642 	/*
2643 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2644 	 * speculative reads of the event's flags/data below.
2645 	 */
2646 	rmb();
2647 	/* FIXME: Handle more event types. */
2648 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2649 	case TRB_TYPE(TRB_COMPLETION):
2650 		handle_cmd_completion(xhci, &event->event_cmd);
2651 		break;
2652 	case TRB_TYPE(TRB_PORT_STATUS):
2653 		handle_port_status(xhci, event);
2654 		update_ptrs = 0;
2655 		break;
2656 	case TRB_TYPE(TRB_TRANSFER):
2657 		ret = handle_tx_event(xhci, &event->trans_event);
2658 		if (ret < 0)
2659 			xhci->error_bitmask |= 1 << 9;
2660 		else
2661 			update_ptrs = 0;
2662 		break;
2663 	case TRB_TYPE(TRB_DEV_NOTE):
2664 		handle_device_notification(xhci, event);
2665 		break;
2666 	default:
2667 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2668 		    TRB_TYPE(48))
2669 			handle_vendor_event(xhci, event);
2670 		else
2671 			xhci->error_bitmask |= 1 << 3;
2672 	}
2673 	/* Any of the above functions may drop and re-acquire the lock, so check
2674 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2675 	 */
2676 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2677 		xhci_dbg(xhci, "xHCI host dying, returning from "
2678 				"event handler.\n");
2679 		return 0;
2680 	}
2681 
2682 	if (update_ptrs)
2683 		/* Update SW event ring dequeue pointer */
2684 		inc_deq(xhci, xhci->event_ring);
2685 
2686 	/* Are there more items on the event ring?  Caller will call us again to
2687 	 * check.
2688 	 */
2689 	return 1;
2690 }
2691 
2692 /*
2693  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2694  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2695  * indicators of an event TRB error, but we check the status *first* to be safe.
2696  */
2697 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2698 {
2699 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2700 	u32 status;
2701 	u64 temp_64;
2702 	union xhci_trb *event_ring_deq;
2703 	dma_addr_t deq;
2704 
2705 	spin_lock(&xhci->lock);
2706 	/* Check if the xHC generated the interrupt, or the irq is shared */
2707 	status = readl(&xhci->op_regs->status);
2708 	if (status == 0xffffffff)
2709 		goto hw_died;
2710 
2711 	if (!(status & STS_EINT)) {
2712 		spin_unlock(&xhci->lock);
2713 		return IRQ_NONE;
2714 	}
2715 	if (status & STS_FATAL) {
2716 		xhci_warn(xhci, "WARNING: Host System Error\n");
2717 		xhci_halt(xhci);
2718 hw_died:
2719 		spin_unlock(&xhci->lock);
2720 		return IRQ_HANDLED;
2721 	}
2722 
2723 	/*
2724 	 * Clear the op reg interrupt status first,
2725 	 * so we can receive interrupts from other MSI-X interrupters.
2726 	 * Write 1 to clear the interrupt status.
2727 	 */
2728 	status |= STS_EINT;
2729 	writel(status, &xhci->op_regs->status);
2730 	/* FIXME when MSI-X is supported and there are multiple vectors */
2731 	/* Clear the MSI-X event interrupt status */
2732 
2733 	if (hcd->irq) {
2734 		u32 irq_pending;
2735 		/* Acknowledge the PCI interrupt */
2736 		irq_pending = readl(&xhci->ir_set->irq_pending);
2737 		irq_pending |= IMAN_IP;
2738 		writel(irq_pending, &xhci->ir_set->irq_pending);
2739 	}
2740 
2741 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2742 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2743 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2744 				"Shouldn't IRQs be disabled?\n");
2745 		/* Clear the event handler busy flag (RW1C);
2746 		 * the event ring should be empty.
2747 		 */
2748 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2749 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2750 				&xhci->ir_set->erst_dequeue);
2751 		spin_unlock(&xhci->lock);
2752 
2753 		return IRQ_HANDLED;
2754 	}
2755 
2756 	event_ring_deq = xhci->event_ring->dequeue;
2757 	/* FIXME this should be a delayed service routine
2758 	 * that clears the EHB.
2759 	 */
2760 	while (xhci_handle_event(xhci) > 0) {}
2761 
2762 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2763 	/* If necessary, update the HW's version of the event ring deq ptr. */
2764 	if (event_ring_deq != xhci->event_ring->dequeue) {
2765 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2766 				xhci->event_ring->dequeue);
2767 		if (deq == 0)
2768 			xhci_warn(xhci, "WARN something wrong with SW event "
2769 					"ring dequeue ptr.\n");
2770 		/* Update HC event ring dequeue pointer */
2771 		temp_64 &= ERST_PTR_MASK;
2772 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2773 	}
2774 
2775 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2776 	temp_64 |= ERST_EHB;
2777 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2778 
2779 	spin_unlock(&xhci->lock);
2780 
2781 	return IRQ_HANDLED;
2782 }
2783 
2784 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2785 {
2786 	return xhci_irq(hcd);
2787 }
2788 
2789 /****		Endpoint Ring Operations	****/
2790 
2791 /*
2792  * Generic function for queueing a TRB on a ring.
2793  * The caller must have checked to make sure there's room on the ring.
2794  *
2795  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2796  *			prepare_transfer()?
2797  */
2798 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2799 		bool more_trbs_coming,
2800 		u32 field1, u32 field2, u32 field3, u32 field4)
2801 {
2802 	struct xhci_generic_trb *trb;
2803 
2804 	trb = &ring->enqueue->generic;
2805 	trb->field[0] = cpu_to_le32(field1);
2806 	trb->field[1] = cpu_to_le32(field2);
2807 	trb->field[2] = cpu_to_le32(field3);
2808 	trb->field[3] = cpu_to_le32(field4);
2809 	inc_enq(xhci, ring, more_trbs_coming);
2810 }
2811 
2812 /*
2813  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2814  * FIXME allocate segments if the ring is full.
2815  */
2816 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2817 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2818 {
2819 	unsigned int num_trbs_needed;
2820 
2821 	/* Make sure the endpoint has been added to xHC schedule */
2822 	switch (ep_state) {
2823 	case EP_STATE_DISABLED:
2824 		/*
2825 		 * USB core changed config/interfaces without notifying us,
2826 		 * or hardware is reporting the wrong state.
2827 		 */
2828 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2829 		return -ENOENT;
2830 	case EP_STATE_ERROR:
2831 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2832 		/* FIXME event handling code for error needs to clear it */
2833 		/* XXX not sure if this should be -ENOENT or not */
2834 		return -EINVAL;
2835 	case EP_STATE_HALTED:
2836 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2837 	case EP_STATE_STOPPED:
2838 	case EP_STATE_RUNNING:
2839 		break;
2840 	default:
2841 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2842 		/*
2843 		 * FIXME issue Configure Endpoint command to try to get the HC
2844 		 * back into a known state.
2845 		 */
2846 		return -EINVAL;
2847 	}
2848 
2849 	while (1) {
2850 		if (room_on_ring(xhci, ep_ring, num_trbs))
2851 			break;
2852 
2853 		if (ep_ring == xhci->cmd_ring) {
2854 			xhci_err(xhci, "Do not support expand command ring\n");
2855 			return -ENOMEM;
2856 		}
2857 
2858 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2859 				"ERROR no room on ep ring, try ring expansion");
2860 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2861 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2862 					mem_flags)) {
2863 			xhci_err(xhci, "Ring expansion failed\n");
2864 			return -ENOMEM;
2865 		}
2866 	}
2867 
2868 	if (enqueue_is_link_trb(ep_ring)) {
2869 		struct xhci_ring *ring = ep_ring;
2870 		union xhci_trb *next;
2871 
2872 		next = ring->enqueue;
2873 
2874 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2875 			/* If we're not dealing with 0.95 hardware or isoc rings
2876 			 * on AMD 0.96 host, clear the chain bit.
2877 			 */
2878 			if (!xhci_link_trb_quirk(xhci) &&
2879 					!(ring->type == TYPE_ISOC &&
2880 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2881 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2882 			else
2883 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2884 
2885 			wmb();
2886 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2887 
2888 			/* Toggle the cycle bit after the last ring segment. */
2889 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2890 				ring->cycle_state ^= 1;
2891 			}
2892 			ring->enq_seg = ring->enq_seg->next;
2893 			ring->enqueue = ring->enq_seg->trbs;
2894 			next = ring->enqueue;
2895 		}
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 static int prepare_transfer(struct xhci_hcd *xhci,
2902 		struct xhci_virt_device *xdev,
2903 		unsigned int ep_index,
2904 		unsigned int stream_id,
2905 		unsigned int num_trbs,
2906 		struct urb *urb,
2907 		unsigned int td_index,
2908 		gfp_t mem_flags)
2909 {
2910 	int ret;
2911 	struct urb_priv *urb_priv;
2912 	struct xhci_td	*td;
2913 	struct xhci_ring *ep_ring;
2914 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2915 
2916 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2917 	if (!ep_ring) {
2918 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2919 				stream_id);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ret = prepare_ring(xhci, ep_ring,
2924 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2925 			   num_trbs, mem_flags);
2926 	if (ret)
2927 		return ret;
2928 
2929 	urb_priv = urb->hcpriv;
2930 	td = urb_priv->td[td_index];
2931 
2932 	INIT_LIST_HEAD(&td->td_list);
2933 	INIT_LIST_HEAD(&td->cancelled_td_list);
2934 
2935 	if (td_index == 0) {
2936 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2937 		if (unlikely(ret))
2938 			return ret;
2939 	}
2940 
2941 	td->urb = urb;
2942 	/* Add this TD to the tail of the endpoint ring's TD list */
2943 	list_add_tail(&td->td_list, &ep_ring->td_list);
2944 	td->start_seg = ep_ring->enq_seg;
2945 	td->first_trb = ep_ring->enqueue;
2946 
2947 	urb_priv->td[td_index] = td;
2948 
2949 	return 0;
2950 }
2951 
2952 static unsigned int count_trbs(u64 addr, u64 len)
2953 {
2954 	unsigned int num_trbs;
2955 
2956 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2957 			TRB_MAX_BUFF_SIZE);
2958 	if (num_trbs == 0)
2959 		num_trbs++;
2960 
2961 	return num_trbs;
2962 }
2963 
2964 static inline unsigned int count_trbs_needed(struct urb *urb)
2965 {
2966 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2967 }
2968 
2969 static unsigned int count_sg_trbs_needed(struct urb *urb)
2970 {
2971 	struct scatterlist *sg;
2972 	unsigned int i, len, full_len, num_trbs = 0;
2973 
2974 	full_len = urb->transfer_buffer_length;
2975 
2976 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2977 		len = sg_dma_len(sg);
2978 		num_trbs += count_trbs(sg_dma_address(sg), len);
2979 		len = min_t(unsigned int, len, full_len);
2980 		full_len -= len;
2981 		if (full_len == 0)
2982 			break;
2983 	}
2984 
2985 	return num_trbs;
2986 }
2987 
2988 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2989 {
2990 	u64 addr, len;
2991 
2992 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2993 	len = urb->iso_frame_desc[i].length;
2994 
2995 	return count_trbs(addr, len);
2996 }
2997 
2998 static void check_trb_math(struct urb *urb, int running_total)
2999 {
3000 	if (unlikely(running_total != urb->transfer_buffer_length))
3001 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3002 				"queued %#x (%d), asked for %#x (%d)\n",
3003 				__func__,
3004 				urb->ep->desc.bEndpointAddress,
3005 				running_total, running_total,
3006 				urb->transfer_buffer_length,
3007 				urb->transfer_buffer_length);
3008 }
3009 
3010 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3011 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3012 		struct xhci_generic_trb *start_trb)
3013 {
3014 	/*
3015 	 * Pass all the TRBs to the hardware at once and make sure this write
3016 	 * isn't reordered.
3017 	 */
3018 	wmb();
3019 	if (start_cycle)
3020 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3021 	else
3022 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3023 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3024 }
3025 
3026 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3027 						struct xhci_ep_ctx *ep_ctx)
3028 {
3029 	int xhci_interval;
3030 	int ep_interval;
3031 
3032 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3033 	ep_interval = urb->interval;
3034 
3035 	/* Convert to microframes */
3036 	if (urb->dev->speed == USB_SPEED_LOW ||
3037 			urb->dev->speed == USB_SPEED_FULL)
3038 		ep_interval *= 8;
3039 
3040 	/* FIXME change this to a warning and a suggestion to use the new API
3041 	 * to set the polling interval (once the API is added).
3042 	 */
3043 	if (xhci_interval != ep_interval) {
3044 		dev_dbg_ratelimited(&urb->dev->dev,
3045 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3046 				ep_interval, ep_interval == 1 ? "" : "s",
3047 				xhci_interval, xhci_interval == 1 ? "" : "s");
3048 		urb->interval = xhci_interval;
3049 		/* Convert back to frames for LS/FS devices */
3050 		if (urb->dev->speed == USB_SPEED_LOW ||
3051 				urb->dev->speed == USB_SPEED_FULL)
3052 			urb->interval /= 8;
3053 	}
3054 }
3055 
3056 /*
3057  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3058  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3059  * (comprised of sg list entries) can take several service intervals to
3060  * transmit.
3061  */
3062 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3063 		struct urb *urb, int slot_id, unsigned int ep_index)
3064 {
3065 	struct xhci_ep_ctx *ep_ctx;
3066 
3067 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3068 	check_interval(xhci, urb, ep_ctx);
3069 
3070 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3071 }
3072 
3073 /*
3074  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3075  * packets remaining in the TD (*not* including this TRB).
3076  *
3077  * Total TD packet count = total_packet_count =
3078  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3079  *
3080  * Packets transferred up to and including this TRB = packets_transferred =
3081  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3082  *
3083  * TD size = total_packet_count - packets_transferred
3084  *
3085  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3086  * including this TRB, right shifted by 10
3087  *
3088  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3089  * This is taken care of in the TRB_TD_SIZE() macro
3090  *
3091  * The last TRB in a TD must have the TD size set to zero.
3092  */
3093 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3094 			      int trb_buff_len, unsigned int td_total_len,
3095 			      struct urb *urb, unsigned int num_trbs_left)
3096 {
3097 	u32 maxp, total_packet_count;
3098 
3099 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3100 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3101 		return ((td_total_len - transferred) >> 10);
3102 
3103 	/* One TRB with a zero-length data packet. */
3104 	if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) ||
3105 	    trb_buff_len == td_total_len)
3106 		return 0;
3107 
3108 	/* for MTK xHCI, TD size doesn't include this TRB */
3109 	if (xhci->quirks & XHCI_MTK_HOST)
3110 		trb_buff_len = 0;
3111 
3112 	maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3113 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3114 
3115 	/* Queueing functions don't count the current TRB into transferred */
3116 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3117 }
3118 
3119 /* This is very similar to what ehci-q.c qtd_fill() does */
3120 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3121 		struct urb *urb, int slot_id, unsigned int ep_index)
3122 {
3123 	struct xhci_ring *ep_ring;
3124 	struct urb_priv *urb_priv;
3125 	struct xhci_td *td;
3126 	struct xhci_generic_trb *start_trb;
3127 	struct scatterlist *sg = NULL;
3128 	bool more_trbs_coming;
3129 	bool zero_length_needed;
3130 	unsigned int num_trbs, last_trb_num, i;
3131 	unsigned int start_cycle, num_sgs = 0;
3132 	unsigned int running_total, block_len, trb_buff_len;
3133 	unsigned int full_len;
3134 	int ret;
3135 	u32 field, length_field, remainder;
3136 	u64 addr;
3137 
3138 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3139 	if (!ep_ring)
3140 		return -EINVAL;
3141 
3142 	/* If we have scatter/gather list, we use it. */
3143 	if (urb->num_sgs) {
3144 		num_sgs = urb->num_mapped_sgs;
3145 		sg = urb->sg;
3146 		num_trbs = count_sg_trbs_needed(urb);
3147 	} else
3148 		num_trbs = count_trbs_needed(urb);
3149 
3150 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3151 			ep_index, urb->stream_id,
3152 			num_trbs, urb, 0, mem_flags);
3153 	if (unlikely(ret < 0))
3154 		return ret;
3155 
3156 	urb_priv = urb->hcpriv;
3157 
3158 	last_trb_num = num_trbs - 1;
3159 
3160 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3161 	zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3162 		urb_priv->length == 2;
3163 	if (zero_length_needed) {
3164 		num_trbs++;
3165 		xhci_dbg(xhci, "Creating zero length td.\n");
3166 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3167 				ep_index, urb->stream_id,
3168 				1, urb, 1, mem_flags);
3169 		if (unlikely(ret < 0))
3170 			return ret;
3171 	}
3172 
3173 	td = urb_priv->td[0];
3174 
3175 	/*
3176 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3177 	 * until we've finished creating all the other TRBs.  The ring's cycle
3178 	 * state may change as we enqueue the other TRBs, so save it too.
3179 	 */
3180 	start_trb = &ep_ring->enqueue->generic;
3181 	start_cycle = ep_ring->cycle_state;
3182 
3183 	full_len = urb->transfer_buffer_length;
3184 	running_total = 0;
3185 	block_len = 0;
3186 
3187 	/* Queue the TRBs, even if they are zero-length */
3188 	for (i = 0; i < num_trbs; i++) {
3189 		field = TRB_TYPE(TRB_NORMAL);
3190 
3191 		if (block_len == 0) {
3192 			/* A new contiguous block. */
3193 			if (sg) {
3194 				addr = (u64) sg_dma_address(sg);
3195 				block_len = sg_dma_len(sg);
3196 			} else {
3197 				addr = (u64) urb->transfer_dma;
3198 				block_len = full_len;
3199 			}
3200 			/* TRB buffer should not cross 64KB boundaries */
3201 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3202 			trb_buff_len = min_t(unsigned int,
3203 								trb_buff_len,
3204 								block_len);
3205 		} else {
3206 			/* Further through the contiguous block. */
3207 			trb_buff_len = block_len;
3208 			if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3209 				trb_buff_len = TRB_MAX_BUFF_SIZE;
3210 		}
3211 
3212 		if (running_total + trb_buff_len > full_len)
3213 			trb_buff_len = full_len - running_total;
3214 
3215 		/* Don't change the cycle bit of the first TRB until later */
3216 		if (i == 0) {
3217 			if (start_cycle == 0)
3218 				field |= TRB_CYCLE;
3219 		} else
3220 			field |= ep_ring->cycle_state;
3221 
3222 		/* Chain all the TRBs together; clear the chain bit in the last
3223 		 * TRB to indicate it's the last TRB in the chain.
3224 		 */
3225 		if (i < last_trb_num) {
3226 			field |= TRB_CHAIN;
3227 		} else {
3228 			field |= TRB_IOC;
3229 			if (i == last_trb_num)
3230 				td->last_trb = ep_ring->enqueue;
3231 			else if (zero_length_needed) {
3232 				trb_buff_len = 0;
3233 				urb_priv->td[1]->last_trb = ep_ring->enqueue;
3234 			}
3235 		}
3236 
3237 		/* Only set interrupt on short packet for IN endpoints */
3238 		if (usb_urb_dir_in(urb))
3239 			field |= TRB_ISP;
3240 
3241 		/* Set the TRB length, TD size, and interrupter fields. */
3242 		remainder = xhci_td_remainder(xhci, running_total,
3243 							trb_buff_len, full_len,
3244 							urb, num_trbs - i - 1);
3245 
3246 		length_field = TRB_LEN(trb_buff_len) |
3247 			TRB_TD_SIZE(remainder) |
3248 			TRB_INTR_TARGET(0);
3249 
3250 		if (i < num_trbs - 1)
3251 			more_trbs_coming = true;
3252 		else
3253 			more_trbs_coming = false;
3254 		queue_trb(xhci, ep_ring, more_trbs_coming,
3255 				lower_32_bits(addr),
3256 				upper_32_bits(addr),
3257 				length_field,
3258 				field);
3259 
3260 		running_total += trb_buff_len;
3261 		addr += trb_buff_len;
3262 		block_len -= trb_buff_len;
3263 
3264 		if (sg) {
3265 			if (block_len == 0) {
3266 				/* New sg entry */
3267 				--num_sgs;
3268 				if (num_sgs == 0)
3269 					break;
3270 				sg = sg_next(sg);
3271 			}
3272 		}
3273 	}
3274 
3275 	check_trb_math(urb, running_total);
3276 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3277 			start_cycle, start_trb);
3278 	return 0;
3279 }
3280 
3281 /* Caller must have locked xhci->lock */
3282 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3283 		struct urb *urb, int slot_id, unsigned int ep_index)
3284 {
3285 	struct xhci_ring *ep_ring;
3286 	int num_trbs;
3287 	int ret;
3288 	struct usb_ctrlrequest *setup;
3289 	struct xhci_generic_trb *start_trb;
3290 	int start_cycle;
3291 	u32 field, length_field, remainder;
3292 	struct urb_priv *urb_priv;
3293 	struct xhci_td *td;
3294 
3295 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3296 	if (!ep_ring)
3297 		return -EINVAL;
3298 
3299 	/*
3300 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3301 	 * DMA address.
3302 	 */
3303 	if (!urb->setup_packet)
3304 		return -EINVAL;
3305 
3306 	/* 1 TRB for setup, 1 for status */
3307 	num_trbs = 2;
3308 	/*
3309 	 * Don't need to check if we need additional event data and normal TRBs,
3310 	 * since data in control transfers will never get bigger than 16MB
3311 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3312 	 */
3313 	if (urb->transfer_buffer_length > 0)
3314 		num_trbs++;
3315 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3316 			ep_index, urb->stream_id,
3317 			num_trbs, urb, 0, mem_flags);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	urb_priv = urb->hcpriv;
3322 	td = urb_priv->td[0];
3323 
3324 	/*
3325 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3326 	 * until we've finished creating all the other TRBs.  The ring's cycle
3327 	 * state may change as we enqueue the other TRBs, so save it too.
3328 	 */
3329 	start_trb = &ep_ring->enqueue->generic;
3330 	start_cycle = ep_ring->cycle_state;
3331 
3332 	/* Queue setup TRB - see section 6.4.1.2.1 */
3333 	/* FIXME better way to translate setup_packet into two u32 fields? */
3334 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3335 	field = 0;
3336 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3337 	if (start_cycle == 0)
3338 		field |= 0x1;
3339 
3340 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3341 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3342 		if (urb->transfer_buffer_length > 0) {
3343 			if (setup->bRequestType & USB_DIR_IN)
3344 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3345 			else
3346 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3347 		}
3348 	}
3349 
3350 	queue_trb(xhci, ep_ring, true,
3351 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3352 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3353 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3354 		  /* Immediate data in pointer */
3355 		  field);
3356 
3357 	/* If there's data, queue data TRBs */
3358 	/* Only set interrupt on short packet for IN endpoints */
3359 	if (usb_urb_dir_in(urb))
3360 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3361 	else
3362 		field = TRB_TYPE(TRB_DATA);
3363 
3364 	remainder = xhci_td_remainder(xhci, 0,
3365 				   urb->transfer_buffer_length,
3366 				   urb->transfer_buffer_length,
3367 				   urb, 1);
3368 
3369 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3370 		TRB_TD_SIZE(remainder) |
3371 		TRB_INTR_TARGET(0);
3372 
3373 	if (urb->transfer_buffer_length > 0) {
3374 		if (setup->bRequestType & USB_DIR_IN)
3375 			field |= TRB_DIR_IN;
3376 		queue_trb(xhci, ep_ring, true,
3377 				lower_32_bits(urb->transfer_dma),
3378 				upper_32_bits(urb->transfer_dma),
3379 				length_field,
3380 				field | ep_ring->cycle_state);
3381 	}
3382 
3383 	/* Save the DMA address of the last TRB in the TD */
3384 	td->last_trb = ep_ring->enqueue;
3385 
3386 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3387 	/* If the device sent data, the status stage is an OUT transfer */
3388 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3389 		field = 0;
3390 	else
3391 		field = TRB_DIR_IN;
3392 	queue_trb(xhci, ep_ring, false,
3393 			0,
3394 			0,
3395 			TRB_INTR_TARGET(0),
3396 			/* Event on completion */
3397 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3398 
3399 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3400 			start_cycle, start_trb);
3401 	return 0;
3402 }
3403 
3404 /*
3405  * The transfer burst count field of the isochronous TRB defines the number of
3406  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3407  * devices can burst up to bMaxBurst number of packets per service interval.
3408  * This field is zero based, meaning a value of zero in the field means one
3409  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3410  * zero.  Only xHCI 1.0 host controllers support this field.
3411  */
3412 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3413 		struct urb *urb, unsigned int total_packet_count)
3414 {
3415 	unsigned int max_burst;
3416 
3417 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3418 		return 0;
3419 
3420 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3421 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3422 }
3423 
3424 /*
3425  * Returns the number of packets in the last "burst" of packets.  This field is
3426  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3427  * the last burst packet count is equal to the total number of packets in the
3428  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3429  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3430  * contain 1 to (bMaxBurst + 1) packets.
3431  */
3432 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3433 		struct urb *urb, unsigned int total_packet_count)
3434 {
3435 	unsigned int max_burst;
3436 	unsigned int residue;
3437 
3438 	if (xhci->hci_version < 0x100)
3439 		return 0;
3440 
3441 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3442 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3443 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3444 		residue = total_packet_count % (max_burst + 1);
3445 		/* If residue is zero, the last burst contains (max_burst + 1)
3446 		 * number of packets, but the TLBPC field is zero-based.
3447 		 */
3448 		if (residue == 0)
3449 			return max_burst;
3450 		return residue - 1;
3451 	}
3452 	if (total_packet_count == 0)
3453 		return 0;
3454 	return total_packet_count - 1;
3455 }
3456 
3457 /*
3458  * Calculates Frame ID field of the isochronous TRB identifies the
3459  * target frame that the Interval associated with this Isochronous
3460  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3461  *
3462  * Returns actual frame id on success, negative value on error.
3463  */
3464 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3465 		struct urb *urb, int index)
3466 {
3467 	int start_frame, ist, ret = 0;
3468 	int start_frame_id, end_frame_id, current_frame_id;
3469 
3470 	if (urb->dev->speed == USB_SPEED_LOW ||
3471 			urb->dev->speed == USB_SPEED_FULL)
3472 		start_frame = urb->start_frame + index * urb->interval;
3473 	else
3474 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3475 
3476 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3477 	 *
3478 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3479 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3480 	 * be executed.
3481 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3482 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3483 	 */
3484 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3485 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3486 		ist <<= 3;
3487 
3488 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3489 	 * is less than the Start Frame ID or greater than the End Frame ID,
3490 	 * where:
3491 	 *
3492 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3493 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3494 	 *
3495 	 * Both the End Frame ID and Start Frame ID values are calculated
3496 	 * in microframes. When software determines the valid Frame ID value;
3497 	 * The End Frame ID value should be rounded down to the nearest Frame
3498 	 * boundary, and the Start Frame ID value should be rounded up to the
3499 	 * nearest Frame boundary.
3500 	 */
3501 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3502 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3503 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3504 
3505 	start_frame &= 0x7ff;
3506 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3507 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3508 
3509 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3510 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3511 		 start_frame_id, end_frame_id, start_frame);
3512 
3513 	if (start_frame_id < end_frame_id) {
3514 		if (start_frame > end_frame_id ||
3515 				start_frame < start_frame_id)
3516 			ret = -EINVAL;
3517 	} else if (start_frame_id > end_frame_id) {
3518 		if ((start_frame > end_frame_id &&
3519 				start_frame < start_frame_id))
3520 			ret = -EINVAL;
3521 	} else {
3522 			ret = -EINVAL;
3523 	}
3524 
3525 	if (index == 0) {
3526 		if (ret == -EINVAL || start_frame == start_frame_id) {
3527 			start_frame = start_frame_id + 1;
3528 			if (urb->dev->speed == USB_SPEED_LOW ||
3529 					urb->dev->speed == USB_SPEED_FULL)
3530 				urb->start_frame = start_frame;
3531 			else
3532 				urb->start_frame = start_frame << 3;
3533 			ret = 0;
3534 		}
3535 	}
3536 
3537 	if (ret) {
3538 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3539 				start_frame, current_frame_id, index,
3540 				start_frame_id, end_frame_id);
3541 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3542 		return ret;
3543 	}
3544 
3545 	return start_frame;
3546 }
3547 
3548 /* This is for isoc transfer */
3549 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3550 		struct urb *urb, int slot_id, unsigned int ep_index)
3551 {
3552 	struct xhci_ring *ep_ring;
3553 	struct urb_priv *urb_priv;
3554 	struct xhci_td *td;
3555 	int num_tds, trbs_per_td;
3556 	struct xhci_generic_trb *start_trb;
3557 	bool first_trb;
3558 	int start_cycle;
3559 	u32 field, length_field;
3560 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3561 	u64 start_addr, addr;
3562 	int i, j;
3563 	bool more_trbs_coming;
3564 	struct xhci_virt_ep *xep;
3565 	int frame_id;
3566 
3567 	xep = &xhci->devs[slot_id]->eps[ep_index];
3568 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3569 
3570 	num_tds = urb->number_of_packets;
3571 	if (num_tds < 1) {
3572 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3573 		return -EINVAL;
3574 	}
3575 	start_addr = (u64) urb->transfer_dma;
3576 	start_trb = &ep_ring->enqueue->generic;
3577 	start_cycle = ep_ring->cycle_state;
3578 
3579 	urb_priv = urb->hcpriv;
3580 	/* Queue the TRBs for each TD, even if they are zero-length */
3581 	for (i = 0; i < num_tds; i++) {
3582 		unsigned int total_pkt_count, max_pkt;
3583 		unsigned int burst_count, last_burst_pkt_count;
3584 		u32 sia_frame_id;
3585 
3586 		first_trb = true;
3587 		running_total = 0;
3588 		addr = start_addr + urb->iso_frame_desc[i].offset;
3589 		td_len = urb->iso_frame_desc[i].length;
3590 		td_remain_len = td_len;
3591 		max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3592 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3593 
3594 		/* A zero-length transfer still involves at least one packet. */
3595 		if (total_pkt_count == 0)
3596 			total_pkt_count++;
3597 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3598 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3599 							urb, total_pkt_count);
3600 
3601 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3602 
3603 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3604 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3605 		if (ret < 0) {
3606 			if (i == 0)
3607 				return ret;
3608 			goto cleanup;
3609 		}
3610 		td = urb_priv->td[i];
3611 
3612 		/* use SIA as default, if frame id is used overwrite it */
3613 		sia_frame_id = TRB_SIA;
3614 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3615 		    HCC_CFC(xhci->hcc_params)) {
3616 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3617 			if (frame_id >= 0)
3618 				sia_frame_id = TRB_FRAME_ID(frame_id);
3619 		}
3620 		/*
3621 		 * Set isoc specific data for the first TRB in a TD.
3622 		 * Prevent HW from getting the TRBs by keeping the cycle state
3623 		 * inverted in the first TDs isoc TRB.
3624 		 */
3625 		field = TRB_TYPE(TRB_ISOC) |
3626 			TRB_TLBPC(last_burst_pkt_count) |
3627 			sia_frame_id |
3628 			(i ? ep_ring->cycle_state : !start_cycle);
3629 
3630 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3631 		if (!xep->use_extended_tbc)
3632 			field |= TRB_TBC(burst_count);
3633 
3634 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3635 		for (j = 0; j < trbs_per_td; j++) {
3636 			u32 remainder = 0;
3637 
3638 			/* only first TRB is isoc, overwrite otherwise */
3639 			if (!first_trb)
3640 				field = TRB_TYPE(TRB_NORMAL) |
3641 					ep_ring->cycle_state;
3642 
3643 			/* Only set interrupt on short packet for IN EPs */
3644 			if (usb_urb_dir_in(urb))
3645 				field |= TRB_ISP;
3646 
3647 			/* Set the chain bit for all except the last TRB  */
3648 			if (j < trbs_per_td - 1) {
3649 				more_trbs_coming = true;
3650 				field |= TRB_CHAIN;
3651 			} else {
3652 				more_trbs_coming = false;
3653 				td->last_trb = ep_ring->enqueue;
3654 				field |= TRB_IOC;
3655 				/* set BEI, except for the last TD */
3656 				if (xhci->hci_version >= 0x100 &&
3657 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3658 				    i < num_tds - 1)
3659 					field |= TRB_BEI;
3660 			}
3661 			/* Calculate TRB length */
3662 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3663 			if (trb_buff_len > td_remain_len)
3664 				trb_buff_len = td_remain_len;
3665 
3666 			/* Set the TRB length, TD size, & interrupter fields. */
3667 			remainder = xhci_td_remainder(xhci, running_total,
3668 						   trb_buff_len, td_len,
3669 						   urb, trbs_per_td - j - 1);
3670 
3671 			length_field = TRB_LEN(trb_buff_len) |
3672 				TRB_INTR_TARGET(0);
3673 
3674 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3675 			if (first_trb && xep->use_extended_tbc)
3676 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3677 			else
3678 				length_field |= TRB_TD_SIZE(remainder);
3679 			first_trb = false;
3680 
3681 			queue_trb(xhci, ep_ring, more_trbs_coming,
3682 				lower_32_bits(addr),
3683 				upper_32_bits(addr),
3684 				length_field,
3685 				field);
3686 			running_total += trb_buff_len;
3687 
3688 			addr += trb_buff_len;
3689 			td_remain_len -= trb_buff_len;
3690 		}
3691 
3692 		/* Check TD length */
3693 		if (running_total != td_len) {
3694 			xhci_err(xhci, "ISOC TD length unmatch\n");
3695 			ret = -EINVAL;
3696 			goto cleanup;
3697 		}
3698 	}
3699 
3700 	/* store the next frame id */
3701 	if (HCC_CFC(xhci->hcc_params))
3702 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3703 
3704 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3705 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3706 			usb_amd_quirk_pll_disable();
3707 	}
3708 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3709 
3710 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3711 			start_cycle, start_trb);
3712 	return 0;
3713 cleanup:
3714 	/* Clean up a partially enqueued isoc transfer. */
3715 
3716 	for (i--; i >= 0; i--)
3717 		list_del_init(&urb_priv->td[i]->td_list);
3718 
3719 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3720 	 * into No-ops with a software-owned cycle bit. That way the hardware
3721 	 * won't accidentally start executing bogus TDs when we partially
3722 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3723 	 */
3724 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3725 	/* Every TRB except the first & last will have its cycle bit flipped. */
3726 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3727 
3728 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3729 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3730 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3731 	ep_ring->cycle_state = start_cycle;
3732 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3733 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * Check transfer ring to guarantee there is enough room for the urb.
3739  * Update ISO URB start_frame and interval.
3740  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3741  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3742  * Contiguous Frame ID is not supported by HC.
3743  */
3744 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3745 		struct urb *urb, int slot_id, unsigned int ep_index)
3746 {
3747 	struct xhci_virt_device *xdev;
3748 	struct xhci_ring *ep_ring;
3749 	struct xhci_ep_ctx *ep_ctx;
3750 	int start_frame;
3751 	int num_tds, num_trbs, i;
3752 	int ret;
3753 	struct xhci_virt_ep *xep;
3754 	int ist;
3755 
3756 	xdev = xhci->devs[slot_id];
3757 	xep = &xhci->devs[slot_id]->eps[ep_index];
3758 	ep_ring = xdev->eps[ep_index].ring;
3759 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3760 
3761 	num_trbs = 0;
3762 	num_tds = urb->number_of_packets;
3763 	for (i = 0; i < num_tds; i++)
3764 		num_trbs += count_isoc_trbs_needed(urb, i);
3765 
3766 	/* Check the ring to guarantee there is enough room for the whole urb.
3767 	 * Do not insert any td of the urb to the ring if the check failed.
3768 	 */
3769 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3770 			   num_trbs, mem_flags);
3771 	if (ret)
3772 		return ret;
3773 
3774 	/*
3775 	 * Check interval value. This should be done before we start to
3776 	 * calculate the start frame value.
3777 	 */
3778 	check_interval(xhci, urb, ep_ctx);
3779 
3780 	/* Calculate the start frame and put it in urb->start_frame. */
3781 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3782 		if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3783 				EP_STATE_RUNNING) {
3784 			urb->start_frame = xep->next_frame_id;
3785 			goto skip_start_over;
3786 		}
3787 	}
3788 
3789 	start_frame = readl(&xhci->run_regs->microframe_index);
3790 	start_frame &= 0x3fff;
3791 	/*
3792 	 * Round up to the next frame and consider the time before trb really
3793 	 * gets scheduled by hardare.
3794 	 */
3795 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3796 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3797 		ist <<= 3;
3798 	start_frame += ist + XHCI_CFC_DELAY;
3799 	start_frame = roundup(start_frame, 8);
3800 
3801 	/*
3802 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3803 	 * is greate than 8 microframes.
3804 	 */
3805 	if (urb->dev->speed == USB_SPEED_LOW ||
3806 			urb->dev->speed == USB_SPEED_FULL) {
3807 		start_frame = roundup(start_frame, urb->interval << 3);
3808 		urb->start_frame = start_frame >> 3;
3809 	} else {
3810 		start_frame = roundup(start_frame, urb->interval);
3811 		urb->start_frame = start_frame;
3812 	}
3813 
3814 skip_start_over:
3815 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3816 
3817 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3818 }
3819 
3820 /****		Command Ring Operations		****/
3821 
3822 /* Generic function for queueing a command TRB on the command ring.
3823  * Check to make sure there's room on the command ring for one command TRB.
3824  * Also check that there's room reserved for commands that must not fail.
3825  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3826  * then only check for the number of reserved spots.
3827  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3828  * because the command event handler may want to resubmit a failed command.
3829  */
3830 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3831 			 u32 field1, u32 field2,
3832 			 u32 field3, u32 field4, bool command_must_succeed)
3833 {
3834 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3835 	int ret;
3836 
3837 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3838 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3839 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3840 		return -ESHUTDOWN;
3841 	}
3842 
3843 	if (!command_must_succeed)
3844 		reserved_trbs++;
3845 
3846 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3847 			reserved_trbs, GFP_ATOMIC);
3848 	if (ret < 0) {
3849 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3850 		if (command_must_succeed)
3851 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3852 					"unfailable commands failed.\n");
3853 		return ret;
3854 	}
3855 
3856 	cmd->command_trb = xhci->cmd_ring->enqueue;
3857 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3858 
3859 	/* if there are no other commands queued we start the timeout timer */
3860 	if (xhci->cmd_list.next == &cmd->cmd_list &&
3861 	    !timer_pending(&xhci->cmd_timer)) {
3862 		xhci->current_cmd = cmd;
3863 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3864 	}
3865 
3866 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3867 			field4 | xhci->cmd_ring->cycle_state);
3868 	return 0;
3869 }
3870 
3871 /* Queue a slot enable or disable request on the command ring */
3872 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3873 		u32 trb_type, u32 slot_id)
3874 {
3875 	return queue_command(xhci, cmd, 0, 0, 0,
3876 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3877 }
3878 
3879 /* Queue an address device command TRB */
3880 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3881 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3882 {
3883 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3884 			upper_32_bits(in_ctx_ptr), 0,
3885 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3886 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3887 }
3888 
3889 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3890 		u32 field1, u32 field2, u32 field3, u32 field4)
3891 {
3892 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3893 }
3894 
3895 /* Queue a reset device command TRB */
3896 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3897 		u32 slot_id)
3898 {
3899 	return queue_command(xhci, cmd, 0, 0, 0,
3900 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3901 			false);
3902 }
3903 
3904 /* Queue a configure endpoint command TRB */
3905 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3906 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3907 		u32 slot_id, bool command_must_succeed)
3908 {
3909 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3910 			upper_32_bits(in_ctx_ptr), 0,
3911 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3912 			command_must_succeed);
3913 }
3914 
3915 /* Queue an evaluate context command TRB */
3916 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3917 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3918 {
3919 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3920 			upper_32_bits(in_ctx_ptr), 0,
3921 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3922 			command_must_succeed);
3923 }
3924 
3925 /*
3926  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3927  * activity on an endpoint that is about to be suspended.
3928  */
3929 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3930 			     int slot_id, unsigned int ep_index, int suspend)
3931 {
3932 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3933 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3934 	u32 type = TRB_TYPE(TRB_STOP_RING);
3935 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3936 
3937 	return queue_command(xhci, cmd, 0, 0, 0,
3938 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3939 }
3940 
3941 /* Set Transfer Ring Dequeue Pointer command */
3942 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3943 		unsigned int slot_id, unsigned int ep_index,
3944 		unsigned int stream_id,
3945 		struct xhci_dequeue_state *deq_state)
3946 {
3947 	dma_addr_t addr;
3948 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3949 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3950 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3951 	u32 trb_sct = 0;
3952 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3953 	struct xhci_virt_ep *ep;
3954 	struct xhci_command *cmd;
3955 	int ret;
3956 
3957 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3958 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3959 		deq_state->new_deq_seg,
3960 		(unsigned long long)deq_state->new_deq_seg->dma,
3961 		deq_state->new_deq_ptr,
3962 		(unsigned long long)xhci_trb_virt_to_dma(
3963 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3964 		deq_state->new_cycle_state);
3965 
3966 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3967 				    deq_state->new_deq_ptr);
3968 	if (addr == 0) {
3969 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3970 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3971 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3972 		return;
3973 	}
3974 	ep = &xhci->devs[slot_id]->eps[ep_index];
3975 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3976 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3977 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3978 		return;
3979 	}
3980 
3981 	/* This function gets called from contexts where it cannot sleep */
3982 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3983 	if (!cmd) {
3984 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3985 		return;
3986 	}
3987 
3988 	ep->queued_deq_seg = deq_state->new_deq_seg;
3989 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3990 	if (stream_id)
3991 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3992 	ret = queue_command(xhci, cmd,
3993 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3994 		upper_32_bits(addr), trb_stream_id,
3995 		trb_slot_id | trb_ep_index | type, false);
3996 	if (ret < 0) {
3997 		xhci_free_command(xhci, cmd);
3998 		return;
3999 	}
4000 
4001 	/* Stop the TD queueing code from ringing the doorbell until
4002 	 * this command completes.  The HC won't set the dequeue pointer
4003 	 * if the ring is running, and ringing the doorbell starts the
4004 	 * ring running.
4005 	 */
4006 	ep->ep_state |= SET_DEQ_PENDING;
4007 }
4008 
4009 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4010 			int slot_id, unsigned int ep_index)
4011 {
4012 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4013 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4014 	u32 type = TRB_TYPE(TRB_RESET_EP);
4015 
4016 	return queue_command(xhci, cmd, 0, 0, 0,
4017 			trb_slot_id | trb_ep_index | type, false);
4018 }
4019